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Abstract 

The rapidly increasing field of lattice-based cryptography is one of the effective tools 

in quantum computing meant to replace the existing public-key systems. The 

mechanism FrodoKEM has been customized as an alternative encapsulation 

mechanism recently, which in fact is submitted to the post-quantum NIST process for 

standardization. In this setting, security is conditional on utilizing standard lattices 

and learning through tracing-correcting errors. In any case, the excessive number of 

parameters makes it difficult for the embedded systems to function properly. This 

approach based on the FrodoKEM scheme entails parameters allowing for its 

integration into smaller-sized devices through the means of basic lattice-based 

cryptography. This thesis proposes harnessing two low-cost microcontrollers, namely 

STM32L552 and STM32WL55JC1, fostering better performance for post-quantum 

cryptography on smaller-sized devices. For the needs of the implementation of the 

scheme, STM32L552 required two different implementations, one involving usage of 

1-way cache and the other the usage of 2-way cache; as for STM32WL55JC1, due to 

the small storage capacity of the RAM, Flash was used to reduce RAM space. Thanks 

to the versatility of WLSSJC1 showcasing connectability to a LoRa Network, which 

is based on wireless technology, the findings of this process can prove valuable for an 

IoT system. 
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Εισαγωγή 

Ο ταχέως αναπτυσσόμενος τομέας της κρυπτογραφίας με βάση το πλέγμα είναι ένα 

από τα αποτελεσματικά εργαλεία της κβαντικής πληροφορικής που προορίζεται να 

αντικαταστήσει τα υπάρχοντα συστήματα δημόσιου κλειδιού. Ο μηχανισμός 

FrodoKEM έχει προσαρμοστεί πρόσφατα ως εναλλακτικός μηχανισμός 

ενθυλάκωσης, ο οποίος μάλιστα υποβάλλεται στη μετα-κβαντική διαδικασία NIST 

για τυποποίηση. Σε αυτό το πλαίσιο, η ασφάλεια εξαρτάται από τη χρήση 

τυποποιημένων πλεγμάτων και τη μάθηση μέσω της ανίχνευσης-διόρθωσης 

σφαλμάτων. Σε κάθε περίπτωση, ο υπερβολικός αριθμός παραμέτρων δυσχεραίνει τη 

σωστή λειτουργία των ενσωματωμένων συστημάτων. Αυτή η προσέγγιση που 

βασίζεται στο σύστημα FrodoKEM περιλαμβάνει παραμέτρους που επιτρέπουν την 

ενσωμάτωσή του σε συσκευές μικρότερου μεγέθους μέσω της βασικής 

κρυπτογραφίας με βάση το πλέγμα. Η παρούσα διατριβή προτείνει την αξιοποίηση 

δύο μικροελεγκτών χαμηλού κόστους, συγκεκριμένα των STM32L552 και 

STM32WL55JC1, προωθώντας καλύτερες επιδόσεις για τη μετα-κβαντική 

κρυπτογραφία σε συσκευές μικρότερου μεγέθους. Για τις ανάγκες της υλοποίησης 

του σχήματος, ο STM32L552 απαιτούσε δύο διαφορετικούς ελέγχους, μια για 1-

wayκρυφή μνήμη και μια για 2-way κρυφή μνήμη, ενώ όσον αφορά τον 

STM32WL55JC1 λόγω της μικρής αποθηκευτικής χωρητικότητας της SRAM, 

χρησιμοποιήθηκε η Flash μνήμη για τη μείωση του χώρου της SRAM. Χάρη στην 

ευελιξία του WLSSJC1 που επιδεικνύει συνδεσιμότητα σε ένα δίκτυο LoRa, το οποίο 

βασίζεται στην ασύρματη τεχνολογία, τα ευρήματα αυτής της διαδικασίας μπορούν 

να αποδειχθούν πολύτιμα για ένα σύστημα διαχείρισης δεδομένων IoT. 
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1. Introduction 

Post-quantum cryptography involves the use of algorithms intending to provide 

security in the event of a cryptanalytic attack given that quantum computing can be 

threatening as it makes use of such means which might be able to break the vast 

majority of the existing cryptographic systems. For the most part, the effectiveness of 

lattice-based cryptography relies on the fact that it paves the way to the 

implementation of advanced security guarantees, making it possible to replace the 

RSA- and discrete-based logarithm which is in use to date. 

Lattice-based cryptographic modules follow a tracing-correcting errors system, 

known as the Learning With Errors problem (LWE), revealing both a worst-case and 

average-case reduction from the Shortest Independent Vector Problem (SIVP) [Error! 

Reference source not found.].LWE lays the foundation to producing numerous 

cryptographic algorithms as well as generating indistinguishability under chosen 

plaintext attack (IND-CPA) and indistinguishability under adaptive chosen-ciphertext 

attacks (IND-CCA) security guarantees [2].Later on, LWE was modified to more 

advanced and effective versions or variants, Ring-LWE and Module-LWE among 

others, which exploit more suitable module lattices and lattices accordingly[Error! 

Reference source not found.]; without necessarily strengthening the system's security 

or the system may be more vulnerable to attacks due to the bi-formatting of the 

algebraic composition. 

In the Intelligent Systems and Computer Architecture Lab, which belongs to the 

department of Electrical and Computer Engineering of the Hellenic Mediterranean 

University, there has been a variety of studies examining implementations and 

developments due to the necessity of IoT and automotive security. [Error! Reference 

source not found.] accentuate the need for the adoption of layered systematic approach 

in terms of hardening the electronic architecture of vehicles against prospective cyber-

attacks, unauthorized access and increase safety. To achieve greater safety changes 

ought to take place as regards the actual implementation on an electric vehicle whose 

infrastructure is based on secure interconnection tools, hardware firewall excluding 

interference and unauthorized access, and flexibility in individual OS instances for 

various execution environments aiming at providing support and deployment for 

applications, without being altered to the automotive platform. Among others, for an 

in-depth understanding of these issues, relevant works in this field offering an 

innovative perspective include research in hardware support for cost-effective system-

level protection in multi-core socs[12], automotive virtual in-sensor analytics for 

securing vehicular communication [Error! Reference source not found.],and secure 

asset tracking in manufacturing through employing IOTA distributed ledger 

technology [14]. 

Without a doubt, there has been a determining impact of advanced digitalization 

technologies on the automotive industry, involving developments and drastic changes 
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in electric mobility, automation, autonomy and connectivity. Notwithstanding these 

developments, the increase in connectivity has also seriously increased the level of 

vulnerability as regards the growing number of attacks on vehicles. Hence, as 

automotive products become more and more automated, the need for upgrading 

security grows to a greater extent. The long timespan of products in the automotive 

industry showcase makes it necessary to take into consideration the risks currently 

existing along with the dangers that are likely to emerge in the future when designing 

automotive security [Error! Reference source not found.] 

The ever-increasing improvements in quantum computing cryptography pose an 

actual risk for the security and sustainability in the automotive industry, signifying 

that Post-Quantum Cryptography (PQC) should be thoroughly integrated. Using 

lattice-basedPQC offers the opportunity for the development of hands-on and 

optimized implementations. Using lattice-based encapsulation mechanisms with 

integers, integrating an Error Correcting Code (ECC) allows for high error-correcting 

capability therefore increasing security and speed and, at the same time, decreasing 

the rate of failure so as to implement CCA transformation and avoid repeating the 

protocol [8],[23].  

For this reason, introducing a scheme including FrodoKEM with the standard LWE is 

considered meaningful in terms of increasing the level and extent of security 

guarantees as its structure is comparatively less prone or vulnerable to algebraic 

threats.Minimizing communication bandwidth with regard to protocol can greatly 

assist in assuring stable performance in widely used functions across a certain range 

of devicesin which standardizing a KEM can help dealing with unprecedented 

cryptanalytic attacks with diverse structures against lattices. Such an upgrade in 

security so as to combat commonly popular threats can efficiently contribute to 

FrodoKEM dealing with security issues rooted in prospective cryptanalytic attacks in 

the long run. 

There has not been enough evidence on the functionality of Frodo variants on 

embedded systems. In this vein, the overarching aim is to come up with practical 

solutions to create a balance between the gap of hands-on assessments of standard 

lattice-based cryptography and the demand for long lasting security strategies in 

connection with the Internet of Things, taking into account the large number of the 

conservative parameters involved in the overall design of Frodo variants. The fact that 

in embedded devices, like the microcontroller STM32WL55JC1, there is little 

memory, there needs to be particular emphasis placed on decreasing the rate of 

memory consumption in the implementation stages and, make sure that the computing 

functions of the platforms in use do not malfunction or underperform. On the other 

hand, the embedded system of STM32L552 has enough space in memory and needs 

less time to implement FrodoKEM. 
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2. Related works 

This unit of related works is separated into three categories. The first category refers 

to attacks on FrodoKEM. The second one refers to the Internet of things (IoT) and the 

other one is the hardware and software updates.  

     2.1 Attack on FrodoKEM 

The algorithm of FrodoKEM is such that it can deal with a variety of attacks. In this 

section, three papers [22], [11] and the [4] there are described three different kinds of 

attacks. The first kind is the side channel attack, the second one is the secret key-

recovery known as timing attack, and the last is the single-trace attack methodology. 

 

The method of detecting the side-channel attack is as follows, FrodoKEM implements 

two functions: Encryption and Decryption. During the process of Encryption, a part of 

the public key creates a ciphertext which then is separated in two parts, c1 and c2, 

where this function generates a share_secret. The main task taking place in the 

Decryption stage is unpacking c1 and c2 to generate these two parts with the usage of 

the secret key. If the generated parts are equal to c1 and c2, the share_secret, which is 

created, is the same as the share_secret of the Encryption. On the other hand, if c1 and 

c2 are not the same as the generated arrays, the share_secret, which is produced, is not 

similar to the share_secret of the Encryption. The share_secret is the information 

which indicates if the ciphertext has been attacked.[22] 

 

Another kind of attack is the timing attack, when one tries to recover the secret key. 

Firstly, it is important to generate a valid ciphertext. More specifically, the ciphertext 

has to be properly decrypted. Secondly, the attacker has to find the matrix E''' which 

denotes the noise matrix and data so as to find out if they are known values. As a 

result, there are linear equations in the secret key value S if one can figure out the 

arrayE''. Furthermore, the attacker has to transfer the noise in different cases along 

with the public key and run some tests [11]. In the Chapter 4.2 Encaps or Encryption 

there are explanations of how the E''', E'' and S are implemented. 

 

Another technique to attack the Lattice-Based Cryptography (LBC) is the single-trace 

attack. During message encoding, FrodoKEM scans two sensitive bits at a time. As a 

result, there are four instances of the extracted sensitive bit wvalue, namely the 

wvalues are (00)2, (01)2, (10)2, (11)2. Consequently, if wvalue equals (00)2, while 

extracting or saving the wvalue, power consumption linked to 0 occurs. If wvalue is 

more than zero, power consumption is proportional to Hamming weight. As a result, 

message m= (m-'1,..,m1, m0)2 may be extracted and a secret share_key K can be 

generated. The results of the studies [4] showed that the message m= (m'-1,…, m1, 

m0)2 could be recovered with just a single trace. In the case of analyzing Hamming 

weight value of wvalue, the success rate was over 90.57%. Accordingly, the secret 

share_key K could be recovered by applying an exhaustive search of candidates.[4] 
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2.2 IoT system 

Nowadays, the need for security in the Internet of things (IoT) has emerged. In an IoT 

system, different kinds of devices are connected in an attempt to significantly upgrade 

the security techniques which can protect the system itself against quantum 

computing through the post-quantum algorithm. To be more precise, FrodoKEM is a 

post-quantum algorithm which due to the existing parameters can be identified using a 

flawless post-quantum cryptosystem, such as pseudorandom generators, 

pseudorandom functions, and digital signatures. 

 

In this thesis, four different options are presented aiming to use this post-quantum 

algorithm in an IoT system. The first one [9] describes how vulnerable an IoT system 

is and why it is necessary to use extensive keys and an algorithm such as FrodoKEM. 

The second one [Error! Reference source not found.] refers to two types of attacks, the 

side-channel attack and the timing attack with a similar type of algorithm to LBC. The 

two last papers [3],[11] present the basic reasons why it is necessary to use a post-

quantum algorithm in such settings.  

 

The first kind of attack is developed into an IoT system. This IoT system has to 

confirm a specific password every time. The developers [9] paper suggest upgrading 

the security of this system with the usage of multiple keys each time the system has to 

ask for another key and to confirm it. The last scenario is using a post-quantum 

algorithm, FrodoKEM, because it is made up with a huge key, and it can upgrade 

security with its technique. All of this is feasible due to a combination of a powerful 

pseudo-random function.  

 

According to the second paper [Error! Reference source not found.], some attacks and 

threats, such as side-channel, depend on how the system is implemented. The 

fundamental purpose of side-channel assaults is to trace the relationship between 

physical design parameters like power consumption and timing behavior in order to 

exploit the secret key. The proposed design is secure against timing attacks for three 

reasons: (a) there are no conditional branches or dependencies between the inputs and 

the cipher-text, (b) the proposed design executes a constant number of clock cycles 

for decryption for each cipher-text, and (c) the proposed design for the critical path 

delay is constant in all three phases. 

  

The characteristics which provide an LBC and FrodoKEM by extension are specific. 

Firstly, this technique is based on NP-hard issues with a range of hardness from 

medium to extreme. Secondly, in addition to bearing stable quantum age, LBC 

implementations are notable for their efficiency, owing to their inherent linear 

algebra-based matrix/vector operations on integers.The latest is custom security, 

which according to LBC has developed techniques such as identity-based encryption 

[26], attribute-based encryption [26] and fully homomorphic encryption [27], in 
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addition to the basic classical cryptographic primitives, such as encryption, signatures 

and key exchange solutions required in the quantum era. 

2.3 Hardware and software update of FrodoKEM 

There are studies [Error! Reference source not found.], [8], [19] which present new 

options to update the techniques of FrodoKEM and how to make the algorithm 

quicker. Most of them use the hardware accelerator of AES on their chips. These 

different tasks are described in the following paragraphs.  

 

The researchers conducted a study centered on the Nvidia GPU. FrodoKEM requires 

many bytes each time, including many operations, namely, among others, 

randombytes, SHAKE, and AES. The function of AES requires the majority of the 

run time of the algorithm; this is the reason why the researchers performed the AES 

operation in parallel to using a GPU. [Error! Reference source not found.] 

 

James Howe. Tobias Oder, Markus Krausz, Tim Güneyrecommended a different 

solution[8]utilizing the functions of SHAKE128 and AES128. Researchers used the 

AES optimized implementation proposed by Schwabe and Stoffen and an assembly 

implementation for the cSHAKE [5]. This implementation considerably reduced the 

time of running and the memory space. 

 

The study of Bos, Friedberger, Martinoli, Oswald, and Stam [19] is about a new 

technique whoseperformance is about of matrix multiplications involving A. They 

generate the matrix A not with the two traditional forms of FrodoKEM which are the 

AES128 and cSHAKE128 but they change it with a new form which called PRNG 

xoshiro 128. It is a noncryptographic technique which is based on the PseudoRandom 

number generator and they suggest it as over-conservative for the process to speed up 

the generating for a public seed. 

3. Algorithms 

In this chapter the basic algorithms used by FrodoKEM are mentioned. These 

algorithms are SHAKE128 and AES128. Also described is the model on which the 

algorithm is based, which is Learn with Errors (LWE). 

3.1 FrodoKEM 

The FrodoKEM family introduced the key-encapsulation mechanisms (KEMs). 

FrodoKEM schemes are intended to be conservative yet workable post-quantum 

constructions whose security stems from careful parameterizations of the Learning 

With Errors System(LWE). Three different security levels are designed for IND-

CCA: FrodoKEM-640, FrodoKEM-976, and FrodoKEM-1344. Except that, there are 

two variants for each level, AES and SHAKE128. AES uses AES128 to 
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pseudorandomly generate a large public matrix and SHAKE128 uses SHAKE128 to 

pseudorandomly generate the matrix. 

FrodoKEM is based on FrodoPKE which is a public-key encryption technique whose 

IND-CPA security is closely linked to the complexity of a similar to LWE learning 

with errors problem. At first, Lindner-Peikert [18, 19] proposed a more efficient 

LWE-based public-key encryption technique that uses a square public matrix Arather 

than an oblong rectangular one. FrodoPKE system involves a modified version of the 

Lindner–Peikert scheme [28, 29]. FrodoPKE create a pseudorandom creation of the 

public matrix A from a tiny seed that has as results more balanced key and ciphertext 

sizes, and additional LWE settings [17]. 

3.2 SHAKE128 

The algorithm SHAKE128 has been generated by SHA-3, which is a hash function 

entails several implementations all of which are specified as an instance of the 

KECCAK-p family of permutations in this Standard to allow for the modification of 

its size and security parameters [6].One of them is an extendable-output function 

(XOF), which is a bit string function whose output can be extended to any length. The 

difference between SHA-3 and SHAKE is that SHA3 is a function on binary data for 

which the length of the output is preset. For instance, if the name of SHA3 changes to 

SHA3-256 the output demonstrates 256bits. Instead, the logic behind SHAKE is that 

the suffixes "128" and "256" indicate the security strengths that these two functions 

may commonly make use of. 

 

The logic of the SHAKE algorithm operation involves an input in the hash function is 

called message, and the output message is called digest or hashvalue, providing the 

desirable length. The reason for using SHAKE128 is that it is a hash function which is 

used in a wide range of information security applications, including digital signature 

production and verification, key derivation, and the generation of pseudorandom bits 

[6]. 

3.3 AES 

The standard of AES-128 provides the Rijndael algorithm, a symmetric block cipher 

capable of processing 128-bit data blocks with 128-bit cipher keys. The AES 

algorithm uses 128-bit sequences and digits with values of 0 or 1 for both input and 

output. For the AES algorithm, the Cipher Key is a 128-bit sequence. The bits in such 

sequences are numbered from zero to one less than the length of the sequence (block 

length or key length). Because the length and key length of the block are both 128nit, 

the number I attached to a bit is known as its index, and it is going to be in one of the 

ranges: 0 £ I 128 [1]. 
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The basic logic of the algorithm is based on two functions: the encryption and 

Decryption. Firstly, to encrypt a text there needs to be as a parameter the key of 

128bits and the text which has to be divided with 128 bits. As an output, there is an 

array of the ciphertext, which has the same length of the text. The second step is to 

decrypt the ciphertext with the correct 128-bit key which has to produce the text [1]. 

3.4 Learning With Errors 

The LWE problem refers ‘the problem of decoding random linear codes’ [18, p. 3]. 

The LWE is constructed around three functions, to be precise. The first function 

creates public and private keys, whereas the second and third functions are encryption 

and decryption [Error! Reference source not found.]. 

 

Private key: The private key is a vector s uniformly chosen from Z
𝑛
𝑞. 

 

Public Key: The public key consists of m samples (𝑎𝑖, 𝑏𝑖)𝑖=1
𝑚  from LWE distribution 

with secret s, modulus q, and error parameter α.  

 

Encryption: For each bit of the message, do the following. Choose a random set S 

uniformly among all 2𝑚 subsets of [m]. The encryption is(∑ 𝑎𝑖, ∑ 𝑏𝑖𝑖∈𝑠 )𝑖∈𝑠  if the bit is 

0 and (∑ 𝑎𝑖,
q

2
+ ∑ 𝑏𝑖𝑖∈𝑠 ) 𝑖∈𝑠 if the bit is 1. 

Decryption: The Decryption of a pair (a, b) is 0 if b−〈𝑎, 𝑠〉 is closer to 0 than
𝑞

2
 to 

modulo q, and 1 otherwise. 

 

There are two types of LWE. The first is the search problem, in which the secret s is 

recovered from a set of samples drawn from the LWE distribution, and the second is 

the prediction problem, in which the secret s∈Z
𝑛
𝑞 is predicted from a set of samples 

drawn from the LWE distribution. In the decision stage, a set of samples obtained 

from the LWE distribution from uniformly picked random samples is identified. The 

uniform distribution and the (nmodq) distribution, in which each coordinate is picked 

from the error distribution and reduced modulo q, are widely studied for both forms of 

the secret s∈Z
𝑛
𝑞. The latter is commonly known as the "normal form"of LWE [Error! 

Reference source not found.]. 
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4. FrodoKEM Structure 

The algorithm has three basic functions: the KeyGen(), the Encaps() and the Decaps(). 

The KeyGen() is the function which generates the two keys: the first key is the public 

key and the second one is the secret key. Encaps() uses the public key as parameter 

and creates two arrays the ciphertext and the shared_secret. Decaps() uses the secret 

key and ciphertext as parameters; with the processing of these functions, another 

share_secret is generated for Decaps(). If the two share_secrets are equal that means 

that there is not a kind of attack, if they are not similar there is an attack. In each 

function there are other functions which include basic cryptographic systems, such as 

AES and SHAKE128 and some techniques which create Gaussian noise and others 

[2]. 

 

Figure 1: Alice and Bob implement step by step the algorithm of FrodoKEM 

4.1 Keygen or Keypair 

To begin with, KeyGen() refers to certain parts of code and its function is under the 

name Keypair [2].The function has the public key and the secret key as parameters. 

First, the public key is created and after, with the usage of this key, the secret key is 

generated.  

 

Figure 2 and Figure 3 represent the implementation of the KeyGen(). The 

implementation begins with the creation of a random matrix with the name seedA and 

consists of 16bits; then with the help of those 16 bits the function Frodo.Gen (i.e., 
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seedA) generates the matrix A. Frodo.Gen or seedA has two forms. The first one uses 

the crypto algorithm SHAKE128 and the other one the AES; it is up to the user to 

decide on what kind of technique they want to use. Moreover, a pseudorandom bit 

string is generated, and that information creates two arrays, the array S and the array 

E, with Frodo.SampleMatrix. The next step is to compute the arrays A, S and E with 

the combination B = AS+E, with B being equivalent to Frodo.Pack(B). Furthermore, 

it is important to create the arraypkh with the computation 

pkh=SHAKE(seedA||b,len(pkh)). The last step is to return the public key or 

pk=(seedA||b) and the secret key or sk=(s||seedA||b,S,pkh). 

 

 

Figure 2: Algorithm FrodoKEM.KeyGen.(as appended to Alkim et al., 2021, p. 21) 

 

Figure 3: Public and Secret Key creation step by step. 

4.2 Encaps or Encryption 

Encaps() or Encryption is required to generate the cipher text and the first 

share_secret. The Encaps function uses the public key to generate the cipher text and 

the share_secret as parameters and is named 
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Encaps(publickey,ciphertext,share_secret). The public key is shared by the user of the 

algorithm because they ought to evaluate the reason for the improvement in the safety 

of the community at each time [2]. 

 

 

Figure 4 and Figure 5 present the stages in which Encaps() is implemented. 

Implementation begins with the creation of a key matrix with the name m. In the 

space which is similar to both public key and secret key, SHAKE128 and with this 

pkh is computed and created. The next step is to generate two pseudorandom arrays 

with the Frodo function.SHAKE to create the seedse and a random bit of string. This 

random bit of string is separated in three parts and each part is processed with the 

Frodo.SampleMatrix which normalizes the arrays; more specifically, it samples the 

error matrix and creates the three matrices: E’, S’ and E’’. Moreover, the system 

generates a new array which is called A. This implementation includes giving the first 

16 bit of the public key to the Frodo.Gen(seedA) function. After that the next step is 

to compute the arrays A, S’ and E’ with the combination B’=AS’ + E’ with the B’ 

producing c1=Frodo.Pack(B’). Furthermore, the other step is to unpack b which is a 

part of the public key and create the B, B=Frodo.Unpack(b). The B,S’ and E’’ are 

computed and produce the V=S’B+E’’ and the V is used to produce the array C, 

C=V+Frodo.Encode(m) . C is implemented to create c2 with the function pack, such 

as the c2=Frodo.Pack(C). The last step is to compute the share_secret which is named 

as ss, and the computation is implemented with the function SHAKE128 where 

ss=SHAKE(c1||c2||k,lenss). 

 

 

Figure 4: Algorithm FrodoKEM.Encaps. (as appended to Alkim et al., 2021, p. 21) 
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Figure 5: Share_secret_e and Cipher text creation step by step with the public key. 

 

4.3 Decaps or Decryption 

Decaps() or Decryption is required to ascertain the validity of the cipher text with the 

evaluation of the first share_secret. Decaps has the secret key, cipher text and 

share_secret as parameters and is named Decaps(secretkey,ciphertext,shresecret2). In 

the last stage, after the implementation of Decaps, it is required to check that 

share_secret1 is equal to the sharesecret2 and upon proving they are equal, then there 

is not an attack [2]. 

 

Figure 6, Figure 7 presents the stages in which Decaps() is implemented. 

Implementation begins with the unpacking of the two parts of the cipher text, c1 and 

c2 as B’=Frodo.Unpack(c1) and C=Frodo.Unpack(c2). Moreover, B’ and C with a 

part of sk, which is called S, are computed, and they generate the array M, M=C-B’S, 

where M is processed with the Frodo.Decode(M) function and produces m. Pk 

includes the pk=seedA||b from the sky. After that it is important to generate two 

pseudorandom arrays with the function Frodo.SHAKE to create the seedse and a 

random bit of string [2]. 

 

This random bit of string is separated in three parts and each part is processed with the 

function Frodo.SampleMatrix which normalizes the arrays sampling the error matrix 
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and create the three arrays E’, S’ and E’’. Furthermore, the system generates a new 

array which is called A. The implementation for this is to give the first 16 bit of the 

public key to the function of Frodo.Gen(seedA). After, the step is to compute the 

arrays A,S’ and E’ with the combination B’’=AS’+E’ . The following step is to 

unpack b, which is a part of the public key, and create the B, B=Frodo.Unpack(b). B, 

S’ and E’’ are computed and produced the V=S’B+E’’ and V is used to produce array 

C’, C’=V+Frodo.Encode(m). The last step is to check if B’or C is equal to B’’or C’. If 

the arrays are equal the share_secret is created with the right variables, otherwise the 

share secret created comes with a variable error [2]. 

 

 

Figure 6: Algorithm FrodoKEM.Decaps. (as appended to Alkim et al., 2021, p. 22) 
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Figure 7: Implementation of Decap or decryption with the secret_key and create the share_secret_d 

 

4.4 Generating Matrix A 

To generate Matrix A there are two options, the first one uses AES128 and the other 

uses SHAKE128 [2].The Figure 8,Figure 9 depict the process which generates A<- 

Frodo.Gen(seedA). In my thesis, between the two different Arm Cortex M type 

processors SHAKE128 proved quicker than AES128.  

 

 

Figure 8: Algorithm FrodoKEM.Gen using SHAKE128 (as appended to Alkim et al., 2021, p. 17) 
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Figure 9: Algorithm FrodoKEM.Gen using AES128(as appended to Alkim et al., 2021, p. 17) 

5. STM board design 

This chapter describes the hardware features that each microcontroller uses to run the 

algorithm of FrodoKEM. These hardware features are different depending on the 

microcontroller and helped execute the algorithm. Some basics characterized are the 

RNG, UART, FLASH and etc.  

5.1 STM32 Programming environment 

STM develops several microcontrollers for different domains. The first development 

environment used in this thesis is STM32CubeIDE. The tools included assist in 

developing an application code for such microcontrollers, compile, debug, and run the 

application [21]. Additionally, STM32CubeProgrammer was used to help with the 

monitoring of the memory when the program was loaded on the microcontroller.  

5.2 STM32L552ZE  

STM32L552 contains many hardware features which can help the program to be 

flexible and quick. Among the hardware features which were used,there were: the 

Art-Accelerator which is a type of cache memory; RNG based on NIST which 

generates random numbers; LPUART which supports asynchronous serial 

communication with minimum power consumption; along with DEBUG, PWR, GPIO 

and SYS; and the timer TIM-2 which has a 32-bit auto-reload up/down-counter [21]. 

Apart from including TrustZone and offering an ultra-low power Arm Cortex-M33 

32-bit MCU which has a 110MHz frequency, there is up to 512KB space in Flash 

memory and there is up to 256KB SRAM space, as well. 

 

ART-ACCELERATOR: is the basic accelerator which helps the programs to change 

the duration of the process. To be more precise, Art accelerator or instruction cache 

(ICACHE) is introduced on the C-AHB code bus of Cortex®-M33 processor to 

improve performance when fetching instruction (or data) from both internal and 

external memories, as those of SRAM and Flash. Apart from that, cache supports an 

8-Kbyte instruction cache with frequency up to 110 MHz and is used in three different 

ways. The first option is to enable cache in one-way mode. The second one is to 

enable it in a two-way mode, and the last one is to disable it [21]. This process results 

in having better ascription in running time depending on the usage of cache. 
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It is important to mention the difference between one-way or two-way cache. In the 

two-way set, the associative mode features 256 lines of 16 bytes. As a result, the 4 

LSbs of the address reflect a cache line offset, and the 8-bit index picks one entry 

from 256 lines in the tag and data memory. In the direct-mapped (one-way), there are 

512 lines of 16 bytes and the index consists of 9-bit. The basic differences between 

the one-way and two-way modes involve the low power consumption in the direct-

mapped and the absence of a replacement algorithm in the case of a cache line 

eviction in the direct-mapped setting.  

 

DEBUGGER: The debug mode has been set to ‘Trace Asynchronous SW’. More 

specifically, when that debugging mode is enabled, debug operates using some pins, 

namely PA13, PA14, and PB3 from GPIO. In addition, this mode supports tools, like 

SWV which, among others, helps dealing with monitoring time, memory and 

variables [21]. For this thesis, an application Data Trace is used, which helps to count 

the time and authenticate the time of the timer. 

 

LPUART: refers to the connection of the console. This means that under certain 

circumstances, the user is able to print arrays and messages. LPUART is a single low-

power UART that allows for asynchronous serial communication with low power 

consumption. Apart from that, it provides support for communication with a half-

duplex single wire which uses only Tx for transmission and reception and there is a 

full-duplex which connects the Tx with the Rx, and other operations like CTS, RTS. 

LPUART's clock is independent of the CPU's and can restart the system if it is turned 

off. Communication has a maximum baud rate of 9600 baud [21]. The device 

consumes less power because even while in standby mode, LPUART may wait for a 

frame while consuming minimal power. DMA controller can transmit data to 

LPUART, and the data length can range from 7 or 8 to 9 bits. 

 

Activating LPUART in STM32L552 and connecting it with the console requires some 

steps. First, LPUART must be active to be put into asynchronous mode in order to get 

the baud rate to 115200Bit/s and word length to 8 bits [21].Also, to transmit the data 

to the console and print them, the basic function to be added into the program is 

HAL_UART_Transmit; a simple way to print is a char array due to the fact that there 

is no need to change the data form. To print integers, it is necessary to reshape the int 

to char with the help of sprintf.  

 

Figure 10: The code of LPUART print 
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TIMER TIM-2: is a timer of general purpose which has the highest counter resolution. 

More specifically, there is a 32-bit auto-reload up/down-counter and a 32-bit 

prescaler. In debug mode, when the program is frozen the timer stops counting [21]. 

In this program, the clock source comes from the internal clock, and the timer 

prescaler is based on a frequency of 1,100 MHz. 

 

Figure 11: Code of how to count the time with Timer TIM-2 

More specifically, timer TIM2 is used to count the time in the functions of the 

programs. In the beginning, the timer code is defined through the command 

(htim2.Instance->CNT=0;) htim2 equal to zero. The next step is to get the timer to 

start with the function of HAL, HAL_TIM_Base_Start(&htim2) by adding the 

command HAL_TIM_Base_Stop(&htim2) when there is the need to stop counting. 

The last step is the command h=htim2.Instance->CNT to retrieve the counted clock 

cycles. The result h is in the form of clock cycles and to convert it to seconds the 

division h/1,000,000 is implemented [21]. 

 

RNG-RANDOM GENERATOR: is a true random number generator that provides full 

entropy outputs to the application as 32-bit samples. It is composed of a live entropy 

source (analog) and an internal conditioning component. Furthermore, RNGs used for 

cryptographic applications typically produce sequences made of random 0’s and 1’s 

bit which are non-deterministic, which means that the random generator produces 

randomness that depends on some unpredictable physical source.[21]. 

 

RNG implementation is based on an analog circuit and is produced in stm32 MCUs. 

This circuit generates a continuous analog noise that is used to generate a 32-bit 

random number during the RNG process. The analog circuit consists of many ring 

oscillators with XORed outputs. RNG processing is clocked at a consistent frequency 

using a dedicated clock, which can be decreased using the divider inside the RNG 

peripheral for a subset of microcontrollers[21]. 
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Figure 12: Create the random generated data with the hardware feature RNG 

At first, for the needs of this thesis, a function called int randombytes(uint8_t 

*buf,size_t n);was created. The function has been recreated and with the help of the 

RNG it fills the matrix (uint8_t *buf). In Figure 12, there is a screen capture of the 

function using RNG. In a detailed description of randombytes, random bytes are 

generated by the basic function of HAL. For this command the name in NRG is 

HAL_RNG_GenerateRandomNumber. It inputs a uint32_t variable (array uint32_t 

p[n]), meaning that it generates 32 bit each time. For this reason, due to the data used 

in the main function in the form of arrays uint8_t (buff) inside the program, it is 

important to reshape data, for this occasion with the second for uint32_t (p) variable 

data is separated into four uint8_t (buff). 

 

SRAM: provides 256KB which is split into three blocks with different addresses (ST 

life.augmented, 2020). The first and largest part of SRAM has 192KB mapped at 

address 0x20000000 called SRAM1. The smallest part, which is 64KB, is located at 

address 0x0A030000 with hardware parity check with the name of SRAM2. SRAM2 

is also mapped at address 0X20030000, offering a contiguous address space along 

with SRAM1. This block is accessed through C-bus for maximum performance. In 

standby mode, the 64KB or the upper 4KB of SRAM2 can be retained. SRAM2 can 

be write-protected with 1 Kbyte granularity. Memory can be accessed at CPU clock 

speed in read/write mode with no wait states. Another option to achieve that all 

SRAMs are secure after a reset is to activate the TrustZone security. Besides this 

method of securing SRAMs, there is another choice, that of non-secure programming 

by block-based coding using the MPCBB (i.e, block-based memory protection 

controller) in GTZC controller. The granularity of the secure block-based RAM is a 

page of 256 bytes.  

 

SRAM1 has all the static matrixes of the program and undertakes all the demanding 

work of running the application and keeping the data of the program safe without 

missing it[21]. For this reason, in FrodoKEM640 either with AES or SHAKE128, 

there are 3 static arrays: the public_key with 9616B, the secret_key 19888B, and the 

last one is the ciphertext with 9720B. In the main functions of FrodoKEM, there is the 
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need to handle an extra memory during the Decryption function requiring 78 KB. In 

the stage of encryption, the space needed is up to 58 KB. The last function, Keypair, 

the space needed is up to 36KB. That means that it is necessary to adjust the heap and 

stack memory. Also, what is indispensable to achieve greater flexibility in embedded 

systems is further understanding how memory works and apply certain specific 

actions as far as the code is concerned. 

 

FLASH MEMORY: has 512 Kbytes which is available for storing programs and data 

[21]. Flash interface features are divided into two options: the first is Single or dual 

bank operating modes and the second is Read-while-write (RWW) in dual bank mode. 

Both of them allow for a read operation in one bank while performing an erase or 

program operation in the other. Dual bank boot is also available. Each bank has 128 

pages of 2 or 4 kilobytes each, depending on the read access width. Flash memory 

also embeds one-time programmable 512 bytes OTP for user data. 

 

Apart from that, embedded flash memory supports flexible protection techniques 

which can be configured owing to option bytes [21]. One of them is readout 

protection which can protect the whole memory and has four different levels of 

protection. The second one is write protection which protects a specific area. This 

specific area is protected against erasing and programming with two different modes 

available: single bank mode and dual bank mode. The most significant feature is that 

it is a non-volatile memory and embeds the error correction code. Another feature of 

Flash memory is TrustZone security which, after resetting, secures Flash memory.  

Most of the time, a microcontroller has to handle many processes and an algorithm 

like FrodoKEM640AES which needs much space in memory. For instance, as for 

FrodoKEM640AES, the function of Decryption needs 142KB to run but SRAM1 has 

only 192KB free space, meaning that it is important to use Flash and store some 

important details there due to the reduction of space in SRAM1 memory. Applications 

ought to use FrodoKEM640 as a tool for security and therefore avoid causing space 

issues occasioned by the creation of a function transmitting the main data to Flash. 

 

RamtoFlash is the name of a function that includes two functions: one that erases the 

pages in Flash and another that copies data from an array to Flash pages [21].Cache 

must be disabled before erasing the pages, and then the primary two functions must be 

started before cache can be activated again. To delete the pages, three variables must 

be provided: FirstPage which contains the first page; NbOfPages which contains the 

number of pages; and BankNumber which contains the first page. The variables must 

then be filled into the EraseInitStruct, and Flash memory must be erased. The cache 

can then be enabled after programming the user Flash area word by word. 
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Figure 13: The function RamtoFlash send the data from the SRAM to Flash 

 

Figure 14: GetPage is an function which used by RamtoFlash 

5.3 STM32WL55JC1  

 

STM32WL55JC1 is a microcontroller with many hardware features which can help 

the program to be flexible and quick, and create the .ioc file [16]. The microcontroller 

enables the ART-Accelerator; RNG based on NIST generates random numbers; 

USART2 support provides asynchronous communication along with AES-accelerator 

and some features, like PWR, GPIO and SYS; and TIM-2 which has a 32-bit auto-

reload up/down counter. 

 

The other features provide a dual core 32-bit Arm Cortex-M4 and Arm Cortex-M0 

which has a frequency up to 48MHz; Flash memory has space up to 256KB and 

SRAM has space up to 64KB. In this thesis, Arm-Cortex-M4 was chosen. Some of 

the hardware features are the same as in the microcontroller STM32L552, namely two 

of them are RNG and TIM-2 and are referred to in TIMER-TIM2 and RNG-Random 

generator system (chapter 5.2 STM32L552RNG).  

 

ART-ACCELERATOR: Processor Arm Cortex-M4 contains the memory accelerator 

under the name of ART which is designed for this specific processor [16]. ART 

increases the frequencies of Flash memory and due to the accelerator balance is 

created between the frequency of Flash memory and the frequency of the processor. 

Arm Cortex-M4 does not have to wait in high frequencies for the flash memory. 
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ART Accelerator uses an instruction prefetch queue and branch cache to boost 

program execution speed from the 64-bit Flash memory, allowing the processor to 

achieve around 60 DMIPS performance at 48 MHz. According to the CoreMark 

benchmark, the ART Accelerator's performance is equivalent to the execution of a 0 

wait state application from Flash memory at a CPU frequency of up to 48 MHz. 

Another detail is that ART-Accelerator is enabled in the microcontroller from the 

beginning. 

 

EMBEDDED FLASH MEMORY: interface controls the access to Flash memory from 

CPU1 AHB ICode/DCode and CPU2 AHB Sbus. It implements read and write 

protection, as well as access, erase, and program Flash memory operations [16].The 

following are the primary characteristics of Flash memory:  

 

• Organizing your memory: 1 bank – main memory up to 256 KB – page size 2 KB 

• Data read with a 72-bit width (64 bit plus 8 ECC bit)  

• Data write with a 72-bit width (64 bit plus 8 ECC bit) 

• Erasing a page and erasing a group of pages 

Flexible safeguards, which can be customized via option bytes, are an added bonus. 

The readout protection (RDP) is used to safeguard the entire memory. There are two 

levels to choose from. The initial level is level 0, which has no readout protection. 

The other is level 1, which protects against memory readout. If debug features are 

connected, boot in SRAM or bootloader is selected, the Flash memory cannot be read 

or written. The final degree of protection is level 2, which protects against chip 

readout [16]. 

 

EMBEDDED SRAM: The devices feature up to 64 Kbytes of embedded SRAM, split 

in two blocks [16]:  

• SRAM1: up to 32 Kbytes mapped at address 0x2000 0000  

• SRAM2: up to 32 Kbytes located at address 0x2000 8000 (contiguous to SRAM1), 

also mirrored at 0x1000 0000, with hardware parity check - this SRAM can be 

retained in standby mode. 

Access to SRAMs can take place in read/write with 0 wait states for every CPU1/2 

clock speed. 

USART-2: is a universal synchronous receiver-transmitter which provides 

asynchronous communication [16]. Except that, it supports IrDA SIR ENDEC and a 

multiprocessor communication mode. Another feature is that it includes single-wire 

half-duplex communication mode. Moreover, USART-2 has LIN Master/Slave 

capability and provides hardware management for the CTS and RTS signals, and 

RS485 driver enable. 
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USART-2 frequency, while being able to communicate at an up to 4 Mbit/s speed, 

also offers the Smart Card mode and SPI-like communication capability. USART-2 

supports synchronous operation thanks to SPI and allows for the capability to be used 

as an SPI master. The clock of the CPU is independent from the clock of USART-2, 

allowing the USART to perform the wakeup for MCU from stop mode, using baud 

rates up to 200 kbaud. USART-2 includes wake up events from stop mode and can be 

programmed with three options. The first one is the start bit detection, the second any 

received data frame, and the last a specific programmed data frame. The DMA 

controller is able to run the USART interface. 

 

USART-2 has the same code as LPUART. However, the only difference is that 

instead of hlpuart1, huart2 is used. LPUART is referred to in LPUART, chapter 4.2.2 

STM32L552. 

 

AES-ACCELERATOR: In this thesis, the AES accelerator is used to reduce the time of 

the program. AES encrypts and decrypts data using an algorithm and implementation 

that are completely consistent with FIPS (2001).For key sizes of 128 or 256 bits, a 

variety of chaining modes (ECB, CBC, CTR, GCM, GMAC, CCM) are available. In 

this thesis, ECB mode with 128B key size is used. 

 

 

Figure 15:How to init the AES accelerator 

 

 

Figure 16: How to write AES Key with 128bits 
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Figure 17: How to implement theAES code 

Figure 15, Figure 16, Figure 17  show how the algorithm works. At first, the user has 

to program how they prefer the algorithm of AES to run. In this case, the strategy is to 

use 8 bits of the data each time and a 128bit key. Except that, the AES type of ECB is 

used. The second step is to write the key in the pKeyAES[4] area and, last, to run the 

function HAL_CRYP_Encrypt. 

6. Algorithm implementation 

This chapter refers to the implementation of the algorithm in two different 

microcontrollers the STM32L552ZE and the STM32WL55JC1. In the first 

microcontroller, the algorithm is tested for the performance of time depending on the 

type of cache used. While in the second microcontroller due to the small memory 

SRAM different techniques are used to reduce the space used by the algorithm. 

6.1 STM32L552ZE Introduction 

Ten separate programs were developed in STM32L552, each considering different 

hardware features of the board. The first five programs include FrodoKEM640-AES 

and the second five include FrodoKEM640-SHAKE as their main code and are 

implemented according to the usage of flash and usage of cache. As a result, each 

program requires different run times in implementing each function, allowing for 

tracking and analyzing their differences:  

1. FRODOKEM640-AES with 1-way cache 

2. FRODOKEM640-AES with 2-way cache  

3. FRODOKEM640-AES without cache 

4. FRODOKEM640-AES with Flash and 1-way cache  

5. FRODOKEM640-AES with Flash and 2-way cache 

6. FRODOKEM640-SHAKE with 1-way cache 

7. FRODOKEM640-SHAKE with 2-way cache 

8. FRODOKEM640-SHAKE without cache 

9. FRODOKEM640-SHAKE with Flash and 1-way cache 

10. FRODOKEM640-SHAKE with Flash and 2-way cache  
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Every program has basic hardware features. These features are RNG, timer TIM2, 

DEBUGGER and LPUART. Differences in the programs include the case where 

cache is enabled or when the program uses flash.  

6.2 Basic implementation for FrodoKEM640-AES  and FrodoKEM640-

SHAKE 

FrodoKEM640-AES and FrodoKEM640-SHAKE at first begin with the creation of 

the two keys, the private key, and the secret key. To create the two basic keys, 48B 

needs to be generated which is produced by the function of the randombytes (chapter 

5.2 STM32L552ZERNG) and it is also produced at 16B encryption which produces 

the share_secret. 

 

LPUART is useful to print the details and to understand how the system operates each 

time. It is helpful to make comments inside the code and print them in the terminal. 

Another option is to use LPUART and print the keys and save them in an .h file in 

Flash. 

 

Flash memory is the memory where the code is when the program starts up. Apart 

from that, the global symbols are in flash too. Furthermore, in .h files with the keys 

and ciphertext, the data is initialized with the word const. The const data is stored in 

Flash and this can significantly reduce the space in SRAM1. Another option to use 

flash is to enter data in flash and read it with a pointer and this also helps to reduce the 

space in the memory of SRAM1.  

 

After the loading of the program in flash, the program runs in SRAM1. First, it is 

useful to have a static matrix in the program. It helps to reduce the arrays and also the 

space of memory. Also, it is SRAM1 which when not combined with other types of 

memory makes the program quicker. 

PUBLIC 

KEY 

SECRET 

KEY 

CIPHERTEXT

  

SHARE SECRET 

ENCRYPTION 

SHARE SECRET 

DECRYPTION 

   

9616B 19888B 9720B 16B 16B    

 

Table 1: Basic variables for running (used each time) 

FrodoKEM640-AES with one-way cache: FrodoKEM640-AES used many of the 

hardware features. RNG, TIM2, and cache are enabled in one-way or direct mapped; 

DEBUG mode and the LPUART are also enabled. There is no need for the program to 

be separated into parts and run because SRAM1 can handle each process without the 

help of Flash. 

 

FrodoKEM640-AES with two-way cache: FrodoKEM640-AES used many of the 

hardware features. RNG, TIM2, and cache are enabled in two-way; DEBUG mode 
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and LPUART are also enabled. There is no need for the program to be separated into 

parts and run because SRAM1 can handle each process without the help of Flash. 

 

FrodoKEM640-AES without cache: FrodoKEM640-AES used many of the hardware 

features, which are RNG, TIM2, DEBUG mode, and LPUART. There is no need for 

the program to be separated into parts and run because SRAM1 can handle each 

process without the help of Flash. 

 

 KEYPAIR ENCRYPTION DECRYPTION 

MEMORY 41160B 82032B 102680B 

 

Table 2: FrodoKEM640-AES with one-way cache, two-way cache, without cache 

FrodoKEM640-AES with one-way cache: FrodoKEM640-AES used many of the 

hardware features. RNG, TIM2, and cache are enabled one-way; DEBUG mode and 

LPUART are also enabled. To reduce the space of memory and handle and other 

processes, it is necessary to use Flash and store the keys and the ciphertext there with 

the program decreasing the memory space by 39KB.  

 

FrodoKEM640-AES with two-way cache: FrodoKEM640-AES with two-way cache: 

FrodoKEM640-AES used many of the hardware features. RNG, TIM2, and cache are 

enabled two-way; DEBUG mode and LPUART are also enabled. To reduce the space 

of memory and handle and other processes, it is necessary to use Flash and store the 

keys and the ciphertext there with the program decreasing the memory space by 

39KB.  

 KEYPAIR ENCRYPTION DECRYPTION 

MEMORY 30936B 51832B 50064B 

 

Table 3: FrodoKEM640-AES with one-way cache, two-way cache, Flash 

FrodoKEM640-SHAKE with one-way cache: FrodoKEM640-SHAKE used many of 

the hardware features. RNG, TIM2, and cache are enabled in one-way; DEBUG mode 

and LPUART are also enabled. There is no need for the program to be separated into 

parts and run because SRAM1 can handle each process without the help of Flash. 

 

FrodoKEM640-SHAKE with two-way cache: FrodoKEM640-SHAKE used many of 

the hardware features: RNG, TIM2, and cache are enabled in two-way; DEBUG mode 

and LPUART are also enabled. There is no need for the program to be separated into 

parts and run because SRAM1 can handle each process without the help of Flash. 

  

FrodoKEM640-SHAKE without cache: FrodoKEM640-SHAKE used many of the 

hardware features. RNG, TIM2; DEBUG mode and LPUART are also enabled. There 
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is no need for the program to be separated into parts and run because SRAM1 can 

handle each process without the help of Flash. 

 

 KEYPAIR ENCRYPTION DECRYPTION 

MEMORY 36064B 57728B 78376B 

 

Table 4: FrodoKEM640-SHAKE with one-way cache, two-way cache, without cache 

 

FrodoKEM640-SHAKE with one-way cache and Flash: FrodoKEM640-AES used 

many of the hardware features. RNG, TIM2, and cache are enabled in one-way or 

direct mapped; DEBUG mode and the LPUART are also enabled. To reduce the space 

of memory and handle other processes, it is necessary to use FLASH and store the 

keys and ciphertext there with the program decreasing the memory space by 39KB. 

 

FrodoKEM640-SHAKE with two-way cache and Flash: FrodoKEM640-AES used 

many of the hardware features. RNG, TIM2, and cache are enabled in one-way or 

direct mapped; DEBUG mode and the LPUART are also enabled. To reduce the space 

of memory and handle other processes, it is necessary to use FLASH and store the 

keys and ciphertext there with the program decreasing the memory space by 39KB 

(see 4.3.2 STM32WL55JC1)  

 

 KEYPAIR ENCRYPTION DECRYPTION 

MEMORY 25840B 27256B 31448BB 

 

Table 5: FrodoKEM640-SHAKE with one-way cache, two-way cache with Flash 

 

6.3 STM32WL55JC1 introduction 

Three separate programs were developed in STM32WL55JC1, each considering a 

different algorithm. The first program includes the FrodoKEM640-AES and the 

second includes FrodoKEM640-SHAKE. The third program is based on AES-ECB 

with 128B key size. To reduce bit size, the first two programs have to implement a 

separate function of the FrodoKEM640-AES and FrodoKEM640-SHAKE and 

generate different times. AES ECB encrypts 10KB and counts the time which is 

needed. 

Algorithms used in the three programs:  

1. FrodoKEM640-AES  

2. FrodoKEM640-SHAKE 

3. AES ECB 128B 
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Every program has basic hardware features. These features are: RNG, timer TIM2, 

and USART-2. The challenge in this program is to reduce the space needed for every 

function. 

6.4 Basic implementation of FrodoKEM640-AES and 

FrodoKEM640-SHAKEon STM32WL55JC1 

The FrodoKEM640-AES and FrodoKEM640-SHAKE at first begin with the creation 

of the two keys, the private key, and the secret key. To create the two basic keys 48B 

need to be generated which are produced by the function of randombytes (chapter 5.2 

STM32L552ZERNG) and are also produced at 16B encryption which produces the 

share_secret. 

 

The programs are separated in parts every time #if is used to run only the function of 

Encryption or Decryption or Keypair. The results of encryption and Keypair are 

placed at Flash with the help of an .h file.  

 

USART-2 is useful to print the details and to understand how the system operates 

each time. It is helpful to make comments inside the code and print them in the 

terminal. Another option is to use the USART2 and print is to print to the keys and 

save them in an .h file in Flash. 

 

Flash memory is the memory where the code is when the program starts up. Apart 

from that, the global symbols are in flash, too. Furthermore, in .h files with the keys 

and ciphertext, the data is initialized with the word const. The const data is stored in 

Flash and this can significantly reduce the space in RAM. Another option is to use the 

flash by entering data in flash and to read it with a pointer and this also helps to 

reduce the space in the memory of SRAM.  

 

After the loading of the program in flash, the program runs in SRAM1. First, it is 

useful to have a static matrix in the program. It helps to reduce the arrays and also the 

space of memory. Also, it is SRAM1 which when not combined with other types of 

memory makes the program quicker. 

 

AES ECB is useful because the user can encrypt data with the accelerator, resulting in 

the least amount of time there can be, with the accelerator without the AES ECB 

software. 

 

FrodoKEM640-AES used many of the hardware features: RNG, TIM2 and USART-2. 

The program needs to be separated into parts and run because SRAM1 cannot handle 

each process without the help of the Flash.  
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  KEYPAIR ENCRYPTION DECRYPTION 

MEMORY 30936B 51832B 50064B 

 

Table 6: FrodoKEM640-AES 

The FrodoKEM640-SHAKE used many of the hardware features. The RNG, TIM2, 

and USART-2. The program needs to be separated into parts and run because SRAM1 

cannot handle each process without the help of the Flash. 

 KEYPAIR ENCRYPTION DECRYPTION 

MEMORY 25840B 27256B 31448B 

 

Table 7: FrodoKEM640-SHAKE 

AES ECB-128B: used AES ACCELERATOR and Flash as main tools. The AES ECB 

program is used to make some counts of the time while AES encryption runs. 

6.5 Technique and spacereduction 

The techniques to reduce the space were three:  

1. Preprocess the keys 

2. Include data in Flash in specified space with the function RamtoFlash 

3. Static arrays 

Preprocess the keys and static arrays: to preprocess the data it is needed to create an 

.h file with the keys. To generate the keys, it is important to use the feature 

ofLPUART. The first step is to run the FrodoKEM640-AES or FrodoKEM640-

SHAKE keypair function and then print with the function of printing the private and 

public key. The next step is to create an .h file and insert the include #include 

“stdint.h” and initialize the arrays as uint8_t and const. An explanation for the word 

const is that defines the data as constant and the constant data is stored in Flash due to 

the linker script.After, the next step is to paste the public and secret key there. For the 

ciphertext it is necessary to run the encryption function and to implement the same 

steps. This technique creates three static arrays in this thesis and there are the 

following arrays. These three arrays are: public key 9616B, secret key 19888B, and 

ciphertext 9720B. 
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Figure 18: Preprocess keys and Ciphertext in a .h file 

 

Shared arrays&static arrays: a shared table is a table that you do not initialize with 

values when you first declare it and it has a lifespan until the end of the program run. 

It has a local scope. The table is not initialized, so its elements are initialized to the 

default value which is zero for the arithmetic formulas uint16_t. In more detail, this 

table is used in place of a different variable and each time it ends the use in which it is 

used, the data is transferred either to Flash or the corresponding operations are 

performed that aim at the implementation of the algorithm. 

 

To be more precise, the function of Encryption, Decryption and Keypair need a huge 

amount space in the memory to run. The function of Keypair uses 30864B to run, the 

function of Encryption requires 51248B and the function of Decryption demand space 

up to 71896B. Therefore, the space requirements of the algorithm are sufficient. For 

this reason, there is a shared array which consumes only 20KB of SRAM and with the 

transfer of data in Flash it helps reducing the space in SRAM. 

 

RamtoFlash: the necessary function Flash to Ram is used to embed data in Flash (see 

Embedded Flash Memory for analysis of Flash and how it works in 5.2 

STM32L552ZE). Herein, the focus of the analysis is placed on how Flash is used for 

the functions: keypair, encryption, and Decryption.  

6.6 RamtoFlash - Static arrays - .h files - Keypair - AES640 

CODE CODE CHANGES THEORY  

uint_8t pk[9616]  uint8_t pk[9616] Public key 
uint8_t *pk_seedA=&pk[0] uint8_t *pk_seedA=&pk[0] seedA 
uint8_t *pk_b=&pk[16] uint8_t *pk_b=&pk[16] b 
uint8_t sk[19888] uint8_t sk[19888] Secret key  
uint8_t *sk_s=&sk[0] uint8_t *sk_s=&sk[0]  
uint8_t *sk_pk=&sk[16] uint8_t *sk_pk=&sk[16]  
uint8_t *sk_S=&sk[9632] uint8_t *sk_S=&sk[9632]  
uint8_t *sk_pkh=&sk[19872] uint8_t *sk_pkh=&sk[19872] pkh 
uint16_t B[5120] uint8_t *B=&sk[0] B=A(B)S+E 
uint16_t S[10240] uint16_t S[10240] S 
uint16_t *E=&S[5120] uint16_t *E=&S[5120] E 
uint8_trandomness[48] uint8_trandomness[48]  
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uint8_t 

*randomness_s=&randomness[0] 

uint8_t 

*randomness_s=&randomness[0] 
s 

uint8_t 

*randomness_z=randomness[32] 

uint8_t 

*randomness_z=randomness[32] 
z 

uint8_t 

SHAKE_input_seedSE[17]; 

uint8_t 

SHAKE_input_seedSE[17]; 
 

uint8_t randomness_seedSE[17] uint8_t randomness_seedSE[17] seedSE 

 

Table 8: Variables in code and Variables in theory Keypair() 

The function Keypair has many variables and arrays: public key, secret key, two huge 

arrays (i.e., B and S), and three small arrays, randomness, SHAKE_input_seedSE, and 

randomness_seedSE. The public key and private key are required to bind 29504B 

space. Moreover, B and S need to occupy 30720B space, and the smaller variables 

need 81B. The two variables, B and S, have different roles in this function due to the 

fact that it is easy to delete the smaller one, which is B, and S is about 20K. Τhe only 

variable transferred from Ram to Flash is S. Then, to read the variable from Flash, 

you only need to point a pointer of uint16_t to the memory location where the 

variable is located and to use this pointer instead of the variable S. 

 

Figure 19: Send the data of S in the Flash and create a pointer in Flash to read the data with a pointer 

Figure 19 shows an example of how S can be read from Flash. The new variable 

uint16_t is the pointer Sdata, which takes the initial address of the array S[0], in the 

next line. The E1 pointer in the next line points to the variable at S[5.120]. Then S can 

be used instead of B and the user can write the results of the 

mul_add_as_plus_efunction there. The following step is to pack the data into the 

public key and load the data's array from Sdata to S. As a result, the amount of space 

available is reduced by 10240B. 

 

In the end of the function, to keep the keys it is necessary to transfer the data in Flash. 

One option is to use RamtoFlash and another option is to create an .h file with the 

preprocessed data being a type of const uint8_t. In the second option, to create an .h 

file the process is to print, with the print_int, the two keys and copy those data from 

the terminal (see Chapter 4.1.2). The last step is to paste the keys to the .h file. 
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6.7 RamtoFlash -Static arrays - .h files - Encryption - AES640 

The function of encryption has many variables and needs space up to 51248B. Except 

that, the function has an extra function inside which needs space up to 30784B, 

meaning that the program requires 82032B to run without the public key and 

ciphertext. The ciphertext uses space up to 9720B in SRAM and the public key uses 

9616B. Due to those variables, the space the program needs to run is 101368B. As a 

result, a microcontroller with low SRAM cannot afford to run the encryption().  

 

CODE CODE CHANGES THEORY  

uint8_t *pk_seedA=&pk[0] *pk_seedA=&pk[0](FLASH

) 

seedA  

uint8_t *pk_b=&pk[16] *pk_b=&pk[16](FLASH) B  

uint8_t ct[9732] uint8_t ct[9732] Ciphertext  

uint8_t *ct_c1=&ct[0]; uint8_t *ct_c1=&ct[0]; B’  

uint8_t *ct_c2=&ct[ ] uint8_t *ct_c2=&ct[ ] C  

uint16_t B[5120] uint16_t *B=&Sp[0] B’  

uint16_t V[64] uint16_t V[64] V  

uint16_t C[64] uint16_t C[64] C  

uint16_t Bp[5120] uint16_t *Bp=&Sp[0]   

uint16_t Sp[10304] uint16_t Sp[10304] send the 

data in Flashuse it as Spdata 

S  

uint16_t *Ep=&Sp[5120] uint16_t *Ep=&Sp[5120] 

send the data in Flash read it 

uint16_t 

*Ep=&Spdata[5120] 

E’  

uint16_t *Epp=&Sp[10240] uint16_t *Epp=&Sp[10240] 

send the data in Flash,read it 

as uint16_t 

*Epp=&Spdata[10240] 

E’’  

uint8_t G2in[32] uint8_t G2in[32]   

uint8_t *pkh=&G2in[0] uint8_t *pkh=&G2in[0]   

uint8_t *mu=&G2in[16] uint8_t *mu=&G2in[16]   

uint8_t G2out[32] uint8_t G2out[32]   

uint8_t *seeds=&G2out[0] uint8_t *seeds=&G2out[0]   

uint8_t *k=G2out[16] uint8_t *k=G2out[16]   

uint8_t Fin[9748] uint8_t *Fin=&Sp[0]   

uint8_t *Fin_ct=&ct[0] uint8_t *Fin_ct=&Sp[0]    

uint8_t *Fin_k=&ct[9732] uint8_t *Fin_k=&Sp[4860]   

uint8_tSHAKE_input_seedSE[17

] 

uint8_tSHAKE_input_seedS

E[17] 

  

 

Table 9: Variables in code and Variables in theory Encaps() 
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To manage the problem certain techniques were developed in this thesis. First, the 

public key is in the .h file, meaning that it is stored in Flash. After, the function has 

many variables which use space up to 51248B. The variables are B and Bp. each of 

which needs 10240B. The variables V and C which use 128B, G2in and G2out which 

require 32B, SHAKE_input_seedSE which needs 17B, Fin which requires 9736B, and 

Sp which requires 20608B.  

 

Another technique to reduce space is to delete the variables B, Bp, and Fin and 

replace them with Sp as a static array. First, Sp is generated and data is normalized 

with the function sample_n. The last step is to keep Sp in flash with the usage of 

RamtoFlash and after create a point named Spdata points in a specific address in 

Flash.  

 

Figure 20: Send the data of Sp in the Flash and create a pointer in Flash to read the data with a pointer 

As described above, Sp is a static array due to having various uses. After the 

generation and transmission of data in Flash, Sp takes the place of Bp with the 

function mul_add_sa_plus_eand there Bp is computed, which in this case is Sp. After 

Sp is packed in ct_c1 which is a pointer for the ciphertext. The next step for Sp is to 

take the place of B and to partake in two functions, namely unpacking the public key 

therein and in computing V=Spdata*Sp(B)+Epp with mul_add_sb_plus_e and after 

the second pointer of the ciphertext is generated through ct_c2. 

 

The last step inside the function of encryption is to create two uint8_t pointers, Fin_ct 

and Fin_K, to point to different places of Sp. The first point is *Fin_ct=&Sp[0] and 

the second is *Fin_K=&Sp[4860]. 

 

Figure 21: Create a pointer uint8_t and point the pointer in an uint16_t array. 
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6.8 RamtoFlash - Static arrays - .h files - Decryption - AES640 

CODE CHANGE CODE THEORY 

uint16_t B[5120]  A 

uint16_t Bp[5120] uint16_t *Bp = &Ep[0]; send the 

data in Flashread it as uint16_t 

*Bpdata= 

(__IOuint64_t*)Address; 

B’ 

uint16_t W[64] uint16_t W[64] V 

uint16_t C[64] uint16_t C[64] C 

uint16_t CC[64] uint16_t CC[64] C’ 

uint16_t BBp[5120] uint16_t *Bp = &Ep[0]; B’’ 

uint16_t Sp[10304] uint16_t Sp[10304] send the data 

in FLASH and read it as uint16_t 

*Spdata= 

(__IOuint64_t*)Address; 

S 

uint16_t *Ep=&Sp[5120] uint16_t *Ep=&Sp[5120] send 

the data in Flash read it uint16_t 

*Ep=&Spdata[5120] 

E’ 

uint16_t *Epp=Sp[10240] uint16_t *Epp=&Sp[10240] send 

the data in Flash,read it as 

uint16_t *Epp=&Spdata[10240] 

E’’ 

uint8_t *ct_c1=&ct[0] uint8_t *ct_c1=&ct[0] (FLASH) B’ 

uint8_t *ct_c2=&ct[ ] uint8_t *ct_c2=&ct[ ](FLASH) C 

uint8_t *sk_s=sk[0] uint8_t *sk_s=sk[0] (FLASH)  

uint8_t *sk_pk=&sk[16] uint8_t 

*sk_pk=&sk[16](FLASH) 

seedA 

uint8_t *sk_S=&sk[9632] uint8_t 

*sk_S=&sk[9632](FLASH) 

S 

uint16_t S[5120]  uint16_t *S = &Sp[0];  

uint8_t 

*sk_pkh=sk[19872]  

uint8_t *sk_pkh=sk[19872]   

uint8_t *pk-

_seedA=&sk[16] 

uint8_t *pk_seedA=&sk[16] seedA 

uint8_t *pk_b=&sk[32] uint8_t *pk_b=&sk[32] B 

uint8_t G2in[32] uint8_t G2in[32]  

uint8_t *pkh=&G2in[0] uint8_t *pkh=&G2in[0]  

uint8_t 

*muprime=&G2in[16] 

uint8_t *muprime=&G2in[16]  

uint8_t G2out[32] uint8_t G2out[32]  

uint8_t 

&seedSEprime=&G2out[0

] 

uint8_t 

&seedSEprime=&G2out[0] 

 

uint8_t 

*kprime=&G2out[16] 

uint8_t *kprime=&G2out[16]  

uint8_t Fin[9748] uint8_t *Fin=&Sp[0]  

uint8_t *Fin_ct=&Fin[0] uint8_t *Fin_ct=&Sp[0]   

uint8_t *Fin_k=Fin[9732] uint8_t *Fin_k=&Sp[4860]  

uint8_t 

*SHAKE_input_seedSEpri

me[17] 

uint8_t 

*SHAKE_input_seedSEprime[17

] 
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Table 10: Variables in code and Variables in theory Decaps() 

The Decryption function has a lot of variables and takes up a lot of space, up to 

71896B. Except for the fact that the function contains an extra function which create 

the matrix A (4.4 Generating Matrix A)that takes up to 30784B of memory, the 

program requires 102680B of memory to run without the secret key and ciphertext. 

Ciphertext uses 9720B RAM and the key 19888B.All the variables need space 

132288B. 

 

The implementation to reduce the space begins with the secret key and ciphertext are 

initially stored in the .h file, indicating that they are in Flash. B, Bp, and BBp 

variables require 10240B; W, CC, C require 128B; G2in, G2out require 32B; SHAKE 

input seed_SE variables demand 17B; Fin requires 9736B, and Sp requires 20608B. 

 

Another way to save space was to remove some variables (B, BBp, and Fin) and 

replace them with a static array (Sp). First, the ciphertext pointers ct_c1 and ct_c2 

used the function of unpacking to transfer their content to Bp and C. To maintain the 

Bp data, the function of RamtoFlash was used and data was transferred to Flash, then 

the pointer was referred to with the name Bpdata and used instead of Bp. 

 

 

Figure 22: Send the data of Bp in the Flash and create a pointer in Flash to read the data 

Because of its multiple uses, Bp is a static array, as stated in the previous paragraph. 

After the production and transmission of data to Flash, Bp took the position of BBp in 

the function mul- add sa plus e, where Bp is computed, and then the Bp module of q, 

which is a parameter, was reduced. The next step was to use the function of ct to 

verify the results of BBp and Bp with the data of BBp being located at Bp and the 

data of Bp at Bpdata in Flash and return an integer to selector1. 

 

The next stage is to compute the data of B, and in place of Bthere is Bp, which uses 

data from the public key to calculate W=Sp*B+Epp, using the function of unpack. 

Following those procedures, CC is computed and C and CC are verified using the 

function ct_verify, which returns an integer int8_t with the name selector2. After that, 

the selector1| selector2 result has to be checked and saved in the variable int8_t 

selector. 
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The final stage in the function of encryption is to generate two uint8_t pointers, Fin ct 

and Fin K, which point to distinct locations of Sp, namely *Fin ct=&Sp[0] and *Fin 

K=&Sp[4860]. 

 

Figure 23: Create a pointer uint8_t and point the pointer in an uint16_t array 

The aforementioned approach used for the encryption, decryption, and Keypair stages 

was repeated for the implementation of FrodoKEM640-SHAKE where the released 

memory was 303472 for encryption, 46928 for decryption, and10218 for Keypair. As 

for encryption and decryption, the keys were in an .h file. 

6.9 Optimization Techniques 

There are two types of optimizations the -Ofast and -O0. Optimization for speed was 

chosen using -Ofast to improve performance. More specifically, Arm Compiler makes 

us of certain optimizations to boost application performance. Based on the user’s goal, 

the relevant optimization is chosen. As regards optimizing performance, the 

recommended optimizations are -O2, -O3, and -Omax, along with -Ofast [25].-Omax 

is not an available option for STM32L552 and STM32WL55JC1. Therefore, all the 

rest optimizations were checked, and the final optimization which was chosen was -

Ofast as it was considerably faster. -Ofast runs optimizations from level -O3 and 

involves the optimizations that run with the option of -ffast-math armclang option. -

Ofast runs aggressive optimizations, too, which may cause language compliance 

violations, negatively affect debugging, and increase the size of the code in 

comparison with -O3.Choosing the level -O0 (default) of the command line option -

On, allows for no optimization. [25] That is why it is common practice to utilize -O0 

for debugging. 
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7. Results 

This chapter reports the results of the research. These results refer to the two 

microcontrollers STM32WL55JC1 and STM32L552ZE and more specifically to the 

implementation time. Then a feature work is reported which analyses one of the ways 

that FrodoKEM could operate in an IoT system. 

7.1 Results for TIMER for STM32L552 without -Ofast 

optimization 

The STM32L552 implements ten different projects for FrodoKEM. The first five 

conclude the AES and the other five only the SHAKE128. The table shows the time 

that the microcontroller needs to run each function. The time is counted with 

TIMER2.The results above in the table present the time which is required each time 

for every function to run. Furthermore, the results show that the form which two-way 

cache works more effectively for this thesis program. A remarkable option is that the 

program with usage of flash with two-way cache has similar results as the one-way 

cache without usage of flash. The FrodoKEM640 with the usage of SHAKE128 to 

generate matrix A shows that the algorithm of only using SHAKE128 is quicker than 

FrodoKEM640 which uses AES-128. The results present that it is more effective to 

use one-way cache forSHAKE128. 

 

Table 11: FrodoKEM640 AES and SHAKE results for STM32L552 from timer 

 

FRODOKEM KEYPAIR ENCRYPTION DECRYPTION 

AES 1-WAY 

CACHE 
10,386928s 10,819695s 10,800936s 

AES 2-WAY 

CACHE 
9,240595s 9,684542s 9,656033s 

AES WITHOUT 

CACHE 
15,902839s  16,502325s 16,483416s 

AES 1-WAY 

CACHE & FLASH 
11,195637s 11,649415s 11,806252s 

AES 2-WAY 

CACHE & FLASH 
10,046823s 10,505343s 10,663041s 

SHAKE 1-WAY 

CACHE 
6,296684s 7,978692s 7,959624s 

SHAKE 2-WAY 

CACHE 
7,23780s 8,94332s 8,91431s 

SHAKE 1-WAY 

CACHE & FLASH 
7,126521s 8,824282s 8,995053s 

SHAKE 2-WAY 

CACHE & FLASH 
8,06187s 9,79278s 9,95312s 

SHAKE WITHOUT 

CACHE 
9,244770s  12,691196s  12,676077s  
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Table 12: FrodoKEM640 AES and SHAKE results for STM32L552 from debugger 

7.2 Results for TIMER for STM32L552 with -Ofast optimization 

The STM32L552 implements ten different projects for FrodoKEM. The first five 

conclude the AES and the other five only the SHAKE128. The table show the time 

that the microcontroller needs to run each function. The time is counted with 

TIMER2.There is no actual difference as there are almost identical results in the run-

time of cache, either when it comes to one-way or two-way cache, when having 

introduced -Ofast optimization for STM23L552. When cache is not used, there is a 

considerable increase in time of almost 2 seconds. 

 

When using SHAKE128 to produce matrix A, the results of FrodoKEM640 present 

that by only exploiting SHAKE128 the algorithm becomes faster than that of 

FrodoKEM640 which only involves AES-128. Therefore, it is shown that one-way 

cache for SHAKE128 is more efficient. Comparing the above data from 7.1 and 7.2, it 

is evident that there is less runtime using -Ofast compared to using -O0 (default) and 

performance improves, as well. 

 

FRODOKEM KEYPAIR ENCRYPTION DECRYPTION 

AES 1-WAY 

CACHE 
10,480978918s 10,917535s 10,898455s 

AES 2-WAY 

CACHE 
9,325938s 9,703519s 9,7453551s 

AES WITHOUT 

CACHE 
15,871298318s 16,614699s 16,600649s 

AES 1-WAY 

CACHE & FLASH 
11,297804s 11,755729s 11,914011s 

AES 2-WAY 

CACHE & FLASH 
10,109130s 10,601200s 10,761207s 

SHAKE 1-WAY 

CACHE 
6,254449s 8,051011s 8,032435s 

SHAKE 2-WAY 

CACHE 
7,245729s 8,951207s 8,928169s 

SHAKE 1-WAY 

CACHE & FLASH 
7,191769s 8,880082s 8,999093s 

SHAKE 2-WAY 

CACHE & FLASH 
8,063111s 9,802377s 9,963410s 

SHAKE WITHOUT 

CACHE 
9,328562s  12.806221s 12,790996s  

    

FRODOKEM KEYPAIR ENCRYPTION DECRYPTION 

AES 1-WAY 

CACHE 
1,495845s 1,522546s 1,514929s 

AES 2-WAY 

CACHE 
1,494458s 1,521095s 1,513586s 

AES WITHOUT 3,844165s 3,916926s 3,903146s 
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Table 13: FrodoKEM640-AES and SHAKE with -Ofast 

7.3 Results for TIMER for STM32WL55JC1 with -Ofast 

optimization 

The FrodoKEM640 AES at the STM32WL55JC1 is less fast. The difference is that 

this microcontroller has the AES accelerator which can reduce the time of run to a 

significant level.On the other hand, the FrodoKEM640 SHAKE is an algorithm which 

uses less time to implement in comparison with FrodoKEM640 AES. 

 

Table 14: FrodoKEM640AESSHAKE results for STM32WL55 

7.4 Final remarks 

Nowadays, security on embedded devices is in an emergency. New post-quantum 

computers can attack and take access to private data. The main goal of this thesis is to 

apply a post quantum algorithm as FrodoKEM to two different microcontrollers with 

low MHz in comparison with a PC processor. That is why FrodoKEM can be used in 

IoT programs or for signatures to keep data safe from vulnerable attacks as a valuable 

tool for the increasing needs of the modern IT industry.  

7.5 Conclusion 

For the needs of this thesis, the algorithm FrodoKEM was used to improve the 

security of smaller-sized and embedded devices taking into consideration the rise of 

cryptanalytic attacks owing to the ongoing developments of quantum computing. The 

encapsulation mechanism of FrodoKEM was tested using a two-way cache on the 

CACHE 
AES 1-WAY 

CACHE & FLASH 
2,317678s 2,334294s 1,932913s 

AES 2-WAY 

CACHE & FLASH 
2,316002s 2,331745s 2,506324s 

SHAKE 1-WAY 

CACHE 
1,309897s 1,505160s 1,497324s 

SHAKE 2-WAY 

CACHE 
1,296647s 1,491468s 1,483770s 

SHAKE 1-WAY 

CACHE & FLASH 
2,123165s 2,293968s 2,480437s 

SHAKE 2-WAY 

CACHE & FLASH 
2,115956s 2,286825s 2,485735s 

SHAKE WITHOUT 

CACHE 
2,108932s 2,266745s 2,457345s 

    

 KEYPAIR ENCRYPTION DECRYPTION 

FrodoKEMAES  4,871132s 6,055257s 6,392991s 

FrodoKEMSHAKE 5,092828s 5,617887s 6,879387s 
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STM32L552 microcontroller, which enabled the algorithm to run faster with AES. 

Results showed that the SHAKE128 algorithm ran faster on the STM32L552 

microcontroller compared to the lower speed resulting from the implementation of 

FrodoKEM. Finally, the SRAM space in STM32WL55JC1 was minimized after data 

transmission was directed to Flash memory, which combined with the aforementioned 

tests proved to optimize security. Based on the adaptability of WLSSJC1 which 

allows for the connection to a wireless LoRa Network and Cloud computing, in 

general, the findings of the applied FrodoKEM scheme indicate that the 

implementation of this algorithm is applicable and effective for the security, 

management, and overall performance of IoT systems. 

7.6 Future work 

Nowadays, the rapid increase of the IoT systems is a fact. Many researchers upgrade 

their knowledge and they find new technologies to make the lives of people more 

efficient. The main problem with new technologies is that it is necessary to find new 

solutions and technologies to keep data safe. Future research ought to be conducted 

about an IoT system which is protected by a post-quantum algorithm. The main 

requirement is that it is important for the boards to send their data to a trusted device 

as a Cloud. Moreover, a plan to materialize this is to request access from the Cloud 

again whenever a microcontroller goes through some firmware update or a reset. In 

Figure 24, there is Bob (i.e., user) and the Cloud system. Every time an embedded 

system needs to reset or do a firmware update, it starts encryption with the public key 

of the Cloud with the usage of FrodoKEM and is sent for verification. If all is right, 

the microcontroller gains access to the Cloud again. The connectability of WLSSJC1 

with a LoRaWAN network featuring secure edge gateways is able to implement a 

FrodoKEM algorithm to boost the overall performance of an IoT system [5]. 

 

 

 

Figure 24: Bob implements the encryption with the public key of the Cloud system and the Cloud 

system the decryption with secret key to check if there is an attack 
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