

ΕΛΛΗΝΙΚΟ ΜΕΣΟΓΕΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

ΤΜΗΜΑ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ

ΑΝΑΠΤΥΞΗ ROLE-PLAYING ACTION

ΠΑΙΧΝΙΔΙΟΥ ΓΙΑ ΣΥΣΚΕΥΕΣ ANDROID

ΣΕ ΠΕΡΙΒΑΛΛΟΝ 2D ME ΧΡΗΣΗ UNITY.

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Εισηγητής: Πέτρος Γιαννακάκης ΔΕ838

Επιβλέπων: Καπανταϊδάκης Γιάννης

©

2022

HELLENIC MEDITERRANEAN UNIVERSITY

SCHOOL OF MANAGEMENT AND ECONOMICS SCIENCE

DEPARTMENT OF MANAGMENENT SCIENCE AND

TECHNOLOGY

DEVELOPMENT OF ROLE-PLAYING

ACTION GAME FOR ANDROID DEVICES

ON A 2D PLANE USING UNITY

DIPLOMA THESIS

Student : Petros Giannakakis DE838

Supervisor : Kapantaidakis Yannis

©

2022

Υπεύθυνη Δήλωση : Βεβαιώνω ότι είμαι συγγραφέας αυτής της πτυχιακής εργασίας και ότι

κάθε βοήθεια την οποία είχα για την προετοιμασία της, είναι πλήρως αναγνωρισμένη και

αναφέρεται στην πτυχιακή εργασία. Επίσης έχω αναφέρει τις όποιες πηγές από τις οποίες

έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε αυτές αναφέρονται ακριβώς είτε

παραφρασμένες. Επίσης βεβαιώνω ότι αυτή η πτυχιακή εργασία προετοιμάστηκε από εμένα

προσωπικά ειδικά για τις απαιτήσεις του προγράμματος σπουδών του Τμήματος Διοικητικής

Επιστήμης και Τεχνολογίας του ΕΛ.ΜΕ.ΠΑ.

 i

ΠΕΡΙΛΗΨΗ

Το θέμα της πτυχιακής είναι η δημιουργία ενός παιχνιδιού μονού παίχτη και υπόδησης

ρόλου, για συσκευές Android σε δυσδιάστατο επίπεδο, χρησιμοποιώντας την μηχανή

παιχνιδιών Unity μεταξύ άλλων. Ο κύριος σκοπός της πτυχιακής είναι η γενική κατανόηση

της μηχανής παιχνιδιών Unity και πως να χρησιμοποιείται, καθώς επίσης η λογική και το

σκεπτικό πίσω από τη κατασκευή όλων των σταδίων του παιχνιδιού. Στην εργασία επίσης

συμπεριλαμβάνεται επεξήγηση και η λογική που χρησιμοποιήθηκε στον κώδικα. Επιπλέον το

παιχνίδι χρησιμοποιεί ένα σπάνιο τρόπο μάχης, στον οποίο θα γίνει λεπτομερής εξήγηση, ο

οποίος είναι εμπνευσμένος από ένα άλλο παιχνίδι και είναι δημιουργημένο από την αρχή. Τα

εργαλεία που χρησιμοποιήθηκαν για την κατασκευή του παιχνιδιού είναι: Μηχανή

παιχνιδιών Unity σε έκδοση 2020.2.7f1 για την δημιουργία και την απόδοση γραφικών, το

τρέξιμο του κώδικα και την οριστικοποίηση της κατασκευής του παιχνιδιού. Για τη σύνταξη

του κώδικα και την αποσφαλμάτωση του, χρησιμοποιήθηκε το Microsoft Visual Studio 2019.

Για την επεξεργασία ήχου και βίντεο χρησιμοποιήθηκε το Video Pad Editor και για την

επεξεργασία εικόνων, στοιχείων και λεπτομέρειες για γραφικά χρησιμοποιήθηκε το

photoshop. Η γλώσσα προγραμματισμού που επιλέχτηκε είναι η C# (Σι-σαρπ) της Microsoft.

Λέξεις Κλειδιά : Κώδικας, Γραφικά, Παιχνίδι, Μηχανή, Android

 ii

ABSTRACT

The subject of this thesis is about the creation of a single player, role-playing action game for

android devices in 2-dimensional (2D) plane, using the Unity Game Engine among other

tools. The main goal of this thesis is to get a general understanding of what Unity Engine is

and how to use it, as well as examinations and explanations behind the thought process of all

the stages as the game creation goes through. Also included in the paper, there will be

explanations behind the logic used in the creation of the scripts. The game also uses a rare

battle system that is going to be explained in detail, which was inspired by another game and

is built from scratch. While working on the game, several tools were used. Unity Engine

version 2020.2.7f1 was used for rendering, texturing, running scripts and finalizing the build,

Microsoft Visual Studio 2019 was used for writing the scripts and debugging the code in the

scripts, Video Pad Editor was used for the editing of sounds, audio and video, photoshop was

used for the editing of images, sprites and textures and lastly, the programming language of

preference was Microsoft C# (See-sharp).

Key Words: Scripts, Graphics, Game, Engine, Android

 iii

TABLE OF CONTENTS
ΠΕΡΙΛΗΨΗ... i
ABSTRACT .. ii

TABLE OF CONTENTS .. iii
LIST OF FIGURES .. vi
ABBREVIATIONS .. viii
MY GRATITUDE ... xi
CHAPTER 1 ... 1

INTRODUCTION.. 1
1.1 Summary of the Game .. 1
1.2 Incentive ... 1
1.3 Goal of the Project .. 2

1.4 Game in Detail ... 2
1.4.1 Story.. 2
1.4.2 Stages .. 2

1.4.3 Characters .. 2
1.4.4 Battle System ... 3
1.5 Summary of the chapters that Follow ... 3
CHAPTER 2 ... 4

HISTORY OF GAMES AND PLATFORMS ... 4
2.1 Games in Different Eras ... 4

2.2 History of Old Game Platforms ... 4
2.3 Modern Game Platforms .. 6
2.3.1 Factors .. 6

2.4 Evolution of Game Platforms .. 7

2.5 Old and New Platforms .. 7

2.6 Modern Game Platforms (2011-2020) ... 12
2.7 Pokémon Go key history .. 13

CHAPTER 3 ... 15
ANDROID .. 15
3.1 General info about android .. 15
3.2 Google Play Statistics .. 17

3.2.1 Worldwide app Downloads on Google Play Store.. 18
3.2.2 Game Apps Available in Google Play Store.. 18
3.2.2.1 Game Apps Downloads from Google Play Store .. 18
3.2.3 Top Games in Google Play Store ... 19
3.2.3.1 Analysis of Influence of Games .. 19

CHAPTER 4 ... 21

UNITY, GAME ENGINES AND OTHER TOOLS ... 21

4.1 Tools ... 21
4.2 What is a Game Engine .. 21
4.2.1 Framework ... 22
4.2.2 Framework V. Game Engines .. 22
4.2.2.1 Unity .. 23

4.2.2.1.1 Interface of Unity ... 24
4.2.2.2 CryEngine... 26
4.2.2.2.1 Interface of CryEngine .. 27

 iv

4.2.2.3 Unreal Engine .. 29
4.2.2.3.1 Unreal Engine Interface .. 30
4.2.2.4 Other Game Engines ... 31
4.2.2.4.1 Dunia Engine .. 32
4.2.2.4.2 Source and Source 2 .. 33

4.2.2.4.3 Creation Engine ... 33
4.2.2.5 Differences among Game Engines.. 34
4.2.3 Coding Languages ... 34
4.2.3.1 C# .. 35
4.2.3.2 Similar Languages to C# ... 35

4.2.3.3 Coding Environments and Editors .. 36
4.2.4 Art and Design ... 37
4.2.4.1 Asset Store .. 39

4.2.4.2 Other Programs used for Design .. 39
4.2.5 Game Categories ... 40
4.2.5.1 Main Categories ... 40
4.2.5.2 Sub-Categories ... 41

CHAPTER 5 ... 42

MAKING OF THE GAME THOUGHT PROCESS, LOGIC USED AND WHICH

STEPS WERE TAKEN WHEN, DURING THE MAKING ... 42
5.1 General Information ... 42
5.2 Step One – The Decision to Make a Game ... 42

5.3 Step Two – Where to Make the Game .. 42
5.4 Step Three – Choosing how to Make the Game ... 43

5.5 Step Four – Deciding how the Game Flows .. 43

5.6 Step Five – Getting the assets needed and preparing the designs necessary. 44
5.7 Step Six – Stage one, Tutorial .. 44
5.7.1 Step Seven – Creating the Movement Controls and Animation 45
5.7.2 How the animation works ... 47

5.8 Step Eight – Creating the transition from stages ... 48

5.9 Step Nine – Stage Two, Story and Dialogues .. 49
5.10 Step Ten – Stage Three, Battle Stage .. 50
5.10.1 Battle Stage Interface .. 51
5.11 Step Eleven – Stage 4, Boss fight ... 52
5.12 Step Twelve – Stage Five, Epilogue and Credits .. 52

5.13 Step Thirteen – Menu ... 52
5.13.1 Step Fourteen – Adding Audio ... 53
5.14 Step Fourteen – Saving System .. 53

5.15 Step Fifteen – Transition Between Stages and Play button in menu 54
CHAPTER 6 ... 55
FUTURE OF GAMES – ADDITIONS FOR THIS GAME ... 55
6.1 Future of Games .. 55

6.2 Potential of this game.. 55
6.3 Possible Additions ... 55
CHAPTER 7 ... 57
BIBLIOGRAPHY .. 57
A. REFERENCES .. 57

 v

B. LINKS .. 60
C. PICTURES .. 61
ΠΑΡΑΡΤΗΜΑ Α ... 64

 vi

LIST OF FIGURES

Figure 1: Magnavox Odyssey Console Set

[F.1]
 ... 5

Figure 2: Magnavox Odyssey on the Computer Museum of America
[F.2]

 5
Figure 3: The Original PlayStation 1 Console

[F.3]
 .. 5

Figure 4: Retro Arcade Machine, specifically designed to play the game "Pac Man"
[F.4]

........ 7
Figure 5: John Presper Eckert and John W. Mauchly

[F.5]
 ... 8

Figure 6 : Master Programmer of the ENIAC on display on Moore School of Engineering and

applied Science
[F.6]

 .. 9
Figure 7 : The ENIAC itself and the room it was kept in

[F.7]
 .. 9

Figure 8: Intel's first ever microprocessor the C4004
[F.8]

 ... 9
Figure 9 : A naked chip with its Circuit Die (Overview)

[F.9]
 .. 10

Figure 10: A complete chip with its Die (Underside View)
[F.10]

 .. 10

Figure 11: Complete chipset (LGA775 specifically) on a circuit board (Motherboard) with the

Chip fitted (Intel Pentium E2220) and its Northbridge (Small black square on the left)
[F.11]

 10
Figure 12: Maurice Vincent Wilkes and other Engineers working on the EDSAC (1947)

[F.12]

.. 11

Figure 13: Interface of OXO, the TIC-TAC-TOE inspired game that was created and played

on the EDSAC by Alexander S. Douglas
[F.13]

 ... 12

Figure 14: Current Pokémon Go logo as taken from the site of Pokémon
[F.14]

 13
Figure 15: Evolution of the Android Logo over the years

[F.15]
 ... 15

Figure 16 Diagram that shows the worldwide percentage of Mobile Operating System market

share that each company holds. Data are from June 2021 to June 2022.
[F.16]

 16
Figure 17: Diagram that shows the worldwide percentage of all Operating Systems market

share that each OS holds. Data are from June 2021 to June 2022
[F.17]

 17

Figure 18: The logo of the framework that Microsoft uses to create its own apps. Version

4.5v
[F.18]

 ... 22
Figure 19: Unity logo as provided by Unity for trademark purposes

[F.19]
 23

Figure 20: Unity default interface
[F.20]

 .. 24
Figure 21: Two CryEngine logos as provided by CryEngine for trademark purposes. It comes

in both black and white colours to fit any background
[F.21]

 .. 26
Figure 22: The most basic Interface of CryEngine 5.6

[F.22]
 .. 27

Figure 23: Interface of a 3-D Third Person template
[F.23]

 ... 30
Figure 24: The logo of DUNIA Engine as it is portrayed in games, with minor different

details around the edges.
[F.24]

 .. 32
Figure 25: Logo of Source 2

[F.25]
 .. 33

Figure 26: Logo of source Engine, as portrayed in source engine powered Steam.
[F.26]

 33
Figure 27: Coding Language Python Logo

[F.27]
 .. 34

Figure 28: An unofficial logo of C#. There is no official logo for C# as stated by Microsoft

support
[F.28]

 .. 35
Figure 29 : Current official logo of coding language Java

[F.29]
 ... 35

Figure 30 : Official Logo for Visual Studio
[F.30]

 ... 36
Figure 31: Notepad++, a simple editor for writing code

[F.31]
 ... 36

Figure 32 : Logo of the Microsoft IDE, Visual Studio. The shape represents the infinity

symbol as a testament for all the countless possibilities the IDE offers.
[F.32]

 36
Figure 33: Netbeans logo, a complete Java IDE

[F.33]
 .. 37

Figure 34: Eclipse IDE logo, an IDE for Java and C
[F.34]

 ... 37

file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496841
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496842
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496843
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496844
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496845
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496846
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496846
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496847
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496848
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496849
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496850
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496851
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496851
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496852
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496852
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496853
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496853
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496854
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496855
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496856
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496856
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496857
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496857
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496858
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496858
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496859
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496860
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496861
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496861
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496862
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496863
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496864
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496864
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496865
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496866
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496867
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496868
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496868
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496869
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496870
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496871
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496872
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496872
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496873
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496874

 vii

Figure 35: Digital Drawing program, Krita logo
[F.35]

 .. 39
Figure 36: Logo of Ibis Paint X, taken from google play store

[F.36]
 40

Figure 37: The animation phase connections between idling and moving that dictate which

animation will be triggered. ... 45
Figure 39: The connections that dictate which animations are being played depending on the

different parameters and variables set from Figure 38 and movement controls. 46
Figure 38: The calibrated parameters needed to ensure that the correct animation will be

played, that are set during the pressing (or not pressing) the movement control buttons. These

are set between -1 and 1, with 0 being not pressed.. .. 46
Figure 40: The room where the main character wakes up after the tutorial scene. Top right is

the main character beside his bed, bottom right is the action button from controls interface

and bottom left is the movement controls from movement interface. 49
Figure 41: The battle stage interface .. 51

Figure 42: The menu of the game with buttons for to play, load a certain scene, settings menu

and quitting options.. 53

file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496875
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496876
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496877
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496877
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496878
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496878
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496879
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496879
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496879
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496880
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496880
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496880
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496881
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496882
file:///C:/Users/n3cr0sman/Desktop/ptyxiaki/thesis/hopefully%20the%20last%20thesis%20updated%20+%20figures.docx%23_Toc109496882

 viii

ABBREVIATIONS

2D – 2 Dimensional : It means that something is depicted in two dimensions. Whether it is on

X and Y plane or X and Z plane or Y and Z plane.

3D – 3 Dimensional : It means that something is depicted in three dimensions. Everything is

3 dimensional. A human sees in 3 dimensions, most games are depicted in 3 dimensions now.

The third dimension adds depth to a picture.

AI – Artificial Intelligence/Artificial Intellect : It means that something works like it has

some kind of intelligence but its mostly man-made logical arguments run by a machine.

BBEG – Big Bad Evil Guy : This is a nickname that main villains usually have in games

when they don’t have an identity yet, meaning a name or an image. It symbolizes the villain

to acknowledge his existence before he is “brought to life”.

CPU – Central Processing Unit : This is the main part in the computer that handles the logical

and numerical instructions and controls input and output.

DAU – Daily Active Users : It’s a measurement to help count users that are actively using

something on a daily basis.

EDSAC – Electronic Delay Storage Automatic Calculator : It’s the first computer that

featured electronically accessible memory.

ENIAC – Electronic Numerical Integrator And Computer : It’s the first electronic computer

that was programmable.

EULA – European User License Agreement : It’s a complete European terms and conditions

agreement regarding license for using something that has been copyrighted.

GPU – Graphics Processing Unit : It’s a specialized processor besides the central processor

(CPU) that handles graphics

HDD – Hard Disk Drive : It’s a type of long-term storage device used in computers to save

files and other programs.

HTML – Hypertext Markup Language : It’s a language for encoding web pages and a

formatting system for displaying files retrieved over the internet (.html files)

HTML5 – Hypertext Markup Language 5 : It’s a better version of the HTML.

 ix

HZ – Hertz : It’s a measurement to measure frequency. It is used to describe how fast and

how many times something happens, over the course of a specific time. For example a

monitor that can handle displaying 120 frames per second has a frequency of 120hz.

IDE – Integrated Development Environment : It’s a software for building applications that

combines common developer tools and provides comprehensive facilities to computer

programmers for software development.

IOS – iPhone Operating System : It’s the operating system used in iPhones.

MB – Motherboard : It’s the main component on the computers that connects everything

together and brings use to otherwise useless components (CPU, GPU, RAM, MEMORY,

PSU and other less major components like north/southbridge, video cards and sound cards

connections etc.)

MOBA – Multiplayer Online Battle Arena : It’s a type of game category that usually pits two

or more teams in a competitive set with a mutual goal to win against the other whether it is

reaching an end-point or attaining a certain objective or destroying something.

NES – Nintendo Entertainment System : It’s a game console that Nintendo released in 15

July 1983.

Nm – Nanometers : It’s a measurement based on the meter scale. 1nm is 1e-9m

(0.000000001m).

NPC – Non-Player Character : Is a character that is handled by the computer, or rather

whatever logic the developer adds to it. An NPC is handled by AI.

OS – Operating System : It’s a system software that manages the computer hardware,

software resources and provides common services for computer programs.

OXO – Naughts and Crosses : It is considered the first electronically displayed and

electronically controlled game made for the EDSAC in 1952 by Alexander S. Douglas. Its

name is derived from : Naughts (not’s) meaning Null or Zeros and Crosses meaning the X.

PC – Personal Computer : It’s a multi-purpose microcomputer that is feasible for personal

use.

PSU – Power Supply Unit : It’s the unit that supplies power to the several components that a

computer uses.

 x

RAM – Random Access Memory : It’s a short term memory that helps the CPU, GPU and

Disk Drive access some things faster for better response times.

RPG – Role Playing Game : It’s a type of game category that usually immerses the player in

the role of the main character.

SNES – Super Nintendo Entertainment System : It’s a game console that Nintendo released

in November 21 in 1990

SSD – Solid State Drive : A better version of the HDD. It’s an improved type of long-term

storage device used in computers to save files and other programs.

VR – Virtual Reality : It’s the use of computer modeling to create an environment that feels

very similar to the real world and to create a simulation of an artificial 3-D space that enables

a person to interact with, by using visual or other sensory equipment.

XML – Extensible Markup Language : It’s a simple text based format that is used for

representing structured information like documents, data, books, transactions and a lot more.

μm – Micrometers : It’s a measurement based on the meter scale. 1nm is 1e-6m (0.000001m).

 xi

MY GRATITUDE
I would like to thank a few people. First, I want to thank Mr. Kapantaidakis for supporting

the idea of making a game and helping out immensely with my first steps of developing it. I

would also like to thank all my Professors from the 5 years of studies and classes I took, that

gave me the knowledge I needed. I would also like to thank my parents for supporting me

financially during my studies and my friends (online or not) for being there with me.

I dedicate my first game to my dog, Oskar, who is unfortunately not with us anymore and

whom I loved with all my heart and literally went above and beyond for his every needs.

 1

CHAPTER 1

INTRODUCTION

1.1 Summary of the Game

The game has not been named yet. The games categories are mainly classified as a Single

player, 2D Role playing game (RPG) and secondary categories are Adventure, Top-Down

and Story rich. It is mainly dialogue focused but cannot be classified as a Visual Novel

category due to other systems that are implemented in the game, such as battles, enemies,

stats and a unique battle system that is built from scratch. The game has a small story that

revolves around the main character, Karp, his family and the BBEG that the main character

has to face later on in the story and the characters of the game are the main character, his

grandfather, his mother, the assistant of the grandfather and the BBEG.

1.2 Incentive

Lately, most major game companies have resorted to making online multiplayer games

that pit teams and players against each other. This isn’t necessarily bad, but the natural

competitiveness of these games most of the time frustrates the players and the gaming

experience is not overall enjoyable. So, with that in mind and inspired by “old school” games

like Pokémon, I tried to combine “old school” gaming - by making the game in a top-down,

2-dimensional (2D) plane – with “new school” gaming, by optimizing the game for android

devices, which is considered as a “to-go” platform and preferred for “lightweight” single

player games in the latest years. But it’s not the only reason why I chose a single player type

of game. Another reason why, is that there are not a lot of new single player games lately and

even less single player games that are actually worth playing. Among that, I have opted for a

roleplaying type with a story rich adventure that I believe is going to bring back the fun and

relaxing time going through the story at each ones pace along with some easy battles, to keep

the “boring” factor from too much dialogue reading in check.

 2

1.3 Goal of the Project

The purpose of this project is to study what is needed to create a simple game, which in

the current scenario is an RPG, story rich, single player 2-dimensional game. In this paper I

am going to analyse all the assets and aspects needed to make the game fully functional, as

well as the logic behind the scripts created, what to keep in mind while creating said scripts,

where to find and how to use assets, optimization for different resolutions and aspect ratios

and different devices such as IOS, Android, Windows etc. and what steps the creator needs to

follow, as well as when to take each step, for a smooth construction of the game with as little

bugs, errors and optimization mistakes as possible. The goal is for this paper to serve as a

tutorial on game creation for beginners on both the theoretical part and the practical part.

1.4 Game in Detail

1.4.1 Story

The story of the game is a typical Good Guy – Bad Guy relationship, where the bad

guy hurts the main character and what he holds precious so the good guy hunts and fights

against the bad guy.

1.4.2 Stages

The game is made with four (4) stages. The tutorial stage, where everything about the

game and game controls are being explained, the introduction stage where most characters

and story are introduced, the battle stage which contains a tutorial about the battle system as

well as the last battle with the bad guy and the last stage which is a last dialogue between the

main character and the bad guy as well as the finish screen.

1.4.3 Characters

The characters included in the game, with their names are:

 Karp – Main character

 John – Grandfather

 Jonas – Assistant of grandfather

 3

 Joshlyne – Mother of main character

 David-Ivan Okoniewski – Main Villain

1.4.4 Battle System

The battle system is a unique way of using attack moves and healing moves unlocking a

lot of potential for other uses as well, such as dodging, combos or other strategies during

fighting. The system uses the general skill-cooldown-skill cycle but in a different manner.

There is a bar that represents the cooldown period of a skill, a text to represent what the skill

is/does and a button to trigger the skill. The difference between this battle system and the

more general battle system is that normally, the player uses one skill at a time and then the

skill starts the cooldown, however in this, the player can trigger more than one skill at a time

and all cooldowns work together. Main difference is that everything is parallelly running

instead of the usual use-wait period.

1.5 Summary of the chapters that Follow

In the chapters that follow, I am going to talk about the history of games and consoles

(particularly Android platforms), their evolution and evolution patterns in the years, what

factors affect and how they dictate evolution, strengths and weaknesses of different consoles

and gaming platforms, the programs I used to make the game and the logic behind the code.

 4

CHAPTER 2

HISTORY OF GAMES AND PLATFORMS

2.1 Games in Different Eras

Games have been deeply implemented in everyone’s life, since forever. It does not really

matter if it’s a single player game, a multiplayer game, online or offline, digital (e.g.,

computer game) or non-digital (e.g., tabletop games), or whether mostly adults or kids play it.

A game exists to bring entertainment and fun to people. In previous eras, games can still be

found in people’s lives, such as Nintendo’s Game Boy in the 2000s that featured a cable that

allowed multiplayer, or even earlier - when computers did not exist- kids would play different

games such as tabletop games, or games that included physical activities such as hide and

seek and tag or other sports like football and basketball. In the current era, most games are

digital and not a lot of games are played non-digitally. Even most tabletop games have a

digital version made of them and the amount of tabletop games that still require a physical

presence and handheld materials, such as pen and paper, are gradually getting less and less as

technology continues to evolve.

2.2 History of Old Game Platforms

 5

Whether the

platform was

designed for it or not, more and

more platforms that support games

have started to emerge. From

dedicated consoles for games, to

computers, to mobile phones every platform

has its own strengths and weaknesses, and

every platform has had its own trending

phase. The first ever commercial game

console created, as we know it today, was

the Odyssey Magnavox and was

released in 1972 and was developed by

a German-American engineer named Ralph Baer Wolf, M.J. ed., 2008. The Magnavox

featured a ping-pong style gameplay and inspired Nolan Bushnell to create the American

Atari 2600 which was released in the year 1977 along with his own version of the game

called Pong that ended up being more popular than the Magnavox. However, as time

continued to move forwards and technology evolved at a rapid rate, more specialized and

better at handling graphics consoles were released such as the Atari 2800 that was released in

1983, the Japanese Nintendo Entertainment System (NES) that was also released in 1983 and

the Japan-only arcade console of Sega, the Sg-1000 that was also released in 1983, but later

in 1985 was rebranded as Master System and was released to the whole world. These very

early game platforms were most of the time game dedicated consoles that could play one

game only, or just a very few and very specific number of games. As time went on, consoles

only got better with handling the quality of graphics and the ability to play more than just a

few very specific games. Most notable platforms in the 90’s was Nintendo’s SNES (Super

Nintendo Entertainment System), the Sony PlayStation 1 that was released in 1994 which

Figure 1: Magnavox Odyssey Console Set
[F.1]

Figure 2: Magnavox Odyssey on the Computer Museum of America
[F.2]

Figure 3: The Original PlayStation 1 Console
[F.3]

 6

was one of the few consoles that could handle 32-bits back then and used CDs for games

instead of cartridges, the Nintendo 64 released in 1996 and Nintendo’s Gameboy Color, the

first in the Gameboy series, was released in 1998 and featured a rechargeable battery which

made it one of the first consoles that could play multiple games as well as being portable, the

way we know it today Kowert, R. and Quandt, T., 2015.

2.3 Modern Game Platforms

So what game platform is modern then? Technically, according to the words

[L.1]
definition on the Cambridge Dictionary, one can figure out that different game platforms

are modern in different eras which renders the question as a hard to answer.

2.3.1 Factors

There are usually some factors most reviewers and companies generally use that

dictate how game platforms are rated and most of the time a few of those factors are :

-Affordability, meaning how cheap or expensive the machine is.

-Processing power, meaning how fast the machine is at processing various elements

like code and graphics.

-Flexibility, meaning how many different games and how many different controllers

or sets of controls the machine can handle

-Mobility, meaning how easy it is to access and/or use the machine at any given time.

-Versatility, meaning how many different things you can do on the machine apart

from gaming.

By studying these factors, patterns in the evolution of game platforms can be identified.

By identifying those patterns, one can easily reach a conclusion on which platforms are

considered modern.

 7

2.4 Evolution of Game Platforms

In the beginning, as noted before,

game platforms could run specific games

only. That means their Flexibility and

Versatility was awful since they could

have one function only. Their processing

power was also lacklustre, as the

technology was not very advanced at the

time and since they were big and hefty

too, it meant that they were expensive to

make and hard to move around which

means their mobility and affordability

was extremely unsatisfactory as well.

This made them very rare and for a

normal customer to have, was quite unlikely, but a few could be found in what was then

called, “Arcades”. They are tall box-like machines that house the screen, controls and the

circuits and boards. They usually operated using coins, they could only play one game and

they are the earliest form of stand-alone consoles. Wolf, M.J. ed., 2008

However, as technology progressed, the machines got progressively better in all aspects.

First came Flexibility as development was initially focused on getting more games on one

platform. Then, as engineers started to build more compact consoles to handle and combat

high temperatures and heat-spread from increased power, machines started getting smaller

and smaller, which made mobility drastically improve and as a by-product of that,

affordability also improved since computers required less material to be made. This was good

for the average consumer because this meant he could actually afford it but even with all that

effort, processing power was still not enough for 3-dimensional graphics all the way until

1980 when Battlezone, the first 3-dimensional game was released to the market. Versatility

came last when PC’s started getting attention because of their stronger processing power

when compared to a console.

2.5 Old and New Platforms

Figure 4: Retro Arcade Machine, specifically

designed to play the game "Pac Man"
[F.4]

 8

For older platforms, I believe it’s wise to note the first ever computer that utilized

electricity here, as I believe it highlights every problem with the very early computers. The

ENIAC machine, which was

made by John W. Mauchly and

J. Presper Eckert at the

University of Pennsylvania.

The machines’ name is an

acronym, and it stands for

Electrical Numerical Integrator

and Calculator Freiberger, P.

A. and Swaine, . Michael R.

(2022). Of course, as the name

suggests, it could only produce

numerical calculations through

a very complex technique of using punched cards as input and output. The machine did not

have any memory as well, which means every time they wanted to calculate something, they

had to redo all the wiring and replace the punched cards on the input and output. The ENIAC

took around 170 square meters of space and used around 18000 vacuum tubes, more than

7000 crystal diodes, 1500 relays, 70000 resistors, 10000 capacitors and approximately 5

million hand-soldered joints.

Figure 5: John Presper Eckert and John W. Mauchly
[F.5]

 9

For its time, the

machine was very fast

and was able to solve a

large amount of

numerical problems but

all these highlight all the

problems that early

machines faced, in

comparison to modern

ones. Enormous, time

consuming to make, hard

to maintain, difficult to use, extremely overpriced and could do only the one thing that was

programmed to do, which was calculations and when compared to todays’ calculators, it did

not do a very good job at that either.

Platforms quickly shrank down enormously when their respective components grew

smaller as development continued. There was a huge spike of improvement on size when

Intel introduced the first ever microprocessor in 1969, 23 years later after the ENIAC was

invented, the “Intel 4004”. That microprocessor is stated by intel to “have the same

processing power as the first ever electronic computer, built in 1946” namely, the ENIAC. Its

difference in size was

from 170 square meters,

which is around 2 average apartments in size (in comparison, a studio apartment where

students usually live in, are on average

around 40 square meters), to just a few

Figure 8 : The ENIAC itself and the room it was kept in
[F.7]

Figure 6 : Master Programmer of the ENIAC on display on

Moore School of Engineering and applied Science
[F.6]

Figure 7: Intel's first ever microprocessor the

C4004
[F.8]

 10

centimeters or the way Intel compares it, “the size of a little fingernail”. Intel then launched

the chipset with an advertisement that claimed, “a new era of integrated electronics”.

Even though CPU chips as a whole, grew

back in size a little bit as they evolved, the

“die” as they call it and the “circuit line” went

through extensive research and development in order to

grow smaller and smaller with each new chipset. A

good comparison with the 4004 chipset being a die

width of 10 microns, or 10.000 nanometers in 1971 and

2008 when the first i7 generation launched that was at

45 nanometers die size, a whopping 22.222,22% decrease in size. After 2008 however, there

was slower progress and Intel entered its famous “tick-tock” phase where one year the chipset

die got smaller and another year the circuit line got improved. That meant every two years the

die width got smaller from 45nm to 32nm to 22nm and lastly 14nm and when Intel got stuck,

AMD capitalized on it and created its own 10nm chipset and even managed to improve it to

7nm. For reference, a study conducted by the university of San Diego of Jacobs school of

engineering Yang et al. 2019, “a human hair is as thin as 80microns in diameter (80 microns

= 80.000nm). Most companies now use the 7nm die, while some (like Intel) 5nm die. At that

Figure 9 : A naked chip with its Circuit

Die (Overview)
[F.9]

Figure 11: A complete chip with

its Die (Underside View)
[F.10]

Figure 10: Complete chipset (LGA775 specifically) on a circuit board (Motherboard) with the Chip

fitted (Intel Pentium E2220) and its Northbridge (Small black square on the left)
[F.11]

 11

width, it does not make a noticeable difference, but a smaller die usually yields better results

regarding energy requirements, power output and temperature control as electricity travels

through a smaller and narrower path.

This development was similar for most components on electronics and most of these

electronics are the same for most computers, consoles and other platforms. Just like today,

they used a similar approach of having a processing unit (the CPU), short term memory to

handle the processes that run at the time (the RAM), a processing unit that handles

graphics/how things look (the GPU), a device for long term memory (the hard drive, HDD or

most recently SSD), a power controller for electricity (the PSU) and a device to connect them

all (the motherboard).

As these components got smaller and smaller, companies could also fit them in smaller

cases, or smaller rooms while maintaining - or even surpassing - the processing output of the

previous generation machines.

Another thing that highlights the problems of early technology on computers and games

on them is, even though the first dedicated game platform was released in 1972 as mentioned

before, the first ever game

was actually released long

before that in the 50s. The

game was named OXO

and it was the first

electronically controlled

and electronically

displayed game, made by

Alexander S. Douglas and

simulated a game of Tic-

Tac-Toe made for the

computer EDSAC

Kowert, R. and Quandt,

Figure 12: Maurice Vincent Wilkes and other Engineers working on the

EDSAC (1947)
[F.12]

 12

T., 2015; however, it's generally considered that the first game was spacewars made in 1962

as OXO was only available to be played by the people of University of Cambridge’s

mathematical laboratory as the ESDAC could not be moved. It is also believed that many

more games were created in the 50s but were not known as they were most likely only used

in private machines such as the ESDAC Freiberger, P. A. and Swaine, . Michael R. (2015).

2.6 Modern Game

Platforms (2011-2020)

Newer game platforms

when compared to older ones

it's plain to see their

differences. They are compact,

faster, can do more things at

the same time and also do a lot

of different things rather than

one thing only like older

computers and platforms.

Finally, having a firm grasp of

what modern is and how to find modern game platforms in different decades, the platforms

that I would consider as modern are smartphones. This is based on the earlier factors that

were mentioned along with some other considerations.

Smartphones tick most factors needed to be considered as the modern platform for

gaming in the decade of 2011-2020. They are very small platforms at around 6-7 inches that

makes it a pocket gaming platform which checks out the mobility factor, they are devices that

cost around 300-800$ which makes it very affordable, compatible controller adaptors exists

for different games that checks out the flexibility factor, there are applications that give

almost the same functionalities as a desktop computer and it has powerful graphics

processors and equipment that can run 3D graphics with a stable framerate around 60-120hz.

These factors essentially make it a smaller, with better mobility, laptop at the expense of

some processing power and battery charge. There are also some other external considerations

Figure 13: Interface of OXO, the TIC-TAC-TOE inspired game

that was created and played on the EDSAC by Alexander S.

Douglas
[F.13]

 13

to be taken into account, as the smartphone also acts as a mobile phone which the biggest

percentage of first and second world population uses and it's a feature that no other gaming

platform utilizes.

Smartphones also have had their trend-phase as a game platform especially when

someone looks high quality games like clash of clans (released in 2012), Pokémon go

(released in 2016) and PlayerUnknowns battleground Mobile (released in 2018), which only

solidifies its position as a modern game platform.

2.7 Pokémon Go key history

In its own right, Pokémon Go is a game that has

reached many milestones that place it above other

mobile games. When it was released in 2016, according

to Screen Rant, it reached a whopping 147 million

downloads within its first month, 75million downloads

within its first 19 days, reached #1 in downloads on the

Google App Store within its first week of release.

However, Pokémon Go only reached its peak daily

active user in 2018 with 45 million daily active users.

The reason for the late DAU peak is because Niantic, the company that released Pokémon

Go, did not expect such a high number of users. This meant Niantic did not prepare

appropriately and the servers that hosted the online game could not handle such a huge player

base which, in turn, meant many people experienced a lot of bugs and a lot of lag that ruined

the game experience and many people stopped playing for that reason. Niantic quickly got on

the problem and upgraded its servers which saw many players coming back to the game,

unfortunately however, some people (including myself) that jumped off the “hype train” of

the first 2-3 months never came back. This did not slow down Niantic at all though as

analytics firm Sensor Tower estimated an average of $4million daily revenue in 2019 and this

put Pokémon Go as the game that reached the $600million revenue mark the fastest, which

did it in 90 days.

Figure 14: Current Pokémon Go

logo as taken from the site of

Pokémon
[F.14]

 14

Within the first 3 to 6 months of the release of Pokémon Go, the game became so

widespread and known that even the news everywhere talked about the game and how young

people filled the streets walking up and down chasing Pokémon, meanwhile the players were

so into the game that many reviewers and other gamers jokingly claimed that it was “the

closest thing we had to world peace”.

Even with all these positives of the game, the competitive side of Pokémon Go with

Gyms and Battles started taking over the game and things started going south at a rate of

knots. Some players got so obsessed with the game that soon after its first months, instances

of violence, carelessness, recklessness and negligence started occurring. Things started going

so out of control that injuries related to Pokémon Go started being recorded and a lot of times

it even resulted in death in one of the two parties or sometimes both parties. These instances

include players beating up each other over Gym Ownership/Leadership, other times players

would pay too much attention to the game while driving and injure/kill pedestrians.

Specifically a death related to Pokémon Go was recorded when a man, that ended up

drowning, went in the sea to catch a rare Water type Pokémon during a very rough tide.

This section dedicated to Pokémon Go shows exceptionally well, how much and how

efficiently a mobile game can connect players. It also shows how much potential mobile

games can have but it also shows the dangers that lie sneakily within such games in the

mobile gaming community. Pokémon Go can be a incredible baseline for future games, both

in positives and negatives.

 15

CHAPTER 3

ANDROID

From personal knowledge and further research that I conducted, I came to the conclusion

that in 2020 and onwards, the modern platform for games are smartphones, particularly

android devices therefore it’s the platform I chose to implement my game on.

3.1 General info about android

Android is an

operating system for

mobiles. The project was

“born” in 2003, it was

created in November 2007

and it was released in a

phone for the first time in

September 2008, with the

HTC dream. It was created

based on a Unix-Like OS

family which is a modified

Linux Kernel.

Android is an open-

source code that is written

in many different

languages
[L.8]

 including Java, C, C++, XML, Python and many others. As of 2018, android

contains 6.714.784 lines of Java code, with it being roughly 43.1% of the total code and C

following with 5.162.285 lines of code totaling at roughly 30.1% of the total code. With C++

being third at 2.164.433 lines of code and 14.5% of the total code, XML being fourth at

1.409.418 lines of code with 8.7% of total the total code and the rest of the languages all

being below 1% each, its safe to say that Android is comprised of mostly Java, C and C++.

Figure 15: Evolution of the Android Logo over the years
[F.15]

 16

Android, with its Android 12 release on 4
th

 of October 2021, held a 71.09% of the total

market share in the Smartphone OS market and by the end of June 2022 it held a 72.12% of

the total market share in the Smartphone OS market. Android also holds the biggest share in

the electronics market with 39.75% of the total OS market in October 2021 and a 44.15% of

the total OS market by the end of June 2022 with Windows OS coming second with 32.44%

and 29% in October 2021 and June 2022 respectively. This rising percentage in the android

and OS market is mostly due to how common phones are and how common smartphones

have become, all while android being open-source so most companies develop and use their

own version of android-based OS, like Samsung using the name “Snow Cone” for their

android 12 version, LG using the LG UX 10.0 for their android 11 version and One Plus

using the name “OxygenOS 12” for their android 12 version etc.

Figure 16 Diagram that shows the worldwide percentage of Mobile Operating System market share

that each company holds. Data are from June 2021 to June 2022.
[F.16]

 17

The fact that android holds this big of a market share (almost half the market share!!),

means that there will be a lot of apps that are intended for and targeted on android OS. With

google play store being the main place as well as the safest to download apps, there are also

plenty of other App Stores to download apps from, like APKMirror, Apptoide and Amazon

Appstore among others being the some of the best alternatives to Google Play Store.

3.2 Google Play Statistics

Starting off with some general statistics, google play, according to research by analytics

firm 42matters, had a total of 3.520.511 apps in its database by July 2022 however, analytics

firm AppBrain state that google play has 2.671.743 total Android apps in its database
[L.7]

, by

July 2022. These numbers fluctuates a lot from quarter to quarter due to the fact that Google

makes a continuous effort to delete apps that are not active, or do not comply with their terms

of service in one way or another. A different research, done by Statista, shows that the free

apps in the database of Google varies between 96% and 97% with the rest of 3 to 4 percent

being paid apps
[L.11]

.

Figure 17: Diagram that shows the worldwide percentage of all Operating Systems market share that

each OS holds. Data are from June 2021 to June 2022
[F.17]

 18

Analytics firm Sensor Tower has conducted their own, rather interesting and extensive

research
[L.12]

 between the first quarter of 2021 and the first quarter of 2022, on Google’s Play

Store statistics including total downloads worldwide, top apps, top games, top publishers and

top categories along with some other findings. I am going to be examining information

regarding the downloads worldwide, top games and top categories along with their market

growth.

They, Sensor Tower, (2022), concluded the following:

3.2.1 Worldwide app Downloads on Google Play Store

Google play store has had a total of 28 billion total downloads in the first quarter of

2021, while the first quarter of 2022 had a 1.1% growth from 2021 that saw the downloads

reach a total of 28.3 billion. For the first quarter of 2022, the app with the most total

downloads was Instagram, surpassing the 120 million downloads mark, with TikTok coming

in third with approximately 118 million just below Facebook. However, in certain countries

like the US, TikTok has around 30 to 40 percent more downloads than Instagram and around

25 to 30% more downloads than Facebook.

3.2.2 Game Apps Available in Google Play Store

Out of the 3.520.511 total apps that google play has
[L.9]

, only 477.688 are gaming

apps with the rest being non-gaming apps. This is a 13.6% of gaming apps and 86.4% non-

gaming apps for the total apps.

Out of the 2.671.743 Android apps that google play has
[L.10]

, 449.497 are gaming apps

and 2.222.246 are non-gaming apps. This means that 16.82% is gaming apps and 83.18%

percent are non-gaming apps.

Using these numbers, a conclusion can be reached that 848.768 apps are not for

android and 28.191 are gaming apps made for other OS apart from Android.

3.2.2.1 Game Apps Downloads from Google Play Store

 19

Even though gaming apps hold a small percentage of apps in google play, they boast a

11.79 billion downloads in the first quarter of 2021 and a 2.1% growth in the first quarter of

2022 touching the 12.03 billion downloads. One can see the significance of this number when

compared to the second most downloaded category, being “Tools Apps” with a 2.12 billion

downloads for the first quarter of 2021 and 2.53 billion downloads in the first quarter of

2022. Their difference is 475.5% more downloads in the game category! That is almost 5

times more downloads than the second most downloaded category! It is very obvious how

much influence the gaming category has on smartphones, android in particular, and how

much influence it will have in the future as devices and OSs evolves.

3.2.3 Top Games in Google Play Store

Top downloaded games in Google Play Store are actually very different in each

country/continent and the gigantic difference in market sizes affects the results on worldwide

downloads immensely.

We can see that in the US, top downloaded games are more casual and time killers,

with Count Masters ranking most downloaded game for the first quarter of 2022 with

approximately 2 million downloads, while in Europe top downloaded games are more

adventurous and puzzles that provide a different type of entertainment with Subway Surfers

reaching an approximate mark of 8 million downloads. The Asian game market has more

competitive games and shooter games as their most downloaded games with Garena Free Fire

ranking first with almost 40 million downloads and Ludo King with approximately 37 million

downloads as well as older battle royale shooter PUBG mobile ranked among them.

Looking at the overall download statistics, results are heavily altered due to Asia

having a much bigger population ([L.3]China with 1.450.478.060 and
[L.4]

India with

1.406.631.776 for a total of 2.857.109.836 from just two countries and a total of

[L.2]
4.722.743.200 overall) than the

[L.5]
US (332.403.650) and

[L.6]
Europe (748.550.855) which

are both whole Continents.

3.2.3.1 Analysis of Influence of Games

 20

Since games are not like overall Top Apps which yield more or less the same results

worldwide (same Top Apps regardless of place), it would be better to make an analysis of

how much influence these games have on the market.

With almost 40 million downloads, the Top downloaded App of the Asian market has

500% more downloads than Europe’s most downloaded app and 2000% more downloads

than US most downloaded app.

Therefore, from a raw numbers point of view, publishing a game tailored to the Asian

market would be the best choice on paper. However, there are some risks that need to be

taken into account. Asia has a total population of approximately 4.56 billion. That means the

40million downloads reflect the 0.877% of the total population while the 8 million downloads

on Europe market reflect 1.07% of the population and the 2 million downloads in the US

reflect only 0.6% of the population.

Considering these percentages, it would mean that actually a game tailored and

published on the European market would carry less risk and have more chances for it to

become known as a bigger percentage of the population would react. This works vice-versa

as publishing a game on the US market would have more risk and less chances for it to

become known as a smaller percentage of the population would react.

One last very important note about the US population, even if US had the biggest

percentage out of the three, if someone considers releasing an android app there is the risk of

it failing because the US market is comprised by mostly iOS with Apple App Store

(approximately 68% of the market) and not Android, considering the US overall app

download statistic.

 21

CHAPTER 4

UNITY, GAME ENGINES AND OTHER TOOLS

After choosing the platform to create the game on, comes with its own set of decisions

to be made. One needs to select between operating systems, coding languages, game engines

or frameworks, different tools to aid design and other things that are essential as well, but not

as important, such as background music, art etc.

Everything that has been used to make the game, has been chosen very carefully to fit the

needs, goals of the game and target audience. From the platform and game category chosen,

to the game engine and coding language that has been used to create, design, code and render.

4.1 Tools

Tools that have been used for the development are Unity for the game engine, C# as a

coding language, Microsoft Visual Studio for writing the scripts used, Unity Asset store for

premade art, photoshop for editing pictures, VPP video pad editor for editing music tracks for

background music.

4.2 What is a Game Engine

An engine is specialized software that helps with the development of the environment of

other programs into a working finished product. An engine usually contains pre-made

components that are used constantly in order to save time. It’s something like a software

framework but instead of making each components from scratch each time, you can save

them once and keep re-using them over and over while being able to make changes to their

looks if needed. Engines are used mostly by games, hence the term “game engine” but it’s

fairly common for engines to be used from businesses and corporations to make their own

specialized apps, software and programs.

A game engine is an engine that specializes in creating environments and controls for

games only. They usually have components that are used in games, for example camera

 22

control to simulate where the player looks in first person or timer controls to simulate

animations etc. Game engines also include relevant libraries, other support programs and a

render engine that helps render and create the necessary files so that the finished product can

be optimized and working for their respective platforms and operating systems (for example

different files for android and iOS).

Game engines
[L.13]

 are important in the gaming industry as the reusable game assets and

code improves productivity and makes game creation easier rather than creating everything

from scratch.

4.2.1 Framework

A framework is the most basic

tool of a developer. It provides a

foundation for creating anything with

already written code that does specific

things. Using a framework saves time,

provides cleaner code and reduces errors and mistakes.

It is possible to create a game using a framework, in fact older games before game

engines started appearing, were created using frameworks only. However, there were many

drawbacks to frameworks being used because whenever a game was created, everything had

to be re-created from scratch every time meaning they were immensely inefficient and

difficult to use.

 One can easily confuse a framework with a game engine as they seem closely related

to each other and both perform similar tasks and activities. Just like game engines, a

framework is a structure you can build software on, serves as a foundation and are typically

associated with specific languages but they are not the same thing.

4.2.2 Framework V. Game Engines

With both being similar to each other, their differences are hard to see. However,

when one starts working with both, there are huge differences between them. Their biggest

Figure 18: The logo of the framework that Microsoft

uses to create its own apps. Version 4.5v
[F.18]

 23

difference is that a framework usually creates using code however, a game engine just creates

and at the end, it renders the appropriate code and files needed for the product. A game

engine also provides visual aids and is a lot less complex than a framework.

4.2.2.1 Unity

The game engine

I chose for my project is

Unity engine. Unity was

not the first, or among

the first game engines

but it’s one of the best

engines out on the

market right now. It was first announced at Apple’s Worldwide Development Center in 2005.

The engine can export and render games for most platforms and operating systems, including

Windows, Android, iOS, PlayStation, Xbox, Linux and several other game platforms and

operating systems.

It's important to note that Unity Advanced is free to use for students who are eligible

for personal and educational uses while Unity is free to use for games that produce revenue or

get a funding of under $100.000 in the last 12 months. Unity also provides complete tutorials

both with theory and application of certain tasks which makes Unity the ideal beginners

choice.

Unity has a simple interface with easy controls to move and edit objects, but it also

provides tutorials not just for the basics, but for a lot more complex creations and other

tutorials suitable enough for more advanced users like educators and creators or even more

advanced tutorials for professionals. These Unity tutorials have a difficult task assignment at

each respective tutorial that if completed, you get a Certification for completing the tutorial.

Figure 19: Unity logo as provided by Unity for trademark purposes
[F.19]

 24

Unity was developed using only C++ as its programming language and has its own

scripting language, UnityScript which its syntax is derived from and is similar to JavaScript,

however it is possible to use C# for scripting and its even recommended by Unity tutorials for

beginners to use C#.

4.2.2.1.1 Interface of Unity

This is the default interface of Unity Game Engine. Removing the already added

scenes and what the

display shows, is what

Unity shows as a

default when you first

open it after a clean

installation of the

engine. The interface is

very simple and pretty

self-explanatory.

Unity has 7 windows opened and set by default, 1.the toolbar, 2.the hierarchy window, 3.the

scene window, 4.the display window, 5.the console window, 6.the animation window and the

7.inspector window. All 7 windows can be removed, although it is not recommended to do

so, but they can be re-enabled from the “component” tab on the top. Unity also provides the

developer the option of opening these windows as a separate window, using the “window”

tab at the top, outside the main unity window to use, for example, on a second monitor.

 1-Up top, Unity provides a toolbar that can not be moved. The toolbar can be

customized with different tools, although it’s a bit trickier to add than others, Unity provides

more options to what you can add and how. The default toolbar provides tools for quick

editing, scene viewing and playing, layering, layout and pretty much what every basic and

Figure 20: Unity default interface
[F.20]

 25

common thing a developer will need. To add extra tools in Unity, you have to insert the code

itself, which is the tricky part. However, there is more than ample community support and

already pre-coded tools to insert and immediately use, error free and tested. Adding tools like

this is also a big help to more advanced developers also who want to make their own tools in

their own way, Unity provides the freedom for them to do as they please. Therefore it is a

sacrifice of some usability for more practical uses.

 2-On the left side, on the hierarchy tab (2), Unity shows all the scenes the developer

has created. There are options on which scene to show and which to hide and it’s also the

main window where game objects of all sorts can be created by using the white “+” on the

top-left.

 3-The scene window is where everything shows. When the developer adds a game

object on the scene, it immediately pops up on the scene view as a first preview. The editing

tools can be used on the scene to move game objects around for quick creation and editing

and placing everything exactly where they should be for the display to be correct. Upon the

creation of the first scene, Unity creates the camera game object on its own but does not

create it on the second scene. This can be slightly confusing to the developer as he is going to

get just a black screen and the camera has to be inserted manually. The camera is needed to

show and relay visual information on the scene and display screens. It is what the player/user

sees when playing the game or using an application. Other Game Objects can be either 2d or

3d objects, or audio and video related or just folders with parents and children for better

organization on the game objects, for example splitting the game objects used between two

houses as to not mess up any settings.

 4-The Display window is more or less the same scene window with some differences

that look minor but are actually major. The difference is that even though you see the same

things, the display scene is what triggers when you press the “play” button on the toolbar and

anything that has been created on the scene, finally runs. It doesn’t matter what has been

created as long as there are no errors. If an object has been scripted for movement, then it can

be controlled in the environment through movement, so it is basically like live-testing the

application and how it runs, something you can not do on scene.

 26

 5-The console window, or developer console, is pretty simple. It shows the code that

runs when playing the scene, if there is any. It also shows any results that might occur from

the scripts that run including all outputs, warnings and errors from faulty code.

 6-The animation window shows and handles animations. The most common use for

the animation is the character movement as every game with a moving character needs it.

Animation can be done in two different ways. One is frame-by-frame animation, meaning

that for every frame an animation has to be drawn which is the easy way to setup an

animation. The other way is to create what is called a “skeleton” and program the movement.

A “Skeleton” animation is used in 3d movement mostly as its not that efficient in 2d. I have

chosen the frame-by-frame animation for my character.

 7-The inspector window displays detailed information about the currently selected

Game Object, including attached components and their properties. Information about the

Game Object can be an explanation of what Object is used, its dimensions relative to the

scene grid, coordinates meaning where its placed relative to the scene grid etc. Other attached

components can be either scripts, for example movement script or trigger scripts, different

visual components like picture to portray a character or an object like a rock or fence etc.

4.2.2.2 CryEngine

CryEngine was released on

May 2
nd

 of 2002 by game

developer Crytek. It was released a

few years earlier than Unity and

has been used in several known

game titles, like Far Cry 1 and

Sniper Ghost Warrior 2 among

others. CryEngine, like Unity, is

considered a third-party engine that

can’t export in as many platforms

Figure 21: Two CryEngine logos as provided by

CryEngine for trademark purposes. It comes in both

black and white colours to fit any background
[F.21]

 27

and operating systems as Unity but exporting options include all major platforms and

operating systems such as Windows, iOS, Android, PlayStation, Xbox, Linux and Wii U.

CryEngine is completely free to anyone, for any use and no limitations, however, it’s

the most obscure engine out of the 3 industry-level (third-party) engines mentioned, to learn

how to work on. CryEngine has a difficult interface to work and semi-difficult controls,

doesn’t have an asset store like Unreal and Unity and its community is quite small which

means there is little to no support. It was developed using Lua and C++ while available

scripting languages are C++ and C#.

CryEngine also offers some tutorials for beginners and does not really delve that

much into complex and more advanced applications the way Unity does, but it does award 3

different certifications for completing the respective tutorials.

However, even after those drawbacks, CryEngine most of the time produces the most

astounding graphics and performance optimizations. This can be backed up by the fact that

the engine won the 2014 SIGGRAPH award for Best Real – Time graphics with the game

Ryse : Son of Rome that was developed with CryEngine.

4.2.2.2.1 Interface of CryEngine

Figure 22: The most basic Interface of CryEngine depicts the most basic interface of

CryEngine. When

the program is

installed and

opened for the first

time, this is what

the user sees. The

interface at a first

glance is not

exactly the most

user friendly,

Figure 22: The most basic Interface of CryEngine 5.6
[F.22]

 28

especially when someone new sees all the numbers on the “Camera (4)” tab.

The numbers depict each different part of the interface. They can be removed at will,

at any time the user wants, by clicking the X and can bring them back by browsing the tool

tab above the toolbar (1). So what is each number and what purpose do they serve?

 1-The toolbar is a menu that provides quick and easy access to many tools and

features that are the most commonly used tools in the sandbox editor. It cannot be moved

from its position, but it can be completely customized from icon size, to what it contains or

doesn’t. By right clicking on an empty part of the toolbar the user get some options and can

choose what the toolbar shows by enabling (visible tick) or disabling (non-visible tick) each

menu. The different menus are Audio, Constraints, Coordinates, Edit Modes, Game, Layout,

Physics, Selection, Standard, Viewmodes and Customize. Every menu has some settings or

tools that help with certain aspects, one example out of thousands is gravity in physics menu.

You can quickly set if gravity should be enabled and how strong it should be.

These are the most common and default menus that CryEngine has. Of course, it can

be customized in any way the user desires and can offer much more and a lot more complex

menus, uses and settings to suit needs better.

 2-The “Create Object” menu contains all the objects the developer can use to create

all sorts of things like characters, backgrounds, boundaries, pop-ups, decisions/actions etc

that contribute to gameplay. An example I chose is an object. It can be as simple as a picture

that depicts a rock or a bench or an obstacle or it can be as complex as a picture of someone

that can later be tuned with physics, motion and animation that is used as a character.

 3-The “Layers” menu is almost the equivalent of hierarchy menu of Unity. It contains

the game objects created but it has some differences. Layers affect how everything shows, for

example two backgrounds that cover all of the screen, with background-1 above background-

2 will show background-1. So, game objects with the same hierarchy in CryEngine and Unity

might show differently. Unity has this “Layering” separated as a unique feature for each

game object.

 29

 4-The “Viewport” or “Perspective” is what the display is in Unity. It displays how the

game will look in real time but since CryEngine does not have an extra “scene creator” like

Unity, it has some extra features that allow the developer to do so, as a 2-in-1 thing.

 5-The “Properties” menu contains two tabs, the “properties” and the “editor”. Both

are what the inspector window is in Unity. The properties tab contains properties that all

elements and scripts that an object might have and in the editor they can be edited. In Unity

these are both done in the inspector as the elements are separated in small sections that

contain the editable variables but in CryEngine you access the editable properties on the

editor by selecting the element you want to edit in the “properties” tab.

These are the most common and default menus that CryEngine has. Of course, it can be

customized in any way the user desires and can offer much more and a lot more complex

menus, uses and settings to suit needs better.

4.2.2.3 Unreal Engine

Unreal engine is among the first and one of the earliest 3D game engines. It was

developed by Epic Games and was released in 1998 when they released a first-person shooter

game named Unreal that was used to showcase the game engine. Unreal engine was initially

developed for first-person shooter games solely but over time they developed it to the point

where developers can use it to create any game genre.

Unreal Engine is free to use with limited support and Epic Games states that games

that are developed using the free version of the software are royalty free as long as the

lifetime revenue of the game stays below the $1.000.000 mark and that once a game passes

that mark, under the standard EULA, a 5% royalty goes to Epic Games.

The engine was created using C++ and uses the same language for scripting. It

doesn’t support exporting to as many platforms and operating systems as Unity does

however, Unreal Engine has two unique benefits that Unity and CryEngine do not have.

 30

The first one is that Unreal Engine is a cross-platform engine meaning that games

created can be played simultaneously by multiple platforms at the same time. Example, a PC-

Windows player can play online with (or against) someone playing from Console-

PlayStation. The second benefit is that even though it doesn’t support as many platforms to

export game to, it can render “browser” games for HTML5 using OpenGL, something which

neither Unity nor CryEngine can do.

4.2.2.3.1 Unreal Engine Interface

Unreal Engine does not have a set interface like CryEngine and Unity. In Unreal

Engine version 5, the developer gets different options on templates for each individual thing.

A template for a first-person shooter game might be different from a Third-Person or a Top-

Down, among other templates game AND non-gaming related.

Even though Unreal Engine has slightly more difficult and confusing interface, it offers just

as much documentation and tutorials. It also has quite a big community, like Unity does for

forum support, but does not have as much video tutorials from freelance creators and

educators on platforms like YouTube.

Figure 23: Interface of a 3-D Third Person template
[F.23]

 31

The Interface of a 3D third person template contains 5 sections, 1.the toolbar, 2.the outliner,

3.the details, 4.the prespective and 5.the console.

 1-The toolbar, like CryEngine and Unity contain basic tools to play the scene, control

the camera and change the display platforms. Since the templates change in each different

type, the controls are placed differently. This means the controls are not on the toolbar but

rather they are on the display itself as they change related to the template.

 2-The outliner is the menu that creates and holds all the game objects that exist in a

scene. It’s the eqivalent of the hierarchy menu of Unity. They do not have many differences

apart from minor details like the placement of the menu, names etc.

 3-The details menu holds all details, scripts, components and parameters for game

objects selected from the outliner menu. It’s the equivalent of the Inspector menu from Unity

and like the outliner menu, they don’t have many differences other than the names and

placement.

 4-The prespective view is similar to the display and scene view of Unity and the

prespective view of CryEngine. The developer can see the scene and create simultaneously

like in CryEngine with the minor difference of the game object controls as they are placed on

the prespective view and change when the templates are changed.

 5-The console menu is pretty simple but slightly different than Unity and CryEngine.

It has 3 tabs, the content drawer, the output log and the console command. The content

drawer is the file where the scripts are kept/saved, the output log shows every script that runs

and whatever outputs they may have along with the warnings and errors that come from

faulty codes and lastly the console command. This console command is the difference

between Unity and CryEngine because it can be used “on-the-fly” to create “script”

commands to check certain parts of code or how a few lines of commands would react.

4.2.2.4 Other Game Engines

Unity as a game engine, like Unreal and Cry, is considered a third-party engine and

all three of them are very well-known engines, with many games under their name. The way

 32

it has been developed allows for it to be used by any creator to make all different kinds of

games, however, not every engine is a third-party engine. All these three provide more or less

the same capabilities to the creator with no major differences between their interfaces.

The other type of game engines that exist are non-third-party engines. That means that

they are developed by the game studio itself and usually specialize in a specific game genre,

or in some rare cases, one specific game only. Non-third-party engines that are quite known

are Creation Engine, Dunia Engine, Source, Source 2 and many others.

4.2.2.4.1 Dunia Engine

Dunia Engine was developed by Ubisoft in 2004 and was released in 2008 when they

showcased their first game based on the engine, Far Cry 2. Ubisoft developed the Engine by

copying the source code of CryEngine and engineered their own distinct version, which they

named Dunia. The engine featured in every game that Ubisoft released, like the rest of the Far

Cry titles, the assassin’s creed titles, watch dogs and many more.

Dunia engine was very

advanced during its release,

featuring a lot of things that most

game engines did not have at the

time including movable objects such

as barrels or crates for example,

ladders that acted like

normal ground that was

vertical – meaning that

extra controls were not necessary, better physics, enhanced lights that provided less

illumination the further away the player went, advanced shadows that reacted to lighting and

a lot more.

Figure 24: The logo of DUNIA Engine as it is portrayed in games, with

minor different details around the edges.
[F.24]

 33

4.2.2.4.2 Source and Source 2

Both Source and Source 2 are engines made by

Valve. Source was showcased in June 2004 with the

release of Half-Life : Source, as a successor to GoldSrc. It

was also used for Half-Life 2 and Counter-Strike: Source a

year later. Source 2 is the

successor to Source Engine

and was released in 2015. It

was released as a game

engine suitable for MOBA games (Multiplayer Online

Battle Arena) and was showcased when the game Dota 2

was released the same year.

Both engines were developed using C++ as programming language and were both

released as “improvements” to fill the different needs that each game had.

4.2.2.4.3 Creation Engine

Creation is an engine made by Bethesda Game Studios. It was released in November

2011 along with the release of the game it powered, Skyrim from the title “The Elder

Scrolls”. Creation engine was developed using C++ and it was optimized in order to be used

to create big Open World RPG games like Fallout and The Elder Scrolls.

Creation engine has some unique features that other engines did not have at the time.

Bethesda implemented middleware that helped with AI behavior such as animation AI to

blend movement better and improved versions of AI software “Radiant AI” that helps dictate

how non-player characters move and interact with the environment around them such as

Figure 26: Logo of source Engine,

as portrayed in source engine

powered Steam.
[F.26]

Figure 25: Logo of Source 2
[F.25]

 34

working around the house or eating different foods depending on the hour or even going to a

tavern/inn for drinks.

4.2.2.5 Differences among Game Engines

The biggest difference among them is the fact that Unity, CryEngine and Unreal

Engine are in fact available to the public for free (provided that games created for free follow

the terms and agreement mentioned above) while Creation, Dunia and Source are made by

their respective game studio for private use, meaning that they are not available to the public

in any way.

Another difference that they have is what games they are optimized to create/render

and on which platforms. For example, the only engine among the ones mentioned above that

can create a game and export it for HTML5 (browser platform/browser game) is Unreal

Engine or if a developer requires to render for “pocket consoles” like PlayStation Vita, Unity

is the only able engine to do that.

There is also the option of which coding language one prefers to use for scripting.

This influences a developer’s option on which engine to use depending on whether he wants

to use C#, C++, Java, JavaScript or other custom languages for scripting.

The last big difference is whether the developer is a beginner or a more advanced

developer because each individual game engine has different interfaces of various difficulties

regarding their navigation and how much tutorials, certifications or support they provide for

users, with Unity providing the easiest interface controls along with the most thorough

tutorials and best community support with tens (if not hundreds) of subjects being posted and

answered each day on their forums.

4.2.3 Coding Languages

Coding languages, or Programming

languages, are like normal languages that

Figure 27: Coding Language Python Logo
[F.27]

 35

have their own vocabulary and grammatical rules. They are used in computers and have

specific sets of rules, keywords and syntax that, if used

correctly, can instruct a computer or a device to perform

certain specific tasks. When someone uses the term

“Coding/Programming language” they usually refer to C,

C++, C#, Java, COBOL, Fortran, Basic, Python etc.

4.2.3.1 C#

Unity has two ways of reading scripts. One way is

using its own language for scripting, the UnityScript and the other is Using C#. As a beginner

I elected to use C# like the tutorials recommended.

C# (pronounced as see-sharp) first appeared in

2000 along with .NET framework and Visual Studio. It’s

a simple, modern, general-purpose and object-oriented

language that uses classes which is ideal for coding a

game.

4.2.3.2 Similar Languages to C#

A similar coding language to C# is Java. It is similar in many

aspects as its simple and general-purpose, but the biggest similarity is

that Java also uses classes. This is very important, because someone who

has studied java before and wants to start on C# (like myself) will find it

much easier to transition rather than using a completely different

language like C++ or other custom languages like UnityScript.

Figure 28: An unofficial logo of

C#. There is no official logo for

C# as stated by Microsoft support
[F.28]

Figure 29 : Current official logo

of coding language Java
[F.29]

 36

4.2.3.3 Coding Environments and Editors

An editor is a program where a developer can write the code in,

and that code is read by the computer using the coding environment or

runtime environment. Editors are generally

anything you can write in such as word

documents and notepads, however its

trickier to use these for writing code as

they do not have the same marks and structure of a full-fledged

code editor that uses colours and other marks that help out with

visual order.

Full-fledged editors are made with writing code in

mind. This means they provide structure, markings, colours and other visual aids that help the

developer write the code. One lightweight,

good and simple program, that I also used

a lot, is notepad++.

Coding environments, or “Runtime

Environments” provide comprehension of

said written code on editors, to computers,

as a computer cannot understand the coding

language without the runtime environment.

It basically acts like a “translator” to the computer. Runtime Environments usually specialize

on specific languages by using “libraries” that contain the information of the syntax and the

set of rules of the language, but their true purpose is executing the written code. These

Runtime Environments have a few drawbacks though, regarding faulty code, as most of the

time they don’t show which and where an error is found, so it’s up to the developer to figure

out what is wrong.

Figure 32 : Logo of the Microsoft IDE, Visual

Studio. The shape represents the infinity symbol as

a testament for all the countless possibilities the

IDE offers.
[F.32]

Figure 31 : Official

Logo for Visual

Studio
[F.30]

Figure 30: Notepad++, a

simple editor for writing code
[F.31]

 37

There are programs that integrate both

the runtime environment as well as the editor.

These programs are called “Integrated

Development Environments” or “IDE’s” and

they are specialized software that have the

ability to have both the runtime environment

as well as an integrated editor meaning that

you can edit and change sections of the code

while also checking and debugging

simultaneously. Since the editor is connected

to the runtime environment directly, this saves

a lot of time - especially in debugging - as the

runtime environment can communicate with

the editor directly and show exactly where

the error is. This means that the error can be

changed immediately and retested without wasting time searching for the error manually. An

IDE also saves files with the appropriate file extension, so the user does not have to go back

saving or changing the file extension every time.

IDE’s, like runtime environments, also specialize in specific languages which means

that there are a lot of programs that integrate both the IDE and the Editor in one package. One

of them, which I also used, is Microsoft’s Visual Studio. Microsoft’s Visual Studio supports

C, C++ and C#. There are other IDE’s out on the market that

support more coding languages, such as Oracle for Java,

PyCharm for Python code, WebStorm for JavaScript, or

NetBeans which supports Java, PHP, C and C++, among

many other IDE’s.

4.2.4 Art and Design

Figure 33: Netbeans logo, a complete Java IDE
[F.33]

Figure 34: Eclipse IDE logo,

an IDE for Java and C
[F.34]

 38

Art and Design in games is the second most important thing, after creating the scripts

needed for everything to run properly. Art can be found everywhere in a game, from the

ground, to background, to characters, surroundings, buildings and generally every object. It

also dictates how a game looks and feels aesthetically and it’s important to use the correct

design for each game/genre.

A good example of how important the selection of design is – using “futuristic”

design for houses on a medieval RPG would be a terrible idea and not make all that much

sense, but using design that looks old and rough, with houses looking like they are made out

of wood, stone, marble of a combination of the 3, would make much more sense and produce

much higher quality aesthetics and a neater fit for the theme of the game.

There are two ways to get art for the game. One way is to create it yourself and the

other way is to get someone else to create it for you, with both ways providing their own

unique drawbacks and benefits.

Creating your own art and designs has 2 major benefits. One benefit is that usually

you can allot as much time as you want or need on each design and the other benefit is that

creating your own designs means that it can be closer to how you want it to look by re-

designing it as many times as it takes. This method though, has two major drawbacks. In

order to create your own designs, one needs to be a good artist which is a very difficult skill

to even learn - let alone master. So, for someone who is not a good enough artist, they might

be better off relying on someone else to create designs for them. The second drawback is that

no matter how much, you still HAVE to a lot time to create a new design which sometimes

might be a waste.

The other way, having someone else making your designs, could be achieved through

two ways. One is either having someone working with you privately, making designs solely

for your needs, or get someone’s already premade designs and use them.

Ideally, it’s better to create your own designs, but when this is not possible for any

reason, its better off to have someone working with you privately, rather than resorting to

 39

premade assets. The reason for this is that using premade assets will mean that its highly

likely that someone else has used the same assets, which is a drawback. This could result in

mainstream design while making your own design, or someone making your own design

privately, can bring unique assets to the game since it’s quite unlikely that someone had the

same idea.

This does not mean that getting premade assets is entirely a bad thing. Getting

premade assets has its benefits too. Getting already made designs means that the developer

wastes almost no time creating how something looks and can focus on other things. This acts

the same way when you have someone else making designs for you privately. Even though

you have someone making designs for you, you have to look at it and decide whether it’s

good or not and communication still costs some time, even though it still costs less time than

making it your own design.

4.2.4.1 Asset Store

Whether creating your own design or getting someone to create a design for you, it

can be saved locally. However, finding pre-made assets is a bit trickier. These are usually not

saved locally, therefore finding them requires some research. Unity and Unreal have already

thought a few steps ahead and have created their own asset store. An asset store is where

creators, artists and designers upload their work. This unlocks a lot of potential for both of the

developers and designers, as developers can have a place, where everything is orderly and

organized, to find assets that suit each game best, without wasting time searching and

designers can upload their work there and potentially sell it or advertise it.

4.2.4.2 Other Programs used for Design

Art and Designs can be made through different

programs on a computer, phone, tablet or drawing pad.

For simple picture editing and frame-by-frame animation
Figure 35: Digital Drawing program,

Krita logo
[F.35]

 40

just using photoshop is enough, however there are many programs out on the market for

digital drawings that can do a better job for someone that wants good quality design.

Some of these advanced programs include Krita,

MediBang, Ibis Paint X, Clip Studio Paint and many more. Out of

the four programs mentioned, Krita, MediBang and Ibis X are free

to use, while Clip Studio Paint requires a one-time payment to buy

and is also the only one out of these that supports 3d designs and

movement.

4.2.5 Game Categories

This is not exactly a tool, but it is a very important aspect that should never be

overlooked when making a game. Game categories usually provide information on what the

game will be like, generally. For example, a game that is categorized as “Hack and Slash”

makes sure that the player knows the game is probably not going to have guns as weapons

but rather its going to have swords, axes, shields and generally medieval melee weapons.

Having guns in this scenario would leave a weird impression and not make much sense,

therefore it is important for a developer to think about what category he would like his game

to be, before starting to create it.

 Game categories are divided into Main Categories and Subcategories.

4.2.5.1 Main Categories

Main categories contain the nature of the game. They include categories like RPG

(role-playing games), Racing games, Strategy games, MOBA games (multiplayer online

battle arena), Sports games and some others.

Usually, games do not have more than one main category as for example a Racing

game cannot be a MOBA, or and RPG or Sport game etc.

Figure 36: Logo of Ibis

Paint X, taken from

google play store
[F.36]

 41

4.2.5.2 Sub-Categories

Subcategories contain secondary features of a game. These include categories like

action games, adventure games, fighting games, roguelike games, visual novels, simulation,

open world games, sandbox games, fantasy games and hundreds of hundreds other

categories.

Games can have many subcategories and most of the time a game can have any

subcategory as long as it makes sense with its main category. For example, a Racing game

usually does not have adventure or action as subcategories, but it may be categorized as VR

and simulation.

 42

CHAPTER 5

MAKING OF THE GAME

THOUGHT PROCESS, LOGIC USED AND WHICH STEPS WERE

TAKEN WHEN, DURING THE MAKING

In this chapter I will thoroughly explain all the steps I took while making the game and

how my thought process looked when making decisions from the most simple things to the

most complex ones.

5.1 General Information

The steps I followed here are not set in stone. Making something from scratch and for the

first time proved quite tricky and it was very common that I had to keep revisiting earlier

steps to fix mistakes, add things that proved necessary or changing between two or more

things for the better.

5.2 Step One – The Decision to Make a Game

The first steps I took to make a game was choosing what type of game it would be, what

the story would be like and what kind of categories I would link it to. The most important in

all that is the story, as it dictates the other two.

5.3 Step Two – Where to Make the Game

The second step I took was choosing the platform which I would make the game for.

Choosing the platform is important in many ways. First, it’s the performance optimizations

that would need to be considered and implemented. A smartphone for example does not have

the same processing power as a desktop computer, therefore adding very high-quality

graphics might reduce framerates and stability since a smartphone would not be able to

handle it.

Another reason are the controls that change depending on the platform and OS. A

smartphone is usually touch screen which is much more different than consoles that use a

 43

specialized controller or a desktop computer that uses a keyboard and mouse. It’s worth

noting that there are existing compatible peripherals made for smartphones, like controllers

and other aiding devices that help out gameplay.

Another reason is the market. A market influences how many people will play the game

and how much the game will be known, also referred to as how much “clout” it will gain.

When trying to release a game to a certain platform that is not as known as other platforms,

players might not get to hear about the game. Considering the previous research of worldwide

OS market, one can conclude that making a game optimized for Linux and not Windows

would not be a great decision, same thing with smartphones and making a game optimized

for iOS only and not Android. Decisions like that would create a very small game community

and would most likely not be a very effective way to bring in profits, considering the business

point of view.

5.4 Step Three – Choosing how to Make the Game

This step was about finding ways to actually make the game, meaning which tools would

be used to breathe life to it. Tools include everything from IDE or Editors for scripts,

programs to edit and process video, audio and frames/pictures, making the research to find

which game engine to actually use, where to find the designs and necessary art for characters,

background etc.

5.5 Step Four – Deciding how the Game Flows

This step is a follow up of the previous step. When the programs have been gathered and

installed it was time to start making the game. Before I started adding the characters and

background to set the scenes, I had to envision how the game would flow, which stages I

wanted to add and which scenes would come first. This coincides with making the story for

the game which prompted me to think about it a bit more. In the end I decided to make 4

stages of the game. The first stage I decided would be a “tutorial stage” that would focus on

showing the movement and action controls to the player. This tutorial stage would transition

to the second stage where the focus would be to move around and present the story of the

game. The focus in the second stage would be all the dialogue and explaining the story to the

 44

player. The third stage would be a “battle-stage” where the character would fight through

enemies to reach the main villain, which he would eventually fight as well. The fourth and

last stage, or most commonly the “epilogue” of the story, would be the aftermath and the

credits of the game.

This ordeal is mostly known as “directing” the story, usually done by directors to ensure

the story flows smoothly without the so-called plot-holes and repeated story or scenes, both

of which are never a good thing to have in stories.

This step was mostly done in theory, with an approximate direction of how I want the

story to go. This was one of the steps I kept revisiting before it was actually finalized.

5.6 Step Five – Getting the assets needed and preparing the designs necessary.

In this step I focused on finding and getting all the assets that I think would be necessary

for the creation of backgrounds and characters. This is the step I kept revisiting the most, as I

kept having to find more and more assets for each stage to create enemies, paths, icons and

other backgrounds. This included scouring through the Unity Asset Store for designs and

importing it on Unity for use.

5.7 Step Six – Stage one, Tutorial

As I said before, the first stage would be a tutorial that focuses on showing the controls

and movement of the game. At this point I had an idea of how my background and stage

would look like. It was time to create the background and place all items, characters and path

blockers needed. This in turn created the need for player movement, the animation for the

characters moving and making game objects that worked as limits to obstruct the player from

going “off-course”

The limits were the easy part as the object was marked with a collider to simulate a

collision that did not allow the player to go through. This was a good way to ensure that the

player stays within the limits of the stage so I reused this method to create limits up until the

end.

 45

The same collider was also used as a trigger for popping up dialogues automatically for

the tutorial to inform the player for certain actions and explanations on controls.

The last and most important part was making the movement for the character and

synchronizing the frames for a smooth walking animation.

5.7.1 Step Seven – Creating the Movement

Controls and Animation

The first thing I did was to create the movement

and sync the animation after. I believed it would be

easier to sync the animation to walking after setting

the speed. The making of movement consisted of

two different parts, creating the script that would

allow the movement as well as setting the speed of

the movement and creating the controls that would

work parallel to the script depending on which is

being pressed each time.

The way I made the script was to set a

movement command that would move the character

with a set speed along an axis and it would be

triggered when a button was pressed and would be

triggered off when that button was no longer

pressed. This command was made four times, one

time for each axis, the X positive, the X negative,

the Y positive and Y negative. At this point I had

the command that would move the player along all

4 axis but no buttons were linked.

Figure 37: The animation phase

connections between idling and moving

that dictate which animation will be

triggered.

 46

This meant the need

for controls was created. In

smartphones there are two

most common ways to

create controls. One is the

“swipe and hold” which is

also the most common that

feels like a joystick and the

other is the one I used, the

button that acts as tap and

hold. I elected to use the

tap and hold controls as I

felt like it would be a better

fit for the “old-school retro

game” I wanted to make. With this in mind I created the interface for the controls, placed the

icons that act as buttons when tapped and I also connected each button to a command that

moves the player along an axis as well as setting several variables when pressed or not, that

were needed in the animation process.

The only thing missing now was the animation itself. Unity provides easy animation

interface that made animation creating a piece of cake. All I had to do was link the movement

and controls to a “stopwatch” of sorts and I just picked the time where the animation would

change frame to ensure

smooth walking

animation. I also had to

create the idle animation

where the player faced the

correct way when stopped.

For example if the player

moved west and stopped,

his animation turned back

to facing north, or up. I

Figure 39: The connections that dictate which animations are being

played depending on the different parameters and variables set from

Figure 38 and movement controls.

Figure 38: The calibrated parameters needed to ensure that the correct

animation will be played, that are set during the pressing (or not

pressing) the movement control buttons. These are set between -1 and

1, with 0 being not pressed..

 47

had to create another 4 animations that played when the player was just standing and it used

an X variable as a “last facing direction” to ensure proper direction when the player stopped.

The whole process of creating the parameters, setting the variables and ensuring the

correct variables with the press of the buttons, proved to be quite complex and challenging

but once the whole process was completed, it could be used for the rest of the game as well

and could be used on NPC’s as well with minor modifications to the code to act as an AI.

I used this movement script and animation up until the end. The script also used certain

variables that calculated the speed of the player, so if I needed I could have speed changes

easily without changing any parts of the script and the movement was calculated with a Unity

time command.

5.7.2 How the animation works

Basically, when the MoveX and MoveY variables were set to 0, no movement buttons are

being pressed therefore the player is not moving so the animation focuses on the Player_Idle

section which containes the idling animations. The idle section also contains two extra

variables, the LastMoveX and LastMoveY which are being utilized to determine the last

known facing direction of the players movement and are used to ensure that the character

continues to look at the correct direction when movement controls are not being pressed.

When a movement control button is pressed again, all four variables are set to their

correct numbers. For the sake of the example, if the button to walk up is pressed, The X

variables would both remain 0 but the Y variables would both be set as 1 since it was

calibrated that way. Now since one of the two variables, MoveX and MoveY, are no longer 0

(as the MoveY is now 1), the animation now focuses on the Movement Section.

The movement section now checks the variables and decides which animation will be

played. With MoveX equaling to 0 and MoveY equaling to 1, it changes its focus to

Up_Walk_1 animation, which starts the “stopwatch” with the correct frames and the

animation is now being played.

 48

When the movement button is released again, the X variables will stay the same since

they were 0, but the Y variables are a little different. The MoveY will turn back to zero and

the focus will change back to the Player_Idle section but the LastMoveY will remain at 1,

because it needs to check the last known facing direction so that the correct idle animation

will be played.

Pressing the buttons triggers both the movement script formula and the animation

variables which means both work together and parallel to each other for a smooth movement.

If animation does not exist, the character looks like an object that is being dragged around

and if the movement formula does not exist, then the animation starts playing but the

character stays still.

5.8 Step Eight – Creating the transition from stages

After creating everything needed for the movement and scripts I had to create the first

transition from stage 1, tutorial to the stage 2, story. This was done with a collider that took

away the movement of the player and slowly blacked out the screen and placed the player in

another room.

 49

5.9 Step Nine – Stage Two, Story and Dialogues

This stage was focused on dialogue and progressing/explaining the story to the player. At

this point no dialogue has been added even to the tutorial stage yet. I had to create the

interface and the dialogue scripts, as well as the flow of the dialogue and the colliders that

triggered each dialogue.

The first thing I did was to create the interface for the dialogue. This meant going back to

find assets for the interface and the font that I would use for the letters. The script was

synchronized with the interface for the dialogue and would trigger the interface whenever a

collider was triggered. The interface would show whatever dialogue was up depending on

where in the conversation the player was.

The interface took away the movement controls from the player and would give it back

when the dialogue ended. This was done to ensure that the player would not be able to move

during dialogue to avoid bugs.

Figure 40: The room where the main character wakes up after the tutorial scene. Top right is the main

character beside his bed, bottom right is the action button from controls interface and bottom left is

the movement controls from movement interface.

 50

After finishing creating the colliders for triggering the dialogues, the interface for the

dialogue and the dialogue itself, I went back to stage one, tutorial to add dialogue and

colliders the same way.

The dialogue in stage one contained explanations for the controls and other dialogues that

acted as thoughts of the player when he tries to go outside of bounds. The dialogue in stage

two contains information about the story of the game.

5.10 Step Ten – Stage Three, Battle Stage

This stage contains a battle stage. A battle stage means that the player has to fight certain

enemies using certain ways to reach a goal. As I said previously, the way the battling works

here is a unique way inspired by another idler game I played in the past. I created the first

battle as a tutorial, using the same dialogue technique from earlier stage to explain how

everything works.

When the player triggers a collider for battle, he is prompted to another interface which

consists of the health bars of both the enemy and player, the available skills of the player and

a bar for each skill that simulates the cooldown. When the player uses a skill, it does

whatever it is supposed to, for example heal raises the players health and the bar empties.

Once the bar empties, it starts filling back up simulating the cooldown and when its full it

changes colour indicating that the skill is ready to be used again.

To create such battle stage many scripts were needed. One script contains the stats of the

player, meaning the skills, health etc. Another script contains the stats of the enemy also

meaning skills, health etc. These are connected on the player and the enemy when the battle

interface starts. The player and enemy also have a variable to dictate their level and the stats

scripts use this level to dictate how high the damage, health etc would be set. This is done

using a linear formula that has a different output depending on where the level is set for easy

and automatic stat check of both player and enemy. It is the simplest form of getting stats in a

battle.

Another script was needed for the skills of the player and is also connected to the player

when the battle interface starts. It contains all the skills the player is allowed to use along

 51

with what they do and the variable for cooldown of each skill. A similar script is also

connected to the enemy so they can also attack back.

Lastly another script is needed that contains all the skills. These skills have the formulas

needed to calculate the outputs needed, for example the damage skill takes the level and

calculates the damage it will inflict on the enemy when pressed. It also contains the formula

needed to fill up the bar for the cooldown of the skill.

5.10.1 Battle Stage Interface

 This is the interface of the battle stage I created to use. The different numbers indicate all

the things that are happening during this stage. Number 1 is the text that indicates a battle has

started and by pressing the next button all the scripts start running to give the player some

time before actually starting. Number 2 indicates the two platforms that the player and

enemy are placed upon. 2.1 is the platform the player stands on and 2.2 is the platform the

enemy stands on. 3 is the interface with the skills available to the player as well as their

description and cooldown bars. Number 4 are the stats for the player and enemy, with the

name linked, the Health portrayed as a bar and the level of the characters. 4.1 contains the

stats for the player and 4.2 contains the stats for the enemy. 5 is the text that explains what is

Figure 41: The battle stage interface

 52

happening during the battle and Number 6 is the background I created using the assets I

found from the asset store.

5.11 Step Eleven – Stage 4, Boss fight

This step contains the last fight. After passing all the enemies in the battle stage, the

player enters a room that triggers the next stage. This stage contains just the room and the

main villain. Going close triggers the dialogue between them and after the dialogue they

engage in a fight like the previous ones. This fight has a minor difference as the player can

now use a special attack that has a very long cooldown but it’s the only skill to defeat the

main villain.

5.12 Step Twelve – Stage Five, Epilogue and Credits

This stage triggers after defeating the main villain. It shows the end of the story, also

known as the epilogue. Its just some dialogue to close the story. Most scripts made for stage

one two and three have been used repeatedly throughout. Dialogue and movement is the same

in every stage and battle stage is the same for both enemies and main villain.

5.13 Step Thirteen – Menu

After finishing creating all the stages, I created a menu with starting the game along with

some settings for audio and graphics. Unity has premade settings so the player can use these

without wasting too much time. All I had to do was create the interface and the transitions

between options and different menus and the sliders or boxes for different graphics and audio

triggers.

 53

5.13.1 Step Fourteen – Adding Audio

After I created the menu with the audio settings, I decided to add background music for

each stage. Music helps with stimulating feelings of fear or joy when used properly. This

required two scripts. One script handles playing the music and finding it and another that

handles the settings and using the correct file depending on the stage of the game.

All music that has been used is copyright free and has been edited whenever needed using

the program Video Pad Editor.

5.14 Step Fourteen – Saving System

The next step after I added the audio settings and scripts was to create a saving system.

There are two different ways to save data. One is by creating a file that contains all the data

and is used by the game to read certain points to load the correct things and the other way is

to use something called “flags”.

Creating a file to contain all data is always better since it neatly saves all progress but its

much more complex to create.

Figure 42: The menu of the game with buttons for to play, load a certain scene, settings menu and

quitting options

 54

Creating flags is much easier to manage when there are only a few things to manage

however it can easily get jumbled up quickly and then you start having major problems when

more and more data are saved.

Since I don’t use a lot of data I decided to use flags to save time. This means that every

stage the player passes, it raises a flag. If the player then quits before finishing the game, the

flag is raised and when he presses play it transitions to the correct stage instead of back at the

start again. When all stages are passed, all flags are lowered so all stages can be replayed but

now another flag is raised as the end. This flag enables another menu that the player can use

to replay any stage he wants no matter the order.

5.15 Step Fifteen – Transition Between Stages and Play button in menu

This has to do with scripts used in the menu to transition between all of the different

menus. It is basically just a script that enables one variable and disables another to the correct

menu is shown when a button is pressed.

Same thing with the play button. It has a script attached to it that reads which flags are

raised so that the correct stage is loaded. It is the same with the quit button, a script is

attached that closes the game when quit button is pressed.

 55

CHAPTER 6

FUTURE OF GAMES – ADDITIONS FOR THIS GAME

6.1 Future of Games

The gaming industry is one that has been gaining more and more attention the last years.

With online gaming becoming more and more available for gamers, with e-sport tournaments

becoming very popular in many competitive games and plenty of games with amazing story

line and even better gameplay, it is plain to see that the gaming industry has been thriving.

With smartphones providing all the necessary things a mobile phone needs as well as a

mobile source to play games, that can easily surpass old, dedicated pocket consoles of the

past and being a device that almost everyone has its clear as day that the next gen of gaming

will be mobile gaming for quite a long time.

6.2 Potential of this game

The game currently is lacking in gameplay. Everything is mostly made for demonstration.

However, there are many aspects that can be improved upon to give the game, the gameplay

it needs. The story can be improved upon to have smoother flow and better narrating, scenes

can be added before stage two to escalate the events and after stage two for gameplay before

reaching the climax of the story. More characters can be added in the story to play a role and

immerse the player better. More stages can be added where the player can fight enemies.

More mechanics can be added in battle. The battle system can be further improved upon with

more skills, spells, damage prevention moves, combos etc. More characters that act as a main

character with different skill sets can be added for additional variety. And last but not least,

the saving system will need to be changed from flags to file data.

6.3 Possible Additions

I will list some possible additions and a baseline of what will be needed for these additions.

1-Adding more story. This is a directing matter mostly. A screen play script is mostly

needed to create certain lines and dialogues that the characters will have. The rest will be just

creating backgrounds with assets and adding the coding scripts as well as the colliders needed

for the conversations and dialogues.

 56

2-Adding more characters that bring in different tasks, or information that can be used.

This can be done by just adding game objects with similar parameters and scripts with the

main characters with minor differences to the collider so it can trigger a dialogue and with

minor adjustments to the movement script so they can have movement on their own.

3-For starters, adding different simple skills to the character beside damage and heal that

he can use. In a more complex and more advanced manner, dodging or parrying mechanics

can be added with timing. For future additions, more skills can be added that can be unlocked

on certain levels or even different skill sets and skill trees can be added. For a baseline, a

dodge can be added the same way other normal skills are added which can be pressed and

stay active for a few seconds and it will negate the next spell that hits within a time limit.

4-The game save and data can be improved by removing the flags completely. Unity

provides a way to save stuff within a file format like XML or JSON. That way it is very

simple to store data and progress and it is very easy to modify as well. However, their

strength is also their weakness as the ability to modify them makes them not at all secure.

Another way to save stuff is creating a custom binary file. In theory and using a quick

explanation, a binary file saves data the same way but its much more secure due to data being

in binary. The way to create a custom binary file is to create a class that contains all the

variables in either string, bool, float or int, make that class serializable and use a binary

formatter to turn these data into binary. The saved file can be imported back to the game and

with the use of the binary formatter, it can turn back from binary, into usable variables.

 57

CHAPTER 7

BIBLIOGRAPHY

A. REFERENCES

Alliance, O.H., 2010. Android

Andrade, A., 2015. Game engines: A survey. EAI Endorsed Trans. Serious Games, 2(6),

p.e8.

Bandung, S.T.T., Tunggal, S.B. and Muttaqien, S.D.K., Intel 4004.

Burks, A.W., 1947. Electronic computing circuits of the ENIAC. Proceedings of the IRE,

35(8), pp.756-767.

CryEngine, (2022). Documented tutorials of CryEngine. Tutorial as made by CryEngine

professionals. Available at :

https://docs.cryengine.com/display/CEMANUAL/Beginner%27s+Guide (Accessed: 18 July

2022)

Douglas, A.S., OXO (video game).

FinancesOnline, (2022). 37 Crucial Pokemon Go statistics: 2022 Data on Downloads,

Revenue & Usage. Available at: https://financesonline.com/pokemon-go-statistics/#1

(Accessed: 14 July 2022)

Fish, C. 2021. The History of Video Games. White Owl Pen&Swords Book Ltd, Great

Britain.

Freiberger, P. A. and Swaine, . Michael R. (2015) EDSAC Encyclopaedia Britannica

Available at : https://www.britannica.com/technology/EDSAC (Accessed: 11 July 2022)

Freiberger, P. A. and Swaine, . Michael R. (2022) ENIAC Encyclopaedia Britannica

Available at : https://www.britannica.ccom/technology/ENIAC (Accessed: 11 July 2022)

Fritts, J., 2013. History of computer & video games. PowerPoint Slides retrieved from

http://cs.slu.edu/~fritts/csci130/schedule/csci130_games_history.Pdf. (Accessed: 11 July

2022)

Gargenta, M. 2011. Learning Android. First Edition, O’Reilly Media Inc. USA.

Haas, J.K., 2014. A history of the unity game engine. Diss. WORCESTER POLYTECHNIC

INSTITUTE, 483, p.484.

https://docs.cryengine.com/display/CEMANUAL/Beginner%27s+Guide
https://financesonline.com/pokemon-go-statistics/#1
https://www.britannica.com/technology/EDSAC
https://www.britannica.ccom/technology/ENIAC
http://cs.slu.edu/~fritts/csci130/schedule/csci130_games_history.Pdf

 58

Gregory, J., 2018. Game engine architecture. AK Peters/CRC Press.

Haigh, T., Priestley, P.M., Priestley, M. and Rope, C., 2016. ENIAC in action: Making and

remaking the modern computer. MIT press.

Intel, (Date Unknown). Intel's First Microprocessor. The story of intel 4004. Available at :

https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html

(Accessed: 11 July 2022)

Iverson, K.E., 1962, May. A programming language. In Proceedings of the May 1-3, 1962,

spring joint computer conference (pp. 345-351).

Ivory, J.D., 2015. A brief history of video games. In The Video Game Debate (pp. 1-21).

Routledge.

John E. Ayers, 2003. Digital Integrated Circuits : Analysis and Design Illustrated Edition.

Taylor & Francis. United Kingdom.

Kent, S.L., 2010. The Ultimate History of Video Games, Volume 1: From Pong to Pokemon

and Beyond... the Story Behind the Craze That Touched Our Lives and Changed the World

(Vol. 1). Crown.

Kowert, R. and Quandt, T., 2015. Video Game Debate. Taylor & Francis.

Krajci, I. and Cummings, D., 2013. History and Evolution of the Android OS. In Android on

x86 (pp. 1-8). Apress, Berkeley, CA.

Lendino, J., 2018. Adventure: The Atari 2600 at the Dawn of Console Gaming. Ziff Davis

LLC, New York.

Levvvel, (2022). Pokémon GO statistics and facts 2022. Available at :

https://levvvel.com/pokemon-go-statistics-and-

facts/#:~:text=It%20went%20from%2028%20million,total%20of%20147%20million%20use

rs. (Accessed: 14 July 2022)

Lewis, M. and Jacobson, J., 2002. Game engines. Communications of the ACM, 45(1), p.27.

McCartney, S., 1999. ENIAC: The triumphs and tragedies of the world’s first computer.

Metropolis, N. ed., 2014. History of computing in the twentieth century. Elsevier.

Noyce, R. and Hoff, M., 1981. A history of microprocessor development at Intel. IEEE

Micro, 1(01), pp.8-21.

Pokemongodeathtracker, (2021). Pokémon Go Death Tracker. Available at :

 http://pokemongodeathtracker.com/ (Accessed: 14 July 2022)

https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
https://levvvel.com/pokemon-go-statistics-and-facts/#:~:text=It%20went%20from%2028%20million,total%20of%20147%20million%20users
https://levvvel.com/pokemon-go-statistics-and-facts/#:~:text=It%20went%20from%2028%20million,total%20of%20147%20million%20users
https://levvvel.com/pokemon-go-statistics-and-facts/#:~:text=It%20went%20from%2028%20million,total%20of%20147%20million%20users
http://pokemongodeathtracker.com/

 59

Sensor Tower, (2022). Q1 2022: Store Intelligence Data Digest. Available at :

https://go.sensortower.com/rs/351-RWH-315/images/Sensor-Tower-Q1-2022-Data-

Digest.pdf (Accessed 12 July 2022)

ShackNews, (2018). Pokemon Go sees its largest player count since 2016. Available at:

https://www.shacknews.com/article/105830/pokemon-go-sees-its-largest-player-count-since-

2016 (Accessed: 14 July 2022)

Unity, (2022). Products of Unity Available at : https://unity.com/products (Accessed 14 July

2022)

Unity, (2022). Learn Unity, Tutorials Available at : https://unity.com/learn (Accessed 14 July

2022)

Unity, (2022). Unity Frequently Asked Questions Available at : https://unity.com/support-

services (Accessed 14 July 2022)

Unity, (2022). Unity branding trademarks and other permissions and guidelines for using

Unity Available at: https://unity3d.com/legal/branding_trademarks (Accessed: 14 July 2022)

Wikipedia (2022) "OXO Video Game" Available at :

https://en.wikipedia.org/wiki/OXO_(video_game)#History (Accessed: 11 July 2022)

Wikipedia, (2022). Android (Operating System) Available at :

https://en.wikipedia.org/wiki/Android_(operating_system) (Accessed in: 12 July 2022)

Wikipedia, (2022). Creation Engine Available at :

https://en.wikipedia.org/wiki/Creation_Engine (Accessed in: 12 July 2022)

Wikipedia, (2022). Dunia Engine Available at :

https://en.wikipedia.org/wiki/Ubisoft#Dunia_Engine (Accessed in: 12 July 2022)

Wikipedia, (2022). Source Available at : https://en.wikipedia.org/wiki/Source_(game_engine)

(Accessed in: 12 July 2022)

Wikipedia, (2022). Source2 Available at : https://en.wikipedia.org/wiki/Source_2 (Accessed

in: 12 July 2022)

Wolf, M.J. ed., 2008. The video game explosion: a history from PONG to PlayStation and

beyond. ABC-CLIO.

Yang et al. 2019, On the strength of hair across species. University of San Diego, Jacobs

school of engineering.

https://jacobsschool.ucsd.edu/news/release/2937#:~:text=These%20hairs%20vary%20in%20t

hickness,over%20350%20microns%20in%20diameter.

https://go.sensortower.com/rs/351-RWH-315/images/Sensor-Tower-Q1-2022-Data-Digest.pdf
https://go.sensortower.com/rs/351-RWH-315/images/Sensor-Tower-Q1-2022-Data-Digest.pdf
https://www.shacknews.com/article/105830/pokemon-go-sees-its-largest-player-count-since-2016
https://www.shacknews.com/article/105830/pokemon-go-sees-its-largest-player-count-since-2016
https://unity.com/products
https://unity.com/learn
https://unity.com/support-services
https://unity.com/support-services
https://unity3d.com/legal/branding_trademarks
https://en.wikipedia.org/wiki/OXO_(video_game)#History
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Creation_Engine
https://en.wikipedia.org/wiki/Ubisoft#Dunia_Engine
https://en.wikipedia.org/wiki/Source_(game_engine)
https://en.wikipedia.org/wiki/Source_2
https://jacobsschool.ucsd.edu/news/release/2937#:~:text=These%20hairs%20vary%20in%20thickness,over%20350%20microns%20in%20diameter
https://jacobsschool.ucsd.edu/news/release/2937#:~:text=These%20hairs%20vary%20in%20thickness,over%20350%20microns%20in%20diameter

 60

B. LINKS

[L.1]
 https://dictionary.cambridge.org/dictionary/english/modern - Definition of the word

‘Modern’

[L.2]

https://www.worldometers.info/world-population/asia-population/ - Live Population of

Asia

[L.3]

 https://www.worldometers.info/world-population/china-population/ - Live Population of

China

[L.4]

 https://www.worldometers.info/world-population/india-population/ - Live Population of

India

[L.5]

 https://www.worldometers.info/world-population/us-population/ - Live Population of US

[L.6]

 https://www.worldometers.info/world-population/europe-population/ - Live Population of

Europe

[L.7]

 https://www.appbrain.com/stats/number-of-android-apps - Live Count of Android Apps

on Google Play Store

[L.8]

 https://www.openhub.net/p/android/analyses/latest/languages_summary - Statistics on

Languages and Code lines used in android OS.

[L.9]

 https://42matters.com/google-play-statistics-and-trends - Statistics on total apps on

Google Play Store and Percentage graph of total Gaming and Non-Gaming apps.

[L.10]

 https://www.appbrain.com/stats/number-of-android-apps - Statistics on Android apps in

Google Play Store

[L.11]

 https://www.statista.com/statistics/266211/distribution-of-free-and-paid-android-apps/ -

Graph on percentage of Paid and Free apps on Google Play Store

[L.12]

 https://go.sensortower.com/rs/351-RWH-315/images/Sensor-Tower-Q1-2022-Data-

Digest.pdf - Statistics on top apps, top gaming apps and categories, separated by worldwide

data and different specific countries data.

[L.13]

 https://en.wikipedia.org/wiki/List_of_game_engines - List of game engines, both current

and discontinued ones.

https://dictionary.cambridge.org/dictionary/english/modern
https://www.worldometers.info/world-population/asia-population/
https://www.worldometers.info/world-population/china-population/
https://www.worldometers.info/world-population/india-population/
https://www.worldometers.info/world-population/us-population/
https://www.worldometers.info/world-population/europe-population/
https://www.appbrain.com/stats/number-of-android-apps
https://www.openhub.net/p/android/analyses/latest/languages_summary
https://42matters.com/google-play-statistics-and-trends
https://www.appbrain.com/stats/number-of-android-apps
https://www.statista.com/statistics/266211/distribution-of-free-and-paid-android-apps/
https://go.sensortower.com/rs/351-RWH-315/images/Sensor-Tower-Q1-2022-Data-Digest.pdf
https://go.sensortower.com/rs/351-RWH-315/images/Sensor-Tower-Q1-2022-Data-Digest.pdf
https://en.wikipedia.org/wiki/List_of_game_engines

 61

C. PICTURES

[F.1]

Wikipedia, (2022). Magnavox Odyssey Available at :

https://en.wikipedia.org/wiki/Magnavox_Odyssey#/media/File:Magnavox-Odyssey-Console-

Set.jpg (Accessed: 11 July 2022)

[F.2]

 Benjamin L. (2020), Magnavox, Computer Museum of America Available at :

https://www.computermuseumofamerica.org/wp-content/uploads/2020/06/IMG_3290-1-

1024x310.jpg (Accessed: 11 July 2022)

[F.3]

Wikipedia (2022), PlayStation 1 Available at :

https://en.wikipedia.org/wiki/PlayStation#/media/File:PlayStation-SCPH-1000-with-

Controller.jpg (Accessed: 13 July 2022)

[F.4]

 Unknown Author, (Unknown Date). Retro Arcade Machine Available at:

https://numskull.com/wp-content/uploads/Pac-Man-QA-1000x1000-01.jpg (Accessed: 13

July 2022)

[F.5]

 OhioHistoryCentral, (Unknown Date). John W. Mauchly and John Presper Eckert

Available at:

https://ohiohistorycentral.org/images/3/32/Mauchly%2C_John_and_Eckert%2C_J._Presper.j

pg (Accessed: 13 July 2022)

[F.6]

 Wikipedia, (2022). 2 Pieces of the ENIAC on display on Moore School of Engineering

and Applied Science Available at:

https://en.wikipedia.org/wiki/ENIAC#/media/File:ENIAC_Penn1.jpg (Accessed: 14 July

2022)

[F.7]

 Freiberger, P. A. and Swaine, . Michael R. (2022) ENIAC Encyclopedia Britannica

Available at : https://cdn.britannica.com/95/170195-050-EFCB2F83/ENIAC-1946.jpg

(Accessed: 11 July 2022)

[F.8]

 Intel, (Date Unknown). Intel Microprocessor 4004 Available at:

http://mail.indosingo.com/_buku_manual/_baca_blob.php?book=lain&kodegb=220px-

C4004_Intel.jpg (Accessed: 14 July 2022)

[F.9]

 “Electronic Integrated Circuit of an Intel 8742” (2003) Wikipedia Available at :

https://en.wikipedia.org/wiki/Electronic_circuit#/media/File:Intel_8742_153056995.jpg

(Accessed: 14 July 2022)

[F.10]

 "Chip" (Unknown Date). University of Rhode Island Available at :

https://homepage.cs.uri.edu/faculty/wolfe/book/images/R03/chip.gif (Accessed: 14 July

2022)

https://en.wikipedia.org/wiki/Magnavox_Odyssey#/media/File:Magnavox-Odyssey-Console-Set.jpg
https://en.wikipedia.org/wiki/Magnavox_Odyssey#/media/File:Magnavox-Odyssey-Console-Set.jpg
https://www.computermuseumofamerica.org/wp-content/uploads/2020/06/IMG_3290-1-1024x310.jpg
https://www.computermuseumofamerica.org/wp-content/uploads/2020/06/IMG_3290-1-1024x310.jpg
https://en.wikipedia.org/wiki/PlayStation#/media/File:PlayStation-SCPH-1000-with-Controller.jpg
https://en.wikipedia.org/wiki/PlayStation#/media/File:PlayStation-SCPH-1000-with-Controller.jpg
https://numskull.com/wp-content/uploads/Pac-Man-QA-1000x1000-01.jpg
https://ohiohistorycentral.org/images/3/32/Mauchly%2C_John_and_Eckert%2C_J._Presper.jpg
https://ohiohistorycentral.org/images/3/32/Mauchly%2C_John_and_Eckert%2C_J._Presper.jpg
https://en.wikipedia.org/wiki/ENIAC#/media/File:ENIAC_Penn1.jpg
https://cdn.britannica.com/95/170195-050-EFCB2F83/ENIAC-1946.jpg
http://mail.indosingo.com/_buku_manual/_baca_blob.php?book=lain&kodegb=220px-C4004_Intel.jpg
http://mail.indosingo.com/_buku_manual/_baca_blob.php?book=lain&kodegb=220px-C4004_Intel.jpg
https://en.wikipedia.org/wiki/Electronic_circuit#/media/File:Intel_8742_153056995.jpg
https://homepage.cs.uri.edu/faculty/wolfe/book/images/R03/chip.gif

 62

[F.11]
 "CHIPSET" (2022) Wikipedia Available at :

https://en.wikipedia.org/wiki/Chipset#/media/File:Pentium_E2220_with_Intel_i945GC_Chip

set.jpg (Accessed: 11 July 2022)

[F.12]

 Freiberger, P. A. and Swaine, . Michael R. (2015) EDSAC Encyclopaedia Britannica

Available at : https://cdn.britannica.com/18/23618-050-EC6AC575/EDSAC-Maurice-

Wilkes-computer-1947.jpg (Accessed: 11 July 2022)

[F.13]

 Wikipedia (2022) OXO video game Interface – Emulated Screenshot Available at :

https://en.wikipedia.org/wiki/OXO_(video_game)#/media/File:OXO_emulated_screenshot.p

ng (Accessed: 11 July 2022)

[F.14]

 Pokémon, (2022). Pokémon Go app Logo as shown in AppStore Available at:

https://assets.pokemon.com/assets//cms2/img/video-games/video-

games/pokemon_go/app_store_badge_us_135x40.jpg (Accessed: 14 July 2022)

[F.15]

 1000logos, (2022). Evolution of android logo Available at: https://1000logos.net/wp-

content/uploads/2016/10/Android-history-logo-640x547.jpg (Accessed: 14 July 2022)

[F.16]

 Statcounter, (2022). Mobile Operating System Market Worldwide Available at :

https://gs.statcounter.com/os-market-share/mobile/worldwide (Accessed: 14 July 2022)

[F.17]

 Statcounter, (2022). Operating System Market Worldwide Available at :

https://gs.statcounter.com/os-market-share (Accessed: 14 July 2022)

[F.18]

 Wikipedia, (2022). Microsofts .NET framework logo of Version 4.5v Available at:

https://upload.wikimedia.org/wikipedia/en/0/0d/Microsoft_.NET_Framework_v4.5_logo.png

(Accessed: 14 July 2022)

[F.19]

 Unity, (2022). Unity logo as provided by Unity for trademark purposes Available at:

https://unity3d.com/profiles/unity3d/themes/unity/images/pages/branding_trademarks/unity-

masterbrand-black.png (Accessed: 14 July 2022)

[F.20]

 Petros, (2022). Unity Interface of version 2020.2.7f1

[F.21]

 CryEngine, (2022). CryEngine 5.6 logo for trademark purposes Available at:

https://www.cryengine.com/brand (Accessed: 18 July 2022)

[F.22]

 Petros, (2022). CryEngine Interface of version CE5

[F.23]

 Petros, (2022). UnrealEngine 5 interface of template for 3D

[F.24]

 Unknown Author, (Unknown Date). Dunia Engine Logo Available at:

https://trivia.serendip.in/sites/trivia.serendip.in/files/styles/large/public/image_primary/Dunia

_Engine_logo.jpg?itok=3gm3lF5B (Accessed: 18 July 2022)

https://en.wikipedia.org/wiki/Chipset#/media/File:Pentium_E2220_with_Intel_i945GC_Chipset.jpg
https://en.wikipedia.org/wiki/Chipset#/media/File:Pentium_E2220_with_Intel_i945GC_Chipset.jpg
https://cdn.britannica.com/18/23618-050-EC6AC575/EDSAC-Maurice-Wilkes-computer-1947.jpg
https://cdn.britannica.com/18/23618-050-EC6AC575/EDSAC-Maurice-Wilkes-computer-1947.jpg
https://en.wikipedia.org/wiki/OXO_(video_game)#/media/File:OXO_emulated_screenshot.png
https://en.wikipedia.org/wiki/OXO_(video_game)#/media/File:OXO_emulated_screenshot.png
https://assets.pokemon.com/assets/cms2/img/video-games/video-games/pokemon_go/app_store_badge_us_135x40.jpg
https://assets.pokemon.com/assets/cms2/img/video-games/video-games/pokemon_go/app_store_badge_us_135x40.jpg
https://1000logos.net/wp-content/uploads/2016/10/Android-history-logo-640x547.jpg
https://1000logos.net/wp-content/uploads/2016/10/Android-history-logo-640x547.jpg
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share
https://upload.wikimedia.org/wikipedia/en/0/0d/Microsoft_.NET_Framework_v4.5_logo.png
https://unity3d.com/profiles/unity3d/themes/unity/images/pages/branding_trademarks/unity-masterbrand-black.png
https://unity3d.com/profiles/unity3d/themes/unity/images/pages/branding_trademarks/unity-masterbrand-black.png
https://www.cryengine.com/brand
https://trivia.serendip.in/sites/trivia.serendip.in/files/styles/large/public/image_primary/Dunia_Engine_logo.jpg?itok=3gm3lF5B
https://trivia.serendip.in/sites/trivia.serendip.in/files/styles/large/public/image_primary/Dunia_Engine_logo.jpg?itok=3gm3lF5B

 63

[F.25]
 Steam, (2022). Source game engine logo Available at:

https://avatars.cloudflare.steamstatic.com/f4bf325094f9adb1de1ecb72c249113b9295997d_fu

ll.jpg (Accessed: 18 July 2022)

[F.26]

 Steam, (2022). Source 2 game engine logo Available at:

https://mygaming.co.za/news/wp-content/uploads/2012/08/source-2-engine-header1.jpg

(Accessed: 18 July 2022)

[F.27]

 Python, (2022). Current Official Python Logo Available at:

https://www.python.org/static/community_logos/python-logo.png (Accessed 21 July 2022)

[F.28]

 SeekLogo, (2022). Unofficial Microsoft C# logo Available at:

https://seeklogo.com/images/C/c-sharp-c-logo-02F17714BA-seeklogo.com.png (Accessed 21

July 2022)

[F.29]

 Javatpoint, (Unknown Date). Current Official Java Logo Available at:

https://static.javatpoint.com/core/images/java-logo3.png (Accessed 21 July 2022)

[F.30]

 Microsoft, (2022). Official Microsoft Visual Studio Logo Available at:

https://visualstudio.microsoft.com/wp-content/uploads/2021/10/Product-Icon.svg (Accessed

21 July 2022)

[F.31]

 Don Ho, (2022). Notepad++ Logo Available at: https://notepad-plus-

plus.org/images/logo.svg (Accessed 21 July 2022)

[F.32]

 Wizcase, (2021). Logo of Microsofts IDE, Visual Studio Available at:

https://www.wizcase.com/wp-content/uploads/2021/05/visual-studio-logo.jpeg (Accessed 20

July 2022)

[F.33]

 Netbeans, (2022). Logo of Apache Netbeans Available at:

https://netbeans.apache.org/images/apache-netbeans.svg (Accessed 21 July 2022)

[F.34]

 Eclipse, (2022). Logo of Eclipse IDE, Available at:

https://www.eclipse.org/ide/images/eclipse-logo.png (Accessed 21 July 2022)

[F.35]

 Krita, (2022). Logo of Digital Drawing program, Krita with minor background

adjustment for better visibility, Available at: https://krita.org/wp-content/themes/krita-org-

theme/images/krita-logo.png?v2022 (Accessed 21 July 2022)

[F.36]

 GooglePlayStore, (2022). Logo of Ibis Paint X digital drawing app, from google play

store Available at: https://play-lh.googleusercontent.com/s8moWkCF9wE-

ynJgNyq8k3uhhVlbQLdphqTYJWkrsLRxkFZxx9FvykHmwXYmTl_h0l8 (Accessed 21 July

2022)

https://avatars.cloudflare.steamstatic.com/f4bf325094f9adb1de1ecb72c249113b9295997d_full.jpg
https://avatars.cloudflare.steamstatic.com/f4bf325094f9adb1de1ecb72c249113b9295997d_full.jpg
https://mygaming.co.za/news/wp-content/uploads/2012/08/source-2-engine-header1.jpg
https://www.python.org/static/community_logos/python-logo.png
https://seeklogo.com/images/C/c-sharp-c-logo-02F17714BA-seeklogo.com.png
https://static.javatpoint.com/core/images/java-logo3.png
https://visualstudio.microsoft.com/wp-content/uploads/2021/10/Product-Icon.svg
https://notepad-plus-plus.org/images/logo.svg
https://notepad-plus-plus.org/images/logo.svg
https://www.wizcase.com/wp-content/uploads/2021/05/visual-studio-logo.jpeg
https://netbeans.apache.org/images/apache-netbeans.svg
https://www.eclipse.org/ide/images/eclipse-logo.png
https://krita.org/wp-content/themes/krita-org-theme/images/krita-logo.png?v2022
https://krita.org/wp-content/themes/krita-org-theme/images/krita-logo.png?v2022
https://play-lh.googleusercontent.com/s8moWkCF9wE-ynJgNyq8k3uhhVlbQLdphqTYJWkrsLRxkFZxx9FvykHmwXYmTl_h0l8
https://play-lh.googleusercontent.com/s8moWkCF9wE-ynJgNyq8k3uhhVlbQLdphqTYJWkrsLRxkFZxx9FvykHmwXYmTl_h0l8

 64

ΠΑΡΑΡΤΗΜΑ Α

Code section for filling the

cooldown bar. If it is full it stops

running until empty again.

Code section

for the attack

button

 65

BattleHUD Initialization and Stats

Code section that calculates the damage

taken and return whether the unit died

or is still alive.

 66

Code section for

dialogue. The dialogue

manager has variables

that are filled with the

dialogue within the

Unity interface. This

dialogue takes the

correct texts and makes

it appear. Could be

 67

made better with a for loop.

Code section that opens the dialogue box

 68

Code section that queues the dialogue sentences

Code section that

fetches the next

sentence from the

script that contains

the dialogue and

makes it appear on

the screen.

 69

Code section that ends and closes the dialogue

Simple collider trigger for dialogue

 70

Code section that changes the parameters and variables for animation purposes

 71

Code section that calculates the speed of moving

Code section that dictates the direction the character will move

 72

 73

Code section that moves the camera parallel to the character

Code section that places an interface in Unity where the developer can add dialogue and

other sentences directly from the UI. It is a string that contains the sentences that will

be used by the earlier code to display the dialogue

