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Abstract

The growth of the internet of things has given us the ability to monitor and

control various situations from distance, mostly by collecting data from the edge, then

storing and distributing them with the use of servers. This data can be the location of a

person,  medical  data,  industrial  data,  or  other  sensitive  information,  so  we  must

protect them from unauthorized users. If the server where the data will be stored is

semi-trusted, then we must protect take action to protect those data. As semi-honest,

we referred to a party that adheres to the protocol correctly while also keeping a log of

all its intermediate calculations. The proposed solution to this problem is the use of

homomorphic encryption which give us the ability to perform operations on encrypted

data such as additions and multiplications without the need of decrypting the data

first. This makes homomorphic cryptography ideal for this use because the server can

perform operations and at the same time, he cannot have access to the data.

In  this  project,  we  will  build  the  above  scenario  for  data  collected  from

microcontrollers.  The  microcontroller  will  have  various  data  stored  on  its  local

memory and when the user wants to offload them and send them to the cloud for

storage,  the  microcontroller  will  first  encrypt  those  data  with  homomorphic

encryption and then send them to the cloud. The microcontroller will connect with the

outside world via NFC. When the user wants to extract some information from those

data, he will ask the server to execute an algorithm on those data and then send back

the result encrypted that only the user can decrypt with the android application using

his secret key. The query implemented is an encrypted inference based on a dataset

that  determines  the  presents  of  humans  in  a  room.  For  that  reason,  we trained a

perceptron and designed a that can run on the server without the server can access the

private values that the board collected.



Περίληψη

Η ανάπτυξη του Διαδικτύου  των πραγμάτων μας  έδωσε τη δυνατότητα να

παρακολουθούμε  και  να  ελέγχουμε  διάφορες  καταστάσεις  από  απόσταση,  κυρίως

συλλέγοντας δεδομένα από τερματικες συσκευες, αποθηκεύοντας και διανέμοντάς τα

με  τη  χρήση  διακομιστών.  Αυτά  τα  δεδομένα  μπορεί  να  είναι  η  τοποθεσία  ενός

ατόμου, ιατρικά δεδομένα, βιομηχανικά δεδομένα ή άλλες ευαίσθητες πληροφορίες,

επομένως  πρέπει  να  τα  προστατεύουμε.  Εάν  ο  διακομιστής  στον  οποίο  θα

αποθηκευτούν τα δεδομένα είναι ημι-έμπιστος, τότε πρέπει να  λάβουμε μέτρα για

την προστασία αυτών των δεδομένων. Ως ημι-έμπιστος, αναφερομαστε σε καποιον

που τηρεί σωστά το πρωτόκολλο, ενώ διατηρεί επίσης ένα αρχείο καταγραφής όλων

των ενδιάμεσων υπολογισμών του. Η προτεινόμενη λύση σε αυτό το πρόβλημα είναι

η χρήση ομομορφικής κρυπτογράφησης που μας δίνει τη δυνατότητα να εκτελούμε

πράξεις  σε  κρυπτογραφημένα  δεδομένα  όπως  προσθέσεις  και  πολλαπλασιασμούς

χωρίς να χρειάζεται πρώτα να αποκρυπτογραφήσουμε τα δεδομένα. Αυτό καθιστά την

ομομορφική κρυπτογραφία ιδανική για αυτή τη χρήση, επειδή ο διακομιστής μπορεί

να  εκτελέσει  λειτουργίες  και  ταυτόχρονα,  δεν  μπορεί  να  έχει  πρόσβαση  στα

δεδομένα.

Σε αυτη την διπλωματικη, δημιουργήσαμε το παραπάνω σενάριο για δεδομένα

που συλλέγονται  από μικροελεγκτές.  Ο μικροελεγκτής  θα  έχει  διάφορα δεδομένα

αποθηκευμένα στην τοπική του μνήμη και όταν ο χρήστης θέλει να τα στείλει στο

cloud για αποθήκευση, ο μικροελεγκτής θα κρυπτογραφήσει πρώτα αυτά τα δεδομένα

με  ομομορφική  κρυπτογράφηση  και  στη  συνέχεια  θα  τα  στείλει  στο  cloud.  Ο

μικροελεγκτής συνδέεται με τον έξω κόσμο μέσω NFC.

Όταν  ο  χρήστης  θέλει  να  εξαγάγει  κάποιες  πληροφορίες  από  αυτά  τα

δεδομένα, θα ζητήσει από τον διακομιστή να εκτελέσει έναν αλγόριθμο σε αυτά τα

δεδομένα και στη συνέχεια θα στείλει το αποτέλεσμα κρυπτογραφημένο που μόνο ο

χρήστης  μπορεί  να  αποκρυπτογραφήσει  με  την  εφαρμογή  android  και

χρησιμοποιώντας το μυστικό κλειδί του. Επισεις σχεδιάσαμε και υλοποιησαμε εναν

τροπο  για  να  επεξεργαστούμε  ομοιομορφικα  τα  δεδομενα.  Για  αυτόν  τον  λόγο,

εκπαιδεύσαμε ένα perceptron και σχεδιάσαμε ένα αλγοριθμο που μπορεί να τρέχει

στον server το perceptron χωρίς να έχει πρόσβαση στις ευαισθητες πληροφοριες που

συνέλεξε η πλακέτα.
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1. Introduction 

1 Introduction 

The move to the cloud has been accelerated during the past few years. The process-

ing power and storage made available by the cloud providers are used by millions of

users, both businesses and people alike, offering a variety of services that make our

lives easier [1]. The IoT in particular has grown significantly. Nowadays, the services

that we can benefit from, are ranging from simple databases for storage to complete

stand-alone systems for IoT management that can store, process data, and make auto-

mated decisions. This kind of applications will make the monitoring and controlling of

various events more broadly available with less cost. As a result, we can benefit in

many areas like precision farming, smart cities , etc... IoT and many other applications

that rely on the cloud will undoubtedly begin to play a bigger role in our personal life

soon [2]. Sensitive data that are collected by the IoT devices are sent to the cloud

providers and therefore we need to protect them from unauthorized access [3]. Using

cryptographic algorithms like symmetric and asymmetric encryption we can achieve

limited security because the data must still be decrypted on the server to be processed.

This means that we need to have trust in the cloud provider for proper data manage-

ment.

In recent years as computers have become more powerful and cryptography has

evolved, more techniques are being continuously developed that can solve problems

that until recently were impossible to be solved, enabling us to have complete control

over our data. One of these techniques is homomorphic encryption [4]. Data that has

been encrypted using homomorphic encryption can be analyzed or changed without re-

vealing information to anyone. Similar to other types of encryptions, homomorphic en-

cryption encrypts data using a public and a secret key. After the manipulation of the

data is completed, only the person who owns the private key can access the encrypted

data. Homomorphic encryption will play an important role as it will allow us to have

full control over our data but there is still research to be done as it is a new technology.

Some issues that prevent us from using this technology in IoT are the large size of the

cyphertext data generated and the overhead which burdens the constrained IoT devices

[5].
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1. Introduction 

1.1 Contribution

The purposes of this thesis are the design and development of an IoT applica-

tion while exploring the possibilities of homomorphic encryption in embedded sys-

tems and the extraction of information from the data collected while maintaining the

privacy of users' data on the cloud. More specifically the infrastructure will consist of

an embedded system that will encrypt homomorphically the collected values from sen-

sors  using  the  SEAL-Embedded  library[6].  Those  values  are  the  temperature  of  a

room, light and sound intensity, PIR, and CO2. Then the ciphertext will be collected

through the NFC android app and will be sent to the cloud for storage. For the server

to process data and extract information, we trained a perceptron that can determine if

there was a human presence at a given time. For the server to be able to calculate the

output of the perceptron we also design and implement an algorithm that multiplies an

encrypted matrix with one that is not encrypted, the matrices are the wights of the per-

ceptron that are in plaintext form and the other matrix is the input that needs to be mul-

tiplied with the weights matrices, this way the values that the board encryped are safe

from leaking or to be used from the server for other purposes. Finally, the owner can

make queries to the server by using the android app that was developed. The answers

to the queries made by the user are sent back to him encrypted. 

1.2 Outline

The thesis's outline is presented below, and the important features of each chapter are 
emphasized.

Chapter 1 - Introduction - An overview is provided in the Introduction section. We 
mention why homomorphic cryptography is important in IoT and also describe the 
work developed.

•Chapter 2 – Internet of things: Analysis on the structure of the Internet of Things.

•Chapter 3 – Cloud: In this chapter we describe what a Cloud is and the services that

it offers as well as concerns about the privacy of the users.
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•Chapter 4 - Homomorphic encryption: Here we analyze what homomorphic cryp-

tography is and delve into the analysis of the CKK scheme which we used in this

work.

•Chapter  5 - Pattern recognition: We describe what pattern recognition is and the

process we follow to build such a system. We also describe the Multi-Layer Percep-

trons algorithm.

•Chapter 6 – Related work: Discussion about homomorphic encryption and pattern

recognition that relates to our proposed work.

•Chapter 7 – Implementation: Detailed  performance analysis on the system we im-

plemented.

•Chapter 8 – Conclusion: Conclusions and improvements that we can implement in

the future.
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2.  Internet of things

2  Internet of things

In  general,  the  Internet  of  Things  (IoT)  is  the  interaction  between  people,

objects-  devices,  and  the  internet  [13].  The  IoT is  a  collection  of  heterogeneous

devices  that  can connect  exchange, and transfer  data  with other  connected devices

usually over the internet or inside a local network. These devices are embedded with

sensors, software, and other related technologies. Examples of IoT applications include

everything  from  basic  sensors  for  measuring  and  reporting  the  temperature  to

sophisticated industrial  equipment  for  enabling automated control  [14].  Healthcare,

manufacturing, and agriculture are just a few industries that are quickly adopting IoT

as it  allows  the  collection  of  useful  data  that  can be  used  for  better  usage  of  the

available  resources  or  on-time notification  of  various  events.  The demand for  IoT

devices is rising even in regular households.  According to Forbes [15] by the year

2025, the IoT industry is expected to have an economic impact of $11 trillion. In a

report  released in 2016, Statista Research Department predicted that 75 billion IoT

devices would be available to consumers worldwide by the year 2025. The central

concept of the Internet of Things is defined by a three-layer architecture.

 
Fig. 1: Iot structure

*https://www.researchgate.net/profile/Qasem-AbuAlHaija/publication/347072341/figure/fig1/

AS:970126849482752@1608307673848/IoT-Layered-Architecture-Considering-the-3-layer-Scheme-

of-IoT-4.png 
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2.  Internet of things

2.1 Perception layer

This is the architecture's initial layer, and it is responsible for gathering and

pre-processing data with the ability to react to different events. Big data is created at

this  layer,  where they are digitalized and sent  to  the Object  Abstraction Layer  for

additional processing or storage through secure channels. The main technologies that

make up this level are the following:

•Sensors and actuators: A crucial element of IoT systems is the sensors as they can

observe the outside world and report the collected data so the machines or the people

can use them. Sensors might be either analog or digital. Some examples of sensors that

record their environment are temperature sensors, humidity sensors, pressure sensors,

accelerometers, gyroscopes, cameras and many more. On the other hand, actuators are

devices that can interact with their environment,some examples are step-motors, smart

door lockers, smart light bulbs and more.

•Objects and devices: Devices or objects are various forms of hardware such as mi-

crocontrollers, household appliances smartwatches that can broadcast data over the in-

ternet and can be configured for certain purposes. These devices must have low con-

sumption as many times they have to operate with batteries and have limited process-

ing capabilities.

•Transmission technologies: These technologies are used for local network traffic or

for transmitting the data to the gateway, their range can be from few centimeters to few

kilometers. Some examples of such technologies are ZigBee, Bluetooth Low Energy,

NFC, Wi-Fi.
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2.  Internet of things

Fig. 2: Transmission technologies

2.2 Network layer

This layer must handle large amounts of data generated by smart devices or

gateways and send them via secure channels to the cloud provider that hosts the IoT

application.  The  network  layer  uses  a  variety  of  network  technologies  to  achieve

scalability,  large  bandwidth,  and  security  that  various  IoT  applications  need  to

function. To locate and route the data packets two main protocols are used in this layer,

the IPv6 protocol is usually used by the gateways to connect with the outside world.

But when a gateway is difficult to use like wireless sensor networks (WSN) a popular

choice is IPv6 Low Power Wireless Personal Area Network (6LoWPAN). The objects

are using technologies like Bluetooth, ZigBee, or NFC to reach the gateway.

2.3 Application layer

It receives massive amounts of data from the previous layer and stores, pro-

cesses, and analyzes them. All the software and hardware required to provide a particu-

lar service over the internet are contained in the application layer on the cloud, more

about the concerns and the abilities of the cloud in the next chapter.
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3 Cloud

3.1 Cloud Computing

In both industrial and commercial applications, cloud computing has become

an important paradigm that has garnered a lot of attention, especially in recent years.

Without even knowing it, a lot of users and businesses utilize the cloud every day. For

instance, all forms of email, online conferences, storage space for our personal files, or

programs like Excel and Microsoft Word, that are not physically installed on our per-

sonal computer, are some forms of cloud computing applications. All the infrastructure

to support these services exists somewhere in the world but customers might not be

aware of the location of the servers that are hosting the source code of the programs

they use for storing their data.

The term cloud computing is used to refer to computer resources offered on de-

mand without  the user's  direct  involvement  by a  worldwide network of  connected

servers accessible through the public internet [7]. These resources are mostly storage

for data, processing power, and source code and must be delivered in seconds as if

there was no difference if these applications were installed locally. This combination

of computing resources can be used for many needs and many different kinds of appli-

cations.

To better understand how different organizations and ordinary people benefit from the

cloud we must take a look at the three categories of services provided by the cloud.

•Infrastructure as a service (IaaS): This is a service that offers basic processing and

storage space over the internet. Instead of investing in their server or network infra-

structure, businesses can rent those services and use them as needed instead of keeping

those resources locally.

•Platform as a service (PaaS): Developers can use the PaaS platforms for the creation

of software applications. A full software environment can run at a service provider’s

server  while  customers  don't  have  to  worry  about  the  infostructure  to  support  it.

Google Cloud and Microsoft Azure are two examples.
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3. Cloud

•Software as a service (SaaS): Instead of purchasing a full license for an application,

SaaS users can rent it for as much time as they need it through an Internet browser.

SaaS follows a pay-per-use business model. These services are addressed to different

customers.

Fig. 3: Cloud Service Models *

  *source: https://miro.medium.com/max/1400/1*OwcTPPaoQwE6e-cnOluGmw.png

3.2 Cloud Computing vs Local Resources

There are many advantages of using cloud computing instead of our computer

resources locally.

For companies that want to host an application online, the benefits of using a

cloud provider are many. First of all, there is no need to invest in new hardware and

software or maintain the existing ones because they are provided as pay-per-use much

faster and cheaper. Companies can also quickly increase or reduce the amount of com-

puting resources to much their needs. This is frequently done automatically giving the

impression that resources are limitless and that applications can always handle the de-

mand. Resources are returned to the resource pool when they are no longer required

and they become available for others to use. We can also increase application speed by

using cloud load balancing techniques in  order to share these recourses more effi-

8
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3. Cloud

ciently among several applications that may run in the cloud. This means that by host-

ing our application in the cloud, the operational costs of many applications are re-

duced.

For the users using Cloud-Based Software instead of a desktop app, the main

benefits are that they avoid the process of installing or updating the application locally

and making backups of their files. They often avoid the cost of paying for software as

it is often free with the display of ads or a small fee.

There are also many environmental benefits of cloud computing in addition to

its  technological  and  economical  ones.  On-site  servers  require  ongoing  electrical

power and cooling systems to prevent overheating. One server can consume 500 to

1,200 watts of electricity per hour. It is estimated that 200 terawatt hours are used an-

nually by larger data centers. That exceeds the whole national energy usage of several

countries [27]. These numbers can be drastically reduced thanks to cloud computing.

According to  research from Northwestern University,  the transferring of frequently

used software applications to the cloud would reduce energy usage by up to 87 percent

[24]. 

3.3 Cloud Computing Privacy Issues

To better understand what privacy is we must clarify the difference between

privacy and security. Although these terms are related, data security and privacy are

not the same. We can have only security without privacy but not the opposite. Data se-

curity enables us to defend our data against unauthorized access, it puts into practice

the protocols that ensure our information's availability, confidentiality, and integrity

[28]. On the other hand, privacy refers to an organization's responsibility to use peo-

ple's personal information only for purposes to which they have given consent. These

are usually personally identifiable information (PII), information that can be used to

identify a specific individual such as financial data, medical records, social security/ID

numbers, names, and birthdates. In many developed nations, it is protected by the con-

stitution, making it a basic human right.

The nature of cloud services makes protecting customers'  privacy a difficult

task since the data are frequently being sent and maintained by a different party other

than the data owner. The adoption of cloud services is significantly hampered by con-
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3. Cloud

cerns about the leakage of private information or the loss of sensitive data. These wor-

ries are indeed true. Services that depend on people's location, preferences, schedule,

and social networks would need to take into account privacy since there are real poten-

tial dangers. For instance, it was revealed that in 2010 280 million user records con-

taining  personally  identifiable  information  (PII)  such  as  usernames,  emails,  phone

numbers, and locations were exposed by insecure back-end databases of mobile apps

[9]. Concluding, the public cloud is a popular architecture for cost reduction. However,

depending on a cloud service provider to handle and store your data creates a lot of

privacy problems. Using cloud services ultimately comes down to making trade-offs

between security, privacy, costs, and advantages that it offers. Some concerns about

privacy issues are described below [10]:

•Lack of User Control: When a SaaS environment is used, the service provider is in

control of data storage, with limited visibility and control by the user. There is a risk of

theft, leak, or misuse because the data of the customer are processed in the cloud by

computers and software that they do not own or control.

•Unauthorized Secondary Usage: The service provider may make a profit from sec-

ondary uses of customers' data, mostly by targeted advertisement as part of the cloud

computing standard business model. But some secondary data use might be unwanted

to the data owner. For instance, a cloud provider is using the data for reasons other

than those that were first agreed upon with the customer, like resale the costumer's data

to other secondary businesses without his permission.

•Data Proliferation and Transborder Data Flow: Cloud providers can have many

servers in different countries. Moving data for processing from one country to another

increases risk factors such as legal complexity about how this data can be used.

•Lack of Customer Trust: Individuals will  develop mistrust  when it  is  unclear to

them why their personal information is being asked, how it will be used, or by whom.

This lack of control and visibility of the provider is also contributing to this mistrust.

10
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3.4 Use of encryption in SaaS stages

If  encryption  is  not  used  when it  is  required,  the  data  may be  exposed to

external or internal threats. Despite the fact that utilizing encryption can help to retain

data security on our infrastructure, putting encryption into practice is a difficult task

and requires a lot of planning and design. It is difficult to determine when to encrypt

the data and when decryption is necessary. The improper stage to encrypt data could

result  in  poor  computational  resource  management  decreased  performance,  and

increased  costs.  To  better  understand  at  which  point  the  cryptography  is  most

appropriate we have to look at the stages that the data went through from creation and

sending to the server until processing.

•Data in Transit: Data sent between a server and a client, as well as between servers,

can be encrypted by the network. This is done in order to prevent unauthorized users

from eavesdropping on network traffic and to achieve the integrity of the data. Data

must be transmitted through the Secure Sockets Layer when the device can be ac-

cessed via a web interface, and only by security protocols like Transport Layer Secu-

rity [29].

•Data at Rest: This is when the data are stored on the server and are not in use. In

SaaS environments, we have two options. The first option is, following the receipt of

the data from the client, the cloud provider encrypts them with a key that he owns.

This would secure the data from outside threats and allow the provider to retransmit or

store the data in an encrypted form. The second option is, prior to uploading the data to

the cloud, the client can encrypt it using an encryption key and an encryption method

that only he knows. Given that the service provider lacks the decryption key, the SaaS

application can only perform a restricted number of activities on the encrypted data.

The encrypted data won't be readable by the SaaS application as a result he will not be

able to process them.

•Data in Use: By using conventional encryption algorithms, encrypted data must first

be decrypted before being loaded and processed in the server’s memory. This proce-

dure should be done with care as the data may leak at this stage. This makes it difficult

11
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to always maintain the data protected. Therefore, it will be very helpful to be able to

process encrypted data without having to decrypt them. This can be done by using ho-

momorphic encryption which we will analyze in the next chapter. This way the user

can enhance their privacy from an honest-but-curious [30] cloud provider. As honest-

but-curious, we referred to a cloud provider that adheres to the protocol correctly while

also keeping a log of all its intermediate calculations for its personal profit.

12
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4 Homomorphic encryption

4.1 Homomorphic encryption

Homomorphic encryption is a type of encryption that has the ability to do eval-

uations like additions and multiplications on encrypted data without having access to

the secret key while the computation's outcome is always encrypted [20]. Generally

speaking,  homomorphism is  a  transformation  that  preserves  structure  between  the

plaintexts and the ciphertext. The necessity of using a secret homomorphism to en-

crypt the data of a bank is first mentioned in this paper [25] which shows that Time-

shared computers needs manipulate the data without the need to first decrypt it.

Homomorphic Encryption works at the circuit level, which means that the functions to

be  used  should  only  consist  of  binary  operations  such  as  AND  and  XOR.

Homomorphic encryption is a term for an encryption scheme that can encrypt 0 and 1

and can multiply and add them. As we can see below, whatever calculation we perform

on the encrypted numbers, must have the same result if we decrypt them or as if it was

being decrypted.

E (m1 + m2) = E (m1) + E (m2)
E (m1 * m2) = E (m1) * E (m2)

Despite  the  fact  that  homomorphic  evaluations  can  be  performed  on  the

encrypted data,  it  is  crucial  that this  encryption must be as secure as the standard

encryption methods. With the ability to compute encrypted data, it is a technology that

we need to make use of as it has great potential in many real-world applications such

as  private  statistical  testing,  private  machine learning,  and private  neural  networks

[21],[22],[23]. Homomorphic encryption will play a key role in the future as more and

more applications will rely on the cloud and people and companies are growing more

apprehensive about the security and privacy of cloud data.

4.2 Homomorphic Encryption Types

Different homomorphic encryption techniques are in existence, some more powerful

than others. They are distinguished by the types of functions that can be applied to the

encrypted  data.  The  homomorphic  encryption  types  can  be  separated  into  three

13
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generations of groups. Each generation tries to improve the problems that preceded

them:

•Partially homomorphic encryption: Partially homomorphic encryption only allows

a unlimeted number of operations to be evaluated on encrypted data, either just addi-

tions or just multiplications, and have only a small number of uses in real-life scenar-

ios. Algorithms such as RSA and El Gamal belong to this category as they can only

multiply encrypted data. These kinds of schemes are not safe to be used as homomor-

phic encryption schemes as they are vulnerable to CPA attacks.

•Somewhat  homomorphic  encryption: Allows  computing  additions  on  encrypted

data as well as a limited number of multiplications. But as opposed to partially homo-

morphic encryption, a random element is included in the encryptions to prevent CPA

attacks. This creates a new problem as the noise grows every time an evaluation is per-

formed on the ciphertext, as a result, after a certain number of evaluations are applied

to the ciphertext the correct decryption is not possible.

•Fully homomorphic encryption: In somewhat homomorphic encryption,  after we

have performed several arithmetic operations, the noise will have increased so much

that it cannot be decrypted correctly. Fully homomorphic encryption includes boot-

strapping techniques that allow the processing of the ciphertext further. This kind of

homomorphic encryption enables much more if not unlimited multiplications and ad-

ditions.

4.3 CKK Scheme

4.3.1 CKK Scheme

The Cheon-Kim-Kim-Song (CKKS) [11] is a fully homomorphic encryption

scheme. The security of a CKKS system is based on the difficulty of learning with er-

rors (LWE) over a ring of polynomial factors. CKK and all the other Fully homomor-

phic encryption (HE) became feasible after the development of a bootstrappable algo-

rithm that could add and multiply homomorphically by Gentry [26]. Using CKKS, we

are able to do calculations on complex value vectors and real values as well [8]. 

14
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The CKK homomorphic encryption scheme supports the following four algo-

rithms KeyGen, Enc, Dec, and Eval as any HE scheme. Let M and C represent, respec-

tively, the plaintext and ciphertext spaces, a HE scheme Π = (KeyGen, Enc, Dec, Eval)

consists of four algorithms and works as follows:

•KeyGen(1λ). The Key Generation Algorithm with respect to the security 
parameter λ, the output of this algorithm is a public-secret pair of keys pk 
and sk and an evaluation key evk.

•Encpk(m). The encryption algorithm encrypts a message m  M into a ∈
ciphertext ct  C using the public key pk.∈

•Decsk(ct). the decryption algorithm returns a message m  M using the ∈
ciphertext ct and a secret key sk.

•Evalevk(f;  ct1,  .  .  .,  ctk).  Using the evaluation key evk and a tuple of
ciphertexts (ct1, . . ., ctk) Eval carries out the function f on the ciphertext.
The output of the evaluation algorithm is a ciphertext ct  C.∈

4.4 Microsoft SEAL

The Simple Encrypted Arithmetic Library (SEAL) [33], is an open-source FHE

library developed by Microsoft and it aims to make homomorphic encryption more ac-

cessible and has been used for industrial applications and academics. It was written in

C++ and has no external dependencies. Two distinct homomorphic encryption schemes

are included in Microsoft SEAL, the CKKS, and the BFV. For operations with en-

crypted integers, the BFV schemes can be used. While adding and multiplying en-

crypted real or complex numbers is possible only with the CKKS scheme, the down-

side of this scheme is that the results that yield are approximations of the result. CKKS

is the best option in applications like adding encrypted real numbers, analyzing ma-

chine learning models on encrypted data, or calculating distances between encrypted

locations. The BFV scheme is better suited for uses where precise values are required.

Fig. 4: Microsoft SEAL example
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4.4.1 Using Microsoft SEAL CKKS

The whole process of encrypting text is described below (figure 5). As we can

see there is an initial plaintext in the message m. This message must consist of floaing-

point numbers. The first step is to encode the plaintext into a polynomial, and then it is

encrypted with a public key. CKKS offers some operations that can be carried out on

the message m once it has been encrypted into c, like addition, multiplication and rota-

tion. After the encryption has been performed, we follow the reverse procedure to get

the result. Below in this chapter, we will see separately each of the steps in detail to

better understand the parameters and their effects on the security and performance of

our  computations.

Fig. 5: The CKK Scheme*
*Source: https://yongsoosong.github.io/files/slides/intro_to_CKKS.pdf

4.4.2 Creating a message

The first step is the size selection of the message. This parameter is called poly-

nomial modulo degree N and affects the number of slots of each ciphertext, this pa-

rameter is always a number of power of 2. Some common values that it takes are 2048,

4096, 8192, 16384, and 32768. The ciphertext has N/2 slots for floating point numbers

(figure 6). We have to keep in mind that the message length is not the only reason to
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select an appropriate polynomial modulo degree, a bigger polynomial modulo degree

also means more computing capabilities like more multiplications as we will see later.

 

Fig. 6: The message format

4.4.3 Encode of the message

The next step is to encode the message vector (figure 7). This is done in order

to turn each real number in the vector into an integer. This is necessary since in the

CKKS scheme the plaintext and the ciphertext elements are polynomials with integer

coefficients. So, all the numbers in the vector we want to encrypt are multiplied by a

scaling factor Δ. Bigger Δ means more precision. We can think of the scale as setting

the bit-precision of our result. Example of fixed-point arithmetic with rescaling:

 If we have two variables a = 0.331843, b = 2.226724 and scaling factor Δ = 106 then:

a’ = a * Δ = 331843

b’ = b * Δ = 2226724

To calculate a + b, we perform the following steps.

1) calculate the result: c' = a' + b' = 2558567

2) rescale: c'/Δ = 2.558567

To calculate a * b, we perform the following steps.

1) calculate the result: c' = a' * b' = 738922772332

2) rescale: c'/Δ = 0.73892277233

17
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Fig. 7: Encode procedure

Instead of using decimal fixed-point arithmetic in CKKS, binary fixed-point

arithmetic  is  utilized  ∆  =  2𝑝.  Additionally,  CKKS  operations  add  an  additional

approximation error that usually erases between 12 and 25 least significant bits so we

have to keep that in mind as well when we set the encryption parameters.

4.4.4 Encryption of encoded massage

The  encryption  parameters  must  be  set  according  to  the  number  of

multiplications and the decimal precision that we want. Each time a CKK ciphertext is

multiplied,  noise is  added to the resulting ciphertext,  on the other hand, encrypted

addition  and rotation  do not  have any significant  impact  on the ciphertext,  so the

design is relying on the multiplicative depth of our implementation. The multiplicative

depth is determined by the length of its longest chain of consecutive multiplications.

For example, the multiplicative depth of the cp0*cp2*…*cpN is N, the multiplicative

depth of the cp1* cp2*…* cpN + cp1* cp2*…* cpM is M if M>N or N if N>M. It is

advised to look for an implementation with the smallest depth possible because it will

give us better performance.

Fig. 8: Encryption procedure
*source: https://yongsoosong.github.io/files/slides/intro_to_CKKS.pdf

The encryption parameters are set by the coefficient modulus. The coefficient

modulus Q (figure 8) is the sum of an array of sizes of primes in bits and we can think

of it as space that our encoded float number will be, on our example code (figure 4) it
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is {60,40,40,60} so it will be Q = 60*2+40*20 = 200 so our scale Δ needs to be much

smaller in order to “fit” (figure  6). The position of each number in the coefficient

modulus array is important. There are the outer primes (the first and last numbers) and

the inner primes which are all the rest. We must keep in mind the following things

considering the coefficient modulus:

•       The number of inner primes determines the multiplicative depth 
limit.  In our example (figure 4) we have a multiplicative depth of two.

• Poorer performance, longer run-time of the computation, and bigger
memory consumption is associated with larger size of primes.

• The precision both before and after the decimal point is determined
by prime sizes. For example, if we want precision to be 10 bits, we must set
the inner primes at 25 and the outer primes are of size 35.

• The polynomial modulus degree limits the coefficient modulo bit
count (figure 9). In our example, if we set the polynomial modulus degree
to the value 8192 and we have Q = 60*2+40*20 = 200 and the max is 218.

Fig. 9: Polynomial modulus degree and max coeff modulus bit

4.4.5 Multiplication & Rescale

Scales in ciphertexts increase as a result of encrypted multiplication. The ci-

phertext's scale shouldn't be too close to the coefficient modulus's overall size, or else

there won't be enough space in the ciphertext to store the scaled-up plaintext (figure 8).
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Reducing the scale and stabilizing scale expansion is made possible by the rescale

functionality of the CKKS scheme. Rescaling is a modulus switch operation. An inner

prime in coefficient modulus is removed as part of the modulus switching process, as a

result, the ciphertext is scaled down by the removed prime (figure 9). For example, if

the ciphertext's scale is Δ and its current coefficient modulus is P as its last prime,

rescaling to the next level converts the scale to Δ/P and eliminates the prime P from

the coefficient  modulus.  We must  choose carefully  primes sizes  for the coefficient

modulus because we want to have complete control over how the scales are changed.

Fig. 10: Encrypted multiplication

*source: https://yongsoosong.github.io/files/slides/intro_to_CKKS.pdf

The number of inner primes restricts the multiplicative depth as we described

above and limits  the  number  of  rescalings  that  can  be  performed.  Every  time  we

rescale, we go down a level by removing an inner prime. When there is no inner prime

left  then  we  have  reached  level  zero.  On  level  zero  we  can’t  apply  any  more

evaluations on the encrypted message and we must decrypt it.
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Fig. 11: Rescale operation
*source: https://yongsoosong.github.io/files/slides/intro_to_CKKS.pdf
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5 Pattern recognition

Pattern  recognition  originates  from  engineering  and  statistics.  Pattern

recognition is a classification process and its objective is to help machines to make

automated decisions based on data given. A pattern recognition classifier needs to be

capable of adapting and learning from examples. Applications for pattern recognition

include  image  processing,  speech and  fingerprint  recognition,  etc.  The  application

domain should always be taken into account while  designing a pattern recognition

system.  Pattern  recognition  algorithms  are  typically  divided  into  two  categories:

supervised and unsupervised. Most of the time, labeled data for training is used to train

a pattern recognition system. This is known as supervised methods. Other algorithms

can be employed to find previously unidentified patterns when labeled data are not

available. This is known as unsupervised methods. To design such systems, we must

follow the three steps that are presented below.

•Pre-processing: Its purpose is to make a more consistent set of data by minimizing

variances. Pattern discovery during the training phase is more challenging if there are a

lot of redundant, irrelevant information, or noisy data. Cleaning, instance selection,

normalization, one hot encoding are a few examples of data preprocessing.

•Feature extraction: In this step, we must discover distinctive characteristics that are

common across several data classes as this will allow us to make better predictions

with fewer data. There must be little intraclass variation. The features extracted and the

feature extraction techniques depend on the application.

•Classification: The system must recognize the patterns of the inputs and assigns each

one to the proper class using the characteristics that were retrieved from the learning

processes. In the literature, there are two different kinds of learning processes super-

vised and unsupervised learning.

22



5. Pattern recognition

5.1 Perceptrons

5.1.1 Perceptron

Perceptron is a pattern recognition algorithm and consists of one neuron (figure 12). A

neuron has a number of inputs and the result of this equation is passed to an activation

function  in  order  to  decide  whether  or  not  that  neuron  should  activate.  When

categorizing  data  that  can  be  separated  linearly,  the  perceptron  is  a  very  useful

technique.  But  as  it  was  discovered with  the XOR problem,  they run into serious

limitations with data sets that do not follow this pattern.

 
Fig. 12: A Perceptron

5.1.2  Multi-Layer Perceptron

Multi-Layer Perceptrons correct this problem that is present in the single per-

ceptrons. Perceptrons are the basic unit of Multilayer Perceptrons. The Multi-Layer

Perceptrons are a powerful tool for categorizing groups of data that cannot be linearly

separated. This is accomplished by adding a hidden layer and an output layer as we

figure 13. 

23



5. Pattern recognition

Fig. 13: Multilayer Perceptron

The MLP algorithm is as follows:

1.The first step is to calculate the output of the hidden layer. To do this, we simply
calculate the product of the matrix of weights with the input matrix figure 14.

                                  
Fig. 14: First layer calculations 

2.On every output from the first step, MLPs apply an activation function. There are
numerous activation functions that we can use, including tanh, sigmoid Function
and ReLU.

3.The results taken by the operations from the previous step are multiplied by the
table of weights of the output layer (figure 15).

 
Fig. 15: Second layer calculations
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4.Finally, we have two options for what we can do with this result, in the case of
training we use the output to correct the weights, and in the case of testing, we use
the output to make a decision based on the data we used.
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6 Related work

Modern  embedded  systems,  which  cover  a  wide  range  of  applications  and

different  communication  protocols,  are  commonly  resource  constrained,  making  it

difficult  to  deploy the traditional  software-based techniques used for detecting and

containing  malicious  software  in  general-purpose  computing  systems  [40][41].  An

important  concern  for  the  Internet  of  Things  based  systems  is  to  ensure  trusted

execution  of  applications  and  communication  inside  vehicles,  factories,  smart

buildings,  for  well-being,  and  healthcare  [43][44][45].  Even  more  challenging  is

implementing verification checks of applications executing in low-performance and

limited memory embedded systems [42].

From the above papers mentioned on traditional security techniques we can

conclude that there is a tradeoff between the edge-device’s computation burden and the

security  of  the  application,  as  the  closer  to  the  edge-device  a  security  feature  is

implemented, the more secure but also more complex the application will be. This is

also  true  for  our  case  but  fully  homomorphic  encryption  is  even  more  resource

demanding on both memory and computation but it promises great potential for our

privacy [47].

In some early attempts to use homomorphic encryption on IoT, there have been

proposed several homomorphic schemes other than fully homomorphic encryption that

are  more  lightweight  for  uses  cases  like  IoT  and  mobile  applications,  but  those

schemes  can  apply  only  certain  kinds  of  queries  as  they  are  on  based  partial

homomorphic encryption or somewhat homomorphic encryption, for instance [48][49]

they  propose  a  partially  homomorphic  encryption  scheme  based  on  ElGamal

encryption that supports only homomorphic addition so they can do only certain kinds

of queries like the summation of some values or to find the range of those values, but

the operations of the scheme are light enough to run on embedded system or mobile

phone.  In  more  recent  years  more  and  more  attempts  are  made  to  utilize  fully

homomorphic encryption on the edge, for example, they have implemented a scenario

[51] where homomorphically encrypted data from automobiles are collected from the

cloud but still, the encryption is not implemented on the edge device.

Τhe  present  thesis  used  the  SEAL-Embedded  library  to  perform  fully

homomorphic encryption completely on the edge and measure the computational load

and  time  for  such  use  cases,  and  in  addition,  it  combined  encrypted  inference
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techniques based on  [36][37][38] in order to have a complete use case scenario where

the user can perform queries from his phone from the data that the board encrypted.
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7 Implementation

7.1 System Overview

We can summarize the system we implemented in its three main functions as

we can see in figure 16 which we will analyze further below.

1.Initially,  the  embedded system will  encrypt  and send via  NFC to  the
android the encrypted values. The mobile will play the role of the gateway
and will send the data to the server for storage.

2.From  another  application,  the  user  will  be  able  to  ask  the  server  to
perform actions on the data stored on the server.

3.The server is responsible to retrieve the right information, processing the
data and answer to the user's query.

Fig. 16: System overview

7.2 Edge to server side

The whole process that we designed in order to send data homomorphically en-

crypted to the server from the edge device is described below in figure 17. The data are

values from the sensors collected by the embedded system. The data initially will exist

in plaintext form stored in the board's memory, this is done because as we will see later

in chapter 7.3 homomorphically encrypted data takes up much more memory space

than plaintext data, so the board will encrypt the data piece by piece. Each piece of

data will be deleted as soon as the user collects them.
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When the user wants to collect the data to offload board memory must do it

through the mobile application that was developed. When the collection process is

complete and all the ciphertext is on the mobile phone, then the ciphertext will be send

and stored in a non-relational database on the server along with its metadata through

TCP. In this chapter we will deal with:

•The connection  of  the  embedded  system with  a  NFC antenna and  the
installation of the appropriate libraries.

•The installation of encryption library on the embedded system.

•Development of the android application that will collect the data and send 
them to the server.

Fig. 17: Sequence diagram

7.2.1 Implementation

7.2.1.1 Embedded system

The 32F746GDISCOVERY Discovery kit [31] used in this project contains the

STM32F746NG microcontroller, which is based on an Arm Cortex-M7 core. The au-

dio, multi-sensor support, graphics, security, video, and high-speed connectivity fea-

tures of the Discovery kit can enable a wide range of applications. The ARDUINO

connectivity support offers lot  of expansion potential  with a wide range of add-on

boards.
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Fig. 18: 32F746GDISCOVERY Discovery kit

Main features of the board:

1.STM32F746NGH6 Arm® Cortex® core-based microcontroller with 1 Mbyte of 
Flash memory and 340 Kbytes of RAM, in BGA216 package

2.4.3” RGB 480×272 color LCD-TFT with capacitive touch screen

3.Ethernet compliant with IEEE-802.3-2002

4.ARDUINO Uno V3 expansion connectors

7.2.1.2 I2C protocol

The Inter-Integrated Circuit (I2C) bus is a two-wire serial interface protocol

which is used in consumer products and was created by the Phillips Corporation [32].

The I2C protocol allows communication between numerous devices connected to the

same bus network (figure 19).
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Fig. 19: I2C bus*
*Source: https://www.analog.com/en/technical-articles/i2c-primer-what-is-i2c-part-1.html

All data in I2C are carried over two bidirectional lines, one line for the data

which is called the serial data line (SDA), and another one serial clock line (SCL) for

the clock whose purpose is to synchronize the nodes. The I2C bus is connected to a

common power supply (VDD) so when it is idle it is in HIGH state, if a node wants to

transmit then must toggle the lines by pulling LOW with its open drain pins.

I2C  follows  a  master/slave  hierarchy,  there  is  one  device  the  master  that

controls the clock of the bus (thus the communication speed), addresses slaves, and

writes to  or reads data from slave nodes.  The start  signals and the stop signal  are

represented by the negative edge and positive edge of SDA respectively when the SCL

is in HIGH state (figure 20). The slaves on the other hand are nodes that only answer

when invoked by the master via their  specific address.  Therefore, it  is  essential  to

prevent address duplication among slaves. A data transfer is never started by a slave.

The speeds we can write/read data are 400 kbits/s which is  called The Fast Mode

transfer rate, compared to the standard data transfer rate of 100 kbits/s.
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Fig. 20:  I2C waveform

Every I2C message must have a slave address, the operation that the master

wants to execute, and the data packets that are 8-bit long (figure 21). Only a read or a

write operation occurs during a transmission session.

 
Fig. 21:  I2C message frame

*Source: https://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-I2C-Message-
Frame-and-Bit-2.png 

7.2.1.3 NFC Antenna

The  NFC antenna  used  for  the  project  is  a  Class  5  antenna daughter  card

ST25DV Discovery ANTC5 by STMicroelectronics [35] which includes (figure 22):

•40 mm x 24 mm, 13.56 MHz inductive antenna etched on the PCB

•ST25DV04K Dynamic NFC / RFID tag

•I2C interface connectors

•Energy harvesting output (VOUT) with a 10 nF capacitance filtering circuit

•GPO configurable as RF WIP/BUSY output, to indicate that an RF operation is 
ongoing
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Fig. 22:  NFC antenna

We choose this antenna because is embedded with the ST25DV64KC (figure

22) and we can make use of its fast transfer mode capabilities to send the ciphertext

from the board to the phone via NFC. The antenna has three features that we make use

of:

•The mailbox that the embedded library uses to transfer messages between the RF 
and I2C worlds. The data in this mailbox can hold up to 256 Bytes.

•A GPO output that can trigger an interrupt when multiple RF events like field
change,  memory write,  activity,  Fast  Transfer  end,  user  set/reset/pulse and I2C
events like memory write completed, RF switch off occurs.

•The  MB_CTRL_Dyn dynamic  register  contains  activity  indicators  about  the
mailbox and the fast transfer mode state.
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Fig. 23:  ST25DV64KC I2C device

In order to send data from the I2C host to the RF reader Fast transfer mode

must be enabled, the mailbox must be empty, VCC power must be present, and the I2C

host must first write the message which contains the data. To see if there is an I2C

message in the mailbox, the RF device must poll the MB CTRL Dyn register. After the

RF has finished reading the entire message, the mailbox is once again considered free

and is capable to receiving new messages. A GPO interrupt will alert the I2C host that

the message has been read by the RF.

7.2.1.4 ST25 fast transfer mode embedded library

The embedded library ST25 fast transfer mode (ST25FTM) enables quick data

transfer between an NFC reader and a dynamic tag. The ST25FTM protocol was cre-

ated to control this kind of data transfer using the ST25DVxxKC chip family while al-

lowing for error detection and recovery and using the least amount of meta-data possi-

ble. ST25FTM is based on a state machine to keep track of the data sent or received

(figure 24). The ST25FTM library is a middle-ware and was made independent of the

microcontroller and the dynamic tag. This means that a lower-layer API for the mid-

dle-ware needs to be implemented for the intended hardware.
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Fig. 24:  ST25FTM transmission states

7.2.1.5 Software implementation

STM32CubeIDE is an advanced C/C++ development platform with peripheral

configuration, code generation, code compilation, and debug features for STM32 mi-

crocontrollers and microprocessors. It is based on the Eclipse framework and GCC

toolchain for the development, and GDB for the debugging. It allows the integration of

the hundreds of existing plugins that complete the features of the Eclipse IDE.

Fig. 25:  STM32CubeIDE
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At  this  point,  we  have  two  hardware  devices,  the

ST25DV_Discovery_ANT_C5 and the 32F746GDISCOVERY Discovery board, and

the ST25FTM software to put together. ST25FTM library needs the NFC drivers to

use the tag since was developed independently from the NFC tag, and the NFC tag

drivers need the I2C drivers of STM32F746NGH6 microcontroller since the driver

was developed independently from the board, so we will set up the project from the

bottom to the top starting with the I2C drivers. We can initialize I2C drivers for our

board with the following parameters using the STM32CubeIDE (figure 26).

Fig. 26:  I2C set up

Then we can copy the ST25DV drivers  and the  ST25FTM library into the

project. The ST25DV driver's files (figure 27 blue square) include all the addresses for

writing and reading from the I2C peripheral  and a  standard API to  use the tag as

recommended by the STM32 Cube methodology, they are also compatible with the

HAL drivers so we will have no problem using them together with I2C drivers we

create earlier. The API is used by the fast transfer mode middleware libraries (figure 27

red square) to write to the mailbox.
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Fig. 27:  Project setup

Now that we can write to the mailbox, we need to also to install the interrupt

for the library to know for different events that occurred. So once again we enable

interrupts from STM32CubeIDE, every time an interrupt occurs the interrupt handler

assigns the value 1 into the global variable GPO_Activate so the FTM library knows

an event occurred and must check the MB_CTRL_Dyn register.
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Fig. 28:  Usage of GPO_Activated

In figure  29 we can see the connections between the NFC antenna and the

board. The antenna provides a power supply for the I2C bus to work. We chose the

pins according to Appendix A.

Fig. 29:  Board-antenna connection
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7.2.1.6 Microsoft SEAL IoT library

The SEAL-Embedded is the first homomorphic encryption library designed for

embedded devices that can support the CKKS approximate homomorphic encryption

scheme. The library consists of two pieces, the library that the board is running and the

adapter  server  module  that  transforms  data  encrypted  by  SEAL-Embedded  into  a

format  compatible  with  the  Microsoft  SEAL  library.  Additionally,  the  SEAL-

Embedded adapter has functions for generating the public and secret keys in a format

that the SEAL-Embedded library can understand. To be able for the board to encrypt

homomorphically, the creators of the library have implemented some optimizations to

lower the memory consumption of homomorphic encryption encoding and encryption

while maintaining high performance. The main optimizations are:

•RNS partitioning is the first significant way that the library overcomes memory con-

straints. By operating to a single prime at any given point, the isomorphism estab-

lished by the Chinese remainder theorem [39] preserves arithmetic in Rq0 Rq 1 ···Rq

L−1 with arithmetic in subrings Rqi that can be performed independently. SEAL- Em-

bedded exploits this property by performing encryption in one subring Rqi at a time,

allocating just enough memory to carry out operations for a single prime component.

•Data type compression,  memory compression of some polynomials is the second

method  SEAL-Embedded  uses  to  lower  memory  usage.  SEAL-Embedded  take

advantage of  the secret  key polynomial  s  ternary structure or polynomial  u in  the

asymmetric case and use only two bits per coefficient to store its values. Additionally,

SEAL-Embedded uses compression to the error sampling's output. Due to the fact that

each error sample is an integer between [21, 21], only 6 bits are needed to represent

each sample.

•Memory  pooling,  utilizing  a  memory  pool  is  the  third  significant  way  SEAL-

Embedded overcomes memory constraints. SEAL-Embedded carefully calculated the

minimum  amount  of  memory  needed  for  the  library  to  run  effectively  in  both

39



7. Implementation

symmetric and asymmetric cases. These sizes are used by SEAL-Embedded to allocate

all the memory required up front for a specific library configuration.

Fig. 30:  SEAL-Embedded

7.2.1.7 Android application

For the android application part,  a modified version of the STSW-ST25001

provided by STMicroelectronics  was  used.  The STSW-ST25001 makes use  of  the

STSW-ST25SDK001 - ST25 software development  kit  which is  a  library that  can

write to NFC and is compatible with fast transfer mode to collect the ciphertext. The

modifications were to collect all six parts of the ciphertext. The ciphertext consists of

six parts  since the primes numbers  we chose were six as  we explain on the RNS

partitioning in the previous chapter.The board calculates each part and sends them to

the phone one by one.
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 Fig. 31:  Android application

7.2.1.8 Power and time measurements

In figure 32 the first image is showing the time that each part of the ciphertext

takes to be encrypted and sent to the phone through NFC. As we can see the sending

time remains stable in all ciphertext parts and takes about 35 seconds but that depends

on the distance and the position of the phone from the NFC antenna, each ciphertext

piece is 65.54 KB. On the other hand, the encrypting time is increasing steadily for

each ciphertext part.
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 Fig. 32:  Time measurements

In Figure 33 we can see the power consumption of the embedded system during the

encryption and when the board is sending the ciphertext. We can see a slight increase

when the board is encprypting.

 Fig. 33:  Power measurements

7.3 Server to client side
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In this chapter, we will explain the whole process and the design of how the

user can send a query to the server and receive the encrypted answer based on the data

stored on the server. To demonstrate the abilities of the system we design a real-world

scenario which we will explain inmore detail later.

The  front  end  of  the  application  consists  of  a  mobile  application  that  is

responsible  to  send  a  query  to  the  server  through  TCP,  receiving/decrypting  the

ciphertext, and displaying on the mobile phone the results that the user requested. On

the back end, the scenario is  an encrypted inference of a perceptron classifier  that

classifies the values encrypted by the embedded system.

 Fig. 34:  Sequence diagram

The whole process for doing that is described below (figure 34).

• The first thing that both server and user do is to load a predetermined set of

parameters that are agreed upon. These parameters are created by the client

using the adapter of the Microsoft SEAL embedded and are mandatory to make

possible  the  rotation  and  other  evaluations.  The  client  creates  the  SEAL

evaluator and other objects that the server requires and sends them to the server

 while  withholding  the  secret  key,  this  way  the  server  can’t  decrypt  the

ciphertexts but can process them.
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• The next step for the server is to load from memory the encrypted values that

the user requested. The server knows which encrypted text belongs to which

data and what the user requested but does not know the contents inside as they

are encrypted.

• The values that the board encrypts are the original ones that were recorded by

the  board,  but  in  order  to  pass  through  the  neural  network,  they  must  be

normalized between the range zero and one on the server. Although it would be

convenient  if  the  board  send  the  normalized  values  directly  to  the  server

because it would save us from encrypted evaluations, it would be difficult to

use the values for some other applications that need the original values like

calculating the average or extracting other statistics.

• The server runs the inference network created and trained in TensorFlow. The

weights exist in plaintext form on the server. The data processing consists of

two matrix multiplications between the encrypted values send by the board and

the plaintext weights extracted from the model we implemented.

• And finally, the server prepares and sends the encrypted answer to his query

and sends it to the user.

7.3.1 Implementation

7.3.1.1 Dataset description

A suitable dataset to use to build our system and to test our use case is the

Room Occupancy Estimation Data Set [34]. This dataset contains measurements from

environmental  sensors  to  estimate  the  presents  of  people  in  a  room.  These

measurements are temperature, light, sound, CO2, and digital passive infrared (PIR

sensor).  The measurements were taken from one 6m x 4.6m room and the dataset can

be used to measure the space-frequency rate and occupancy rate which helps us to

determine whether and how space is being used and help us to make decisions about

the  future  [53].  Below  in  figure  35,  we  visualize  the  data  to  see  if  there  is  any

correlation between the data and to have a better idea of the dataset in general. The

44



. 

dataset has sixteen attributes four of them are the temperature, four are light density,

four are sound classes one is CO2 slope and two are PIR. The dataset's classes(num of

occupants fig. 35) are four and they are the number of occupants and take values from

0 to 3. In this work, we merge the classes from 1 to 3 as we wanted only to find

presence in the room at a given time.

 Fig. 35:  Dataset visualization

From the  above  plots  in  figure  35,  we  conclude  that  we  can  separate  the

dataset's  attributes  into  two  categories.  The  data  that  can  provide  a  very  good

indication of how many people are in the room but it takes them some time to rise or

to  fall  into  the  category  that  they  belong,  those  values  are  CO2  readings  and

temperature,  and the data that  can provide a more immediate indication like light,

sound, and PIR but we can't rely always on them as they are not always present, for
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example,  someone  who  is  in  the  room  may  have  the  lights  closed  or  make  no

sound.So, we will use all the attributes and let the neural network find a pattern for us.

7.3.1.2 Perceptron architecture & training

We designed the architecture of the model keeping in mind that the vast majority of

its calculations will have to run in the encrypted domain, so a couple of things that we

have to keep in mind are the multiplication depth that is restricted and the fact that

only multiplication and addition are allowed and it is impossible to use division or

comparison.  This  means  that  we  can't  make  use  of  the  most  common  activation

functions since they make use of that kind of calculation, for example, the sigmoid

function use division and relu, and step functions use comparison so we must avoid

them. In figure 36 we can see the architecture of the neural network that we trained. It

takes as input all the 16 attributes and has square activation function in the middle, the

square activation  function is  the simplest  non-linear function that we can use as it

consists  of just  one multiplication.  For better  training results  we used the sigmoid

activation  function  only  on  the  output  layer  of  the  neural  network.  Although  we

explained why it is impossible to use the sigmoid function at the intermediate layers of

the  neural  network,  we can still  use it  only on the  last  layer.  This  is  because the

sigmoid  function  is  a  monotonically  increasing  function.  The  application  of  a

monotonically increasing function will not change the result of the neural network, the

smaller number will stay smaller and the bigger number will stay bigger, so we can

skip the application of the sigmoid function, and just choose the biggest of the two

outputs of the FC-2 layer to be our inferred result. So, we use the sigmoid function to

train the plaintext network but we are not using it on the encrypted inference.
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 Fig. 36:  Neural network architecture

 Fig. 37:  Extracted weights matrices

In figure 38 we can see the accuracy of the perceptron we trained using the test

dataset. The A is the human present class and the B is the no-present class.
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 Fig. 38:  Confusion matrix

7.3.1.3 Encrypted matrix multiplication implementation

To  implement  the  encrypted  perceptron,  we  need  a  matrix  multiplication

algorithm.  A simple  method  for  multiplying  two  matrices  one  encrypted  and  one

ciphertext of size N ×N is to use N distinct ciphertexts, one ciphertext for each value

using  only  one  slot,  although  this  solution  may  work  for  certain  use  cases  it  is

impossible to do this in our implementation because of the many extra data that the

board will have to send to the server. For example, each ciphertext of degree 8192 is

440KB,  if  we wanted  to  send  4096  values  to  the  server  using  only  one  slot  per

ciphertext then we have to send 1760MB instead of 440KB. So, our goal is to try to

use all the slots of each ciphertext that the board encrypts and sends to the server, so no

empty slots arrive at the server. For that purpose, it was desing a matrix multiplication

algorithm  that  supports  ciphertext  packing  technique,  so  we  can  encrypt  multiple

values into a single ciphertext and use them more efficiently.

The matrix multiplication algorithm 1 takes as an input an encrypted matrix of

dimension NxP and a plaintext matrix of dimension PxN and outputs a ciphertext with

the encrypted result. The algorithm also takes as an input a matrix in column-major

format order (figure 39) and yields a matrix that has the same format the rest blue slots

are ignored. This way, we can have many matrix multiplications in a row with the

same function, as many of our chain multiplication depths allow us.  The cp.A and the

pt.B represent the encrypted matrix and the plaintext matrix respectively, and the U is

a binary mask in the size of each row,n and p are the dimensions of the first encrypted

matrix and m is the number of columns of the second plaintext matrix.An illustrative

explanation of the algorithm can be found in Appendix B and the code for the SEAL

implementation can be found in appendix C.
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 Fig. 39:  Matrix column-major format 

Algorithm 1 

• procedure MatMult_ciphertext_plaintext(ct.A, pt.B,n,p,m)

• [STEP 1]

• For k=0 to p do

◦ Ct.A= Rot(ct.A;n)

◦ Ct.Temp[k] = Mult(ct.A;U)

• End for

• [STEP 2]

• For k=0 to p do

◦ For g =0 to m do

▪ Ct.B = Ct.Temp[k]

▪ Ct.Temp[k] = Add(Rot(Ct.B;g*n), Ct.Temp[k])

◦ End for

• End for

• [STEP 3]

• For k=0 to p do

◦ For g =0 to m do

▪ Pt.Temp[k] = pt.B[k*n+g]

◦ End for

• End for

• [STEP 4]

• For k=0 to p do

◦ ct.AB = Add(Mult(Pt.Temp[k], Ct.Temp[k]) , ct.AB)

• End for

• return ct.AB
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7.3.1.4 Encrypted inference

In  figure  40 we  can  see  the  ciphertext  that  the  board  is  encrypting.  The

ciphertext’s polynomial modulo degree is 8192 which means that the cipher has 4096

slots, in these slots we can fit 256 matrices of size 1x16. For simplicity, we chose to

collect values every 6 minutes so that one ciphertext corresponds to exactly a day's

measurements.

 Fig. 40:  Ciphertext encrypted by the board

In figure  41 we can see the exact implementation of the encrypted inference.

The  matrices  with  red  letters  are  encrypted  and  the  ones  with  black  letters  are

plaintext. In addition, the gray part is executed on the server while the orange one is

sent to the final user as the answer. As we can see the user does not apply the sigmoid

function as we explain in chapter 7.3.1.2. The code for the SEAL implementation can

be found in appendix D.
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 Fig. 41:  Encrypted inference

In figure  42 the first image is the output of the plaintext model from chapter

7.3.1.2 and the second one is the output of the encrypted model from chapter 7.3.1.4

for the same input. As we can see we have lost some precision after the third-fourth

decimal number but this is expected, as we explained in the chapter 3.3.1 CKK is an

approximate  homomorphic  encryption  scheme,  but  this  is  not  a  problem  as  two

decimal numbers are more than enough for the application.

 Fig. 42:  Plaintext-ciphertext comparison
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In figure  43 we can see in detail the initial parameters of our encryption, the

scale as it grows on each layer and the rescales operation, we apply to keep the scale

under control. When the calculations are on the second layer, we have finished with

the encrypted inference but we keep applying to ciphertext rescale operations because

each time we remove a prime the ciphertext size is also reduced so the server will have

to send less data to the user.

 Fig. 43:  Encrypted neural network analysis

7.3.1.5 Mobile application

Because there is no available library for android, all of the FHE functionality of

the application was created in native C++, we built a dynamic library *.so compatible

with  the  phone's  architecture  and wrapped it  with  JNI interface  so  we can  call  it

through the android app. As we described earlier, we used a polynomial modulo degree

of 8192 which means we have 4096 available slots, the neural network has 2 outputs

one for every class so in each ciphertext we can fit 2048 inferences. In figure 44 we

have sent a request to the server to evaluate 10 instances of the dataset, and the server
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classified 10 of them in class B and 0 in class A, the unknown class is the remaining

slots that arrived empty.

 Fig. 44:  Android client application
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8  Conclusions and Future Work

The highlights of this thesis were the use and testing of the SEAL-Embedded

on the 32F746GDISCOVERY Discovery kit, its combination with encrypted inference

techniques  found in  literature,  and the  development  of  the mobile  application  that

makes the query to the server. 

More precisely on the embedded system side, we ran the library and tried to

send  the  ciphertext  through  NFC.  Although  the  NFC  is  not  the  transmission

technology  with  the  highest  throughput  we  manage  to  send  the  cipher  text  in  a

reasonable  time  around  3.5  minutes  in  total  for  both  encryption  and  transmission

which is acceptable for some use cases but in some cases, it might be better to use

Bluetooth or ZigBee. On the server side, a multilayer perceptron was trained based on

a dataset we found and use some techniques to execute it on the encrypted domain and

also we create an android app for the user to manage the data.

There are lots of aspects of this work that can be improved. For instance, we

manage to protect the privacy of the user as we used homomorphic encryption, but the

integrity of the data is not protected by any means, since evaluation can be done on the

encrypted data,  some malicious users may change the content of the ciphertext, so

some  other  types  of  encryption  can  utilized  like  hash  functions  and  symmetric

encryption like AES to make sure that only the server can process the ciphertext.

Also, we can take action to protect the secret key that exists on the board and

the code itself. As some papers show there is a chance for an attacker to find the secret

key with a side channel  attack [52].  We can also try to  run the librarie  to  a trust

execution environment but this will be challenging since the TEE has limed resources. 
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10.1 Appendix B

Ciphertext  mul_vmat(Ciphertext  mat,  vector<vector<double>> mat1,  EncryptionParameters
params, 
                    int cols, int rows, int col2, int scale, GaloisKeys gal_keys) 
  
{ 
    Ciphertext res; 
    Plaintext pt; 
    SEALContext context(params); 
    Evaluator evaluator(context); 
    CKKSEncoder encoder(context); 
  
    vector<Ciphertext> ctA_result(cols); 
    vector<Ciphertext> ctB_result(cols); 
  
    vector<double> p(col2 * rows); 
  
    for (int y = 0; y < col2 * rows; y++) p[y] = 0.0001; 
    for (int y = 0; y < rows; y++) p[y] = 1; 
    encoder.encode(p, scale, pt); 
  
    parms_id_type last_parms_id = mat.parms_id(); 
    evaluator.mod_switch_to_inplace(pt, last_parms_id); 
  
    for (int i = 0; i < cols; i++) 
    { 
        evaluator.multiply_plain(mat, pt, ctA_result[i]); 
        evaluator.rotate_vector(mat, rows, gal_keys, mat); 
  
        ctB_result[i] = ctA_result[i]; 
  
        for (int ii = 0; ii < cols - 1; ii++) 
        { 
            evaluator.rotate_vector(ctA_result[i], -rows, gal_keys, ctA_result[i]); 
            evaluator.add(ctB_result[i], ctA_result[i], ctB_result[i]); 
        } 
    } 
  
    vector<vector<double>> a(cols, vector<double>(rows * col2)); 
  
    for (int i = 0; i < cols; i++) 
    { 
        int cnt = 0; 
        for (int ii = 0; ii < rows * col2;) 
        { 
            a[i][ii] = mat1[i][cnt]; 
            ii++; 
            if (ii % rows == 0) cnt++; 
        } 
    } 
  
    for (int i = 0; i < cols; i++) 
    { 
        encoder.encode(a[i], scale, pt); 
        parms_id_type last_parms_id = ctB_result[i].parms_id(); 
        evaluator.mod_switch_to_inplace(pt, last_parms_id); 
        evaluator.multiply_plain(ctB_result[i], pt, ctB_result[i]); 
    } 
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    evaluator.add_many(ctB_result, res); 
  
    return res; 
} 

10.2 Appendix C
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10.3 Appendix D

vector<vector<double>> fl_w = { 
    {-0.05, 0.723, -0.044, 0.749, -0.818, 0.138, -0.076, 0.87, 0.611, 0.234, -0.59, 0.649}, 
    {0.17, 0.585, -0.075, 0.589, -0.202, -0.065, 0.249, 0.274, 0.353, -0.24, -0.257, 0.716}, 
    {-0.686, 0.799, 0.966, 0.334, -0.967, 0.612, 0.179, 0.616, -0.297, -0.429, -0.213, 0.425}, 
    {-0.091, -0.161, 0.13, 0.08, 0.229, 0.025, -0.975, -0.176, 1.266, 0.654, -0.05, -0.354}, 
    {-0.29, 1.082, 0.794, 1.03, -0.859, 0.892, 0.642, 1.189, -0.536, -0.777, -0.634, 0.715}, 
    {-0.611, -0.106, 0.713, 0.778, 0.005, -0.002, 0.303, 0.501, 0.06, -0.183, -0.501, 0.788}, 
    {-0.177, -0.01, 0.082, 0.016, -0.271, 0.064, -0.135, -0.073, 0.361, -0.417, -0.234, -0.05}, 
    {-0.112, 0.355, -0.086, -0.007, 0.141, -0.059, -0.203, 0.034, 0.401, -0.199, 0.176, 0.114}, 
    {-0.655, 0.776, -0.002, 0.226, -0.291, 0.51, 0.496, 0.281, -0.077, -0.399, -0.954, 1.308}, 
    {-0.376, 0.449, 0.723, 0.506, -0.319, 0.209, 0.465, 0.337, -0.602, -0.253, -1.184, 0.632}, 
    {-0.238, 0.297, 0.006, 0.518, -0.133, 0.454, 0.285, 0.183, 0.144, 0.066, -0.18, 0.52}, 
    {-0.163, 0.669, -0.079, 0.212, -0.28, -0.188, -0.675, 0.384, -0.148, 0.309, 0.302, 0.445}, 
    {-0.118, 0.03, 0.506, -0.085, 0.045, 0.049, -0.102, -0.215, 0.687, 0.427, -0.514, 1.04}, 
    {-0.928, 1.167, 0.769, 1.014, -0.851, 0.455, -0.264, 0.579, -0.305, 0.441, 0.146, -0.4}, 
    {-0.358, 0.281, 0.137, 0.003, -0.314, 0.484, -0.218, 0.187, 0.078, 0.025, 0.072, 0.691}, 
    {0.037, 0.145, 0.309, -0.442, -0.354, 0.371, 0.076, -0.199, -0.163, -0.175, -0.433, 0.514}}; 
 
vector<double> bias1 = {-0.099, 0.078, 0.168, 0.052, -0.234, 0.19, 
                        -0.895, 0.25,  0.866, 1.,    0.625,  -0.844}; 
 
vector<vector<double>> sl_w = { 
 
    {-0.479, 0.773},  {-1.074, 0.175}, {-0.878, 0.819}, {-0.828, 0.501}, {-0.87, 0.227}, 
    {-0.808, -0.278}, {0.717, -0.895}, {-0.825, 0.47},  {0.947, -1.366}, {1.439, -0.764}, 
    {0.379, -1.13},   {1.556, -1.564} 
 
}; 
 
vector<double> bias2 = {1.036, -1.036}; 
 
Ciphertext  infer(Ciphertext  input,  EncryptionParameters params,  double scale,  GaloisKeys
gal_keys, 
                 SEAL::SEALContext context, RelinKeys relin_keys) 
{ 
    Ciphertext ct; 
    Plaintext pt; 
    Evaluator evaluator(context); 
    CKKSEncoder encoder(context); 
 
    vector<double> tr; 
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    vector<double> sub; 
 
    for (int i = 0; i < 16; i++) tr.push_back(1 / (norm_max[i % 16] - norm_min[i % 16])); 
 
    for (int i = 0; i < 4096; i++) sub.push_back(-1 * norm_min[i % 16] + 0.0001); 
 
    encoder.encode(sub, scale, pt); 
    evaluator.add_plain(input, pt, ct); 
    encoder.encode(tr, scale, pt); 
 
    parms_id_type last_parms_id = ct.parms_id(); 
    evaluator.mod_switch_to_inplace(pt, last_parms_id); 
    evaluator.multiply_plain(ct, pt, ct); 
    evaluator.rescale_to_next_inplace(ct); 
 
    ct = mul_vmat(ct, fl_w, params, 16, 1, 12, ct.scale(), gal_keys); 
 
    evaluator.rescale_to_next_inplace(ct); 
 
    encoder.encode(bias1, ct.scale(), pt); 
    last_parms_id = ct.parms_id(); 
    evaluator.mod_switch_to_inplace(pt, last_parms_id); 
    evaluator.add_plain(ct, pt, ct); 
 
    evaluator.square_inplace(ct); 
 
    evaluator.relinearize_inplace(ct, relin_keys); 
    evaluator.rescale_to_next_inplace(ct); 
 
    ct = mul_vmat(ct, sl_w, params, 12, 1, 2, scale, gal_keys); 
 
    encoder.encode(bias2, ct.scale(), pt); 
    last_parms_id = ct.parms_id(); 
    evaluator.mod_switch_to_inplace(pt, last_parms_id); 
    evaluator.add_plain(ct, pt, ct); 
 
    return ct; 
}
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