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Abstract

The present work outlines core aspects of machine learning in the fields of radiomics, genom-

ics, transcriptomics and radiogenomics. More specifically, it’s attempting through the usage of

multi-type data (including medical images, gene expressions, trascriptome expressions) to ad-

vance the diagnostic power of predictive models. In the same time, it’s trying to advance the

survival rate metrics using the same type of data in order to help with cancer correlations and

treatment observation and evaluation.

Starting off the reader will understand core concepts of the biomedical field, the nature of

the problem as well as the scope and target of this thesis. Continuing we will also give  the

reader  the necessary  computational  knowledge needed to  follow up with  the  experiments.

Moving forward we perform a multi-type experiment attempting to merge radiogenomic clas-

sifiers with a better cancer survival rate. Lastly we present our results, give our outlook and

discuss about the work done & problems we encountered and close off by pondering over fu-

ture research.

The begin of the experiments starts with a lengthy preprocessing of approximately 4000

MRI blocks of multiple modalities (FLAIR, T1, T1CE, T2) and generation of custom input ob-

jects. Through the use of a DNN, namely a 3D CNN with modified inputs, we establish cancer

classification and semantic segmentation into 4 major classes(background, necrotic core/non

enhancing tumor, peritumoral edema, enhancing tumor) through the training and evaluation of

multiple segmentation models. 

Using the imaging data, we extract a plethora of imaging features that we later use in gradi-

ent boosting (XGBOOST) to approximate survival prediction from the imaging data analysis.

Continuing with the genomic & trascriptomic data, we establish two major classes of “dead” or

“alive for over 100 days” and generate classifiers based on the multi-omic profiling of our

samples. Lastly we use the multi-omic data to generate powerful regressors for survival rate

prediction.

Key  words:  bioinformatics,  radiogenomics,  MRI,  multi-omics,  cancer,  gliomas,  Data

Preprocessing,  3D-CNN,  Classification,  Regression,  Semantic  segmentation,  tumor

classification,  Survival prediction

iv



Περίληψη

Η παρούσα εργασία σκιαγραφεί τις βασικές πτυχές της μηχανικής μάθησης στους τομείς της

ραδιονομικής,  της γονιδιωματικής,  της μεταγραφτομικής και  της ραδιογονιδιωματικής.  Πιο

συγκεκριμένα,  επιχειρεί  μέσω  της  χρήσης  δεδομένων  πολλαπλών  τύπων

(συμπεριλαμβανομένων  ιατρικών  εικόνων,  εκφράσεων  γονιδίων,  εκφράσεων

μεταγραφωμάτων)  να  προωθήσει  τη  διαγνωστική  δύναμη  των  προγνωστικών  μοντέλων.

Ταυτόχρονα,  προσπαθεί  να  προωθήσει  τις  μετρήσεις  του  ποσοστού  επιβίωσης

χρησιμοποιώντας τους ίδιους τύπους δεδομένων, προκειμένου να βοηθήσει με τις συσχετίσεις

του καρκίνου και την παρατήρηση και αξιολόγηση της καρκινικής θεραπείας. 

   

   Ξεκινώντας ο αναγνώστης θα κατανοήσει τις βασικές έννοιες του βιοϊατρικού τομέα, θα

κατανοήσει τη φύση του προβλήματος καθώς και το εύρος και τον στόχο αυτής της διατριβής.

Συνεχίζοντας αποτυπώνουμε τον αναγνώστη τις υπολογιστικές γνώσεις που απαιτούνται για

την  παρακολούθηση  των  πειραμάτων.  Προχωρώντας,  πραγματοποιούμε  ένα  πείραμα

πολλαπλών  τύπων  επιχειρώντας  να  συγχωνεύσουμε  ραδιογονιδιωματικούς  ταξινομητές  με

καλύτερο  ποσοστό  επιβίωσης  από  καρκίνο.  Τέλος,  παρουσιάζουμε  τα  αποτελέσματά  μας,

δίνουμε τις προοπτικές μας και συζητάμε για τη δουλειά που έχει γίνει και τα προβλήματα που

αντιμετωπίσαμε και κλείνουμε με το στοχασμούς για μελλοντική έρευνα. 

   

   Η αρχή των πειραμάτων ξεκινά με μια μακρά προεπεξεργασία περίπου 4000 μπλοκ MRI

πολλαπλών  τύπων (FLAIR, T1, T1CE, T2) και δημιουργία προσαρμοσμένων αντικειμένων

εισαγωγής.  Μέσω  της  χρήσης  ενός  DNN,  συγκεκριμένα  ενός  τρισδιάστατου  CNN  με

τροποποιημένες εισόδους, καθιερώνουμε την ταξινόμηση του καρκίνου και τη σημασιολογική

κατάτμηση σε 4 κύριες  κατηγορίες  (υπόβαθρο,  νεκρωτικός πυρήνας/μη ενισχυτικός  όγκος,

περιογκικό  οίδημα,  ενισχυτικός  όγκος)  μέσω  της  εκπαίδευσης  και  της  αξιολόγησης  έξι

μοντέλων πολλαπλής τμηματοποίησης εικόνας. 

   Χρησιμοποιώντας τα δεδομένα απεικόνισης μας, εξάγουμε μια πληθώρα χαρακτηριστικών

απεικόνισης που αργότερα χρησιμοποιούμε στους ταξινομητές ενίσχυσης κλίσης (XGBOOST)

για να προσεγγίσουμε την πρόβλεψη επιβίωσης από την ανάλυση δεδομένων απεικόνισης.

Συνεχίζοντας  με  τα  γονιδιωματικά  και  μεταγραφικά  δεδομένα,  καθιερώνουμε  δύο  κύριες

κατηγορίες  «νεκρών»  ή  «ζωντανών  για  περισσότερες  από 100 ημέρες»  και  δημιουργούμε

ταξινομητές με βάση το πολυ-ομικό προφίλ των δειγμάτων μας. Τέλος, χρησιμοποιούμε τα
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πολλυ-ομικά δεδομένα για να δημιουργήσουμε έναν ισχυρό παλινδρομητή για την πρόβλεψη

του ποσοστού επιβίωσης. 

Λέξεις Κλειδιά:  βιοπληροφορική, μαγνητική τομογραφία,  χαρακτηριστικά ιατρικής εικόνας,

3D-CNN, multi-omics,  καρκίνος,  προ-επεξεργασία  δεδομένων,  γλοίωμα,  κατηγοριοποίηση,

παλινδρόμηση, σημασιολογική κατάτμηση, κατηγοριοποίηση όγκου, πρόβλεψη επιβίωσης
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1. Biomedical Literature

1 Biomedical Literature

Biology is the study of living things. In this section we give a brief overview of core con-

cepts the reader needs to know to understand the problem this thesis is trying to tackle.

1.1 Cell

Dubbed as the smallest unit of life that can live on it’s own by the dogma of Biology,

the cell is the principal building block of all organisms (even if it’s a one cell organ-

ism!). It consists of three main parts(fig.11):

1. the cell membrane, surrounds the cell and

controls it’s I/O stream

2. the cytoplasm, the fluid within the cell that

contains multiple smaller cell parts that per-

form certain functions (energy production,

protein forming, etc.)

3. the nucleus, which contains the cell’s DNA

      

Fun fact: the average human consists of more than 30 trillion cells!

1.2 DNA

DNA(fig.22) is  a polymer composed of two polynucleotide chains that coil  around

each other to form a double helix as proposed by Watson & Crick [16]. It carries ge-

netic instructions for the development, growth and reproduction of all known organ-

isms. Each DNA strand is made of four chemical units, called nucleotide bases, which

comprise the genetic "alphabet." The bases are adenine (A), thymine (T), guanine (G),

and cytosine (C). 

The vast majority of our DNA (named ncDNA that composes 98% of our DNA)

doesn’t code proteins but serves functional roles (like the regulation of gene expres-

sion). It is believed that it has functions that are yet to be discovered3. 

1 https://media.istockphoto.com/photos/internal-structure-of-an-animal-cell-3d-rendering-section-view-picture-id1306045773?
k=20&m=1306045773&s=612x612&w=0&h=81ecNdkPSXfw8gAYvZW-Aj_rocDDfjlfBqTrmPg5--M=

2 https://en.wikipedia.org/wiki/DNA#/media/File:Eukaryote_DNA-en.svg
3 https://www.lsi.umich.edu/news/2018-04/scientists-discover-role-%E2%80%98junk%E2%80%99-dna

1

Figure 1: The Cell 



1. Biomedical Literature

A gene is a hereditary unit that we inherit from

our parents that define our characteristics(color of

eyes, height, etc). A human has about 23,000 such

instruction  snipets.  They are  composed of DNA.

The complete set of an organisms genes is called

the genome. In humans the genome is approxim-

ately ~2% of our total DNA. Our genome is dis-

tributed in 46 chromosomes (23 pairs), half taken

from our mother and the other half from our father.

1.2.1 Genomics

The study of the genome and it’s environment is called Genomics. It is an interdisci-

plinary field of Biology. It aims at the collective characterization and quantification of

all of an organism's genes, their interrelations and influence on the organism[19].

A major milestone of the field is the completion of “The Human Genome Project”.

It is dubbed as one of the greatest scientific feats in history. It started in 1997 and it’s

aim was to decipher the chemical makeup of the human genome[17] and it finished in

2003[18] having completed about 92% of the total human genome sequencing. 

1.3 RNA

RNA is also a nucleic acid that exists in all living cells. It has structural similarities to

DNA, but unlike DNA it is single stranded (with some exceptions to double stranded

RNA viruses and special RNA types). It is using the same bases as DNA [1.2] with the

only difference that it’s using uracil (U) instead of thymine (T). There are multiple

types of RNA but the three major types are:

• mRNA: DNA is stored inside the nucleus and under normal circumstances it

never leaves it. The mRNA comes into play to carry out information from the

nucleus to the cytoplasm

• rRNA: becomes part of the ribosome, which is the factory for protein synthesis

• tRNA: is the carrier of amino acids to the ribosome in order to complete the

protein synthesis

2

Figure 2: Location of our DNA



1. Biomedical Literature

1.3.1 Transcription

Transcription(fig.34) is the first step in gene expression, in which information from a

gene is used to construct a functional product such as a protein. The goal of transcrip-

tion is to make an RNA copy of a gene's DNA sequence5. For a protein-coding gene,

the RNA copy(transcript), carries the information needed to build a polypeptide (pro-

tein or protein subunit).

1.3.2  miRNA

The miRNA[18] is  a small  RNA segment that is produced by ncRNA. The job of

miRNA is to act as a gene regulator by intercepting the mRNA and silencing genes.

This happens because miRNA is partially complementary to the mRNA it’s trying to

oppress. As soon as it attaches itself to the mRNA, it will cause either it’s degradation

or prevent ribosomes from translating it.

The interesting thing about miRNA is that it can be associated with a plethora of

diseases, cancer being one of them[20],[21]. The very odd thing about it is that it has

both been associated with oncogenic events and as tumor suppressing agent!

We call this type of miRNA, an “oncomiR”. A list of miRNAs directly associated

with cancer can be found here6. Lastly, research has shown that miRNAs can directly

be associated with survival prediction in cancer patients [22], [23].

4 https://cdn.kastatic.org/ka-perseus-images/20ce29384b2e7ff0cdea72acaa5b1dbd7287ab00.png
5 https://www.khanacademy.org/science/ap-biology/gene-expression-and-regulation/transcription-and-

rna-processing/a/overview-of-transcription
6 https://en.wikipedia.org/wiki/

Oncomir#Characteristics_and_mechanisms_of_some_well_defined_oncomirs

3

Figure 3: The process of transcription and translation
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1.3.3 Transcriptomics

Same as with Genomics in [1.2.1], transcriptomics study the transcriptome (the com-

plete set of RNA transcripts that are produced by the genome). The main focuses of

transcriptomics is how transcripts of a cell, tissue or living organism are influenced by

disease or other environmental factors[19], but scientists are also looking into other

functions for ncRNA.

1.4 Brain

The brain is the most complex organ inside the human body. It controls our thoughts, it

stores memories, expresses emotion through chemical reactions, understands and pro-

cesses complex signals from our sensors (vision from our eyes, audio from our ears)

and generally is the main operator behind most processes that are carried out inside

our body.

1.4.1 Brain cell (Neuron)

To further our understanding of the brain we begin with the smallest biological compu-

tational unit. The neuron[24](fig.47).

Neuron are primarily information messengers. They collect information from other

neurons on their dendrites via neurotransmitters. The information flows to the cell nuc-

7 The source of the image was google, but it has been lost

4

Figure 4: A biological neuron
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leus and gets stored in the axon hillock. When enough information is gathered to ex-

cite the neuron it generates an action potential. Then the information travels down the

axon, which is covered in myelin (layer that insulates the pathway so the signal won’t

loose it’s strength. The signal reaches the axon terminals and the neuron emits neuro-

transmitters. Lastly the neuron resets to prepare to fire again.

1.4.2 Main parts of the brain

The brain consists of approximately 100 billion neurons [1.4.1]! There are many more

parts in the brain than neurons. Synoptically the main parts of the brain are(fig.58):

• Frontal lobe, is our cognitive center (controls speech, judgement, etc.)

• Parietal lobe, helps with sensory information 

• Temporal lobe, is responsible for memory and hearing

• Occipital lobe, processes input coming from our eye retina

• Cerebellum, primary motor functions and balance

• Spinal cord, is what connects our brain with the rest of the body forming the

CNS

8 https://www.hopkinsmedicine.org/-/media/images/health/1_-conditions/brain/brain-lobes-ana-
tomy.ashx
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Figure 5: The brain's anatomy
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1.5 Cancer

Cancer is a genetic disease that is caused when cells in the human body disavow the

natural cycle of their lives by refusing to die when they become too damaged or dic-

tated to do so, or growing uncontrollably without being signaled to do so. This can

happen anywhere in the body because as mentioned in [1.1] the human body averages

over 30 trillion cells.

Cancerous cells that aren’t intercepted by our immune system might form clumps

that we call tumors. These tumors can be classified as:

• Benign, which is in general an overgrowth of human cells but may still pose a

serious threat to ones life. These usually don’t re-appear after being removed.

• Malign, where the tumor will start invading nearby tissue and start over con-

suming resources to the point that the further it expands, it’s internal area dies

from the lack of resources (oxygen, building blocks, etc.).

There are four distinct cancer stages and a preliminary stage:

• Stage 0: cancer is localized in the area that it started

• Stage I: cancer is localized to a small area and hasn’t spread to lymph nodes or
other tissues. 

• Stage II: cancer has grown, but it hasn’t spread. 
• Stage III: cancer has grown larger and has possibly spread to lymph nodes or

other tissues. 
• Stage IV: cancer has spread to other organs or areas of the body. (metastasis)

Cancer is statistically likely to show up in our lives. A research facility in the UK

claims that one in two people will develop cancer in their lifetime9. There are multiple

major risk factors for cancer:

• Hereditary, if one or both parents had or develop cancer, the genes get passed

down to the children 

• Exposure  to  radiation  (Atomic  accidents  like  Chernobyl(1986),  or  UV sun

rays) that causes destabilization of DNA which might lead to cancer

• Age, the older we get it’s more likely for an error to occur while cell replica-

tion happens leading to cancerous cells 

9 https://www.cancerresearchuk.org/about-cancer/causes-of-cancer/age-and-cancer
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1.5.1 Brain Cancer

Due to brain cancer not operating like other tumors (e.g. it’s very rare for a brain tu-

mor to metastasize outsize of the brain) a special grading system is used. The person-

nel in charge of diagnosing the grade will perform preliminary neurological tests to de-

termine the impact of the tumor on basic functions (speech, motor function, etc.). The

main factors used to asses the tumor include:

• Size, morphology and location

• Type of cells / tissue affected

• The possibility of the partial or full tumor volume being removed by surgery

(resectability) or cauterization

• The spread of the cancer within the brain or spinal cord

• The possibility the cancer metastasized outside the brain area or the CNS

1.5.1.1 Gliomas

Gliomas make up about 33% of the brain cancers. Glioma is an umbrella term that de-

notes cancers found in the glial cells. Glial cells are responsible to clean up after neur-

ons as well as resupply them with resources.

Usually the gliomas are named for the type of glial cell they resemble. The way we

grade gliomas is how aggressive they are and how fast they grow:

• LGG: grade I & II 

• HGG: grade III & IV

Often times it’s not enough to grade a glioma by it’s type. A low grade glioma can

rise in grade if it shows excessive aggression or growth. It can also rise in grade if a

gene analysis finds high correlation with already established high grade gliomas (e.g.

GBM IDH wildtype is a grade IV glioma and currently the most aggressive brain can-

cer).

1.5.2 Diagnosis

Most cancers  usually  give a  footprint  signalling their  existence.  They might  cause

pain, discomfort, and a myriad of other symptoms. A doctor will perform standard

physiological tests and look through the patients family medical record. In case they

7
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find something abnormal they might order lab tests(blood work), imaging tests(CT,

MRI, PET, Ultrasound) or even a biopsy where tissue and fluid from the tumor is ex-

tracted surgically and tested in a lab. 

The problem with brain cancer, especially LGGs (because of the low growth rate) is

that the brain is encapsulated in our skulls. The brain itself does not have any pain re-

ceptors so brain cancer often times is very hard to diagnose. It will make itself known

through various symptoms among others:

• Headaches coming in various frequencies and severities 

• Problems with cognitive functions 

• Motor functions operating abnormally 

• Drastic changes in personality

1.5.2.1 Radiology

Radiology is a field in medical science that works with imaging techniques to let doc-

tors see inside a patients body without invasive means. Despite the term containing the

word radiation not all of Radiology is radiation based (e.g. MRI, Ultrasound).

Radiology can be broken down into two categories:

• Diagnostic, imaging within the body:

◦ CT Scan

◦ MRI

◦ PET

◦ Ultrasound

◦ Mammography

• Interventional, when it’s used to guide a proced-

ure, like incision, catheter placement, etc.

The field that studies radiological data and extracts information in the forms of fea-

tures is called radiomics [3.4]. 

1.5.2.1.1 MRI 

MRI is an imaging technology that produces detailed anatomical images of internal

body regions by non-invasive means. 

8

Figure 6: CT scan
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It uses a giant magnet (Usually 1.5 or 3 Tesla but advancements in the field have

proved that high tesla magnets increase the quality of the pictures taken(e.g. the 11.7

tesla magnet used in the Iseult Project[27])) to create a unified magnetic field around

the patient. 

When the patient enters the field the water molecules will align themselves with the

magnetic field due to hydrogen atoms acting as magnets. Low energy water molecules

also start spinning when we bombard them with a radio frequency waves by sapping

the energy needed from the radio waves. 

When the radio waves are interrupted these molecules discharge the energy and re-

turn to equilibrium state while the rest of the water molecules keep spinning in re-

spects to the unified magnetic field. The MRI machine detects the movement of the

low energy water molecules and then translates that into slices based on a gradient. By

stacking these slices we obtain a 3D representation of the organ or we want to observe.

Because MRI doesn’t use radiation like X-Rays or CT scans do, it’s often the best

type of imaging for frequent studies although the cost can be rather high in comparison

to the aforementioned. 

By changing the radio wave frequency and the gradient we obtain a different MRI

[28]. These are called MRI sequences10. Using different sequences yields different tis-

sue densities. Examples of sequences:

10 https://www.wikidoc.org/index.php/MRI_sequences

9

Figure 7: MRI Scanner
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• T1 (longitudinal relaxation time)(fig. 811):

◦ Fat: bright 

◦ Muscle: gray

◦ Fluid: dark

◦ Moving blood: dark

◦ Bone: dark

◦ Air: dark

◦ Brain:

▪ Gray matter: gray

▪ White matter: bright

T1 is best used in assessing the anatomy as the image resembles the tissue macro-

scopically. 

• T1 CE(or GD) (fig. 912):

Practically the same as T1 with the difference that the

patient is injected with GD.  This is used to alter the mov-

ing blood density to bright. T1-CE is useful in assessing hy-

pervascular lesions.

• T2 (transverse relaxation time)(fig.1013):

◦ Fat: bright

◦ Muscle: gray

◦ Fluid: dark

◦ Moving blood: dark

◦ Bone: dark

◦ Air: dark

◦ Brain:

▪ Gray matter: gray

▪ White matter: bright

Used mostly as supplementary to T1, to help with the lesion analysis.

11 https://www.wikidoc.org/images/3/31/T1_acoustic-schwannoma-14.jpg
12 https://www.wikidoc.org/images/c/c8/T1_c_acoustic-schwannoma-14.jpg
13 https://prod-images-static.radiopaedia.org/images/

3374474/17d9d073fda711fd52fd1522243594_thumb.jpg

10

Figure 8: T1 

Figure 9: T1 CE

Figure 10: T2
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• FLAIR (fig.11):

◦ Fat: bright

◦ Muscle: gray

◦ Fluid: dark

◦ Moving blood: dark

◦ Bone: dark

◦ Air: dark

◦ Brain:

▪ Gray matter: gray

▪ White matter: darker than gray matter

Useful in assessing lesions near ventricles, the lesion can easily be discriminated by

cerebrospinal fluid.

1.5.3 Survival Rate

Survival rate is a metric that is used to calculate the life expectancy of a cancer patient

based on previously recorded cases. It’s often spread into three time frames:

• 1st year mark

• 5 year mark

• 10 year mark 

In some special cases (GBM IDH wildtype), the cancer is aggressive enough that

sub one year prediction metrics come into use[29].  Survival  prediction isn’t  set  in

stone, one could argue that due to the older recordings of fatalities due to cancer the

prediction can be biased by the time frame they were taken in respects to the dia-

gnostic & technological level of the times. In recent years we’ve come to use survival

rate as a metric to observe and document the results of cancer therapy. There are mul-

tiple factors that form this metric14: 

• Type of cancer (glioma, lymphoma, etc.)

• Stage of cancer ([1.5])

• Available treatment (chemotherapy, radiation, etc.)

• Age & gender,

By adding more data types (radiomic, genomic, etc.) to the factor section we are

able to create far more complex models to calculate the survival rate of a patient.
14 https://www.wcrf.org/cancer-trends/cancer-survival-statistics/

11

Figure 11: FLAIR
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2 Research Question

In this section we will discuss current problems related to cancer in multiple levels(so-

cial, diagnostic, treatment),  efforts in the literature and give our proposed solution and

define the scope and target of this dissertation.

2.1 Problems

According to WHO, cancer is one of the leading causes of death on the planet surpass-

ing 10 million deaths in a year15! There are many problems associated with cancer, not

all of them being the cancer itself:

• Socioeconomic spectrum: According to Anna Lewandowska[34] in a study in-

volving 800 patients, they found out that cancer patients have a high level of

unmet needs especially in terms of psychological support and medical informa-

tion.  Most  of  them find themselves  in  denial,  despair  and extreme anxiety.

These states have a high effect on the decision making and clairvoyance of the

situation the patient is in. On the same scope, a study in the UK [33] supports

that patients would get treated for their symptoms without the idea of cancer

being present based on socioeconomic and educational level factors.

• Lack of data: while there might be an influx of cancer caused deaths and new

cancer cases16over the last decade, the lack of large multi type datasets and

public data availability is impacting research teams across the globe and hin-

ders design and creation and evolution of prognostic, diagnostic and treatment

assessment tools.

• Diagnostic: Disavowing early signs. A Danish study [31] found out that the

mortality rate, due to general symptoms being present in a multitude of other

non-life threatening diseases therefore causing concern for a cancer diagnosis

to be non existent or low, to be increased. This happens as a result of the low

probability of the symptoms pointing to cancer. 

15 https://www.who.int/news-room/fact-sheets/detail/cancer
16 https://www.cdc.gov/cancer/dcpc/data/index.htm
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• Biomarker complexity: despite continuous efforts in the multi-omic biomedi-

cal field a lot of the biomarkers fail to complete their clinical evaluation trials

due to the uniqueness of the cancers on a molecular level. A biomarker from

it’s discovery needs to be analytically validated and clinically evaluated before

it can be implemented clinically [32],[37].

2.2 Current advancements

With a great deal of problems comes a lot of attempts to solve them, some solution im-

plementations include: 

• Cancer patient pathway (CPP): In many countries a “fast track” has been im-

plemented as a system to shorten the interval between consultation, diagnosis

and treatment in cases of suspected cancer [30].

• Multi datatype banks: efforts around the globe have started in the last decade

to create public datasets that document cancer cases with as much information

as possible (multi-omic data, medical imaging, patient metadata(background,

medical history, etc.) in order to give researches the data availability to find

deep structural patterns in various cancers as proposed by [36],[38].

• Precision medicine: we know that cancer varies from patient to patient in terms

of  it’s  uniqueness  (genetic  makeup,  tissue  it’s  effecting,  etc)  alongside  a

plethora  of  factors  (patients  health,  demographics,  etc).  Precision  medicine

treatment comes into play with advancements in the multi-omic fields which

lead to isolation of the genetic mutations of the tumors. This gives the medical

professionals handles to  perform targeted treatment (immunotherapy,  cancer

vaccine, etc) [35],[36]. 

2.3 Proposed solution

In our solution we are proposing a multi datatype classification of cancer with both ra-

diomic features [4.4] and multi-omic data [4.7]. Furthermore we aim to bring radiomic

extracted features (explained in [3.4]) and multi-omic related features together by cal-

13
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culating the accuracy of cancer survival rate predictors by utilizing ensembled models

of weak learners into powerful regressors  [4.6], [4.7]) 

2.3.1 Scope

The general purpose of the study is to peer into the usage of multi-type data for the

purposes meta cancer analysis from a computational informatics perspective. The sam-

ples we obtained came from a vast number of institutes over the course of three years

of competitions (BraTS datasets ‘18-’19-’20). These contain multi-grade gliomas. The

gene & miRNA dataset came from a multi-omic benchmarking set [6]. From these we

used only the data addressed to GBM. 

The duration of the study happened over the course of two months. We will be dis-

cussing about data preprocessing, various supervised machine learning methods[3.3]

(RFCs, gradient boosting, ANNs), class imbalance strategies and image features ex-

traction and usage[3.4][4.5][4.6]. 

2.3.2 Target

Our target is to come up with a way to combine imaging data with multi-omic data in

an effort to bolster classification of tumors and prediction of survival rates. In other

words we’ll try proving that the use of radiomic and multi-omic (genomic & trascrip-

tomic in this case) data can be used to have a more accurate classification of tumors

alongside better survival predictions.

 We aim to  create  a  classifier  /  segmenter  that  locates  and  annotates  the  class

([4.2.1]) of a brain lesion (if a lesion exists) and extract it’s radiomic features based on

the predicted mask. We will then use these features to train a regressor to try and ap-

proximate the survival rate of the patient.

We also aim to create a classifier that takes genomic and trasncriptomic data and is

able  to  classify in  between two classes ([4.2.2]).  We will  then use the multi-omic

dataset to create a regressor to extract survival predictions based on a multi-omic sam-

ple input([4.7]).

14
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3 Computational Literature

In this section we describe and analyze the informatics theoretical basics and various

other needed components to give the theoretical background of our analysis.

3.1 Data preprocessing

Two major data types are used in this study:

• MRI, 3D anatomical image of our brain 

• Multi-omic expressions, tabular data

3.1.1 MRI

We define a 3D image as a function:

I(i, j, k) 

in an arbitrary 3D space with i, j, k denoting spatial coordinates where:

• i = 0, …, M-1

• j = 0, …, N-1

• k = 0, …, D-1

Every (i, j, k) set translates to a voxel’s location in the 3D image.

The way we get MRIs is by firstly acquiring a 2D slice and then stacking it on an

axis. In MRIs a value is assigned to each of these voxels based on average magnetic

resonance characteristics present in the tissue corresponding to that voxel[44]. 

3.1.1.1 Skull striping(fig.1217)

MRIs of the brain come with a plethora of structures we don’t need(CSF, neck, skull,

eyes). Actions must be taken before we are left with just the brain  tissue. A lot re-

searchers have tackled the issue with a wide variety of ways [45]:

• Morphology based methods: these use the morphological erosion and dilation

operations to separate the skull from the brain region

• Intensity based methods: these use the intensity values of the image pixels to

separate brain and non brain regions

• Deformable surface based methods: these evolve and deform an active con-

tour to fit the brain surface

17 https://jerrylinew.github.io/cs188/public/front.png
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• Atlas(or template) based methods: they rely on fitting an atlas on the MRI to

separate brain from non brain matter. 

• Hybrid methods: these use all of the above in order to counteract a specific

methods’ disadvantages as illustrated by Kalavathi et al[45]. 

3.1.1.2 Image Registration

Image registration(fig.1318) is the geometrical alignment of an N number of images de-

picting  the  same scene  in  different  time  intervals  and maybe  the  use  of  different

sensors (e.g. MRI sequences) [46]. 

These  are  important  due  to  enabling  healthcare  professional  from  monitoring

growth patterns on tumors. For a two image system:

• I1, denotes the source image (the movable one)

• I2, denotes the target image (the static one),

most of the registration methods will usually follow these steps: 

• Feature detection, locating distinctive objects (edge, contours, corners, geo-

metrical structures etc.)

• Feature matching, correlating detected features amongst the different source

image and the target image

• Transform model estimation, calculating the type of the mapping functions

that will help aligning the source image to the target image(translations, shears,

scaling, etc.)

• Resample  and  transformation,  performing  the  transformations  from  the

model estimation and interpolates non integer spatial coordinates

18 https://els-jbs-prod-cdn.jbs.elsevierhealth.com/cms/attachment/e51bb6c2-629f-4b55-8fea-
677faf0299ae/gr2_lrg.jpg

16

Figure 12: Skull Striping
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3.1.1.3 Denoising 

Noise can cause tremendous amount of corruption to our data,  causing  errors in

quantitative imaging with potential leading to miss diagnosis. There are multiple noise

factors in the process of acquiring MRI data:

• Thermal noise, coming from the machine itself

• Living noise, which is caused by bio processes inside the brain or movement

of the patient while inside the MRI machine

A standard way to filter MRIs has been proposed by Buades et al[47]. This uses the

self spatial similarities that natural images have by using the redundancy of the neigh-

bourhood pixels to remove the noise(fig.1419). A more detailed overview on various

filters and methods be found in [48]. 

19 Edit of : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0116986.g006&type=large

17

Figure 13: Image registration of MRI and fMRI

Figure 14: NLM filtering (A) noisy (B) filtered
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3.1.1.4 Bias field correction

The bias field is a low-frequency artifact that causes a smooth signal intensity varia-

tion within tissue of the same physical properties[44]. This gets exacerbated in older

MRI machines [49]. A very prominent way to fix this is by using an improved version

of the famous non parametric nonuniform intensity normalization (N3) [50], dubbed

“N4ITK” [51]. In short, it performs histogram normalization to vanish lightning de-

fects that may be caused by the magnetic coils. 

Both N3 and N4 corrections assume that the non-uniformity in the MRI is multi-

plicative. This means that the noisy image (Ia) we get is a multiplication of a corrected

image (Ic) and a bias field (B) at each point. This is given by the equation:

Ia(r) = Ic(r) x B(r)

Both the techniques theorize that the log of the bias field (B(r)) is a zero centered

Gaussian distribution and so both of them operate in the log transformed space of im-

age intensities. This transforms the above equation from multiplication to addition:

log(Ia(r)) =  log(Ic(r)) + log(B(r))

The process starts by masking the background. This happens in order to avoid areas

in the image where the signal intensity approaches zero. Then begins an iterative pro-

cess (usually this process has a function to break it out when demand is met but prac-

tically it’s used with a set number of iterations (n_total)):

i. The bias field histogram is calculated to sharpen the image. This is achieved by

using the Wiener deconvolution filter20(it uses a Gaussian kernel)

ii. The estimation of the bias field is  smoothed by fitting it  with 3D B-spline

field21

iii. Loops back to (i) until iter > n_total where the iterative process stops.

20 https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node15.html#SEC-
TION00533000000000000000

21 https://en.wikipedia.org/wiki/B-spline
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From there the bias field estimation is extrapolated over the entire field of view.

Lastly the noisy image Ia is divided by the bias field estimation to give us the approx-

imation of the corrected image Ic.

3.1.1.5 Normalization 

We use normalization to bring the scale of image values to a range our neural network

can utilize for learning without the fear of model corruption. Depending on our uses

and targets the normalization might happen in two ranges:

• 0 … 255

• 0 … 1 

The formula we use for normalization for any range [a, b] is given by the equa-

tion22:

22 https://en.wikipedia.org/wiki/Feature_scaling#Rescaling_(min-max_normalization)

19

Figure 15: Example of N4ITK before(a) & after (b)
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3.1.2 Tabular data

Tabular data are usually in csv files and are organized by rows and column, translating

into samples and features respectively. The same formula as in [3.1.1.5] is used to nor-

malize them. 

3.1.2.1 Class Imbalance

Class imbalance occurs when we have a certain distribution of classes. In a two class

system the imbalance degree would be given by these percentages23: 

There multiple ways to address class imbalance, some major concepts are:

• Undersampling the majority class:

◦ ClusterCentroids(fig, where the majority class is undersampled by repla-

cing a cluster of majority samples by the cluster centroid of a K-Means al-

gorithm24(fig.1625). 

• Oversampling the minority class by augmentation:

23 https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-
data

24 https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.ClusterCentroid-
s.html

25 https://imbalanced-learn.org/stable/_images/sphx_glr_plot_comparison_under_sampling_001.png

20

Table 1: Class imbalance tiers

Figure 16: Undersampling of majority class with K-means clusters
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◦ SMOTE (fig.1726)[52], suggests that data should be oversampled by gener-

ation  of  synthetic  minority  samples  using  the  interpolating  pairs  of  the

minority classes original points

◦ BorderlineSMOTE (fig.1827)[53], is a variant of SMOTE that enforces the

synthetic  minority  samples  to  be  at  the  border  of  the  decision  function

between other classes

◦ ADASYN (fig.1926)[54], works the same as SMOTE with the only differ-

ence that it will address the samples that are difficult to get classified with a

nearest neighbour rule, whereas SMOTE will be indifferent towards them

26 https://imbalanced-learn.org/stable/_images/sphx_glr_plot_comparison_over_sampling_006.png
27 https://imbalanced-learn.org/stable/_images/sphx_glr_plot_comparison_over_sampling_007.png
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Figure 17: Oversampling with SMOTE

Figure 19: Oversampling with ADASYN

Figure 18: Oversampling with BorderlineSMOTE
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3.2 Machine Learning

In this section we explore one of, if not the most important, sector of modern informat-

ics. ML is a subset of Artificial intelligence(fig.2028)(AI is mostly boring mathematics

and philosophy, but as soon as it moves to solving computational problems it leaves us

all in awe). 

As the title self explains, machine learning is when we use samples of experiences

to teach a machine, so that it may analyse them and derive knowledge from them. It

does this by approximations (in statistical machine learning) or by discovering deep

mathematical structures within the data (deep learning). 

The core things needed to start solving machine learning problems are:

• A problem in need of solution

• Data correlating to the problem that can yield usable results

• Performance metrics in order to evaluate the models created

28 https://www.researchgate.net/profile/Akshaya-Karthikeyan-2/publication/357234810/figure/fig2/
AS:1103630992195584@1640137541038/Schematic-of-the-conventional-relationship-between-arti-
ficial-intelligence-AI-machine.png

22

Figure 20: AI and it's Subsets



3. Computational Literature

3.2.1 Types of machine learning

There are three core denominations of machine learning and a fourth one that utilizes

the best aspects of two of the main types (tools used by each can be found on fig.2129):

• Supervised learning, is when we are in full control of the training process.

This includes having a clearly defined task as well as properly structured data

with correct labels and tags. We train models based on authenticated data so

when we feed the predictive model new data that it hasn’t seen it might be able

to come up with correct predictions. 

An example of this would be object classification and the CIFAR-1030 dataset con-

tains 10 classes and 60000 images!

• Unsupervised learning, is when we have data or labels but lack any annota-

tions. The results of this type varies and it’s never a good idea to use this for

practical models. It excels at exploratory operations due to it’s nature, by giv-

ing us an idea of what the data looks like or what structures might lie under-

neath. 

An example of this would be the use of K-means algorithm in any dataset to de-

termine if there distinct classes exist. 

• Reinforcement learning, is practically attempting to train a dog. The way this

works is by having an agent explore the environment it’s in and by taking any

action, it either gets rewarded if it performs positively or punished(penalized)

if  it  performs negatively.  More professionally this  means that  it’s  trying  to

maximize it’s reward function while at the same time trying to minimize it’s

loss function. Since the data here have no labels the agent is doomed to brute

force the knowledge out of the data.

Bickering aside the example for this category would be an artificial dog. By letting

it loose on a virtual field or a house you would be able to reward it positively for good

behavior or punish it if it goes haywire and starts breaking the house.

29 https://cdn-images-1.medium.com/max/800/1*rbaxTrB_CZCqbty_zv2bEg.png
30 https://www.cs.toronto.edu/~kriz/cifar.html
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• Semi-supervised learning, is the middle ground of supervised and unsuper-

vised learning. Utilizing mostly unlabeled data and some data with a lot  of

noise it is able to reach a generalization faster. The models produced aren’t as

good as the models from supervised learning, but semi-supervised learning is a

cheap way to reach a good point in both understanding your data alongside the

scope of your task. 

A good example of this would be the semi-supervised protein classification as pro-

posed by Weston et al[57]. 

3.2.2 Random Forest Classifier

These derive from the ensemble of many Random Tree Classifiers(RTC) [58]. By tak-

ing a lot of weak learners, that we create by a random selection of features each time

results in them accumulating their result and averaging out their prediction. This way

they are able to beat the downside of a single RTC’s high variance and achieve better

generalization as showcased in fig.2231.  

31 https://miro.medium.com/max/1200/1*hmtbIgxoflflJqMJ_UHwXw.jpeg

24

Figure 21: Tools used in ML
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3.2.2.1 Boosting

Boosting32 is an ensemble method where we build multiple weak learners one on top

of another in order to increase the predictive capabilities of the final estimator. The

main idea is that each new model added to the ensemble is attempting to fix the short-

comings of its ancestor.

An example with RTCs would be that the first model we build, regardless it’s ac-

curacy would be used to train the second model,  another RTC. The second model

would then try to capitalize on the errors of the first one by focusing on learning the

correct predictions for the miss predictions of the first model. This process repeats till

a certain number of weak learners are conjoined in the ensemble or a certain threshold

is reached. 

3.2.2.2 Gradient Boosting

The difference of gradient boosting [59](fig. 2333) from normal boosting is that it

focuses on the prediction error by factoring it  in the next weak learner generation. It

appends the error (residuals) into the dataset, but it scales it down by the learning rate

32 https://en.wikipedia.org/wiki/Boosting_(machine_learning)
33 https://miro.medium.com/max/1400/1*dIHrPFBT2fmXuTXMb-3_Xw.png
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to intercept instances of over fitting. This process is iterative just like normal boosting

until a set number of iterations has passed or a threshold of performance is reached. 

3.2.2.3 Metrics

For regression we use:

• MSE, which measures the squares of the error an estimator produces and the

ground truth34:

n being the quantity of predictions of a prediction vector

• RMSE, which measures the differences between values predicted by an estim-

ator and the ground truth35, theta being the estimator in question:

34 https://en.wikipedia.org/wiki/Mean_squared_error#cite_note-:1-1
35 https://en.wikipedia.org/wiki/Root-mean-square_deviation
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Figure 23: Friedman's Gradient Boosting Algorithm[59]
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• K-fold cross validation, which is used to estimate the skill of an estimator on

unseen data. The process that happens in is very simple36:

1. If shuffle is set to true, the dataset is going to be shuffled

2. The dataset is split into K groups

3. For every K (or fold):

1. Take that fold out as a test set

2. Form the rest of the folds into a train set

3. Fit the created training set and evaluate it on the test set 

4. Append the evaluation score to a list L and trash the model

4. Sum the list L and divide it by K to figure out the mean score

Typically K-Fold cross validation returns a positive number, but if the log_neg is

set to true it will return a negative.

For classification we use standard accuracy score:

Where TP = True positive, FP = False positive,

 TN = True negative, FN = False negative

3.2.3 ANN

Following on the biological neuron presented in [1.4.1] early researchers decided to at-

tempt to simulate the function of a biological neuron artificially. This gave birth to the

first artificial neuron, by Warren McCulloch and Walter Pitts[55]. 

Fifteen years later, psychologist Frank Rosenblatt proposed the Perceptron(fig.2437)

and gave birth to neural networks[56]. By taking Rosenblatts simple perceptron which

acted as a linear classifier, and by stacking multiple of  them into layers non linear

functions could be solved38.

36 https://machinelearningmastery.com/k-fold-cross-validation/
37 https://en.wikipedia.org/wiki/Perceptron
38 https://analyticsindiamag.com/xor-problem-with-neural-networks-an-explanation-for-beginners/
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The way a single neuron works is as follows39:

• Set a static learning rate 

• Initialize the weights (random small values or distributions)

• Sum all the weights multiplied by the inputs

• Add the bias factor by multiplying Xj,0 * bias

• And pass the result through an activation function(fig. 2540) to get Ypredicted

• Update the weights via:

n is the total number of samples, r is the learning rate, and d is the ground truth 

• Repeat the process till the model converges or epoch requirement are met

39 https://en.wikipedia.org/wiki/Perceptron#Learning_algorithm
40 https://www.researchgate.net/publication/341310767/figure/fig7/

AS:890211844255749@1589254451431/Common-activation-functions-in-artificial-neural-net-
works-NNs-that-introduce.ppm
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Figure 24: A perceptron

Figure 25: Activation Functions
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By  stacking  multiple  of  these  perceptrons  we  obtain  a  basic  neural  network

(fig.2641).

The  neural  network  is  spread  in  3

parts (fig.2742):

1. Input layer 

2. Hidden layer

3. Output layer

Hyperparameters are global parameters that are set before the model is compiled.

They are used to control the way the model trains. These include: 

• Learning rate, determines how fast the model is going to learn from samples.

Despite being a hyperparameter late literature has show that a decaying [61] or

cyclical LR [60],[61]; derived from natural processes can help boost the mod-

els convergence.  

• Epochs, determines how many times the entire training set is going to pass

through the network

41 https://thumbs.dreamstime.com/b/neural-network-illustration-vector-deep-learning-concept-neural-
network-illustration-103427158.jpg

42 https://miro.medium.com/max/1400/1*f9XlMlruW7TMF3EHbPDfYg.png
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Figure 26: Basic Neural network, fully connected, multiple I/O

Figure 27: The three primary strips 
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• Hidden layers, determines how many internal layers the unit will have(kind

off deprecated considering we use high level APIs to build models now days)

• Batch size, determines how many samples are going in the model before a

weight update

• Dropout, a percentage (let’s call it dp) given to the neural network so it will

null dp% of the neurons in order to not over fit the model

Back propagation is  the method the model updates it’s  weights,  among other  it

could be, we can see how these work on (fig. 2843):

• SGD (stochastic): where the weights update every sample

• Mini-batch: where the weights update after every batch of samples 

• Batch: where the weights update once every epoch

And finally, we need a way to properly update weights, possibly modify the LR,

and minimize the loss function per update iteration. All this is an optimizers job44.

Some optimizers may include:

• ADAM[62], standard deep learning optimizer 

• SGD [63], is very slow and often times gets stuck on local minimas instead of

reaching the global minima

• AdaFAIR [13],  has  the  ability  to  alleviate  discrimination  against  minority

classes

• AdaBoost[64], is used for the creation of weak learners 

43 https://miro.medium.com/max/908/1*bKSddSmLDaYszWllvQ3Z6A.png
44 https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optim-

izers/
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Figure 28: Weight updates with various GD



3. Computational Literature

3.2.3.1 CNN

CNNs introduce the idea of convolution. 

Convolution is basically applying a kernel over an image where each pixels value is

determined by the filter multiplied by the original image g(x, y) pixel values (fig2945).

CNNs have a  specific  architecture(fig.3046)  that  enables them to learn from im-

ages47.

This includes multiple level of convolutional layers followed by max pooling lay-

ers. The convolutional layers have the following parameters:

• Number of filters, how many random filters will it generate

• Kernel  size,  (how big  the  generated  filter  is  going to  be  (this  is  a  matrix

shape)): 

◦ in 2D default kernels are: (2x2)

◦ in 3D default kernels are: (3x3x3)

• Stride, which determines how many pixels the filter is going to move next

• Kernel initialization: a method to generate these filters (e.g. he_uniform)

45 https://miro.medium.com/max/464/0*e-SMFTzO8r7skkpc
46 https://cdn-images-1.medium.com/max/1600/1*g6qPMZTpO2Nl9Y2dxwgvCA.png
47 https://aigents.co/data-science-blog/publication/introduction-to-convolutional-neural-networks-cnns
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Figure 29: Convolution
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• The convolutional layer does the following:

1. Takes an input image

2. Pad the image in order to get all available information from the image

3. Initialize a number of random filters and iterate through the image

4. By convolution we reduce redundancy and leave the features flowing into

the next layers to have more information yield.

After each convolutional layer a max pooling layer exist. This has multiple causes:

• The Convolved features amassed from the convolutional layer are too big,

and they get scaled down to reduce computational cost via a dimensionality

reduction process.

•  It’s very good for the dominant features because they are both positional

and rotational invariant, so they are maintained

Lastly after multiple steps of convolution and max pooling we reach the classifica-

tion layer. The usage of a FC (MLP like) layer of usually 3-5 layer size is a one way

ticket to learn the purpose of the non linear combination of abstract level structures

yielded from the convolutions. To do this we have to flatten the output of the last max

pooling layer.  The output layer is a softmax layer with one neuron for each class

we’re trying to classify. 
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Figure 30: 2D CNN representation 
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3.2.3.1.1 Unet

A U-net is a CNN architecture based network. It was primarily developed to tackle the

problem of biomedical image segmentation [65]. The architecture it’s using attempts

to maximize information yield on all levels of computation as well  as utilizing all

knowledge acquired from the model by propagating it  throughout  all  levels of the

model.

The  model  begins  with  a  straight  forward  CNN classifier  network  (contraction

path) and yields increasingly powerful imaging features with each convolutional oper-

ation. 

On the end of the contraction the condensed features are stored inside a vector

space. We’d like to add to this part, that this is how autoencoders(and their variations)

are created by replacing the vector space with a FC layer of arbitrary amount of layers.

 And then begins the expansion path, where high-resolution features from the con-

tracting path are concatenated with the upscaled (deconvoluted) data.  
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Figure 31: Original UNet Architecture
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All convolutions in the model are followed by a nonlinear function (ReLU) ensur-

ing integrity by not having negative values. After each max pool operation the feature

channels from the previous operation are doubled from the previous level. On the ex-

pansion path, this is reversed and they are divided by two. 

3.2.3.1.2 Metrics

Metrics for neural networks can vary but in our case (image segmentation) we have

three very powerful ones:

• Categorical Accuracy, this measures how often the model gets the prediction

right. It generates two variables “total” & “count” that are used to store inform-

ation  in  regards  to  how many times did the  predicted Y match  the  ground

truth48. 

• Dice’s coefficient (DSC)  [67],[68],[66],  otherwise  known  as  F1  score  or

“Sørensen–Dice index”, it’s given by the formula:

• Intersection over Union (IoU), otherwise known as Jacards distance[69] that

is given by the formula:

3.2.3.1.3 Statistics or Deep learning?

As a data scientist it is very important to be able to recognize where each tool and

methodology should be used.  According to [42], they led a study on various tasks

across 11 datasets  for  tabular  data  and found out  that  ensembled gradient  boosted

forests (XGB ensembles) still outperformed Deep Learning. They did however accept

that deep learning models are still the leading methodology in complex operations like

semantic segmentation in images. Therefore for our analysis in [4.4] we choose to use

48 https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalAccuracy

34



3. Computational Literature

a modified 3D-Unet for our imaging data and since the rest of the data (both the ones

we extracted and the ones we obtained are in tabular forms) to use XGBOOST. 

3.3 Image Features

Image features represent characteristics that help us discriminate between ROIs and

background in MRIs by providing  us with imaging biomarkers. These can rely on

shape based numerical  measurements  (like the total  voxels  present  in  the ROI)  or

quantitative visual appearance (like the neighbouring voxel intensity)[44]. In this sec-

tion we analyse all the imaging features we extract from our imaging data as stated in

[15] and used in [4.5]

3.3.1 First order statistics

First-order statistics describe the distribution of voxel intensities within the image re-

gion defined -by the mask through commonly used and basic metrics. These include:

• Energy: is a measure of the magnitude of voxel values in an image. A larger

value implies a greater sum of the squares of these values

• Total Energy: is the value of Energy feature scaled by the volume of the voxel

in cubic mm

• Entropy: it specifies the uncertainty/randomness in the image values. It mea-

sures the average amount of information required to encode the image values

• Minimum: the minimum gray level value within the ROI

• 10th percentile: the 10th percentile of the gray level values within the ROI

• 90th percentile: the 90th percentile of the gray level values within the ROI

• Maximum: the maximum gray level value within the ROI

• Mean: the average gray level intensity within the ROI

• Median: the median gray level intestate within the ROI

• Interquartile Range: 75th percentile minus the 25th percentile of the image ar-

ray 

• Range: Maximum – Minimum

• Mean Absolute Deviation(MAD): is the mean distance of all intensity values

from the Mean Value of the image array 
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• Robust Mean Absolute Deviation (rMAD): is the mean distance of all inten-

sity values from the Mean Value calculated on the subset of image array with

gray levels in between, or equal to the 10th and 90th percentile 

• Root Mean Squared (RMS): is the square-root of the mean of all the squared

intensity values. It is another measure of the magnitude of the image values 

• Standard Deviation: it measures the amount of variation or dispersion from

the Mean Value

• Skewness: it measures the asymmetry of the distribution of values about the

Mean value 

• Kurtosis: is a measure of the ‘peakedness’ of the distribution of values in the

image ROI

• Variance: is the mean of the squared distances of each intensity value from the

Mean value 

• Uniformity: is a measure of the sum of the squares of each intensity value 

3.3.2 Shape Based (3D)

In this group of features we included descriptors of the three-dimensional size and

shape of the ROI. These include:

• Mesh Volume: the volume of all the voxels in the ROI

• Voxel Volume: is approximated by multiplying the number of voxels in the

ROI by the volume of a single voxel 

• Surface Area: first the surface area of each triangle in the mesh is calculated.

The total surface area is then obtained by taking the sum of all calculated sub-

areas 

• Surface Area to Volume ratio: Surface Area divided by Voxel Volume

• Sphericity: is a measure of the roundness of the shape of the tumor region rel-

ative to a sphere 

• Compactness 1: is a measure of how compact the shape of the tumor is rela-

tive to a sphere (most compact) 

• Compactness 2: is a measure of how compact the shape of the tumor is rela-

tive to a sphere (most compact) 

• Spherical Disproportion: is the ratio of the surface area of the tumor region to

the surface area of a sphere with the same volume as the tumor region 
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• Maximum 3D diameter(Feret  Diameter):  is  the  largest  pairwise  Euclidean

distance between tumor surface mesh vertices

• Maximum 2D diameter (Slice): is the largest pairwise Euclidean distance be-

tween tumor  surface mesh vertices  in  the  row-column (generally  the axial)

plane 

• Maximum 2D diameter (Column): is the largest pairwise Euclidean distance

between tumor surface  mesh vertices  in  the  row-slice (usually  the  coronal)

plane

• Maximum 2D diameter (Row): is the largest pairwise Euclidean distance be-

tween tumor surface mesh vertices in the column-slice (usually the sagittal)

plane 

• Elongation: it shows the relationship between the two largest principal compo-

nents in the ROI shape 

• Flatness:  shows the  relationship  between the  largest  and smallest  principal

components in the ROI shape. 

3.3.3 Gray Level Co-occurrence Matrix

A GLCM describes the second-order joint probability function of an image region con-

strained by the mask. This includes the features:

• Autocorrelation: is a measure of the magnitude of the fineness and coarseness

of texture 

• Joint Average: is the mean gray level intensity of the i distribution 

• Cluster Prominence:  is  a  measure  of  the  skewness  and asymmetry  of  the

GLCM 

• Cluster Shade: is a measure of the skewness and uniformity of the GLCM 

• Cluster Tendency: is a measure of groupings of voxels with similar gray-level

values 

• Contrast: is a measure of the local intensity variation, favoring values away

from the diagonal 

• Correlation: is a value between 0 (uncorrelated) and 1 (perfectly correlated) 

• Difference Average: it measures the relationship between occurrences of pairs

with similar intensity values and occurrences of pairs with differing intensity

values 
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• Difference Entropy: is a measure of the randomness/variability in neighbor-

hood intensity value differences 

• Difference Variance: is a measure of heterogeneity that places higher weights

on differing intensity level pairs that deviate more from the mean

• Joint Energy: is a measure of homogeneous patterns in the image

• Joint Entropy: is a measure of the randomness/variability in neighborhood in-

tensity values 

• Informational Measure of Correlation (IMC) 1: it assesses the correlation

between the probability distributions of i and j (quantifying the complexity of

the texture), using mutual information I(x, y) 

• Informational Measure of Correlation (IMC) 2: it also assesses the correla-

tion between the probability distributions of i and j (quantifying the complexity

of the texture) 

• Inverse Difference Moment (IDM): is a measure of the local homogeneity of

an image 

• Maximal  Correlation Coefficient (MCC):  he  Maximal  Correlation  Coeffi-

cient is a measure of complexity of the texture 

• Inverse Difference Moment Normalized (IDMN): is a measure of the local

homogeneity of an image 

• Inverse Difference (ID): is another measure of the local homogeneity of an

image 

• Inverse Difference Normalized (IDN): is another measure of the local homo-

geneity of an image

• Inverse Variance

• Maximum Probability: is occurrences of the most predominant pair of neigh-

boring intensity values 

• Sum Average:  measures the relationship between occurrences of pairs  with

lower intensity values and occurrences of pairs with higher intensity values 

• Sum Entropy: is a sum of neighborhood intensity value differences 

• Sum of Squares(Variance): is a measure in the distribution of neighboring in-

tensity level pairs about the mean intensity level in the GLCM 

38



3. Computational Literature

3.3.4 Gray Level Run Length Matrix

A Gray Level  Run Length Matrix (GLRLM) quantifies  gray level  runs,  which are

defined as the length in number of pixels, of consecutive pixels that have the same

gray level value. This includes the features:

• Short  Run Emphasis (SRE):  is  a  measure of  the  distribution of  short  run

lengths, with a greater value indicative of shorter run lengths and more fine

textural textures 

• Long Run Emphasis (LRE):  is  a  measure  of  the  distribution  of  long  run

lengths, with a greater value indicative of longer run lengths and more coarse

structural textures 

• Gray Level Non-Uniformity (GLN): measures the similarity of gray-level in-

tensity values in the image, where a lower GLN value correlates with a greater

similarity in intensity values 

• Gray Level Non-Uniformity Normalized (GLNN): measures the similarity of

gray-level intensity values in the image, where a lower GLNN value correlates

with a greater similarity in intensity values

• Run Length Non-Uniformity (RLN): measures the similarity of run lengths

throughout the image, with a lower value indicating more homogeneity among

run lengths in the image 

• Run Length Non-Uniformity Normalized (RLNN): measures the similarity

of run lengths throughout the image, with a lower value indicating more homo-

geneity among run lengths in the image 

• Run Percentage (RP): measures the coarseness of the texture by taking the ra-

tio of number of runs and number of voxels in the ROI 

• Gray Level Variance (GLV): measures the variance in gray level intensity for

the runs 

• Run Variance (RV): is a measure of the variance in runs for the run lengths 

• Run Entropy (RE): measures the uncertainty/randomness in the distribution of

run lengths and gray levels 

• Low Gray Level Run Emphasis (LGLRE): measures the distribution of low

gray-level values, with a higher value indicating a greater concentration of low

gray-level values in the image 
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• High Gray Level Run Emphasis (HGLRE): measures the distribution of the

higher gray-level values, with a higher value indicating a greater concentration

of high gray-level values in the image 

• Short Run Low Gray Level Emphasis (SRLGLE): measures the joint distri-

bution of shorter run lengths with higher gray-level values 

• Short Run High Gray Level Emphasis (SRHGLE): measures the joint distri-

bution of shorter run lengths with higher gray-level values 

• Long Run Low Gray Level Emphasis (LRLGLE): measures the joint distri-

bution of long run lengths with lower gray-level values 

• Long Run High Gray Level Emphasis (LRHGLE): measures the joint distri-

bution of long run lengths with higher gray-level values 

3.3.5 Gray Level Size Zone Matrix

A Gray Level Size Zone (GLSZM) quantifies gray level zones in an image. A gray

level zone is defined as a the number of connected voxels that share the same gray

level intensity. This includes the features:

• Small Area Emphasis (SAE): is a measure of the distribution of small size

zones, with a greater value indicative of more smaller size zones and more fine

textures

• Large Area Emphasis  (LAE): is a measure of the distribution of large area

size zones, with a greater value indicative of more larger size zones and more

coarse textures

• Gray Level Non-Uniformity (GLN): measures the variability of gray-level in-

tensity values in the image, with a lower value indicating more homogeneity in

intensity values

• Gray Level Non-Uniformity Normalized  (GLNN): measures the variability

of gray-level intensity values in the image, with a lower value indicating a

greater similarity in intensity values

• Size-Zone  Non-Uniformity (SZN):  measures  the  variability  of  size  zone

volumes in the image, with a lower value indicating more homogeneity in size

zone volumes

• Size-Zone Non-Uniformity Normalized (SZNN): measures the variability of

size zone volumes throughout the image, with a lower value indicating more

homogeneity among zone size volumes in the image
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• Zone Percentage (ZP): measures the coarseness of the texture by taking the

ratio of number of zones and number of voxels in the ROI

• Gray Level Variance  (GLV): measures the variance in gray level intensities

for the zones

• Zone Variance (ZV): measures the variance in zone size volumes for the zones

• Zone Entropy (ZE): measures the uncertainty/randomness in the distribution

of zone sizes and gray levels

• Low  Gray  Level  Zone  Emphasis (LGLZE):  measures  the  distribution  of

lower gray-level size zones, with a higher value indicating a greater proportion

of lower gray-level values and size zones in the image

• High Gray Level Zone Emphasis (HGLZE): measures the distribution of the

higher gray-level values, with a higher value indicating a greater proportion of

higher gray-level values and size zones in the image

• Small Area Low Gray Level Emphasis (SALGLE): measures the proportion

in the image of the joint distribution of smaller size zones with lower gray-

level values

• Small Area High Gray Level Emphasis (SAHGLE): measures the proportion

in the image of the joint distribution of smaller size zones with higher gray-

level values

• Large Area Low Gray Level Emphasis (LALGLE): measures the proportion

in the image of the joint distribution of larger size zones with lower gray-level

values

• Large Area High Gray Level Emphasis (LAHGLE): measures the proportion

in the image of the joint distribution of larger size zones with higher gray-level

values

3.3.6 Neighbouring Gray Tone Difference Matrix

A Neighbouring Gray Tone Difference Matrix (NGTDM)  quantifies the difference

between a gray value and the average gray value of its neighbours within distance δ.

This includes the features:

• Coarseness: is a measure of average difference between the center voxel and

its neighbourhood and is an indication of the spatial rate of change

• Contrast: is a measure of the spatial intensity change, but is also dependent on

the overall gray level dynamic range
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• Busyness: is a measure of the change from a pixel to its neighbour. A high

value for busyness indicates a ‘busy’ image, with rapid changes of intensity

between pixels and its neighbourhood

• Complexity: is considered complex when there are many primitive compon-

ents in the image

• Strength: is a measure of the primitives in an image. Its value is high when the

primitives are easily defined and visible

3.3.7 Gray Level Dependence Matrix

A Gray Level Dependence Matrix (GLDM) quantifies gray level dependencies in an

image. A gray level dependency is defined as a the number of connected voxels within

distance δ that are dependent on the center voxel. This includes the features:

• Small Dependence Emphasis (SDE): a measure of the distribution of small

dependencies, with a greater value indicative of smaller dependence and less

homogeneous textures

• Large Dependence Emphasis (LDE): a measure of the distribution of large

dependencies, with a greater value indicative of larger dependence and more

homogeneous textures

• Gray Level Non-Uniformity (GLN): measures the similarity of gray-level in-

tensity values in the image, where a lower GLN value correlates with a greater

similarity in intensity values

• Dependence Non-Uniformity (DN): measures the similarity of dependence

throughout the image, with a lower value indicating more homogeneity among

dependencies in the image

• Dependence Non-Uniformity Normalized (DNN): measures the similarity of

dependence throughout the image, with a lower value indicating more homo-

geneity among dependencies in the image

• Gray Level Variance (GLV): measures the variance in grey level in the image.

• Dependence Variance (DV): measures the variance in dependence size in the

image.

• Low Gray Level Emphasis (LGLE): measures the distribution of low gray-

level values, with a higher value indicating a greater concentration of low gray-

level values in the image
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• High Gray Level Emphasis (HGLE): measures the distribution of the higher

gray-level values, with a higher value indicating a greater concentration of high

gray-level values in the image

• Small  Dependence  Low Gray  Level  Emphasis (SDLGLE):  measures  the

joint distribution of small dependence with lower gray-level values

• Small  Dependence High Gray Level  Emphasis (SDHGLE):  measures the

joint distribution of small dependence with higher gray-level values

• Large Dependence Low Gray Level  Emphasis (LDLGLE):  measures  the

joint distribution of large dependence with lower gray-level values

• Large Dependence High Gray Level Emphasis (LDHGLE): measures the

joint distribution of large dependence with higher gray-level values
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4 Case Study

In all the previous sections we have analyzed core concepts from the domain of biol-

ogy[1.] and informatics[3.]. We have established a problem, a scope and a target[2.].

In this section we present a strategy to yield survival rate predictions on cancer pa-

tients based on a two part strategy which includes the usage of 3D CNN (3D-Unet)

and various weak learner approaches (RFC, XGBOOST).

4.1 Environment Info

We begin by giving a report of the packages used as well as the description of the ma-

chine where most computations took place.

Starting off with the machine description:

System: Windows

Release: 10

Version: 10.0.19044

Machine: AMD64

CPU: 

    Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz

        Base speed: 4,00 GHz

        Sockets:    1

        Cores:  4

        Logical processors: 8

        Virtualization: Enabled

        L1 cache:   256 KB

        L2 cache:   1,0 MB

        L3 cache:   8,0 MB
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RAM: 

    Capacity: 16,0 GB

        Speed:  2133 MHz

        Slots used: 2 of 4

        Form factor:    DIMM

        Total possible extension: 31,2 GB 

GPU:

    NVIDIA GeForce GTX 1060 6GB

        Driver version: 31.0.15.1659

        Driver date:    23/6/2022

        DirectX version:    12 (FL 12.1)

DATA STORAGE:

    SSD ADATA SP550 (240GB)

Continuing with a table of basic architecture of software and firmware:

Software / Firmware Version
Anaconda Navigator 2.2.0
Jupyter Notebook 6.4.12
PyCharm Community Edition 2022.2
Python 3.9.12
CUDA 64_112
CUDA Computational Capabilities sm_35, sm_50, sm_60, sm_70, sm_75, compute_80
CUDNN 64_8
Libre Office 64_7.3.3.2

Table 2: Machine software and firmware versions 

 

Finishing off with a table of all the packages used in python excluding the basic

python packages:

Package Version

pandas 1.4.3

numpy 1.21.5

keras 2.9.0

matplotlib 3.5.2

sklearn 1.1.1
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radiomics 3.0.1

nibabel 4.0.1

SimpleITK 2.1.1.2

imblearn 0.9.1

xgboost 1.6.1

tensorflow 2.9.1

Table 3: Python package versions

These were gathered through the use of Script [Rig information], except the rig in-

formation that were written down manually.

4.2 Datasets

In this section we give the overview of the data used in the experiment.

4.2.1 Image Data

The MRI images are acquired through the BraTS competitions datasets over the years.

There are duplicate data that are carried over from year to year. These are removed

based on the name mapping sheets that are given by the original data distributors. All

data are using the compressed nifti49 medical imaging protocol (including masks). 

The data are accompanied by clinical metadata csv sheets supplying us with the age

of the patient(float), days of survival(int or N/A) and resection status(String or N/A).

The survival sheets format is identical across all three datasets.

 

BraTS19ID Age Survival Resection Status
BraTS19_CBICA_AAB_1 60.4630137 289 GTR
BraTS19_CBICA_AAG_1 52.2630137 616 GTR
BraTS19_CBICA_AAL_1 54.30136986 464 GTR
BraTS19_TCIA02_331_1 84.84383562 187 N/A
BraTS19_CBICA_AAP_1 39.06849315 788 GTR

Table 4: Example of survival data

49 https://radiopaedia.org/articles/nifti-file-format  
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Each patient folder contains a segmentation mask and four modalities:

• T1

• T1-CE

• T2

• FLAIR

Dataset Type Count

BraTS 2018[1][2][3][4]
HGG 210

LGG 75

BraTS 2019[1][2][3][4][5]
HGG 259

LGG 76

BraTS 2020[1][2][3][4][5] Merged 369

Total 989

Table 5: Patient count for each dataset and type

All sets contain 3 distinct classes with labels:

Class Label
Background 0
Necrotic core / Non Enhancing Tumor 1
Peritumoral Edema 2
Enhancing Tumor 4

Table 6: Image data class labels

4.2.2 Genomic and transcriptomic data

We obtain the gene expression and miRNA for GBM from Ron Shamir’s lab50[6]. The

data are tabular and come in csv format. It needs to be mentioned that the clinical data

csv has a fair amount of faulty lines, they are mentioned inside the genomics notebook.

• Gene Expression Data: 538 samples, 12042 genes expressed

Index(Patient_ID) AACS FSTL1 ELMO2 CREB3L1 RPS11
TCGA.02.0001.01 6.500551 8.729663 5.511362 4.882953 10.984784
TCGA.02.0003.01 6.539245 9.794400 6.213981 4.836276 10.811245
TCGA.02.0004.01 7.377848 12.059550 7.051738 6.112444 10.436374
TCGA.02.0007.01 7.186891 4.945053 5.230444 5.818606 10.477304
TCGA.02.0009.01 7.675038 10.840095 6.620676 5.333213 10.637267

Table 7: Gene expression data sample

50 http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html  
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• miRNA Data: 575 samples, 534 transcriptomes expressed

Index(Patient_ID) ebv-miR-BART1-3p ebv-miR-BART1-5p ebv-miR-BART10
TCGA.02.0001.01 5.855126 5.799428 5.862059
TCGA.02.0003.01 5.801614 5.790478 5.818763
TCGA.02.0004.01 5.771332 5.758764 5.825401
TCGA.02.0006.01 5.763649 5.800184 5.831836
TCGA.02.0007.01 5.818828 5.800582 5.818181

Table 8: Transcriptome expression data sample

• Clinical Data: 629 samples, 137 columns

Column Value
CDE_DxAge 44.3
CDE_survival_time 353.0
days_to_last_followup 279.0
CDE_vital_status DECEASED

Table 9: Clinical data sample

4.3 Preprocessing

In this section we execute the preprocessing strategy as described in [3.2]. Multiple

sanity checks are being made throughout the scripts to make sure everything is work-

ing as intended.

4.3.1 Images

We begin the preprocessing by pathing the image training folder and extracting recur-

sively all files that end with a “nii.gz” suffix. We find that we have accumulated 4945

files. This is normal since we have five distinct file types:

Type Suffix
Mask _seg.nii.gz
FLAIR _flair.nii.gz
T1 _t1.nii.gz
T1-CE (GD) _t1ce.nii.gz
T2 _t2.nii.gz

Table 10: Raw file suffixes

From there we merge all the files in a single dataframe using the pandas library. We

generate a new location mirroring the original folder structure to store the prepro-

cessed data with minimal changes to the dataframe. We move the masks to the new lo-

cations as is with their new affixes (“_preprocessed”).
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We begin the preprocess pipeline by taking the lines of the primary dataframe of

locations one by one. Each image is getting loaded using the nibabel library and kept

in memory to later use the affine matrix & object header, both important to guarantee

data integrity for further usage of the preprocessed data in a full state. 

From each of the four nifti object we extract the image array and we populate a list

with four slots, each containing a 3D image of dimensions (240 x 240 x 155) of it’s re-

spective modality. Using the “grab_NSD” function we calculate the estimated sigmas

with NaN intercept built in along the Z axis, giving us a single matrix with dimensions

(155 x 1) for each 3D packet.  

Using the estimated sigmas alongside the Z axis we initialize the denoising process

through “denoise_process” and parallel cast it on four cores, each core handling a dif-

ferent modality. We apply the NLM filter from the skimage package on each 2D image

alongside the Z axis and filter each of the 2D slices as mentioned in [3.2.1.3]. This will

return each 3D packet with the Z axis on index 0 instead of index 2, meaning we have

flipped the image matrix. 

Continuing we initialize a global bias field corrector filter from SimpleITK library

and pass each 3D flipped packet into “the bias_field_correction” function. We with-

draw the image matrices yet again alongside the Z axis and cast them in Float32 (Real

format) as it’s a dependency of the corrector function. Performing aggressive multiple

Otsu Threshold51 for histogram_bins = 200, we yield a mask that we cast into uint8,

again for dependency issues.  Then we proceed by using the global corrector with the

2D image slice and the yielded mask. Then return the 3D packet once again. 

Finally using the “data_nesting” function we grab the header and the affine matrix

of each image and we remake a nifti image which we save to the modified primary

location dataframe. Keep in mind that we use transpose from the numpy package on

the image matrix so the axis return to their original locations. 

Using random from the core python library we pick a random line from the pro-

cessed dataframe and load it using “load_pack”. Using random again to pick a slice
51 https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_multiotsu.html
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number. Keep in mind for best visual results set the borders 40-50 from the start and at

least -20 from the end, in this case low_bound = 50 and high_bound=100. And finish

by plotting some pictures.

 The entire process was done using Script [Image Preprocess Pipeline].
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Figure 32: Randomly chosen package  #914 and slice #87

Figure 33: Randomly chosen package with visualized mask
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Time for the main preprocess pipeline to run:

Time it took for one line (four 3D images) 80.45 sec

Time estimation for entire dataset 22.10 hours

Actual time for the entire dataset 23.51 hours

Table 11: Elapsed time for preprocess pipeline

4.3.1.1 Bundling

Since the 2D extraction of slices and generation of appropriately 750k 2D slices in or-

der to use Jordan Colmans’ modified 2D Unet52[11] failed, due to computational infra-

structure constraints(model was generating 74,6 million trainable parameters) which

for the way they were feeding inputs (input being a multi modality image stack); re-

quired distributed strategy, we decided to follow technique from Dr. Sreenivas Bhat-

tiprolu53 were also a super stacked multi modality package is created by stacking the

3D modality blocks on top of each other as shown in Script [Data Bundling] for a

slightly modified 3D Unet. Nifti images are normalized into 0-255 range. Furthermore

the packets are pruned down to cubes of shape (128 x 128 x 128) for three reasons:

1. To tackle class imbalance by pruning the majority of non brain tissue back-

ground (black pixels) 

2. To enable a 3D Unet to be able to perform filter generation without the need

for asymmetrical paddings 

3. To be less computationally expensive when passed through a 3D Unet

Our newly formed four dimensional MRI packets ([0-2]x 240 x 240 x 155) are

ready but we are unable to save them as images of any kind, we proceed to save them

as numpy arrays and drop them in a merged “data” folder. Masks are also loaded and

pruned into (128 x 128 x 128) cubes. If a mask has less than 1% of valuable informa-

tion on it’s entirety the mask is dropped and the numpy array with the corresponding

mask is purged. The masks that remain get the non existent class label nullified by

turning the  label  “4”  into  label  “3”.   This  happens to  again  help  out  the  training

process of the modified Unet by having a range of labels [0,1,2,3] without interrup-
52 https://github.com/jordan-colman/DR-Unet104
53 https://youtu.be/ScdCQqLtnis
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tions. Lastly the masks get synced with the packets and are also moved in the merged

data folder sharing a same numeric affix. 

4.3.1.2 Dataset Split

As  a  last  step  to  finalize  the  preprocess  of  the  imaging  dataset,  we  use  the

train_test_split function from the package sklearn.model_selection by passing it as in-

put a dataframe with the locations of the paired mask and arrays for a 20% split into a

validation set for the Unets' training. Then we run again the 80% dataset to get a 10%

test set for the Unets’ categorical accuracy. Our final data cluster ensures that we have

tackled a plethora of issues that can arise from training a DNN with raw data that suf-

fer from severe class imbalance, noise, etc. Our final data quantity is as follows:

Set Quantity of numpy array objects
Train 662

Validation 166
Test 92

Table 12: Final Image data quantities

4.3.2 Multi-omic Data

The  preprocessing  strategy  for  the  multi-omic  data  includes  the  separation  of  the

dataset to two distinct classes which we extract from the clinical data through these

tags:

a) CDE_Status: Living & days_to_last_followup > 100

b) CDE_Status: Deceased

Samples that don’t belong to either of these classes (containing N/A or second part

of (a) not satisfied) are dropped from the dataset. Lastly, we take only the intersection

of patient_IDs in both the gene expression data and miRNA. This generates:

Class Quantity
CDE_Status == ’Living’ & days_to_last_followup > 100 103
CDE_Status == ‘Deceased’ 387

Total 490

Table 13: Multi-omic class sample quantities
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We observe that the classes are imbalanced. Copying the data to a new dataframe

and by utilizing the package imblearn we initialize three different methods to balance

our data distribution as shown in [3.2.2.4]:

• SMOTE

• BorderlineSMOTE

• ADASYN

Creating a copy of the balanced dataframes and using the min_max_scaler from the

package sklearn, we create a normalized version of the dataframe to compare with it’s

non normalized counterpart.  Our four dataframes are now ready for the classifiers

[5.6].

Going back to the original dataframes, we concatenate the gene expression data and

the miRNA data into a singular dataframe alongside the index (we’ve already pruned

non intersection members at the start of [5.3.2]. And finally append the survival (in

days) of the patients as a feature column in the dataframe.
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Figure 35: Original class distribution Figure 34: Distribution of classes after
oversampling minority class

Figure 36: Survival value distribution



4. Case Study

Observing multiple outlier cases we decide to prune the dataset by dropping the top

5% of the values (n=24) due to them holding over 45% of the value range upper limit,

alongside their samples. Then we normalize the entire dataframe feature wise. The fi-

nal dataframe shape is (457 x 12576). The finalized survival value distribution now

looks smoother. 

The entire process took 2 minutes to complete, with Script [Multi-omics]

4.4 Image segmentation

In this section we analyse the modifications done to a standard CNN (3D Unet) as

showcased in [3.3.4.1]. Then we briefly talk about hyperparameters and analyse the

model and strategy used. Lastly, we present some training data and results. The theory

is explained in [3.3.4]
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Figure 37: Pruned and normalized survival value distribution

Table 14: Merged dataframe sample
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4.4.1 Data Generators

Since we cannot use the internalized data generators from keras due to the nature of

our data packs, keras will only support up to 3D representations and our data packets

are in the fourth dimension due to a modality channel stack, we create custom generat-

ors. A custom generator is basically a function that instead of the “return” statement is

using the “yield” statement. We do this by using Script [Data Generator]. 

Depending on our batch size, the generator will return a block of the numpy array

objects as mentioned in [5.3.1.1]. In this case the batch_size is set to 1. This is because

of the limited GPU memory that  can only facilitate  the model  itself  and one data

packet at a time before running out of VRAM. 

We create two data generators:

• Training data generator, which will feed the U-net

• Validation data generator, which will be used at the end of each epoch to assess

the model

4.4.2 Hyperparameters, optimizer, and callbacks

In this section we briefly describe our optimizer,  hyperparameter settings, the call-

backs we use and how these function

4.4.2.1 Hyperparameters

• Batch_size = 1, reasons explained in [5.4.1]

• Epochs: depending on the model [0-6] different approaches were taken.

From mini models of 5-10 epochs to the main model of 100 epochs.

• LR: default at 1e-4 but often times used 1e-3 or even 1e-2 to train[Train] and

retrain[Retrain] models for 5 epochs with a LR_decay_rate = LR / Epochs to

simulate cyclical LR[14], therefore skipping the need to tune it as a hyperpara-

meter. This happens due to the nature of the model, each epoch takes approx-

imately  15minutes  and  another  3  minutes  to  finish  validation  and  update

weights for a total of 18-20 minutes per epoch.
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4.4.2.2 Optimizer

For the experiments in [4.4.3] a standard Adam optimizer (as showcased in [3.3.4])

was used.  We are supplying it  with a learning rate and a decay rate as showed in

[4.4.2.1].

4.4.2.3 Callbacks 

Model callbacks are functions that are called after every epoch. We use:

• model_save: used from tensorflow.keras.callbacks package to save the weights

of the model every time it’s prediction capability increases on the validation

set. 

• Tensorboard54: 

◦  Tracks and visualizes metrics such as loss and accuracy, etc.

◦ Visualizes the model graph

◦ Views histograms of weights, biases as they change over time 

4.4.3 Model architecture

The model architecture is a modified version of a 3D Unet to facilitate the special data

packages that we are feeding it as inputs. The only difference from a 3D Unet as show-

cased in [3.2.3.1.1] is that it has two more input channels cause the input shape to con-

tain:

• Batch_IDX, self nulled due to current batch_size = 1 

• X – Image Height = 128

• Y – Image Width = 128

• Z – Image Depth = 128

• C – Image Channels = 4, this is the range of the labels we want to segment

The input packet that goes into the network is an array containing:

[(none), (X, Y, Z), C]

The weights are initialized using he_uniform55 transform from tf.keras. This means

that it draws samples from a uniform distribution within [-limit, limit], where 

54 https://www.tensorflow.org/tensorboard
55 https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeUniform
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limit = √(6 /qinput) ,qinput is the number of input units in the weight tensor. 

Overall the model is standing at 5,645 million parameters, all of them being train-

able. We instantiate the model from Script [Train], the model itself is stored in Script

[Unet].

4.4.4 Model Training

In this section we show graphs of metrics and losses of the two most prominent mod-

els. Overall six models were trained and two of them were retrained to boost categor-

ical accuracy by utilizing cyclical LR simulation. Despite best efforts to avoid unfair

prediction, the sparsity in the dataset is too great without some serious data augmenta-

tion. 

• Model A (1):

Trained for epochs = 100

LR = 1e-4 

Decaying_LR = Yes

Elapsed time: approximately 34hours

MeanIoU over the test set: 82% 

57

Figure 38: Tensorboard Graphs for model A
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• Model B (3.1):

Trained for epochs = 20, in segments of 5 to reset it’s LR

LR = 1e-3 

Decaying_LR = Yes

Elapsed time: approximately 7hours

MeanIoU over the test set: 78% 
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Figure 39: Predictions for model A

Figure 40: Prediction for model B
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4.5 Feature Extraction

To extract the imaging features that are thoroughly explained in [3.3] first we must

yield the survival data from three different survival csv files. We begin by populating

our location dataframe as we have done in previous chapters of this section. We then

load the survival data of all three csv files.
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Figure 41: Tensorboard graphs for model B

Figure 42: Sample of survival csv files
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Using the patient IDs from the locations dataframe, we cross reference it with the

survival sets to yield the survival days of each patient. If the patient does not exist in-

side the survival sets or the survival days are N/A, we place a NaN placeholder in the

list, on it’s hypothetical index to prune the data later.

After having completed the aforementioned, we count 381 inputs to be NaN. Utiliz-

ing dataframe operations we quickly drop these values and reset the dataframe index

to intercept  potential  problems with iloc in the future.  We perform frequent sanity

checks to ensure data won’t go missing.  Finally from 989 lines we are left with 608

samples. 

We instantiate four empty lists to facilitate each modality. Using the package pyra-

diomics56, we enable all imaging features and we instantiate an extractor. We perform

parallel casting of the extraction process including the T1 modality. It is acknowledged

that the T1 modality is not used in training the models mentioned in [4.4.4] but in our

judgement we would have one CPU core stall while the others worked, and the more

data we extract the better it’s going to be for our survival rate predictors in the next

chapter.  

Finally we create four dataframes, one for each modality, from the feature lists. We

split the extra data (spatial information about the mask, tool versions, etc) from the

feature (tabular) data and now we have two dataframes per modality that we save un-

der /main/outputs/ as:

• Extra data <modality>_extras.csv

• Feature data <modality>_features.csv

Another csv is created to store the survival days of the 608 sample set and saved in

the same folder as the above. For chapter [4.5] the Script [Image Feature Extraction ]

was used. Time usage for chapter [4.5]:

Operation Time
Single loc dataframe line 7.01 seconds 
Approximation of all data 4263.95 seconds (71.06 minutes)
True time for full feature extraction 4469.47 seconds (74.49 minutes)

Table 15: Time usage for feature extraction

56 https://pyradiomics.readthedocs.io/en/latest/
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4.6 Survival Prediction from Imaging Data

Having extracted the imaging features now we can perform analysis utilizing weak

learners as showcased in [3.2.2]. We begin by loading our feature csv files for each

modality and appending the survival days as a feature column at the end.

We use the train_test_split method from the sklearn package and split our data into

80% training and 20% test sets. Random state is set to 42. For the four modalities this

works fine, but for the merged set we have to combine the previously split sets to not

have values from the training set into the test set of the merged set. 

Initializing five XGBOOST Regressors with default settings. And fitting them to

our train X_train, Y_train sets as taken from train_test_split. 

The XGBRegressors took 1.52s to train.

Training score: 87.44% for set: flair
Training score: 87.20% for set: t1
Training score: 86.70% for set: t1ce
Training score: 88.59% for set: t2
Training score: 87.67% for set: merged

K-Fold cross val(n=10) score: 82.26 for set: flair
K-Fold cross val(n=10) score: 76.46 for set: t1
K-Fold cross val(n=10) score: 84.39 for set: t1ce
K-Fold cross val(n=10) score: 79.99 for set: t2
K-Fold cross val(n=10) score: 99.38 for set: merged

MSE: 12732.87 for set: flair 
MSE: 12977.93 for set: t1 
MSE: 13482.55 for set: t1ce 
MSE: 11571.53 for set: t2 
MSE: 12503.22 for set: merged 
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Figure 43: Survival data distribution of the BraTS data
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RMSE: 112.84 for set: flair 
RMSE: 113.92 for set: t1 
RMSE: 116.11 for set: t1ce 
RMSE: 107.57 for set: t2 
RMSE: 111.82 for set: merged 
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Figure 44: Prediction for non normalized data modality data
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It’s normal for the MSE / RMSE scores to look absurd because the data are not nor-

malized. This is done in order to look for significant changes in the prediction in nor-

malized and non normalized datasets.

Moving forward we perform feature (column) wise normalization. Note that we do

not remove any high values due to the dataset being somewhat balanced. After we’re

done we repeat the process with new XGB Regressors. 

XGBRegressors took 1.27s to train.

Training score: 83.03% for set: flair
Training score: 84.75% for set: t1
Training score: 80.42% for set: t1ce
Training score: 86.73% for set: t2
Training score: 85.25% for set: merged

K-Fold cross validation took 12.45s to estimate.

K-Fold cross val(n=10) score: 75.73 for set: flair
K-Fold cross val(n=10) score: 76.63 for set: t1
K-Fold cross val(n=10) score: 87.22 for set: t1ce
K-Fold cross val(n=10) score: 89.00 for set: t2
K-Fold cross val(n=10) score: 98.96 for set: merged

MSE: 0.01 for set: flair 
MSE: 0.00 for set: t1 
MSE: 0.01 for set: t1ce 
MSE: 0.00 for set: t2 
MSE: 0.00 for set: merged 

RMSE: 0.07 for set: flair 
RMSE: 0.07 for set: t1 
RMSE: 0.08 for set: t1ce 
RMSE: 0.07 for set: t2 
RMSE: 0.07 for set: merged 
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Figure 45: Prediction for non normalized merged modality set
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Figure 46: Predictions for normalized modality data
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This chapter was completed using Script [Image Feature Survival Prediction]. Time

elapsed was approximately 1 minute. 

4.7 Multi-omic Data analysis

Lastly, we use the preprocessed data we created in [4.3.2] to create multiple classifiers

and finally a regressor for survival prediction on the merged multi-omic set. Multiple

classifiers are used to compare between class imbalance control strategies and two

weak learners: RFC and XGBOOST for non normalized and normalized data. Script

used is still [Multi-omics]

We split all our sets into 80% train and 20% test with random state = 42.   Then we

initialize  for  each  data  set  (gene_exp,  miRNA)   and  each  oversampling  strategy

(SMOTE, BorderlineSMOTE, ADASYN) a RFC and a XGB Classifier. Bellow are the

results of each one. To avoid having parts of the graph hidden, the legend is turned off.

Starting off with the non normalized sets: (Legend: Original(Blue), Predicted(Red))

Purple means that the prediction matches the ground truth: 
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Figure 47: Prediction for normalized merged data
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And now we repeat the same process for new classifiers on normalized data.
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Total time elapsed to train all 24 classifiers was about two minutes. 

We now merge the two main datasets (gene_exp & miRNA) and only keep the

samples that are in the intersection of the two sets. Furthermore we drop any sample

that we don’t have the survival days and append the survival days as a feature column

at the end of the new dataframe. We are left with 457 samples containing 12577 fea-

tures.

71

Figure 48: XGB Classifiers predictions
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We perform multiple tests and use K-Fold cross validation[3.2.2.3] with number of

splits  = 10 and enabled shuffling. Our initial  random state is  set  to 42.  Tests  per-

formed: 

• Raw survival days, normalized data:

K-fold cross validation took 231.16s with a score of: 55.90%

• Normalized survival days, normalized data:

K-fold cross validation took 211.29s with a score of: 57.99%

• Normalized & pruned(n=10) survival days, normalized data

K-fold cross validation took 197.23s with a score of: 27.87%

• Normalized & pruned(n=5%) survival days, normalized data

K-fold cross validation took 249.02s with a score of: 21.14%

• Normalized & pruned(n=5%) survival days, normalized data, CRS57 (rt=5)

K-fold cross validation took 230.84s with a score of: 28.56%

• Normalized survival days, normalized data, RRS58, CTS59 (n=.33)

K-fold cross validation took 213.03s with a score of: 25.07%

Overall time elapsed for the classifiers training was approximately 25 minutes.

57    CRS = Changed Random State
58 RRS = Removed Random State
59 CTS = Changed Test Split
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Figure 49: Best Classifier Predictions
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5 Results

Though lengthy our experiment yielded some interesting results. 

Total time to run all computations per department: 

Operation(s) Total Time 
Preprocessing 24,5 hours
Train 3D CNNs 52-55 hours 
Evaluate models 1 hour
Extract radiomic features 75 minutes
Image survival predictor (train & eval) 1 minute
Multi-omic classifier (train & eval) 2 minutes
Multi-omic survival predictor (train & eval) 23 minutes
Total Elapsed  ~ 82 hours 

Table 16: Computational time for the entire project

The results of our imaging classifiers:

Type Accuracy
3D CNN (1st model) 82%
3D CNN (2nd model) 78%
3D CNN (3rd model) 75%
3D CNN (4th model) 69%
3D CNN (5th model) 68%
3D CNN (6th model) 42%

Table 17: CNN models categorical accuracy

The results of our imaging survival predictors for non normalized data:

Modality Train score K-FCV MSE RMSE
FLAIR 87.40% 82.26% 12732.87 112.84
T1 87.20% 76.46% 12977.93 113.92 
T1-CE 86.70% 84.39% 13482.55 116.11 
T2 88.59% 79.99% 11571.53 107.57 
Merged 87.67% 99.38% 12503.22 111.82

Table 18: Imaging survival predictor scores ( non normalized )

The results of our imaging survival predictors for normalized data:

Modality Train score K-FCV MSE RMSE
FLAIR 83.03% 75.73% 0.01 0.07 
T1 84.75% 76.63% <0.01 0.07 
T1-CE 80.42% 87.22% 0.01 0.08 
T2 86.73% 89.00% <0.01 0.07 
Merged 85.25% 98.96% <0.01 0.07 

Table 19: Imaging survival predictor scores ( normalized )
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The result of our non normalized multi-omic classifiers:

Set Classifier Oversampling Type Accuracy score
Gene Expression RFC SMOTE 76.62%
Gene Expression RFC BorderlineSMOTE 83.12%
Gene Expression RFC ADASYN 80.39%
Gene Expression XGBOOST SMOTE 88.31%
Gene Expression XGBOOST BorderlineSMOTE 89.61%
Gene Expression XGBOOST ADASYN 93.46%
miRNA RFC SMOTE 83.12%
miRNA RFC BorderlineSMOTE 77.92%
miRNA RFC ADASYN 68.21%
miRNA XGBOOST SMOTE 92.86%
miRNA XGBOOST BorderlineSMOTE 88.96%
miRNA XGBOOST ADASYN 88.08%

Table 20: Accuracy score of non normalized multi-omic classifiers

The result of our normalized multi-omic classifiers:

Set Classifier Oversampling Type Accuracy score
Gene Expression RFC SMOTE 79.22%
Gene Expression RFC BorderlineSMOTE 79.87%
Gene Expression RFC ADASYN 80.39%
Gene Expression XGBOOST SMOTE 93.51%
Gene Expression XGBOOST BorderlineSMOTE 90.91%
Gene Expression XGBOOST ADASYN 93.46%
miRNA RFC SMOTE 74.68%
miRNA RFC BorderlineSMOTE 75.97%
miRNA RFC ADASYN 75.16%
miRNA XGBOOST SMOTE 90.91%
miRNA XGBOOST BorderlineSMOTE 88.96%
miRNA XGBOOST ADASYN 90.20%

Table 21: Accuracy score of normalized multi-omic classifiers

The K-FCV result of our merged set (gene_exp & miRNA)

Normalized Days Special Prune Score
No - No 55.90%
Yes - No 57.99%
Yes - Yes(n=10) 27.87%
Yes - Yes(n=5%) 21.14%
Yes CRS(rt=5) Yes(n=5%) 28.56%
Yes RRS & CTS(n=.33) No 25.07%

Table 22: K-FCV of our merged multi-omic regressor
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To summarize, we achieved:

• Cancer diagnosis and semantic segmentation of the tumor at a categorical ac-

curacy of 82% and 78% with multiple different approaches utilizing modified

3D Unets and training six models. 

• Survival type classification (classes from [4.3.2])  based on gene expression

data and miRNA data with our best score coming from the gene expression

data classified by a XGB Classifier after the data got normalized and balanced

with the use of SMOTE [4.3.2], [4.7] for a score of 93.51%.

• Merged omic set attempts only yielded a maximum of a score of 57.99% with

MSE of 0.05 and RMSE of 0.21. Given the oppressive amount of features the

dataset  had against  the amount  of samples,  we find this  normal  yet  under-

whelming.

• And bringing it all together we created survival rate predictors for both the

imaging data  (by extracting  their  imaging features  and performing analysis

with weak learners) reaching a  MSE of  less than 0.01 in imaging [4.6]  and

0.05 in merged multi-omic data analysis [4.7]
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6 Discussion & Outlook

The objective of this thesis was to prove that it is possible to merge data obtained by

multiple scientific fields (biology & medicine) that are brought together by the field of

informatics in order to reach the goal of cancer diagnostic tools such as [4.4.4] and

[4.7] as well as survival rate predictions as shown in [4.6] and [4.7]. It also proved that

you can approximate a pretty accurate result in survival rates if you have multiple type

data sources(imaging, multi-omics, etc.).

Despite our poor results[5.] due to us still being naive to the grand scheme of 3D

semantic segmentation (we got a good slap from the danning krueger effect[40]) opti-

mal deep learning with neural networks is by far the bleeding edge in terms of seman-

tic segmentation in medical imaging with scoring as much a 0.95 dice score[39]!

For the multi-omics part on the other hand, some ANN based approaches fall be-

hind [41]. Despite DNNs being able to discover structures inside big data, problems

arise when our features far exceed our samples. It’s causing the model to over fit re-

sulting in the model loosing predictive capabilities. This is why XGBOOST usually

outperforms standard ANNs in tabular data classification & regression[42]. Despite all

that in respects to multi-omics as a whole, given the sheer volume of data that exists

and continues generating; DNNs will surely play a very important role in the year to

come.

Recent scientific literature indicates that quantitative features extracted from multi-

modal imaging data (CT, MRI, X-Ray) can be used as imaging biomarkers to charac-

terize a lesion. Added to this imaging arsenal, multi-omics data acquisition being per-

formed alongside imaging data acquisition with the result of a slow but steadily in-

creasing quantity of data. Soon we will be able to engage into large scale research with

deep learning models in the field of radiogenomics[43]

For our closing remarks we’d like to state that we started this thesis with a serious

limitation on time, knowledge and sense of time but despite that still choose to fully

embrace the idea behind a thesis (by learning new things and applying them in order to
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solve a problem[2.1],[2.3]) we have to say that we are positively surprised by the turn

of events (in respect to our results[6.]). 

Overall, parts of our knowledge in machine learning techniques and bioinformatics

have been re-established through trial and error and have set the stage for much more

knowledge to come and experiments to be made. For that, we are grateful. 
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7 Future Prospects

Moving forward in the brave new world of bioinformatics, we would like to further

our experimentation on multiple levels. These include but are not limited to prepro-

cessing, training models and data augmentation. Our focus is to expand our research

horizons by asking increasingly more complex questions to further understand prob-

lems inside the domain of bioinformatics and systems biology as a whole with the aim

to figure out solutions. 

In  the  preprocessing  part,  we would  like  to  experiment  with  ANN/DNN based

methods for denoising as presented in papers like [7], [8] and bias field correction as

presented in papers like [9], [10]. 

In the segmentation model part, we would like to experiment with multiple neural

networks, as mentioned already in the aftermath of the failed attempt mentioned in

[4.3.1.1]. Another approach we would like to look into is ensemble learning by utiliz-

ing different types of neural networks and attempt to make a super accurate segmenter

networks with the ability to generalize in brain gliomas. Subsequently, we would also

like to use different optimizers(AdaFair [13]) and hyperparameter tuning strategies.

In the regression and classification part we would like to take the time and analyze

our features. Due to our limited time, resources and knowledge some important steps

were not used that would have yielded optimal or at least better results. Example of

this would be [4.7], [4.6] where the entire datasets were used instead of proper feature

weighting and massive feature drops.

Lastly, we understand the diversity and sparsity of datasets due to problems men-

tioned in [3.1]. Therefore we would also tap into data augmentation with the usage of

conventional methods like random affine, elastic and pixel wise transformations on

our currently available datasets, as well as utilizing deep GANs in order to create new

and unseen data as showcased in [12].

The End.
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8 Appendix – Scripts

8.1 Rig information
#!/usr/bin/env python

print(f'Python version: {platform.python_version()}')

sys_details = tf.sysconfig.get_build_info()
print(f'CUDA version: {sys_details["cuda_version"]}')
print(f'CUDA computational capabilities: 
{sys_details["cuda_compute_capabilities"]}')
print(f'CUDNN version: {sys_details["cudnn_version"]}')

tools = ['pandas','numpy','keras','matplotlib','sklearn','radiomics',
              'nibabel','SimpleITK','imblearn','xgboost','tensorflow']
packages = {}

for i in range(len(tools)):
    try:
        packages[tools[i]] = import_module(tools[i])
        temp = packages[tools[i]].__version__
        if i < 3: 
            print(f'Package: {tools[i]}\t\t is in version:\t {temp}') 
        else:
            print(f'Package: {tools[i]}\t is in version:\t {temp}')
    except (PackageNotFound, NameError):
        print(f'Package: {tools[i]}\t is in version:\t {version(tools[i])}')
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8.2 Image Preprocess Pipeline

def grab_NSD(img_data, depth_len):

    """

    Simple function to grab sigma estimates from MRI slices with NaN intercept

    img_data : i x j x z image data matrix

    depth_len : slice count (Z)

    """

    temp_list_a = []

    for i in range(depth_len):

        X = np.mean(estimate_sigma(img_data[:, :, i]))

        if np.isnan(X):

            temp_list_a.append(1)

        else:

            temp_list_a.append(X)

    return np.float64(temp_list_a)

def denoise_img_data(temp_list_A, temp_list_B):

    """

    Clutter control function to generate NLM denoised images

    temp_list_A: a 3D MRI image

    temp_list_B: the estimated sigma values for each Z depth slice of temp_list_A

    """

    a = []

    options = dict(fast_mode=True,  # true for non gaussian

                   patch_size=5,  # 5x5 patches

                   patch_distance=6,  # 13x13 search area

                   multichannel=False)

    for i in range(len(temp_list_B)):
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        a.append(denoise_nl_means(temp_list_A[:, :, i], h=1.15 * temp_list_B[i], 

**options))

    return a

def denoise_process(i):

    """

    Denoise function to assist with

    Parallel error intercept due to i/o stream going ballistic

    i: counter for delayed

    """

    stream = getattr(sys, "stdout")

    f = denoise_img_data((temp_list_A[i]), temp_list_B[i])

    stream.flush()

    return f

def bias_field_correction(i):

    """

    Bias field correction function to assist with

    Parallel error intercept due to i/o stream going ballistic

    i: counter for delayed

    """

    stream = getattr(sys, "stdout")

    f = []

    for j in range(Z_depth):

        # cast image to Real ITK format

        obj_f = sitk.GetImageFromArray(temp_list_C[i][j])

        obj_f = sitk.Cast(obj_f, sitk.sitkFloat32)

        # Cast mask to uint8 format

        mask_image = sitk.OtsuMultipleThresholds(obj_f, 0, 1, 200)
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        mask_image = sitk.Cast(mask_image, sitk.sitkUInt8)

        # note that both casts are done as a dependency to the correction execute seq , it's

an inconvenience

        # but my time management is BAD so this will have to do for now , might change 

it later

        bias_corrected_img = corrector.Execute(obj_f, mask_image)

        # return the image slice to original 240x240 dimensions and drop it on the 

Z_depth stack

        f.append(sitk.GetArrayFromImage(bias_corrected_img))

    stream.flush()

    return f

def data_nesting(x):

    """

    data saving function to assist with

    Parallel error intercept due to i/o stream going ballistic

    i: counter for delayed

    """

    stream = getattr(sys, "stdout")

    hdr = object_nifti[x].header

    aff = object_nifti[x].affine

    finalized_nifti_img = nib.Nifti1Image(np.transpose(np.array(temp_list_D[x]), 

axes=(1, 2, 0)), aff, hdr)

    nib.save(finalized_nifti_img, finalized_locs.iloc[i][x + 1])

    stream.flush()
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def create_dir_tree_without_files(src, dst):

    # src https://www.geeksforgeeks.org/python-copy-directory-structure-without-files/

    # getting the absolute path of the source

    # directory

    src = os.path.abspath(src)

    # making a variable having the index till which

    # src string has directory and a path separator

    src_prefix = len(src) + len(os.path.sep)

    # making the destination directory

    os.makedirs(dst)

    # doing os walk in source directory

    for root, dirs, files in os.walk(src):

        for dirname in dirs:

            # here dst has destination directory,

            # root[src_prefix:] gives us relative

            # path from source directory

            # and dirname has folder names

            dirpath = os.path.join(dst, root[src_prefix:], dirname)

            # making the path which we made by

            # joining all of the above three

            os.mkdir(dirpath)

def load_pack(index, slice_index):

    """

    simple data grabber

    index: number that indicates which image set will be grabbed from the location 

dataframes
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    slice_index: number that indicates which Z-depth slice is gonna get grabbed

    """

    # mask

    mask = nib.load(finalized_locs.iloc[index][0]).get_fdata()[:, :, slice_index]

    # a raw data sample

    raw_img = [(nib.load(raw_data_loc.iloc[index][x]).get_fdata())[:, :, slice_index] for

x in range(1, 5)]

    # a preprocessed data sample

    prep_img = [(nib.load(finalized_locs.iloc[index][x]).get_fdata())[:, :, slice_index] 

for x in range(1, 5)]

    return mask, raw_img, prep_img

def plot_pack(mask, raw_img, prep_img):

    """

    simple data plot

    mask: 240x240 segmentation mask

    raw_img : list[0-4] of 240x240 images

    prep_img : same as above

    """

    names = ["flair", "t1", "t1c", "t2"]

    plt.figure(figsize=(17, 17))

    for i in range(4):

        plt.subplot(1, 4, i + 1)

        plt.title("Original " + names[i])

        plt.imshow(raw_img[i], cmap='gray')

        plt.imshow(mask, cmap='jet', alpha=.33)
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    plt.figure(figsize=(17, 17))

    for i in range(4):

        plt.subplot(1, 4, i + 1)

        plt.title("Processed " + names[i])

        plt.imshow(prep_img[i], cmap='gray')

        plt.imshow(mask, cmap='jet', alpha=.33)

        plt.show()

## ~~ *** ~~~ *** ~~~ *** ~~~ ##

# Initial data loc grab of the BraTS datasets

files = glob('X:\Datasets\BraTS\DATA\DATA_Training\**\*.nii.gz', recursive=True)

train_files_masks = glob('X:\Datasets\BraTS\DATA\DATA_Training\**\*seg.nii.gz', 

recursive=True)

train_files_scans = [fn for fn in (filter(lambda x: not x.__contains__("seg"), files))]

print(f'Found masks :{len(train_files_masks)} and scans:{len(train_files_scans)}.')

# separating scan pairs and merging data locations

flair = []

t1ce = []

t1 = []

t2 = []

for x in train_files_scans:

    if "t1ce.nii.gz" in x:

        t1ce.append(x)

    elif "t1.nii.gz" in x:

        t1.append(x)

    elif "t2" in x:

        t2.append(x)

    elif "flair.nii.gz" in x:

        flair.append(x)

    else:
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        print("Something funny happened.")

        break

print(f'Accumulated -> Flair:{len(flair)}, T1:{len(t1)}, T1c:{len(t1ce)}, T2:{len(t2)}\n')

temp_a = list(zip(train_files_masks, flair, t1, t1ce, t2))

temp_b = ["mask", "flair", "t1", "t1c", "t2"]

raw_data_loc = pd.DataFrame(temp_a, columns=temp_b)

null = [print(raw_data_loc.iloc[0][i]) for i in range(5)]

#raw_data_loc.head()

# Generate Mirror Locations for post process storing

# Uncomment if you need to recreate directory

create_dir_tree_without_files('D:\Datasets\BraTS\DATA\DATA_Training',

                              'D:\Datasets\BraTS\DATA\Processed_DATA_Training')

finalized_locs = raw_data_loc.copy()

for i in range(finalized_locs.shape[0]):

    for j in range(finalized_locs.shape[1]):

        temp = raw_data_loc.iloc[i][j]

        temp = temp[:23] + "Processed_" + temp[23:]

        finalized_locs.iloc[i][j] = temp

# Uncomment if you need to transfer the masks , if they are there already this should 

return an error

for i in range(finalized_locs.shape[0]):

    shutil.copyfile(raw_data_loc.iloc[i][0], finalized_locs.iloc[i][0])

# Preprocess Pipeline
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temp_time_start = time()

warnings.filterwarnings("ignore")

Z_depth = 155

for i in range(len(raw_data_loc)):

    object_nifti = []  # keep these for header & affine affix copy

    temp_list_A = []  # line tuple from raw_data

    temp_list_B = []  # estimated sigmas for tuple data

    # grab data tuple

    for j in range(4):

        object_nifti.append(nib.load(raw_data_loc.iloc[i][j + 1]))  # a nifti image object

        temp_list_A.append(object_nifti[j].get_fdata())  # grab image_data #dim: 

240x240x155

        temp_list_B.append(grab_NSD(temp_list_A[j], Z_depth))  # grab estimated 

sigmas , dim: 155x

    temp_list_C = Parallel(n_jobs=4, backend="threading")(delayed(denoise_process)

(x) for x in range(4))

    corrector = sitk.N4BiasFieldCorrectionImageFilter()  # generate global filter

    temp_list_D = Parallel(n_jobs=4, backend="threading")

(delayed(bias_field_correction)(x) for x in range(4))

    x = Parallel(n_jobs=4, backend="threading")(delayed(data_nesting)(x) for x in 

range(4))

temp_time_stop = time()

print(f'Time elasped for preprocessing: {(temp_time_stop - temp_time_start)} sec.')

pack_index = np.random.randint(low=0, high=len(raw_data_loc))

slice_index = np.random.randint(low=50, high= 100)
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mask, raw_img, prep_img = load_pack(pack_index, slice_index)

plot_pack(mask, raw_img, prep_img)
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8.3 Data Bundling

t1_list = glob('X:/Datasets/BraTS/DATA/Processed_DATA_Training/**/*t1.nii.gz', 

recursive=True)

t2_list = glob('X:/Datasets/BraTS/DATA/Processed_DATA_Training/**/*t2.nii.gz', 

recursive=True)

t1ce_list = glob('X:/Datasets/BraTS/DATA/Processed_DATA_Training/**/

*t1ce.nii.gz', recursive=True)

flair_list = glob('X:/Datasets/BraTS/DATA/Processed_DATA_Training/**/

*flair.nii.gz', recursive=True)

mask_list = glob('X:/Datasets/BraTS/DATA/Processed_DATA_Training/**/

*seg.nii.gz', recursive=True)

c = 0

scaler = MinMaxScaler()

for i in range(len(t1_list)):

    print(f"\rCurrent: {i}")

    #temp_image_t1 = nib.load(t1_list[i]).get_fdata()

    #temp_image_t1 = scaler.fit_transform(temp_image_t1.reshape(-1, 

temp_image_t1.shape[-1])).reshape(temp_image_t1.shape)

    temp_image_t2 = nib.load(t2_list[i]).get_fdata()

    temp_image_t2 = scaler.fit_transform(temp_image_t2.reshape(-1, 

temp_image_t2.shape[-1])).reshape(temp_image_t2.shape)

    temp_image_t1ce = nib.load(t1ce_list[i]).get_fdata()

    temp_image_t1ce = scaler.fit_transform(temp_image_t1ce.reshape(-1, temp_im-

age_t1ce.shape[-1])).reshape(temp_image_t1ce.shape)

    temp_image_flair = nib.load(flair_list[i]).get_fdata()
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    temp_image_flair = scaler.fit_transform(temp_image_flair.reshape(-1, temp_im-

age_flair.shape[-1])).reshape(temp_image_flair.shape)

    temp_mask = nib.load(mask_list[i]).get_fdata()

    temp_mask = temp_mask.astype(np.uint8)

    # 3 has no representation in the entire dataset so we replace it with 4

    temp_mask[temp_mask == 4] = 3

    #add temp_image_t1 in the stack if you want to save it too

    temp_combined_images = np.stack([temp_image_flair, temp_image_t1ce, 

temp_image_t2], axis=3)

    # cropping down to 128x128x128 patches

    temp_combined_images = temp_combined_images[56:184, 56:184, 13:141]

    temp_mask = temp_mask[56:184, 56:184, 13:141]

    val, counts = np.unique(temp_mask, return_counts=True)

    # if the useful information on the picture is less than 1%, drop the image

    if (1 - (counts[0] / counts.sum())) > 0.01:

        temp_mask = to_categorical(temp_mask, num_classes=4)

        np.save('X:/Data/3D_Blocks/images/stack_' + str(i) + '.npy', temp_combined_im-

ages)

        np.save('X:/Data/3D_Blocks/classes/mask_' + str(i) + '.npy', temp_mask)

    else:

        c += 1

print(f'Out of {len(t1_list)} 3D stacks, {c} didn't have enough information')
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8.4 Multi-omics

#!/usr/bin/env python

# initial data grab 

# CLINICAL DATA GBM IS RIDDEN WITH DELIMITER ERRORS ON THESE 

LINES* 

#*:we get rid of them but noting them nontheless in case we can repair / yield some 

information from them

# x = [66, 110, 111, 117, 119,

#     120, 126, 128, 138, 145, 

#     163, 165, 167, 227, 277, 

#     300, 304, 306, 349, 373, 

#     431, 468, 485, 499, 585]

x_loc = 'X:/Data/Extras/Genomics/'  # >SE , g_loc , L:D

#x_loc = 'D:/thesis_movable/Genomics/' # >SE , g_loc , L:L

#currently indexing per sample name 

exp_data = pd.read_csv(x_loc+'exp', index_col=0)

mirna_data = pd.read_csv(x_loc+'mirna', index_col=0)

survival_data = pd.read_csv(x_loc+'survival', index_col=0)

clinical_data = pd.read_csv(x_loc + 'clinical_gbm',

                           index_col=0,

                           delimiter='\t',

                           on_bad_lines='skip')

# Taking a look to retain sanity points

print(f'Exp data size: {exp_data.T.shape}.\n--')

print(exp_data.iloc[0:5,0:5].T)

print('\n\n***\n\n')

print(f'miRNA data size: {mirna_data.T.shape}.\n--')

print(mirna_data.iloc[0:3,0:5].T)
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print('\n\n***\n\n')

print(f'Survival data size {survival_data.shape}.\n--')

print(survival_data.head())

print('\n\n***\n\n')

    

print(f'Clinical data size {clinical_data.shape}.\n--')

pd.set_option('display.max_rows', len(clinical_data.iloc[0]))

print(clinical_data.iloc[0].T)

pd.reset_option('display.max_rows')

print('\n\n***\n\n')

# define classes and grab usable datasets

c1 = clinical_data.query('CDE_vital_status == "DECEASED"')

c2 = clinical_data.query('CDE_vital_status == "LIVING" & days_to_last_followup

> 100')

print(f'Classes:\t\t[Dead: {len(c1)}]  [Alive & DTLF>100: {len(c2)}]  [Total 

Samples: {len(c1)+len(c2)}]')

# obtain subject tags

c1_tags = c1.index.str.replace("-",".").to_list() 

c2_tags = c2.index.str.replace("-",".").to_list()

exp_tags = exp_data.T.index.to_list()

mirna_tags = mirna_data.T.index.to_list()

#check if they have exp & mirna data and purge if they dont

for x in c1_tags:

    if x in exp_tags and x in mirna_tags:

        continue

    else:

        c1_tags.remove(x)
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for x in c2_tags:

    if x in exp_tags and x in mirna_tags:

        continue

    else:

        c2_tags.remove(x)

        

class_dead_exp_data = exp_data.T.query(f'index in {c1_tags}')

class_dead_mirna_data = mirna_data.T.query(f'index in {c1_tags}')

class_alive_exp_data = exp_data.T.query(f'index in {c2_tags}')

class_alive_mirna_data = mirna_data.T.query(f'index in {c2_tags}')

print(f'Classes after pruning:  [Dead: {len(c1_tags)}]  [Alive & DTLF>100: 

{len(c2_tags)}]  [Total Samples: {len(c1_tags)+len(c2_tags)}]\n')

plt_data = {'Total Samples': len(c1_tags)+len(c2_tags), 'Dead': len(c1_tags), 'Alive 

& SD:>100':len(c2_tags)}

classes = list(plt_data.keys())

values = list(plt_data.values())

colors = ['blue','brown','green']

plt.figure(figsize=(4,4))

plt.bar(classes, values, width=.5, color=colors)

plt.title('Class distribution')

plt.xlabel("Classes")

plt.ylabel('Samples')

plt.show()

print('Majority class: %.2f' % (abs(1-(len(c2_tags) / len(c1_tags)))))

print('Minority class: %.2f' % (len(c2_tags) / len(c1_tags) ))

# true sets
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u_X_exp = pd.concat([class_dead_exp_data, class_alive_exp_data], 

verify_integrity=True)

u_Y_exp = np.zeros(len(u_X_exp), dtype=np.uint8)

u_Y_exp[len(class_dead_exp_data):] = 1

u_X_mirna = pd.concat([class_dead_mirna_data, class_alive_mirna_data], 

verify_integrity=True)

u_Y_mirna = np.zeros(len(u_X_mirna), dtype=np.uint8)

u_Y_mirna[len(class_dead_mirna_data):] = 1

print(f"\nTrue sets:\n\tEXP:  {u_X_exp.shape}\n\tMIRNA:{u_X_mirna.shape}")

# three way oversampling of C2 

rt = 42

s1 = sm(random_state=rt)

s2 = bsm(random_state=rt)

s3 = ada(random_state=rt)

# SMOTE

V1_X_exp_res, V1_Y_exp_res = s1.fit_resample(u_X_exp, u_Y_exp)

V1_X_mirna_res, V1_Y_mirna_res = s1.fit_resample(u_X_mirna, u_Y_mirna)

# BorderlineSMOTE

V2_X_exp_res, V2_Y_exp_res = s2.fit_resample(u_X_exp, u_Y_exp)

V2_X_mirna_res, V2_Y_mirna_res = s2.fit_resample(u_X_mirna, u_Y_mirna)

# ADASYN 

V3_X_exp_res, V3_Y_exp_res = s3.fit_resample(u_X_exp, u_Y_exp)

V3_X_mirna_res, V3_Y_mirna_res = s3.fit_resample(u_X_mirna, u_Y_mirna)

# reploting 

plt_data = {'Total Samples': len(V1_Y_exp_res)+len(V1_Y_mirna_res),
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            'Dead': len(V1_Y_exp_res),

            'Alive & SD:>100':len(V1_Y_mirna_res)}

classes = list(plt_data.keys())

values = list(plt_data.values())

colors = ['blue','brown','green']

plt.figure(figsize=(4,4))

plt.bar(classes, values, width=.5, color=colors)

plt.title('Class distribution')

plt.xlabel("Classes")

plt.ylabel('Samples')

plt.show()

# Chop suey

rt = 7

exp_X_trains = []

exp_Y_trains = []

exp_X_tests = []

exp_Y_tests = []

mirna_X_trains = []

mirna_Y_trains = []

mirna_X_tests = []

mirna_Y_tests = []

V1expXtrain, V1expXtest, V1expYtrain, V1expYtest = 

train_test_split(V1_X_exp_res, V1_Y_exp_res, test_size=.2, random_state=rt)

V1mirnaXtrain, V1mirnaXtest, V1mirnaYtrain, V1mirnaYtest = 

train_test_split(V1_X_mirna_res, V1_Y_mirna_res, test_size=.2, random_state=rt)

V2expXtrain, V2expXtest, V2expYtrain, V2expYtest = 

train_test_split(V2_X_exp_res, V2_Y_exp_res, test_size=.2, random_state=rt)
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V2mirnaXtrain, V2mirnaXtest, V2mirnaYtrain, V2mirnaYtest = 

train_test_split(V2_X_mirna_res, V2_Y_mirna_res, test_size=.2, random_state=rt)

V3expXtrain, V3expXtest, V3expYtrain, V3expYtest = 

train_test_split(V3_X_exp_res, V3_Y_exp_res, test_size=.2, random_state=rt)

V3mirnaXtrain, V3mirnaXtest, V3mirnaYtrain, V3mirnaYtest = 

train_test_split(V3_X_mirna_res, V3_Y_mirna_res, test_size=.2, random_state=rt)

                                                                            

for i in range(3):

    affix = 'V' + str(i+1)

    

    exp_X_trains.append(eval(affix + 'expXtrain'))

    exp_Y_trains.append(eval(affix + 'expYtrain'))

    exp_X_tests.append(eval(affix + 'expXtest'))

    exp_Y_tests.append(eval(affix + 'expYtest'))

    mirna_X_trains.append(eval(affix + 'mirnaXtrain'))

    mirna_Y_trains.append(eval(affix + 'mirnaYtrain'))

    mirna_X_tests.append(eval(affix + 'mirnaXtest'))

    mirna_Y_tests.append(eval(affix + 'mirnaYtest'))

# init classfiers ( W L ) 4x3 = 12 classfiers

xgboost_exp_cls = []

xgboost_mirna_cls = []

dtc_exp_cls = []

dtc_mirna_cls = []

for i in range(3):

    xgboost_exp_cls.append(xgb.XGBClassifier())

    dtc_exp_cls.append(dtc())

    

    xgboost_mirna_cls.append(xgb.XGBClassifier())
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    dtc_mirna_cls.append(dtc())

# training classfiers 

start_t = time()

for i in range(3):

    xgboost_exp_cls[i].fit(exp_X_trains[i], exp_Y_trains[i])

    dtc_exp_cls[i].fit(exp_X_trains[i], exp_Y_trains[i])

    

    xgboost_mirna_cls[i].fit(mirna_X_trains[i], mirna_Y_trains[i])

    dtc_mirna_cls[i].fit(mirna_X_trains[i], mirna_Y_trains[i])

    

print(f'Training all classifiers took {int(time()-start_t)}sec.')

# results

c_type = ['SMOTE', 'BorderlineSMOTE', 'ADASYN']

for i in range(3):

    print(f'Printing accuracy results for imbalance correction method: {c_type[i]}.\

n-')

    

    # predictions

    a_pred = xgboost_exp_cls[i].predict(exp_X_tests[i])

    b_pred = dtc_exp_cls[i].predict(exp_X_tests[i])

    c_pred = xgboost_mirna_cls[i].predict(mirna_X_tests[i])

    d_pred = dtc_mirna_cls[i].predict(mirna_X_tests[i])

    

    # accuracy stuff & plots

    exp_x_ax = range(len(exp_Y_tests[i]))

    mirna_x_ax = range(len(mirna_X_tests[i]))

    

    a_acc = acc(exp_Y_tests[i], a_pred)

    print('Accuracy for XGBOOST on exp: %.2f%%' %(a_acc*100))
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    plt.figure(figsize=(10,3))

    plt.title(f'XGBoost Results for EXP data (Imb_Strat: {c_type[i]})')

    plt.plot(exp_x_ax, exp_Y_tests[i], label='original')

    plt.plot(exp_x_ax, a_pred, label='predicted', color='r', alpha=.33)

    plt.show()

    b_acc = acc(exp_Y_tests[i], b_pred)

    print('Accuracy for RFC on exp: %.2f%%' %(b_acc*100))

    plt.figure(figsize=(10,3))

    plt.title(f'RFC Results for EXP data (Imb_Strat: {c_type[i]})')

    plt.plot(exp_x_ax, exp_Y_tests[i], label='original')

    plt.plot(exp_x_ax, b_pred, label='predicted', color='r', alpha=.33)

    plt.show()

    

    c_acc = acc(mirna_Y_tests[i], c_pred)

    print('Accuracy for XGBOOST on mirna: %.2f%%' %(c_acc*100))

    plt.figure(figsize=(10,3))

    plt.title(f'XGBoost Results for miRNA data (Imb_Strat: {c_type[i]})')

    plt.plot(mirna_x_ax, mirna_Y_tests[i], label='original')

    plt.plot(mirna_x_ax, c_pred, label='predicted', color='r', alpha=.33)

    plt.show()

    

    d_acc = acc(mirna_Y_tests[i], d_pred)

    print('Accuracy for RFC on mirna: %.2f%%' %(d_acc*100))

    plt.figure(figsize=(10,3))

    plt.title(f'RFC Results for miRNA data (Imb_Strat: {c_type[i]})')

    plt.plot(mirna_x_ax, mirna_Y_tests[i], label='original')

    plt.plot(mirna_x_ax, d_pred, label='predicted', color='r', alpha=.33)

    plt.show()

    

    # post

    print ('\n**')
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# save model cause it's cool to keep nice things

#f_loc = 'D:/thesis_movable/main/saved_models/'  # global , S_E

f_loc = 'C:/Users/delta/my_thesis/main/saved_models/'   # global , S_E

prefix = 'non_normal_'

model_name = 'GEN_model_XGBClassifier_' + 

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

suffix = '.json'

f_name =  f_loc + prefix  + model_name + suffix

xgboost_exp_cls[2].save_model(f_name)

# full dataset normalization attempt

scaler1 = MinMaxScaler()

scaler2 = MinMaxScaler()

scaler1.fit(u_X_exp)

scaler2.fit(u_X_mirna)

u_X_exp = scaler1.transform(u_X_exp)

u_X_mirna = scaler2.transform(u_X_mirna)

# three way oversampling of C2 

rt = 42

s1 = sm(random_state=rt)

s2 = bsm(random_state=rt)

s3 = ada(random_state=rt)

# SMOTE
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f1_X_exp_res, f1_Y_exp_res = s1.fit_resample(u_X_exp, u_Y_exp)

f1_X_mirna_res, f1_Y_mirna_res = s1.fit_resample(u_X_mirna, u_Y_mirna)

# BorderlineSMOTE

f2_X_exp_res, f2_Y_exp_res = s2.fit_resample(u_X_exp, u_Y_exp)

f2_X_mirna_res, f2_Y_mirna_res = s2.fit_resample(u_X_mirna, u_Y_mirna)

# ADASYN 

f3_X_exp_res, f3_Y_exp_res = s3.fit_resample(u_X_exp, u_Y_exp)

f3_X_mirna_res, f3_Y_mirna_res = s3.fit_resample(u_X_mirna, u_Y_mirna)

# Chop suey

rt = 7

fxp_X_trains = []

fxp_Y_trains = []

fxp_X_tests = []

fxp_Y_tests = []

firna_X_trains = []

firna_Y_trains = []

firna_X_tests = []

firna_Y_tests = []

f1fxpXtrain, f1fxpXtest, f1fxpYtrain, f1fxpYtest = train_test_split(f1_X_exp_res, 

f1_Y_exp_res, test_size=.2, random_state=rt)

f1firnaXtrain, f1firnaXtest, f1firnaYtrain, f1firnaYtest = 

train_test_split(f1_X_mirna_res, f1_Y_mirna_res, test_size=.2, random_state=rt)

f2fxpXtrain, f2fxpXtest, f2fxpYtrain, f2fxpYtest = train_test_split(f2_X_exp_res, 

f2_Y_exp_res, test_size=.2, random_state=rt)

f2firnaXtrain, f2firnaXtest, f2firnaYtrain, f2firnaYtest = 

train_test_split(V2_X_mirna_res, V2_Y_mirna_res, test_size=.2, random_state=rt)
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f3fxpXtrain, f3fxpXtest, f3fxpYtrain, f3fxpYtest = train_test_split(f3_X_exp_res, 

f3_Y_exp_res, test_size=.2, random_state=rt)

f3firnaXtrain, f3firnaXtest, f3firnaYtrain, f3firnaYtest = 

train_test_split(f3_X_mirna_res, f3_Y_mirna_res, test_size=.2, random_state=rt)

                                                                            

for i in range(3):

    affix = 'f' + str(i+1)

    

    fxp_X_trains.append(eval(affix + 'fxpXtrain'))

    fxp_Y_trains.append(eval(affix + 'fxpYtrain'))

    fxp_X_tests.append(eval(affix + 'fxpXtest'))

    fxp_Y_tests.append(eval(affix + 'fxpYtest'))

    firna_X_trains.append(eval(affix + 'firnaXtrain'))

    firna_Y_trains.append(eval(affix + 'firnaYtrain'))

    firna_X_tests.append(eval(affix + 'firnaXtest'))

    firna_Y_tests.append(eval(affix + 'firnaYtest'))

# init classfiers ( W L ) 4x3 = 12 classfiers

fgboost_exp_cls = []

fgboost_mirna_cls = []

ftc_exp_cls = []

ftc_mirna_cls = []

for i in range(3):

    fgboost_exp_cls.append(xgb.XGBClassifier())

    ftc_exp_cls.append(dtc())

    

    fgboost_mirna_cls.append(xgb.XGBClassifier())

    ftc_mirna_cls.append(dtc())
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# training classfiers 

start_t = time()

for i in range(3):

    fgboost_exp_cls[i].fit(fxp_X_trains[i], fxp_Y_trains[i])

    ftc_exp_cls[i].fit(fxp_X_trains[i], fxp_Y_trains[i])

    

    fgboost_mirna_cls[i].fit(firna_X_trains[i], firna_Y_trains[i])

    ftc_mirna_cls[i].fit(firna_X_trains[i], firna_Y_trains[i])

    

print(f'Training all classifiers took {int(time()-start_t)}sec.')

# results 

c_type = ['SMOTE', 'BorderlineSMOTE', 'ADASYN']

for i in range(3):

    print(f'Printing accuracy results for imbalance correction method: {c_type[i]}.\

n-')

    

    # predictions

    fa_pred = fgboost_exp_cls[i].predict(fxp_X_tests[i])

    fb_pred = ftc_exp_cls[i].predict(fxp_X_tests[i])

    fc_pred = fgboost_mirna_cls[i].predict(firna_X_tests[i])

    fd_pred = ftc_mirna_cls[i].predict(firna_X_tests[i])

    

    # accuracy stuff & plots

    fxp_x_ax = range(len(fxp_Y_tests[i]))

    firna_x_ax = range(len(firna_X_tests[i]))

    

    fa_acc = acc(fxp_Y_tests[i], fa_pred)

    print('Accuracy for XGBOOST on exp: %.2f%%' %(fa_acc*100))

    plt.figure(figsize=(10,3))

    plt.title(f'XGBoost Results for EXP data (Imb_Strat: {c_type[i]})')
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    plt.plot(fxp_x_ax, fxp_Y_tests[i], label='original')

    plt.plot(fxp_x_ax, fa_pred, label='predicted', color='r', alpha=.33)

    plt.show()

    fb_acc = acc(fxp_Y_tests[i], fb_pred)

    print('Accuracy for RFC on exp: %.2f%%' %(fb_acc*100))

    plt.figure(figsize=(10,3))

    plt.title(f'RFC Results for EXP data (Imb_Strat: {c_type[i]})')

    plt.plot(fxp_x_ax, fxp_Y_tests[i], label='original')

    plt.plot(fxp_x_ax, fb_pred, label='predicted', color='r', alpha=.33)

    plt.show()

    

    fc_acc = acc(firna_Y_tests[i], fc_pred)

    print('Accuracy for XGBOOST on mirna: %.2f%%' %(fc_acc*100))

    plt.figure(figsize=(10,3))

    plt.title(f'XGBoost Results for miRNA data (Imb_Strat: {c_type[i]})')

    plt.plot(firna_x_ax, firna_Y_tests[i], label='original')

    plt.plot(firna_x_ax, fc_pred, label='predicted', color='r', alpha=.33)

    plt.show()

    

    fd_acc = acc(firna_Y_tests[i], fd_pred)

    print('Accuracy for RFC on mirna: %.2f%%' %(fd_acc*100))

    plt.figure(figsize=(10,3))

    plt.title(f'RFC Results for miRNA data (Imb_Strat: {c_type[i]})')

    plt.plot(firna_x_ax, firna_Y_tests[i], label='original')

    plt.plot(firna_x_ax, fd_pred, label='predicted', color='r', alpha=.33)

    plt.show()

    

    # post

    print ('\n**')

# save model cause it's cool to keep nice things

#f_loc = 'D:/thesis_movable/main/saved_models/'  # global , S_E
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f_loc = 'C:/Users/delta/my_thesis/main/saved_models/'   # global , S_E

model_name = 'GEN_model_XGBClassifier_' + 

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

prefix = 'normal_'

suffix = '.json'

f_name = f_loc + prefix + model_name + suffix

fgboost_exp_cls[2].save_model(f_name)

# merging dataframes

u_X_merged = pd.merge(u_X_exp, u_X_mirna, left_index=True, 

right_index=True, how='outer')

#eliminate non intersection participants 

u_X_merged.dropna(inplace=True)

print(f'Merged set shape: {u_X_merged.shape}.')

# grab survival days

survival_days = [survival_data.loc[x[:-3]][0] for x in 

u_X_merged.index.str.lower()]

# inject it in the end of the merged dataset

u_X_merged['survival'] = np.array(survival_days)

# ploting survival

x_ax = range(len(u_X_merged))

plt.figure(figsize=(15,5))

plt.title('Survival Value Distribution')
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plt.plot(x_ax, u_X_merged['survival'])

plt.show()

# getting rid of some outliers

u_X_merged.drop(u_X_merged['survival'].nlargest(25).index, inplace=True) 

# 24 is the 5% of the dataset, aka getting rid of the top 5% of the dataset

# normalize dataset

u_X_merged = (u_X_merged-u_X_merged.min())/(u_X_merged.max()-

u_X_merged.min())

# eliminate errors 

u_X_merged.replace([np.inf, -np.inf], np.nan, inplace=True)

u_X_merged.dropna(inplace=True)

# ploting pruned survival

x_ax = range(len(u_X_merged))

plt.figure(figsize=(15,5))

plt.title('Pruned & Normalized Survival Value Distribution')

plt.plot(x_ax, u_X_merged['survival'])

plt.show()

print(f'Finalized merged set shape: {u_X_merged.shape}.')

u_X_merged.iloc[:10,-8:] # S_C

# to address data leakage perform line 10 after you've split the dataset & normalize

them INDIVIDUALY , S_E - R_5 ?!

# splits

rt=42

mX_train, mX_test, mY_train, mY_test = train_test_split(u_X_merged.iloc[:,:-1], 

u_X_merged.iloc[:,-1], test_size=.2, random_state=rt)

print(f'Sets:\n\t Train:{len(mX_train)}, Test:{len(mX_test)}.')

105



8. Appendix – Scripts

# model init

reg_model = xgb.XGBRegressor()

a_time = time()

# fit it 

reg_model.fit(mX_train, mY_train)

print(f'XGB regressor took {time()-a_time} to train.')

# measure it 

score = reg_model.score(mX_train, mY_train)  

print(f"Training score: {score}")

score2 = reg_model.score(mX_test, mY_test)  

print(f"Testing score: {score2}")

b_time = time()

kfold = KFold(n_splits=10, shuffle=True)

kf_cv_scores = cross_val_score(reg_model, mX_train, mY_train, cv=kfold )

print(f"K-fold cross validation took {format(time()-b_time,'.2f')}s with a score of : 

{format(kf_cv_scores.mean(),'.2f')}")

# predictions

mY_pred = reg_model.predict(mX_test)

mse_score = mse(mY_test, mY_pred)

print("MSE:  %.2f" % mse_score)

print("RMSE: %.2f" % (mse_score**(1/2.0)))

# plots

x_ax = range(len(mY_test))

plt.figure(figsize=(15,5))

plt.title('Ground Truth & Predictions')

plt.plot(x_ax, mY_test, label="original")
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plt.plot(x_ax, mY_pred, label="predicted")

plt.legend()

plt.show()

# save model cause it's cool to keep nice things

#f_loc = 'D:/thesis_movable/main/saved_models/'  # global , S_E

f_loc = 'C:/Users/delta/my_thesis/main/'   # global , S_E

model_name = 'GEN_model_XGBRegressor_' + 

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

suffix = '.json'

f_name = f_loc + model_name + suffix

reg_model.save_model(f_name)
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8.5 Data Generator

def load_img(img_dir, img_list):

    images = []

    for i, image_name in enumerate(img_list):

        if (image_name.split('.')[1] == 'npy'):

            image = np.load(img_dir + image_name)

            images.append(image)

    images = np.array(images)

    return (images)

def imageLoader(img_dir, img_list, mask_dir, mask_list, batch_size=1):

    L = len(img_list)

    while True:

        batch_start = 0

        batch_end = batch_size

        while batch_start < L:

            limit = min(batch_end, L)

            X = load_img(img_dir, img_list[batch_start:limit])

            Y = load_img(mask_dir, mask_list[batch_start:limit])

            yield (X, Y)

            batch_start += batch_size

            batch_end += batch_size
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8.6 Unet

kernel_initializer = 'he_uniform'

def simple_unet_model(IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH, 

IMG_CHANNELS, num_classes):

    # Build the model

    inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH, 

IMG_CHANNELS))

    s = inputs

    # Contraction path

    c1 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(s)

    c1 = Dropout(0.1)(c1)

    c1 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(c1)

    p1 = MaxPooling3D((2, 2, 2))(c1)

    c2 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(p1)

    c2 = Dropout(0.1)(c2)

    c2 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(c2)

    p2 = MaxPooling3D((2, 2, 2))(c2)

    c3 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(p2)

    c3 = Dropout(0.2)(c3)

    c3 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(c3)

    p3 = MaxPooling3D((2, 2, 2))(c3)
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    c4 = Conv3D(128, (3, 3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same')(p3)

    c4 = Dropout(0.2)(c4)

    c4 = Conv3D(128, (3, 3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same')(c4)

    p4 = MaxPooling3D(pool_size=(2, 2, 2))(c4)

    c5 = Conv3D(256, (3, 3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same')(p4)

    c5 = Dropout(0.3)(c5)

    c5 = Conv3D(256, (3, 3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same')(c5)

    # Expansive path

    u6 = Conv3DTranspose(128, (2, 2, 2), strides=(2, 2, 2), padding='same')(c5)

    u6 = concatenate([u6, c4])

    c6 = Conv3D(128, (3, 3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same')(u6)

    c6 = Dropout(0.2)(c6)

    c6 = Conv3D(128, (3, 3, 3), activation='relu', 

kernel_initializer=kernel_initializer, padding='same')(c6)

    u7 = Conv3DTranspose(64, (2, 2, 2), strides=(2, 2, 2), padding='same')(c6)

    u7 = concatenate([u7, c3])

    c7 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(u7)

    c7 = Dropout(0.2)(c7)

    c7 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(c7)

    u8 = Conv3DTranspose(32, (2, 2, 2), strides=(2, 2, 2), padding='same')(c7)

    u8 = concatenate([u8, c2])
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    c8 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(u8)

    c8 = Dropout(0.1)(c8)

    c8 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(c8)

    u9 = Conv3DTranspose(16, (2, 2, 2), strides=(2, 2, 2), padding='same')(c8)

    u9 = concatenate([u9, c1])

    c9 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(u9)

    c9 = Dropout(0.1)(c9)

    c9 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer, 

padding='same')(c9)

    outputs = Conv3D(num_classes, (1, 1, 1), activation='softmax')(c9)

    model = Model(inputs=[inputs], outputs=[outputs])

    return model
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8.7 Train

gpus = tf.config.experimental.list_physical_devices('GPU')

tf.config.experimental.set_memory_growth(gpus[0], True)

smooth=100

def dice_coef(y_true, y_pred):

    y_truef = K.flatten(y_true)

    y_predf = K.flatten(y_pred)

    And = K.sum(y_truef* y_predf)

    return ((2* And + smooth) / (K.sum(y_truef) + K.sum(y_predf) + smooth))

#def dice_coef_loss(y_true, y_pred):

#    return -dice_coef(y_true, y_pred)

def iou(y_true, y_pred):

    intersection = K.sum(y_true * y_pred)

    sum_ = K.sum(y_true + y_pred)

    jac = (intersection + smooth) / (sum_ - intersection + smooth)

    return jac

# data locs

train_img_dir = "X:/Data/3D_Blocks/Sets/train/train/"

train_mask_dir = "X:/Data/3D_Blocks/Sets/train/class/"

val_img_dir = "X:/Data/3D_Blocks/Sets/val/train/"

val_mask_dir = "X:/Data/3D_Blocks/Sets/val/class/"

train_img_list = os.listdir(train_img_dir)

train_mask_list = os.listdir(train_mask_dir)

val_img_list = os.listdir(val_img_dir)

val_mask_list = os.listdir(val_mask_dir)

# model params
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batch_size = 1 #( 1 x [3x3D image & seg_mask]) >> this cannot be higher due to 

hardware constraints

steps_per_epoch = len(train_img_list) // batch_size

val_steps_per_epoch = len(val_img_list) // batch_size

model_params = dict(IMG_HEIGHT=128,

                IMG_WIDTH=128,

                IMG_DEPTH=128,

                IMG_CHANNELS=3,

                num_classes=4)

# opt , adafair was having trouble cause i'd have to downgrade everything for it to 

work

#we're gonna leave that for a later date

l_r=1e-4

v_epochs = 25

decay_rate = l_r/ v_epochs

optimizer = tf.optimizers.Adam(learning_rate=l_r,

                              decay=decay_rate,

                              amsgrad=False)

#model number

model_num = 5

#callbacks

model_save = 

tf.keras.callbacks.ModelCheckpoint(f'C:/Users/delta/my_thesis/main/saved_models/

model_{str(model_num)}.hdf5', verbose=1,save_best_only=True)

log_dir = f"logs/logs_{str(model_num)}/" + "fit" + 

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, 

histogram_freq=1)
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# data generators

train_img_datagen = data_gen.imageLoader(train_img_dir, train_img_list,

                                train_mask_dir, train_mask_list, batch_size)

val_img_datagen = data_gen.imageLoader(val_img_dir, val_img_list,

                              val_mask_dir, val_mask_list, batch_size)

#init casual 3D unet

model = simple_unet_model(**model_params)

model.summary()

model.compile(optimizer=optimizer,loss=tf.keras.losses.CategoricalCrossentropy(),

metrics=['CategoricalAccuracy',iou, dice_coef])

              

              

timer_a = time()

history = model.fit(train_img_datagen,

                    steps_per_epoch=steps_per_epoch,

                    epochs=v_epochs,

                    validation_data=val_img_datagen,

                    validation_steps=val_steps_per_epoch,

                    callbacks=[model_save, tensorboard_callback])

print(f'Took {time()-timer_a} to finish all training.')

#class_weight={0:0.26, 1:22.53, 2:22.53, 3:26.21},

#save history to load it to the evaluation script // not needed since we use 

tensorboard but you could do it nontheless

np.save(f"saved_models/history_{str(model_num)}.npy", history.history)
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8.8 Retrain

gpus = tf.config.experimental.list_physical_devices('GPU')

tf.config.experimental.set_memory_growth(gpus[0], True)

#functs

smooth=1.

def dice_coef(y_true, y_pred):

    y_truef = K.flatten(y_true)

    y_predf = K.flatten(y_pred)

    And = K.sum(y_truef* y_predf)

    return ((2* And + smooth) / (K.sum(y_truef) + K.sum(y_predf) + smooth))

def iou(y_true, y_pred):

    intersection = K.sum(y_true * y_pred)

    sum_ = K.sum(y_true + y_pred)

    jac = (intersection + smooth) / (sum_ - intersection + smooth)

    return jac

#model load

model = 

load_model('C:/Users/delta/my_thesis/main/saved_models/model_3.1.hdf5',

                  custom_objects={'iou': iou, 'dice_coef':dice_coef})

# data locs

train_img_dir = "X:/Data/3D_Blocks/train/train/"

train_mask_dir = "X:/Data/3D_Blocks/train/class/"

val_img_dir = "X:/Data/3D_Blocks/val/train/"

val_mask_dir = "X:/Data/3D_Blocks/val/class/"

train_img_list = os.listdir(train_img_dir)

train_mask_list = os.listdir(train_mask_dir)

val_img_list = os.listdir(val_img_dir)

115



8. Appendix – Scripts

val_mask_list = os.listdir(val_mask_dir)

# model params

batch_size = 1 #( 1 x [3x3D image & seg_mask]) >> this cannot be higher due to 

hardware constraints

steps_per_epoch = len(train_img_list) // batch_size

val_steps_per_epoch = len(val_img_list) // batch_size

wt0, wt1, wt2, wt3 = 0.26, 22.53, 22.53, 26.21 # taken from contextual analysis of 

mask pixels

dice_loss = sm.losses.DiceLoss(class_weights=np.array([wt0, wt1, wt2, wt3]))

focal_loss = sm.losses.CategoricalFocalLoss()

total_loss = dice_loss + (1 * focal_loss)

l_r= 1e-3

v_epochs = 25

decay_rate = l_r/ v_epochs

optimizer = tf.optimizers.Adam(learning_rate=l_r,

                              decay=decay_rate,

                              amsgrad=False)

#model number

model_num = 3.2

#callbacks

model_save = 

tf.keras.callbacks.ModelCheckpoint(f'C:/Users/delta/my_thesis/main/saved_models/

model_{str(model_num)}.hdf5',

                                               verbose=1,

                                               save_best_only=True)

log_dir = f"logs/logs_{str(model_num)}/" + "fit" + 

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
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tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, 

histogram_freq=1)

# data generators

train_img_datagen = data_gen.imageLoader(train_img_dir, train_img_list,

                                train_mask_dir, train_mask_list, batch_size)

val_img_datagen = data_gen.imageLoader(val_img_dir, val_img_list,

                              val_mask_dir, val_mask_list, batch_size)

model.summary()

metrics = ['Accuracy','CategoricalAccuracy', sm.metrics.IOUScore(threshold=0.5), 

dice_coef]

model.compile(optimizer=optimizer, loss=total_loss, metrics=metrics)

timer_a = time()

history = model.fit(train_img_datagen,

                    steps_per_epoch=steps_per_epoch,

                    epochs=v_epochs,

                    validation_data=val_img_datagen,

                    validation_steps=val_steps_per_epoch,

                    callbacks=[model_save, tensorboard_callback])

print(f'Took {time()-timer_a} to finish retraining.')

#class_weight={0:0.26, 1:22.53, 2:22.53, 3:26.21},

#save history to load it to the evaluation script // not needed since we use 

tensorboard but you could do it nontheless

np.save(f"saved_models/history_{str(model_num)}.npy", history.history)
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8.9 Image Feature Extraction 

#!/usr/bin/env python

# functions 

def feature_extraction(x):

    col_space = x+1

    

    for i in range(len(raw_data_loc)):

        # load label mask

        mask = sitk.ReadImage(raw_data_loc.iloc[i][0])

        mask_array = sitk.GetArrayFromImage(mask)

        

        # uniform mask

        for x in (2,3,4):

            mask_array[mask_array == x] = 1

    

        # apply original spatial data 

        mask_merged = sitk.GetImageFromArray(mask_array)

        mask_merged.CopyInformation(mask)

    

        # extract featrues 

        features = extractor.execute(raw_data_loc.iloc[i][col_space], mask_merged, 

label=1)

        

        # store the data in  their respective list

        if col_space == 1:

            flair.append(features)

        elif col_space == 2:

            t1.append(features)

        elif col_space == 3:

            t1ce.append(features)

        elif col_space == 4:

            t2.append(features)
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# saving loc 

os.chdir('C:/Users/delta/my_thesis/main/__outputs/')

# Initial data loc grab of the BraTS Preprocessed datasets

files = glob('X:\Datasets\BraTS\DATA\Processed_DATA_Training\**\*.nii.gz', 

recursive=True)

train_files_masks = glob('X:\Datasets\BraTS\DATA\Processed_DATA_Training\**\

*seg.nii.gz', recursive=True)

train_files_scans = [fn for fn in (filter(lambda x: not x.__contains__("seg"), 

files))]

print(f'Found masks :{len(train_files_masks)} and scans:{len(train_files_scans)}.')

# separating scan pairs and merging data locations

flair = []

t1ce = []

t1 = []

t2 = []

for x in train_files_scans:

    if "t1ce.nii.gz" in x:

        t1ce.append(x)

    elif "t1.nii.gz" in x:

        t1.append(x)

    elif "t2" in x:

        t2.append(x)

    elif "flair.nii.gz" in x:

        flair.append(x)

    else:

        print("Something funny happened, you should check the sys log.")

        break;
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print(f'Accumulated -> Flair:{len(flair)}, T1:{len(t1)}, T1c:{len(t1ce)}, T2:{len(t2)}\

n')

temp_a = list(zip(train_files_masks, flair, t1, t1ce, t2))

temp_b = ["mask", "flair", "t1", "t1c", "t2"]

raw_data_loc = pd.DataFrame(temp_a, columns=temp_b)

[print(raw_data_loc.iloc[0][i]) for i in range(5)]

raw_data_loc.head()

# load the survival datasets and assign targets to the raw_locs 

data_origin = []

for x in raw_data_loc['mask']:

    if str(x).__contains__('MICCAI_BraTS2020'):

        data_origin.append(2)

    if str(x).__contains__('MICCAI_BraTS_2019'):

        data_origin.append(1)

    if str(x).__contains__('MICCAI_BraTS_2018'):

        data_origin.append(0)

s_d = glob(r'X:\Datasets\BraTS\DATA\DATA_Training\**\*survival*.csv', 

recursive=True)

sd_2018 = pd.read_csv(s_d[0], delimiter=',')

sd_2019 = pd.read_csv(s_d[1], delimiter=',')

sd_2020 = pd.read_csv(s_d[2], delimiter=',')

print(f'{sd_2018.head()}\n--\n{sd_2019.head()}\n--\n{sd_2020.head()}')

# grab patient ids 

patients = [str(raw_data_loc.iloc[i][0]).split('\\')[-1].split('_seg')[:-1] for i in 

range(len(raw_data_loc))]

# grab survival data for the entire merged set
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t_survival = []

err_count = 0

for count, x in enumerate(data_origin):

    try:

        if x == 0:

            t_survival.append(int(sd_2018[sd_2018['BraTS18ID']==patients[count][0]]

['Survival']))

        elif x == 1:

            t_survival.append(int(sd_2019[sd_2019['BraTS19ID']==patients[count][0]]

['Survival']))

        elif x == 2:

            t_survival.append(int(sd_2020[sd_2020['Brats20ID']==patients[count][0]]

['Survival_days']))

    except (ValueError, TypeError):

        # Error catch for non existing rows with that name 

        # Also includes NA values , we force a nan so we can identify the positions

        err_count += 1 

        t_survival.append(np.nan)

print(f'Found {err_count} inputs that don\'t exist in the survival datasets or are nan')

# drop locations from the feature extraction

for count, surv in enumerate(t_survival):

    if np.isnan(surv):

        raw_data_loc.drop(count, inplace=True)

# reset df index to establish index flow

raw_data_loc.reset_index(drop=True, inplace=True)

# yield true survival set

survival = [x for x in t_survival if np.isnan(x) == False]
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# sanity check 

print(f'Packets:{len(raw_data_loc)}, Survivals:{len(survival)}')

survival_csv = pd.DataFrame(survival, columns=['survival_days'])

survival_csv.to_csv('survival.csv', index=False)

#initialize feature lists 

flair = []

t1 = []

t1ce = []

t2 = []

# initialize a global extractor

extractor = featureextractor.RadiomicsFeatureExtractor()

setVerbosity(40) # 

https://pyradiomics.readthedocs.io/en/latest/radiomics.html#radiomics.setVerbosity

extractor.enableAllFeatures() #instead of this we can yield specific features from 

# https://pyradiomics.readthedocs.io/en/latest/features.html, but the more data the 

better

time_a = time()

null = Parallel(n_jobs=4, backend="threading")(delayed(feature_extraction)(x) for 

x in range(4))

##    CPU : Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz

##    Time for 1 line of the raw_data to be processed : 7.013089895248413 seconds

##    Time estimation for all data (608 lines) : 71.06597760518392 minutes

print(f'Time elasped: {time()-time_a} sec')

# convert lists to dataframes 

flair_features = pd.DataFrame.from_dict(flair)

t1_features = pd.DataFrame.from_dict(t1)
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t1ce_features = pd.DataFrame.from_dict(t1ce)

t2_features = pd.DataFrame.from_dict(t2)

# saving feature exports per modality 1st csv is the data 2nd csv are the diagnostic 

data

flair_features.to_csv('flair_features.csv',index=False,columns=flair_features.colum

ns[22:])

flair_features.to_csv('flair_extras.csv',index=False,columns=flair_features.columns

[:22])

t1_features.to_csv('t1_features.csv',index=False,columns=t1_features.columns[22:]

)

t1_features.to_csv('t1_extras.csv',index=False,columns=t1_features.columns[:22])

t1ce_features.to_csv('t1ce_features.csv',index=False,columns=t1ce_features.colum

ns[22:])

t1ce_features.to_csv('t1ce_extras.csv',index=False,columns=t1ce_features.columns

[:22])

t2_features.to_csv('t2_features.csv',index=False,columns=t2_features.columns[22:]

)

t2_features.to_csv('t2_extras.csv',index=False,columns=t2_features.columns[:22])
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8.10 Image Feature Survival Prediction

#!/usr/bin/env python

# grab data

flair, t1, t1ce, t2 = glob(os.getcwd()+'/*features.csv', recursive=True)

survival = glob(os.getcwd()+'/*survival.csv', recursive=True)[0]

flair_data = pd.read_csv(flair)

t1_data = pd.read_csv(t1)

t1ce_data = pd.read_csv(t1ce)

t2_data = pd.read_csv(t2)

survival_data = pd.read_csv(survival)

# append survival days to the datasets 

flair_data['survival_days'] = np.array(survival_data) 

t1_data['survival_days'] = np.array(survival_data) 

t1ce_data['survival_days'] = np.array(survival_data) 

t2_data['survival_days'] = np.array(survival_data) 

# create merged set 

merged_modalities = [flair_data, t1_data, t1ce_data, t2_data]

merged_data = pd.concat(merged_modalities)

x_ax = range(len(survival_data))

plt.figure(figsize=(15,5))

plt.title('Survival Value Distribution')

plt.plot(x_ax, survival_data)

plt.show()

# split sets 

g_time = time()

rt=42 

sets = ['flair', 't1', 't1ce', 't2', 'merged']
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# chow swaay splits #+1 for the merged

X_train = list(range(5))

X_test = list(range(5))

Y_train = list(range(5))

Y_test = list(range(5))

X_train[0], X_test[0], Y_train[0], Y_test[0] = train_test_split(flair_data.iloc[:,:-1], 

flair_data.iloc[:,-1],

                                                                test_size=.2, random_state=rt)

X_train[1], X_test[1], Y_train[1], Y_test[1] = train_test_split(t1_data.iloc[:,:-1], 

t1_data.iloc[:,-1],

                                                                test_size=.2, random_state=rt)

X_train[2], X_test[2], Y_train[2], Y_test[2] = train_test_split(t1ce_data.iloc[:,:-1], 

t1ce_data.iloc[:,-1],

                                                                test_size=.2, random_state=rt)

X_train[3], X_test[3], Y_train[3], Y_test[3] = train_test_split(t2_data.iloc[:,:-1], 

t2_data.iloc[:,-1],

                                                                test_size=.2, random_state=rt)

"""

for the merged set we have to merge the previous sets

 this happens because if we attempt to merge them and split the data 

 we'll cause values in the test set to exist in the train set , voiding the model 

"""

X_train[4] = pd.concat([X_train[0],X_train[1],X_train[2],X_train[3]])

X_test[4] = pd.concat([X_test[0],X_test[1],X_test[2],X_test[3]])

Y_train[4] = pd.concat([Y_train[0],Y_train[1],Y_train[2],Y_train[3]])

Y_test[4] = pd.concat([Y_test[0],Y_test[1],Y_test[2],Y_test[3]])

#initialize regressors

regressors = [xgb.XGBRegressor() for x in range(5)]

timer_a = time()
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#fit regressors for non normalized data 

for i in range(5):

    regressors[i].fit(X_train[i],Y_train[i])

    

print(f'XGBRegressors took {format(time()-timer_a, ".2f")}s to train.\n--')

# measure them

score = list(range(5))

for i in range(5):

    score[i] = regressors[i].score(X_test[i], Y_test[i])

null = [print(f"Training score: {format(score[i]*100,'.2f')}% for set: {sets[i]}") for i 

in range(5)]

timer_b = time()

KFolds = [KFold(n_splits=10, shuffle=True) for i in range(5)]

KF_CV_scores = [cross_val_score(regressors[i], X_train[i], Y_train[i], 

cv=KFolds[i]) for i in range(5)]

print(f'\nK-Fold cross validation took {format(time()-timer_b,".2f")}s to estimate.\

n--')

null = [print(f'K-Fold cross val(n=10) score: 

{format(KF_CV_scores[i].mean()*100,".2f")} for set: {sets[i]}') for i in range(5)]

        

# calculate predictions

Y_pred = [regressors[i].predict(X_test[i]) for i in range(5)]

mse_scores = [mse(Y_test[i],Y_pred[i]) for i in range(5)]

print('\n--')

null = [print(f'MSE: {format(mse_scores[i],".2f")} for set: {sets[i]} ') for i in 

range(5)]

print('\n--')

null = [print(f'RMSE: {format(mse_scores[i]**(1/2.0),".2f")} for set: {sets[i]} ') for 

i in range(5)]
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# plots

for i in range(5):

    x_ax = range(len(Y_pred[i]))

    plt.figure(figsize=(15,5))

    plt.title(f'Ground Truth & Predictions for set:{sets[i]}')

    plt.plot(x_ax, Y_test[i], label='original')

    plt.plot(x_ax, Y_pred[i], label='predicted', color='r', alpha=.33)

    plt.legend()

    plt.show()

    

print(f'Total runtime {format(time()-g_time,".2f")}sec.')

# normalize all sets 

normalized_flair_data = (flair_data-flair_data.min())/(flair_data.max()-

flair_data.min())

normalized_t1_data = (t1_data-t1_data.min())/(t1_data.max()-t1_data.min())

normalized_t1ce_data = (t1ce_data-t1ce_data.min())/(t1ce_data.max()-

t1ce_data.min())

normalized_t2_data = (t2_data-t2_data.min())/(t2_data.max()-t2_data.min())

normalized_merged_data = (merged_data-

merged_data.min())/(merged_data.max()-merged_data.min())

# split sets 

g_time = time()

rt=42 

sets = ['flair', 't1', 't1ce', 't2', 'merged']

# chow swaay splits #+1 for the merged

X_train = list(range(5))

X_test = list(range(5))

Y_train = list(range(5))

Y_test = list(range(5))
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X_train[0], X_test[0], Y_train[0], Y_test[0] = 

train_test_split(normalized_flair_data.iloc[:,:-1],

                                                                normalized_flair_data.iloc[:,-1],

                                                                test_size=.2, random_state=rt)

X_train[1], X_test[1], Y_train[1], Y_test[1] = 

train_test_split(normalized_t1_data.iloc[:,:-1],

                                                                normalized_t1_data.iloc[:,-1],

                                                                test_size=.2, random_state=rt)

X_train[2], X_test[2], Y_train[2], Y_test[2] = 

train_test_split(normalized_t1ce_data.iloc[:,:-1],

                                                                normalized_t1ce_data.iloc[:,-1],

                                                                test_size=.2, random_state=rt)

X_train[3], X_test[3], Y_train[3], Y_test[3] = 

train_test_split(normalized_t2_data.iloc[:,:-1],

                                                                normalized_t2_data.iloc[:,-1],

                                                                test_size=.2, random_state=rt)

"""

for the merged set we have to merge the previous sets

 this happens because if we attempt to merge them and split the data 

 we'll cause values in the test set to exist in the train set , voiding the model 

"""

X_train[4] = pd.concat([X_train[0],X_train[1],X_train[2],X_train[3]])

X_test[4] = pd.concat([X_test[0],X_test[1],X_test[2],X_test[3]])

Y_train[4] = pd.concat([Y_train[0],Y_train[1],Y_train[2],Y_train[3]])

Y_test[4] = pd.concat([Y_test[0],Y_test[1],Y_test[2],Y_test[3]])

#initialize regressors

regressors = [xgb.XGBRegressor() for x in range(5)]

timer_a = time()

#fit regressors for non normalized data 

for i in range(5):
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    regressors[i].fit(X_train[i],Y_train[i])

    

print(f'XGBRegressors took {format(time()-timer_a, ".2f")}s to train.\n--')

# measure them

score = list(range(5))

for i in range(5):

    score[i] = regressors[i].score(X_test[i], Y_test[i])

null = [print(f"Training score: {format(score[i]*100,'.2f')}% for set: {sets[i]}") for i 

in range(5)]

timer_b = time()

KFolds = [KFold(n_splits=10, shuffle=True) for i in range(5)]

KF_CV_scores = [cross_val_score(regressors[i], X_train[i], Y_train[i], 

cv=KFolds[i]) for i in range(5)]

print(f'\nK-Fold cross validation took {format(time()-timer_b,".2f")}s to estimate.\

n--')

null = [print(f'K-Fold cross val(n=10) score: 

{format(KF_CV_scores[i].mean()*100,".2f")} for set: {sets[i]}') for i in range(5)]

        

# calculate predictions

Y_pred = [regressors[i].predict(X_test[i]) for i in range(5)]

mse_scores = [mse(Y_test[i],Y_pred[i]) for i in range(5)]

print('\n--')

null = [print(f'MSE: {format(mse_scores[i],".2f")} for set: {sets[i]} ') for i in 

range(5)]

print('\n--')

null = [print(f'RMSE: {format(mse_scores[i]**(1/2.0),".2f")} for set: {sets[i]} ') for 

i in range(5)]

# plots

for i in range(5):
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    x_ax = range(len(Y_pred[i]))

    plt.figure(figsize=(15,5))

    plt.title(f'Ground Truth & Predictions for normalized set:{sets[i]}')

    plt.plot(x_ax, Y_test[i], label='original')

    plt.plot(x_ax, Y_pred[i], label='predicted', color='r', alpha=.33)

    plt.legend()

    plt.show()

print(f'Total runtime {format(time()-g_time,".2f")}sec.')
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