
1

SOFTWARE DEVELOPMENT LIFE CYCLE MANAGEMENT TOOL FOR HUMAN RE-

SOURCES

by

ANASTASIOS KOUMARELIS

(MTP246)

Bachelor’s degree, Hellenic Mediterranean University, 2020

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SCHOOL OF ENGINEERING

HELLENIC MEDITERRANEAN UNIVERSITY

2022

Approved by:

Major Professor

Dr. Nikolaos Vidakis

2

ΑΝΑΠΤΥΞΗ ΕΡΓΑΛΕΙΟΥ ΔΙΑΧΕΙΡΙΣΗΣ ΚΥΚΛΟΥ ΖΩΗΣ ΛΟΓΙΣΜΙΚΟΥ ΒΑΣΗ

ΑΝΘΡΩΠΙΝΟΥ ΔΥΝΑΜΙΚΟΥ

από

ΑΝΑΣΤΑΣΙΟΣ ΚΟΥΜΑΡΕΛΗΣ

(MTP246)

Πτυχίο, Ελληνικό Μεσογειακό Πανεπιστήμιο, 2020

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

υποβάλλεται σε μερική εκπλήρωση των απαιτήσεων για την απόκτηση του πτυχίου

ΜΕΤΑΠΤΥΧΙΑΚΟ ΕΠΙΣΤΗΜΩΝ

ΤΜΉΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

ΕΛΛΗΝΙΚΟ ΜΕΣΟΓΕΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

2022

Εγκρίθηκε από:

Επιβλέπων καθηγητής

Δρ. Νικόλαος Βιδάκης

3

Acknowledgments

I would like to express my gratitude to my primary supervisor, Dr. Nikolao Vidaki, who guided

me and supported me throughout this master's thesis. Also, I would like to thank my colleagues

for the useful advices and my family who have always been by my side to support me throughout

the years of my studies.

4

Abstract

Technology nowadays is a very important tool in many fields of our daily life. It is a major factor

in the development of many objects that significantly improves the way and quality of life of many

people. The rise of technology has been largely achieved using computers and more specifically

using the right software. Many fields of technology evolved significantly with the development of

new and more complex software capable of meeting the demands that arose. The need to develop

complex software within a short time made it imperative to organize and design how the software

was implemented to reduce the risk of failure.

Proper software development helps developers make huge savings in time and cost. With proper

design and analysis of the requirements and functions that the software should have, the risk of

failure and malfunctioning is greatly reduced. The Software Development Life Cycle (SDLC)

methodologies define specific steps and actions for correct and efficient software development. In

this way, the team of developers follows a specific way of implementation to reduce the risk of

failure. Depending on the size and complexity of the software, a different SDLC model is required.

The risk of software implementation failure can be further reduced by proper staff management. It

is very important that the team leader can have an overview of the project and the programmers

assigned to implement it.

The purpose of this master's thesis is to present an application for a team leader to manage and

assign projects to his staff based on SDLC models. Initially, the team manager will be able to

register all team members-programmers and then can assign projects based on any SDLC model

wants (Waterfall, Iterative, Spiral, V-Shaped). He will be able to manage the phases of each model

and have an overall estimate of the cost and delivery time of the project. The team members will

also be able to access the application and be able to informed about their financial information to

the company, as well as the projects assigned to them in detail with the deadline of each phase.

5

Σύνοψη

Η τεχνολογία στις μέρες μας αποτελεί ένα πολύ σημαντικό εργαλείο σε πάρα πολλούς τομείς στην

καθημερινότητα μας. Αποτελεί κύριο παράγοντα εξέλιξης σε πολλά αντικείμενα που βελτιώνουν

σημαντικά τον τρόπο και την ποιότητα ζωής πολλών ανθρώπων. Η άνοδος της τεχνολογίας επι-

τεύχθηκε σε μεγάλο βαθμό με την χρήση υπολογιστών και πιο συγκεκριμένα με την χρήση του

σωστού λογισμικού. Πολλοί τομείς της τεχνολογίας εξελίχθηκαν σημαντικά με την ανάπτυξη και-

νούργιου και πιο πολύπλοκου λογισμικού, ικανού να ανταποκριθεί στις απαιτήσεις που εμφανιζό-

ταν. Η ανάγκη ανάπτυξης πολύπλοκου λογισμικού σε καθορισμένα χρονικά όρια έκανε επιτακτική

την ανάγκη οργάνωσης και σχεδίασης του τρόπου υλοποίηση του λογισμικού προκειμένου να

μειωθεί ο κίνδυνος αποτυχίας.

Η σωστή ανάπτυξη λογισμικού βοηθάει τους προγραμματιστές να κάνουν τεράστια εξοικονόμηση

χρόνου και κόστους. Με την σωστή σχεδίαση και ανάλυση των απαιτήσεων και λειτουργιών που

θα πρέπει να έχει το λογισμικό, μειώνεται κατά πολύ ο κίνδυνος αποτυχίας και δυσλειτουργίας

του. Βασικό εργαλείο για την σωστή και αποτελεσματική ανάπτυξη λογισμικού αποτελούν οι

Software Development life cycle (SDLC) μεθοδολογίες που καθορίζουν συγκεκριμένα βήματα

και ενέργειες που πρέπει να γίνουν σε σαφή χρονικά πλαίσια. Με αυτόν τον τρόπο η ομάδα των

προγραμματιστών ακολουθεί έναν συγκεκριμένο τρόπο υλοποίησης για να μειωθεί ο κίνδυνος

αποτυχίας. Ανάλογα το μέγεθος και την πολυπλοκότητα του λογισμικού απαιτείται και διαφορε-

τικό SDLC μοντέλο. Ο κίνδυνος αποτυχίας υλοποίησης ενός λογισμικού μπορεί να μειωθεί ακόμα

περισσότερο με την σωστή διαχείριση προσωπικού. Είναι πολύ σημαντικό ο υπεύθυνος της ομά-

δας να μπορεί να έχει μία συνολική εικόνα του έργου και των προγραμματιστών που τους έχει

αναθέσει την υλοποίηση.

Σκοπός της συγκεκριμένης εργασίας είναι να παρουσιάσει μία εφαρμογή, ώστε να μπορεί ένας

υπεύθυνος ομάδας να διαχειριστεί και να αναθέσει έργα στο προσωπικό του, βάση SDLC μοντέ-

λων. Αρχικά θα μπορεί ο διαχειριστής-υπεύθυνος της ομάδας να κάνει εγγραφή για όλα τα μέλη-

προγραμματιστές και στην συνέχεια θα μπορεί να τους αναθέτει έργα βάση όποιου SDLC μοντέ-

λου επιθυμεί (Waterfall, Iterative, Spiral, V-Shaped). Θα μπορεί να διαχειρίζεται τις φάσεις κάθε

μοντέλου και να έχει μία συνολική εκτίμηση του κόστους και χρόνου παράδοσης του έργου. Τα

μέλη της ομάδας θα μπορούν να έχουν και αυτά πρόσβαση στην εφαρμογή και να ενημερώνονται

για τα οικονομικά τους στοιχεία στην εταιρία, αλλά και για τα έργα που τους έχουν ανατεθεί ανα-

λυτικά με τους χρόνους παράδοσης κάθε φάσης.

6

Table of Content

Acknowledgments ……………………………………………….……………………………..…2

Abstract ………………………………………………………………………………...…………3

1 Introduction ……………………………………………………………………………………9

2 Background ………………………………………………………………...…………………11

2.1 Software Development Life Cycle (SDLC) …………………………………………12

2.2 SDLC Models ………………………………………………………………………14

2.2.1 Waterfall ……………………………….…………………………………15

2.2.2 Iterative ………………………………………………..…………………18

2.2.3 Spiral …………………………………………………………...…………20

2.2.4 V-Shaped ………………………………………….………………………22

2.3 Problem Statement & Existing Systems……………….………….…………………25

3 System Analysis & Design ……………………………………………………………………26

3.1 System Textual Description Analysis …………………………….…………………26

3.2 System Analysis …………………………………………………………………….27

3.2.1 Requirements List and Main Requirement Diagram………………………28

3.2.2 Frontend requirement diagram …………………………....………………30

3.2.3 Backend requirement diagram ………………………………….…………32

3.2.4 Database requirement diagram ……………………………...……….……33

3.3 System Design ………………………………………………………………………33

3.3.1 Component Diagram ……………………………………………...………34

3.3.2 Use case ………………………………………………………..…………35

3.3.3 Activity Diagram …………………………………………………………38

3.3.4 Sequence Diagrams ………………………………………….……………40

3.3.5 Entity Relationship Diagram (ERD) ………………………………………42

3.4 System Technologies …………………………………….…………………………43

3.4.1 React.js ……………………………………………………………………44

3.4.2 Spring boot ……………………………………………..…………………46

3.4.3 MySQL ……………………………………………………...……………47

7

4 System Representative Use Case Scenarios ……………………..……………………………48

4.1 Representative Use Case Scenarios…………………………………………………48

4.1.1 Admin Role………………………………………………..………………49

4.1.2 Simple User Role …………………………………………………………65

5 Conclusion & Future Work …………………………………………………………………..69

5.1 Conclusion ………………………………………….………………………………69

5.2 Future work …………………………………………………………………………70

6. References.…….………………………………………………………………………………72

8

List of Figures

Figure 1 Software Development Life Cycle (SDLC) ... 13

Figure 2 Waterfall SDLC .. 16

Figure 3 Iterative SDLC.. 19

Figure 4 Spiral SDLC ... 21

Figure 5 V-Shaped SDLC ... 23

Figure 6 Requirement List .. 30

Figure 7 Main Requirement Diagram ... 31

Figure 8 Front-end Requirement Diagram .. 32

Figure 9 Backend Requirement Diagram ... 33

Figure 10 Repository Requirement Diagram .. 34

Figure 11 Main Component Diagram ... 36

Figure 12 Main Use Case Diagram ... 37

Figure 13 Use Case Scenario .. 38

Figure 14 Simple User Activity Diagram ... 39

Figure 15 Admin Activity Diagram .. 40

Figure 16 Admin First Sequence Diagram ... 41

Figure 17 Admin Second Sequence Diagram ... 42

Figure 18 Simple User Sequence Diagram ... 42

Figure 19 ERD .. 43

Figure 20 React Js Example .. 45

Figure 21 Material UI Example ... 46

Figure 22 Spring Boot Class Example .. 47

Figure 23 Spring Boot Controller Example .. 48

Figure 24 System Structure ... 49

Figure 25 Register Page .. 50

Figure 26 Register Wrong Password Page.. 51

Figure 27 Register Wrong Email Page ... 51

Figure 28 Login Page .. 52

Figure 29 Admin Dashboard Page .. 53

Figure 30 Admin Update Info Page .. 53

file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103324
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103331
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103332
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103333
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103334
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103335
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103336
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103337
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103338
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103339
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103340
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103341
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103342
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103343
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103344
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103346
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103347
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103348
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103349
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103350
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103351
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103352

9

Figure 31 Admin Menu Page .. 54

Figure 32 Admin Employees Page ... 55

Figure 33 Admin Add Employees Page.. 56

Figure 34 Admin Delete Employees Page .. 57

Figure 35 Admin Financial Page .. 57

Figure 36 Admin Edit Employee Financials Page .. 58

Figure 37 Admin Add Simple Task Page ... 59

Figure 38 Admin Add Waterfall Task Page ... 60

Figure 39 Admin Iterative Task Page ... 61

Figure 40 Admin Add Spiral Page .. 62

Figure 41 Admin Add V-Shaped Task Page... 63

Figure 42 Admin Calendar Page ... 64

Figure 43 Admin Calendar with Tasks Page .. 64

Figure 44 Admin Edit Calendar Task Page .. 65

Figure 45 Admin Settings Page .. 66

Figure 46 Simple User Dashboard Page ... 66

Figure 47 Simple User Financial Page.. 67

Figure 48 Simple User Calendar Page .. 68

Figure 49 Simple User Settings Page.. 69

file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103353
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103354
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103355
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103356
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103357
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103358
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103359
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103360
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103361
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103362
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103363
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103364
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103365
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103366
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103367
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103368
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103369
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103370
file:///C:/Users/tasos/Desktop/ELMEPA/Metaptixiako/Diplomatiki/Anastasios_Koumarelis_mtp246_Master_Thesis.docx%23_Toc125103371

10

1 Introduction

 In recent years there has been a huge growth in technological development in many fields that

directly affect everyday life in the modern world. The impact of this growth increases daily the

demand for creating large-scale reliable software systems that serve the needs that emerge [1]. The

development of such systems is in many cases a difficult process for the teams that undertake it,

as it requires proper management of human resources, budget, and time for the development of

each subsystem. Improper management of the above can lead to delayed delivery time or even the

inability to complete the system [2][3].

 As a result, the Software Development life cycle (SDLC) was created, which is a methodology

for the creation and modification of a reliable software system. There are several SDLC models

used depending on the software system to be developed [4][5][6]. The choice of each SDLC model

depends heavily on the delivery time, the available human resources and by budget for the project

assigned. The most popular and used SDLC models are the Agile model, Waterfall model, Iterative

model, Spiral model, and V-shaped model [7][8].

 There are project management platforms that allow companies to manage their human resources

according to the models mentioned above [9][10][11]. Most systems, however, need several

configurations to support management based on these SDLC models. The problem occurred when

a project manager needs open-source software to be able to manage staff based on SDLC models

that would be all in one application, without the need for configuration or changes to support the

SDLC models. Still, be able to access it from all devices and give him the ability to have a complete

view of his staff regarding financials and assignment of tasks.

 In this thesis will be created an open-source system that will allow the user to manage the

human resources and schedule to develop software systems with whichever SDLC model the user

chooses (Waterfall, Iterative, Spiral, V-Shaped). Initially, it will be able to give data to the system

such as names and salaries of employees through fields. The user will then be able to assign

projects depending on the available human resources and the chosen SDLC model (each SDLC

model has a standard management framework, based on the definition of each model separately).

Eventually, the user has a complete perspective of the total delivery time of the project and the

cost spent for its development.

11

 In conclusion, the purpose of this thesis is to offer the optimum ability to manage and oversee

the software development process to the user. In addition, the user can modify the system as an

extension to an HRMS (Human Resource Management System) allowing additional SDLC models

to be added to existing ones. Finally, with the API that the system will have internally, other

systems will be able to connect to pull any data the user needs.

12

2 Background

 The rise of technology has made it possible for computers to be used in critical fields of society

and for everyone to have easy access to meet their daily needs. With the use of the right software,

the computer is a very important tool for direct management and processing of data as well as for

problem-solving in various fields such as:

• Industry

• Banks and financial

• Business

• Communication

• Education

• Medical

• Transportation

 Depending on the field where the computer is used, the needs that arise and the way of solving

problems differ. Some sectors need software to process a small amount of data, but other fields

need quite complex software that can process a huge amount of data [12][13].

 According to the above, the need to develop systems capable of meeting the needs of the users

and to be able to develop them in a pre-defined schedule was created. The creation of these systems

is in many cases a complex and time-consuming process for the teams of people who undertake it.

Proper development of software systems requires proper management of manpower, resources,

and time for the development of each subsystem until the completion of the whole system and the

changes that may occur during its creation. In case of mismanagement of the above then the teams

of people who have undertaken it are faced with delayed delivery time, wrong implementation, or

even failure to deliver the system [2][3]. To avoid such phenomena and to develop software

systems properly, Software Development life cycle (SDLC) models were developed where they

are predefined methodologies by which a reliable high-quality software system is created and

modified with a low risk of failure.

13

2.1 Software Development Life Cycle (SDLC)

Software Development Life Cycle (SDLC) is a process that is used for software development and

includes all the required steps that need to be taken to develop and deliver a software system with

the lowest possible risk of failure and the highest possible maintenance of quality [16]. It is a

detailed illustration of the set of activities to be followed by all parties involved [14]. The parties

involved are usually a programming company and the customer who is in frequent communication

throughout the development of a software system due to changes or difficulties that arise. Some

of the activities included in a software lifecycle are necessary and others are optional to enable

direct interaction between developers and customers and the flexibility to deal with difficulties or

errors that may arise throughout the lifecycle [17]. A simple life cycle that software has consists

of five steps and includes software design to software maintenance. Each step includes sub-steps

and procedures to be followed [14]. Figure 1 depicts all the steps in detail, and they are discussed

in detail below.

Figure 1 Software Development Life Cycle (SDLC)

14

1) Requirement Analysis

It is the first and most important step for proper software development. In this process, all the

requirements of the product are analyzed and a forecast of the resources that will be needed and

the management that must be done. During this process, the client is in constant communication

with all the stakeholders who are developers, sales, external and internal experts, and others to

make a complete analysis of the requirements they have about the product and the full schedule

that the software development should have [16][17]. This way the cost evaluation is done and

enables the developers to have a complete picture of the product they must develop. After this

process, a Software Requirements Specification (SRS) document is produced[18].

The SRS document describes all the features that the product will have, the business processes

that will be supported, and contains the functional requirements that have been set. It is a very

important document since they rely on it to implement the next steps of the software lifecycle. It

still prevents design errors such as conflicting requirements that may occur and need reassessment

by all parties involved in the project [18].

2) Design

 In the design phase, product architects or engineers based on the SRS document create design

approaches for the architecture of the product or system. They convert the requirements into

specifications and usually create different versions of Design Document Specifications (DDS).

The DDS document defines all the architectural modules of the product and contains several design

diagrams and models including class diagrams, data flows, Unified Modeling Language (UML)

diagrams, and use case diagrams. The document is then checked against criteria such as correct

design and time calculation to select the most correct DDS document in terms of its design

approach [15][16][17].

3) Development

 After the requirement analysis and design, the development of the software product is started

by the developers who have undertaken the project. The software is developed following the DDS

document discussed above and the guidelines set out individually by each organization. The

developers have at their disposal many programming and data management tools that help them

to develop software correctly and quickly without much difficulty if these tools are used properly.

15

Various programming languages are used depending on the product to be created and usually, a

documentation of the code is written for the understanding of other developers who may need to

maintain or extend this code [15][16] [17].

4) Testing

 It is a very important process for the software as it is just before the product becomes available

to users. The developers test the code to make sure that all functions and generally all software

created works properly without bugs. This process usually identifies many points that need

improvement or correction until the product reaches the specifications set in the SRS document

discussed above. This process must be done correctly because once the software is made available

to users it can create a lot of discomfort in the event of a defective operation [15][16] [17].

5) Maintenance

 In the last stage of the software life cycle, the creation and testing are complete and have been

given to the users. They, in turn, identify different bugs in the system over time, and the developers

assigned to the project are required to solve the bugs that occurred [15][16][17].

2.2 SDLC Models

 Over time with the use of classical software development life cycles, several models defining

specific steps for software development have been created and are referred to as SDLC Models or

Software Development Process Models (SDPM). Each model is different from the others and

contains different steps or ways to develop software. Every SDLC model has different advantages

and disadvantages and is used in different circumstances depending usually on the size and cost of

each product [16]. In this report, the following four models will be analyzed and implemented in

the project that will be analyzed below. The four models are:

1) Waterfall

2) Iterative

3) Spiral

4) Vmodel

16

Figure 2 Waterfall SDLC

2.2.1 Waterfall

 The Waterfall model was introduced by Winston W. Royce in 1970 and is the first of the models

created. It is a sequential model and is the basis for the creation of later models [28]. It is very

simple to understand and apply and was the most popular model in earlier years. It is divided into

six phases and each phase must end before the next phase can begin [20][27]. The original

Waterfall model allows us to go back to previous phases at the end. Figure 2 shows the six phases

of the Waterfall model.

1) Requirement Gathering and analysis

 In the first phase of the Waterfall model, a detailed record of the customer's requirements must

be made and all the functions and capabilities that the customer wants the system to have must be

analyzed. The requirements should be fully understood and recorded without any point that is not

properly specified. The developers should know how the final product must be, by analyzing all

the requirements of the customer. Then once the analysis has been done all the requirements and

functions are recorded in an SRS document as discussed in the explanation above [12][31][33].

17

2) System Design

Based on the SRS created in the previous phase, the requirements are extracted and converted into

a form that can be used to start code implementation. To do this a Software Design Document

(SDD) is produced which contains a detailed analysis of the architecture of the system. It contains

schedules, functional descriptions, user interface, solutions to problems that may arise, and

objectives that in their entirety implement the customer's requirements. Once the creation of the

SDD document is complete then the developers have the tools they need to start the

implementation [12][31][45].

3) Implementation

The developers start the implementation of the system according to the customer's requirements

and the documents mentioned above. The implementation can be done in several different

programming languages or a combination of several of them. The type of language used will vary

depending on the type of system and the experience of the team undertaking the development. The

system is usually divided into smaller pieces called units and implemented separately in the next

phase where they merged. The reason this is done is so that the developers can be much more

aware of various bugs that may not be visible [12][31][33].

4) Integration and Testing

The smaller pieces of code created in the previous phase are checked for any errors or bugs they

may have. Then they are integrated into a system that is subjected to many tests for proper opera-

tion. It is a very important phase for the model because errors are identified that can greatly affect

the use of the system and even the experience that end users will have. If the system does not work

correctly then there is an immediate risk that the software will cease to be used [12][31][33].

5) Deployment of system

After the completion of the tests on the system and the correction of any errors and bugs that

occurred, the system is deployed and becomes accessible by the client and other users that may

exist [31][33].

18

 6) Maintenance

In the final phase of the Waterfall model, the system is maintained, and errors detected by users

are fixed. [12][31][33].

Advantages

1) It is one of the simplest models and is very easy to understand.

2) The timelines are clearly defined from the start.

3) It has very good results in small systems where the requirements are well-known from

the beginning.

4) Each phase of the model is implemented on its own each time rather than in parallel with

another.

5) The customer can know the cost that the system development as the schedules are certain

from the beginning [19][20][22].

Disadvantages

1) It is a difficult model when used for large systems.

2) The customer should fully know all the requirements they want from the system from

the beginning.

3) It has a high risk of failure.

4) Not recommended for object-oriented projects and complex systems [22] [25] [27].

19

2.2.2 Iterative

This model was created to solve the problems or shortcomings created by the waterfall model.

With the waterfall model there was the big problem that the customer's requirements had to be

known from the beginning with absolute clarity. This was solved by creating the Iterative Waterfall

Model. This is an iterative model that aims to complete the project by creating small pieces until

the whole project is complete. In each iteration, the project goes through all the phases that a

Waterfall model project goes through too, with the big difference that in the Iterative model as

many iterations can be done as needed. Usually, with each new iteration, there are design updates

and new functionality to make the system work better or to meet customer requirements. Figure 3

shows the Iterative Model with the lines pointing backward to represent the iteration of the model

[19][21][23].

Figure 3 Iterative SDLC

20

Advantages

1. Not all requirements must be known from the beginning.

2. Changes can be made during the development of the system.

3. The development of the system is done with a lot of customer feedback.

4. Lower risk of failure compared to the simple Waterfall Model.

5. Ideal for large systems where requirements and functions can change.

6. It takes less time to start the implementation as the requirements may change in future

iterations [21][22][25].

Disadvantages

1. Not ideal for small systems.

2. The cost can increase quite a bit compared to the simple Waterfall Model because when

there is a change in requirements several points in the code must be changed or even

deleted. This process requires a lot of time and therefore costs a lot of money for the

development teams.

3. System integration is not known from the beginning with the risk that it takes much more

time or more iterations than what was predicted at the beginning.

4. It is difficult to manage.

5. It requires a very proper design between iterations [22][31][25].

21

2.2.3 Spiral

The spiral model is an evolutionary software process model that combines the linear sequential

model's controlled (Waterfall Model) and systematic elements with the iterative feature of

prototyping. A very strong emphasis is placed on risk management which is directly related to the

performance of the system. The spiral model consists of four phases that are iterated until the

system is completed. Each iteration is based on risk management from the beginning, and it is not

known how many iterations will be needed to complete the system. Figure 4 shows the spiral

model along with its four phases [21][25][24].

Figure 4 Spiral SDLC

Identifying and understanding requirements

In the first phase, the customer's requirements are analyzed to fully understand the development

team. The team that will create the system should at this phase have a complete understanding of

the functionality and requirements of the system [32][33][23].

22

Performing risk analysis

Once the first phase is completed a risk analysis is done and various risks for the system are

predicted. An assessment is made of the weaknesses and risks identified such as cost and then the

best implementation strategy with the lowest risks is chosen if the customer is satisfied

[23][32][33].

Implementation

After the best version of the system has been selected then the implementation of the system is

started by the team of developers. The developers should create the system based on the customer's

requirements and be in constant communication with the customer [32][33].

Integration and Testing

In this phase, once the initial system or a version of the system (if it is the second iteration and

beyond) is created, measurements and performance evaluation are done. Many tests are done to

ensure the correct and smooth operation of the system. In the end, the customer uses the system to

evaluate it and provide further requirements for future iterations [23][32][33].

Advantages

1. There is a strong emphasis on risk analysis to reduce the risk of failure.

2. Ideal for large and complex systems.

3. The customer can receive an initial version of the system very early on.

4. Allows requirements to be added to the system in future iterations [22][31].

Disadvantages

1. It is a high-cost model.

2. Risk analysis requires a lot of subject matter expertise.

3. Not recommended for small systems.

4. The number of iterations needed is unknown.

5. Complex compared to other models [22][31][33].

23

2.2.4 V-Shaped

The V-shaped model is one of the most used models and is an evolution of the Waterfall model. It

has taken its name from its shape as shown in Figure 5 because it is divided into two groups of

phases with the first group connected to the end and the second group connected to the beginning

by coding. The first group of phases is about verification which focuses on the requirements that

the system must have and its design. The second group of phases concerns validation which is

mainly focused on testing the system and validating that all the requirements have been carried out

correctly. Each phase from verification is directly linked to a phase from validation because in

each implementation there will be a test that has to be done. Figure 5 shows the V-shaped model

[19][23][25].

Figure 5 V-Shaped SDLC

24

Business requirement analysis

It is the first and most basic phase of all as the customer is given the requirements of the system

and the functions it should have.

System Design

The basic design of the system is made according to the customer's requirements regarding the

system.

Architecture Design

Analyze further the basic design of the system and all the technical specifications it will have such

as database tables, architecture diagrams, etc.

Low-Level Design

The system is divided into smaller modules to make it easier to implement and check that

everything is working properly.

Coding

Once all the previous phases are completed, the implementation of the system starts according to

the customer's requirements and the analyses that have been made.

Unit Testing

Testing is started and performed on all the modules that the system has been split to identify and

fix various bugs.

Component Testing

They start integrating the modules into the system and testing their communication.

System Testing

When the whole system is completed then testing is done by the client team to make sure that all

the requirements of the system have been created [19][25].

25

Acceptance Testing

It tests the user environment in real-life conditions and identifies bugs or errors that may occur.

Advantages

1. Simple to understand and implement.

2. Ideal for small systems.

3. Has a lower failure rate than the Waterfall model.

Disadvantages

1. It is not ideal for complex and large systems.

2. Requirements must be fully known from the beginning. [19][24][26].

26

2.3 Problem Statement & Existing Systems

 Before implementation of the system, a literature search was conducted on SDLC models

aiming to fully understand them and applications that have been done in combination with human

recourses systems (HRMS). The main direction of the research was to find applications or studies

that analyze implemented HRMS based on SDLC models, i.e., to enable a programming company

or a manager to manage his staff in software development based on the SDLC models mentioned

above. The research conducted revealed that many studies focused on how to develop software

using SDLC models [36][37] rather than developing systems that manage staff based on these

models. Most studies made comparisons between SDLC models [12][34][35] or focused on HRMS

analysis without including their combination.

 The problem occurred when someone needs open-source software to be able to manage their

staff based on some SDLC models that would be all in one application, without needing

configuration or changes to support the SDLC models. Still, be able to access it from all devices

and give him the ability to have a complete view of his staff regarding financials and assignment

of tasks. Many systems at commercial and research levels such as [11][38][39][40] offer the user

the ability to manage their staff such as their salaries and other information. Some researchers

analyze commercial tools that offer the possibility to directly manage staff based on some SDLC

models or indirectly by adjusting various parameters [1][9][10].

 This master thesis aims to create a system that solves the above problems and offers additional

features to someone who needs it. It will have the main goal to enable the staff manager to assign

tasks to his employees based on SDLC models (Waterfall, Spiral, Iterative, and V-shaped) and to

be able to estimate costs based on salaries and personnel expenses. The main objective will not be

to manage staff in general, such as shifts and documents, but to manage staff based on SDLC

models which is the state of the art of the system. All SDLC models will be able to be used directly

without any additional configuration and will be open source for future additions that one wishes

to make or to adapt to own existing system.

27

3 System Analysis & Design

 The goal of this master thesis is a system that helps someone manage the staff in his team

according to the SDLC models (Waterfall, Spiral, Iterative, and V-shaped). On this innovation, the

requirements that will be presented below and the diagrams that were created before the start of

the implementation were based. It is very basic for a system before starting the implementation to

be fully aware of the requirements and the functions it should have. First, I started the literature

search, and then the requirements and functions were recorded. In the following chapters

requirement list and diagram will be presented and then in System Design will analyze the use-

case diagram, component diagram, sequence diagram, activity diagrams, and ERD diagram.

3.1 System Textual Description Analysis

 The structure of the system consists of two basic subsystems that must operate in parallel for

the smooth operation of the overall system. It is divided into the backend and the frontend. The

fronted is the user interface i.e. it is what the user sees on the screen and uses. The backend is

responsible for storing the data in the database, processing it, and sending it to the frontend to

display it. The union of these two subsystems is done by sending data from one subsystem to the

other.

 Before the implementation of the system was started, in the first phase, research was done on

the type of system that had to be implemented and its functions. More specifically I studied similar

systems that exist in the market and in literature to define the features and functions that the system

had to have and be state of the art at the same time. It turned out to be quite a time-consuming

process as this system is innovative in the multiple options it gives to the user, thus requiring many

different technologies for its implementation and proper recording of the requirements that

emerged.

 At the beginning of the implementation of the system, the database schema was designed, which

defined the tables that the system needed to store the data and the relationships that had to be

developed between the tables. The relationships between the tables were a very important point as

in this way the data we need can be extracted and also we can directly find the data we are looking

for as it is done in all relational databases.

28

 Then the development of the backend started based on the database schema that had been

designed. For the development, I used Spring Boot which is an open-source Java-based

framework, and started creating the classes with the fields defined in the database schema. The

classes were a visual representation of the tables in the database and the relationships between

them. This was a way of verifying that our system was created according to the database schema

that had been defined and that our data would be stored in the correct tables. Then the functions

and controllers were created that is responsible for processing and storing the data in the database.

 The data entered the system through endpoints created by HTTP requests via the Postman

application and the entire system was controlled from the moment the data entered until it was

processed, stored, or sent back again. The Postman application is an Application Programming

Interface (API) and was used as a frontend simulator to send the data that would have been sent

normally if the frontend had been developed to check that everything was working correctly on

the backend.

 For the development of the frontend was used JavaScript, CSS (Cascading Style Sheets), and

React.js (JavaScript library for user interfaces). The system screens started to be created with the

help of React and the use of Material-UI library which offers a wide variety of components that

can be used with ease. The reason why these technologies were used is that they offer huge

customization possibilities depending on the look the user wants to give to their system and are

easy to learn and use. Once a screen was completed, tests were done on the display of the data and

sending it to the backend. The frontend and backend in many cases were developed in parallel

because changes and additions of new functions were needed. The two subsystems were running

separately on a server each within the same computer just on different ports only during the

development of the system.

3.2 System Analysis

 The central idea of the system is to offer users the ability to manage their staff based on the

SDLC models to have an overview of the software development progress and the cost of the project

concerning the salaries of the teams that will take on the project. The team manager will be able

to register and then enroll their staff in the system so that they can inform about the projects

29

assigned and other information such as their salary. The main feature of the system will be that

everyone will be able to access it and be directed based on the instructions of the leader.

1.2.1 Requirements List and Main Requirement Diagram

 Proper software development always requires that the requirements to be met by the system to

be developed are fully articulated. To properly write and represent the requirements, the Systems

Modeling Language (SysML) was used which was developed as a graphical dialect of the Unified

Modeling Language (UML) to analyze and represent complex systems so that they can be easily

understood [41]. Figure 6 shows a Requirement List that analyzes the requirements and functions

that the system should have.

Requirement Title Description

REQ1 Frontend The application must have a

user interface user that will

be easy to use.

REQ2 Backend The system should process

and store the data using the

backend.

REQ3 Database The system should have a

database to store the data in

relational tables so that they

can be retrieved by the

Backend

REQ4 Login/Register The user will be able to log in

to the system or register

himself/herself or employees

depending on his/her role

REQ5 Roles The system should support

two roles (Admin, User) so

that each Admin can manage

the Users he has registered.

30

REQ6 Change Password The user will be able to

change his/her password at

any time.

REQ7 New Task The admin will be able to

assign tasks to any users

wishes based on the SDLC

models (Waterfall, Iterative,

Spiral, V-shaped)

REQ8 Calendar Users will be informed about

the tasks assigned to them

and their deadlines.

REQ9 Add/Delete User Admin will be able to add

and remove users whenever

he needs

REQ10 Responsive The system should be

responsive to be able to work

on mobile devices or screens

of different sizes from the

computer.

REQ11 JWT The system will be secured

by using JSON Web Tokens

(JWT) between the user and

the system to avoid external

threats.

REQ12 UI Components The UI should be created

using components that are

easy to use for the user.

Figure 6 Requirement List

31

 The requirement diagram of the system that describes its central structure is shown in figure 7.

It consists of the first three requirements that are needed for the system to work. It is a basic

requirement that every system is related to. It should have a Frontend that the user will see and

manipulate, a backend that will process the data, and the Database where the data will be stored.

Figure 7 Main Requirement Diagram

3.2.2 Frontend requirement diagram

 The Frontend is the user interface of the system, i.e. the image that the user sees on his screen

and interacts with. It is a very important part of the system because based on the user's experience

of the user interface and ease of use, the user's opinion of the system is determined. The

32

requirement diagram of the Frontend is shown in figure 8. The basic requirement (REQ017) is that

the Frontend should be able to change according to the role the user will have. The screens will be

different for the Admin who can assign tasks and for the User who can just be informed about the

tasks assigned. All users should be able to use the system from all screen sizes whether from mobile

or PCs, which is the requirement (REQ010), and the screens should be easy to use without the

need for an explanation from an expert which is the requirement (REQ012). The screens are made

easy to use by using UI Components in the implementation to allow the system to have high-

quality graphics.

Figure 8 Front-end Requirement Diagram

33

Figure 9 Backend Requirement Diagram

3.2.3 Backend requirement diagram

 The Backend requirement diagram is shown in figure 9. It is the part of the system that is

responsible for processing the data and storing it in the database or sending it back to the Frontend.

The data to be stored in the database should have the appropriate tables which is the requirement

(REQ019) and the backend should be connected to the database which is the requirement

(REQ025). A key feature that makes our system secure against malicious activities is the

requirement (REQ011) that JSON Web Tokens are used by the system. With JWTs the system can

authenticate the user sending data by verifying the identity of the user at each iteration through the

tokens.

34

Figure 10 Repository Requirement Diagram

3.2.4 Database requirement diagram

 The database stores all system data and is connected to the backend. In the beginning, we need

to create the database which is required (REQ029) to be able to store the data within the tables.

The tables should have relationships between them, depending on the role each table has. This way

the backend will be able to pull the data according to the fields it needs.

3.3 System Design

 The system design will be analyzed using Unified Medical Language System (UMLS)

diagrams. It is a key tool because it is a graphical language for visualizing and identifying the

elements that make up a software system like the one being analyzed. With UML diagrams an

overview of the system based on its functions can be made and can be much easier to understand

for developers without the need for unnecessary explanation time. It still offers the possibility of

easy understanding by people who are not part of the technical team and a complete analysis of

the system before starting its implementation. UML diagrams are divided into several categories

depending on whether they depict classes, packages, components, and the relationships between

35

them [46]. Five different UML diagrams developed for the system implementation will be

presented below:

1. Component Diagram

2. Use case

3. Activity Diagram

4. Sequence Diagrams

5. Entity Relationship Diagram (ERD)

3.3.1 Component Diagram

 The Component Diagram is used in large object-oriented systems to analyze the static models

of the system and the relationships between them. It divides the system into smaller components

and is a physical representation of the behavior that each component has with the others. Figure

11 shows the component diagram of the system with the main components. The Fronted, Backend,

and Database are the main components of the system. Initially, the Web Browser runs the Fronted

code to display the system on the screen. The Frontend uses libraries (Material UI, React-

Bootstrap) as depicted in the figure so that it can be easy to use. It then communicates with the

Backend using the Axios library that allows HTTP requests. The Backend communicates with the

Frontend and the Database that stores the data. Finally, the Database uses MySQL.

36

Figure 11 Main Component Diagram

3.3.2 Use case

 The Use case diagram shows the interactions that the user (actor in UML) can have with the

system. It contains the scenarios that the user can follow in the system with all the options

provided. In the system being analyzed, we have two different roles, the simple user and the admin

who can create as many users as he wants. Figure 12 shows the basic use case of the system with

all the possible options that both roles can have.

 Initially, the Admin can register or log in depending on whether they already have an account

or not. Then he can view his account information in the dashboard and edit it. He can see the list

of all the employees he has added, and he can add more or remove someone. Also, he can still

view and edit the financial information of his employees and assign them tasks based on whatever

model he wants. The tasks are displayed in the calendar which he can edit and finally, he can

change his account password or delete his entire account with his employees together if he wants.

37

Figure 12 Main Use Case Diagram

 The simple user can log in to the system if the admin has added him and can view his account

information in the dashboard and edit it. He can then see his financial details like his salary and in

the calendar, he can see the tasks assigned to him. Finally, in the settings, he can only change his

password but not delete his account as only the admin has this choice available.

38

Figure 13 Use Case Scenario

 The second use case is shown in Figure 13 and is a more specific scenario between the admin

and a simple user. The admin can see all his employees and has three options if he wants. First, he

can search for a specific employee, second, he can add an employee but form validation will have

to be done with the employee details he declares and third, he can delete an employee with form

validation forced. Then both roles can view the financials section, but the admin has the overall

view of the expenses and number of employees while he can edit this data. The simple user can

see his monthly or yearly earnings from the company.

39

Figure 14 Simple User Activity Diagram

3.3.3 Activity Diagram

 The Activity Diagram shows the steps that take place in a system when the use case is executed.

The user can see the activities he can have in the system each time he selects a path of activities.

The main purpose of the diagram is to describe the flow from one activity to another rather than

between objects in the system. Figure 14 shows the activity diagram of the simple user when using

the system. It starts with login and only when authentication is done the user can enter the system.

Then he has many options as mentioned above such as viewing the dashboard and editing his

information. All activities also contain the option to log out of the system at any time the user

chooses.

40

Figure 15 Admin Activity Diagram

 The Activity Diagram of the admin is shown in figure 15 and it is much larger than the simple

user because he has many more permissions in the application. He can view and edit his employees

that the simple user cannot and assign tasks in any model he wants. He can still manage the

financials of his staff and renew their tasks. Finally, he can delete only his account which implies

that all his employees' accounts will be automatically deleted.

41

Figure 16 Admin First Sequence Diagram

3.3.4 Sequence Diagrams

 Sequence Diagrams is an interaction diagram and illustrates how and in what order the objects

in the system work together. The visualization is based on the time when the user starts using the

system and shows step-by-step how the operations are performed. In many cases, the sequence

diagrams become very large in scale because they have to show many functions. That is why in

the system analyzed two diagrams were created for the admin and the simple user. Figure 16 shows

the actor which is the admin and contains the dashboard, employees and financials sections.

42

Figure 17 Admin Second Sequence Diagram

Figure 18 Simple User Sequence Diagram

 Figure 17 shows the other sections for admin which are calendar, new task, settings and logout.

 Finally, figure 18 shows the sequence diagram that has a simple user as an actor. The simple

user has sections dashboard, financial, calendar, settings, and logout.

43

Figure 19 ERD

3.3.5 Entity Relationship Diagram (ERD)

 The Entity Relationship Diagram (ERD) is a flowchart that shows how entities in the database

are connected. Figure 19 shows the ERD for the system being analyzed and shows in detail the

tables that exist in the relational database. The key entity for the whole system is the users table

which contains the basic information for all users and all other entities are directly linked to this

entity. The roles for users are contained in the user_roles entity that defines when a user is an

administrator or a simple user. Finally, each different model that the administrator assigns to

simple users has its entity with information such as dates or costs.

44

3.4 System Technologies

 The technologies used to develop the system aim to provide the user with a system that is easy

to use and safe to operate. Before the implementation of the system, research was conducted for

innovative technologies that can fully interoperate with each other and have the ability to support

complex systems such as the one being analyzed. They should be maintainable but also leave room

for future additions to the system. The technologies chosen had in common that they were all quite

popular and there is a huge community offering open-source and ready-made implementations for

a variety of issues that need implementation. For the thesis, they had to be technologies that other

developers could easily use in the future since the code would be open source. The technologies

chosen for the implementation of the system are:

1. React.js : It is a JavaScript framework and is responsible for the User Interface (frontend).

It is supported by a large community of developers and is one of the most popular choices.

2. Spring boot: It is responsible for data processing and storage (backend). It is one of the

most famous Java frameworks and is very much used for developing web applications and

microservices.

3. MySQL: MySQL is an open-source relational database management system (RDBMS).

This system uses Structured Query Language (SQL) and this is where all the data of the

system being analyzed is stored.

45

Figure 20 React Js Example

3.4.1 React.js

 React.js is one of the most popular JavaScript frameworks in the world. It was developed in

2011 by developers and is used by very large companies like Netflix and Apple. It is the first

choice for many programming companies as it has many advantages over other JavaScript

frameworks [42]. The main advantages of React.js are:

• Its performance is quite high even on huge amounts of data

• It is easy enough to understand for programmers who want to develop systems quickly

• It offers long-term stability without the risk of interrupting upgrades.

• It is supported by a large and active community where someone can search for different

implementations or even ask for help if needed

• Has a huge variety of component libraries like Material UI used in this system

 For the master thesis, it was chosen because it needed a framework with these advantages

discussed above and because it had to be on technologies that would allow future modifications

and additions to the system easily. Figure 20 shows the code containing the main paths of the

system, written in React.js.

46

Figure 21 Material UI Example

 Point 1 shown in figure 20 all the imports that the code needs to run. They are data stored in

other files or libraries ready for use. Point 2 is the JavaScript code that consists of a few lines as in

the figure or can reach hundreds of lines when we have complex functions that need to run. In this

example, we are simply giving a color code to a variable that will be used as a theme throughout

the application. Point 3 is the HTML code and React components used. A component can be

written with code locally in the application in another file or it can be ready-made from a library

such as Material UI. In all cases, a component should always be opened and closed depending on

whether it has internal components or is called by itself. In the example, in figure 20 the Router

component opens on line 22 and closes on line 27 because it has other components called

internally, while the Route component opens and closes on line 23. The purpose of these lines of

code throughout the figure is to create paths that the user can have within the application to switch

pages.

 The Material UI library was used because we needed the application to be easy to use and have

many screens dynamic in the user interface. This library provides dozens of ready-made

components that can be very easily integrated into the code and are immediately functional. Figure

21 shows a table of employees that the admin view when managing his staff. This table is a

Material UI component called TableContainer and with many changes and code additions, it was

configured as shown in the figure.

47

Figure 22 Spring Boot Class Example

3.4.2 Spring boot

 It is one of the most popular open-source Java-based frameworks used for standalone and

commercial applications. It is an ideal tool for developers who need to create microservices for

their applications or create web applications. Spring boot is very popular in the developer's

community because it offers the dependency injection feature that allows objects to have their

dependencies that the Spring container then integrates into them [43]. In this way, developers can

create applications that consist of unified components which is the central idea behind

microservices.

 In the analyzed system, Spring boot was chosen because it is very easy to create endpoints to

send data to the frontend. Still, a very big advantage is offered by the Java Persistence API (JPA)

and it is a Jakarta EE application programming interface specification to maintain relational

databases like the one used in the system. Many dependencies were used for the implementation

such as MySQL-connector-java which helps to connect the backend to the database or spring-boot-

starter-data-JPA integrating the JPA discussed above. Figure 22 shows a small piece of code

showing how a class (user) creates relationships within the database with other classes that also

represent a table within the database. At point 1 a many-to-many relationship is created with the

user_roles class containing their system roles. This means that many users can have many

user_roles and the other way around. In point 2 of the figure, however, we can see that we have an

OneToOne relationship which means that a user can have one Financial and the other way round.

48

 Figure 23 shows the controller of the user class and consists of two endpoints, each for a

different purpose. At point 1 there is a Get with which when someone requests data with the

appropriate URL ("/api/auth /getEmployees/{id}") and the appropriate id then it will return all

employees corresponding to that id i.e. the id of the administrator as depicted in line 150. At point

2 there is an endpoint with Delete which means that when someone calls this endpoint with the

appropriate URL ("api/auth/deleteEmployee/ {username}") then it will delete the employee from

the database according to the username given by the user who can only be the administrator for

this call.

Figure 23 Spring Boot Controller Example

3.4.3 MySQL

 MySQL is an open-source relational database management system (RDBMS) that is based on

the structured query language (SQL). It was developed and maintained by Oracle Corporation and

runs on all platforms such as Windows and Linux which are among the most widely used. MySQL

is one of the most famous systems in the world because it offers the ability to back up data and

ensures that data is not going to be lost through recovery strategies. It manages relational databases

and allows the developer to add, edit and view their data within the database [44].

49

Figure 24 System Structure

4 System Representative Use Case Scenarios

 During the implementation of the system, priority was given to all the UML diagrams analyzed

above as the requirements that the system should implement and the basic structure that it will

have in its entirety had to be clearly defined. It is very basic before starting any implementation of

a system that these steps are done very properly and in detail because there is a risk that the result

will be much too time-consuming to implement and less efficient. In this chapter, the result of the

implementation will be analyzed for each possible scenario that may arise from all the roles. In

this way, the structure of the system and the possibilities it provides for the user will be fully

understood.

1.1 Representative Use Case Scenarios

 The system is aimed at companies or teams of developers who have a team leader and assigns

tasks to employees or simply other team members. Based on this central idea the system supports

two roles, admin and simple user. Each admin can have as many workers as they want but the

worker-simple users can only have one administrator. The structure is shown in figure 24 and the

admin is in the middle handling his simple users on the side.

50

Figure 25 Register Page

4.1.1 Admin Role

 When opening the application for the first time the admin will have to register and fill in his

information. Only the admin is allowed to register, and the registration form is shown in figure 25.

The information that the application requests from Admin are:

1. First Name

2. Last Name

3. Organization Name

4. Email

5. Username

6. Password

51

Figure 27 Register Wrong Email Page Figure 26 Register Wrong Password Page

7. Re-Password

 The admin after entering the data required then the system validates if all the fields are filled

in and if they are in the correct format. The correct format changes depending on the field like

the email is checked if the one given with @ in it or the passwords must be the same. Figure

26 and 27 shows how the application notifies the admin that he has given incorrect data.

 Once the admin successfully registers then he can enter the application with the details he

provided during registration. Figure 28 shows the login of the application which is the same for

both roles. He needs the username and password to log in.

52

Figure 28 Login Page

 The system validates that the information provided in the login form is correct and the admin

enters his dashboard. Figure 29 shows the admin's dashboard and his account information. The left

part shows the details:

1. First Name

2. Last Name

3. Username

4. Gender

5. Birthday

6. Nationality

 In the right part of the screen the name and location of the company organization are displayed

and below it the contact details such as email, phone, and address. Admin can edit all this

information by pressing the button at point 2 shown in the figure.

53

Figure 29 Admin Dashboard Page

Figure 30 Admin Update Info Page

 When the button at point 2 is pressed a window opens which is shown in figure 30.

54

Figure 31 Admin Menu Page

 The information provided in the registration is already filled in and the rest is blank. All fields

can be changed and at the end, the corresponding EDIT button can be pressed to save or the

CLOSE button to close the window. The other option the admin has is to press the button located

at point 1 of his dashboard and open the navigation menu shown in figure 31.

 The options that the Admin role has for navigating through the system are:

1. Dashboard

2. Employees

3. Financial

4. Calendar

5. New Task

6. Settings

7. Log Out

 Each category has different functions which will be analyzed below. When the Employees

option is clicked then the admin sees the overall view of his employees as shown in figure 32.

55

Figure 32 Admin Employees Page

 The table at the beginning is empty but to make the description easier to understand I added

some employees at the beginning. The table shows employee details such as Username, First

Name, Last Name, and Email. The admin has two options and that is to add an employee or delete

one. When he clicks to add an employee then the window is shown in figure 33.

56

Figure 33 Admin Add Employees Page

The application demands the admin to enter the details for the employee they wish to add and the

details are:

1. First Name

2. Last Name

3. Email

4. Username

5. Monthly Salary

6. Insurance Cost

7. Equipment Cost

8. Start Date

9. Password

10. Re-Password

57

Figure 34 Admin Delete Employees Page

Figure 35 Admin Financial Page

 When the simple user-employee is added then the simple user will be able to log in with the

details given to him by the admin and change his password himself for security reasons. When the

admin wishes to delete an employee then the window is shown in figure 34.

 Admin selects the employee he chooses to delete and clicks the DELETE button located below

the drop-down button with usernames in figure 34 (not shown in the example). The next section

that the admin role can select from the navigation menu is the financial section which is shown in

figure 35.

58

Figure 36 Admin Edit Employee Financials Page

 In this section, he has an overview of the financial data of his company or group. At the top, he

can see the total number of employees, the monthly expenses that the team has, and the annual

expenses calculated based on salaries and the equipment and insurance expenses of all team

members. At the bottom is a table that has detailed financial information for each employee and

the date they started working for the company. There is still an option to edit the costs that

employees have by clicking the button at the bottom of the screen. Figure 36 shows the window

for editing costs.

 Depending on the username chosen by the admin, he can edit the expenses for the employee's

equipment, salary, and insurance. The next section that the admin role can choose is a new task

which is shown in figure 37.

59

Figure 37 Admin Add Simple Task Page

 The admin has five options as to the type of task he can assign:

1. Simple Task

2. Waterfall Task

3. Iterative Task

4. Spiral Task

5. V-Model Task

 The first task is the simple task which can be anything up to something complex. The other four

are SDLC models and have been detailed above each one separately. In the shown figure 37 the

Simple Task above is the first task the admin sees and can provide a title, description, employees

who are assigned to it, and a start and end date. Based on the days the admin gives for a deadline,

the cost of the task is calculated based on the salaries of the employees selected. The next task he

can assign is the Waterfall Task shown in figure 38.

60

Figure 38 Admin Add Waterfall Task Page

 The Waterfall Task has a title, description, assigned users and the six phases that comprise the

SDLC model discussed in the Background section. Each phase has a start and end date, and the

application calculates the total cost of the task based on the sum of the days of each phase and the

employees selected. The next task is the Iterative task which is shown in Figure 39. It has the same

phases as the Waterfall task but is iterative as analyzed in the Background chapter.

61

Figure 39 Admin Iterative Task Page

 The next task is the Spiral task which is shown in figure 40 and has four phases.

62

Figure 40 Admin Add Spiral Page

 The last task is the V-Model task which has eight phases and is illustrated in figure 41.

63

Figure 41 Admin Add V-Shaped Task Page

64

Figure 42 Admin Calendar Page

Figure 43 Admin Calendar with Tasks Page

 The next module that the admin role can choose is the calendar which is shown in Figure 42.

 In the calendar, the admin is informed about the number of tasks that are active at the top of the

screen and can search if he is looking for a specific task. At the bottom, each type of task is

displayed separately in each table with information about the start and end date of each phase and

the cost with the implementation duration. Figure 43 shows the table of Waterfall tasks and

Iterative tasks.

65

Figure 44 Admin Edit Calendar Task Page

 The admin can edit the tasks individually by clicking on the button on each table. When he

clicks on the Waterfall tasks, he can edit the data or complete the implementation as shown in

figure 44.

66

Figure 45 Admin Settings Page

Figure 46 Simple User Dashboard Page

 When the task can have more than one iteration cycle then an additional iteration cycle can be

added by specifying dates and personnel who will or can process the current iteration cycle. The

next section that the admin can select is Settings which is shown in figure 45. There is an option

to change the password at the top of the screen or delete the account along with all employee

accounts.

4.1.2 Simple User Role

The simple user has fewer permissions within the application, so the screens should be simpler.

When the admin registers the simple user and gives him the details to log into the application then

the simple user sees the dashboard which is shown in figure 46.

67

Figure 47 Simple User Financial Page

 The options that the simple user has for navigating the menu are five and they are:

1. Dashboard

2. Financial

3. Calendar

4. Settings

5. Log out

 When the simple user selects the financial section then he can see the financial data concerning

him as shown in figure 47.

 The simple user is informed about his monthly and annual salary and the start date of work on

the left side of the screen. In the right part of the screen, he is informed about the cost of his

insurance and the cost of equipment per month. Figure 48 shows the screen when the simple user

selects the calendar section.

68

Figure 48 Simple User Calendar Page

 It is informed about the tasks assigned to it and can also search for a specific one. The next

section that the simple user can select is settings which are shown in figure 49.

69

Figure 49 Simple User Settings Page

 The only setting he is allowed is to change the password. The simple user was much simpler

to implement but enough research was done to ensure that he could not affect the workflow of the

rest of the team even if there was malicious activity on his part. He is given the necessary

permissions to be aware of the tasks assigned to him and his financial details.

70

5. Conclusion & Future Work

5.1 Conclusion

 SDLC models are a very basic tool for the proper creation and modification of a reliable high-

quality software system. Many complex systems run the risk of being implemented incorrectly or

leaving a schedule when there is no proper forethought and steps in their implementation. The

choice of any SDLC model depends largely on the deadline, available developers, and budget.

Many companies spend a lot of money to properly implement their systems and manage their staff

at the same time. By properly managing the staff and the implementation project, the risk of failure

is drastically reduced.

 Based on all the above, the idea of this master thesis was based on the aim to make the system

as useful as possible to the groups that need it and to be free of charge to anyone who wishes to

extend it, use it or study how to implement it. It is not a simple project as it combines many

different fields of computer science on a technical and theoretical level to be able to offer the user

the right tool he needs. Its strongest feature is the technologies used as they are new technologies

with a lot of community support and usefulness to many companies. The project was challenging

to implement because it needed all the technologies to be developed in parallel so that they could

work together. It has been a source of knowledge because it can give a comprehensive view of the

requirements and obstacles that a developer may have even in a large-scale commerce application.

In conclusion, the purpose of the application developed in this master thesis is to be a basic tool

for someone who needs to manage a team of developers and have a complete image of the tasks

he assigns based on the SDLC models that are the state of the art of the whole application. Still to

be able to add and delete members from his team whenever he needs and to be able to cost the

projects undertaken by the team based on the salaries of the employees to whom it is assigned.

Finally, employees will also be able to be informed about the tasks assigned to them and the

deadline of each phase separately for each SDLC model.

71

5.2 Future work

 The system has a lot of prospects for development and can be adapted to other systems or

expanded on its own in many different directions. During its implementation, the emphasis was

put on using technologies that are very famous for this purpose and that in the future a developer

can easily extend the system using help from various open-source communities. The future

changes and additions that can be made to the system are:

• Support additional SDLC models in addition to the ones it already has. The application

supports Waterfall, Iterative, Spiral, and V-Shaped SDLC models but someone can add as

many more as desired, provided that one can graphically represent the phases of the new

SDLC model and add the functions needed to calculate various data. Among the most

famous SDLC methodologies that can be added are Agile and Scrum.

• Extension to HRMS to allow for better staff management. The application has all the

essentials for personnel management such as salaries and basic data. It was implemented

this way because it was not intended to be considered an HRMS. It can however be

extended to fully functional HRMS if additional screens are added that contain much more

information for employees such as schedules, uploading files, statistics, and more.

• Adding additional roles to the application. The application supports two roles, admin and

simple user. A role could be added that would have the role of a project supervisor

assuming a new SDLC metadata requires it. Another role could be an accountant that would

oversee the financials of the company.

• Support for additional languages to make it available to a wider range of users and

companies.

• Additional functions for the admin to have a more complete image of his team. He will

have the ability to statistically view the performance of each of his employees and will be

able to view the financial statistics of each employee individually for the long period that

he has been contributing to the team.

72

• Create a mobile or desktop application. With the mobile app, users will be able to enter

and view data without having to open the browser. With the desktop application companies

could use the application on a closed network locally greatly reducing the risk of malicious

activity

• In-app chat support between roles. When Admin will want to inform an about a change or

event to a simple user, he can send a message from the application and a notification will

be displayed on the dashboard

• Notifications that a deadline for a task is approaching. The user will receive a notification

at the dashboard or an email that a deadline is approaching for a task that has been assigned

and needs to be completed.

73

6. References

[1] Amlani, Radhika D. "Advantages and limitations of different SDLC models." International

Journal of Computer Applications & Information Technology 1.3 (2012): 6-11.

[2] Rastogi, Vanshika. "Software development life cycle models-comparison, consequences."

International Journal of Computer Science and Information Technologies 6.1 (2015): 168-172.

[3] Shylesh, S. "A study of software development life cycle process models." National Conference

on Reinventing Opportunities in Management, IT, and Social Sciences. 2017.

[4] Kute, Seema Suresh, and Surabhi Deependra Thorat. "A Review on Various Software

Development Life Cycle (SDLC) Models." International Journal of Research in Computer and

Communication Technology 3.7 (2014): 778-779.

[5] Sharma, Manish. "A Survey of project scenario impact in SDLC models selection process."

International Journal of Scientific & Engineering Research 2.7 (2011): 1-4.

[6] Alshamrani, Adel, and Abdullah Bahattab. "A comparison between three SDLC models

waterfall model, spiral model, and Incremental/Iterative model." International Journal of

Computer Science Issues (IJCSI) 12.1 (2015): 106.

[7] Kumar, Madhup. "A Comparative Study of Universally Accepted SDLC Models for Software

Development." vol 4 (2018): 31.

[8] Balaji, S., and M. Sundararajan Murugaiyan. "Waterfall vs. V-Model vs. Agile: A comparative

study on SDLC." International Journal of Information Technology and Business Management

2.1 (2012): 26-30.

[9] Κούκλαρης, Παναγιώτης. Project management methodology and tools. MS thesis.

Πανεπιστήμιο Πειραιώς, 2019.

[10] Miljanic, Mirko, and Nikola Zaric. "Review of collaborative software applications and

integration with standard collaboration tools." 2020 24th International Conference on

Information Technology (IT). IEEE, 2020.RAJESH SAHA "Human Resource Management

System (HRMS) " New Horizon College of Engineering, Department of Master of Computer

Applications, 2018-2019

74

[11] RAJESH SAHA "Human Resource Management System (HRMS) " New Horizon College of

Engineering, Department of Master of Computer Applications, 2018-2019

[12] Alshamrani, Adel, and Abdullah Bahattab. "A comparison between three SDLC models

waterfall model, spiral model, and Incremental/Iterative model." International Journal of

Computer Science Issues (IJCSI) 12.1 (2015): 106.

[13] Kute, Seema Suresh, and Surabhi Deependra Thorat. "A review on various software

development life cycle (SDLC) models." International Journal of Research in Computer and

Communication Technology 3.7 (2014): 778-779.

[14] Rather, Manzoor Ahmad, and Mr Vivek Bhatnagar. "A comparative study of software

development life cycle models." International Journal of Application or Innovation in

Engineering & Management (IJAIEM) 4.10 (2015): 23-29.

[15] Jirava, Pavel. "System development life cycle." Scientific papers of the University of

Pardubice. Series D Faculty of Economics and Administration. 9 (2004) (2004).

[16] Acharya, Biswamohan, and Prabhat Kumar Sahu. "Software development life cycle models:

A review paper." International Journal of Advanced Research in Engineering and Technology

(IJARET) 11 (2020): 169-176.

[17] Jindal, Tanu. "Importance of Testing in SDLC." International Journal of Engineering and

Applied Computer Science (IJEACS) 1.02 (2016): 54-56.

[18] Iqbal, Syed Zaffar, and Muhammad Idrees. "Z-SDLC model: a new model for software

development life cycle (SDLC)." International Journal of Engineering and Advanced Research

Technology (IJEART) 3.2 (2017): 8.

[19] Rastogi, Vanshika. "Software development life cycle models-comparison, consequences."

International Journal of Computer Science and Information Technologies 6.1 (2015): 168-172.

[20] Tuteja, Maneela, and Gaurav Dubey. "A research study on importance of testing and quality

assurance in software development life cycle (SDLC) models." International Journal of Soft

Computing and Engineering (IJSCE) 2.3 (2012): 251-257.

75

[21] Ruparelia, Nayan. "Software Development Lifecycle Models, Nayan B. Ruparelia, Hewlett-

Packard Enterprise Services." ACM SIGSOFT Software Engineering Notes (2010).

[22] Amlani, Radhika D. "Advantages and limitations of different SDLC models." International

Journal of Computer Applications & Information Technology 1.3 (2012): 6-11.

[23] Dora, Sujit Kumar, and Pushkar Dubey. "Software development life cycle (SDLC) analytical

comparison and survey on traditional and agile methodology." Natl. Mon. Ref. J. Res. Sci.

Technol 2.8 (2013): 22-30.

[24] Kute, Seema Suresh, and Surabhi Deependra Thorat. "A review on various software

development life cycle (SDLC) models." International Journal of Research in Computer and

Communication Technology 3.7 (2014): 778-779.

[25] Khurana, Gourav, and Sachin Gupta. "Study & comparison of software development life cycle

models." International Journal of Research in Engineering & Applied Sciences 2.2 (2012):

1513-1521.

[26] Saravanan, T., et al. "Comparative Analysis of Software Life Cycle Models." 2020 2nd

International Conference on Advances in Computing, Communication Control and

Networking (ICACCCN). IEEE, 2020.

[27] Obeidat, Jasour A., and Hebah HO Nasereddin. "A new vision for information technology

project management through selecting SDLC model." American Academic & Scholarly

Research Journal 5.4 (2013): 183.

[28] Mishra, Apoorva, and Deepty Dubey. "A comparative study of different software development

life cycle models in different scenarios." International Journal of Advance research in

computer science and management studies 1.5 (2013).

[29] Alshamrani, Adel, and Abdullah Bahattab. "A comparison between three SDLC models

waterfall model, spiral model, and Incremental/Iterative model." International Journal of

Computer Science Issues (IJCSI) 12.1 (2015): 106.

[30] Kute, Seema Suresh, and Surabhi Deependra Thorat. "A review on various software

development life cycle (SDLC) models." International Journal of Research in Computer and

Communication Technology 3.7 (2014): 778-779.

76

[31] Salve, S. Madhukar, S. Neha Samreen, and Neha Khatri-Valmik. "A Comparative Study on

Software Development Life Cycle Models." International Research Journal of Engineering and

Technology (IRJET) 5.2 (2018): 696-700.

[32] Kyeremeh, Kwadwo. "Overview of System Development Life Cycle Models." Available at

SSRN 3448536 (2019).

[33] Shylesh, S. "A study of software development life cycle process models." National Conference

on Reinventing Opportunities in Management, IT, and Social Sciences. 2017.

[34] Amlani, Radhika D. "Comparison of different SDLC models." International Journal of

Computer Applications & Information Technology 2.1 (2013): 1-8.

[35] Ateeq, S. A. D. A. F., and M. Shuaib. "Comparison of various SDLC models." Global Journal

of Multidisciplinary Studies 3.11 (2014): 176-181.

[36] Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi Vol. 4 No. 1 August 2019

[37] Buchori, Achmad, et al. "Mobile augmented reality media design with waterfall model for

learning geometry in college." International Journal of Applied Engineering Research 12.13

(2017): 3773-3780.

[38] SIMAANYA, Mweemba. Employee Management System. 2015. PhD Thesis.

[39] Alabdulkareem, Areej Abdulrazq Mohammed, and Sarah Mustafa Eljack. "Human Resources

Management system."

[40] Ibrahim, Rosziati, et al. "Development of staff management system using UML-based object-

oriented approach." Proceedings of the International Conference on Computing Technology

and Information Management. 2014.

[41] Hause, Matthew. "The SysML modelling language." Fifteenth European Systems Engineering

Conference. Vol. 9. 2006.

[42] Dinku, Zerihun. "React. js vs. Next. js." (2022).

[43] Reddy, Prasad, and K. Siva. "Introduction to Spring Boot." Beginning Spring Boot 2. Apress,

Berkeley, CA, 2017. 1-20.

77

[44] Bannon, Ryan, et al. "Mysql conceptual architecture." Technical report, University of Water-

100 (2002).

[45] Dorette Jacob, Jennifer. "Comparing Agile XP and Waterfall software development processes

in two start-up companies." (2011).

[46] Balmelli, Laurent. "An overview of the systems modeling language for products and systems

development." Journal of Object Technology 6.6 (2007): 149-177.

