

 HELLENIC MEDITERRANEAN

UNIVERSITY

SCHOOL OF ENGINEERING AND DEPARTMENT

OF ELECTRICAL AND COMPUTER

ENGINEERING

PROGRAM OF STUDIES: INFORMATICS

ENGINEERING

THESIS

TITLE: KLSTR MOBILE CONTROLLER

MARIA PAVLOU (4140)

Advisor: Papadourakis Georgios

ABSTRACT
The purpose of this thesis is the designing and development of an application for the
management of lighting systems in large spaces, such as festivals, theaters, theme parks,
television studios, etc. Lighting technicians face several problems as in such large events
many lights are needed, which they must properly adjust the position, direction, color,

intensity, etc. In this thesis, the goal is to create a system that will be integrated into the
lighting device and a mobile application.

The system we will create consists of a screen through which one can make appropriate

settings and an NFC antenna through which data exchange will be done with the mobile

application. Either one can make settings through the screen and then bring the phone to the

NFC antenna to update the application, or make changes to the settings through the

application and send the data to the NFC antenna.

ΣΥΝΟΨΗ
Σκοπός αυτής της εργασίας είναι ο σχεδιασμός και η ανάπτυξη μίας εφαρμογής για τη
διαχείριση των συστημάτων φωτισμού σε μεγάλους χώρους, όπως σε φεστιβάλ, θέατρα,

θεματικά πάρκα, τηλεοπτικά στούντιο κ.ά. Οι τεχνικοί φωτισμού αντιμετωπίζουν αρκετά
προβλήματα καθώς σε τόσο μεγάλους χώρους χρειάζονται πολλά φώτα, σε καθένα από τα

οποίο πρέπει να ρυθμίσουν κατάλληλα τη θέση, την κατεύθυνση, το χρώμα, την ένταση κ.ά.
Σε αυτή την εργασία, στόχος είναι η δημιουργία ενός συστήματος που θα ενσωματωθεί στη
συσκευή του φωτός και μίας εφαρμογής για το κινητό.

Το σύστημα που θα δημιουργήσουμε αποτελείται από μία οθόνη μέσω της οποίας θα
μπορεί κάποιος να κάνει κατάλληλες ρυθμίσεις και μία κεραία NFC μέσω της οποίας θα
γίνεται η ανταλλαγή δεδομένων με την εφαρμογή για το κινητό. Είτε μπορεί κάποιος να
κάνει ρυθμίσεις μέσω της οθόνης και στη συνέχεια να φέρει σε επαφή το κινητό με την
κεραία NFC για να ενημερωθεί η εφαρμογή, είτε να κάνει αλλαγές στις ρυθμίσεις μέσω της
εφαρμογής και να αποστέλλει τα δεδομένα στην κεραία NFC.

TABLE OF CONTENTS

ABSTRACT .. ii

ΣΥΝΟΨΗ.. iii

TABLE OF CONTENTS..v

LIST OF FIGURES ..vii

LIST OF TABLES ...viii

ACKNOLEDGEMENTS..9

DEDICATION .. 10

CHAPTER 1: INTRODUCTION ... 11

1.1 Summary .. 11

1.2 Motive.. 11

1.3 Blended-AIM (Blended Academic International Mobility) .. 11

1.3.1 The history of Blended Mobility... 12

1.3.2 The methodology of Blended Mobility ... 12

CHAPTER 2: FUNDMENTALS ... 14

2.1 Analysis and Development Methods .. 14

2.1.1 Nexus Scrum .. 14

2.1.2 Jira .. 14

2.1.3 Slack .. 15

CHAPTER 3: WORK PLAN .. 17

3.1 State of the art ... 17

3.2 Technologies .. 17

3.2.1 Arduino Uno... 17

3.2.2 Arduino IDE .. 21

3.2.3 Liquid-crystal display (LCD).. 23

3.2.4 LED .. 25

3.2.5 NFC ... 26

3.2.6 I2C ... 26

3.2.7 NTAG I2C Antenna .. 28

CHAPTER 4: MAIN PART ... 28

4.1 Problem Analysis .. 29

4.1.1 Problem Description ... 29

4.1.2 System Requirements ... 30

4.2 Implementation plan .. 30

4.3 Implementation.. 31

4.3.1 Simulation.. 31

4.3.1.1 LCD Screen... 31

4.3.1.2 Buttons ... 32

4.3.1.3 Leds.. 32

4.3.2 Coding Explanation... 34

4.3.2.1 Menu Options .. 34

4.3.2.2 Declarations .. 34

4.3.2.3 Arrows .. 35

4.3.2.4 Libraries.. 36

4.3.2.5 Setup... 37

4.3.2.6 Loop ... 38

4.3.3 Functions ... 39

4.3.3.1 Function 1 – Draw Menu .. 39

4.3.3.2 Function 2 – Draw Cursor .. 41

4.3.3.3 Function 3 – Main Menu .. 44

4.3.3.4 Function 4 - Buttons ... 48

4.3.3.5 Function 5 – Manual Mode ... 49

4.3.3.6 Function 6 – Automatic Mode .. 50

4.3.3.7 Function 7 - Strobes ... 51

4.3.3.8 Function 8 - Dimmer .. 53

4.3.4 NTAG I2C Antenna .. 54

4.3.5 Circuit Diagram .. 56

CHAPTER 5: RESULTS.. 58

5.1 Conclusion ... 58

5.2 Future work and extensions .. 59

REFERENCES .. 60

LIST OF FIGURES
Figure 1. Arduino UNO.. 18

Figure 2. Arduino IDE ... 22

Figure 3. LCD Keypad Shield ... 24

Figure 4. LED Circuit .. 25

Figure 5. NTAG I2C plus Flex antenna .. 28

Figure 6. Simulation Circuit.. 33

Figure 7. Simulation Circuit Diagram 1 ... 33

Figure 8. Simulation Circuit Diagram 2 ... 34

Figure 9. Menu Items ... 34

Figure 10. Declarations .. 35

Figure 11. Down Arrow ... 35

Figure 12. Up Arrow .. 36

Figure 13. Menu Cursor ... 36

Figure 14. Libraries.. 37

Figure 15. Constell8 ... 37

Figure 16. Setup... 38

Figure 17. Loop ... 38

Figure 18. Main Menu Draw... 39

Figure 19. Menu Pages ... 39

Figure 20. Page 0 – Only Down Arrow.. 40

Figure 21. Page 0- Only Down Arrow ... 40

Figure 22. Page 1 – Both Arrows .. 40

Figure 23. Page 2 – Both Arrows .. 41

Figure 24. Page 3 – Only Up Arrow .. 41

Figure 25. Draw Cursor – Even Page... 42

Figure 26. Even page – Even cursor .. 42

Figure 27. Even page – Odd cursor ... 42

Figure 28. Even page – Odd cursor ... 43

Figure 29. Draw Cursor – Odd Page .. 43

Figure 30. Odd page – Even cursor ... 44

Figure 31. Odd page – Odd cursor... 44

Figure 32. Operate Main Menu ... 45

Figure 33. Switch Menu Items – Case 0 & Case 1 – Right Button ... 46

Figure 34. Case 2 – Up Button .. 47

Figure 35. Case 3 – Down Button ... 48

Figure 36. Evaluate Button ... 48

Figure 37. Manual Mode .. 49

Figure 38. Yellow Led ... 50

Figure 39. Automatic Mode .. 50

Figure 40. Green Led ... 51

Figure 41. Strobe Mode .. 52

Figure 42. Red Led .. 52

Figure 43. Dimmer Mode ... 53

Figure 44. Blue Led ... 54

Figure 45. NTAG Test ... 55

Figure 46. Circuit Diagram ... 57

LIST OF TABLES
Table 1. Technical specifications .. 19

Table 2. LCD Interfaces ... 23

Table 3. Simulation LCD Interfaces .. 32

Table 4. NTAG I2C Antenna... 54

Table 5. Circuit Wiring .. 56

ACKNOLEDGEMENTS
Firstly, I would like to thank my professor and thesis advisor Dr. Georgios Papadourakis for

giving me the opportunity to participate in the Blended Academic International Mobility project

and for his guidance during it. It was a great experience that provided me with many skills that

will be useful in the future.

Also, I would like to thank the students and all the professors of the Blended AIM 2019 for the

great experience of working as a team on a big project for a start-up company.

I would also like to thank my colleague and friend with whom I worked on this project, Dosu

Jeremiah. Despite the difficulties, we worked together perfectly with full understanding and

support.

DEDICATION
This thesis is dedicated to friends and family for their endless love, support, and continuous

encouragement throughout my years of study and through the development and writing of this

thesis. This would not have been possible without them.

CHAPTER 1: INTRODUCTION

1.1 Summary

This thesis is part of an international Erasmus + program called Blended-AIM (Academic
International Mobility), which involves universities and educational institutions from all over

Europe. Two groups of ten people are formed and are invited to carry out two different tasks
for two newly established companies.

The goal of my team was to design and create an application and a system for managing
lighting systems at large events. To achieve this, my team split into a hardware team, a
software team, a design team, and a marketing and logistics team.

1.2 Motive

Our application is aimed at lighting technicians, system technicians, and generally people who
deal with such lighting systems. Our goal is to solve the problems and limitations that

technicians face in many events, festivals, theaters, TV studios, etc., where many lighting
systems must be adjusted manually. For example, in a big concert, if one of the lights stops
working, someone has to find where it is, go to it and adjust it manually. These are some of

the problems that our application tries to solve, as well as reduce the possibility of human
error and offer a new idea to the market.

1.3 Blended-AIM (Blended Academic International Mobility)

Blended AIM (Academic International Mobility) is an Erasmus+ funded project made to

promote students’ employability and support companies hosting internships. Every year 10
educational institutes from European countries like Portugal, Greece, Belgium, United

Kingdom, Germany, Iraq, and Austria end up to 2 students each to form a team. The purpose
of that is to support the students develop soft skills in an international environment through
blended mobility and the teams to develop and present a prototype or a proof of concept for a

given project. The students will participate for a semester from abroad, communicate virtually
and they will meet for about 2 weeks.

At this moment, a student’s professional career depends on mobility and demands certain

intercultural skills. The demands on the job market are very high and every student must be
able to be competitive. Blended mobility helps the students adapt and learn but it’s hardly
considered, let alone used, a solution to international mobility’s problems. Blended Aim sets

the foundation to promote and test blended mobility by providing the resources, training,
supporting tools, and information to the students and the companies that host internships. Its

purpose is to enable students to work in a real work environment on a real problem. To get in
touch with companies, to talk to those who had a unique idea and want to implement it.
Participants acquire knowledge about intercultural competence, the relationship between

societies, increased awareness of stereotypes and can built curiosity, self-awareness,
meaningful relationships with people from different countries.

1.3.1 The history of Blended Mobility

At the beginning of the year, students from ten educational institutions (two from each) gather

to undertake a project given by a company. This project is considered as a course and each

student receives ECTS after the completion of the project. Students are from different fields

of study such as computer science, graphic design, business management so that the project

can be completed. The project is usually a product that helps solve some of the company's

problems. During the implementation of the work, there are two important meetings. In the

first, students meet with each other, meet professors from all institutions and company

representatives to discuss how to approach the project and how to work it effectively. In the

second, the students present their product to the professors and the representatives of the

company and then they are evaluated by them. During the time between the two meetings, the

students hold online meetings to present their work and discuss with each other the tasks that

are to be done and even the problems they may face in them.

1.3.2 The methodology of Blended Mobility

The preparation of the project starts at the first meeting, where the students get to know each

other and the company presents the problem and the challenges. Students have to cooperate,

think and discuss the issue and how they could solve it. Every day passes together, the

students and the company prepare how they will work, they divide the teams based on each

individual's specificity and they define the problem that each group should manage. The

group is divided into subgroups according to the subject of study of each member and they

undertake to carry out a part of the project. At the end of the week spent analyzing the

problem and its solution method, the first presentation of the project they have undertaken and

will implement, is made.

Then and until the next meeting, there are weekly meetings of the whole team and the

subgroups to present the progress they have made and to discuss which problems have arisen.

At the end of the semester, the team meets again and the final product is presented.

Initially Blended Aim invites companies to participate and present to them the advantages

they could have by outsourcing their project to a group of international students and their

supervisors. The project that will stand out should be mentioned in the development of a

product, a service, a proof of concept or a prototype which should be analyzed in terms of

marketing design and programming. It is very important that at least one person from the

company should be available on a weekly basis to communicate with the students, and to

supervise the project. [1]

What Blended Aim does is bring together students from different universities, different

specialties, and nationalities to not only find a way to solve a problem but also to collaborate

and communicate. This is often accomplished by creating Scrum teams and enforcing a

master scrum to supervise team operations. The teams are organized hierarchically with the

project owner who performs the role of administrator and communicates with the

representative of the company, the supervisors and the team members working on the part of

the project that they have undertaken according to their field of education background.

There are also subgroups depending on the subject of study, where each has an Assistant

Project Manager to communicate with the project owner.

The acquaintance and communication of the students before the presentation of the project is

very important as it helps for the smooth transition of the students to the role they have to

serve. A good way to get to know each other is for students to create a website with their

personal information to send to the company. Also, before the presentation of the project by

the company to the students, some activities are organized such as a game for the culture of

each people or the tools that will be used as SCRUM as not everyone is familiar with them.

Blended Aim is a project course unit during which students meet face-to-face in two meetings

and work as a team at their home institutions between. It is a distributed course unit running

simultaneously at a several distinct institutions for a full semester. It tears down basrriers to

international mobility, thus promoting equity and equal opportunities, in a sustainable way

since it reduces the number of travels during a mobility period.

CHAPTER 2: FUNDMENTALS

2.1 Analysis and Development Methods

2.1.1 Nexus Scrum

Software development is a complex and difficult task. Even companies face difficulties in the

development department and these create problems for them as they progress in their work.

The Scrum framework can help, but it is not enough on its own. To go one step further, the

Nexus framework is also required. The Nexus Framework is a framework, based on the

Scrum and Agile Manifesto principles that help developers minimize group outbursts and

integration issues. Developed by Ken Schwaber, co-founder of Scrum and founder of

Scrum.org in 2015. Scrum is an agile methodology where products are constructed in a series

of constant length repetitions. There are four pillars to this structure: sprint design, stand-ups,

sprints, and retrospectives, meaning that you can access previous events. [2]

The Nexus Framework is an extension of the Scrum framework and uses an iterative and step-

by-step approach to software scaling and product development. Allows multiple Scrum

groups working on a product to be integrated into a single larger group. The Nexus

framework consists of 3 to 9 scrum teams working at the same time to successfully develop

the product. The main goal is to identify issues between groups and ensure the understanding

and use of integration tools. The integration team is a new feature in the Nexus framework

and is the team responsible for the successful integration of all tasks created by all Scrum

teams into one Nexus. Consists of a product owner, a master Scrum and a few members of

each scrum team on a Nexus. Each scrum group must be represented by a team member.

Representatives then meet to identify and resolve problems that have arisen and to set goals

that they want to achieve in each Sprint. These steps explain the term "Sprint Nexus Design"

that is critical to a Nexus framework. In addition, Nexus Daily Scrums helps teams plan the

next steps correctly by controlling the completed task. Nexus Daily Scrums is a short meeting

between Scrum team members, where not everyone needs to be present, but the representative

of each team is enough.

2.1.2 Jira

Jira Software is an application used for issue tracking and project management. Originally
designed by Australian software company Atlassian, as a bug and troubleshooter, Jira has
evolved into a powerful task management tool for all types of usage, from requirements and

management issues to flexible software development. [3]

Jira for teams using agile (flexible) methodologies

Jira provides scrum tables, which are task management nodes where nodes are mapped to
custom workflows. Boards provide transparency in teamwork as everyone has access to and
visibility into the status of each work item. Time tracking capabilities and real-time

performance reports (charts, sprint reports) allow teams to closely monitor productivity
throughout the working time range. Teams can start with one type of project or create their

custom workflow. Jira issues, also known as tasks, monitor each piece of work that must go
through the steps of the workflow to be completed. Customizable permissions allow
administrators to specify who can see and perform which actions. With all the project

information in place, reports can be created to track progress, productivity and ensure that
nothing goes wrong. Scheduling sprints determine what the team should complete in the next

sprint from the list of all tasks to be done (backlog). Jira makes this to-do list the center of
sprint design, so you can adjust the sprint range, control the speed, and prioritize the tasks.

2.1.3 Slack

Slack is a cloud computing platform founded by Stewart Butterfield and launched as an

internal tool for his company, to develop a more inactive online game. It is a messaging

application for business, which helps people to work as one team. [4]

Characteristics

Slack offers many IRC (International Relay Chat) activities, which is an application- level

protocol that facilitates text-to-speech communication, including regular chat rooms

(channels) organized by topic, private groups, and lives messaging. In Slack, you can search

for files, chats, and people, and add emojis to your messages, which other users can then click

to express their reactions. Also, in its free program, it allows view and searching only the

10,000 most recent messages.

Groups

Slack groups allow members to join the workplace through a specific URL or invitation sent

by a group administrator or owner. Although Slack was developed for business and

organizational communication, it has been adopted as a community platform, replacing

message boards or social media groups.

Conversations

Public channels allow team members to communicate without the use of email or SMS. They

are open to everyone in the conversation provided they have been invited to participate first.

Private channels allow private chat between smaller groups than the total group. These can be

used to divide large groups into their respective projects. Instant messaging, which can

include up to 9 people, allows users to send private messages to a specific user rather than to a

group of people. Once started, a group of instant messages can be converted to a private

channel.

Incorporations

Slack integrates with many third-party services and supports embedded communities, such as

Google Drive, Trello, Dropbox, Box, Heroku, IBM Bluemix, Crashlytics, GitHub, Runscope,

Zen desk, and Zapier. December 2015, Slack launched the list of software applications, which

consists of 150 integrations that users can install. In 2018 Slack announced a partnership with

the financial and human resources management company Workday. This integration allows

Workday clients to access Workday features directly from Slack.

API

Slack provides an application programming interface (API) for users to create applicatio ns

and automate processes such as sending notifications under specified conditions and

automatically creating internal support. The Slack API has been recognized for its

compatibility with many types of applications, frameworks, and services.

Platforms

Slack provides mobile applications for iOS and Android, in addition to Web browsers and

macOS, Windows clients (with versions available from the company website and the

Windows Store), and Linux. It is also available for the Apple Watch, allowing users to send

instant messages, view reports, and make simple replies. It also appeared on the Apple Watch

home screen in a 2015 promotional video.

Business model

Slack is a freemium product, a basic product or service is provided free of charge but one is

charged for additional features that extend the functionality of the free version of the software.

Key paid features include the ability to search over 10,000 archived messages and the

addition of unlimited applications and embeds. They claim unlimited user support, but when

freeCodeCamp attempted to change its community of more than 8,000 Slack users in 2015,

they encountered several technical issues and were informed by Slack support to limit their

channels to no more than 1,000 users (ideally about 500). On July 26, 2018, Atlassian

announced the closure of its competitors, HipChat and Stride, from February 11, 2019, and

the sale of their intellectual property to Slack, with Slack taking over the user base of the

services. The companies also announced their commitment to work to integrate Slack with

Atlassian services.

CHAPTER 3: WORK PLAN

3.1 State of the art

The purpose of the application and the system that we will create is that a lighting technician

can have full control in his hands, for each of the lighting systems in which he is responsible.

Through the system consisting of an Arduino, a screen, and an antenna, he can be informed

about various features such as position, direction, color, and intensity for one of the lighting

systems. Through the screen, he can be informed about them but also to configure them, while

through the antenna this data is sent from the system to the mobile application so that it can be

checked directly from the device.

3.2 Technologies

The technologies we used as a group of hardware to create the system that will be the lighting

device are an Arduino Uno for system programming, an LCD screen for displaying the menu,

and an NFC antenna for communicating with the application on the mobile. Below,

information on the technologies mentioned are given.

3.2.1 Arduino Uno

The Arduino Uno is an open-source microcontroller board based on the Microchip

ATmega328P microcontroller and developed by Arduino.cc. The board is equipped with sets

of digital and analog input/output (I/O) pins that may be interfaced to various expansion

boards (shields) and other circuits. [5] The board has 14 digital I/O pins (six capable of PWM

output – method of reducing the average power supplied from an electrical signal, cutting off

efficiently in separate parts), 6 analog I/O pins, and is programmable with the Arduino IDE

(Integrated Development Environment). It can be powered by USB cable or by an external 9-

volt battery, though it accepts voltages between 7 and 20 volts.

The word "uno" means "one" in Italian and was chosen to mark the initial release of Arduino

Software. The Uno board is the first in a series of USB-based Arduino boards. The

ATmega328 on the board comes preprogrammed with a bootloader that allows uploading new

code to it without the use of an external hardware programmer. It is an easy-to-use device and

accessible to everyone as it is quite economical. Whether for beginners or advanced it is a

very good application for many different projects such as blink a led or a a security alarm

system.

In Figure 1, Arduino Uno is presented.

Figure 1. Arduino UNO

Technical specifications

The main technical features of the Arduino as shown in the Table 1, are that it has high

efficiency with low power requirements as its operation is at 5V, it has a USB connection to

be easily connected to a computer and transfers the code to the controller using Arduino IDE,

as well as a barrel plug connector that works with a standard 9V battery. It can also use

external power source up to 12V which can be regulated to 5V or 3.3V depending on the

project requirements. [6] The 20 pins that it has are useful in many different functions such as

UART, I2C, SPI as well as analog signals. The analog pins measure from 0 to 5V, but they

can get programmed to use the high ranger using the function analogReference() and AREF

pin.

On the board there is the microcontroller ATMega328P that comes with timers, counters,

interrupts, PWM, CPU, I/O pins and based on 16MHz clock which produces more numbers of

cycles. There is also a built-in regulation which keeps the voltage low when the device is

connected to external device.

The microcontroller on the Arduino has EEPROM memory (Electrically Erasable

Programmable Read Only Memory), which is a non-volatile memory and can store byte

variables that are kept even when we reset or power off the Arduino. EEPROM is permanent

storage similar to a hard drive-in computer, that can be read, erased and rewritten through the

EEPROM library. In Arduino Uno and ATMEga328P microchip there is a 1Kbyte EEPROM,

however there is a provision of Micro SD card to extend the memory. Lifetime of EEPROM

is 100.000 write cycles but unlimited reads.

Table 1. Technical specifications

Microcontroller Microchip ATmega328P

Operating Voltage 5 Volts

Input Voltage 7 to 20 Volts

Digital I/O Pins 14 (of which 6 can provide PWM output)

PWM Pins 6 (Pin # 3, 5, 6, 9, 10 and 11)

UART 1

I2C 1

SPI 1

Analog Input Pins 6

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB of which 0.5 KB used by bootloader

SRAM 2 KB

EEPROM 1 KB

Clock Speed 16 MHz

Length 68.6 mm

Width 53.4 mm

Weight 25 g

ICSP Header Yes

Power Sources DC Power Jack & USB Port

https://en.wikipedia.org/wiki/Microchip_Technology

General functions of I/O pins

Arduino has the following Input and Output pins, which perform some basic functions such as

gets power, to have ground but also to reset when this is necessary.

LED: There is a built-in LED driven by digital pin 13.

VIN: The input voltage to the Arduino board when it is using an external power source. You

can supply voltage through this pin, or, if supplying voltage via the power jack, access it

through this pin.

5V: This pin outputs a regulated 5V from the regulator on the board. The board can be

supplied with power either from the DC power jack (7 - 20V), the USB connector (5V), or the

VIN pin of the board (7-20V).

3V3: A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50

mA.

GND: Ground pins.

IOREF: This pin on the Arduino board provides the voltage reference with which the

microcontroller operates.

Reset: It is used to restart the program from the first line of its sketch.

Special functions of I/O pins

Each of the 14 digital pins and 6 analog pins on the Uno can be used as an input or output,

under software control.. Each pin can provide or receive 20 mA as the recommended

operating condition and has an internal pull-up resistor (disconnected by default) of 20-50K

ohm. The Uno has 6 analog inputs, labeled A0 through A5, each provides 10 bits of resolution

(i.e. 1024 different values). By default, they measure from ground to 5 volts, though it is

possible to change the upper end of the range using the analogReference() function. [7][8]

In addition, some pins have specialized functions:

Serial / UART: pins 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial

data. These pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL

serial chip. UART is a computer circuit that mediates the serial communication of computer

or computers with devices. [9]

External interrupts: pins 2 and 3. These pins can be configured to trigger an interrupt on a low

value, a rising or falling edge, or a change in value.

PWM (pulse-width modulation): pins 3, 5, 6, 9, 10, and 11. Can provide 8-bit PWM output

with the analogWrite() function. PWM is a method of reducing the average power provided

by an electrical signal by effectively cutting it into separate parts. The average voltage value

supplied to the load is controlled by turning the switch between power supply and load on and

off at a fast rate. The more the switch is turned on compared to the off periods, the greater the

total power supplied to the load. PWM is particularly suitable for an inertial load operation,

such as motors, which are not so easily affected by this discrete switching because their

inertia causes them to react slowly. [10]

SPI (Serial Peripheral Interface): pins 10 (SS), 11 (MOSI), 12 (MISO), and 13 (SCK). These

pins support SPI communication using the SPI library. SPI is a modern standard of serial

communication interface used for short-distance communication, mainly in embedded

systems. [11]

TWI (two-wire interface) / I²C: pin SDA (A4) and pin SCL (A5). Support TWI

communication using the Wire library [12]. The I²C bus is a serial bus used to connect low-

speed peripherals to motherboards, embedded systems, mobile phones, or other electronic

devices.

AREF (analog reference): Reference voltage for the analog inputs.

3.2.2 Arduino IDE

The Arduino Integrated Development Environment (IDE) is a cross-platform application (for

Windows, macOS, Linux) that is written in functions from C and C++. It is used to write and

upload programs to Arduino compatible boards, as it is a text editor. Ii is used for writing

code, compiling it and check if any errors are there when uploading the code to the board.

User-written code only requires two basic functions, for starting the sketch and the main

program loop, that are compiled and linked with a program stub main(). The user can use the

app whenever he wants as it is open source and can also make his own modules and add them.

User writes code, compiles it and the IDE generates a Hex file which is sent to the board

through the USB cable.

With the rising popularity of Arduino as a software platform, other vendors started to

implement custom open source compilers and tools (cores) that can build and upload sketches

to other microcontrollers that are not supported by Arduino's official line of microcontrollers.

[13]

Arduino IDE is presented in Figure 2, as looks before coding. There are the setup and loop

functions.

Figure 2. Arduino IDE

3.2.3 Liquid-crystal display (LCD)

The Liquid Crystal Display (LCD) Keypad Shield is a screen 80x58mm that locks directly on

the Arduino Uno. Designed for Arduino compatible boards, it provide a user-friendly

interface that allows users to have a menu, make choices on it, and more. It works perfectly in

4-bit mode by the Liquid Crystal library found in the Arduino IDE, with which we can control

the LCD buttons. [14]

Specification and Interfaces

In the Arduino, the 4, 5, 6, 7, 8, 9 and 10 terminals are used to interface with the LCD screen,
as shown in Table 2, and the analog terminals are used to read the buttons. Through its
potentiometer, it supports contrast adjustment and on/off function with a backlight. Includes 6

momentary push buttons, up, down, right, left, select and reset and a screen of 2 rows and 16
columns, so it can display 32 characters. By the arrows keys we can create a functional menu

control panel and reset button is used for resetting Arduino program. The keypad interface
uses only one ADC channel to store digital input/output terminals, so that one pin reads which
one of the 5 switches is pressed. The values are read through a 5-phase voltage divider and it

has expanded available I/O pins. [15] In Table 2, there are the LCD Interfaces.

Table 2. LCD Interfaces

Pins Functions

Analog 0 (A0) Buttons(Select, Up, Right, Down, Left)

Digital 4 (D4) DB4

Digital 5 (D5) DB5

Digital 6 (D6) DB6

Digital 7 (D7) DB7

Digital 8 (D8) RS (Choose Data or Signal Display)

Digital 9 (D9) Enable (read/write data)

Digital 10 (D10) LCD Backlight Control

DB4, DB5, DB6, and DB7 are used to transfer and receive data between the microcontroller

and the monitor. Also, all 5 buttons are connected to the analog A0 terminal to save digital

terminals. To read them, the ADC must be used. When a button is pressed, a value is returned

to terminal A0 according to the internal resistor circuit, which determines the type of key.

That is, if the value that reaches A0 is from 0 to 60, the button that is pressed is the Right, if it

is from 61 to 200 it is the Up, if it is from 201 to 400 it is the Left and finally if it is from 601

to 800 is the Select button.

LCD Keypad Shield, which has the 16X2 Screen and 6 buttons in total, is presented in Figure

3.

Figure 3. LCD Keypad Shield

3.2.4 LED

LEDs or light-emitting diodes are small electronic components. When the LEDs are

energized, they emit light in various colors, such as red, green, or blue. If the current passing

through the diode is too high, it may damage the LED. To limit the current flowing through

the diode, it is common practice to add a resistor to the circuit, as shown in the Figure 4

below. [16]

Figure 4. LED Circuit

Characteristics

LEDs are solid-state devices where the light which is generated by them is directional in

around 60 degrees, there are in different colors or RGB light mix depends on the wavelength

and they have low energy consumption. There are no fragile parts on them, as a conventional

light bulb, to be broken so they rarely burn out. Instead, the gradual degradation of its outpout

becomes the dominant failure mode of LEDs. The speed of lumen depreciation is closely

relevant with the device’s junction temperature, which represents the temperature of the point

where an individual diode connects to its substrate. Lower junction temperature leads to

higher light output and slower lumen depreciation. Therefore, junction temperature is the key

parameter for evaluating LED products’ life span.

 1.8-2.4VDC forward drop
 Max current: 20mA

 Suggested using current: 16-18mA
 Luminous Intensity: 20mcd

 Light current <0.1 lm
 Angle of radiation 60 °
 Forward Current 30 mA

 Reverse Voltage 5 V
 Operating Voltage max. 2.50 V

 Normal current 20 mA
 Power Dissipation max. 105 mW

3.2.5 NFC

Near-field communication (NFC) is a set of communication protocols for communication
between two electronic devices over a distance of 4 cm or less. By placing two devices close
to each other, a virtual reaction is made. NFC devices can act as electronic identity

documents and keycards, and are used in contactless payment systems that allows anyone to
pay by his phone than the credit card.

Near-field communication (NFC) describes a technology that can be used for the contactless
exchange of data over short distances. NFC-enabled portable devices can be provided
with application software, for example, to read electronic tags or make payments when

connected to an NFC-compliant system. These are standardized to NFC protocols, replacing
proprietary technologies used by earlier systems.

Like other "proximity card" technologies, NFC is based on inductive coupling between two
so-called antennas present on NFC-enabled devices—for example, a smartphone and a
printer—communicating in one or both directions. [17]

The NFC chip works with an antenna with a spiral, which generates an electromagnetic field
through which data can be transferred. The device which receives the data, also take

instruction on what to do with it. It could take a phone call, open a web page etc.

NFC tags are passive data stores which can be read, and under some circumstances written to,

by an NFC device.. Applications include secure personal data storage (e.g. debit or credit

card information, loyalty program data, personal identification numbers (PINs), contacts).

NFC tags can be custom-encoded by their manufacturers or use the industry specifications.

3.2.6 I2C

I2C (Inter-Integrated Circuit) is a bus interface connection protocol for serial communication,

which invented in 1982. It is widely used for attaching lower-speed peripheral ICs to

processors and microcontrollers in short-distance. I2C is appropriate for peripherals where

simplicity and low manufacturing cost are more important than speed. I2C uses only two

bidirectional open-collector or open-drain lines. Through the serial data line (SDA) data

transfer takes place and serial clock line (SCL) carries the clock signal. Both of them are

pulled up with resistors. Typical voltages used are +5 V or +3.3 V, although systems with

other voltages are permitted. [18]

With I2C, you can connect multiple slaves to a single master (like SPI) and you can have

multiple masters controlling single, or multiple slaves. Like UART communication, I2C only

uses two wires to transmit data between devices. It is a bidirectional bus that is used in three

data transfer speeds, standard fast and high speed mode.

I2C is a serial communication protocol, so data is transferred bit by bit along a single wire (the

SDA line). Like SPI, I2C is synchronous, so the output of bits is synchronized to the sampling

of bits by a clock signal shared between the master and the slave. The clock signal is always

controlled by the master.

With I2C, data is transferred in messages. Messages are broken up into frames of data. Each

message has an address frame that contains the binary address of the slave, and one or more

data frames that contain the data being transmitted. [19] The message also includes start and

stop conditions, read/write bits, and ACK/NACK bits between each data frame.

Addressing

I2C to let the slave know that data is being sent to it, uses addressing. The address frame is

always the first frame after the start bit in a new message. The master sends the address of the

slave it wants to communicate with to every slave connected to it. Each slave then compares

the address sent from the master to its own address. If the address matches, it sends a low

voltage ACK bit back to the master. If the address doesn’t match, the slave does nothing and

the SDA line remains high.

Read/Write Bit

The address frame includes a single bit at the end that informs the slave whether the master

wants to write data to it or receive data from it. If the master wants to send data to the slave,

the read/write bit is a low voltage level. If the master is requesting data from the slave, the bit

is a high voltage level.

The data frame

After the master detects the ACK bit from the slave, the first data frame is ready to be sent.

Each data frame is immediately followed by an ACK/NACK bit to verify that the frame has

been received successfully. The ACK bit must be received by either the master or the slave

(depending on who is sending the data) before the next data frame can be sent. After all of the

data frames have been sent, the master can send a stop condition to the slave to halt the

transmission.

ADVANTAGES

 Only uses two wires

 Supports multiple masters and multiple slaves

 ACK/NACK bit gives confirmation that each frame is transferred successfully

 Hardware is less complicated than with UARTs

 Well known and widely used protocol

DISADVANTAGES

 Slower data transfer rate than SPI

 The size of the data frame is limited to 8 bits

 More complicated hardware needed to implement than SPI

3.2.7 NTAG I2C Antenna

The NTAG I2C plus combines a passive NFC interface with a contact I2C interface. Designed
to be an enabler for NFC in home-automation and consumer applications, this connected NFC

tag is a fast, cost effective way to add tap-and-go connectivity to just about any electronic
device. These devices maintain full backward compatibility with first-generation NTAG I2C

while adding advanced features for password protection, a full memory-access configuration
from both interfaces, and an originality signature for protection against cloning.

Designed to be the perfect enabler for NFC in home-automation and consumer applications,

this feature-packed, second-generation connected NFC tag is the fastest, least expensive way

to add tap-and-go connectivity to just about any electronic device. NXP NTAG I2C plus is a

family of connected NFC tags that combine a passive NFC interface with a contact I2C

interface. As the second generation of NXP’s industry leading connected-tag technology,

these devices maintain full backward compatibility with first-generation NTAG I2C products,

while adding new, advanced features for password protection, full memory-access

configuration from both interfaces, and an originality signature for protection against cloning.

The second-generation technology provides four times higher pass-through performance,

along with energy harvesting capabilities, yet NTAG I2C plus devices are optimized for use in

entry-level NFC applications and offer the lowest BoM of any NFC solution. I2C and NFC

communications are based on simple, standard command sets. All that is required is a simple

antenna design, with no or only limited extra components. NTAG I2C plus development board

is certified as NFC Forum Type 2 Tag. [20]

The NTAG I2C has 6 pins to communicate with the Arduino, as shown in Figure 5.

Figure 5. NTAG I2C plus Flex antenna

CHAPTER 4: MAIN PART

4.1 Problem Analysis

KLSTR is a Belgian start-up company founded by Roel Apers, Roel Velkeneers, and Wouter

Moors, specializing in the setup and configuration of stage lights for many events. Over the

years, they have gained recognition in setting the stages as their purpose is to create a faster

and more advanced lighting management system for large and demanding events.

KLSTR's solution aims to create a Fixture, as each light is called, more autonomous and

efficient. So it will not take long, as it is now, to configure each one or find and solve a

problem. Anyone will be able to configure the Fixtures via his mobile phone or computer and

find out where the problem is.

The system called to be implemented by the KLSTR team will have a unique ID to identify

each Fixture and an integrated NFC system, through which it will get connected to the mobile

of a manager. On the mobile, there will be a suitable application for the management of the

systems and their control. Through this application, anyone will be able to control and process

the data of each Fixture separately.

4.1.1 Problem Description

During our first meeting in Ghent, the CEO of the company described to us the difficulties

that every lighting technician faces during his work. The main problem with this is that the

technology that exists at the moment to manage them is very old and limited in capabilities.

When building a big light show, technicians want to check if devices work properly before

they pull the devices up. And adjust some basic configuration settings. Everything related to

the control of these lights is based on a 33-year serial protocol. Thus, the work of the

technician becomes time-consuming and difficult. For this reason, the KSTR project was

created, to evolve and advance these technologies. The power of KLSTR is based on the

integration of a managed Ethernet switch in every device. By combining the network

information with the information of the devices, the user has access to all segments of his

setup. Our computer-based application displays all this info for the user in an easy-to-use

interface while in the background the KLSTR technology handles all complex setup steps to

make it plug and play. So we want to create a mobile application, which is the perfect

platform to execute these small tests that technicians must do before each show.

So, the Blended AIM team was called to give some ideas on who can we expand the

possibilities of KLSTR. After discussing many ideas with the CEO of Constell8, we decided

to develop a system on the lightning and a mobile app that will be connected via an antenna

for data exchange. Any changes made by the mobile app will be applied directly to the

lighting system or any changes made by the system installed in lightning will be transferred to

the mobile app. This data exchange will be done through NFC tags, by a pass of the mobile to

the NFC tag of the system in the light.

4.1.2 System Requirements

To complete the project, we divided the main part into smaller ones for better management.

We were divided into a Software group for the creation of the mobile app and a Hardware

group for the creation of the system that will be integrated into the lighting. As a Hardware

team, we discussed the system requirements at length, examining the pros and cons of each

option. The original idea was to use Raspberry Pi instead of Arduino as it is a ready-made

computer, easier to use. But we chose the Arduino because the Raspberry Pi is much more

expensive and needs peripherals (keyboard, mouse). Also, for data transfer between the

device and the mobile app we had to choose between Wi-Fi, NFC, and Bluetooth. As we saw

with the CEO of the company, Wi-Fi would be quite complicated for such a project and

Bluetooth has quite a wide range for the project we want, as this would not be safe. In

addition to connecting via Bluetooth, we should also create a security protocol. So, we come

up with ideas, and to see them flush it out, it's really fun.

4.2 Implementation plan

In Blended AIM 2019, 22 students participated from universities in Germany, Portugal,

Greece, Belgium, Scotland, Nigeria, and Iraq. Students were divided into 2 teams and worked

on different projects. At first, the 2 teams had to get acquainted with each other and also with

the Scrum framework that they would use for the agile software development. Following the

Nexus Scrum, they rearranged the initial team into separate smaller ones consisting of the

design team, the software team, the hardware team, the business team, and the marketing

team. There were even smaller sub-teams in the development team to make the software

development faster. The rearrangement was done according to the student’s educational field.

The first Sprint took place in Ghent, Belgium (IMEC company headquarters). During this

week we made the project goals more clear and we discussed the technologies that would be

used and on the final product with Contell8’s CEO. After that meeting, each student returned

to his country and that made the project management a bit harder, mostly on communication.

Every 2 weeks, on Monday the students had a general meeting where all the students from all

the teams participated and there was an update from every member about their

accomplishments and their future goals. In this meeting would be present one or both of the

founders of KSTR to discuss any problem that would exist. Also, each group held separate

weekly meetings to discuss the work that has been done, the work that is to be done next

week, and how they will separate it. As a Hardware team, we met every Friday with Dosu.

Those meetings were very important to discuss the problems we had on the development and

find solutions.

The whole project was divided into 8 sprints, one every two weeks, until its completion.

There was daily communication between the students through the Slack application. Meetings

were hosted on Whereby firstly and then at Zoom. That type of communication needed some

time to be adopted by all the members but after some sprints, everyone was used to it and the

communication was really direct. Although, it was really difficult to find a convenient time to

schedule the meetings to cause all the students had different time zones and daily routines. All

the tasks were held on Jira and every scrum team had its tasks. At the end of each Sprint, each

team had to assign new tasks for the upcoming Sprint. When a task wasn’t completed till the

end of a Sprint, it was transferred to the next Sprint and marked as a priority. That meant it

has to be done as soon as possible before moving to the new tasks.

Due to the pandemic Covid-19, we did not manage to meet again for the final presentation,

but we organized an online presentation where both teams participated, the teachers, the

startups, and the IMEC representatives. At the online meeting, each subgroup presented the

progress it had made. Introduction to the parts of the application such as the mobile

application, the system with the LCD screen, the marketing plan, and the business plan was

presented. At the end of the product presentation, the students' work was evaluated by the

company representatives and the professors, then questions and open discussion were made.

At that meeting, in June, we arranged to travel and meet in Portugal in September but were

unable to go again due to the pandemic.

4.3 Implementation

At the beginning of the project, we were divided into sub-development teams that were

targeting a specific product. The end-products were a mobile application and a system that are

going to communicate. The Hardware’s role was to create the system of Arduino LCD Screen

an NFC. My role was to deal with the programming part, creating the user interface with the

device via the LCD screen and then installing the NFC antenna on the system. Dosu dealt

with the organization and simulation of the system as well as the communication with the

mobile app. Of course, as we were a group of two, we helped each other a lot and cooperated

perfectly. Below we present and explain the code that runs in Arduino for the LCD screen.

4.3.1 Simulation

We could not have a screen with built-in buttons and a potentiometer, that's why we put them

separately in the simulation we created for our program. In our real circuit, the buttons

potentiometer, and backlight are integrated into our screen.

4.3.1.1 LCD Screen

For the operation of the screen, the wiring shown in Table 3 is created. For the

communication of the screen with the Arduino, we need to connect the ground to terminal 2

of the potentiometer and the current pin, VCC to 5V of Arduino. The V0 pins of the two

devices are connected as well as the Reset button of the screen with the pin 8 of Arduino. The

buttons we will use that are in DB4, DB5, DB6, DB7 of the LCD are also connected to pin

13, pin 4,pin 5, pin 6 and pin 7 respectively in Arduino.

Table 3. Simulation LCD Interfaces

LCD SCREEN ARDUINO / POTENTIOMETER

GND Terminal 2 of Potentiometer

VCC 5V of Arduino
V0 Wiper pin of Potentiometer

RS Pin 8 of Arduino
RW GND pin of Arduino
E Pin 13 of Arduino

DB4 Pin 4 of Arduino
DB5 Pin 5 of Arduino

DB6 Pin 6 of Arduino
DB7 Pin 7 of Arduino
LED Through 220 Ohm Resistor to 5V of Arduino

LED GND pin of Arduino

4.3.1.2 Buttons

The 4 buttons are used with different resistors to give us a different value, and connect them

all to the Arduino A0 pin, because we do not have a screen with built-in buttons, to properly

simulate our program.

As shown in the Figure 2, we use the first button as Up with a resistance of 1 kOhm, which

gives us a value of 1013. We use the second button as a Right with a resistance of 2 kOhm,

which gives us a value of 1003, we use the third button as a Down with a resistance of 3

kOhm, which gives us a value of 993, and the fourth button we use as Left with a resistance

of 10 kOhm, which gives us a value of 930. Terminal 1 of the buttons is connected to the 5V

of the Arduino, through the resistors, and terminal 2 of the buttons are short-circuited and

connected via a 100 kOhm resistor to the Arduino GND.

4.3.1.3 Leds

We use 4 LEDs, one for each of the four menu functions. For "Manual Mode" we have the

yellow led, for "Automatic Mode" we have the green led, for "Strobes" we have the red led

and for "Dimmer" the blue led. The LED cathodes are connected to the Arduino GND and

anodes to the Arduino pins through four 220 kOhm resistors. We connect the yellow led to

pin 13, the green led to pin 12, the red led to pin 12 and the blue led to pin 3. There are the 4

buttons and an LCD Screen separately, as we couldn’t simulate the Keypad shield we have, in

the simulator. Also, the potentiometer here is an external device for the LCD Screen.

In Figure 6, the simulation of the circuit we made is created.

Figure 6. Simulation Circuit

In the two figures below, Figure 7 and Figure 8, the circuit diagram of the above circuit is

presented. They represent the connections that are made at the simulator and as we did with

our devices.

Figure 7. Simulation Circuit Diagram 1

Figure 8. Simulation Circuit Diagram 2

4.3.2 Coding Explanation

4.3.2.1 Menu Options

The menu options that is created of Manual Mode, Automatic Mode, Strobes and Dimmer.

- Manual Mode - options for manual adjustment,

- Automatic Mode – we read data from the mobile app via NFC,

- Strobes for choosing whether or not to turn on the light, and

- Dimmer, which is a dimmer to adjust the light intensity.

As shown in Figure 9, the menuItems is created as an array of Strings with the 4 menu
parameters that mentioned above.

Figure 9. Menu Items

4.3.2.2 Declarations

Firstly, there is the definition of the variables that are going to be used later on the program.

There are the navigation button variables, which we need for the buttons, and the Menu

control variables which are the menuPage to keep in which page we are, the maxMenuPages

to calculate how many pages we need and the cursorPosition, which we need to know in

which menu item we are. In Figure 10, there are the variables that are created as integer

values.

Figure 10. Declarations

4.3.2.3 Arrows

We create three arrows that we will use in the menu display for its smooth and accurate

operation. The first arrow we produce is the Up arrow to move to the above option, then the

Down arrow to move to the next, and last an arrow to the right to indicate what element we

are in. In Figure 11, the variable downArrow is created as an array of 8 bytes, which create

the down Arrow as shown in the comments.

Figure 11. Down Arrow

In Figure 12, the Up Arrow is created as an array viarable upArray of 8 bytes and in Figure 13

the array menuCursor, consists of 8 byte, represents the cursor will be used in the menu to

show in which menu item we are stopped.

Figure 12. Up Arrow

Figure 13. Menu Cursor

4.3.2.4 Libraries

In Figure 14, there is the declaration of the libraries we need. The Wire library is used for the

I2C interface function, the Liquid Crystal for the LCD screen function, and we also state the

terminals that we will use for the function of the screen and the buttons. The function we use

is:

LiquidCrystal (rs, enable, d4, d5, d6, d7). [21]

Rs indicates the number of the Arduino pin that is connected to the RS pin on the LCD.

Enable specify the number of the Arduino pin that is connected to the enable pin on the LCD

screen.

The d4, d5, d6, d7 are the numbers of the Arduino pins that are connected to the

corresponding data pins on the LCD.

 Analog pin 0 of the Arduino is used to read the pushbuttons.

Figure 14. Libraries

4.3.2.5 Setup

We initialize the serial screen with the command Serial.begin(speed) [22] which sets the data

rate in bits per second (baud) for serial data transmission.

We call lcd.begin (cols, rows) [23] which initializes the interface to the LCD screen, and

specifies the dimensions (width and height) of the display. This command needs to be called

before any other LCD library commands.

After that, we clear the LCD screen [24] and positions the cursor in the upper-left corner, and

print text to the LCD [25]. "CONSTELL8" is printed in the first line and "KLSTR" in the

second, as shown in the Figure 15. To position the LCD cursor, the lcd.setCursor() is used,

that set the location at which subsequent text written to the LCD will be displayed. Delay()

[26] function pauses the program for the amount of time (in milliseconds) specified as

parameter.

Figure 15. Constell8

We create the three character-arrows using the function lcd.createChar (num, data) [27],

where LCD is a variable of type LiquidCrystal, num is which character to create (0 to 7) and

data is the character's pixel data [28]. By this function, we create a custom character for use

on the LCD. Up to eight characters of 5x8 pixels are supported (numbered 0 to 7). The

appearance of each custom character is specified by an array of eight bytes, one for each row.

The five least significant bits of each byte determine the pixels in that row.

In Figure 16, the code that created the image above is displayed as well as the initializations

of the LEDs. The specified pins (13, 12, 11, 3) are configured to behave as an output, calling

the function pinMode(pin, mode).

pin: the Arduino pin to set the mode of.

mode: INPUT, OUTPUT, or INPUT_PULLUP.

Figure 16. Setup

4.3.2.6 Loop

The main program consisting of the loop function contains 3 functions, as shown in Figure

17, that are created after. The first function creates the menu that appears on the screen every

time that page is changed, the second function displays the appropriate cursors in the correct

positions depending on the page we are on and the last function is the main function of the

program.

Figure 17. Loop

4.3.3 Functions

4.3.3.1 Function 1 – Draw Menu

This function will generate the 2 menu items that can fit on the screen. They will change as

you scroll through your menu. Up and down arrows will indicate your current menu position.

We create a void function, as shown in Figure 18, since it does not return anything and

display on the serial monitor the page we are on. We clear the screen, put the cursor starting

in column 1 on line 0, and display item 0 (menuPage) from the menu list (menuItems). Next,

we move the cursor to start column 1 on line 1 and display item 1 (menuPage+1) from the

menu list (menuItems).

Figure 18. Main Menu Draw

Subsequently, we create an if statement to show the right arrow either up or down, depending

on which page we are on.

Figure 19. Menu Pages

Based on the code presented in Figure 19, if we are on page 0, we place the cursor in column

15 on line 1 and display the down arrow we created as byte[2]. We use the lcd.write()

function to write a character to the LCD [29]. In this page, there is only the down arrow, as

shown in Figure 20 and Figure 21.

Figure 20. Page 0 – Only Down Arrow

Figure 21. Page 0- Only Down Arrow

Otherwise, if we are neither on page 0 nor on the last one, place the cursor in column 15 on

line 1, where we display the down arrow and place the cursor in column 15 on line 0, where

we display the up arrow we made as a byte[1]. In these pages there are both up and down

arrows, as shown in Figure 22 and Figure 23.

Figure 22. Page 1 – Both Arrows

Figure 23. Page 2 – Both Arrows

Finally, if we are on the last page (maxMenuPages), we put the cursor in column 15 on line 0

and display the up arrow. Then we place the cursor in column 15 on line 0 and display an

empty string of 16 characters, so it will be an empty line without arrows. In these page there is

only the up arrow, as shown in Figure 24.

Figure 24. Page 3 – Only Up Arrow

4.3.3.2 Function 2 – Draw Cursor

When called, this function will erase the current cursor and redraw it based on the

cursorPosition and menuPage variables.

We create a void function since it does not return anything and firstly create a for loop that

runs two times, one for each line, where we put the cursor in column 0 on line x, and where

the cursor was, puts the space.

The menu is set up to be progressive (menuPage 0 = Item 1 & Item 2, menuPage 1 = Item 2 &

Item 3, menuPage 2 = Item 3 & Item 4), so in order to determine where the cursor should be

you need to see if you are at an odd or even menu page and an odd or even cursor position.

If we are on a menu page that is exactly divided by 2 (even), and the cursor position is exactly

divided by 2 (even) that means the cursor should be on the first line (line 0). We put the

cursor in column 0 on line 0 and display the menu cursor which is declared as byte[0]. If the

menu page is even and the cursor position is odd that means the cursor should be on the

second line (line 1). We put the cursor in column 0 on line 1 and display the menu cursor

which is declared as byte[0]. In Figure 25, the code of these functions is represented.

Figure 25. Draw Cursor – Even Page

As shown in Figure 26, when we are on page 0 and the cursor is in position 0, both menu page

and cursor position are even numbers, so the cursor shows the first item of the screen.

Figure 26. Even page – Even cursor

As shown in Figure 27, when we are on page 0 and the cursor is in position 1, menu page is

even number and cursor position is odd number, so the cursor shows the second item of the

screen.

Figure 27. Even page – Odd cursor

As shown in Figure 28, when we are on page 2 and the cursor is in position 3, menu page is

even number and cursor position is odd number, so the cursor shows the second item of the

screen.

Figure 28. Even page – Odd cursor

If we are on a page that is not exactly divisible by 2 (odd), and the cursor position is exactly

divided by 2 (even) that means the cursor should be on the second line (line 1), as shown in

the code is represented in Figure 29. We put the cursor in column 0 on line 1 and display the

menu cursor which is declared as byte[0]. If the menu page is odd and the cursor position is

odd that means the cursor should be on the first (line 0). We put the cursor in column 0 on line

0 and display the menu cursor which is declared as byte[0].

Figure 29. Draw Cursor – Odd Page

When we are on page 1 and the cursor is in position 2, menu page is odd number and cursor

position is even number, so the cursor shows the second item of the screen, as shown in

Figure 30.

Figure 30. Odd page – Even cursor

As shown in Figure 31, when we are on page 3 and the cursor is in position 3, both menu page

and cursor position are odd numbers, so the cursor shows the second item of the screen:

Figure 31. Odd page – Odd cursor

4.3.3.3 Function 3 – Main Menu

In Figure 32, there is the function for the main operation of the program. The function operate

MainMenu is created as a void function as we don’t need to use any variable from this.

Firstly, we create a variable to keep when a button was pressed. When activeButton is 0 no

button has been pressed while if it becomes 1 it means that it has been pressed.

We create a while loop where as long as we have not pressed a button, we read in the variable

readKey lest a value come with the analogRead function in pin A0, if a button was pressed. If

the value of readKey is less than 790 it makes a very short delay and re-reads pin A0..

Immediately after, the button variable calls the evaluateButton function with the readKey

variable value, where it returns a number depending on which button was pressed.

Figure 32. Operate Main Menu

The button variable is 0 if no button is pressed otherwise it takes the values 1, 2, 3 and 4.

We create a switch with the variable button argument, where depending on its value the

appropriate menu with the corresponding arrows is created on the screen.

Case 0

 When button returns as 0 there is no action taken. We call break to exit the switch.

Case 1 – Right Button

This case will execute if the "forward" button is pressed (Right button).

We equalize the button variable with 0 so that it does not re-enter the switch and create a new

switch depending on the position of the cursor where the case that is selected here is

dependent on which menu page you are on and where the cursor is.

- If the cursor is in position 0, function 5 (Manual Mode) is called and we exit this switch.

- If the cursor is in position 1, function 6 (Automatic Mode) is called and we exit this switch.

- If the cursor is in position 2, function 7 (Strobes) is called and we exit this switch.

- If the cursor is in position 3, function 8 (Dimmer) is called and we exit this switch.

We make the variable active Button equal to 1, to keep that a button is pressed. Finally, we

make the variable activeButton equal to 1, to keep that a button is pressed, call function 1 to

create the menu that corresponds to this page, we call function 2 for proper display of the

cursor that shows our data and we exit the switch.

In Figure 33, there is the Switch where the variable button is evaluated.

Figure 33. Switch Menu Items – Case 0 & Case 1 – Right Button

Case 2 – Up Button

This case ,which is shown in Figure 34, will execute if the "previous" button is pressed (Up).

First, we make the button equal to 0 so that it does not hold a button value.

If we are on page 0, we make the position of the cursor as it was minus 1, that is, it goes to the

previous line, and we call the constrain function for its value. This constrains a number to be

within a range. The cursorPosition will remain as long as it is between 0 and the maximum

number it can get, or it will become 0 if the cursorPosition is less than 0 or it will become the

maximum if the cursorPosition is greater than this.

If we are on an even number page and the cursor position is an even number, we make the

page we are on as it was minus 1, that is, we go to the previous one. We call the constrain

function for the menuPage variable where if the page we are on is set to 0 and the maximum

number of pages remains the same if it is less than 0 it will become 0 and if it is greater than

the maximum it will become the maximum.

We place the cursor as it was minus 1 and call the constrain function for it, where the

cursorPosition will remain as long as it is between 0 and the maximum number it can get, or it

will become 0 if the cursorPosition is less than 0 or will be maximized if the cursorPosition is

greater than this.

Finally, we call function 1 to create the menu that corresponds to this page, we call function 2

for proper display of the cursor that shows our data, we make the variable activeButton equal

to 1, to keep that a button is pressed and exit the switch.

Figure 34. Case 2 – Up Button

Case 3 – Down Button

The case in Figure 35 will execute if the "next" button is pressed (Down).

First, we make the button equal to 0 so that it does not hold a button value.

If we are on an even number page and the cursor position is an odd number, we make the

page we are on as it was plus 1, that is, we go to the next one. We call the constrain function

for the menuPage variable where if the page we are on is set to 0 and the maximum number of

pages remains the same if it is less than 0 it will become 0 and if it is greater than the

maximum it will become the maximum.

If we are on an odd number page and the cursor position is an even number, we make the

page we are on as it was plus 1, that is, we go to the next one. We call the constrain function

for the menuPage variable where if the page we are on is set to 0 and the maximum number of

pages remains the same if it is less than 0 it will become 0 and if it is greater than the

maximum it will become the maximum.

We place the cursor as it was plus 1 and call the constrain function for it, where the

cursorPosition will remain as long as it is between 0 and the maximum number it can get, or it

will become 0 if the cursorPosition is less than 0 or will be maximized if the cursorPosition is

greater than this.

Finally, we call function 1 to create the menu that corresponds to this page, we call function 2

for proper display of the cursor that shows our data, we make the variable activeButton equal

to 1, to keep that a button is pressed and exit the switch.

Figure 35. Case 3 – Down Button

4.3.3.4 Function 4 - Buttons

The function in Figure 36 is called whenever a button press is evaluated. The LCD shield

works by observing a voltage drop across the buttons all hooked up to A0.

We create the int function evaluateButton as it returns an integer value, and takes as an

argument integer x. In it, we define the result variable with a value of 0 initially, and

depending on the value of x the result takes and returns a value.

If x is less than 50 the result becomes 1 and means that the right button is pressed, if it is

greater than or equal to 50 and less than 195 the result becomes 2 and means that the up

button is pressed, if it is greater than or equal to 195 and less than 380 the result becomes 3

and means that the down button is pressed, and finally if it is greater than or equal to 380 and

less than 1790 the result becomes 4 and means that the left button is pressed. Finally, the

result returns with the value it finally got depending on the value of x.

Figure 36. Evaluate Button

4.3.3.5 Function 5 – Manual Mode

This function executes when you select the "Manual Mode" item from the main menu.

"Manual Mode". This is the first item of the menu list that’s why we call it menuItem1(),

which is a void function as it doesn’t return anything.

We set the activeButton to 0 so that it no longer holds that a button is pressed, clear the

screen, we place the cursor in column 1 on line 0 and display "Enter Fixture". After a short

delay of 500 milliseconds, we move the cursor to column 0 on line 1 and display "50" as the

Fixture ID, we turn on the yellow LED, using the digitalWrite function where we send a

HIGH signal to pin 13 of the Arduino. The pin has been configured as an OUTPUT with

pinMode (), so its voltage will be set to the corresponding value: 5V for HIGH, 0V (ground)

for LOW. The two arguments we use are the Arduino pin number and HIGH to light the led.

In Figure 37, the first menu item is represented.

Figure 37. Manual Mode

We create a while loop, in Figure 38, where as long as we have not pressed a button, we read

the Arduino pin A0 in the readKey variable. If the value of readKey is less than 790 it makes

a very short delay of 100 ms and re-reads pin A0. Immediately after, the button variable calls

the evaluateButton function with the readKey variable value, where it returns a number

depending on which button was pressed.

We call the switch with the button argument, where it has only one case. This case will

execute if the "back" button is pressed (Left button), so the buttons' value is equal to 4. If the

buttons’ value is 4, we make the button equal to 0 so that it does not hold the value of the

button, we make the activeButton equal to 1 so that it holds that a button was pressed, we

erase the yellow led with the digitalWrite function where now we call it with pin 13 of

Arduino and LOW to turn off the led and exit the switch.

Figure 38. Yellow Led

4.3.3.6 Function 6 – Automatic Mode

This function executes when you select the "Automatic Mode" item from main menu. This is

the second item of the menu list that’s why we call it menuItem2(), which is a void function

as it doesn’t return anything.

We set the activeButton to 0 so that it no longer holds that a button is pressed, clear the

screen, we place the cursor in column 1 on line 0, display "Automatic Mode" and after that we

place the cursor in column 1 on line 1 and display "Initializing". We turn on the green LED,

using the digitalWrite function where we send a HIGH signal to pin 12 of the Arduino. The

pin has been configured as an OUTPUT with pinMode(), so its voltage will be set to the

corresponding value: 5V for HIGH, 0V (ground) for LOW. The two arguments we use are the

Arduino pin number and HIGH to light the led.

In Figure 39, the second menu item is created.

Figure 39. Automatic Mode

We create a while loop in Figure 40, where as long as we have not pressed a button, we read

the Arduino pin A0 in the readKey variable. If the value of readKey is less than 790 it makes

a very short delay of 100 ms and re-reads pin A0. Immediately after, the button variable calls

the evaluateButton function with the readKey variable value, where it returns a number

depending on which button was pressed.

We call the switch with the button argument, where it has only one case. This case will

execute if the "back" button is pressed (Left button), so the buttons' value is equal to 4. If the

buttons’ value is 4, we make the button equal to 0 so that it does not hold the value of the

button, we make the activeButton equal to 1 so that it holds that a button was pressed, we

erase the green led with the digitalWrite function where now we call it with pin 12 of Arduino

and LOW to turn off the led and exit the switch.

Figure 40. Green Led

4.3.3.7 Function 7 - Strobes

This function executes when we select the "Strobes" item from main menu. This is the third

item of the menu list that’s why we call it menuItem3(), which is a void function as it doesn’t

return anything.

We set the activeButton to 0 so that it no longer holds that a button is pressed, clear the

screen, we place the cursor in column 1 on line 0 and display "Strobe Mode" and after that we

place the cursor in column 0 on line 1 and display "UpRightDownLeft" as the choices to

move the light. We turn on the red LED, using the digitalWrite function where we send a

HIGH signal to pin 11 of the Arduino. The pin has been configured as an OUTPUT with

pinMode(), so its voltage will be set to the corresponding value: 5V for HIGH, 0V (ground)

for LOW. The two arguments we use are the Arduino pin number and HIGH to light the led.

In Figure 41, the third menu item is created.

Figure 41. Strobe Mode

We create a while loop in Figure 42, where as long as we have not pressed a button, we read

the Arduino pin A0 in the readKey variable. If the value of readKey is less than 790 it makes

a very short delay of 100 ms and re-reads pin A0. Immediately after, the button variable calls

the evaluateButton function with the readKey variable value, where it returns a number

depending on which button was pressed.

We call the switch with the button argument, where it has only one case. This case will

execute if the "back" button is pressed (Left button), so the buttons' value is equal to 4. If the

buttons’ value is 4, we make the button equal to 0 so that it does not hold the value of the

button, we make the activeButton equal to 1 so that it holds that a button was pressed, we

erase the red led with the digitalWrite function where now we call it with pin 11 of Arduino

and LOW to turn off the led and exit the switch.

Figure 42. Red Led

4.3.3.8 Function 8 - Dimmer

This unction executes when you select the "Dimmer" item from main menu. This is the fourth

item of the menu list that’s why we call it menuItem4(), which is a void function as it doesn’t

return anything.

We set the activeButton to 0 so that it no longer holds that a button is pressed, clear the

screen, we place the cursor in column 1 on line 0 and display "Dimmer Mode" and after that

we place the cursor in column 0 on line 1 and display "Incr + / Decr -" as the choices to

change the brightness. We turn on the blue LED, using the digitalWrite function where we

send a HIGH signal to pin 3 of the Arduino. The pin has been configured as an OUTPUT with

pinMode(), so its voltage will be set to the corresponding value: 5V for HIGH, 0V (ground)

for LOW. The two arguments we use are the Arduino pin number and HIGH to light the led.

In Figure 43, the menu item “Dimmer” is created.

Figure 43. Dimmer Mode

We create a while loop in Figure 44, where as long as we have not pressed a button, we read

the Arduino pin A0 in the readKey variable. If the value of readKey is less than 790 it makes

a very short delay of 100 ms and re-reads pin A0. Immediately after, the button variable calls

the evaluateButton function with the readKey variable value, where it returns a number

depending on which button was pressed.

We call the switch with the button argument, where it has only one case. This case will

execute if the "back" button is pressed (Left button), so the buttons' value is equal to 4. If the

buttons’ value is 4, we make the button equal to 0 so that it does not hold the value of the

button, we make the activeButton equal to 1 so that it holds that a button was pressed, we

erase the blue led with the digitalWrite function where now we call it with pin 3 of Arduino

and LOW to turn off the led and exit the switch.

Figure 44. Blue Led

4.3.4 NTAG I2C Antenna

To use the NTAG I2C Antenna we need to use I2C wiring. The pins we need are the VCC,

GND, SDA and SCL, which are connected as shown in Table 4.

Table 4. NTAG I2C Antenna

NTAG I2C ANTENNA ARDUINO
SDA A4
SCL A5
VCC 5V
GND GND

In the Arduino IDE we install the Arduino Ntag Master library, which contains the programs

we need to see if the antenna works, to write and read from it.

From the menu, select File, Examples, Arduino-ntag-master where we find the functions we

will use.

First, we select ntagTest, in which we see the introduction of the libraries it needs to run. A

very important library is <Wire.h>, which allows you to communicate with I2C devices, often

also called "2 wire" or "TWI" (Two Wire Interface). In the setup after we initialize the serial

screen and display a message, if ntag is not found we display a suitable message. We continue

with the dialing of 5 functions for its basic function, with which we display the serial number

of the tag in hexadecimal, we write and read in the EEPROM memory and it reads data from

the registers. So, we see that our antenna is working and we can use it.

In Figure 45, we represent the output of the program we used.

Figure 45. NTAG Test

In the WriteTag function, we use NdefMessage to declare the message we will create and by

calling the message.addUriRecord() we write the message we want. We also display a

message about the successful or unsuccessful completion of the action. In the ReadTag

function using the NfcTag function, we declare the tag with which by calling tag.print() we

display the message that contains our tag in hexadecimal.

There are also the CleanTag, which resets a tag back to factory-like state, and EraseTag,

which erases a NFC tag by writing an empty NDEF message.

For our program, we need to read and write through the antenna, as we want to communicate

with any mobile phone that contains our mobile app and get data from it. We also want the

mobile app to read data through the antenna as manual changes may have been made to our

system.

4.3.5 Circuit Diagram

The wiring we use with our LCD Keypad Shield, Arduino and Leds is shown in Table 5.

The Digital Arduino pins we use are 3, 11, 12, 13 to light up the Leds and 4, 5, 6, 7, 8, 9 to

communicate with the LCD Screen.

The Analog Arduino pins we use are A0, A4, A5 to communicate with the NTAG I2C

Antenna.

They are all connected to VCC and GND of Arduino.

Table 5. Circuit Wiring

ARDUINO PINS LCD KEYPAD SHIELD / LEDS / I2C

3 Blue Led

4 DB4
5 DB5
6 DB6

7 DB7
8 RS

9 E
11 Red Led
12 Green Led

13 Yellow Led
A0 A0

A4 SDA
A5 SCL

VCC 5V of LCD

 Cathodes of Leds
 VCC of NTAG

GND GND of LDC
 Anodes of LEDS through Resistors
 GND of NTAG

In the Figure 46 below, the layout of the circuit we created is presented. Because there was no

LCD Keypad Shield to use, schematically added the 4 buttons and pin A0 to the screen.

NTAG I2C Antenna is also drawn to show the configuration.

Figure 46. Circuit Diagram

CHAPTER 5: RESULTS

5.1 Conclusion

This thesis was held through the project of Blended Aim. Through this project, there is a

collaboration of universities from all over Europe and beyond, for the execution of two

projects for startups companies. Students from different universities and specialties are

divided into two groups, one for each project, and collaborate most of the time remotely to

complete them.

The project of the group I participated in, was created by a Belgian start-up company, named

Constell8 which specializes in managing lighting systems for large events such as concerts.

The result of this project is a product named KLSTR which consists of a mobile app and a

system that is integrated into every lighting.

KLSTR was inspired and created by the need for development in the field of lighting, as the

technologies used to date are based on a 33-year protocol. By using the system we created, the

management of such systems becomes faster and more efficient. The lighting technician is in

charge of managing each of the lights and no longer needs to adjust each one closely. All it

has to do is make the settings he needs through the mobile app and just run his phone over the

NFC tag that is in the light to write the changes on it. By this project, the light technician has

the opportunity to make settings either manually on the device or via his mobile phone. We

also ensure the security of the system as to pass the changes from the application to the

lighting we have to bring the mobile phone to the system at a short distance, this is the reason

why we chose NFC technology for its implementation.

It was an amazing and unique experience the opportunity given to all of us, to work with

students from different universities with different qualities, different nationalities, and located

in different parts of the world. We needed to be organizational, patient, and receptive to

everyone's views and ideas to work effectively, as we did. There were several difficulties due

to the distance, the time difference, the difference in the way everyone works and way of

thinking but we respect each other. We were divided into smaller groups and undertook

separate tasks depending on the field of studies of each. Dosu and I are the Hardware team,

where I dealt with the system in the light. Despite the difficulties, we had very good

cooperation and we always supported each other.

Blended Aim Mobility allowed us to work professionally for the first time as students and

gain new knowledge, experiences, and opportunities. We had the opportunity to meet and

discuss different technologies, to learn about them, and to work professionally. Technologies

like Arduino and NFC are highly developed nowadays as they can be used in many different

ways in different projects. We needed to deal with such technologies as we will be prepared

either for school lessons or future work on topics such as the Internet of Things.

5.2 Future work and extensions

We have created the on-screen menu, but it is not functional yet. We can scroll to it but it

does not do any other function.

We need to integrate the antenna function in our basic code so that through Auto Mode we

can read the data from the mobile app via NFC tag, and pass it from the NFC antenna to the

light, through the Arduino.

We need to make the functions for Manual Mode so that through the buttons we can change

the ID of Fixture, through Strobes the movement and through the Dimmer the brightness. To

do this, we will need to send the values we want to the appropriate memory point they already

have and control with their existing system.

Finally, we have to test with the mobile app that the data is exchanged correctly and finally do

the packaging of the system.

A future optimization is to replace NFC with Bluetooth technology. To do this, however, we

must ensure the security of this system so that someone unauthorized cannot tamper with the

system, as Bluetooth has a wider range than NFC.

REFERENCES

[1] Nuno Escuderio, Paula Escuderio, Ricardo Almeida, Ana Barata, Tatjana Welzer,

Giorgos Papadourakis, Blended Academic International Mobility: tearing down barrirers

to mobility in a suistanable way

[2] The Definitive Guiede to Scaling Scrum with Nexus, January 2021

<https://www.scrum.org/resources/online-nexus-guide>

[3] Atlassian, What is Jira for

<https://www.atlassian.com/software/jira/guides/use-cases/what- is-jira-used-for#Jira-for-

requirements-&-test-case-management>

[4] Wikipedia, Slack (software)

<https://en.wikipedia.org/wiki/Slack_(software)>

[5] Wikipedia, Arduino Uno

<https://en.wikipedia.org/wiki/Arduino_Uno>

[6] Mobasshir Mahbub, ReserchGate, Automated Control Signal Reception

Acknowledgement System Using Nrf24101p Wireless Transeiver Module and Arduino

<https://www.researchgate.net/publication/332277135_Automated_Control_Signal_Receptio

n_Acknowledgement_System_Using_Nrf24l01p_Wireless_Transceiver_Module_and_Arduin

o>

[7] Arduino Uno R3 Datasheet

<https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf>

[8] Atmel, ATMega 328P, 8-bit AVR Microcontroller with 32K Bytes In-System

Programmable Flash Datasheet

<http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-

Microcontrollers-ATmega328P_Datasheet.pdf>

[9] Wikipedia, UART

<https://el.wikipedia.org/wiki/UART>

[10] Wikipedia, Pulse-Width Modulation

<https://en.wikipedia.org/wiki/Pulse-width_modulation>

[11] Wikipedia, Serial Peripheral Interface

<https://en.wikipedia.org/wiki/Serial_Peripheral_Interface>

[12] Arduino, Wire Library

<https://www.arduino.cc/en/reference/wire>

https://www.scrum.org/resources/online-nexus-guide
https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for#Jira-for-requirements-&-test-case-management
https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for#Jira-for-requirements-&-test-case-management
https://en.wikipedia.org/wiki/Slack_(software)
https://en.wikipedia.org/wiki/Arduino_Uno
https://www.researchgate.net/publication/332277135_Automated_Control_Signal_Reception_Acknowledgement_System_Using_Nrf24l01p_Wireless_Transceiver_Module_and_Arduino
https://www.researchgate.net/publication/332277135_Automated_Control_Signal_Reception_Acknowledgement_System_Using_Nrf24l01p_Wireless_Transceiver_Module_and_Arduino
https://www.researchgate.net/publication/332277135_Automated_Control_Signal_Reception_Acknowledgement_System_Using_Nrf24l01p_Wireless_Transceiver_Module_and_Arduino
https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://el.wikipedia.org/wiki/UART
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://www.arduino.cc/en/reference/wire

[13] Wikipedia, Arduino IDE

<https://en.wikipedia.org/wiki/Arduino_IDE>

[14] ElectroPeak, Arduino Project Hub, Using 1602 LCD Keypad Shield Arduino

<https://create.arduino.cc/projecthub/electropeak/using-1602-lcd-keypad-shield-w-arduino-w-

examples-e02d95>

[15] DF Robot, DFR0009 LCD KeyPad Shield For Arduino

<https://wiki.dfrobot.com/LCD_KeyPad_Shield_For_Arduino_SKU__DFR0009>

[16] Grobotronics, LED Diffused 5mm

<https://grobotronics.com/led-diffused-5mm-elrd.html>

[17] Wikipedia, Near-Field Communication

< https://en.wikipedia.org/wiki/Near-field_communication>

[18] Wikipedia, I2C (Inter-Integrated Circuit)

<https://en.wikipedia.org/wiki/I%C2%B2C>

[19] Scott Campbell, DIY Electronics, Circuit Basics, Basics of the I2C Communication

Protocol

<https://www.circuitbasics.com/basics-of-the- i2c-communication-protocol/>

[20] Product datasheet Company Public, NTAG I2C plus: NFC Forum T2T with I2C

interface, password protection and energy harvesting

<https://www.nxp.com/docs/en/data-sheet/NT3H2111_2211.pdf>

[21] Arduino, Liquid Crystal Constructor

<https://www.arduino.cc/en/Reference/LiquidCrystalConstructor>

[22] Arduino, Serial.begin()

<https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/>

[23] Arduino, Liquid Crystal Begin

<https://www.arduino.cc/en/Reference/LiquidCrystalBegin>

[24] Arduino, Liquid Crystal Clear

<https://www.arduino.cc/en/Reference/LiquidCrystalClear>

[25] Arduino, Liquid Crystal Print

<https://www.arduino.cc/reference/en/libraries/liquidcrystal/print/>

[26] Arduino, delay()

<https://www.arduino.cc/reference/en/language/functions/time/delay/>

https://en.wikipedia.org/wiki/Arduino_IDE
https://create.arduino.cc/projecthub/electropeak/using-1602-lcd-keypad-shield-w-arduino-w-examples-e02d95
https://create.arduino.cc/projecthub/electropeak/using-1602-lcd-keypad-shield-w-arduino-w-examples-e02d95
https://wiki.dfrobot.com/LCD_KeyPad_Shield_For_Arduino_SKU__DFR0009
https://grobotronics.com/led-diffused-5mm-elrd.html
https://en.wikipedia.org/wiki/Near-field_communication
https://en.wikipedia.org/wiki/I%C2%B2C
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/
https://www.nxp.com/docs/en/data-sheet/NT3H2111_2211.pdf
https://www.arduino.cc/en/Reference/LiquidCrystalConstructor
https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/
https://www.arduino.cc/en/Reference/LiquidCrystalBegin
https://www.arduino.cc/en/Reference/LiquidCrystalClear
https://www.arduino.cc/reference/en/libraries/liquidcrystal/print/
https://www.arduino.cc/reference/en/language/functions/time/delay/

[27] Arduino, Liquid Crystal Create Char

<https://www.arduino.cc/en/Reference/LiquidCrystalCreateChar>

[28] Arduino, Liquid Crystal Displays (LCD) with Arduino

<https://docs.arduino.cc/learn/electronics/lcd-displays>

[29] Arduino, Liquid Crystal Write

<https://www.arduino.cc/reference/en/libraries/liquidcrystal/write/>

https://www.arduino.cc/en/Reference/LiquidCrystalCreateChar
https://docs.arduino.cc/learn/electronics/lcd-displays
https://www.arduino.cc/reference/en/libraries/liquidcrystal/write/

