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Abstract 

Determining the best approach and data type for Pathway Analysis is a significant dif-

ficulty for the field of diagnostic medicine. The findings of recent studies indicate their 

preference for Machine Learning algorithms and the utilization of continuous gene ex-

pression values rather than binary values. However, due to the limitations of Machine 

Learning and non-binary values, there were efforts to produce new hybrid techniques 

that exploit the benefits of statistical methods and discrete values. The purpose of this 

study was to identify the most effective approach for Pathway Analysis utilizing cur-

rently available tools and to compare the results to previous research. This was accom-

plished by implementing the scoring methodology for several Pathway Analysis tools 

and employing a Decision Tree algorithm to assess the outcomes. The tools selected for 

implementation were TAPPA, PRS, TEAK, DEAP, GraphiteWeb, MinePath and 

HiPathia, among which PRS displayed the highest rate of accuracy, while HiPathia, 

which performed equally well, achieved the shortest execution time; overall, Machine 

Learning-based techniques outperformed those based on statistics. The outcomes ob-

tained are consistent with prior literature, which have shown that non-binary data hold 

more information and that Machine Learning methods offer new opportunities for use 

in health. Unfortunately, a major issue that prevented our research from extracting com-

mon significant sub-pathways among the tools is probably related to the fact that there 

are numerous genomic platforms available; as a result genes cannot be recognized 

across different datasets.  
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Introduction  

Bioinformatics is a rapidly developing science, which integrates biology, informatics, 

and mathematics to manage huge genomic data and comprehend complex biological 

mechanisms. The Human Genome Project, which mapped the human genome and an-

nounced the full sequence in 2022 after almost 30 years of study, was one of the field's 

greatest achievements [1]. Its development allows researchers to better understand how 

viruses and diseases function, create effective therapeutics, find cancer-related muta-

tions, and make more precise predictions [2]. 

Utilizing the genomic sequence demands methods and tools that can manage this enor-

mous amount of data. In order to obtain a complete and more accurate picture of bio-

logical activities, the main strategy adopted nowadays is Pathway Analysis, which ex-

ploits both gene expression values and pathway network topology. Even though it's a 

promising technique, there are challenges and constraints that must be resolved. More 

particularly, the microarray data's noise makes the procedure more complicated, requir-

ing its conversion to binary form, but doing so can result in the loss of key data and, 

consequently, inaccurate results [3]. On the other hand, analysis methods that use them 

produce fast, real-time results that are non-time and CPU consuming. The preference 

for discrete expression data over continuous values is supported by various technolo-

gies, including MinePath [4].  

In order to improve the existing technologies and develop new pathway analysis meth-

ods, this study makes an attempt to assess and compare the existing pathway analysis 

tools with the aim of verifying that non-binary gene expression data provide better re-

sults and identifying any non-binary pathway analysis algorithms that may be applied 

to real-time predictions.  

Molecular biology 

The area of molecular biology is concerned with the molecular foundations of biologi-

cal activity [5]. The study of biological molecules and their interactions is only one 

aspect of molecular biology; it also encompasses a variety of methods designed since 

the field's creation that have helped researchers understand how molecules function [6]. 

Even though every living thing has a variety of molecules, most molecular biologists 

concentrate on genes and proteins. Within living cells, proteins carry out a large variety 

of tasks, and genes store the data needed to produce additional proteins [5].  
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Deoxyribonucleic acid, also known as DNA, is the molecule that contains the genetic 

material necessary for an organism's formation and functionality [7] and is structured 

as a double helix, which is made up of two connected strings that spiral around one 

another to form a twisted ladder. The procedure for producing functional cells in ac-

cordance with DNA instructions is known as the central dogma of molecular biology.  

DNA genotyping has made it possible to diagnose and potentially treat many disorders 

that are driven by genetic mutations, microbes, and viruses. The analysis of disease 

pathways, the evaluation of a person's genetic predisposition to particular diseases, the 

diagnosis of genetic abnormalities, the development of new medications, and the recog-

nition of pathogens have all been significantly improved by an understanding of the 

structure and function of DNA [8]. 

Gene and gene expression 

A gene is the fundamental structural and operative unit of inheritance and is composed 

of DNA [9]. Because of its significance in the production of proteins, which are essen-

tial for the formation, operation, and regulation of the body's tissues and organs [10], 

many studies are being conducted to decipher the human genome’s sequence and define 

the genes that it includes. The most well-known of these is the Human Genome Project, 

which was successful in sequencing the whole genome in 2022. 

Protein synthesis is regulated by genes to produce the desired results [11] and this is 

achieved by a process known as gene expression. Gene expression directs when and 

where RNA molecules and proteins are produced [12]. When the protein that a gene 

encodes is made by a cell, it is said to be "expressed". Genes can be classified as active 

or inactive, but to fully utilize the information that is currently accessible, new methods 

emerge that take into consideration the level of expression. 

Gene Regulatory Networks 

Gene regulatory networks, or GRNs, are collections of genes that interact with each 

other. Graphs with nodes and edges are commonly used to describe gene regulatory 

networks. In a directed graph, every gene is denoted by a node and a pathway's edge 

represents a connection or other type of interaction between the nodes [13]. Early at-

tempts perceive the networks as a collection of genes without considering their interac-

tions with other genes [4], but doing so ignores information that might be crucial. 
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These networks can be represented by mathematical and computational models that 

explain the logic behind the regulatory activities among genes when a certain cell pro-

gram is activated [14]. GRNs can also be used to predict changes in gene expression 

under various conditions, comprehend the information flow in biological systems, find 

circuits that can be employed for a particular operation, and understand the exchange 

of information in biological systems [15]. 

Pathway Analysis 

Pathway Analysis (PA), also called functional enrichment analysis, is becoming more 

and more important in Omics research, which concerns biological branches that end 

with the suffix –omics [16].  Pathway Analysis methodologies combine knowledge 

from gene expression analysis and molecular pathway networks to discover strongly 

impacted pathways in a particular condition and better understand the biological signif-

icance of differentially expressed genes and proteins. 

The term Pathway refers to the graphical representation of molecular interaction, reac-

tion, and relationship networks. The graph consists of nodes, which correspond to 

genes, proteins, and/or molecules, and directed edges, which represent relationships and 

interactions between the nodes. The states of each gene are either on or off, indicating 

whether the gene is expressed or not expressed respectively. The types of interactions 

between the nodes vary. Activation, inhibition, and catalysis are some examples of dif-

ferent sorts of interactions between nodes. To determine a score for each pathway, the 

experimental data and the graph are analyzed. The score measures how much a pathway 

diverged between the two phenotypes. 

Pathway analysis techniques discover the pathways that are strongly impacted in a spe-

cific circumstance by combining available pathway databases with gene expression 

data [17]. KEGG, Reactome, and BioCarta are some of the sources that include thor-

ough information about pathways. KEGG is a repository of hand-drawn pathway maps 

that provide information about genomes, biological pathways, diseases, pharmaceuti-

cals, and chemical compounds [18], [19], while BioCarta's interactive online services 

give the means to see how genes communicate in dynamic graphical models [20]. Re-

actome database’s mission is to provide user-friendly bioinformatics tools for visualiz-

ing, interpreting, and analyzing pathway data in support of fundamental and medical 

trials, genomic analysis, modeling, systems biology, and education [21]. 
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We can distinguish two main approaches to pathway analysis: the first one takes into 

consideration only the expression levels of the genes of a pathway, while the second 

one takes advantage of the pathway topology as well, known as topology-based [22]. 

Since topology-based approaches use significantly more data than non-topology-based 

methods do, it makes sense that they should be more efficient and reliable. However, 

many studies come to the conclusion that both strategies are flawed [23]. 

Research Question 

The search for novel pathway analysis techniques and the improvement of existing 

technologies is prompted by the need to comprehend biological data so that it can be 

applied in the field of medicine. The main approaches to the pathway analysis problem 

focus on the type of data utilized as well as how the system handles the data, and since 

there are so many different methods available, the results vary. Each approach has ben-

efits and drawbacks and is selected according to the researchers’ priorities. The ultimate 

goal of the researchers is to develop a system that exploits all available information and 

technology in order to produce accurate analysis results. However, no technique has 

been able to completely eliminate all issues while maximizing the advantages of an 

approach.  

Given the broad range of pathway analysis methodologies, we concluded that a study 

aiming at determining the most effective approach would be capable of contributing to 

current research in the field. Continuous values are known to preserve more infor-

mation, making the distinction between binary and non-binary gene expression data of 

particular interest. As a result, it was reasonable to question whether tools handling 

discrete values could further improve their precision by replacing them with non-binary 

values. Since GraphiteWeb handles binary data but the runtime required is extremely 

high, we came to the conclusion that the delay is caused by the pathway scoring algo-

rithm. Therefore, integrating GraphiteWeb’s logic with HiPathia’s scoring technique, 

which performed well in terms of both speed and accuracy, could decrease the execu-

tion time. 

TAPPA, PRS, TEAK, DEAP, GraphiteWeb, MinePath and HiPathia are the tools em-

ployed in this work, and they were selected depending on how simple they were to 

implement. Using the technique outlined in each tool’s papers, the score of each path-
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way was calculated. The data normalization process is described in depth by each meth-

odology, regardless of the fact that for the DEAP and PRS tools the FDR correction 

method was utilized due to computational complexity issues. Subsequently, the com-

parison between the approaches was performed by applying machine learning algo-

rithms to train and test the results of each technique.  
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Pathway Analysis Tools 

TAPPA 

TAPPA is a java-based tool that was introduced in [24] and uses pathway topological 

measurements to identify phenotype-associated genomic circuits. This is accomplished 

by calculating a Pathway Connectivity Index (PCI) for each pathway and then assessing 

its relationship to phenotypic variance. 

𝑃𝐶𝐼 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑖𝑠 + 𝑥𝑗𝑠) ∗ |𝑥𝑖𝑠|0.5 ∗ 𝛼𝑖𝑗 ∗ |𝑥𝑗𝑠|
0.5

𝑁

𝑗=1

𝑁

𝑖=1

 

In the formula above, 𝑥𝑖𝑠 stands for the standardized log expression measurement for 

gene i and sample s. N represents the total of genes, and 𝑠𝑔𝑛(𝑥𝑖𝑠 + 𝑥𝑗𝑠) denotes the 

overall expression status (up- or down-regulation) of the gene pair. Given that a path-

way can be visualized as a graph G(V, E), the adjacency matrix is defined as 𝐴 = (𝛼𝑖𝑗), 

such that 𝛼𝑖𝑗 = 1 if i = j or  (𝑔𝑖, 𝑔𝑗) ∈ 𝐸, otherwise 𝛼𝑖𝑗 = 0.  

Subsequently, each PCI value is divided by the number of genes in the respective path-

way in order to normalize the PCIs. 

The TAPPA tool was developed using JAVA and can handle both binary and numerical 

attributes. In the case of the binary traits, the Mann–Whitney test is used to assess the 

significance of the relationship between network PCI and phenotype, while the Spear-

man correlation is used for continuous attributes. In addition, a permutation test is used 

to assess the false discovery rate (FDR). 

Subsequently, using different zoom ratios, the pathway is visualized and the genes that 

are strongly related to the phenotype are identified. Eventually, the relationship between 

the phenotypes of the sub-modules in a pathway is studied and determines the biological 

significance of the genes involved. 

SPIA 

Signaling Pathway Impact Analysis, also known as SPIA, uses data collected from the 

classical enrichment analysis and combines them with data that evaluate the perturba-

tion of a certain pathway under a specific circumstance. The following methodology is 

described in [25]. 
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Impact Analysis considers the overrepresentation of DE genes in a particular pathway 

and the anomalous alteration of that pathway, as determined by propagating observed 

expression changes across the pathway topology. These features correspond to two sep-

arate probabilities, PNDE and PPERT. 

The 𝑃𝑁𝐷𝐸 = 𝑃(𝑋 ≥ 𝑁𝑑𝑒|𝐻0) probability represents the importance of a pathway Pi, 

based on an overrepresentation study of the number of DE genes (NDE) found on the 

pathway.  

PPERT probability results from the degree of perturbation in each pathway, which is cal-

culated using the following gene perturbation function:  

𝑃𝐹(𝑔𝑖) = 𝛥𝛦(𝑔𝑖) + ∑ 𝛽𝑖𝑗 ∙
𝑃𝐹(𝑔𝑗)

𝑁𝑑𝑠(𝑔𝑗)

𝑛

𝑗=1

 

The above formula takes into consideration the type of relationship between two genes 

and is represented by the term 𝛽𝑖𝑗. If the value of 𝛽 equals to +1, then the type of inter-

action is activation, while -1 corresponds to inhibition and repression. 

The net perturbation accumulation at the gene level, Accg, is then calculated as the dif-

ference between a gene's perturbation factor PF and its signed adjusted expres-

sion change or observed log fold-change, when comparing two circumstances. 

𝐴𝑐𝑐(𝑔𝑖) = 𝑃𝐹(𝑔𝑖) − 𝛥𝛦(𝑔𝑖) 

Subsequently, the total net accumulated perturbation of a pathway is calculated as the 

sum of the net perturbation accumulation of each gene. 

𝑡𝐴 = ∑ 𝐴𝑐𝑐(𝑔𝑖)
𝑖

 

The possibility of seeing a total accumulated perturbation of the pathway, TA, greater 

than tA, is represented by the PPERT probability: 

𝑃𝑃𝐸𝑅𝑇 = 𝑃(𝑇𝐴 ≥ 𝑡𝐴|𝐻0) 

Eventually, PNDE and PPERT are integrated into a global probability value, PG. Through 

this probability value the pathways are ranked, and the hypothesis is tested to see if the 

pathway is significantly disrupted in the study condition.  

𝑃𝐺 = 𝑐𝑖 − 𝑐𝑖 ∙ 𝑙𝑛 (𝑐𝑖) ,  𝑐𝑖 = 𝑃𝑁𝐷𝐸(𝑖) ∙ 𝑃𝑃𝐸𝑅𝑇(𝑖) 
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PG can also set the level of type I error. It is recommended to use the common FDR 

approach to keep the false discovery rate (FDR) of the pathway analysis at 5%. 

TopologyGSA 

This method evaluates the differential expression of a pathway using graphical models 

as demonstrated in [26]. Then it illustrates the components of the pathway that are im-

plicated in the deregulation. Below is a detailed description of the technique. 

In this project, KEGG maps are employed, since they provide a good ratio between map 

accuracy and simplicity. Initially, the paths obtained from the KEGG repository are 

transformed into a graphical model. This is accomplished by using the following basic 

steps: i) simple directed edges include inhibition, phosphorylation (+p), and 

dephosphorylation (-p); ii) BioCarta network provides extensive information that can 

be used to direct undirected edges and iii) when it comes to complexes (nodes consisted 

of several gene products), the first principal component is defined as the complex's ex-

pression. The data of the same pathway are represented in distinct experimental states 

as implementations of undirected graphical Gaussian models with the same undirected 

graph G. For instance, in the case of two scenarios, we employ the Gaussian models 

𝑀1(𝐺) = {𝑌~𝑁𝑝(𝜇1, 𝛴1), 𝛴1
−1 ∈ 𝑆+(𝐺)}, 

𝑀2(𝐺) = {𝑌~𝑁𝑝(𝜇2, 𝛴2), 𝛴2
−1 ∈ 𝑆+(𝐺)}. 

In this case, 𝑝 refers to the number of genes (nodes of the graph), while 𝑆+(𝐺) repre-

sents the array of symmetric positive definite matrices with null components indicating 

the missing connections of G.  

The estimated covariance matrices are calculated by using a technique known as the 

Iterative Proportional Scaling Technique (IPS) for graph analysis, which ensures that 

the estimated matrices are positive definite and that their inverse has null elements cor-

relating to the graph's missing edges. The sample covariance matrices can be generated, 

either from the chip covariance matrices by removing elements referring to all the pairs 

of genes in the pathway, or by determining the expression levels of the genes on the 

pathway and measuring the sample covariances. 

Then, to compare the gene sets among two experimental conditions, the null hypothesis 

testing method is employed. The strength of the connections that define a pathway can 
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vary under different situations, causing changes in the pathway's expression. The equiv-

alence of two means is the corresponding hypothesis. The evaluation is determined by 

whether the models' covariances, which are often unknown, are homogeneous. As a 

result, the choice of the homogeneity hypothesis has an impact on the analysis of the 

means. 

Eventually, the strength of the gene relationships in two experimental conditions is put 

to the test to see if they are equal. This is easily accomplished in the context of graphical 

Gaussian models by comparing the two concentration matrices (opposite of the covar-

iance matrices), which include all the details about the underlying structure. As a result, 

the focus is on putting the hypothesis 𝛴1
−1 = 𝛴2

−1 to the test. 

The methods for comparing covariance matrices are then applied to the specific instance 

of graphical Gaussian models in the following methodology. Assume that 𝛾1 = (𝛾1
𝑗
), 

𝑗 = 1, … , 𝑛1 observations from 𝑁𝑝(0, 𝛴1), and 𝛾2 = (𝛾2
𝑗
), 𝑗 = 1, … , 𝑛2 observations 

from 𝑁𝑝(0, 𝛴2), with 𝛴1
−1 = 𝛫1 ∈ 𝑆+(𝐺) and 𝛴2

−1 = 𝛫2 ∈ 𝑆+(𝐺) without losing gener-

ality. The hypothesis to be tested is 𝐻0: 𝐾1 = 𝐾2 against 𝐻1: 𝐾1 ≠ 𝐾2. When the value 

of 𝑊𝑖 is determined using the function 𝑊𝑖 = ∑ (𝛾𝑖
𝑗
)(𝛾𝑖

𝑗
)

𝑇𝑛𝑖
𝑗=1 , 𝑖 = 1,2, the likelihood 

function, 𝐿(𝐾1, 𝐾2), yields as follows: 

𝐿(𝐾1, 𝐾2) = ∏(2𝜋)−
𝑛𝑖𝑝

2 (𝑑𝑒𝑡 𝑑𝑒𝑡 𝐾𝑖  )
𝑛𝑖
2 𝑒−

1
2

𝑡𝑟(𝐾𝑖𝑊𝑖)

2

𝑖=1

 

Starting with the pooled covariance matrix 𝑆 = (𝑛1 + 𝑛2 − 2)−1 ∙ {(𝑛1 − 1) ∙ 𝑆1 +

(𝑛2 − 1) ∙ 𝑆2} and the null hypothesis, the technique calculates the estimate, �̂�, of the 

common covariance matrix. On the contrary, under the alternative hypothesis, the sam-

ple covariance matrices, 𝑆1 = (𝑛1 − 1)−1 ∙ 𝑊1 and 𝑆2 = (𝑛2 − 1)−1 ∙ 𝑊2, are used, so 

that the values of �̂�1 and �̂�2 are calculated. 

After making several assumptions, the likelihood ratio test, Λ, is computed using the 

following formula: 

𝛬 =
𝐿𝐻0

(�̂�1, �̂�2)

𝐿𝐻1
(�̂�1, �̂�2)

=
𝐿𝐻0

(�̂�)

𝐿𝐻1
(�̂�)
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It is also true that by letting 𝑊 = 𝑊1 + 𝑊2 and taking advantage of the fact that 

𝑡𝑟(�̂�𝑖𝑊𝑖) = 𝑛𝑖𝑡𝑟(�̂�𝑖�̂�𝑖
−1) = 𝑛𝑖𝑝 and 𝑡𝑟(�̂�𝑊) = (𝑛1 + 𝑛2)𝑡𝑟(�̂��̂�−1) = (𝑛1 + 𝑛2)𝑝, 

the following two formulas emerge. 

𝛬 = ∏ (
𝑑𝑒𝑡 �̂� 

𝑑𝑒𝑡 �̂�𝑖  
)

𝑛𝑖
2

2

𝑖=1

 

−2 log 𝛬   = ∑ 𝑛𝑖 log (
𝑑𝑒𝑡 �̂�𝑖  

𝑑𝑒𝑡 �̂� 
) 

2

𝑖=1

  

If indeed the null hypothesis is false, the graphical methodology enables us to evaluate 

the causes of differences between the two concentration matrices. In particular, if the 

graph is decomposable, it is feasible to break it down into its maximal complete sub-

graphs (cliques) and perform the preceding test for each clique. Following the standard 

procedures, the equivalence of the covariance matrices on cliques can be evaluated. 

However, if the graph is not divisible, more edges can be introduced to create a new 

triangulated and thus decomposable graph. The graph's cliques can then be used to con-

duct the test. 

Eventually, the pathway's differential expression is examined. The differential expres-

sion of the pathway, if the null hypothesis is not rejected, is evaluated by hypothesis  

𝐻0: 𝜇1 = 𝜇2 subject to 𝛴1 = 𝛴2. 

Exact approaches, such as multivariate analysis of variance, can be used to carry out 

this test. If the null hypothesis of homogeneity is rejected, the hypothesis that must be 

tested is  

𝐻0: 𝜇1 = 𝜇2 subject to 𝛴1 ≠ 𝛴2. 

In a two-sample scenario with unequal covariance matrices, this is the standard test for 

equality of means, also known as the Behrens-Fisher problem. 

PARADIGM 

PARADIGM stands for Pathway Recognition Algorithm using Data Integration on Ge-

nomic Models and aims to infer the activity of genetic pathways from integrated patient 

data. The methodology is outlined in [27] and is summarized below.  



16 

 

The implementation starts by creating a separate probabilistic model for each pathway. 

A factor graph was created using a pathway diagram that included both concealed and 

observable states. Also, we employ variables to characterize the states of entities in a 

cell to illustrate a biological pathway with a factor graph. 

The factor graph uses a random variable 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 for each entity and a set of 

m non-negative functions, or factors, to restrict the entities' ability to take on biologi-

cally meaningful values as functions of one another to represent the status of a cell. A 

probability distribution over a subset of entities 𝑋𝑗 ⊂ 𝑋 is defined by the j-th factor 𝜙𝑗. 

The joint probability distribution over all the entities is encoded in the whole graph of 

entities and factors as follows: 

𝑃(𝑋) =
1

𝑍
∏ 𝜙𝑗(𝑋𝑗)

𝑚

𝑗=1

 

Each entity can be active, nominal, or deactivated in relation to a control level, and 

these states are encoded as 1, 0 or -1 correspondingly. 

To make factor building easier, we turn the pathway into a directed graph, with each 

edge annotated with a positive or negative influence. In the directed graph, every inter-

action in the pathway is turned to a single edge. Then, a list of factors is created to 

define the factor graph using this directed graph. Eventually, we complete the integra-

tion of pathway and multi-dimensional functional genomics data by adding observation 

variables and factors to the factor graph. 

Subsequently, we want to know if a particular hidden entity xi is likely to be in state α 

based on patient data. 

𝑃(𝑥𝑖 = 𝛼|𝛷) =
1

𝑍
∏ ∑ 𝜙𝑗(𝑆)

𝑆⊏𝐴𝑖(𝛼)𝑋𝑗

𝑚

𝑗=1

 

Similarly, the likelihood that xi is in state α, based on all the patient's observations, is: 

𝑃(𝑥𝑖 = 𝛼, 𝐷|𝛷) =
1

𝑍
∏ ∑ 𝛷𝑗(𝑆)

𝑆⊏𝐴𝑖(𝛼)∪𝐷𝑋𝑗

𝑚

𝑗=1

 

The expectation-maximization (EM) technique is used to estimate the parameters of the 

observation factors. A factor graph for each patient is generated, the patient's data are 

applied, and EM runs until the likelihood changes by less than 0.1 percent for each 
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pathway. The factors learned from each pathway were averaged, and the final posterior 

estimates for each variable were calculated using these parameters. 

Afterwards, a matrix of Integrated Pathway Activities (IPA) is generated for each var-

iable with an ‘active’ molecular type after inference. A log-likelihood ratio that de-

scribes the level to which a patient's data boosts our opinion that entity i's activity is up 

or down is calculated based on the following formula. 

𝐿(𝑖, 𝛼) = 𝑙𝑜𝑔 (
𝑃(𝐷, 𝑥𝑖 = 𝛼|𝛷)

𝑃(𝐷, 𝑥𝑖 ≠ 𝛼|𝛷)
)  − 𝑙𝑜𝑔 (

𝑃(𝑥𝑖 = 𝛼|𝛷)

𝑃(𝑥𝑖 ≠ 𝛼|𝛷)
) = 𝑙𝑜𝑔 (

𝑃(𝐷, 𝑥𝑖 = 𝛼, 𝛷)

𝑃(𝐷, 𝑥𝑖 ≠ 𝛼, 𝛷)
) 

Based on the log-likelihood ratio, a single IPA for gene i is computed as follows: 

𝐼𝑃𝐴(𝑖) = {
𝐿(𝑖, 1) ,         𝐿(𝑖, 1) > 𝐿(𝑖, −1)𝑎𝑛𝑑 𝐿(𝑖, 1) > 𝐿(𝑖, 0)

−𝐿(𝑖, −1) ,    𝐿(𝑖, −1) > 𝐿(𝑖, 1) 𝑎𝑛𝑑 𝐿(𝑖, −1) > 𝐿(𝑖, 0)
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

    

The IPA score is a signed equivalent of the log-likelihood ratio, L. It is set to L if the 

gene is more likely to be activated. If the gene is more likely to be inhibited, the IPA is 

set to -L; otherwise, it is set to 0. 

Two alternative permutations of the data are used to measure the significance of IPA 

scores. A permuted data sample is constructed for the 'within' permutation by selecting 

a random tuple of data first from a random real sample, and then from a random gene 

within the same network, until tuples have been selected for each gene in the pathway, 

while the technique for the 'any' permutation is much like the 'within' permutation 

method, except the random gene selection stage could pick a gene from anywhere in 

the genome. In both cases, 1000 permuted samples are constructed, and perturbation 

scores are calculated for each permuted sample. To evaluate the significance of real 

samples, the distribution of perturbation scores from permuted samples is employed as 

a null distribution. 

GGEA 

Gene Graph Enrichment Analysis (GGEA), as stated in [28], is a method that uses pre-

vious information acquired from directed gene regulation networks to find consistently 

and coherently enriched gene sets. 

The method on which GGEA is based consists of three critical stages. Initially, to create 

an induced subnetwork, the gene set is first mapped into the fundamental regulatory 
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network. This is the part of the network that is impacted, which is made up of edges 

that involve members of the gene set. Next, each edge of the induced network is evalu-

ated for consistency with the expression data, i.e. the signals of two interaction partners' 

expression changes are compared to the regulatory type (activation/inhibition) of the 

link connecting both genes. Finally, using a permutation process, the edge consistencies 

are aggregated over the induced network, normalized, and significance evaluated. 

Consistency is calculated using the following formula: 

𝐶(𝑡) = 𝑐𝑜𝑛𝑠(𝑑𝑒𝑂, 𝑓𝑡(𝑑𝑒𝑖)) 

The raw GGEA consistency score S is induced by summing the consistency of all gene 

regulatory network (GRN) transitions and then normalized by the number of transitions, 

to compensate for the GRN’s size. 

𝑆 ≔ ∑ 𝐶(𝑡)

𝑡𝜖𝑇𝑢

 

𝑆̅ ≔
𝑆

|𝑇𝑢|
 

Eventually, for each gene set we estimate the consistency P-value and rank the gene 

sets based on the adjusted P-values. Gene sets that are significantly and persistently 

enriched fall below the predefined significance level. 

HotNet 

HotNet is another approach for detecting significantly altered subnetworks in a large 

gene interaction network, that was initially designed for cancer mutation data [29]. The 

method for identifying cancer pathways that have been significantly mutated is pre-

sented below and is based on [30]. 

First, the model that will be used for the interpretation of the data is defined. Graph 𝐺 =

(𝑉, 𝐸) is used to model the interaction network, while 𝑇 ⊆ 𝑉 corresponds to a subgroup 

of the genes that were tested. Each g gene is classified as either mutant or normal. The 

notation Mi is used to describe a subset of mutant genes in group T, while Sj denotes the 

samples under which the gene 𝑔𝑗 ∈ 𝑇 has been altered, and m indicates the total number 

of mutant genes detected across all samples. A linked subgraph of G is defined as the 

resultant pathway. 
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After that, the influence graph, that encodes the knowledge in the interaction network, 

is constructed. The importance of a subnetwork is determined by (i) the number of sam-

ples with mutations in the subnetwork's genes, and (ii) the linkages among genes in the 

subnetwork in the context of the overall network's topology. On the interaction network, 

a diffusion process is employed to create a strict level of influence across all network 

nodes. The procedure outlined by Qi et al. (2008) is used to calculate the effect of node 

s on all other nodes in the network, and therefore, the influence graph 𝐺𝐼 = (𝑇, 𝐸𝐼) with 

the collection of nodes belonging to the subset of tested genes is obtained. The weight 

of each edge 𝑤(𝑔𝑗 , 𝑔𝑘) = [𝑖(𝑔𝑘, 𝑔𝑗), 𝑖(𝑔𝑗, 𝑔𝑘)]  is also considered. 

Then, to discover altered paths, a combinatorial model is developed. First, collections 

of nodes in the influence graph GI that are (1) related by high-influence links and (2) 

relate to mutated genes in many samples, are selected. A threshold δ is determined and, 

by deleting all edges with 𝑤(𝑔𝑖, 𝑔𝑗) < 𝛿 and all nodes belonging to genes in the sample 

data with no modifications, a reduced impact graph GI(δ) of GI is constructed. Conse-

quently, the size of the identified related subgraphs is determined by a threshold δ, 

which is entirely reliant on the null hypothesis. The connected maximum coverage 

problem, which is an NP-hard problem, is analogous to discovering the linked subgraph 

of k genes that is mutated in the maximum number of samples. To make the algorithm 

run properly, a modified version of the combinatorial algorithm shown in Figure 1 is 

used, in which for each pair of nodes (𝑢, 𝑣), all the shortest paths between u and v are 

evaluated, and the one that optimizes 
|𝑃𝑣(𝑢)|

|𝑙𝑣(𝑢)|
 is preserved. 

Figure 1. Pseudocode for the combinatorial model's algorithm 

Combinatorial Algorithm 

Input: Influence graph GI and parameters δ and k 

Output: Connected subgraph C of GI(δ) with k vertices 

1. Construct GI (δ) by removing from GI all edges with weight < δ; 

2. 𝑪 ←  ∅; 

3. for each node 𝐯 ∈ 𝐕 do 

4.     𝑪𝒗  ←  {𝒗}; 

5.     for each 𝒖 ∈ 𝑽\{𝒗} do 𝒑𝒗(𝒖) ← shortest path from 𝒗 to u in GI(δ); 

6.     while |𝑪𝒗| < 𝒌 do 
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Subsequently, to detect mutated subnetworks, a computationally efficient enhanced in-

fluence model is generated. The Enhanced Influence Model is rooted in the idea of 

increasing the influence measure among genes by the number of mutations found in 

each of these genes, and then breaking the resulting enhanced influence graph into 

linked components. 

H refers to the enhanced influence graph. All genes gj having at least one mutation in 

the data make up the set VH  of H's vertices, while the improved influence 

ℎ(𝑔𝑗 , 𝑔𝑘) = 𝑤(𝑔𝑗, 𝑔𝑘) × {|𝑆𝑗|, |𝑆𝑘|}  

determines the weight of the edge (gj, gk). Then, to produce a graph H(δ), whose linked 

components represent the significant subnetworks, any edges with a weight less than a 

threshold δ are eliminated.  

Eventually, a statistical analysis is performed to determine the network's significance. 

There are two null hypothesis distributions considered: 

i. 𝐻0
𝑠𝑎𝑚𝑝𝑙𝑒

 in which 𝑚 = ∑ |𝑀𝑖|𝑖  mutations are randomly distributed throughout the 

nodes correlating to the |𝑇| tested genes 

ii. 𝐻0
𝑔𝑒𝑛𝑒

 which is obtained by permuting the identities of the network's evaluated 

genes, using a random permutation σ 

A two-stage multi-hypothesis test is executed and the Family Wise Error Rate (FWER), 

that is the probability of making at least one Type I error in any of the tests, is used as 

the rigorous indicator of its significance level. The False Discovery Rate is a less con-

ventional alternative to minimizing errors in multiple testing (FDR). It is denoted as 

𝐹𝐷𝑅 = 𝐸[𝑉/𝑅], where V represents the number of Type I errors and R represents the 

        //𝓵𝒗(𝒖) = 𝒔𝒆𝒕 𝒐𝒇 𝒏𝒐𝒅𝒆𝒔 𝒊𝒏 𝒑𝒗(𝒖); 𝑷𝒗(𝒖) =
𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒐𝒇 𝑰 𝒄𝒐𝒗𝒆𝒓𝒆𝒅 𝒃𝒚 𝓵𝒗(𝒖); 𝑷𝑪𝒗

=

𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒄𝒐𝒗𝒆𝒓𝒆𝒅 𝒃𝒚 𝑪𝒗;  𝑷𝑪 = 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒄𝒐𝒗𝒆𝒓𝒆𝒅 𝒃𝒚 𝑪 

7.         𝒖 ← 𝒂𝒓𝒈 𝒎𝒂𝒙𝒖∈𝑽\𝑪𝒗:|𝒍𝒗(𝒖)∪𝑪𝒗|≤𝒌 {
|𝑷𝒗(𝒖)\𝑷𝑪𝒗|

|𝒍𝒗(𝒖)\𝑪𝒗|
} ; 

8.         𝑪𝒗 ← 𝓵𝒗(𝒖) ∪ 𝑪𝒗; 

9.     if |𝑷𝑪𝒗
| > |𝑷𝑪| then 𝑪 ← 𝑪𝒗 

10. return C; 
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total amount of null hypotheses excluded. The two-stage test identifies several subnet-

works in the data as statistically significant with low FDR values. 

Using a similar approach to that used in the Combinatorial model, it is shown in this 

study how the number of hypotheses can be limited to merely 𝐾 = |𝑇| hypotheses. The 

first stage of evaluating each hypothesis with confidence level α/K determines the 

smallest size s, such that the null hypothesis that the number of linked components of 

size ≥ s detected in the graph H(d), rs, may be rejected with confidence level α. The test 

also includes a second criterion that ensures that the FDR is kept within a certain range. 

A Monte-Carlo simulation ("permutation test") or analytical bounds can be used to cal-

culate the null hypothesis distributions. Two properties of the Monte-Carlo simulation 

approach considerably minimize the cost of the estimations. The Monte Carlo simula-

tion must be done on the graph GI. The p-value of the distribution of the number of 

connected linked subgraphs/components of a particular size is used in the statistical test. 

As a result, it is essential to determine p-values that are a magnitude larger for this test, 

using vastly fewer simulation rounds.  

Using analytical bounds, the null hypothesis can be approximated for a greater number 

of tested genes. For any node gi in GI, the maximum δ is set such that the weight of less 

than 𝛼𝑀/|𝑇| connected edges gratify 𝑠𝑚𝑎𝑥𝑤(𝑔𝑖, 𝑔𝑗) ≥ 𝛿, for any given 𝛼 < 1. 

PRS 

Pathway Regulation Score, or else PRS, is a method which distinguishes between es-

sential processes in real-world biological datasets. The procedure that follows is a sim-

plified version of the method as described in [31]. 

The data were first pre-processed using the Robust Multiarray Average (RMA) ap-

proach, and the DEG lists were produced using simple fold change and p-value calcu-

lations. The pathways retrieved by the KEGG database were represented in the form of 

a graph. Due to redundancies in KEGG pathways, fold-change values for a node may 

be assigned to a route several times, resulting in a skewed PRS calculation. Conse-

quently, a new structure emerged, in which duplicated genes were unified into a single 

term with a unique ID. 
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In order to implement the PRS algorithm, the pathways were represented as networks, 

so that each pathway is characterized by a unique identity, definition name, and its cor-

responding nodes. Particularly, a pathway’s nodes are described by the following at-

tributes. Node_genes correspond to a distinct function that maps to one or more tran-

scripts and Node_value (NV) represents a value based on expression data. Node_weight 

(NW) concerns only the significant nodes and indicates their structural strength. The 

Node_Score (NS) is calculated by combining the NV and NW values. 

𝑁𝑆 = {
𝑁𝑉 ∗ 𝑁𝑊    𝑖𝑓 𝑁𝑉 > 1
0                    𝑖𝑓 𝑁𝑉 ≤ 1

 

     

Subsequently, using the following formula the PRS is determined: 

𝑃𝑅𝑆(𝑝𝑖) = ∑ 𝑁𝑆𝑗

𝑛𝑖

𝑗=1

 

Prior to rating the paths, a normalization step is performed to account for two crucial 

features.  

i. Pathway size: the bias caused by pathway size was reduced as seen in the 

following equation. 

𝑃𝑅𝑆(𝑝𝑖) = (∑ 𝑁𝑆𝑗

𝑛𝑖

𝑗=1

) ∗ (
𝑁𝐷𝐸𝐺𝑠𝑖

𝑁𝐸𝐺𝑠𝑖
) 

ii. Pathway-specific PRS score null distributions that contribute to statistical 

bias: a nonparametric permutation approach is employed to determine the 

null distributions of raw PRS values acquired for each pathway. 

𝑛𝑃𝑅𝑆𝑖 =
𝑃𝑅𝑆𝑖 − 𝑚𝑒𝑎𝑛(𝑝𝑃𝑅𝑆𝑖)

𝑆𝑇𝐷(𝑝𝑃𝑅𝑆𝑖)
 

𝑛𝑝𝑃𝑅𝑆𝑖𝑗 =
𝑝𝑃𝑅𝑆𝑖𝑗 − 𝑚𝑒𝑎𝑛(𝑝𝑃𝑅𝑆𝑖)

𝑆𝑇𝐷(𝑝𝑃𝑅𝑆𝑖)
 

For pathway ranking, the normalized raw scores (𝑛𝑃𝑅𝑆𝑖) were used. 

To determine the significance, the PRS values were recalculated using the equation 

used to reduce the bias caused by the pathway size, after the fold-change values for the 

full gene list were permuted and mapped back onto pathways. To construct a null dis-

tribution of each raw score, this procedure was repeated 1000 times. Then, the normal-

ized scores were compared, and the p-values were determined as shown below: 
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𝑃(𝑛𝑃𝑅𝑆𝑖) =
∑ 𝐼(𝑛𝑝𝑃𝑅𝑆𝑖𝑗 ≥ 𝑛𝑃𝑅𝑆𝑖)

𝑛
𝑗=1

𝑛
 

Finally, a multiple test adjustment was implemented, and the FDR modified the Pfinal to 

account for type I errors. 

DEGraph 

DEGraph is yet another pathway analysis tool that uses modern hypothesis testing ap-

proaches to predict whether a specific gene network is differentially expressed between 

two scenarios and is very useful in cancer research [32]. The step-by-step methodology 

is defined in [33]. 

First, a lower-dimension basis is constructed, after which the multivariate test of means 

is used. The testing question of whether two sets of random vectors of gene expression 

measures are expected to have emerged from equal-mean distributions, can be directly 

formulated, and solved using multivariate statistics.  

A network of p genes is depicted as graph 𝐺 = (𝑉, 𝐸), having |𝑉| = 𝑝 nodes and edge 

set 𝐸, while 𝛿 refers to the mean shift, to wit, the vector of differences between the p 

genes’ mean expression values among the two study populations. Afterwards, a lower-

dimensional 𝑘 ≪ 𝑝 space is constructed, retaining most of the low-energy functions 

𝐸𝐺(𝛿). To accomplish this, the function with the least potential energy is identified, 

followed by the function with the lowest possible energy in the orthogonal space of the 

last one, and so on, up to the kth function with the minimum energy in the orthogonal 

subspace of the first 𝑘 − 1 functions. 

𝑢𝑖 = {
arg min

𝑓∈ℝ𝑝
𝐸𝒢(𝑓)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑢𝑖 ⊥ 𝑢𝑗 , 𝑗 < 𝑖 
, 𝑖 ≤ 𝑘  

The following energy function states that if the variation in mean expression of any 

gene among the two populations is equivalent to the (signed) average of the difference 

between the mean expression for the genes that either activate or inhibit it, an expres-

sion shift will have limited power: 

𝐸𝒢(𝛿) = ∑ (𝛿𝑖 −
1

𝑑𝑖
− ∑ 𝑎𝑗𝑖𝛿𝑗

(𝑗,𝑖)𝜖ℰ

)

2𝑝

𝑖:𝑑𝑖
−≠0

 

The number of directed edges leading from any node to 𝑢𝑖 is denoted by 𝑑𝑖
−. 



24 

 

Then, to achieve orthonormal functions with low intensity, the first few eigenvectors of 

𝑀𝐺  are employed to construct a lower dimension space.  

Following that, a graph-structured two-sample test statistic is demonstrated. Hotelling's 

T2-test, a classic location shift test, is a consistently most powerful invariant against 

global-shift alternatives for multivariate normal distributions. The statistical test 𝑇2 =

𝑛1𝑛2

𝑛1+𝑛2
(�̅�1 − �̅�2)⊺�̂�

−1
(�̅�1 − �̅�2) is predicated on the sample mean shift's squared Ma-

halanobis norm. In this work, T2-statistics follow the nominal F-distribution, while Ho-

telling's test in the new area limited to its first k components is said to generate greater 

power than testing in the complete new space. 

Subsequently, a systematic way for identifying nonhomogeneous subgraphs, or sub-

graphs of a large graph with a significant shift in means, is to examine each one indi-

vidually. Due to the huge combinatorial issue posed by large sizes of graphs, it's critical 

to rapidly discover groups of subgraphs that all fit the null hypothesis of equal means. 

This is achieved by using a threshold on the value of the test statistic for every subgraph 

containing a particular network. The corresponding algorithm is described below. 

Figure 2. Nonhomogeneous subgraph discovery algorithm 

Nonhomogeneous subgraph discovery algorithm 

Input: G, Χ1, Χ2, α, q 

Output: selectedSubgraphs 

1. selectedSubgraphs = ∅;  

2. previousSubgraphs = nodes (𝑮); 

3. prunedSubgraphs = ∅; 

4. for each s ∈ {1 ...q-1} do 

5.     checkedSubgraphs = ∅; 

6.     for each previousSubgraph do 

7.         for each subgraph ∈ subgraphBoundary(previousSubgraph) do 

8.             if subgraph has been checked or has a pruned subgraph then next; 

9.             if s < q-1 then 

10.                 if 𝒖𝒑𝒑𝒆𝒓𝑩𝒐𝒖𝒏𝒅(𝒔𝒖𝒃𝒈𝒓𝒂𝒑𝒉, 𝑮, 𝑿𝟏, 𝑿𝟐, 𝒒) < 𝑻𝜶,𝒌
𝟐   then 

11.                     add subgraph to prunedSubgraphs; 

12.                 else 
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13.                     add subgraph to currentSubgraphs; 

14.                 end 

15.             else 

16.                 for each q-subgraph ∈ subgraphBoundary(subgraph) do 

17.                     if q-subgraph has been checked or has a pruned subgraph                         

--------------     then next 

18.                     else  

19.                         if  �̃�𝒌
𝟐(𝒒 − 𝒔𝒖𝒃𝒈𝒓𝒂𝒑𝒉, 𝑿𝟏, 𝑿𝟐) > 𝑻𝜶,𝒌

𝟐  then 

20.                             add q-subgraph to selectedSubgraphs 

21.                         end 

22.                         add q-subgraph to checkedSubgraphs 

23.                     end 

24.                 end 

25.             end 

26.             add subgraph to checkedSubgraphs 

27.         end 

28.     end 

29.     set previousSubgraphs to currentSubgraphs 

30. end 

 

In the case of "limited" graphs over a certain level of connectivity and q large enough, 

𝑣(𝑔′, 𝑞 − 𝑠), the (q - s)-neighborhood of g, increases at the initial stage of the above 

exact process, while the number of tests being conducted may not reduce significantly 

considering the number of feasible tests. As a result, a faster, approximation algorithm 

is introduced. The main idea is to find subgraphs with sample mean shifts in the first k 

components of a new space, where the Euclidean norm ‖�̂�[𝑘](𝑔)‖ = ‖𝑈[𝑘]
𝑇 (𝑥

1
(𝑔) −

𝑥
2

(𝑔)) ‖ is greater than a specified threshold. The output of substituting the upper-

Bound with the following inequality in the Nonhomogeneous subgraph discovery algo-

rithm produces an upper bound on �̃�𝑘
2(𝑔). 
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‖𝑈[𝑘]
𝑇 (�̅�1(𝑔) − �̅�2(𝑔))‖

2
≤ ‖𝑈𝑇(�̅�1(𝑔) − �̅�2(𝑔))‖

2
= ‖�̅�1(𝑔) − �̅�2(𝑔)‖

2

≤ ‖�̅�1(𝑔′) − �̅�2(𝑔′)‖
2

+ max
𝜐1,…,𝜐𝑞−𝑠∈𝜈(𝑔′,𝑞−𝑠)

‖�̅�1 (𝑢1, … , 𝑢𝑞−𝑠 ∈ 𝜈(𝑔′, 𝑞 − 𝑠))

− �̅�2 (𝑢1, … , 𝑢𝑞−𝑠 ∈ 𝜈(𝑔′, 𝑞 − 𝑠)) ‖
2

  

This specifies a technique for detecting all subgraphs whose sample mean shift's Eu-

clidean norm exceeds a certain threshold. Employing the T2-test on these preselected 

subgraphs can also predict the group of subgraphs produced by the Nonhomogeneous 

subgraph discovery procedure. 

A major issue with DE genes is the classification of non-significant differences as sig-

nificant. The approaches presented by Lönnstedt and Speed (2002) can be used to solve 

such a problem. 

Finally, the problem of multiple testing is raised due to the huge number of subgraphs 

assessed for homogeneity. This issue can be resolved by employing a permutation tech-

nique, which minimizes the amount of false positive subgraphs. Initially, the n1 + n2 

observations' class/population labels are permuted, and then the nonhomogeneous sub-

graph discovery process is implemented to the permuted data to give a specific amount 

of false positive subgraphs. This technique is repeated several times to provide an ap-

proximation of the distribution of Type I error rates. 

The procedures' performance is first assessed on synthetic data, and subsequently on 

breast cancer microarray data examined using KEGG pathways. 

TEAK 

Based on [34], Topology Enrichment Analysis frameworK (TEAK) was developed to 

discover active subpathways that underpin biological processes making use of the 

KEGG pathway database. Nodes represent gene products and/or complexes of gene 

products, while edges denote relationships between proteins or enzymes and are ex-

ploited to generate a set of unweighted adjacency matrices, which illustrate the KEGG 

pathways.  

The subpathways extracted by the previous procedure can be either linear or nonlinear. 

Subpathways that consist of root to leaf linear paths are identified as linear. On the 
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contrary, nonlinear subpathways are distinguished by feed-forward loops that are adja-

cent and overlap. 

To evaluate the linear and nonlinear subpathways, TEAK initially fits a context specific 

Gaussian Bayesian network for each subpathway using the Bayes Net Toolbox. A 

Gaussian Bayesian network is a Bayesian network that is a probabilistic graphical 

model, with all its nodes being linear Gaussians. Specifically, the Conditional Proba-

bility Distribution of Y for a continuous node Y with m continuous parents X1, ..., Xm is: 

𝑝(𝑌|𝑥1, … , 𝑥𝑚) = 𝑁(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑚𝑥𝑚;  𝜎2) 

Subsequently, for subpathways consisting of context specific data, TEAK uses the 

Bayesian Information Criterion (BIC) provided in the Bayes Net Toolbox and scores 

each Bayesian network. 

𝑆𝑐𝑜𝑟𝑒𝐵𝐼𝐶 = log 𝑃(𝐷|𝜃)  − 0.5𝑑 log 𝑁 . 

Finally, since BIC is capable of breaking, which means that each node's score is com-

puted separately and then added together to get the final score, each sub-pathway's value 

is normalized by the amount of nodes in order to make the scores equivalent. 

PATHiWAYS 

PATHiWAYS is another tool for pathway analysis. More specifically, it is a web server 

that can interpret the consequences of multiple changes in gene expression levels when 

it comes to signaling pathways. The approach, as detailed in [35], is explained below. 

It is based on a probabilistic model of the pathway, in which the probabilities of signal 

transmission are calculated. Gene expression values represent the gene activity and, 

therefore, the presence or absence of a protein. The 90th percentile of the distribution of 

the probe activation probabilities is used in order to reduce the number of false positives 

caused by faulty probe observations.  

After calculating the individual probability of each node, depending on the number of 

proteins they are composed of, a simple product of probabilities is computed to estimate 

the probability of signal transmission through the pathway. 

Eventually, the final probabilities are compared and detect which stimulus–response 

circuits had their probabilities of signal transmission significantly altered. 
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DEAP 

DEAP, which is short for Differential Expression Analysis for Pathways, is a pathway 

analysis method for identifying relevant regulatory patterns from differential expression 

data that takes advantage of information about biological pathways. Unlike previous 

methods of analysis, DEAP takes advantage of existing knowledge about pathway 

structure and recognizes the path that is the most differentially expressed. This tech-

nique calculates the scores of each subpathway with the use of the DEAP algorithm, 

which is determined in [36]. 

Initially, to estimate the null distribution of the test statistics and compute the p-values, 

a random rotation technique was employed. Rotation testing asserts that pathway and 

set data come from independent random samples of a multivariate normal distribution 

with mean zero under the null hypothesis. 

Subsequently, the DEAP algorithm is applied. The algorithm handles expression data 

that are composed using the following multivariate normal distribution: 

𝐸 = 𝑑(𝜇 + 𝑔) + 𝑒 , 

where d signifies if a gene is ‘on’ or ‘off’, μ represents the ‘pathway effect’ and g and 

e are generated using a normal distribution with both means equal to 0 and variances 

𝜎2
𝑔 and 1 respectively. 

The procedure is based on the following discrete steps. At first, the expression data are 

overlaid onto the network and each path from the graph is separately examined. After-

ward, a recursive function is implemented and estimates the minimum and maximum 

differential expression for each pathway considering the type of relationship between 

nodes by adding or subtracting all downstream nodes.  

The preceding method is summarized by the following formulas: 𝑆𝑐𝑜𝑟𝑒 =

∑ 𝐸(𝑧) + 𝑇(𝑒𝑑𝑔𝑒) ∗ 𝑚𝑎𝑥𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑧∈𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠  and 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝐸(𝑧) +𝑧∈𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

𝑇(𝑒𝑑𝑔𝑒) ∗ 𝑚𝑖𝑛𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 

 The edge type is represented by 𝑇(𝑒𝑑𝑔𝑒) in the formula above and can either be 1 for 

activation or -1 for inhibition.  

The path with the maximal absolute differential expression is detected by using and 

comparing the absolute value of the differential expression calculated for each pathway 

on the previous step.  
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Subsequently, the data were rotated n times to simulate a null distribution of the test 

statistic, s*, and the DEAP score was recalculated for every rotation sample. The ran-

dom rotation approach helps resolve difficulties, such as not directly comparable DEAP 

scores for different paths, due to variances in size and structure among pathways, and 

determines the statistical significance. 

Finally, the p-value is determined as the proportion of simulated DEAP scores, whose 

value is greater than or equal to the observed DEAP score, divided by the number of 

scores that are at least as extreme as the observed DEAP score:  

𝑝 =
#(𝑠𝑖 ≥ 𝑠 ∗)

𝑛
 

GraphiteWeb 

Another option is GraphiteWeb, which is an innovative web tool for network analyses 

and visualization for gene expression data from both microarray and RNA-seq studies. 

Given [37], it integrates topological and multivariate pathway studies with an efficient 

model of interactive network representations for simple comprehension of the results 

and uses a variety of multivariate gene set techniques. In addition, it uses multivariate 

gene set analysis including conventional hypergeometric enrichment, global test, 

GSEA, SPIA, and CliPPER, as well as the KEGG and Reactome pathway databases. In 

this paper, we will focus solely on the Enrichment Analysis (competitive and non-top-

ological) approach. 

Enrichment analysis uses the Fisher Exact test to estimate the odds of finding a certain 

number of genes in a specific pathway among the DEGs, denoted as nG,deg. Within a set 

of Ndeg genes, the likelihood P of seeing at least nG,deg genes is calculated by 

𝑃(𝑁𝐺,𝑑𝑒𝑔 ≥ 𝑛𝐺,𝑑𝑒𝑔) = ∑
( 

𝑁𝐺
𝑖

 )(
𝑁−𝑁𝐺

𝑁𝑑𝑒𝑔−𝑖  )

(
𝑁

𝑁𝑑𝑒𝑔
  )

𝑁𝑑𝑒𝑔

𝑖=𝑛𝐺,𝑑𝑒𝑔
, 

where N is the actual population of genes tested, G denotes the pathway, and Ni and ni 

measure the frequency of genes within every table cell. 

Subsequently, using the Benjamini and Hochberg technique, Ps are normalized. 

The statistical methodology typically employed to identify DEGs in RNA-seq count 

data is built on the negative binomial distribution. Given the strong relationship be-
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tween read count and gene length, the read count specifies the test's power in this sce-

nario. The P-value correction for gene length is an option in graphite web for adjusting 

for this bias. 

PATHOME 

PATHOME stands for Pathway and Transcriptome Information and is a computational 

approach for detecting differentially expressed subpathways. Its methodology from 

[38] is based on gene expression profiles of two control groups and relevant biochemi-

cal pathways. 

At first, PATHOME divides the pathways into subpathways and then uses statistical 

tests to assess the significance of differential expression profiles alongside the pathway. 

The type of interaction is also considered. 

The decomposition of the main pathway into linear paths is achieved using a depth-first 

search algorithm. Due to the huge number of possible paths resulting from the previous 

step, a selection step is used prior to the statistical significance test step to avoid such 

difficulties. 

In order to select which segment of the subpathway will be statistically reviewed in the 

test step, the following rule is applied: 

𝐼𝑘 = 𝑎𝑟𝑔 min
𝑚

{− ∑ 𝐼(𝑠𝑔𝑛(𝑟𝑖,𝑖+1
𝑘 × 𝑒𝑖,𝑖+1) = 1)

𝑚

𝑖=1

+ ∑ 𝑅 (𝑠𝑔𝑛(𝑟𝑖,𝑖+1
𝑘 × 𝑒𝑖,𝑖+1))

𝑚

𝑖=1

}

+ 1, 𝑚𝜖{1, … , 𝑝 − 1}, 𝑅(𝑥) = {
0, 𝑖𝑓 𝑥 ∈ {1}

∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

A subpathway is chosen and continuous to the test step if the association rule between 

the expression correlation and the edge information for the neighboring items along the 

path is agreed upon by both experimental groups, and both consecutive segments in-

clude at least four components. 

The final step determines which subpathway has a statistically significant difference in 

correlation between two subsequent segments for the two studies. The significance is 

examined under the null hypothesis, in which the alternative hypothesis represents the 

case in which the global mean of the correlations between the two groups are different.  

Finally, to determine significance, we employed the z-test statistic, considered multiple 

comparisons, and the FDR was set at 0.05. 
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SubSPIA 

The SPIA approach, mentioned above, was paired with a current subpathway analysis 

method to create the sub-SPIA method, which was used to find cancer-related path-

ways. [39] provides the exact technique. To avoid problems resulting from the k-clique 

structure, used to define subpathways in the original subpathway analysis, the sub-SPIA 

method uses the minimal-spanning-tree structure. 

A minimal-spanning tree is a tree-like subgraph, in which all nodes are connected, with-

out forming a cycle. Because of the sparse connections between genes and the indirect 

connectivity of DEGs, this technique outperforms the k-clique notion. 

The implementation of sub-SPIA was done using the R programming language. The 

following steps outline the main idea behind this method. Initially, we reassemble the 

gene network based on the signaling pathway. Then, in the gene network that has been 

created, the DEGs are mapped, and, finally, the subpathways are identified and their 

statistical and perturbation significance is evaluated. The Kruskal algorithm is used to 

create the minimal-spanning tree and then remove any non-signature nodes remaining 

in the leaves of the MST. 

To determine the statistical significance of each subpathway, the hypergeometric test 

and anomalous perturbation are employed. As in the SPIA tool, the present method 

contains two probabilities, PNDE and PPERT. The p-value can then be used to determine 

the pathway's enrichment significance using the following equation: 

𝑝 = 1 − ∑
(

𝑡
𝑥) (

𝑚 − 𝑡
𝑛 − 𝑥)

(
𝑚
𝑛 )

𝑟−1

𝑥=0

 

In the equation above, m represents the total number of genes in the genome, while t is 

the number of genes involved in the studied pathway. The variable t denotes the number 

of genes provided for study, of which r are participating in the same pathway.  

The PPERT is calculated the same way as shown in the SPIA method and is combined 

with PNDE in order to form a new global probability, 𝑃𝐺 . 

MinePath 

Another tool for pathway analysis is MinePath, which combines knowledge from gene 

expression profiles and molecular pathways. MinePath recognizes functionally differ-

ential sub-paths among different phenotype classes. Focusing on [4], bellow is a basic 

outline of the methodology. 
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MinePath's general technique consists of five modular components that must be imple-

mented. Initially, the gene expression data must be discretized so that the domain di-

mensionality is reduced. The supervised Entropy-based global discretization approach 

was implemented to convert gene expression values into binary equivalents that are 

either high (expressed) or low (non-expressed). In addition, because of the differences 

in the nomenclature of pathways and gene expression data, MinePath examines each 

gene's various probesets and indicates a combined expression value by employing a 

logic OR to the probeset values.  

Then, following a depth-first search technique, each pathway is broken into all its sub-

paths. The sub-paths that emerged are compared to the binary gene expression sample 

profiles provided as input. A collection of binary (Boolean) operations and a number of 

semantics that interpret the precise molecular nature of the underlying gene interactions 

are used to determine the functional capacity of a sub-path in a sample. MinePath han-

dles two types of single gene regulatory relationships: activation/expression and inhi-

bition, which are described by the AND and XOR Boolean operators, respectively. In 

the event of more complex sub-paths, MinePath uses an AND operator to merge the 

binary values of the path's final relation and the binary value of the sub-component 

path's investigated so far. 

Subsequently, the most discriminant sub-paths are identified using a multi-parametric 

sub-path selection technique, which is implemented by the employment of feature se-

lection and classification techniques. MinePath includes three independent filters to an-

alyze the phenotype differential power of sub-paths and identify the most discriminant 

among them: coverage, p-value, and polarity, each with its own customizable threshold. 

Those sub-paths that pass all the filters are chosen and maintained as the most discri-

minant. 

Finally, MinePath evaluates the relevance of the pathways and ranks them according to 

their p-value, which is calculated based on the following formula: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑝 =

(
(𝑎𝑝 − 1) + 𝑏𝑝

𝑎𝑝 − 1
) (

𝑐𝑝 + 𝑏𝑝

𝑐𝑝
)

(
𝑛

(𝑎𝑝 − 1) + 𝑐
)

 

MinePath's final output is a p-value ranked list of pathways from which the user can 

choose one to visualize and study. 
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HiPathia 

HiPathia is a method that uses transcriptome data to calculate signal transduction along 

signaling pathways. [40] and [41] explain the technique.  

To model the various cell functions in detail, each pathway is first broken down into 

circuits. The algorithm used by the HiPathia method models signal propagation by con-

sidering the level of activity of the proteins that make up the circuit. The simultaneous 

presence of the chain of proteins that connect the receptor to the effector, as well as the 

absence of inhibitor proteins that could compromise the signal's transduction along the 

circuit, in order to be active and thus transduce the signal to eventually trigger a func-

tion, is necessary for a circuit. The signal generated by the input node is communicated 

along the pathway as in the direction of the interactions and the output is collected by 

an output node, which activates a cell function. The signal is transmitted along the path 

according to the following recursive formula: 

𝑆𝑛 = 𝜐𝑛 ∙ (∏(1 − 𝑆𝑎)

𝑆𝑎𝜖𝐴

) ∙ ∏(1 − 𝑆𝑖)

𝑆𝑖𝜖𝐼

 

Sn and υn represent the signal intensity for the current node n and its normalized gene 

expression value respectively. A describes all the activation signals (Sa) that are col-

lected at the current node n from activation edges, and I describes the corresponding 

inhibitory signals (Si). 

Finally, based on each circuit's structure, the last effector node will either detect varia-

tions in the nodes' activity or not. [13]  
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Table 1. Pathway's scoring formula of Pathways Analysis tools 

Method Date Formula    

TAPPA 2007 𝑃𝐶𝐼 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑖𝑠 + 𝑥𝑗𝑠) ∗ |𝑥𝑖𝑠|0.5 ∗ 𝛼𝑖𝑗 ∗ |𝑥𝑗𝑠|
0.5

𝑁

𝑗=1

𝑁

𝑖=1

    

SPIA 2008 𝑃𝐺 = 𝑐𝑖 − 𝑐𝑖 ∙ 𝑙𝑛 (𝑐𝑖) ,  𝑐𝑖 = 𝑃𝑁𝐷𝐸(𝑖) ∙ 𝑃𝑃𝐸𝑅𝑇(𝑖)    

TopologyGSA 2010 𝛬 =
𝐿𝐻0

(𝐾1, 𝐾2)

𝐿𝐻1
(𝐾1, 𝐾2)

=
𝐿𝐻0

(𝐾)

𝐿𝐻1
(𝐾)

    

PARADIGM 2010 

𝐼𝑃𝐴(𝑖)

= {
𝐿(𝑖, 1) ,         𝐿(𝑖, 1) > 𝐿(𝑖, −1)𝑎𝑛𝑑 𝐿(𝑖, 1) > 𝐿(𝑖, 0)

−𝐿(𝑖, −1) ,    𝐿(𝑖, −1) > 𝐿(𝑖, 1) 𝑎𝑛𝑑 𝐿(𝑖, −1) > 𝐿(𝑖, 0)
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

    

GGEA 2011 𝑆 ≔ ∑ 𝐶(𝑡)

𝑡𝜖𝑇𝑢

, 𝐶(𝑡) = 𝑐𝑜𝑛𝑠(𝑑𝑒𝑂, 𝑓𝑡(𝑑𝑒𝑖))    

HotNet 2011 ℎ(𝑔𝑗 , 𝑔𝑘) = 𝑤(𝑔𝑗 , 𝑔𝑘) × {|𝑆𝑗|, |𝑆𝑘|}    

PRS 2012 𝑃𝑅𝑆(𝑝𝑖) = ∑ 𝑁𝑆𝑗

𝑛𝑖

𝑗=1

, 𝑁𝑆 = {
𝑁𝑉 ∗ 𝑁𝑊    𝑖𝑓 𝑁𝑉 > 1
0                    𝑖𝑓 𝑁𝑉 ≤ 1

 
       

DEGraph 2012 𝐸𝒢(𝛿) = ∑ (𝛿𝑖 −
1

𝑑𝑖
− ∑ 𝑎𝑗𝑖𝛿𝑗

(𝑗,𝑖)𝜖ℰ

)

2𝑝

𝑖:𝑑𝑖
−≠0

    

TEAK 2012 𝑆𝑐𝑜𝑟𝑒𝐵𝐼𝐶 = log 𝑃(𝐷|�̂�)  − 0.5𝑑 log 𝑁    

PATHiWAYS 2013 Probabilistic model    

DEAP 2013 
𝑆𝑐𝑜𝑟𝑒 = ∑ 𝐸(𝑧) + 𝑇(𝑒𝑑𝑔𝑒) ∗ 𝑚𝑎𝑥𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑧∈𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠  

and 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝐸(𝑧) + 𝑇(𝑒𝑑𝑔𝑒) ∗𝑧∈𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

𝑚𝑖𝑛𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒  
   

GraphiteWeb 2013 𝑃(𝑁𝐺,𝑑𝑒𝑔 ≥ 𝑛𝐺,𝑑𝑒𝑔) = ∑

( 
𝑁𝐺

𝑖
 ) (

𝑁 − 𝑁𝐺

𝑁𝑑𝑒𝑔 − 𝑖  )

(
𝑁

𝑁𝑑𝑒𝑔
  )

𝑁𝑑𝑒𝑔

𝑖=𝑛𝐺,𝑑𝑒𝑔

    

PATHOME 2014 

𝐼𝑘 = 𝑎𝑟𝑔 min
𝑚

{− ∑ 𝐼(𝑠𝑔𝑛(𝑟𝑖,𝑖+1
𝑘 × 𝑒𝑖,𝑖+1) = 1)

𝑚

𝑖=1

+ ∑ 𝑅 (𝑠𝑔𝑛(𝑟𝑖,𝑖+1
𝑘 × 𝑒𝑖,𝑖+1))

𝑚

𝑖=1

}

+ 1, 𝑚𝜖{1, … , 𝑝 − 1}, 𝑅(𝑥)

= {
0, 𝑖𝑓 𝑥 ∈ {1}

∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

   

SubSPIA 2015 𝑃𝐺 = 𝑐𝑖 − 𝑐𝑖 ∙ 𝑙𝑛 (𝑐𝑖) , 𝑐𝑖 = 𝑃𝑁𝐷𝐸(𝑖) ∙ 𝑃𝑃𝐸𝑅𝑇(𝑖)    
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MinePath 2015 Logical operators    

HiPathia 2017 𝑆𝑛 = 𝜐𝑛 ∙ (∏(1 − 𝑆𝑎)

𝑆𝑎𝜖𝐴

) ∙ ∏(1 − 𝑆𝑖)

𝑆𝑖𝜖𝐼
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Materials and Methods 

Datasets and processing 

Two datasets are used in this study. The GSE2034 gene expression dataset was obtained 

from the Gene Expression Omnibus data repository available at 

https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse2034 and contains 286 breast can-

cer samples, of which 209 are ER-positive and 77 are ER-negative. The second dataset 

is a collection of 47 sub-paths in total from the KEGG database (https://www.ge-

nome.jp/kegg-bin/show_organism?menu_type=pathway_maps&org=hsa) of which 15 

relate to cellular activities, 24 to signal propagation and 8 to cancer in general. The 

relation between two nodes is either activation or inhibition. 

Due to the mapping of a gene to more than one Entrez identifiers, each Entrez identifier 

is translated to its associated gene. The expression value that results after the KEGG-

IDs are combined into one gene is calculated as their average expression value. If a 

gene or gene ID involved in one of the investigated sub-paths does not match the dataset 

GSE2034, a new ‘noProbe’ gene is created with values equivalent to the mean of each 

corresponding sample. 

The dataset of the sub-paths is handled in such a way that the nodes and edges for each 

sub-path can be distinguished and interpreted easier. More than one gene can be found 

in each node. In this case, the average value is assigned. 

Moreover, the data from the two data sets is integrated to create new collective data 

structures. As a result, values such as expression values, p-values, and fold changes are 

directly linked to sub-path nodes, simplifying the analysis process. 

Computing the score 

The methods implemented in the present paper are TAPPA, PRS, TEAK, DEAP, 

GraphiteWeb, MinePath and HiPathia (see Appendix for more details). The decision 

was made based on the degree of simplicity with which each method could be per-

formed. The score of each sub-path was determined using the methodology described 

in each tool’s respective papers. Each approach offers details regarding the data nor-

malization procedure, although the FDR correction method was employed for the 

DEAP and PRS tools. Due to their computational complexity, FDR correction was used 

https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse2034
https://www.genome.jp/kegg-bin/show_organism?menu_type=pathway_maps&org=hsa
https://www.genome.jp/kegg-bin/show_organism?menu_type=pathway_maps&org=hsa
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in place of DEAP's random rotation approach and PRS' second normalization step's 

non-parametric permutation method. 

Despite the fact that all techniques take pathway topology into consideration, we may 

generally identify two approaches to the problem. Tools TAPPA, GraphiteWeb, TEAK 

and PRS are based on probability theories and interpret pathway topology as the influ-

ence of nodes upon one another. Tools HiPathia, DEAP and MinePath, on the other 

hand, focus on the relation type among genes and how it influences the output.  

After computing the score of each sample for each unique sub-path according to the 

approach of the corresponding tool, a two-dimensional matrix emerged for every one 

of the tools, with rows representing samples and columns representing sub-paths. 

Subpathway ranking 

After acquiring the scores of each sub-path for each tool independently, machine learn-

ing algorithms were used to train and evaluate the outcomes of each approach in order 

to perform the comparison among them.  

Machine Learning is a subset of artificial intelligence that utilizes data and algorithms 

to model the learning process of a human while continually improving its accuracy [42]. 

Given that labeled data were available for this study and that the samples were to be 

divided into classes (ERpos, ERneg) based on the scores of the sub-paths, supervised 

learning techniques were considered. Thus, the Decision Trees algorithm was used to 

classify the findings and evaluate each approach since it also has the capability of rec-

ognizing the most important features; as a result, in addition to providing information 

about the accuracy of the results, it also provides insight into which sub-paths are sig-

nificant.  

The basis of the Decision Trees algorithm is the continuous division of the data by a 

given criterion. Two things -decision nodes and leaves- can explain the structure of the 

tree. The options or results are the leaves and the data is divided at the decision nodes 

[43].   

Initially, since machine learning algorithms only comprehend numbers, the datasets 

representing the study’s results of each approach were prepared and the samples' cate-

gorical classes were transformed into numerical variables.  
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Then, the modified datasets were divided, at a ratio of 70% to 30%, into training and 

testing sets. Each Machine Learning model was trained with the training sets that 

emerged from the previous step and evaluated using the corresponding testing sets. The 

outcome is how accurate the models are for the data acquired from each approach and 

a list of the most significant sub-paths utilized as features for each approach’s classifi-

cation model predictions. 

The scikit-learn package (https://scikit-learn.org/stable/) which offers pre-built ma-

chine learning functions for the Python programming language, was used to implement 

the aforementioned procedure. 

  

https://scikit-learn.org/stable/
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Results 

Predictive performance/ Data validation 

The findings of each methodology employed in this study are provided in this section 

and are presented in Table 2 and Table 3.  

Accuracy, which is the proportion of correctly predicted data points among all the data 

points [44], is the parameter used to assess the performance of each approach. The tool 

or tools with the highest accuracy are highlighted. Overall, the accuracy of every tech-

nique is at least satisfactory, except TAPPA and TEAK that performed poorly. For tools 

with an accuracy rate greater than 75%, it can be described as very good. 

It is important to note that, when the findings were corrected using the Benjamini and 

Hochberg approach in the case of GraphiteWeb, the classification model's accuracy 

declined. One interpretation of such a reduction is improved capacity for adaption to 

new, previously unobserved data. 

Table 2. Predictive performance of each tool 

However, despite the relatively good accuracy results, no common sub-paths could be 

identified across the tools in terms of the feature importance of each methodology. Con-

sequently, no further information could be derived about the pathways because our 

study was unable to provide us with the most discriminant sub-paths. 

The execution time of the methods is an additional criterion for evaluation based on 

which we may determine which algorithms can be used for real-time and consequently 

Tool Accuracy 

TAPPA 54,57% 

PRS 82,09% 

TEAK 59,00% 

DEAP 77,55% 

GraphiteWeb 60,52% 

MinePath 63,05% 

HiPathia 81,49% 
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online analysis. The total time required to execute the code on the computer's central 

processing unit (CPU) is referred to as the algorithm's execution time. Table 3 displays 

the execution time in seconds for each method’s scoring algorithm.  

In general, we observe both algorithms that have a relatively short execution time and 

algorithms that require even days to complete. Nevertheless, most tools conclude the 

analysis in less than a day, while there are methods that take even less than an hour to 

complete, which makes them ideal for online analysis.  

Table 3. Execution Time of each tool 

Tools comparison 

This study's primary goal was to compare several pathway activity analysis tools that 

use statistical and machine learning techniques. The comparison considers both each 

method individually and the two fundamental approaches collectively (see Section 

“Computing the score”).  

Primarily, as demonstrated in Table 2, PRS has the best predictive performance with a 

value of 82,09%, while the worst performance was TAPPA’s with 54,57% accuracy. 

The performance of the remaining tools range from 60% to 81% and exceeds 75% for 

almost half of them. 

Overall, the tools with accuracy greater than 75% are PRS, DEAP and HiPathia; PRS 

is based on statistical methods, while DEAP and HiPathia are predicated on Machine 

Learning algorithms. It is obvious that, in this study, tools based on Machine Learning 

Tool Execution Time (seconds) 

TAPPA 3185.17 

PRS 8754.69 

TEAK 28918.27 

DEAP 24294.49 

GraphiteWeb 366047.77 

MinePath 3099.49 

HiPathia 2905.48 
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algorithms outperform those based on statistical methods on average, when the main 

approach of each method is taken into account.  

Figure 3. Predictive Performance of each tool based on the method 

 

Regarding the execution time of the algorithms, the approach that seems to be the best 

solution for real-time analysis is HiPathia with a runtime of 2905,48 seconds corre-

sponding to less than an hour, followed by MinePath and TAPPA. On the contrary, a 

tool such as GraphiteWeb could not be utilized for real-time analysis because the com-

putation of the results takes around 4 days, which makes it impractical. 

Most methodologies exhibit relatively low execution time as shown in Table 3, but 

there is always potential for improvement. The majority of the methods complete the 

analysis in less than a day, while tools TAPPA, MinePath and HiPathia are suitable for 

online analysis since the procedure takes less than an hour.  

Machine learning algorithms also seem to have an advantage in terms of the execution 

time over statistical methods, since they are particularly useful in situations like these, 

when there is a massive amount of data to handle, in order for the model to become 

smarter and more reliable [45]. Additionally, it is known that statistical algorithms gen-

erally struggle to analyze very big datasets and demand smaller datasets with fewer 

features or data [46]. 
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Figure 4. Tools' execution time based on the method 

 

When both assessment criteria are taken into account, HiPathia’s approach is identified 

as the best option for online analysis, because it offers low execution time, while both 

PRS and HiPathia exhibit high accuracy. This conclusion is consistent with existing 

research, which claims that machine learning algorithms are more efficient and accurate 

when evaluating huge amounts of data [47]. 

Additionally, there are variations when it comes to the types of values that each tool's 

scoring technique handles. While most methods employ non-binary data, MinePath and 

GraphiteWeb use binary values for gene expression. Given this, it is clear that tech-

niques that utilize continuous values are preferred over those that use discrete valued 

data. This is due to the possibility that, even though categorizing genes as active or 

inactive is more practical and effective, important information may be missed, as shown 

by the non-binary tools’ noticeable higher accuracy levels.  

The GraphiteWeb tool, despite handling binary values, demonstrates an extremely high 

execution time. Therefore, we reach the conclusion that the pathway scoring procedure 

significantly slows down the analysis. Considering that HiPathia is the approach that 

produces the best overall results, it seems logical that GraphiteWeb’s performance 

might be enhanced by incorporating HiPathia’s scoring methodology. 

However, the tools used in this paper are not sufficient to demonstrate that Machine 

Learning techniques are superior to Statistics, because there are only 7 tools in total and 



43 

 

their distribution between the two main approaches is not proportional, which is ex-

tremely likely to influence the results. In addition, it cannot help with sub-pathway tar-

geting for medical treatment, since no significant sub-pathways were discovered.  
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Discussion 

In this work, we implemented the scoring techniques for a number of Pathway Analysis 

tools that either rely on Machine Learning algorithms or statistical methods to identify 

similarities and differences among them. The findings of this research support the pref-

erence of Machine Learning over statistical methods, as well as the usage of non-binary 

gene expression data, but given the limitations observed the conclusions should be re-

garded cautiously. 

Machine Learning is widely used in the field of Pathway Analysis due to the continu-

ously growing amount of information in biology and the capability of Machine Learn-

ing algorithms to manage vast and complicated datasets [48]. Additionally, given that 

personalized therapies are the future of medicine, Machine Learning provides the tools 

needed to accomplish this purpose, because of its capacity to comprehend biological 

processes [49]. All of this, along with the exponential increase in computing power that 

is now available, has allowed Machine Learning to be considered as a promising tech-

nology for Pathway Analysis [50]. However, the application of Machine Learning in 

healthcare has some drawbacks that must be resolved, such as poor data quality and 

ethical dilemmas [51]. [52] 

Multiple studies have been conducted to determine the type of gene expression data—

binary and non-binary—that yields the most beneficial outcomes, while it should be 

mentioned that the majority of the methods examined in this study dealt with continuous 

data. Genomic data cannot simply be classified as on or off, because they are continu-

ous, therefore they must be translated into discrete values. By translating the data it is 

likely to result in the loss of potentially important information, which is a very signifi-

cant drawback [53], regardless of the fact that binary data require less processing time. 

As a result, current research attempts to combine them in an effort to optimize their 

benefits and minimize their disadvantages. Therefore, as we also discovered from the 

literature review of the tools analyzed in this paper [4], [24]–[41], there is a preference 

for non-binary valued gene expression data, or at least a tendency of transitioning from 

binary to continuous values. [54]–[56] 

The abundance of genomic platforms available is a major issue that has been identified 

in numerous bioinformatics studies, while several studies have been conducted with the 

goal of comparing and determining the best platform or attempting to merge different 
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databases [57]. Given that most datasets are obtained using various genomic platforms 

and processing techniques [58], it is highly likely that this limitation contributed to this 

study's inability to discover common significant sub-paths between two or more tools. 

This is due to variations in the platform design, synthesis and probe annotation [59], 

which lead to different outcomes. [60], [61] 

Other scientific studies and experiments can be conducted taking into account both the 

positive and negative findings of this research. One approach could be applying addi-

tional tools in this study’s scripts to ensure that the findings are unbiased and, given the 

availability of databases, using datasets from various genomic platforms to overcome 

the problem of correlating genes across multiple databases and thus the inability of 

identifying common significant sub-paths. Another approach could be concentrating on 

non-binary gene expression data and employing mostly Machine Learning to analyze 

gene expression and gene regulatory networks in future works. As a consequence, by 

utilizing the capabilities of Machine Learning technology and enhancing existing path-

way analysis techniques, the rates of accurate medical diagnoses could increase.  
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Conclusions 

Pathway analysis is a promising technique for more precise medical diagnosis and de-

termining the genetic basis of disorders. It makes use of current knowledge to better 

comprehend biological processes by combining both gene expression data and gene 

topology. However, a number of pathway analysis tools have been developed, each of 

which employs its own algorithm for pathway scoring that is either based on statistical 

techniques or machine learning algorithms. These scoring methodologies constituted 

the subject of this comparison study.  

Overall, the outcomes indicate that Machine Learning-based methodologies perform 

better and faster than those based on statistical methods. When looking at each tool 

separately (see Table 2 and Table 3), PRS had the highest accuracy rate, followed by 

HiPathia that required also the shortest execution time. On the other hand, TAPPA per-

formed the worst regarding the accuracy of the results and GraphiteWeb required the 

highest execution time. Furthermore, a significant proportion of the tools analyzed han-

dle non-binary gene expression values, indicating their preference over binary data. 

More precisely, because GraphiteWeb indicated a high execution time despite handling 

binary data, a potential solution for minimizing the computational cost would be to 

combine GraphiteWeb’s methodology with HiPathia’s scoring technique. Unfortu-

nately, the research only analyzed a limited number of tools, and no significant common 

sub-paths between the tools were found, making it difficult to confidently accept the 

findings. However, future research may focus on the application of more datasets. More 

specifically, for an experiment utilizing four datasets, it is anticipated that, based on 

Table 3, it will take around 20 days to complete. 

Based on the results, we can recommend Machine Learning algorithms as a better tech-

nique for pathway analysis, but it would be preferable to conduct a new study that in-

corporates proportionately additional tools from both approaches as well as apply this 

paper’s scripts to gene expression data from several genomic platforms. Also, choosing 

continuous data over discrete values is suggested. As a result, we will be able to identify 

the optimal method for future studies with greater confidence. 

It is important to utilize every knowledge and technology provided to us, so that better 

and more accurate results are obtained every time. Consequently, as we get better at 
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making sense of the data that is already available, more precise technologies will be-

come available. These technologies will offer more precise medical diagnoses and, pos-

sibly, cures for diseases that we still don't fully understand. 
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Appendix 

In this section we provide snips of code we developed to compute the pathway scores 

for a better understanding of each approach implemented. The source code is availa-

ble at https://github.com/fotinidrouma/Pathway-Analysis.git. 

Image 1. MinePath's scoring code 

The code employed in this paper to compute the pathway score using MinePath's methodol-

ogy is displayed in this image. MinePath handles binary expression values and employs Bool-

ean operators according to the relationships among genes.    

 

Image 2. TAPPA's scoring code 

This image displays the code developed based on the description of TAPPA’s algorithm. The 

variable x denotes the standard log expression estimate of the genes for a specified sub-path 

and each sample, while the corresponding adjacency matrices are defined as a. 

 

Image 3. GraphiteWeb's scoring code 

The algorithm for the sub-path score calculation according to GraphiteWeb’s approach re-

quires the total number of genes screened N, the total number of differentially expressed 

genes N_deg and the total number of equally expressed genes N_eeg. 

https://github.com/fotinidrouma/Pathway-Analysis.git
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Image 4. TEAK's scoring code 

The image shows the algorithm produced for this study as explained by TEAK’s methodol-

ogy, where N represents the number of samples in the gene expression data and 

cond_prob_distr stands for Conditional Probability Distribution. 

 

Image 5. DEAP's scoring code 

The script used to calculate the DEAP pathway score is shown below. The type of interaction 

between genes is taken into account via a recursive function. 
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Image 6. PRS's scoring code 

The following block of code for pathway score calculation was developed based on the guide-

lines provided by the associated paper of PRS. The pathway score is obtained by adding the 

scores of each node, which was determined using the respective node values and weights. 

 

Image 7. HiPathia's scoring code 

The HiPathia's pathway score computing mechanism is displayed in this image. The variable 

u, which represents the normalized gene expression values for a particular sub-path and sam-

ple, is essential for calculating the score. 

 

 

  



51 

 

References 

 [1] “Human Genome Project,” National Human Genome Research Institute, Aug. 

24, 2022. 

[2] “Human Genome Project,” Wikipedia. Sep. 24, 2022. 

[3] Y. Tu, G. Stolovitzky, and U. Klein, “Quantitative noise analysis for gene ex-

pression microarray experiments,” Oct. 2002. 

[4] Lefteris Koumakis et al., “MinePath: Mining for Phenotype Differential Sub-

paths in Molecular Pathways,” Natl. Cent. Biotechnol. Inf., Nov. 2016. 

[5] Ask A Scientist Staff, “What is Molecular Biology?,” Sep. 03, 2019. 

https://www.thermofisher.com/blog/ask-a-scientist/what-is-molecular-biology/ 

[6] “Molecular biology,” Wikipedia. Sep. 24, 2022. 

[7] Sarah A. Bates, “Deoxyribonucleic Acid (DNA),” Sep. 2022. 

[8] “DNA,” what is biotechnology? https://www.whatisbiotechnology.org/in-

dex.php/science/summary/dna/ 

[9] “What is a gene?,” MedlinePlus, Mar. 22, 2021. 

[10] “What are proteins and what do they do?,” MedlinePlus, Mar. 26, 2021. 

[11] The Editors of Encyclopaedia Britannica, “gene,” Britannica. Sep. 20, 2022. 

[12] “Gene Expression,” National Human Genome Research Institute, Sep. 28, 

2022. 

[13] Lefteris Koumakis, “Computational methods for knowledge discovery from 

heterogeneous data sources: methodology and implementation on biological and mo-

lecular sources,” Technical University of Crete, School of Production Engineering 

and Management, 2014. 

[14] Paolo Tieri and Filippo Castiglione, “Modeling Macrophage Differentiation 

and Cellular Dynamics,” ScienceDirect, 2021. 

[15] Lesley T. MacNeil and Albertha J.M. Walhout, “Gene regulatory networks 

and the role of robustness and stochasticity in the control of gene expression,” Pub-

Med Cent., May 2011. 



52 

 

[16] Miguel A. García-Campos, Jesús Espinal-Enríquez, and Enrique Hernández-

Lemus, “Pathway Analysis: State of the Art,” Front. Physiol., Dec. 2015. 

[17] Tuan-Minh Nguyen, Adib Shafi, Tin Nguyen, and Sorin Draghici, “Identifying 

significantly impacted pathways: a comprehensive review and assessment,” Genome 

Biol., Oct. 2019. 

[18] “KEGG,” Wikipedia. Feb. 11, 2022. [Online]. Available: https://el.wikipe-

dia.org/wiki/KEGG 

[19] “KEGG PATHWAY Database,” KEGG: Kyoto Encyclopedia of Genes and 

Genomes. Mar. 24, 2022. [Online]. Available: https://www.genome.jp/kegg/path-

way.html 

[20] “BioCarta Pathways,” SciCrunch | Research Resource Resolver. 

https://scicrunch.org/ADC/resolver/RRID:SCR_006917 

[21] “Home - Reactome Pathway Database,” Reactome. https://reactome.org/ 

[22] Ivana Ihnatova, Vlad Popovici, and Eva Budinska, “A critical comparison of 

topology-based pathway analysis methods,” PLOS ONE, Jan. 2018. 

[23] “A comprehensive review and assessment of pathway analysis methods,” 

ADVAITA. 

[24] Shouguo Gao and Xujing Wang, “TAPPA: topological analysis of pathway 

phenotype association,” Oxf. Acad., Sep. 2007. 

[25] Adi Laurentiu Tarca et al., “A novel signaling pathway impact analysis,” Natl. 

Cent. Biotechnol. Inf., Jan. 2009. 

[26] Maria Sofia Massa, Monica Chiogna, and Chiara Romualdi, “Gene set analy-

sis exploiting the topology of a pathway,” BMC, Sep. 2010. 

[27] Charles J Vaske et al., “Inference of patient-specific pathway activities from 

multi-dimensional cancer genomics data using PARADIGM,” Natl. Cent. Biotechnol. 

Inf., Jun. 2010. 

[28] Ludwig Geistlinger, Gergely Csaba, Robert Küffner, Nicola Mulder, and Ralf 

Zimmer, “From sets to graphs: towards a realistic enrichment analysis of tran-

scriptomic systems,” Natl. Cent. Biotechnol. Inf., Jul. 2011. 

[29] “HotNet,” Raphael Lab. http://compbio.cs.brown.edu/projects/hotnet/ 



53 

 

[30] Fabio Vandin, Eli Upfal, and Benjamin J Raphael, “Algorithms for detecting 

significantly mutated pathways in cancer,” Natl. Cent. Biotechnol. Inf., Mar. 2011. 

[31] Maysson Al-Haj Ibrahim, Sabah Jassim, Michael Anthony Cawthorne, and 

Kenneth Langlands, “A Topology-Based Score for Pathway Enrichment,” Natl. Cent. 

Biotechnol. Inf., Mar. 2012. 

[32] Laurent Jacob, Pierre Neuvial, and Sandrine Dudoit, “DEGraph: differential 

expression testing for gene networks,” Bioconductor, Oct. 2014. 

[33] Laurent Jacob, Pierre Neuvial, and Sandrine Dudoit, “More Power via Graph-

Structured Tests for Differential Expression of Gene Networks,” Proj. Euclid, Jun. 

2012. 

[34] Thair Judeh, Cole Johnson, Anuj Kumar, and Dongxiao Zhu, “TEAK: Topol-

ogy Enrichment Analysis frameworK for detecting activated biological subpathways,” 

Natl. Cent. Biotechnol. Inf., Feb. 2013. 

[35] Patricia Sebastián-León, José Carbonell, Francisco Salavert, Rubén Sanchez, 

Ignacio Medina, and Joaquín Dopazo, “Inferring the functional effect of gene expres-

sion changes in signaling pathways,” Oxf. Acad., Jun. 2013. 

[36] Winston A. Haynes, Roger Higdon, Larissa Stanberry, Dwayne Collins, and 

Eugene Kolker, “Differential Expression Analysis for Pathways,” Natl. Cent. Biotech-

nol. Inf., Mar. 2013. 

[37] Gabriele Sales, Enrica Calura, Paolo Martini, and Chiara Romualdi, “Graphite 

Web: web tool for gene set analysis exploiting pathway topology,” Natl. Cent. Bio-

technol. Inf., May 2013. 

[38] S Nam et al., “PATHOME: an algorithm for accurately detecting differentially 

expressed subpathways,” Natl. Cent. Biotechnol. Inf., Oct. 2014. 

[39] Xianbin Li, Liangzhong Shen, Xuequn Shang, and Wenbin Liu, “Subpathway 

Analysis based on Signaling-Pathway Impact Analysis of Signaling Pathway,” PLOS 

ONE, Jul. 2015. 

[40] Kinza Rian et al., “Genome-scale mechanistic modeling of signaling pathways 

made easy: A bioconductor/cytoscape/web server framework for the analysis of omic 

data,” ScienceDirect, May 2021. 



54 

 

[41] Marta R Hidalgo, Cankut Cubuk, Alicia Amadoz, Francisco Salavert, José 

Carbonell-Caballero, and Joaquin Dopazo, “High throughput estimation of functional 

cell activities reveals disease mechanisms and predicts relevant clinical outcomes,” 

Natl. Cent. Biotechnol. Inf., Jan. 2017. 

[42] IBM Cloud Education, “Machine Learning,” IBM, Jul. 15, 2020. 

https://www.ibm.com/cloud/learn/machine-learning 

[43] “Decision Trees for Classification: A Machine Learning Algorithm,” Xoriant. 

https://www.xoriant.com/blog/decision-trees-for-classification-a-machine-learning-

algorithm 

[44] “Accuracy (error rate),” DeepAI. https://deepai.org/machine-learning-glossary-

and-terms/accuracy-error-rate 

[45] “MACHINE LEARNING VS. STATISTICS,” Univ. Del., Jul. 2021. 

[46] Michele Bennett, Karin Hayes, Ewa J. Kleczyk, and Rajesh Mehta, “Similari-

ties and Differences between Machine Learning and Traditional Advanced Statistical 

Modeling in Healthcare Analytics,” Jan. 2022. 

[47] Zohar Barnett-Itzhaki et al., “Machine learning vs. classic statistics for the 

prediction of IVF outcomes,” Aug. 2020. 

[48] Hayat Ali Shah, Juan Liu, Zhihui Yang, and Jing Feng, “Review of Machine 

Learning Methods for the Prediction and Reconstruction of Metabolic Pathways,” 

Jun. 2021. 

[49] Kexin Huang, Cao Xiao, Lucas M. Glass, Cathy W. Critchlow, Greg Gibson, 

and Jimeng Sun, “Machine learning applications for therapeutic tasks with genomic 

data,” vol. 2, no. 10, Oct. 2021. 

[50] Miroslava Cuperlovic-Culf, “Machine Learning Methods for Analysis of Met-

abolic Data and Metabolic Pathway Modeling,” Jan. 2018. 

[51] Junjie Peng, Elizabeth C. Jury, Pierre Dönnes, and Coziana Ciurtin, “Machine 

Learning Techniques for Personalised Medicine Approaches in Immune-Mediated 

Chronic Inflammatory Diseases: Applications and Challenges,” Sep. 2021. 



55 

 

[52] Marzyeh Ghassemi, Tristan Naumann, Peter Schulam, Andrew L. Beam, Irene 

Y. Chen, and Rajesh Ranganath, “A Review of Challenges and Opportunities in Ma-

chine Learning for Health,” May 2020. 

[53] Koji Kyoda, Mineo Morohashi, Shuichi Onami, and Hiroaki Kitano, “A gene 

network inference method from continuous-value gene expression data of wild-type 

and mutants,” Feb. 2000. 

[54] Andrew McDavid et al., “Data exploration, quality control and testing in sin-

gle-cell qPCR-based gene expression experiments,” Feb. 2013. 

[55] Yoram Ben-Shaul, Hagai Bergman, and Hermona Soreq, “Identifying subtle 

interrelated changes in functional gene categories using continuous measures of gene 

expression,” Jan. 2005. 

[56] Lorena Postiglione, Marco Santorelli, Barbara Tumaini, and Diego di Ber-

nardo, “From a discrete to continuous actuation for improved real-time control of 

gene expression in mammalian cells,” 2016. 

[57] Jason Rudy and Faramarz Valafar, “Empirical comparison of cross-platform 

normalization methods for gene expression data,” Dec. 2011. 

[58] Andrey A. Shabalin, Hakon Tjelmeland, Cheng Fan, Charles M. Perou, and 

Andrew B. Nobel, “Merging two gene-expression studies via cross-platform normali-

zation,” 2008. 

[59] Anna V. Tinker, Alex Boussioutas, and David D.L. Bowtell, “The challenges 

of gene expression microarrays for the study of human cancer,” ScienceDirect, vol. 9, 

no. 5, May 2006. 

[60] Tracy Tucker et al., “Comparison of genome-wide array genomic hybridiza-

tion platforms for the detection of copy number variants in idiopathic mental retarda-

tion”. 

[61] Paul K. Tan et al., “Evaluation of gene expression measurements from com-

mercial microarray platforms”. 

 


