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Abstract 

A range of contemporary applications, such as remote monitoring of crucial 

measurements, mechanical fault recognition, remote detection of structural strain in 

constructions, and many others, have become possible today thanks to the Internet of Things 

(IoT). Due to the fog-based design of these systems, devices are placed at the extreme edge, 

requiring data transmission to a central node. At the same time, the performance of these 

devices is limited both by power requirements for wireless transmission via the network and by 

their limited computational capabilities and features. 

Ideally, there would be a way to compress the data to a great extent so that, upon 

receipt by the receiving node, it could be accurately reconstructed. This need is addressed by a 

new technique called compressive sensing. Its operation is based on the sparsity characteristic 

of most natural signals when represented in a specific basis. This technique allows 

reconstruction with far fewer points than traditional sampling techniques, such as Nyquist. 

The intersection of the compressive sensing (CS) and machine learning (ML) domains 

has garnered significant research interest, combining the fundamental principles from both 

areas, and is the focus of the present master's thesis. Through this study, the use of CS as a 

compression tool before transmission is explored, and the limits of its application in distributed 

ML systems are determined. More specifically, the impact of CS on the recognition capability of 

reconstructed signals by a trained ML model is examined. The study aims to achieve a high 

recognition rate for reconstructed signals at the network's edge and extreme edge. 
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Preface 

For many contemporary applications and particularly those that use micro-controllers, 

the capacity to gather and analyze signals effectively is crucial. Two significant and quickly 

developing fields of research, compressive sensing and distributed machine learning, have the 

potential to completely change how we gather and use data in these systems. By dividing the 

work across several computers, distributed machine learning enables the training of large and 

complicated machine learning models, while compressive sensing provides the efficient 

collection of data that are sparse in particular domains. 

The intersection of these two fields is the area of our interest in this master thesis while 

we focus on the use of micro-controllers at the edge and extreme edge for signal sampling, 

compressed sensing and machine learning classification. We present a method developing a 

trained model for classifying signals from an IMU that represents human gestures. This method 

takes advantage of the properties of sparse signals and the capabilities of distributed systems 

to enable more efficient and effective machine learning, particularly in the context of micro 

controller based systems. 

The research presented in this thesis is motivated by the need to address the challenges 

of dealing with large and complex data sets in modern machine learning applications that 

involve micro-controllers. By leveraging the power of compressive sensing and distributed 

machine learning, we aim to provide new solutions that can enable more effective and efficient 

data processing and machine learning in such systems. 

This work has the potential to have a significant impact in a wide range of areas that rely 

on micro-controllers placed on the edge and even on extreme edge, including but not limited to 

Internet of Things (IoT) systems, and embedded systems. We hope that it will contribute to a 

better understanding of the capabilities and limitations of compressive sensing and distributed 

machine learning in the context of micro-controller-based systems, and inspire further research 

in these areas 
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Synopsis 

We live in an era where the spread of IoT is an indisputable fact. A variety of sensors 

monitors and records data and sends them to central processing and storage facilities. Sensors 

are part of a wide variety of systems with a wide range of applications, from medical imaging to 

audio and visual monitoring. 

In a typical IoT scenario, many self-powered constrained devices capture real-world data 

and communicate with each other and with the cloud, normally, over low-power wireless 

connections to exchange information and provide specific services. However, the power 

consumption associated with wireless transmission, the scarce network resources, and the 

constrained capabilities of such IoT devices, limit their performance [1]. Thus, a compression 

technique that would drastically reduce the size of the data to be sent, while ensuring the 

reconstruction of the original data in the destination node, is highly welcome. In this context, 

compressed sensing (CS) technique is a promising standard to be integrated into IoT systems 

design. CS is a new compression theory and signal recovery philosophy that exploits the sparsity 

behavior of most physical signals when represented in a suitable domain. When a signal is 

sparse in a specific domain then, CS samples signals much more efficiently than the 

conventional Shannon-Nyquist sampling method. It is known, it turns out, that many physical 

signals, such as the sound, image or measurements of an IMU, are sparse in a Fourier domain 

or in a wavelet domain [2]. CS allows the sampling of sparse signals, with a very small number 

of samples so that reconstruction can be achieved at the receiver. 

The main disadvantage of conventional sampling methods followed by compression is 

that the sampling steps deal with a huge amount of data that requires efficient sensors and 

large storage capacities. This as a result, leads to increased processing costs, and therefore to 

waste of time. CS solves this problem. Instead of compressing data after sampling, CS performs 

data sampling in a compressed manner [2]. CS is a new example of signal sampling, which 

allows signal retrieval using only a few samples much less than one would even expect from 

Nyquist. On the other hand, machine learning is one of the most modern and powerful trends, 
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which can effectively complement CS [3]. With its help we can implement decision-support 

systems based on CS-data we have collected, related to decision making. 

Today there has been a lot of interest in intersection of compressed sensing and 

machine learning meet. The goal of this area, called "Compressive Learning," is to combine the 

two disciplines in order to create cutting-edge methods for data analysis and signal processing 

[4]. Reconstruction of compressed signals, using neural networks can be considered a subject 

within the area of compressive learning. It is important to continue researching the fast 

developing topic of compressed learning because it has the potential to significantly improve 

the state of the art in signal processing and judgment.  

The purpose of this master thesis is on the one hand to study the use of CS technique as 

a compression tool and on the other to investigate the limits of its application in distributed 

compressed learning scenarios. To this end, in our system, an IoT node (leaf node) performing 

CS will sample a signal at rates much lower than those specified by Nyquist. The compressed 

signal will then be sent for reconstruction to a receiver node (sink node). At the same time, a 

machine learning classification model located in both the leaf and the sink node will be trained 

to recognize specific patterns using the compressed signal. Our goal is to achieve the closest 

possible prediction rate between recognitions at the edge and the extreme edge of our 

network, under various CS conditions. 

Study points of the present master thesis will be the differences in the performance of 

the ML model if we represent the original signal in different domains (wavelet, DCT) and with 

different sampling rates. Another point of interest will be tuning critical values (hyper 

parameters) for critical CS points. More specifically, we will try to answer the following research 

questions: a) what is the most appropriate compressed sampling table (Bernoulli, Random, 

Gauss etc)? b) What is the minimum number of compressed coefficients that allow successful 

reconstruction and recognition at the edge? Finally, a comparison will take place between two 

methods of feature selection as far as the correlation between them and the correlation of the 

features with the output of the machine learning model. 
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1 Introduction 

 
1.1 General 

Modern signal processing techniques like compressed sensing make it possible to 

acquire large amounts of data with fewer measurements than previously necessary. This is 

accomplished by exploiting the data's built-in structure, such as sparsity or low-rankness, to 

lower the required number of measurements. Numerous industries of different fields use 

compressed sensing, including wireless communication, medical imaging, and image and video 

compression [1]. 

In recent years, there has been a growing interest in applying compressed sensing to 

distributed machine learning. This application involves training machine learning models on 

distributed systems, such as edge devices or Internet of Things (IoT) devices [5]. This approach 

also involves capturing data on extreme edge devices (leaf nodes) such as micro-controllers 

(esp, Arduino etc) and send them for classification to a trained sink node in the network. 

Distributed machine learning has the advantage of being able to process data closer to the 

source, reducing the need for data transmission and storage. This is especially important at the 

edge and extreme edge, where resources are often limited and latency is a concern [6] 

However, there are DML topologies where, in some IoT nodes, it is not possible or desirable to 

implement ML on. This means that the data will have to be sent for identification to a central 

node. This will be desirable either for central management, or design, or for any other reason. 

In this case it is desirable to send as little data as possible for reasons of speed, security and 

many others that will be analyzed later. At this point, compressed sensing comes to cover this 

need.  

By applying CS, it became possible to reduce the amount of data that needs to be 

transmitted and processed at the edge, improving the efficiency and performance of the 

system [7]. Especially at leaf nodes, in distributed machine learning (DML) systems, it can 

provide significant benefits in terms also at a point of privacy protection. By reducing the 
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amount of data that needs to be transmitted to the sink node, CS can help to minimize the risk 

of sensitive personal information being exposed to external parties. This is especially important 

in scenarios where data is collected from a large number of devices, as the amount of data that 

needs to be transmitted and stored (in a central sink node) can be significantly reduced and 

also privacy concerns are a concern as we will see next. 

In addition, using CS at the leaf nodes allows for sensitive data to be processed and 

analyzed locally, rather than being transmitted to a centralized server. The CS processed data 

are then transmitted over the network to known sink nodes that will perform a ML task, as the 

designed DML model defines. What happens if someone steals our data is a major concern. 

There is where CS comes to increase security [8]. In order to reconstruct the initial signal from 

the compressed data, the receiver must have the representation matrix and other parameters 

that are known only to the leaf node and to authorized reconstructors. Unauthorized parties 

would not have access to the necessary information to reconstruct the data.  

Another potential application of compressed sensing in distributed machine learning is 

in the field of wireless communication. CS is used to reduce the amount of data transmitted 

over a wireless network improving the efficiency, the power consumption and finally the 

performance of the system [10]. There are several challenges that need to be addressed in 

order to fully realize the potential of compressed sensing in distributed machine learning. One 

challenge is the development of efficient algorithms for compressed sensing in distributed 

systems. Another challenge is the design of systems that can effectively integrate compressed 

sensing into distributed machine learning scenarios [11]. 

1.2 The basic idea 

We know that distributed machine learning (DML) is a way to process and analyze data 

from distributed systems, such as edge and extreme edge devices of Internet of Things (IoT) 

devices. One of the main challenges of distributed machine learning (DML) is the need to 

transmit and store large amounts of data, which can be resource-intensive and may have 

negative impacts on privacy. In order to address this challenge, compressed sensing (CS) has 

been proposed as a way to acquire data with a minimal number of measurements. We know 



19 
 

about the impact about the privacy and security but what about the potential loss of 

information that may occur during the compression process? For example, how does the use of 

compressed sensing affect the accuracy of machine learning trained models? How does it 

compare to traditional approaches that do not use compression? 

It is important to consider the tradeoffs associated with the use of CS, as the 

information may be lost during the compression process. This may have an impact on the 

accuracy of machine learning models trained on the data. In order to assess the benefits and 

tradeoffs of using CS in DML, it is important to examine the impact of CS on model accuracy and 

compare it to traditional approaches that do not use compression [12]. 

1.3 Contribution 

In this context, the objective of this thesis is to explore the use of CS in DML and assess 

the benefits and trade-offs of this approach. To achieve this goal, we will conduct experiments 

to evaluate the impact of CS on model accuracy in signals captured of an IMU embedded in a 

micro-controller (Arduino nano33 ble sense).  

First we will create a dataset from the imu, forming 3 different moves (a triangle, a circle 

and the letter M). Next feature selection will be performed on that dataset with different 

approaches, to limit the numbers of features. Using traditional machine learning a classifier will 

be trained on that data. As we can easily understand the model hasn’t seen a reconstructed 

from compressed sensing signal. The trained model should be installed both at sink and leaf 

node (edge and extreme edge).  

In the context of this thesis idea, the scenario is as follows: one or more extreme edge 

devices, such as Arduino Nano 33 BLE Sense micro-controllers, capture IMU signals while 

performing various movements. These signals will be compressed sensing and transmitted to a 

sink node, such as a Raspberry Pi, where they are reconstructed and classified using our trained 

classifier. The goal of this research is to explore the trade-offs between the benefits of CS in this 

scenario, as far as the potential loss of information that may occur during the compression 

process is concerned. 
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To answer this research question, a number of experiments need to be conducted. 

Some questions that need to be addressed through these experiments include: 

 How does the use of CS at the leaf nodes affect the accuracy of the machine 

learning classifier at the sink node? 

 How does the use of CS at the leaf nodes compare to traditional approaches that 

do not use compression in terms of model accuracy and resource efficiency? 

 What is the optimal compression ratio for the specific application and 

requirements of the DML system that ensures that the reconstructed signal will 

be classified correctly? 

This study provides an integrated system that can work in a DML. More specifically, a 

method of creating a machine learning model will be presented which will work effectively in 

leaf and sink nodes of a DML system. This model will take into account all trade-offs when using 

compressed sensing in a DML environment. In this environment a leaf node at the extreme 

edge will receive IMU signals which will be sent to a sink node where they will be recognized.  

It is wanted this research to contribute to a better understanding of the capabilities and 

limitations of compressive sensing and distributed machine learning in the context of micro-

controller-based systems, and inspire further research in these areas 

1.4 Structure 

In this section, the structure of the report of this thesis is analyzed, by presenting the 

chapters that follow. The construction was done in a systematic and comprehensive manner in 

order to present in a clear and comprehensible manner the purpose of the research, the 

problems we faced as well as the findings that emerged after the exhaustive study of the 

object. 

 
 

In the Background and related work chapter, there are two large sections, background and 

related work. In the background section, there is a systematic presentation of the basic 

principles of the areas that we are interested in this work. Initially a clarification is made of the 
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space of IoT and extreme edge in which we work, presenting its characteristics and 

particularities. Then a reference is made to the part of machine learning that interests us, 

presenting basic principles and characteristics of our concern and especially SVM. Special 

reference is also made to the explanation of the operation mode of the basic ML methods that 

will be used in terms of feature selection, evaluation mechanism etc. 

In this section, extensive reference is made to compressed sensing method in terms of 

its mathematical background at the level we are interested in, as well as its basic operating 

principle. Comparisons are made between different representation bases, and points of special 

interest are clarified such as the role of sample arrays, representation and transformation basis 

as well as in which cases it is applicable and in which it is not. 

In the related work section of the chapter under consideration, a study is conducted in 

the area of compressed sensing, where works related to our own study are presented, which 

make use of the CS technique in combination with ML. In addition to presenting the works, a 

relative comparison is made regarding the approach and the way the technique is used in 

relation to our own study. 

The chapter "Design of the system" follows, in which a presentation of the hardware 

and software of the system we developed is made in order to carry out the experiments of the 

present study. Reference is made to the design and topology of the system we used, and the 

role of CS is presented through the system's design. 

In the chapter "Implementation of the System," we present the way we designed and 

developed the software for the study, which combined multiple areas. The design of the end-

to-end ML system is analyzed, as well as the method developed to port the ML model and make 

it executable on a microcontroller. The development of the CS system is also analyzed, how it 

was implemented in Python, our choices in its basic parameters, and the method we followed. 

In the next chapter, "Evaluation," the main chapter of the present study, the 

implementation of both the ML and CS systems is carried out. We present the results of our 

choices in the basic parameters presented during the development of the systems and how our 

choices, through the design of appropriate experiments, led to the conclusions that are also the 
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answers to the questions faced by the present thesis. Different ML models were created, and 

we study their behaviors; we also extensively and thoroughly examine the solver that our study 

has indicated as the most suitable. An extensive study is also conducted on the role played by 

the sampling matrix, and an algorithm is presented, with the help of which we answer our main 

questions. 

In the last chapter of the present work, the conclusions drawn during the study are 

presented, and by summarizing them, a comprehensive picture of the relationship between CS 

and distributed ML is provided. The chapter concludes with questions that arise after the 

completion of the study, which serve as suggestions for future research topics. The area we are 

studying is new and represents a very dynamic field with strong interest due to its extensive 

application. 
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2 Related technologies and Related work 

2.1 IoT 

The technological term "Internet of Things" is becoming more and more well-known. If 

we were try to give a simplified interpretation of the term, we would say that it is a technology 

that turns simple devices into smart and interconnected ones.  

The Internet of Things (IoT) includes a software and hardware infrastructure that 

connects the physical world to the Internet. Due to the explosive growth of user interest, the 

number of IoT devices has increased dramatically in recent years. It is estimated that by 2025, 

more than 75 billion devices will be connected to the Internet [13], with what this implies for 

the economic impact on the global market. IoT devices usually have limited computing power, 

small memories but at the same time generate large amounts of data. 

2.1.1 IoT on the Edge 
In our everyday life, low-power systems to which sensors are mainly adapted are used in 

homes, vehicles and workplaces. The huge reported growth of the IoT sector has been achieved 

mainly thanks to the so-called "cloud" (cloud computing) which, however, has several 

disadvantages, the most important of which is the delay it brings to the network 

The delay is caused by the transfer of data from the IoT data collection devices (IoT edge 

devices) to the central point where they are processed (cloud) and of course the realization of 

all the required actions [14]. It is obvious that this disadvantage is unacceptable in very 

important services such as e.g. monitoring the user's health. 

With the increasing use of IoT devices, the "only cloud computation model" is becoming 

impractical. This is because it increases latency, reduces data network bandwidth, and raises 

privacy and reliability issues at the same time. The solution will be to bring the computing 

process while making the relevant decisions as close as possible to the point of data collection 

(edge computing). 

The ability for a device to make a decision based on the data it collects is possible using 

machine learning. A technology that makes it possible to create a new term, the Internet of 
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Conscious Things. Unfortunately, however, limitations in computing capabilities and the lack of 

resources in these devices either limit or prohibit the application of complex machine learning 

(ML) algorithms. 

The need to be able to delegate data analysis and decision-making tasks to edge devices 

is so great that the topic "Edge Computing" has emerged as one of the most prevalent in 

searches and keywords of scientific articles and papers (and not only). This is illustrated in  

Figure 1. 
 

 

Figure 1: Edge Computing Interest (source : Google Trends) 

2.1.2 Machine Learning on the Edge 
In recent years, we have, wittingly or unwittingly, become dependent on machine 

learning and deep learning technology. These technologies include everyday applications such 

as photo classification, face and speech recognition, but also in more important cases, such as 

self-driving cars and medical diagnosis. For the most part these models are very large and 

require a lot of computing power, which makes them very difficult to run on any of the billions 

of microcontrollers in operation today. 

ML developers focus on redesigning existing successful models with a reduced or even 

modified number of parameters in order to create the lightest model. In this way, the demand 

for memory and computing power is reduced while at the same time maintaining its accuracy in 

predictions. So the compression of the model is what allows us to integrate it even into very 
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small micro-controllers, like for example the Arduino Uno, which has 2K RAM, and which can, as 

it turns out, perform ML functions [15]. 

The trend is so great that major ML libraries such as TensorFlow released a micro-

controller-specific version, much lighter (TensorFlow Lite) but incorporating all its core features. 

This has been a springboard for tiny devices that can be used for IoT needs to incorporate 

machine learning. 

DML is a recently raised term, actually is a subset of machine learning that trains and 

run models at different and multiple devices (distributed). This approach is used when the 

amount of data is too large to process or when the computation that is required for the training 

of a model is too intensive for a single machine to handle. DML is used in a variety of 

applications such as natural language processing, computer vision, data analysis, gesture 

classifications etc. It has also become increasingly important for the development of artificial 

intelligence and machine learning systems that can operate in real-time environments [16]. 

Extreme edge computing and distributed machine learning are closely linked concepts. 

Instead of using a centralized server for processing, edge computing uses devices that are close 

to the data source. This method can help a system respond more quickly and with less latency. 

This idea is expanded upon by extreme edge computing, which uses embedded technology like 

smart devices or sensors to carry out processing. Edge and extreme edge computing is used in 

the context of machine learning to carry out computation on the devices that create the data. 

Applications that need real-time decision-making or have restricted connection can benefit 

from this method. 

2.2 Machine Learning 

At a higher level, a machine learning problem can be divided into three types of tasks (Figure 2): 

 Data tasks (data collection, data cleaning and feature configuration). 

  Training tasks (building machine learning models using data features). 

  Assessment tasks (evaluation of the model). 
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Figure 2: Machine learning at high level, source: PyBay2019 

Different types of data use different processing techniques. For example, an image looks 

like one thing to the human eye, but a machine sees it differently after it is converted to 

numerical features derived from the pixel values of the image using different filters (depending 

on the application). So there are processing techniques for the IMU sensor data type, which is 

essentially pure time series data. 

If we wanted to look at a more abstract level what machine learning is we would say 

that it is a subset of artificial intelligence (AI) that can solve tasks that are infeasible or too 

difficult to handle with more traditional programming languages. In 1959, Arthur Samuel 

defined machine learning as "The field of study which gives computers the ability to learn, 

without being explicitly programmed" [17]. Despite the variety and effectiveness of machine 

learning algorithms, it is becoming clear that data is undeniably more important than any 

chosen algorithm. 

There are several categories of machine learning, which can be broadly classified (based 

on the feedback of the system under development), into three main types: supervised, 

unsupervised and reinforcement learning. Based on the result produced by the model, machine 

learning algorithms are divided into 3 categories: Classification, Regression and Clustering 

Algorithms. 

In this thesis we are going to implement among others, a system that recognizes human 

gestures. For a system like that, a type of "supervised learning" would be appropriate. In 
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supervised learning, we train a model on labeled training data, which consists of input data and 

the corresponding correct output labels. The goal is to learn a function that can map the input 

data to the correct output labels.  

Such a system would also be able to perform a classification task. In classification, the goal is to 

predict the class or category that a given input belongs to. In this case, the input would be the 

data from the IMU sensor, and the classes would be the different gestures or movements that 

the system is able to recognize. 

After a thorough study, as will be presented in a documented and detailed manner, SVM 

was chosen as the classicization algorithm 

Support vector machines (SVMs) are a type of supervised machine learning algorithm 

that can be used for classification and regression tasks. SVMs are not directly based on a 

distance metric, but they do use a distance-based approach to find the hyper plane in a high-

dimensional feature space that maximally separates the classes in the training data [18]. 

 In the case of a linear SVM, this hyper plane is simply a line that separates the classes. 

In the case of a non-linear SVM, like ours, the classes are separated by a "margin" around the 

hyper plane, which is achieved by using a kernel function to map the data into a higher-

dimensional space. The distance between the hyper plane and the closest points in the training 

data (called the "support vectors") determines the width of the margin. 

SVMs are known for their good generalization performance and ability to handle high-

dimensional data. They can also be effective in cases where the number of features is much 

greater than the number of samples. However, they can be more computationally intensive to 

train than some other algorithms, and they may not be the best choice for very large datasets. 

2.2.1 SVM algorithm 
Support Vector Machine (SVM) is a supervised machine learning algorithm that can be 

used for either classification or regression purposes. It is most often used in classification 

problems, as in the case of this thesis. 
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The basic idea of SVM is to find a hyper plane that best divides a data set into two 

classes (binary classification) [19]. 

As we can see in Figure 3, at its left part, a simple classification problem appears with 

three different possible separation lines. All three of the lines drawn separate the two 

categories, with the feeling that all 3 are 'correct'. However, if we had to choose one of the 

lines as a classifier for a test data set, we would have to ask ourselves by what criteria to choose 

it and also which of the lines is better than the others. 

 

Figure 3: SVM basic concept 

If we select the lines that are really close in either the left or the right subset of the data 

then there is a chance that an input point will be classified in the wrong class. This is because 

we have fitted the line tightly over some of the data points we have in the training set. Thus, a 

point that enters will be very close, for example, to the left category, but the line places it to 

the right of it, so it belongs to the right category. 

The line in the middle does not have this problem. So we need to select the line in the 

middle as the separator. This is the basic idea in SVMs. At this point we should define some 

basic concepts. 

 The line in the middle of the separation is called the decision boundary 



29 
 

  The area defined by the decision line, if we travel to the left and right of it until we 

encounter data, is called the margin. The margin is symmetrical around the decision 

line. 

  The data that are closest and actually define the dividing lines of the margin are called 

support vectors. 

What we want is to have the maximum possible margin [20], so that our algorithm can 

better generalize to the data that is going to come, as a result it will be a better classifier.  

An important aspect of SVMs is that support vectors are the most useful data points. 

After the training we can throw away all the data except the support vectors, which will be used 

to create the model that will perform the categorization. This is a very important feature useful 

for saving on data storage, which is valuable in the very limited storage capabilities of the small 

embedded systems we are studying. 

Continuing, the basic concept and operation of SVM will be presented and also how the 

maximum possible Margin can be calculated from the data. 

First of all, the line that separates the 2 classes (decision boundary) in its most general 

form is: y=w•x+b where w is the coefficient of the line and b is the bias from the origin of the 

axes. So if we have an e.g. 2-dimensional space, then the above equation will be of the form 

y=w1•x1+w2•x2+w0. Essentially it is the inner product of the two vectors w and x. Therefore, it 

can also be written as y=wT•x+w0. This line defined from that equation, divides the plane into 

two half-planes and therefore can be a linear classifier. A special feature of this separator is that 

we are not interested in the value of the equation but the sign, y=sign(w0+(w,x)). That is, if a 

new element comes, the sign of the equation is of our interest. If it is positive it belongs to one 

class if it is negative it belongs to the other class [21]. 

Straight lines, however, that will separate the two classes will possibly be found plenty, 

as presented previously. We wish to find the line that leaves the maximum possible margin 

between the classes and this line is exactly the linear separator of SVMs. 

As is known from geometry, the distance of a point x0 from a line w0+wT•x=0 is: 
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Equation (1)  distance of a point from a straight line 

In eq(1), |||| w is the Lp norm of the vector w (lets say of dimension m) whose value is 

calculated from eq(2)for p=1 (Manhattan norm). When p=2 I have the Euclidean norm: 
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Equation (2) Lp Norm calculation 

The SVM algorithm considers it to have 2 classes 1 and -1. So the equations of the lines 

to the left and right of the decision boundary will be as shown in Figure 3. Given eq(1), it is 

found that the distance of the class 1 line, from the decision line is  
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the same as the distance of the class -1 boundary line. So the distance between these two lines 

defined by the margin is  

||||

2
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w
inm     

It is therefore obvious that the margin is maximized when w is minimized [21]. 

So summarizing all of the above, we can say that the function of SVM focuses on finding 

the minimum w (which maximizes the margin). In addition to this, the decision function should 

give value ≥1 if it belongs to one class and ≤-1 if it belongs to the other. In general, we can write 

the above in the form of equations as follows: 
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 yi  (w0+(w,x))-1≥0, yi∈ {-1,+1} 

We have one constraint for each data, so in N data we have N constraints [21] 

Given that: 
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If we have p=1: L1 SVM Linear Programming, If we have p=2: L2 SVM Quadratic Programming 
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2.2.2 Evaluation of Classification models. 
The process of evaluating the machine learning model we create is one of the most 

important phases. Using evaluation we want to see how the model will behave, i.e. how well it 

will classify an input data into the correct class. The evaluation is done in two ways. By using the 

evaluation indicators and by using the evaluation mechanisms presented in the next section. 

2.2.2.1 Confusion matrix 
Diagonal values of the confusion matrix are correct predictions, while off-diagonal 

values are incorrect predictions. 

 

Figure 4: Confusion Matrix 
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2.2.2.2 Accuracy 
This measure enables us to estimate the accuracy with which an input data will be 

classified into the correct class [22]. As model accuracy we define the amount of sample data 

correctly categorized to the total number of sample items. 

FNFPTNTP
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Equation (3) Accuracy calculation formula 

Only the accuracy as a measurement does not accurately reflect the true situation when 

using a data set that does not contain an equal number of elements from each class which must 

be taken seriously. Also, other indicators such as precision and recall are equally important. 

2.2.2.3 Precision. 
Precision tries to answer the following question: 

What percentages of positive identifications were actually correct? And mathematically it is 

defined based on the following formula: 
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Equation (4) precision formula 

From eq(4) it can be seen that: A model that produces no false positives has an accuracy 

of 1.0. 

2.2.2.4 Recall. 
Recall attempts to answer the question, what percentage of true positives were 

correctly identified as positive? Mathematically it is defined by eq(5): 
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Equation (5) Recall formula 



33 
 

It can be seen that a model that produces no false negatives has a recall value of 1.0 

2.2.2.5 F1 Score 
To fully assess the effectiveness of a model we have just built, both precision and recall 

must be considered, which are unfortunately at odds. More specifically, improving precision 

usually reduces recall and vice versa. 

The F1-score combines both precision and recall in order to calculate a more 

harmonious mean between these indices. The formula that calculates the F1-score is given by 

the following equation: 
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Equation (6) F1 score formula 

2.2.3 Evaluation mechanisms 
The evaluation metrics show the behavior of the model, when it is applied to a set of 

data of which we know the class to which each one belongs (known output to known input). 

However, if we want to see what will be the behavior of the trained model in data it has not 

encountered, then these metrics cannot help us. At this point it is appropriate to mention two 

basic terms, those of under-fitting and over-fitting[21]. 

Over-fitting occurs when a model is applied and perfectly fits the data in the training set. 

This implies that there is excellent index performance (accuracy) but very poor on new input 

data. Essentially such a model is useless. 

Under-fitting occurs when essentially a model cannot perceive the internal information 

of the data set, that is, when the model does not apply well to the data. This is usually a result 

of simplistically designed models, improper data pre-processing resulting in outliers and other 

reasons. 

How do we deal with these two problems? With the process of Cross Validation [21]. 

There are various evaluation mechanisms with the most important being Hold-out validation 

and Cross-Validation. 
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2.2.3.1 Hold-Out Validation 
This mechanism is extremely simple. We randomly split our data into two different size 

chunks one large and one small. We train the model on the bulk of the data and evaluate the 

validation metrics on the smaller set. Computationally speaking, the process is simple to 

program and characterized by fast execution. The downside is that it is not statistically robust. 

The validation results are from a small subset of the data, hence its estimate of the 

generalization error is less reliable. 

2.2.3.2 K-Fold Cross-Validation 
Cross-Validation is a technique for evaluating machine learning models on a limited 

sample of data figure 5. The procedure has a single parameter called k which refers to the 

number of groups into which a given sample of data should be divided. Hence, the process is 

often called k-fold cross-validation. When a specific value for k is chosen (let k= 10) it becomes 

10-fold valid. 

Cross-validation is mainly used in applied machine learning to estimate the behavior of a 

machine learning model on data it has not yet seen. It is a popular method because it is simple 

to understand and because it generally leads to a less biased or less optimistic estimate of 

model skill than other methods, such as a simple hold out validation. In general, the process is 

as follows [21]: 

1. The dataset is shuffled. 

2. The set of data is divided into k groups 

3. For each of the k groups: 

 3.1. The group becomes a test set 

 3.2. The other k-1 groups become training sets (train set). 

 3.3. I train the model on the train set 

 3.4. Evaluate the trained model on the test set 

 3.5. I get and store the evaluation score 
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 3.6. I repeat process 3 until all groups have finally been a test set 

4. I find the average of K evaluations and this is the evaluation index of the model (cross 

validation score). 

Important note: each data in the dataset is assigned to a single group and remains in 

that group throughout the process. This means that each sample has a chance to be used in the 

test set 1 time and used to train the model k-1 times. 

 

Figure 5: K-Fold cross validation, source: Wikipedia 

Selecting the best k is a very important matter. An incorrectly chosen value can lead to 

either a large variation in the score or a bias of the model. Studies have shown that k=10 is a 

generally good value. The cross-validation technique would be the strongest validation 

technique but it has some weaknesses. More specifically, it has been found that it can cause a 

so-called shift of the data set. I have data shift when equal distribution of each class in the 

training and test sets is not ensured. To solve this problem, a variant of the k-fold cross 

validation method was developed which was called Stratified k-fold Cross Validation [21] and 

which essentially ensures the equal distribution of the classes as shown in the Figure 6. 



36 
 

 

Figure 6: Stratified k-Fold Cross Validation 

2.2.4 Feature Selection 
The data we use to train a model has a huge impact on its effectiveness; in fact our 

model is our data. Regardless of the system output, even partially related data to output, can 

negatively affect the performance of the model. Therefore feature selection and data cleaning 

should be the first and most important step of its design. 

The feature selection technique aims to reduce the features in the data set in order to 

reduce the complexity of the resulting model. Of course, with the reduction, the predictive 

accuracy of the model is not degraded at all; it is degraded to a tolerable level [23]. It is one of 

the initial stages in the machine learning process. The main reasons for using feature selection 

are: 

 Allows the machine learning algorithm to train faster. 

 It reduces the complexity of a model and makes it easier to convert it into executable 

code 

 Improves the accuracy of a model if the right subset of data set is selected. 

 Reduces over-fitting. 

 Reduces training time: fewer data points reduce algorithm complexity and algorithms 

are trained faster. 
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2.2.4.1 Filter Method 
Filter methods are generally used as a pre-processing step (Figure 7). Feature selection 

is independent of any machine learning algorithm. Instead, features are selected based on their 

scores in various statistical tests in which we study their association with the system output 

[25] . 

 

Figure 7: Filter Method for feature selection 

2.2.4.2 Wrapper Method 
In this method figure 8, we try to use a subset of features and train a model. Based on 

the conclusions we get, we decide to add or remove features from our subset. The problem is 

essentially reduced to a search problem. These methods usually require a long calculation time. 

[26] 

 

Figure 8: Wrapper Method 

The wraparound method has 3 approaches: 

• Forward Selection: Forward selection is an iterative method in which we start with no 

features in the model. In each iteration, we keep adding a feature that improves the 

performance of our model, until adding a new one stops improving it. 

• Backward Selection: In this approach, we start with all features and remove the least 

important feature at each iteration that improves model performance. We repeat this 

until no improvement is observed when removing a feature. 

• Recursive elimination of features: It is a greedy optimization algorithm that aims to find 

the subset of functions with the best performance. It repeatedly builds models and 

saves the best or worst performance each time. Builds the next model with the 
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remaining features until all are used up. It then ranks the features in order of their 

elimination. 

2.2.5 Difference between filter and wrapper methods 
The main differences between filter and wrapper methods in the feature selection process [27] 

are: 

• Filter methods measure the correlation of with the dependent variable (output of the 

system), while wrapper methods measure the result of the trained model from using a 

subset of features. 

• Filter methods are much faster compared to wrapper methods as they do not involve 

training the models. In addition to this, convolution methods also have a very high 

computational cost. 

• Filter methods use statistical methods to evaluate a subset of features, while wrapper 

methods use validation methods. 

• Filter methods may not find the best subset of features in many cases, but wrapper 

methods can always provide the best subset of features. 

• Wrapper methods are more prone to over fitting models compared to filter methods. 

2.3 Compressed Sensing 

Compressed sensing, also known as compressive sampling, is a powerful technique for 

efficiently acquiring and reconstructing signals that are sparse or compressible in some domain 

[28]. By using a small number of non-uniformly spaced samples, it is possible to accurately 

reconstruct a signal that would otherwise require dense and uniformly spaced samples using 

traditional methods [29]. This is possible because compressed sensing leverages the sparsity of 

the signal, which means that it can be represented using a relatively small number of non-zero 

coefficients in some basis [30]. By reducing the number of required measurements, compressed 

sensing can significantly improve efficiency and robustness to noise [31]. In this section, we will 

delve into the mathematical foundations of compressed sensing, including the linear algebraic 

formulation and the concept of sparsity (Elad, 2010). We will also discuss various algorithms for 
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compressive sensing, such as orthogonal matching pursuit and basis pursuit [32], and examine 

their performance and computational complexity [33]. 

2.3.1 Beating Nyquist 
With compressed sensing, it is possible to significantly decrease the number of 

necessary measurements, which is much lower compared to the number specified by the 

Nyquist-Shannon theorem. This conventional theorem states that a signal must be sampled at a 

rate no less than twice the highest frequency present in the signal to prevent signal aliasing 

[34]. On the other hand, CS leverages the sparsity of signals in a specific basis or domain to 

enable accurate reconstruction with only a limited number of linear measurements, even at a 

lower sampling rate than what is prescribed by the Nyquist-Shannon theorem. This approach of 

signal acquisition makes CS a suitable solution for various applications where data reduction is a 

crucial factor.  

We will proceed to see that by using compressed sensing, we can indeed sample at 

rates below Nyquist and then successfully reconstruct the original signal. Let's assume we have 

a high-resolution signal with duration of one second, consisting of 4096 points. Suppose the 

signal is a composition of 2 frequencies, 200 and 1000Hz. Based on the Nyquist criterion, we 

would want double the points defined by the maximum frequency contained in the signal, i.e., 

2000 points. However, we see in Figure 9 that with significantly fewer points and without any 

optimization, we achieve a very good reconstruction. 
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Figure 9: CS beating Nyquist 

2.3.2 Random vs Non-Random measurements 
A good observation is that the points are chosen from initial signal in a random way [34] 

and that is a very important issue in CS at the phase of signal acquisition. The reason for this is 

that, a random measurement selection provides high probability of achieving a good signal 

reconstruction with very good accuracy, even with limited (subNyquist) measurements. This is 

because random measurements are unlikely to be highly correlated with each other, so we 

have minimum coherence between the measurement matrix and the sparsity basis of the 

signal, as it will be discussed later in details. Random measurements selection also, helps to 

reduce the computational complexity of signal reconstruction algorithms and ensure their 

stability and robustness to noise. 

Below we present the same signal with the same number of reached points but this 

time not in a random way but equally spaced points. The result is shown in Figure 10. It now 

becomes obvious that choosing the points in a random way is a necessary condition for 

successful signal reconstruction. At the left of the figure the signal is presented in the time 

domain and at the right is presented at the frequency domain. Especially at the frequency 

domain we can observe that the acquisition system is totally unable to perceive the frequency 

components of the signal. 
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Figure 10: Random vs. not random sampling 

2.3.3 Signal Domain and Transformation basis 
Two key concepts that we need to clarify because they are very important in CS are 

signal domain and signal transformation/representation basis. Even these concepts belong to 

reconstruction subsystem we need to present them here because it will help us better 

understand the role of some basic points in the measuring subsystem.  

When we talk about signal domain we are referring to the set of values that the signal 

can take on. To make it clearer we can measure a signal in the time domain that means that 

each sample of the signal corresponds to a specific point in time. A signal can also be defined in 

the frequency domain, in which case each sample of the signal corresponds to a specific 

frequency component [35]. 

On the other hand, a signal representation/transformation basis is a set of functions 

that can be used to represent/transform the signal in a particular domain [36] .For example, the 

Fourier basis is a common choice for representing signals in the frequency domain, while the 

wavelet basis is often used for representing signals in the time-frequency domain. To achieve 

transformation we need a transformation basis array usually called psi (Ψ) that transforms a 

signal to a specific base [36]. We will see more about that in details, in a following section of 

this report, because psi is a key point in the context of CS.  
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In the Figure 11 we can see a signal we got from the accelerometer of our micro-

controller. The signal corresponds to the formation of a circle and is presented in time and 

frequency domain, in Fourier (DCT) and wavelet (DWT) representation basis in original and k-

sparse form after thresholding. 

 

Figure 11: analysis of a signal x in time and frequency domain, DCT and wavelet basis 

In the first line we notice that the representation in the frequency domain has far fewer 

significant values than our signal in its original form in the time domain. This leads us to assume 

that a frequency domain representation basis is a good choice. The first subplot of the second 

(DCT transformation coefficients) and third line (DWT transformation coefficients) should also 

confirm this hypothesis. We see that the values approaching zero (the least significant ones) in 

the DCT representation basis are much more than in DWT. In DCT representation basis it is 

obvious that my signal is considered sparser than in wavelet representation basis.  
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The second row at the second column of the Figure 11 plots the 20 strongest (also 

known as K-sparse, K=20) coefficients the DCT representation. Similarly, the 20 strongest coeffs 

of the wavelet coefficients are shown in the second subplot of the third row. The use of k-

sparse representations, as said before, allows us to efficiently capture the essential information 

of the signal, providing a comprehensive understanding of the signal's properties that is crucial 

in various signal processing applications. Also by thresholding non important coefficients are 

turned to zero, and by that we have eliminated noise from the signal, because noise has low 

value coefficients in the representation.  

In general, the choice of signal domain and signal transformation basis will depend on 

the characteristics of the signal and the goals of the analysis. An IMU signal, (accelerometer 

values) neither is periodic nor has particular frequency content, so it is not convenient to 

represent it in the frequency domain using the Fourier basis. On the other hand, the signal has 

localized features in time or frequency, it is more appropriate to represent it in the time-

frequency domain using the wavelet basis. We will study to see which the best representation 

basis is, because it’s critical in compressive sampling but from a first look at the previous figure 

it intuitively seems that the DCT representation basis is more suitable. 

2.3.4 CS Measuring subsystem 
The measurement subsystem is responsible for taking a small number of measurements. 

The system is trying to capture the essential information about the signal with minimum 

number of measurements. This is achieved using a well-suited measurement matrix to our 

signal [37].  

One of the structural elements of the compression subsystem is the sampling matrix A. 

If I have a signal x and a measurement matrix A, it will randomly select a subset of x to create 

the vector y. The size of A, and consequently the number of points, is proportional to the 

sparsity of the signal. The whole process can be represented by the equation: y = A * X [38] and 

visually as follows: 
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Figure 12: compressive sampling visual representation 

Following the above, compressing a signal is a matter of matrix multiplication [39]. More 

specifically, if I have a vector x ∈ Rn, which contains my original signal (from an IMU sensor) 

and multiply it with a matrix A ∈ Rmxn with m << n, then a vector y ∈ Rm is produced, as 

shown in the following Figure 13 . This vector represents the compressed version of x. The 

points I obtain are non-adaptive, meaning they do not contain information about previous 

points due to their random selection. These fewer data points are very easy to store or transmit 

over a network to a sink node. 

 

Figure 13: Compressive sampling as array multiplication 

2.3.4.1 A good measuring matrix A 
Η CS can be summarized in the following seemingly simple statement: "a signal, if it is 

sparse enough in a given basis, can be recovered (with high probability) using significantly 

fewer measurements than its original, provided there are sufficient measurements and these 

measurements are sufficiently random" .  
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Each part of the above statement can be mathematically rigorously represented in a 

general framework that describes the geometry of sparse vectors and how these vectors are 

transformed through random measurements. A sampling matrix has certain properties, the 

values of which define its quality and, consequently, the quality of the reconstruction of the 

signal it samples [40]. 

2.3.4.2 Transformation matrix psi 
A transformation matrix, in the context of compressed sensing (CS), is a key component. 

We use it to represent the linear mapping between the high-dimensional signal and its 

compressed measurement vector. That means that we map the signal from its high-

dimensional domain (initial form) to a lower-dimensional measurement domain 

(transformation form), where the number of important measurements is much smaller than the 

signal dimension.It is very important and we will show that later, to note that the 

transformation matrix in CS must be incoherent [3] with the sparsifying domain of the signal, 

which ensures that the measurements provide a compressed representation of the signal that 

retains the essential information needed for reconstruction . 

The choice not only as far as the coherence is concerned, but also about the type of 

matrix is crucial for the success of the CS recovery algorithm. A popular choice is a random 

matrix or a sub-sampled Fourier matrix, which have been shown to provide good performance 

in practice. Other examples of transformation matrices include wavelet and curvelet 

transforms, which are commonly used in image processing applications. 

2.3.4.3 Coherence of Α and Ψ. 
A crucial issue in CS is the coherence of the sample matrix and transformation matrix. 

The degree of resemblance between the rows and columns of the measurement matrix and the 

sparse representation matrix is known as coherence. A suitable measurement matrix for 

compressed sensing should have minimal coherence with the representation matrix, which 

means that its columns should differ as little as possible from those of the sparse 

representation matrix. This makes it easier for the compressed sensing technique to precisely 

recover the sparse representation of the original signal and ensures that the measurement 
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matrix is well-conditioned. In compressive sensing, coherence is used to rate the effectiveness 

of a sensor matrix A. A lower coherence value indicates that the matrix is more suitable for 

compressive sensing and will lead to better performance. Mathematically, it can be expressed 

as: 

 
Equation (7) coherence of two arrays calculation formula [41] 

Where ai is the ith column of the matrix A and ψj is the jth column of the matrix ψ. The term 

||ai|| represents the Euclidean norm of the ith column and the term ||ψj|| represents the 

Euclidean norm of the jth column. The maximum is taken over all pairs of columns (i, j) 

2.3.4.4 mutual coherence of A 
The mutual coherence of the sampling array and the coherence of the sampling matrix 

and transformation matrix plays important role in determining the performance of the 

compressed sensing algorithm. The mutual coherence of a sampling array measures the 

similarity between the columns of the sampling matrix. It is wanted sampling array to have low 

mutual coherence, in other words, the columns of the sampling matrix are as dissimilar as 

possible. This ensures that the measurement matrix satisfies the restricted isometry property 

(RIP), which is a key condition for the success of the compressed sensing algorithm. Mutual 

coherence of a matrix A is a measure of the maximum absolute inner product between any two 

columns of A, normalized by their respective norms. Mathematically can be expressed as: 

 

Equation (8) mutual coherence calculation formula [41] 
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where ai is the ith column of the matrix A and aj is the jth column of the matrix A and The term 

||ai|| represents the Euclidean norm of the ith column and the term ||aj|| represents the 

Euclidean norm of the jth column. The maximum is taken over all pairs of columns (i, j) 

In order to better understand the concept of coherence between matrices and the mutual 

coherence of a matrix, a visual representation is provided in the following Figure 14. Let's 

assume that a DCT transformation basis array psi has 50x50 elements. The sampling matrix A 

has 10x50 elements and consists only of 0s and 1s, with the constraint of having only one 1 in 

each row, the so-called random single pixel subsample array. Why this constraint? When A is 

multiplied by a signal x with 50 points, it will create a signal y containing 10 elements, and each 

element of y will be an identical element of x rather than a linear combination of some of them. 

Also, let's assume a sampling matrix A2, which consists of the first 10 rows of psi, an entirely 

parallel matrix. As we will show, this is a very poor choice and is likely to result in very poor 

outcomes. The following figure visually presents the A, A2, and Psi matrices. 

 

Figure 14: A, A2 sampling matrixes and psi 50x50 transformation matrix 
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We measure the mutual coherence of each matrix and the coherence between each 

sampling and transformation matrix. The results are presented in the following comparative 

 

Figure 15: coherences between matrixes 

One can easily realize that A is a very good choice; while on the contrary, A2 is a very 

bad one. It is obvious that A2 is completely parallel to psi, which is logical since it is an inherent 

part of it. More analysis will be done below in the sampling matrix section. 

In Figure 16 are presented four types of good random measurement matrices A that are 

more frequently used [36]. 

 

Figure 16: examples of random measurement matrices A 

2.3.4.5 Number of measurements m. 
The number of measurements that A will produce must be sufficiently large and is given by the 

following equation, given that x is k-sparse in a representation basis Ψ: 
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 log(n/K). *K*μm  

Equation (9). number of sample points to create y [42] 

The m is a constant that depends on how incoherent the matrix A and Ψ are. 

2.3.4.6 Traditional compression vs. CS compression. 
In traditional compression, a signal is captured by an ADC at rates defined by the Shannon-

Nyquist rule. However, when sampling at such a high rate, we have two main problems. First, 

the size of the signal is very large compared to the information contained within it , and second, 

there are signals (multiband signals) with a very large spectral range, making their sampling 

extremely difficult even for the best ADCs. 

In traditional signal compression, the necessary transformation coefficients in a basis (DCT, 

Fourier, etc.) are calculated. From these coefficients, after sorting them in ascending order 

Figure 17, , we only retain the largest and most significant ones, while discarding the smaller 

ones for storage/transmission reasons. This raises the question, "why take so many samples 

when most of them have to be discarded during the thresholding process?'. 

 

Figure 17: DCT coefficients sorted 

Compressed Sensing (CS) is a more efficient method compared to traditional compression, 

especially when the compressed signal is to be transmitted over a data network [43]. 

Traditional methods have higher computational complexity and require more computational 
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power and resources, consuming more energy compared to CS. This makes CS an ideal choice 

for microcontrollers located at the edge and extreme edge. Additionally, its low computational 

power requirements make it significantly faster. CS is also more tolerant to incoming noise in 

the signal compared to traditional compression methods. The differences between the two 

methods are illustrated in Figure 18. 

 

Figure 18: Traditional compression vs CS Acquisition 

2.3.5 CS- Reconstruction Subsystem 
The reconstruction subsystem tries to reconstruct the original signal with best accuracy, using 

only a small number of measurements that have been taken. This is achieved by various ways 

we will examine in the specific section of our thesis. The recovery subsystem can also 

incorporate prior information about the signal, such as its sparsity structure or its properties in 

a particular basis, to further improve the accuracy of the reconstruction. 

2.3.5.1 Sparsity as a parameter 
In the context of compressed sensing, a signal is considered to be sparse if it can be 

represented in some basis, using a small number of non-zero coefficients [44]. To make things 

clear, transforming a given signal in a particular basis representation does not make it sparse, 

but it is considered as sparse if most of its coefficients in that representation are close to zero. 

The Discrete Cosine Transform (DCT) is often used to represent IMU signals in a sparse form 

because it of transforms signals into a frequency-domain representation, where most of the 

energy of the signal is concentrated in a few coefficients. These coefficients represent the main 

features of the signal and by applying a threshold on these smaller coefficients, it is possible to 

obtain a sparse representation of the signal. Also this process can be considered as noise 
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removal. The thresholding process discards these small coefficients and only retains the larger 

ones, which represent the important information in the signal. The choice of the threshold 

depends on the desired level of accuracy, but typically, the threshold is set such that a small 

fraction of the total number of coefficients is kept. 

2.3.5.2 Reconstruction 
When the compressed signal y reaches the sink node, a good question is why we don't simply 

find the inverse of matrix A, given the equation y=A*x, so that x=A-1*y? The reason is that A is 

not a square matrix since m<<n, and it doesn't have an inverse. Moreover, the system of 

equations, as we will see, is indeterminate and requires complex methods to be solved. 

As mentioned earlier, natural signals, such as sound or inertial signals, are highly compressible. 

This means that if they are transformed into an appropriate basis, they can be represented by a 

set of coefficients where most of them are zero or at least very close to zero (Figure 11). he 

non-zero coefficients are the ones we are interested in. Mathematically, let's consider a 

compressible vector x where x ∈ Rn. This vector can be transformed into a coefficient vector S 

as defined by the following equation:  

sx   

Equation (10) signal X transformation 

Where Ψ is the transformation matrix (e.g., DCT, Fourier, etc.) that transforms the original 

signal x into the coefficient vector S. The vector S will have only a few non-zero elements (i.e., it 

is sparse) that capture the essential information of the signal. The goal of compressed sensing is 

to recover x (or equivalently, the sparse vector S) from a much smaller set of measurements y, 

using the knowledge of the sensing matrix A and the sparsity basis Ψ. 

Combining the above equations, we have: Y=A*x=A*Ψ*s where we end up with the basic 

equation of Compressed Sensing. 

Y==A*Ψ*s  

Equation (11) main cs equation  
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The matrix Θ ∈ Rmxn is the product of A * Ψ. As we mentioned in the acquisition model, the 

Measurement matrix A represents m linear measurements of the original signal x. The system 

of equations defined by eq(11)has Θ and y as input data, and we are looking to find the vector 

s. Once we find it, we will substitute it into eq(10) to obtain the reconstructed original signal x. 

However, eq (11) has n unknowns, which are the coefficients of the vector s, and m equations, 

meaning that our system is non-deterministic since we have infinite solutions that satisfy our 

equation. A chosen reconstruction algorithm, also known as a solver, is fed with the matrix Θ 

and the compressed vector that arrived (in our case, at the sink node). The solver solves the 

non-deterministic system of equations and finds the sparsest s that solve eq (11). Then, through 

the inverse transformation process (e.g., IDCT if we had chosen DCT), we obtain the 

reconstructed vector x_hat. The reconstruction model is presented in the following diagram.  

 

Figure 19: CS reconstruction model 

2.3.5.3 Reconstruction Algorithms (solvers) 
Various reconstruction algorithms have been developed, which rely on different approaches for 

calculating s. The most significant approaches are:  

2.3.5.3.1 Convex-Relaxation. 
This group of algorithms is based on solving the convex optimization problem through linear 

programming to achieve the computation of s and, consequently, the reconstruction of the 

original signal. In these methods, the number of measurements is small, but the calculations 

have high computational complexity. Some solvers of this class are BP, BPDN, LASSO, LARS [45]. 

Their basic philosophy is that we know that we are essentially dealing with an optimization 

problem in which we are searching for the sparsest s, i.e., the one with the smallest l1 norm 

that satisfies eq(11). 

The l1 norm is given by the formula: 



53 
 





n

k
kss

1
1  

Equation (12) l1 norm calculation formula 

2.3.5.3.2 Greedy Iterative algorithms 
In addition to the l1-minimization implementation, there are also different approaches based 

on so-called greedy algorithms. In this class of algorithms, the reconstruction of the original 

signal is done step-by-step through an iterative process [45].  

The basic idea is the selection of rows from the matrix Θ in a greedy way. In each iteration, the 

row found to have the highest correlation with y is selected based on the criterion of 

minimizing the least squares error. The contribution of the selected row in each iteration 

concerning y is weighted, and the row is removed from the rows under consideration. This 

continues until the desired subset of Θ is selected. The criterion by which the algorithm stops 

varies depending on the implementation.  

More commonly used greedy algorithms are MP, OMP, and COSAMP. Greedy algorithms 

provide fast and accurate reconstructions with relatively low computational complexity. 

However, they are sensitive to parameter selection and may not always provide the optimal 

reconstruction. 

2.3.5.3.3 Sparsity and lp norm minimization(l1 vs l2 minimization norm) 
The choice of the method for solving the non-deterministic system of equations to find the 

sparsest s, which is also our solution, plays a crucial role. Next, a solution resulting from the 

resolution of the l1 and l2 minimization norm is depicted in Figure 20. The first row shows the 

coefficients of the S of a signal, calculated with the l1 method on the left in blue and the l2 

minimization norm on the right in red, respectively. The second row displays the values of the 

coefficients of the vector s in the form of a histogram. It is evident that the vast majorities of 

the coefficients with the l1-minimization approach are zero or at least very close to zero. This 

does not happen with the l2-minimization. We easily conclude that the l2 norm approach is not 

capable of creating a sparse vector s, and therefore the reconstruction of the original signal is 

impossible. The l1 method, on the other hand, is the one that creates the appropriate s. 
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Figure 20: l1 vs l2 minimization norm 

2.4 Related Work 

Compressed Sensing (CS) and Machine Learning (ML) are two rapidly growing research 

fields that have shown to offer a lot in a broad spectrum of applications. There is a significant 

intersection between these two fields, as CS techniques are increasingly used to improve the 

efficiency and accuracy of machine learning algorithms, while machine learning is utilized to 

enhance the performance of CS algorithms. In this section, we will explore the relationship 

between these two fields and provide a comprehensive overview of the research conducted 

concerning the application of CS in machine learning. Our goal is to synthesize the main findings 

and contributions of this body of work and demonstrate the potential for further collaboration 

and integration between CS and machine learning. 

In a distributed machine learning system, the process is divided into various nodes 

within the network [16]. Each node performs a specific task. In this case, we have the signal 

acquisition node (leaf node) which, for the ML system, is the data collection node. 

Simultaneously, we also have the leaf node responsible for executing learning and prediction 

tasks. By separating the system into multiple nodes, we have parallel computation, leading to 

improved performance and scalability. 
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In the present study, the impact of CS on the performance of a trained ML model was 

thoroughly investigated. The model was an SVM classifier, which performed multi-class signal 

classification. The classifier could recognize incoming signals corresponding to human 

movements (triangle formation, etc.). Dimensionality reduction of the elements constituting 

the dataset is a necessary process, and there are several approaches for this. In our approach, a 

selection of the most significant features with the highest relationship to the system's output 

was performed. The dataset resulting from the reduction of features was then used to train the 

model. It should be noted that this reduction occurs at the data collection node and allows for 

better generalization and overall behavior of the studied classifier. Subsequently, we had a 

further reduction of elements for transmission by applying CS to the already reduced data. Our 

approach, leveraging CS in machine learning, has several advantages. 

First, using a feature selection method with grid search, we ensure that the most potent 

features are selected for compression, reducing the volume of data that needs to be 

transmitted. This not only saves time and transmission costs but also improves the accuracy of 

the learning algorithm by reducing noise and redundancy in the data. 

Secondly, by performing compressed sensing on the selected features, we effectively 

compress the data before transmission, allowing for more efficient data transfer to the leaf 

node. This can be particularly useful in scenarios where the data is large, and the transmission 

bandwidth is limited. With data compression, the time and resources required for transmission 

are reduced. 

In addition to the above, the use of compressed sensing in machine learning can also 

enhance data privacy and security by reducing the amount of data that needs to be 

transmitted. In scenarios where the data contains sensitive information, it is essential to 

minimize the volume of data transmitted to reduce the risk of data breaches. 

In the context of our work and through the aforementioned approach, we study the 

determination of the compression ratio's impact on our SVM model's recognition ability. In 

other words, we determine the minimum number of measurements that must be taken from 

an already compressed signal so that the reconstructed signal obtained with the conventional 
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compressed sensing method can be recognized by the SVM. It should be emphasized that the 

SVM is trained on uncompressed data. Another aspect of the study had to do with whether and 

to what extent the feature selection method matters before compression. If we had chosen a 

different feature selection method, e.g., Pearson correlated feature removal, would the 

minimum number of measurements from the original signal be the same? Would we have a 

similar impact on the model's performance? 

Subsequently, we will present works in the same area as ours. An effort will be made to 

highlight the different approaches and the way they exploit the two technologies. By comparing 

these approaches, we can gain insights into the effectiveness of various feature selection and 

compressed sensing methods in different scenarios and applications. This comparison can help 

identify the most suitable techniques for specific situations, further improving the performance 

and efficiency of machine learning models while preserving data privacy and security. 

In Zonzini's work [46], an effort is made to address the challenges faced by the 

Structural Health Monitoring (SHM) of a construction project and to improve the accuracy and 

quality of the estimated structural integrity of the project from existing machine learning 

models. To achieve this goal, they propose a framework that incorporates data compression 

and machine learning. The authors first apply compression to the data using a method called 

MRAK-CS to reduce their dimensions and minimize the risk of network congestion during 

transmission. The compressed data, after being received, is used as input in Artificial Neural 

Network (ANN) and One-Class Convolution Neural Networks (OCCNN) algorithms with the aim 

of reconstructing the original signal and subsequently performing damage detection on the 

reconstructed signals using binary classifiers.  

The authors evaluate the impact of the data compression ratio on the reconstruction 

model's performance and how it changes with the variation of this ratio. In addition, they 

assess the impact of low-cost sensors and the inclusion of temperature data as input to the 

network. The results show that the combination of data compression and optimized machine 

learning algorithms can achieve high classification scores, with precision and accuracy greater 

than 96% and 95%, respectively.  
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The sequence of feature selection and compression applied in this study is first data 

compression and then sending the data to the sink node. Once the data arrives, it is 

reconstructed, and then feature selection is performed, which feeds the neural network for 

damage detection. 

 A similar approach to [46] is also presented in work [47], which also focuses on the 

monitoring of the structural state of construction projects. In this work too, after compressive 

sampling, transmission and reconstruction were carried out with the help of a neural network, 

with the difference that the network was transparent and integrated basic parameters of CS 

(sampling matrix) into a specific layer. By conducting experiments on sensors placed on a metal 

bridge, they proved that reconstruction using machine learning is more effective than the 

conventional method of solving the non-deterministic system. It should be noted that the 

output of the neural network was the reconstructed original signal, which was processed by a 

machine learning model making predictions. The latter is a common point in all works 

incorporating machine learning tasks in the sink node and those presented in the current 

section, including our own. 

A new concept of distributed compressive sampling is introduced by Palagni and Deng 

[48]. The work combines two techniques, distributed CS and deep learning, for sampling and 

processing signals in a distributed manner. Compressive sensing is a way of acquiring signals 

using fewer data, which is useful when there is limited storage space or bandwidth for 

transmission. The method uses multiple nodes for signal acquisition and a deep learning 

network for reconstructing the signals from the compressed data. 

In Zhang's work [49], the authors propose a deep learning approach for CS 

electrocardiogram (ECG). Traditional compressive sensing methods have limitations regarding 

reconstruction accuracy. To overcome these limitations, the authors combine CS and ML. The 

approach proposed in the work, called CSNet, consists of a deep neural network that takes 

compressed ECG measurements and reconstructs the original ECG signals. The results show 

that the combination of CS and deep learning leads to better reconstruction quality and 

computational efficiency compared to traditional CS methods.  
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In Tran's work [50], the concept of "compressive learning" combines the ideas of 

compressive sensing and machine learning for the analysis of multidimensional signals such as 

video and images. The authors propose a new way of compressing signals that takes their 

structure into account, leading to a more efficient approach. They then use machine learning to 

analyze the compressed signals and train models to perform tasks such as object classification 

and face recognition. The authors demonstrate that their approach works better than 

traditional methods and is more effective for high-dimensional signals. By combining CS and 

ML, we have an improvement in the way signals are analyzed. 
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3 Design of the system 

Within the framework of creating the studied system, a set of suitably configured and 

parameterized software and hardware was used. The overall development followed a process 

of distributed information management in the standards of Fog computing.  

Our system is a distributed machine learning system where capturing and recognition take 

place at different nodes of the network. At extreme edge nodes, often referred to as leaf 

nodes, capturing occurs, and recognition takes place at a central node (sink nodes) of the 

implementation. However, some of the leaf nodes can also perform recognition of signals they 

capture, depending on the needs of the implementation.  

With the signal capture, the transmission of the captured information to the sink node is 

required. The information transmission requires compression before transmission to save 

energy during sending from the leaf node and to reduce the occupation of the communication 

sub-network nodes during transmission. For reasons explained in detail in this report, CS 

outperforms conventional compression, and that is why it is used. The leaf node, in addition to 

capturing and, in some cases, recognizing the signal, is required to implement compressive 

sampling before sending the signal to the central node. In the sink node, we have the reception 

and reconstruction of the original signal before it is given for recognition to the machine 

learning subsystem it possesses.  

In the following section, a presentation of the software and hardware of our system will be 

made, both at the Leaf and sink node levels. The central design idea will also be presented in 

detail, along with a comprehensive representation of the topology and mode of operation of 

the system. 

In Figure 21 is a  graphical representation of the topology and operation of our system. Through 

this figure, we can see in detail and in-depth the entire philosophy of the design of the system 

under study. 
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Figure 21: Topology and functionality of the system 
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3.1 Sink Node 

3.1.1 Hardware sink node 
As mentioned earlier, at the center of our topology is a Raspberry Pi 4 Model B. The purpose of 

the node is to collect incoming signals from the extreme edge nodes and reconstruct the 

original signals using CS techniques. It then effectively recognizes them with the help of an SVM 

trained classifier it has. The Pi has the resources to implement the above requirements, and 

that's why the final result is a full-functional distributed machine learning implementation. 

The remaining features are summarized below: 

 CPU: Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz 

 RAM: 2GB, 4GB, or 8GB LPDDR4-3200 SDRAM (depending on the model) 

 Connectivity: Gigabit Ethernet, 2.4/5.0 GHz 802.11ac wireless, Bluetooth 5.0, BLE 

 Storage: microSD card slot for loading operating system and data storage 

 GPIO: 40-pin GPIO header, populated 

3.1.2 Software sink node 
The sink node, in addition to processing and classifying incoming data using an SVM 

classifier, must also reconstruct signals using compressed sensing techniques and solve 

problems using algorithms such as Lasso, OMP, and CoSaMP. 

The following software components are required to meet these objectives: 

 Operating System: At the basic operating system level, the node has the most recent 

operating system installed, Raspbian GNU/Linux 10 (buster).  

 Python: The primary programming language for implementing the machine learning 

model and running the SVM classifier, as well as for signal processing and reconstruction 

tasks. 

 NumPy: A numerical computing library for Python, used for data manipulation and 

computation. 

 Pandas: A library for data analysis and manipulation in Python. 

 Scikit-learn: A machine learning library for Python, which provides implementation of 

various machine learning algorithms, including SVM. 
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 Scipy: A scientific computing library for Python, used for signal processing and 

optimization. 

 SciPy Optimize: A module within Scipy that provides optimization algorithms, including 

Lasso and OMP. 

 CoSaMP: A library for compressed sensing, used for signal reconstruction. 

 Matplotlib: A plotting library for Python, used for visualizing the results. (optional) 

This software stack provides the Raspberry Pi 4 Model B with the necessary tools to perform 

the tasks of signal processing, reconstruction, and classification in a distributed machine 

learning system. 

 

3.2 Leaf Node 

3.2.1 IMU signal 
A digital signal is a sequence of discrete values in time. These values are a subset of the 

values of the analog signal which by its nature contains infinite points. It is precisely this 

characteristic of it that must be eliminated with the help of digitization. The process is called 

analog to digital signal conversion (DAC) and it rests on two main pillars. Sampling is the 

measurement of the accelerometer value, in each of the three axes at equal moments of time 

(sampling period T) [51]. 

An Inertial Measurement Unit (IMU) is a sensor that measures acceleration and angular 

velocity. These measurements can be represented as time series data (Figure 24), with the 

measurements being taken at discrete time intervals. 

Time series data is the data that is collected over time, each point represents a 

measurement taken at a specific point in time. In the context of machine learning, time series 

data can be used to train models that can make predictions about future events based on past 

observations. For example, an IMU time series data might be used to train a machine learning 

model to predict the type of activity being performed (e.g. walking, running, jumping) based on 

the past measurements of acceleration and/or angular velocity. In this thesis we used the 
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LSM9DS1 IMU that is embedded in the nano33 ble sense micro-controller. Figure 22 shows the 

concept of accelerometer and gyroscope measurements. 

 

Figure 22: The concept of accelerometer 

In Figure 23 we can see the values of the accelerometer sensor as they change during a 

movement. In the example we see, the letter M is formed with the sensor at a sampling rate of 

119Hz. The accelerometer values for each axis are plotted separately, while in the Figure 24 

they are presented as a unified time series signal formed as: 

 [accx1,accy1,accz1,…,accx178,accy178,accz178] 
 

 

Figure 23: plot of each accelerometer axis 
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Figure 24: plot of measurements as one time-series signal 

In the following figure (Figure 25) the IMU measurements that respond to the three 

different moves (M-shape, circle, and triangle) that we will study in this research are plotted. 

They are presented in time and frequency domain representation. Time domain representation 

shows us the signal's dynamics over time, while frequency domain representation, shows us the 

frequency components that are forming the signals and are obtained through FFT. By analyzing 

both representations, we have a better understanding of the signal's properties and behavior 

[52]. The figure clearly showcases the time and frequency domain of the three IMU signals, 

enabling easy comparison. 
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Figure 25: the three movements of our ML model presented in time and frequency domain 

3.2.2 Hardware leaf node 
The Arduino mini 33Ble sense, a board with a 32-bit ARM Cortex-M4F CPU operating at 64 MHz, 

is located at the leaf node. Additionally, it features 256 KB of RAM and 1 MB of flash memory. 

The IMU of the Nano 33 BLE Sense is one of its major components (Inertial Measurement Unit). 

A 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer make up the IMU. These 

sensors can be used to detect acceleration, measure angular velocity, and measure the strength 

of the magnetic field, respectively. In addition to these sensors, the Nano 33 BLE Sense also 

features pressure, humidity, and temperature sensors. The IMU and these sensors make the 

Nano 33 BLE Sense a potent tool for projects involving wireless. As about the sensor of our 

interest the IMU, LSM9DS1 is a system-in-package featuring a 3D digital linear acceleration 

sensor, a 3D digital angular rate sensor, and a 3D digital magnetic sensor. The LSM9DS1 has a 

linear acceleration full scale of ±2g/±4g/±8g/±16g, a magnetic field full scale of ±4/±8/±12/±16 

gauss and an angular rate of ±245/±500/±2000 dps. Also includes an I2C serial bus interface 

supporting standard and fast mode (100 kHz and 400 kHz) and an SPI serial standard interface. 

3.2.3 Software Leaf node 
The leaf node is located at the extreme edge and its role is multifaceted. It is a data collection 

node from the inertial sensor of the microcontroller, on which it applies CS before sending 
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them to the sink node. At the same time, it should be able to recognize human movements, the 

formation of a triangle, a circle, and the formation of the letter "M" with the help of a trained 

machine learning model. 

To implement the above functions, the machine learning system and the compressed sampling 

system had to be developed. These systems, in terms of finding their basic implementation 

parameters, as well as their mode of operation and how they were implemented, are described 

in detail in the next section of the implementation. 

3.3 Designing, the basic idea 

The basic idea of the system under development in this work is the following: We are in a 

distributed machine learning (DML) operating model, and we are interested in studying a signal 

which is initially captured at an extreme edge node of the network and undergoes CS. After its 

reconstruction, we want to determine to what extent it would be recognizable by the ML model 

of the central node that received it. We can see it in details in Figure 21. 

The basic design philosophy for setting up the system that would allow us to get answers to the 

main questions of this work was simple. In our DML system, the capture and CS should be done 

at the leaf-node. The initial signal would be captured and stored in a vector X. This vector, in 

our system, undergoes processing at two levels. 

 First, by the machine learning subsystem, where the absolutely necessary features will 

be selected to make the signal recognizable. This feature selection process is desirable 

not only to reduce the size of the data but also to eliminate features that convey the 

same information. This results in increasing the performance of the ML model. We will 

call Z the vector that contains the feature-selected data. The size of Z is much smaller 

than that of X, and an extensive study is done on the maximum possible number that 

can be removed. Our goal is to have the best ML model without over-fitting, so it can 

generalize well.  

 Next, by the CS system, where the vector y will be created with a random selection of a 

significantly smaller number of points from the vector Z with the feature-selected data, 
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always based on the principles and philosophy of CS. It should also not remove too 

many points to reconstruct the signal well (low MSE), which will ultimately be 

recognizable. The trade-offs are quite significant at both the machine learning level and 

the CS level. 

A challenge we faced, which was within the scope of the contributions of this work, was to 

make the leaf-node capable of making predictions, as can happen in a DML system. The 

predictions should be made with an effective model but at the same time capable of running on 

extreme edge devices, which are characterized by very low computational capabilities. For this 

purpose, a technique was developed that used traditional machine learning techniques, as will 

be analyzed in the next part of this report.  

The role of the sink node would be to perform the reconstruction of the original signal from the 

compressed measurements that just arrived and make predictions for the signal that has just 

been reconstructed.  

To study the exploitation of compressive sampling in the performance of a trained machine 

learning model, the present system was created, a graphical representation of which is 

presented in Figure 21. 
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4 Implementation of the system 

As can be understood, the development of an IoT system with edge and extreme 

computing features that processes and analyzes data from suitable sensors is one of the 

burning issues of our time. One of the most modern and powerful trends today is that of DML. 

It is a distributed system for signal capture on some nodes and making predictions on some 

other nodes of a network. The integration of machine learning models into extreme edge nodes 

of the DML is of utmost importance.  

The transmission of information between nodes in such a distributed system is desirable 

to be done with the least possible energy consumption and computational power (which is 

limited anyway) and with the least possible occupation of the nodes of the communication sub-

network. The application of CS meets this need.  

In this section, we present the way in which the system was developed with the help of 

which we conducted the study. The presentation includes the machine learning and 

compressive sampling systems developed for both the leaf node and the sink node of our 

approach. 

4.1 Machine Learning System 

In this section, we will analyze how an offline classifier was created, which can distinguish 

human movements. The selection of movements was made with the criterion of having 

samples of different frequencies, e.g., the formation of the letter M is faster than that of a 

circle. We chose movements that cause abrupt changes in accelerometer values and some that 

do not. At the same time, we have movements with a high degree of similarity, such as the 

letter M and the triangle. 

For the implementation of the ML system, which will be able to operate on microcontrollers 

with limited capabilities and features at the extreme edge, the following functions were 

implemented:  

 Development of the data collection system and feature extraction for creating 

datasets (feature extraction subsystem). This subsystem operates at the extreme 
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edge and captures signals from the microcontroller's IMU, proceeds to the 

appropriate arrangement of the signal values, and then stores them in a CSV file 

to form the dataset for training our model.  

 Training of the machine learning model. This is an end-to-end project that carries 

out a thorough study and ultimately creates the most capable offline model 

based on various evaluation metrics. In the end, hyper tuning is performed, and 

the model parameters are extracted. 

 Development of a system for extracting an optimized prediction model from the 

model parameters that were extracted and the final integration into the 

microcontroller and conducting related experiments. 

The system developed can easily constitute a significant part of a broader distributed 

computational intelligence system between edge and extreme edge devices. 

4.1.1 feature extraction subsystem and data-set creation 
In machine learning, data is perhaps the most important parameter, even more so than the 

model. Statistician George Box has said, "all models are wrong, but some are useful." It is 

evident that collecting data in the wrong way and inadequate processing ensures that the 

model to be developed will not be useful at any level. 

4.1.1.1 Defining basic parameters, SR and movement duration. 
There is no one-size-fits-all answer to the question of what is a good sampling rate for an IMU 

(inertial measurement unit) to sample human movement, as the optimal sampling rate will 

depend on the specific requirements and constraints of the application. The key factors 

weighed in order to decide on a sampling frequency for this thesis were: 

 Frequency of human motion: a human move has frequencies up to around 10 Hz, 

so according to Nyquist, sampling rate of at least 20 Hz is recommended capture 

the motion without the presence of alias. If we use higher sampling rate we can 

capture more dynamic or high-frequency movements. For example, a higher 

sampling rate may be needed to accurately capture fast or complex movements, 
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while a lower sampling rate may be sufficient for slower or simpler movements 

[51] . 

 Accuracy and Precision: When using higher sampling rates we generally result a 

more accurate and precise measurement, as the IMU to captures more data 

points and the changes in the measured variables more quickly. Sampling at a 

higher rate however, requires more processing power and can generate more 

data, which may be challenging to store and transmit [52]. 

 Compressive Sensing techniques are more effective when applied to large-

dimensional data. Thus the percentage of data that will be randomly selected 

may be small relative to the original signal size but will be large in order to 

recapture the original signal successfully. 

 The desired time: The sampling rate will define the time resolution of the 

measurement and that means the size of the captures signal, so it is important to 

consider the desired time resolution when selecting a sampling rate 

 The trade-off between accuracy and efficiency: The selection of a sampling rate 

is a trade-off between accuracy and efficiency becouse higher sampling rate may 

provide more accurate measurements, but also may require more processing 

power and storage, which can be more costly and time-consuming. 

In the figure Figure 26: Acceleration sampling points at different SR we used our sensor to make 

a circle and and we sampled this movement at 3 different sampling frequencies, 119, 90 and 

50Hz. Then at each sampling frequency we plot the value of the accelerometer amplitude on 

each axis and in three different subplots, one for each axis. 

To perform one of the three desired movements (circle, triangle, and letter M) we saw that 

approximately 1.5 seconds were required. Depending on the sampling rate, a different sample 

size was created each time in the time of 1.5 seconds. For example with SR=119 in 1.5 seconds 

we had a sample size of 178 points on each axis, since I have 3 axes my final sample would be 

1.5*119=178*3=534 points. Similarly for 90 it would be 1.5*90=405 points.  
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At this point we should mention that, the number of points (sample size) defines the size of the 

data set on which we will train our machine learning model. That’s because we will take every 

measurement of the accelerometer in each axis as a feature. Taking measurements over time 

as machine learning features is not the best approach to design a classifier but it creates long 

enough vectors (samples) to see the affect of compressive sampling to model prediction ability. 

We will also see that we will create a model that is very accurate.  

Following the above, the sampling rate of the project was set at 119Hz.  

In the following figure we see that if we keep the number of features 534 and sample at various 

SRs we see that the lower the sample rate the larger the sample we get. This means that for 

example at a rate of 50Hz for 178 sensor points we get a signal about 3.5 seconds long. Since 

the average time to make a move is 1.5 seconds we have an excess of 2 seconds of noise. This is 

a big problem. we observe the same (to a lesser extent for sampling at 90hz). 

 

Figure 26: Acceleration sampling points at different SR 

Following the above study, the basic parameters of the feature extraction system were 

clarified, and the appropriate values were extracted. In the system developed on the 

microcontroller, when a movement is detected, with acceleration above a threshold, 178 values 

are recorded for each of the three axes. These values are incorporated into a vector of 534 

values and are simultaneously stored in a CSV file. 

An issue regarding the best arrangement of accelerometer values was extensively studied, and 

the study is presented in the next section. In the following graph, the same signal is depicted, 
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forming a circle with the IMU, with the values obtained from the sensor arranged in different 

arrangements, arrangement1 and arrangement2. 

 

Figure 27: Accelerometer values plot with different values arrangements 

 Since the number of features is large, a relatively large and equal number of samples 

are required for each movement. For this purpose, 100 samples were taken from each 

movement, with 534 features, and stored in a CSV file. This created a dataset with 300 rows 

and 534 columns. This dataset will be used by the feature selection mechanism to create a 

dataset with fewer features, and the classifier will be trained on that.  

4.1.2 Classification subsystem implementation  
In this section of the work, the design and development of the computational 

intelligence software for the needs of this postgraduate thesis will be presented in detail. 

The aim is to create a model that, when a movement is performed, an inertial sensor 

can record the accelerometer values and recognize it, as long as it belongs to the group of 

movements it has been trained on. If it doesn't belong, it simply ignores it. This is a case of 

supervised machine learning classification because our model is fed with a dataset containing 

both the data (features that have been extracted) and the corresponding classes. We want to 

train a model that can learn to map the features (also known as explanatory variables or 

features) to the target, and in this case, the correct class. The problem is a multi-class 

classification case because each new input element processed by the system must correspond 

to one of the existing categories (classes). 
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During training, we want the model to learn the relationship between the features and 

the classes we want to separate, so we provide both the features and the answer (class). Then, 

to test how well the model has learned, it is evaluated on a test set where it has never seen the 

answers. There, the final evaluation will take place, and the extraction of the final model and its 

integration into the microcontroller for subsequent predictions, as they are called, will be 

carried out. 

The process of designing and developing a machine learning model is a complex one. 

Each individual stage is closely connected to the others, and failure in one leads to the overall 

failure of the model. In the following Figure 28, the overall process we will follow and describe 

in order to create the model is presented. 

 

Figure 28: Machine learning model creation map [21]. 
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4.1.2.1 Raw Data Collection 
As analyzed in the relevant section, feature extraction subsystem and data-set creation, 

the feature extraction subsystem is the one that will give us for each of the movements of our 

interest a representation in the time domain. In each execution, the subsystem will give us a set 

of 534 features for an input signal and a 535th one, which will be the class to which the specific 

movement belongs, something necessary since it is supervised machine learning. The classes 

are defined as [Class 0: Circle, Class 1: M, Class 2: Triangle]. This set of 535 features is 

represented in the system as a vector and will be processed in this form. For each movement, 

the extraction process is repeated with different approaches to the movement for better 

generalization of the model to be generated. That is, for example, each triangle is formed in 

every possible way (from left to right, the reverse, etc.), varying the formation speed, etc. A set 

of 100 records (vectors) is created for each movement that the system wants to recognize. 

The dataset has 535 columns and 100 rows per movement, and this size ensures the 

statistical adequacy of the sample. The equal presence of vectors from each class ensures that 

the sample is balanced (Figure 29). Since the sample was created by us, we are sure that it has 

no missing values, and therefore its completeness is given. By ensuring these basic parameters 

(statistical adequacy, balance, and completeness), we are confident that the model to be 

created will have good generalization. 

 

Figure 29: Dataset Balance 
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4.1.2.2 Data preprocessing  
Data preprocessing is an integral step in machine learning, as the quality of the data and 

the useful information that can be derived from it directly affect our model's ability to learn. 

Therefore, it is extremely important to preprocess the data before incorporating it into the 

model. 

Principal Component Analysis (PCA) is a feature reduction technique for high-

dimensional datasets that is often used in machine learning. PCA is used to identify patterns 

within the dataset and to reduce their number while maintaining all the contained information. 

It is a technique that detects the so-called principal components, which describe the variation 

of the dataset. With their help, we can project the many dimensions of the dataset into fewer, 

usually 2 or 3. This technique is used for data visualization or even for feature extraction. 

In the following Figure 30, we see the PCA representation in two dimensions of our 

dataset. We observe that our data does not seem to be linearly separable in the two 

dimensions. At first glance, we estimate that an SVM classifier with an RBF kernel or polynomial 

would perform well. 

 

Figure 30: PCA 2-Dimentions of the initial dataset 
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We can see a representation of the data using the same PCA method but in 3 

dimensions in the following Figure 31, from which it becomes evident that a hyperplane could 

be a good separator for our data. 

 

Figure 31: PCA 3-Dimentions of the initial dataset 

4.1.2.3 Exploratory Data Analysis  
Exploratory Data Analysis (EDA) is a process by which we have graphical representation 

and calculation of significant statistical elements that help in the investigation of data. The 

purpose is to find anomalies, patterns, trends, or relationships among them. The findings can 

be interesting in them (for example, finding a correlation between two variables) or can be 

used to inform modeling decisions, such as which features to use [53].  

At this stage, in the data (since as we know they had no missing values), detection was 

carried out and no extreme values were found that could be due either to poor sampling or to 

errors. Also, all data were in numerical form and therefore no conversion of categorical to 
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numerical was needed. To quantify the correlations between the features (variables) and 

output, the Pearson correlation coefficient can be calculated. This is a measure of the strength 

and direction of a linear relationship between two variables: a correlation value of -1 means 

that the two variables are perfectly negatively linearly correlated, and a value of +1 means that 

the two variables are perfectly positively linearly correlated. Figure 32 shows different values of 

the correlation coefficient and how they appear graphically. 

 

Figure 32: Pair plotting various Pearson correlation coefficients 

Since the dataset is large, we will present a small sample of the correlation between the 

output and 10 features that include some strong features among them. The positively strong 

correlation of features x350 and x353 with the output is shown with a green outline. Note that 

a large negative correlation means that as one quantity increases, the other decreases 

intensely. A positive correlation is defined in a similar way. 
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Figure 33: Pearson correlation coefficient between features (by two). 

In a much more visual way, we can see the negative and positive correlations using a heat map, 

which shows us the same information with color gradations and allows us to study a larger 

portion of the dataset. 
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Figure 34: Pearson correlation coefficient between features as heatmap. 

In Figure 33  and Figure 34, we see the positive correlation between features X350 and X353 

highlighted in green. 

It is important to mention that, the heat-map is a graphical representation of the correlation 

matrix of the dataset's features. The correlation coefficient ranges from -1 to 1 and how 

strongly two variables are related to each other, with -1 indicating a strong negative correlation 

and 1 indicating a strong positive correlation. The heat-map uses colors to indicate the strength 
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of the correlation, a blue-white-red color map with cool colors (blues) representing negative 

correlation values and warm colors (reds) representing positive correlation values. 

In this particular case, the heat-map shows the correlation between the features that were 

selected by the SelectKBest function where in this graph k=20. A technique to select k features 

which have the highest correlation with the target. So the heat map shows the correlation 

between the top k features. 

It is important to take into account the following points: 

 When two features have a strong positive correlation, means that they have a strong 

relationship, and they might contain similar information. So, one of these features could 

be removed to avoid unstable results in some models like linear regression. We see that 

we have a lot of them so we have make more actions to delete these features in order 

to avoid over-fitting. 

 The darker the color is, the stronger the correlation is. The darker blue colors represent 

a strong negative correlation, and the darker red colors represent a strong positive 

correlation 

From the insights we gain through the graphs in the EDA section, we can conclude that we are 

likely to achieve a classification with very high results, and that a highly effective model will be 

created. 

4.1.2.4 Feature Engineering and Selection 
We saw from the above study that we have features that are highly correlated with each other. 

A procedure was created which removed collinear features in the data-frame with a correlation 

coefficient greater to each other more than a specific threshold. If we look at the (Figure 34.B) 

we can clearly see that when we increase the threshold (from 96 to 100%) the accuracy (cross-

validation accuracy) is increasing. We get maximum accuracy 97% if we remove the features 

that are related to each other more than 99% and 100% according to Pearson correlation. We 

can also notice that if we increase the threshold we increase the remaining dataset. So we 
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select to remove the features that have Pearson correlation 99% and above because we get the 

max accuracy and the minimum remaining dataset. 

 

Figure 34.Β: accuracy vs. Pearson correlated features removal. 

With that threshold we were able to remove 222 features and the final shape of the dataset 

was 300 rows and 312 columns (311 features and the target). Removing collinear features helps 

the model to generalize and improves its interpretability. At the end of the process we have a 

data-frame that contains only the non-highly-collinear features. 

A challenge we face is whether the number of necessary features can be further reduced in 

order for our model to make accurate predictions. We removed those with high correlations 

among themselves, and among the remaining ones, we did not have any with high correlations. 

In the stage of additional feature selection, the Kbest function was used, which takes a number 

as a parameter. For example, Kbest=5 means that we want to take the 5 strongest features. 

With the parameter kbest=293, we obtained an SVM model with a cross-validation evaluation 

score of 97.5% (Figure 35), achieving the same performance as with 312 features. 
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Figure 35: Accuracy vs. k-best 

This feature selection approach, in which we chose a dataset without elements with 

very high correlation among themselves and secondly selected kbest=293, although it provides 

a model with very good performance, will prove in the evaluation section that it is not the best. 

This is one of the related trade-offs between ML and CS we mentioned. More specifically, with 

this feature selection process, we have good recognition, but very poor generalization in the 

reconstructed signals, as we will see in the relevant study. This is due to the fact that some of 

the elements that were removed also had a very good relationship with the output. 

4.1.2.5 Train and evaluation set creation 
After reducing the set of features, the train and test sets were created with an 80-20 

ratio. To achieve balanced samples with equal presence, each class in the sets used the 

stratified Kfold process, which has been extensively discussed in the theoretical section of the 

present work.  
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4.1.2.6 Model Selection 
In order to find the most suitable model, a set of algorithms was created, consisting of 

the most well-known and frequently used algorithms for which a presentation was made in the 

theoretical part. More specifically, we used:  

 KNeighborsClassifier() 

 AdaBoostClassifier() 

 GradientBoostingClassifier() 

 DecisionTreeClassifier() 

 GaussianNB() 

 SVC() 

 LogisticRegression() 

We used, parameter for Kfold k=5 and for the evaluation method, the accuracy.  

Several models achieved a high cross-validation score, GaussianNB, GradientBoosting, 

and SVC in default settings close to 93% for SVM and 95% for GradientBoosting. The 

performance per algorithm is shown in Figure 37. From these, we will choose the Support 

Vector Machine (SVC) for the following reasons:  

 It is the one that tries to find the maximum range between classes to achieve 

better generalization. 

 It is the most resource-efficient solution for integration into the microcontroller. 

  It achieved the best score. 

Before we proceed, we need to discuss a very important process that must be followed 

when working with SVM, the so-called feature scaling. It has been mentioned that the purpose 

of an SVM is to maximize the distance between classes. Since this goal is based on geometric 

distances, an axis with a very different scale makes the model favor the direction with the 

larger values.  
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In Figure 36, we can see that before scaling the features, the SVM seeks a decision 

boundary so that the distance vector d₁ has the largest vertical element. This is the reason why 

we always need to apply feature scaling before placing an SVM. 

 

Figure 36:  The importance of scaling in SVM 

For the importance of scaling, W.S.Sarle mentions that the main advantage of scaling is 

to avoid features with a larger numerical range dominating smaller numerical ranges. Another 

advantage is avoiding numerical difficulties in calculations, which accompany such a 

phenomenon.  

The values of the cores of linear SVMs as well as polynomials are the result of the inner 

product between feature vectors. Thus, large-sized operands in the operations of the inner 

product create computational problems, especially in microcontrollers with limited 

computational capabilities. It is recommended to linearly scale each feature in the range [-1, 

+1] or [0, 1]; in our work, we scaled in the range [0, 1]. Of course, the same method must be 

used for scaling both the training and evaluation sets.  

Below is Figure 37, which shows the performance of each algorithm in accuracy, before 

and after scaling. 
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Figure 37: Classifier Cross validation score during model selection on scaled and unscaled data 

4.1.2.6.1 SVM tuning hyper parameters. 
Next, the optimization of the selected model followed. In machine learning, optimizing a 

model means finding the best set of hyper parameters for a specific problem.  

First of all, we need to understand the hyper parameters of the model and the 

difference they have with its parameters. Hyper parameters are considered to be the 

parameters that have an exceptionally significant impact on the performance of the machine 

learning model. The settings of the hyper parameters are made by the data handler before 

training.  

SVM has hyper parameters such as C or gamma and the type of kernel (linear, rbf, 

Gaussian polynomial, and others). Finding the optimal hyper parameter is a particularly 

demanding process. However, it can be found simply by trying all combinations and seeing 

which parameters work best. This method is implemented by the GridSearchCV function.  

Below is Figure 38, we can see how the accuracy is shaped as the values of C change for 

the various SVM kernels. In this graph, we see the performance of the SVM with an rbf kernel 

being clearly depicted, with an optimal performance at C=2. We observe that the kernel's shape 

can become polynomial in some cases, but the predominant shapes are rbf. Of course, we will 

see that when the composition of the dataset changes with a feature selection method, the 

kernel's shape also changes. While a linear kernel does not create a linear separator, once 

redundant features are removed, we will see that it is the most prevalent. 
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Figure 38: Plotting the SVM hyper-tuning process for c and kernel type 

In the following graph, Figure 39, we can see how the accuracy is shaped as the values 

of gamma change for various types of SVM kernels and different values of C. It seems that the 

logic of the change is the same as the one described in the commentary of Figure 38. 
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Figure 39: the SVM hyper-tuning process for gamma and kernel type 

Using the GridSearchCv process and StratidiedKFold, we found that the best settings for its 

hyperparameters are 

{'C': 2, 'gamma': 0.1, 'kernel': 'rbf'} and the accuracy using the train set is 98,3%. 

We use the best model resulting from the hyper parameter tuning to make predictions 

on the test set. Remember that the model has never seen the test set we created earlier, so this 

performance should be a good indicator of how the model would behave in the real world. 

Additionally, we have an extra evaluation dataset that does not participate in the training 

process and internal evaluation, which we will use to evaluate the model's generalization and 

overall predictive ability. 

4.2 Export trained model to C. 

With the completion of training and evaluation, we now have in our hands a machine 

learning model capable of performing prediction functions. The goal is to export this model to C 

to be integrated into the microcontroller.  
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4.2.1 Existing alternative solutions 
Before starting the effort, research was conducted to find what exists, although from 

the beginning of the elaboration of this thesis, until today, the landscape has dramatically 

changed due to the huge trend of placing machine learning on the edge and extreme edge. 

4.2.1.1 TensorFlow Lite for micro-controllers 
TensorFlow Lite for microcontrollers is designed for devices with generally low memory. 

General minimum requirements for an exported model to run are 16 KB, which may be small 

but is quite large compared to the 2K of Arduino Uno, especially if we want such a 

microcontroller on the leaf node. TensorFlow Lite can support many basic models.  

TensorFlow Lite for microcontrollers is written in C++ 11 and requires a 32-bit platform. 

It has been extensively tested with many processors based on the Arm Cortex-M Series 

architecture and has been ported to other architectures, including the ESP32. The framework is 

available as an Arduino library.  

The following systems are supported: 

 Arduino Nano 33 BLE Sense 

 SparkFun Edge 

 STM32F746 Discovery kit 

 Adafruit EdgeBadge 

 Adafruit TensorFlow Lite for micro-controllers Kit 

 Adafruit Circuit Playground Bluefruit 

 Espressif ESP32-DevKitC 

 Espressif ESP-EYE 

4.2.1.2 Sk-Learn Porter 
Transpiles trained classification models created using scikit-learn into C, Java, JavaScript, 

and others. It is recommended for a variety of embedded systems where performance is of 

greater importance. Using this package, the following machine learning algorithms can be 

exported to C:: 
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 SVM.SVC 

 SVM.NuSVC 

 SVM.LinearSVC 

 tree.DecisionTreeClassifier 

This transpiler seemed like it could be the tool for exporting the model, but it has a 

significant disadvantage: the code it produces is not optimized for microcontrollers. To give a 

small example, let's mention that for a small dataset of 2 classes with 569 samples and 30 

features each, the data are real, positive. A simple SVM classifier required a 57x30 (doubles) 

matrix, which is 6840 bytes, just for the support vectors. 

4.2.1.3 Edge Impulse 
Edge Impulse is a cutting-edge platform for developing and deploying machine learning 

models on edge devices. The platform offers a user-friendly interface, making it accessible for 

developers with limited machine learning experience. With Edge Impulse, developers can 

create, train, and deploy models on edge devices in real-time, without the need to transmit 

data to the cloud. This allows for low latency and high security, making it ideal for applications 

such as industrial automation, smart buildings, and IoT. 

One of the main drawbacks of Edge Impulse is that it currently only supports a limited 

set of microcontroller platforms. Additionally, the performance of models deployed on edge 

devices may not be as high as those deployed on more powerful cloud-based servers. 

Furthermore, the storage and computational resources of edge devices are limited, so the 

complexity and size of the models that can be deployed on them are also limited. Finally, while 

Edge Impulse allows for easy deployment of models, it may not offer as many tools for 

monitoring and maintaining deployed models as some other platforms. 

Edge impulse, as we said, does not support a large number of micro-controllers and 

especially boards with limited capabilities such as arduino mega. As a result, we have a 

limitation on choosing a board as leaf node. With the method we propose, the resources 

required are the minimum possible and dramatically less than the models exported from the 

specific platform. 
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4.2.1.4 Emlearn 
Emlearn produces code that has been optimized for microcontrollers. It also has some 

very interesting features: 

 Portability with C99 code  

 No need for Libc  

 No dynamic allocations  

 Support for integer/fixed-point arithmetic 

Supported machine learning models are :  

 Decision Trees 

 Random Forest 

 Naïve Gaussian Bayes 

 Full connected neural networks. 

The problem in each case was that it does not support SVM, which, as we have 

documented, is the best solution for our problem. As a result, it cannot be a solution for our 

problem. 

4.2.2 The developed approach. 
In a previous section of the background, the mathematics behind SVMs were presented, 

and based on this, we will proceed to implement the prediction system that relies on our 

trained model, which is a linear SVM classifier. For a linear kernel, like the one we have, the 

prediction equation for a new input data (x) is calculated as follows:  





n
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Equation (13). Class prediction function for input data x with linear kernel SVM 

Where:  

 The B(0) (bias) and the ai (alpha coefficient) of each support vector are provided by the 

scikit-learn library when we have trained our model.  
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  (x*xi) is the inner product of the input vector and each of the i support vectors, which 

can also be extracted from the trained model.  

 n is the number of support vectors.  

Below, the algorithm is presented, expressed in natural language with steps, for a more 

complete and clearer presentation. 

4.2.3 Prediction system Algorithm 
After training the model, the process of extracting the necessary parameters of the 

model begins, which will allow us to recreate it in the Arduino IDE. To complete the process, we 

will need:  

 The list of support vectors per class. In our case, we will get a 1x3 list since we 

have 3 classes [x y z]. Each number x, y, z indicates the number of support 

vectors per class.  

 The list of support vectors for our model. It will be of dimensions NxKbest. More 

specifically, it will have N rows (N=x+y+z), the total number of support vectors. 

The columns will be the number of features determined by the feature reduction 

process in the machine learning part (kbest).  

 The list of kernel weighting coefficients, dual coefficients (dual problem 

solution). With their help, we will define the decision function, that is, our 

model. The dimension of the list is MxN, where M = number of classes-1 and N is 

the number of support vectors.  

 The list of intercepts of the model, which essentially is the constant part of the 

line (y=ax+intercepts).  

Below is a summary of the algorithm of the model extraction method and its recreation 

in another environment beyond the development system (scikit-learn). The representation of 

the algorithm is in natural language with steps so that it can be developed in any programming 

environment. 

Step 1. From the trained model, the list of support vectors, dual coefficients, number of SVs, 

and bias are extracted.  
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Step 2. For an incoming input signal X, the inner product with each of the support vectors is 

calculated. In this way, we create a set of kernels, as they are called, with the same number as 

the support vectors. Ki = X dot SVi, Ki is the ith kernel.  

Step 3. For each pair of classes classi and classj, we create a decision function which is the linear 

combination of the "kernels" with the dual coefficients (weightening of kernels) as follows: 

decision functionij = interceptij + kernels of classi * dual coefficients of classi (vs classj) + kernels 

of classj * dual coefficients of classj (vs classi)  

Step 4. We apply a voting mechanism using the decision functions calculated in step 3 as 

follows:  

For each pair of classes y¹, y², if the decision is > 0, then we add a vote to the class y¹; otherwise, 

we add a vote to the class y². In the end, the class that has garnered the most votes is the class 

to which the input element we studied is predicted to belong.  

The implementation of the above algorithm was done in C++, and the model is imported into 

the code in the form of an accompanying library.  

4.2.4 Embed to microcontroller. 
The integration into the microcontroller is a process that is demanding in terms of 

minimizing the computational requirements due to the limitations imposed by the 

microcontroller itself. In reality, once the process of creating the model (offline) is completed, 

we then need to implement the algorithm that implements the SVM, as described in detail in 

the previous section.  

Throughout the study of this thesis, we had to create different implementations of the 

algorithm within the framework of experiments and tests, which would result in the need to 

implement the above algorithm many times. Thus, a system (porter) was developed, with the 

help of which the creation of the model was simply an automated process of extending the 

training of the model. The important code documented, that implements the SVM model for 

the microcontroller is contained in the appendix in the porter code section. 

The process generally proceeds as follows: After training the model, we extract the basic 

parameters of the SVM that interest us, namely the support vectors, dual coefficients, and bias 
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terms. Using jinja2, a template in Python was created, with the help of which the code is 

generated in C++. Jinja implements loops to iteratively use all the support vectors and dual 

coefficients and create code snippets that implement the decision function for the SVM. The 

exported code is stored in a Model.h file, which is then integrated as a library into the 

prediction execution program. The jinja2 code that implements the above is in the appendices 

in the jinja2 porter code section. 

4.3 CS system 

Compressed sensing is a technique that consists of two subsystems, the compression 

subsystem and the reconstruction subsystem. The first is responsible for taking the 

measurements of the IMU signal and performing the compressive sampling of it. In this 

subsystem, the leaf node collects the measurements of the IMU signal, applies a sub-sampling 

array to the signal and sends it to the sink node. 

The reconstruction subsystem is responsible for recovering the original signal from the 

compressed measurements. In this subsystem, the sink node uses an appropriate 

reconstruction algorithm, to reconstruct the original signal from the compressed 

measurements. The sink node also applies normalization to the original and to the 

reconstructed signal and calculates the MSE to evaluate the accuracy of the reconstruction. It's 

important to note that the performance of the compressed sensing system depends on the 

design of both subsystems 

4.3.1 The compression Subsystem. 

4.3.1.1 Signal creation. 
The compression subsystem was implemented and operates on the Arduino Nano. 

Using the selected sampling frequency of 119Hz, as previously mentioned, 178 points were 

chosen for each of the 3 axes, totaling 534 points. In this way, we created the vector of the 

original signal. Each point we receive at a specific time t consists of 3 accelerometer values, one 

for each x, y, z axis. A question is, in what arrangement will the values be placed within the 

signal? A possible arrangement (arrangement 1) would be to place the points as they are 

received in the x vector, that is, accx1, accy1, accz1, ..., accx178, accy178, accz178. Another 
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arrangement (arrangement 2) would be to have the data for each axis separately, first for x, 

then for y, and then for z. Below in Figure 40, a representation of these two ways is provided to 

give a better understanding. 

 

Figure 40: Plotting capture signals with different value arrangements 

In order to determine which arrangement was the best, we did the following. We 

performed hyper-tuning on the Lasso solver and studied which arrangement had the lowest 

reconstruction error during the hyper-tuning process. The results are presented in Figure 41:  

 

Figure 41: Lasso reconstruction MSE arrangement1 vs arrangement2 
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In Figure 41, we see that low values of the hyper parameter alpha are crucial for both 

cases (with the significance we analyzed in the corresponding part of the solver). We observe 

that, in general, the reconstruction error for arrangement 1 at its optimal point (approximately 

1.5%) is lower than that of arrangement 2 at its lowest point (approximately 1.8%). The entire 

process of our study showed that arrangement 1, both in terms of machine learning and signal 

reconstruction, yielded better results, which is why it was adopted. 

4.3.1.2 Selecting Sampling Matrix. 
One of the key elements we focus on in the compression section of this report is the 

measurement matrix A. The goal is to acquire a compressed version of a signal x of high 

dimension, through a small number of linear measurements y = Ax. The measurement matrix A 

plays a crucial role in this process as it determines the properties of the measurements and the 

ability to reconstruct the signal x from y. It is important to remember that we ar at the extreme 

edge so the leaf node is a micro-controller which means, limited resources and computation 

power. 

A common choice for the measurement matrix A is a random matrix, such as a Gaussian 

or Bernoulli matrix. These types of matrices have the property of being incoherent with the 

signal's representation in a certain basis [54]. This incoherence as told before, leads to stable 

and efficient recovery of the signal x from y using convex optimization algorithms. 

In order to randomly sample our initial signal X according to the compressed sensing 

method on the Arduino Nano 33 BLE Sense random subsample matrix will be our choice. There 

are several reasons why this is the best choice among the various types of random 

measurement matrices, such as Bernoulli, sparse, and Gaussian matrices: 

 A random sub-sampling matrix is a binary matrix with only one non-zero element 

per row, it's constructed by randomly selecting indices and setting the 

corresponding values to 1. This type of matrix ensures that each element of the 

signal X is measured only once. That means that, every measurement in the 

compressed signal is a direct measurement of the original signal and is not a 
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linear combination of various elements of it, which has a positive impact on the 

reconstruction quality. 

 In terms of computational cost, dealing with Gaussian matrices can be 

computationally expensive and may not be feasible for use on the Arduino Nano 

33 BLE Sense due to its limited processing capabilities. On the other hand, 

random sub-sampling matrices are computationally efficient and can be 

implemented in a relatively short amount of time on the micro-controller. This 

makes them well suited for use in real-time applications such as gesture 

classification, where speed and processing efficiency are important 

considerations. 

 In terms of memory constraints, random subsample matrices have a small 

memory footprint and can be stored efficiently in the limited memory of the 

Arduino Nano 33 BLE Sense. This is in contrast to sparse or Gaussian matrices, 

which can require a large amount of memory to store and may not fit within the 

constraints of the micro-controller. 

 A Bernoulli matrix is a matrix whose entries are independently and randomly 

chosen from the set {-1,1} or {0,1} with equal probability. This type of matrix 

does not guarantee that each element of the signal X is measured only once, 

which could lead to increased noise in the measurements and decreased ability 

to accurately reconstruct the signal. In  

 Most important, random subsample matrices have low coherence with the 

underlying transformation basis, such as the DCT, which is important for 

achieving good reconstruction quality.  

The combination of computational efficiency, low memory footprint, low noise 

presence, and low coherence with the transformation basis make random 

subsample arrays the best choice for compressive sensing applications on the 

Arduino Nano 33 BLE Sense. 
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In the following graph, we can see our initial signal and the selected points at 20% of the 

original signal, as well as how the sampling of a set of points is performed with the help of a 

sampling matrix. 

 

Figure 42: Using subsample array to measure 20% of initial signal 

4.3.2 The Reconstruction Subsystem. 
The reconstruction system is the one that, from the m measurements of the initial 

signal, will attempt to reconstruct it. One of the essential components belonging to the 

reconstruction section is the representation basis of the signal. 

4.3.2.1 Selecting representation basis. 
The choice of the representation basis is extremely critical for compressed sensing 

because it has a direct impact on the sparsity and compressibility of the signal. The 

representation basis, also known as the dictionary, is what will help us represent the signal we 

captured in a sparser form. 

For an IMU signal that records human gestures, two representation bases that are 

commonly used and have proven effective are the Discrete Cosine Transform (DCT) and the 

Discrete Wavelet Transform (DWT). Both the DCT and the DWT provide a sparse representation 

of the IMU signal. 
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To see which the best representation basis in our case was, we studied the 

reconstruction of a signal we received from the IMU in both wavelet and DCT representation 

bases. The representation of the reconstruction in relation to the original signal is shown in the 

following Figure 42B.  

 

Figure 42.B: Lasso reconstruction MSE arrangement1 vs arrangement2 

We observe that the reconstruction in general from both bases is very good. The 

reconstruction from DCT is almost perfect, while relatively greater inaccuracies (red circles) are 

presented in the reconstruction from DWT. 

To quantify the visualized information of the previous graph, we found the MSE (Mean 

Squared Error) of the reconstruction of the two representations. The DCT showed a small 

difference in the reconstruction error (MSE) of the original signal. The output of the control 

program showed:  

DCT representation basis is better for this IMU signal with MSE: 2.9192736096910596e-31 Wavelet 

representation basis is better for this IMU signal with MSE: 9.791785962405056e-31. 

Another quality metric we used to compare the two bases is the PSNR (Peak Signal-to-

Noise Ratio). It is a measure of the quality of a reconstructed to the original signal. It is used to 

evaluate the performance of signal compression algorithms. PSNR is expressed in decibels (dB) 

and the higher the value, the better the quality of the reconstructed signal. For our comparison 

the results was  
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DCT PSNR: 366.72254948506634  

Wavelet PSNR: 365.2026569122738 

The very small (but existent) differences in the two comparisons, shows us that in 

general both bases are able to represent our signal but DCT is a better choice. Of course, if we 

had high frequencies in our signal, then the small difference would not be as important as the 

fact that wavelets handle these types of signals better. In the continuation of the work, DCT will 

be used as a representation basis. 

It should be noted that wavelets have a hyper parameter called wavelet_type, which 

has different behavior depending on the signal. To be fair in the comparison, we had to take the 

best DWT (Discrete Wavelet Transform) for our signal. We weighed this parameter in order to 

have the optimal choice of wavelet type that would participate in the comparison with the DCT 

(Discrete Cosine Transform). The results of the comparison are shown in the following Figure 

43, which makes the use of the db2 wavelet type unquestionable. 

 

 

Figure 43: comparing various wavelet types reconstruction MSE 

4.3.2.2 Selecting Solver 
The most important role in the reconstruction part is played by the so-called solver algorithms. 

These algorithms take the compressed signal y, the subsample array A, and the transformation 

basis psi (as we proved in our case, DCT) and solve the equation y=A*psi*S for s. These 

algorithms search for and find the sparsest s that serves this equation, and then, with inverse 
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transformation from x=psi*S, we obtain the reconstructed signal x. In the DCT transformation 

basis we chose, the reconstruction from s is done with idct(s). There are many libraries that 

implement this conversion; in this work, we used scipy. 

We should emphasize that we also have an evaluation dataset, which consists of 10 signals 

from each movement. Each of these signals will be compressed and reconstructed, and the 

most suitable algorithm will be selected based on the MSE criterion. The methodology followed 

to select the appropriate solver will be presented below: 

 The following representative algorithms were selected: CoSaMP, LASSO, and CVXpy. 

These algorithms are often used as solvers for CS problems, including the reconstruction 

of IMU signals. Additionally, they can handle noise and other forms of interference that 

may be present in the signal measurements. 

 The same sampling matrix will be chosen to take 20% of the original signal as a 

compressed signal to make the results comparable. 

 For each algorithm, after performing hyperparameter tuning where applicable, we will 

find the average minimum MSE for the entire evaluation dataset. LASSO will be the 

solver that we will use. 

4.3.2.2.1 Cosamp 
The CoSaMP, as a greedy algorithm, takes the desired sparsity level of the signal as a hyper 

parameter. That is, we define the sparsity we want the returned s to have. In Figure 44, the 

MSE for sparsity levels from 1 to 534 is plotted. This information will help us identify a range of 

values for the sparsity level that we will define, in which the algorithm exhibits good behavior. 
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Figure 44: Plotting COSAMP reconstruction MSEfor various sparisty levels 

 

 

Figure 44B: Zoomed Plotting COSAMP reconstruction MSEfor various sparisty levels 

From the above graph, we conclude that with k=5 for 20% of the original signal, we have the 

smallest error for CoSaMP. Moreover, the range of k values after 200 exhibits stable error 

fluctuations from 4.5% to 5%, which leads us to focus on the range [0...200] in our next 

experiment to study all signals. 

The percentage of measurements of the original signal x that will create the compressed signal 

y is one of the main objectives in our work. It is obvious that the more elements we sample, the 
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easier it is for the reconstructor to reconstruct the signal. However, the larger the produced 

signal becomes due to the smaller compression ratio. 

To understand the impact of the sampling rate on the reconstruction error and, consequently, 

the quality of the reconstruction, the following graph of the CoSaMP solver is provided. 

 

 

Figure 45: Plotting MSE vs. Measurement of initial signal as a percentage for various k 

It should be noted that in Figure 45, we see the best possible performance of CoSaMP 

for various sampling rates [0.1, 0.2, ..., 0.9] on a specific signal (triangle). Also note that in 

Figure 45, the calculation was made for all sparsity level values k [1, ..., 200]. For example, the 

MSE of 2.3% for a 20% rate is the smallest for all sparsity levels, where again, the value of 2.3 

was obtained for k=5.  

We can see that with a 30% rate, we can achieve better reconstruction results up to 

40% of the points of the original signal for this particular solver. Of course, we have better 

percentages after 40%, but considering the trade-off between accuracy-size, the 20% rate, 

which means m=160 points, is a very good choice, giving us a very good balance. However, as 
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we said about the trade-offs between ML and CS, the 30% rate, which gives a smaller MSE 

compared to 20% of the points, will also be studied.  

We will study the performance that the machine learning model will have in its attempt 

to recognize a signal that was reconstructed with 20% and 30% of its original points. The 

previous experiment was conducted only for one type of signal, the triangle. However, what 

needs to be studied more extensively is to what extent the results generalize to various input 

signals. For this purpose, the following graph is provided, showing the MSE of reconstruction 

for the "good" rate of 20% and for k in the range [1...100], in which it has shown very good 

results for 3 different signals. One signal for each gesture (M, triangle, circle). 

 

 

Figure 46: COSAMP Reconstruction MSE vs k 20% 

From the above graph, we observe that the region with K=5,6,7 exhibits the best behavior. 

However, with such a small percentage, we understand that several parameters (s coefficients) 

with a small impact on the original signal are zeroed out, and therefore, the reconstructed 

signal is expected to be lacking in information. We also observe that CoSaMP does not 

generalize well to all IMU signals. For the circle gesture signal, which is governed by low 

frequencies due to motion, the algorithm performs very well. On the contrary, in the other two 
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motions, M and triangle, due to the abrupt changes in sensor values (higher frequencies), we 

have a larger reconstruction error. It already seems that, in general, CoSaMP is probably a poor 

choice if we desire the most faithful reconstruction of the original signal possible. 

4.3.2.2.2 Lasso Solver  
The Lasso method is essentially a linear regression model with L1 regularization. In this method, 

a constraint is added to the sum of the absolute values of the coefficients. This reduces the 

number of non-zero coefficients and identifies the most significant features in the data, 

preventing overfitting. 

One of the key parameters in the Lasso solver is the alpha parameter. It represents the strength 

of the regularization, or the amount of shrinkage applied to the coefficients. A lower alpha 

value results in less shrinkage, which leads to a more complex model with more non-zero 

coefficients (lower sparsity) ass seen in Figure 47. That means that more of the signal's features 

will be retained. Analyzing the importance of the alpha hyper-parameter on an IMU (Inertial 

Measurement Unit) signal, we could say that, this could be beneficial if the signal contains 

important information that needs to be preserved, such as fine details in the movement of the 

IMU. A low alpha value result in more detailed motion features like acceleration.  

On the other hand, a higher alpha value results in more shrinkage and a simpler model with 

fewer non-zero coefficients. Large alpha will result in a more abstract representation of the 

signal, with fewer non-zero coefficients, which could mean that some of the signal's features 

are lost. It is easy to understand that the reconstructed signal would be less informative or less 

useful for α specific task. This could be beneficial if the signal contains noise or irrelevant 

information that needs to be removed in order to improve the overall performance of the 

system. 

The alpha parameter vs. Sparseness is presented Below in Figure 47. The graph is showing the 

relationship between the alpha parameter of the Lasso algorithm and the sparsity of the 

solution obtained by the Lasso algorithm. It can be observed that at a very low alpha value, 

around 0.2, the algorithm is able to produce a highly sparse solution with almost 98% sparsity. 

As the alpha value is increased to the range of [0.01..0.08] (as seen in the right zoomed 
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subplot), the sparsity remains high at around 96%. This indicates that Lasso is able to effectively 

regularize the solution and produce a sparse result with a high percentage of zero coefficients 

when the alpha value is very low. 

However, it's important to note that as the alpha value increases, the Lasso algorithm also 

becomes more restrictive, in terms of the parameters, it allows, and as a result the fit of the 

model to the data may decrease. This is the trade-off when using Lasso, as it balances between 

the sparsity of the solution and the fit of the model to the data. It can also be inferred that the 

problem, may have a high degree of sparsity and therefore, Lasso is able to recover the correct 

sparse solution using a low regularization strength. Therefore, it's crucial to experiment with 

different values of alpha and evaluate the model's performance using appropriate metrics to 

find the optimal value that balances the trade-off for the given problem. 

 

Figure 47: plotting alpha lasso hyper parameter vs sparseness 

The study of alpha versus the mean squared error (MSE), as a metric of the reconstructed signal 

can be a useful method for finding the optimum alpha for the Lasso algorithm. By plotting the 

MSE of the reconstructed signal for different values of alpha (Figure 48), we can observe the 

relationship between the regularization strength and the fit of the model to the data. As the 

alpha value increases, the Lasso algorithm becomes more restrictive, resulting in a more sparse 

solution but a decrease in the fit of the model to the data, resulting in a higher MSE. 

It can be observed that at very low alpha values, around 0.031 and 0.051, the Lasso algorithm is 

able to produce a highly accurate solution with a minimum MSE. As the alpha value increases 
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past that point, the MSE constantly increases, indicating that the regularization strength 

becomes too high and the fit of the model to the data starts to decrease. 

This is consistent with the trade-off between sparsity and the fit of the model to the data 

(Figure 47), as the alpha value increases, the Lasso algorithm becomes more restrictive, 

resulting in a more sparse solution but a decrease in the fit of the model to the data, resulting 

in a higher MSE. It can also be inferred that for the specific signals of circle, triangle and M the 

Lasso algorithm is able to recover an accurate solution using low regularization strength.  

Additionally, it can be seen that the MSE is becoming constant after an alpha value of around 

0.3, this suggest that above that value the regularization becomes too strong, and the Lasso 

algorithm is unable to produce a good fit of the model to the data, resulting in a relatively 

constant MSE. So we can clearly see in the zoomed part of the plot that the optimal values for 

alpha for the given signals are 0.031 and 0.05. We will use the mean of them alpha=0.037 as the 

best alpha for all the signals. 

 

Figure 48: alpha parameter vs MSE 

To sum up all the previous a plot of sparseness versus mean squared error (MSE) of 

reconstruction is presented in Figure 49. We can use it to understand the relationship between 

the sparsity of the solution obtained by the Lasso algorithm and the fit of the model to the 

data. It visualizes the trade off we talk before. We clearly see that there is a point where a 

signal is sparse enough to have a well fitted model and to give the smallest MSE. More sparsity 

we have lack of information because of too many coefficients (some of them important) are set 
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to zero. On the other hand if the signal is not sparse enough there is noise, or redundant 

information. 

 

Figure 49: Sparseness vs. MSE tradeoff 

So far we have sampled 20% of the points of the original signal to see the effect of alpha on 

sparsity and MSE. Now keeping alpha value as 0.037 we will study this effect at different 

sampling rates from the original signal in order to apply CS and reconstruction. 
 

The plot in Figure 50 represents the relationship between the percentage of measurements of 

three initial inertial measurement unit (IMU) signals of human gestures, and the mean squared 

error (MSE) of Lasso reconstruction for an optimal alpha parameter of 0.037.  

The relationship between the percentage of measurements and the MSE can be analyzed in 

terms of the trade-off between the amount of data used for reconstruction and the 

computational cost. As the percentage of measurements increases, the amount of data used 

for training also increases, which improves the fit of the model to the data, as evidenced by the 

decrease in the MSE values. However, we need to see the impact of the amount of data that 

represents the compressed signal, on the computational cost of training the model. 
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Figure 50: Random sampled measurements of x (as a percentage) vs MSE of reconstruction 

using alpha=0.037 

It is important to analyze the point (green area) beyond which the MSE stops decreasing 

significantly as the percentage of measurements increases. This point is in the green area of the 

plot and represents the optimal balance between the amount of data used for training and the 

computational cost. By choosing the optimal percentage of measurements, we can achieve a 

low MSE without incurring in an excessive computational cost. Additionally, it's crucial to 

consider that this graph assumes that the optimal alpha value for the Lasso (0.37) has already 

been selected, which would affect the sparsity and the MSE of the reconstructed signal. 

In a research context, this plot can be used to support the hypothesis and the conclusion of the 

thesis, also this plot (Figure 50) can be used to compare the results with other methods and to 

evaluate the performance of the proposed method. 

 

Figure 51: Measurements of initial x for CS vs. computational cost for reconstruction 
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Observing the Figure 51, we notice that it is not what we would initially expect. 

One would expect that as the sampling rate from the original signal to create the compressed 

signal y increases, so would the processing time to reconstruct the original signal x from y. The 

figure shows the change in computational cost in sec, as increasing the number of random 

selected points from the original signal. We notice that, for very few points of the original 

signal, we have a very high computational cost. This happens because the fewer points the 

compressed signal y leads to fewer equations for our non-deterministic system of equations. 

We should not forget that we have: y=A*x=x=A*Ψ*S=Θ*S. S is a vector of n points and this 

equation defines a system of m equations, (as many as the measurements of original signal x), 

with n unknowns and we search for the sparsest s that solves it. If m is very small then we have 

a high computational complexity and therefore a high time cost of solving the system. As the 

points increase, so does the number of equations and therefore less time is required to solve 

them. Additionally, when the number of measurements is increased, the Lasso regularization 

becomes less important and the coefficients are less likely to be close to zero, reducing the 

sparsity of the solution and making the problem easier to solve. 

We see that in the green area we had identified and reported in the previous Figure 50 has 

entered a zone of low MSE. We notice that this zone (green area) is of low computational cost. 

This means that the system now has enough equations to solve it in a very short time, and 

indeed in the minimum possible time. The region of low computational cost starts at 20 % and 

is maintained even if we select all points of x. Roughly we can say that the percentage of 20% is 

a percentage that is going to play a very important role in our study in connection with Machine 

learning and will be studied further 

4.3.2.2.3 CVXPY as a solver 
The problem of reconstructing a signal from a small number of measurements can be 

formulated as a convex optimization problem, and CVXPY is a powerful Python library for 

solving convex optimization problems. In this section, we will study CVXPY in compressed 

sensing. The optimization problem can be defined by the user in a natural, mathematical style 

with CVXPY, which then automatically transforms the problem into a standard form that can be 
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addressed by a number of solvers including ECOS, SCS, and OSQP. This makes it simple to use 

and removes the requirement for the user to manually transform the issue into a standard 

form. The library includes support for various objective functions and restrictions as well, 

making it possible to address a variety of optimization issues. It can manage both dense and 

sparse data and supports complicated data types like matrices and arrays. As a result, CVXPY is 

a flexible library that may be applied to a variety of compressed sensing issues. Another 

advantage of using CVXPY is its efficiency.  

CVXPY uses advanced optimization algorithms and solvers to solve the convex optimization 

problem, and it is designed to scale well to large-scale problems. However, one of the main 

disadvantages of using CVXPY is the computational cost of the optimization algorithm. As the 

size of the problem increases, the computational cost of solving the optimization problem also 

increases. This may make CVXPY less suitable for large-scale problems or real-time applications 

where computational cost is a major concern such a raspberry pi sink node. 

 Without hyper parameters, cvxpy was applied to our three signals for different percentages of 

the original signal, and we studied the reconstruction error. The results are presented in Figure 

52:  

 

Figure 52: sampled measurements of initial signal vs MSE of reconstruction 



112 
 

We can easily observe that as the percentage we take from the original signal increases, we 

have a smaller reconstruction error, which is logical and expected. However, we notice that the 

error is very small, especially in the 30 to 40% range we have mentioned before. At first glance, 

we can say that it provides the best results compared to the others, although we will examine 

this more thoroughly later. 

It is known that CVXPY has a high computational cost. Below, in Figure 53, a representation of 

the computational cost in relation to the percentage taken from the original signal is presented. 

 

Figure 53: CVXpy computational cost vs. percentage of initial signal 

It is obvious that the more points we take, the more time the process requires, in contrast to 

Lasso due to the method of solving the system. We even notice that for high percentages of 

initial measurements, it is on the order of 2 seconds. The 30-40% range continues to give us 

very good results in this case as well. We would expect similar behavior in computational cost 

with Lasso, which does not happen. There are two main reasons that affect the performance in 

solving this solver: the choice of the approach method for the solution and the size of the 

problem. The times presented have been calculated using the best approach for this particular 

signal form, ECOS. The other methods we examined and chose ECOS among them are: SCS, 

CVXOPT, GLPK, GUROBI, and MOSEK. Therefore, the delay increases as the number of 

measurements increases because the size of the optimization problem also increases. 
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4.3.2.3 Solver Comparison 
Next, a comparison of the 3 algorithms with the optimal settings, as they emerged from the 

thorough study we followed and described in detail above, will be made.  

Below in Figure 54, a summary chart is presented showing how the reconstruction error varies 

for each solver for each of the three different signals for various percentages of the original 

signal.  

With the RMS error as the criterion, CVXPY appears to be the best choice for reconstructing the 

cycle. In the case of the other two signals in the 30-40% range, we have similar performance. 

CVXPY is slightly better. A key parameter for our system is the computational power of the sink 

node (raspberry pi). So, we will proceed to compare the methods concerning the computational 

cost. 

 

Figure 54: comparing the 3 solvers @ measurements vs RMS 

In the following Figure 55, it is now easy to say that the best method for reconstructing the 

original signal for the case of IMU signals we are studying is Lasso. The reason is that not only in 

the 30-40% area that we have identified as the best, but also in general, XVCPY has a much 

higher computational cost compared to Lasso. Moreover, it is significantly higher in proportion 

to the smaller RMS it offers. It will be used in the subsystem for reconstructing the original 

signal of the system of the present work with the hyper parameter alpha set to 0.37. 
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Figure 55: 3 solvers comparison @ computational cost 



115 
 

 

5 Evaluation 

5.1 Implementing the ML και CS system 

The system of the study of this thesis consists of two main subsystems, the machine learning 

subsystem and the compressive sampling subsystem. In the previous sections of this unit, we 

determined the basic parameters of each system to achieve the best performance by studying 

each system separately. More specifically, we saw that the most suitable classifier is the SVM, 

and we identified its hyper parameters (c=2, gamma=0.1, kernel=rbf). Similarly, the CS system 

will use DCT representation basis, Lasso solver (L1 minimization), and a random sub-sampling 

array m-Bernoulli. But what will be the final configuration of the hyper parameters of these two 

systems when they have to collaborate?  

The main objective of this master thesis is to find the minimum number of observations m of 

the original signal x that I must take so that the reconstructed signal x_hat is recognizable by 

the machine learning model, as well as the original one.  

In the context of answering this question, we must work considering three basic elements that 

define the system.  

• Best performance at the ML level (best accuracy)  

• Best performance at the CS level to have more faithful reconstruction and therefore 

recognizability  

• Less need for computational resources due to the microcontroller.  

By reducing the size of the dataset, the number of required support vectors is reduced, and 

therefore the size of the SVM classifier. However, what is the impact of reducing the dataset 

size on the generalization of the model? In other words, how well can it separate a 

reconstructed signal depending on the number m of points we will take from our original 

signal?  
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As mentioned in figure 34.B, we got a good cross-validation performance from SVM when we 

removed features from the dataset that had a 99% correlation between them. Next, we will 

essentially proceed to evaluate this feature selection method by which we removed features 

from the dataset that had a relationship between them over a percentage. We will study a 

model that has been trained a) on the entire set, b) on a set where features with a relationship 

over 99% were removed, and c) features with a relationship over 99.5%. 

For the evaluation of the model's generalization capability, after training the SVM, we will use 

an evaluation dataset. This dataset contains a set of 30 different movements corresponding to 

the gestures we study. It includes 10 samples from each of the 3 gestures that the model has 

never encountered during the training stage. We should also make it clear that we have divided 

the original dataset into train and test. We train on the train and evaluate on the test. After 

getting the evaluation score of the SVM using the test set, we then fit the classifier to the entire 

original dataset and proceed with its further evaluation. 

We should also make it clear that we have divided the original dataset into train and test. We 

train on the train and evaluate on the test. After getting the evaluation score of the SVM using 

the test set, we then fit the classifier to the entire original dataset and proceed with its further 

evaluation.  

The evaluation of the final trained model will be done 1) on the evaluation dataset and 2) on 

the reconstructed evaluation dataset that will result from the compression and reconstruction 

of the original evaluation dataset for various sampling rates. 

Training the SVM on the entire original dataset (534 points).  

By training the model using all 534 points (without essentially any feature selection), we get 

very good test set evaluation results as shown in Figure 56. The model simply seems to confuse 

the formation of the triangle with the formation of the letter M. This is because the two 

movements have a high degree of similarity. Essentially, the triangle is almost a subset of the 

"M". 
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Figure 56: SVM evaluation (trained in train set with 534 features) using test set 

We evaluate the trained model with the evaluation set that the classifier has never seen before. 

We observe that all 30 movements are recognizable. The results and the confusion matrix of 

the evaluation can be seen in Figure 57. It is obvious that our model has excellent 

generalization. 

 

Figure 57: SVM evaluation (trained in initial dataset with 534 features) using evaluation set 

Next, we will study the impact of compressed sensing on the performance of the trained model. 

For this study, we applied compression and reconstruction using the compressed sensing 

technique to the entire evaluation dataset. We fed the reconstructed evaluation dataset to the 

model and obtained its performance (accuracy). The process was carried out for various 

sampling rates from the original signal, [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. For each 

percentage, we took a corresponding number of points from each signal in the evaluation 

dataset and reconstructed it with the CS subsystem. We fed the model with the reconstructed 

dataset each time, and the model's performance in terms of accuracy is depicted in Figure 58. 



118 
 

In the first row on the right are the sampling points expressed as percentages of the length of 

the original signal, and on the left in absolute point values. 

 

Figure 58: SVM (trained with 534 feats) performance on reconstructed evaluation dataset for 

various sampled measurements rates. 

In the above Figure 58, we present the impact of CS on the recognition of the reconstructed 

signals in the evaluation dataset. We observe that in the area around 10 to 20%, we achieve a 

recognition rate of reconstructed signals of around 100%. However, since the fewer points we 

use for compression, the lower the transmission cost to the sink node, we further analyzed the 

area from 8% to 20% for greater accuracy, and the results are shown in the second row of the 

previous graph. We see that for 12% of the original signal, our classifier can recognize the entire 

reconstructed evaluation dataset (all 30 signals contained within it). Stating the above in 

relation to the main question of the present work, the minimum percentage of a signal that we 

must take for an entire dataset of sets to be recognizable after reconstruction is 12%. If we 

want to convert it to points, it is 0.12*534 = approximately 64 points. 
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We must not forget, however, that the model must be able to run on both leaf nodes (Arduino 

Nano 33) and sink nodes (Pi 4). Especially for the microcontroller, we have very limited 

resources, so we need to optimize the dataset by keeping only the necessary elements. Due to 

the extensive arrangement of the 534 points in the dataset, the SVM requires many support 

vectors, which means high memory consumption and computational power for executing large 

operations on the Arduino. Additionally, in the entire dataset, our data is not linearly separable, 

so an RBF kernel is of higher computational complexity. Therefore, we need to study whether 

fewer features can give us a dataset with equally high-performance models. 

We saw in the Feature Engineering and Selection section that if we remove a percentage of 

features that have 99 or 100% correlation between them, we achieve a maximum accuracy of 

97% in Figure 34B. Since the percentage we remove affects both the size of the model and the 

result of the reconstruction, further study is essential. 

Training the model after removing all points with a Pearson correlation of over 99% between 

them. 

At this stage, we removed all the features from the original dataset that were correlated to 

each other by more than 99%. A new set with 313 features was created, and we trained the 

SVM on this. We followed the same study procedure we analyzed earlier and got an evaluation 

score from the test set. The results are shown in Figure 59. At this point, we observe that the 

accuracy we get from the test set has increased, and we should mention that the grid search we 

applied for SVM hyper-tuning highlighted the linear kernel as the most suitable. In other words, 

our data is linearly separable, as the high percentages indicated earlier. 
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Figure 59: SVM (trained after removing features with 99% pearson correlation to each other) 

evaluation using test set 

Applying the evaluation dataset, we get the following results: 

  

Figure 60: SVM (trained after removing features with 99% Pearson correlation to each other) 

evaluation using evaluation dataset 

At first glance, it seems that an equivalent or even better model (test set evaluation) has been 

created compared to the previous one. The goal is to see how our new model behaves with the 

evaluation dataset when it is compressed using sampling and reconstructed. The results of this 

approach can be seen in Figure 61. 
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Figure 61: SVM (trained after removing feats with 99% Pearson correlation) performance on 

reconstructed evaluation dataset for various sampled measurements rates. 

It is evident that some of the elements that were removed had a strong relationship with each 

other, but apparently, they also had a connection with the output. Although we had a good 

cross-validation performance, the model that was created does not generalize well. We can 

conclude that there was a significant amount of information within the elements that were 

removed, which the classifier needed. Additionally, given the loss of information and the 

inability to achieve 100% reconstruction, this led to a model that cannot even achieve the 

results we had before the removal concerning the recognizability of the reconstructed signals. 

Removal of points that have a correlation between them above 99.5%. 

After the reduction, the dataset consists of 491 features. In order to decide if this percentage 

provides results comparable to the model with the entire original dataset, we will further study 

the removal at 99.5%. At this percentage, we had the same results (as expected) in cross-

validation scores and evaluation dataset accuracy. Next, we present the performance of the 

model on the reconstructed evaluation dataset. 
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Figure 62: SVM (trained after removing feats with 99,5% Pearson correlation) performance on 

reconstructed evaluation dataset for various sampled measurements rates. 

In the study of the number of points taken from the original signal, we have a better behavior 

than 99% but still achieve 100% accuracy with a percentage of points between 20 and 30%. This 

means that from 100 to a maximum of 30/100491=147 points. While the model derived from 

the entire dataset achieves 100% with only 12% of the total points. This translates to 

12/100543=65 approximately points. 

Figure Figure 63  presents a summary diagram of the performances shown above, with the 

difference that a more detailed approach is taken based on percentages. That is, we don't go 

directly from 10 to 20% but take all intermediate points to see where we achieve acc=1 for the 

first time. 
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Figure 63: summary diagram according to the number of correlated coeffs removed 

So it is obvious that we should choose to create the model from the entire dataset, something 

that will obviously create a problem in the implementation of the SVM on the Arduino. 

Therefore, the feature selection method based on the removal of Pearson correlated features, 

although it creates a very good ML model for the initial signals, cannot create a small dataset 

and model that successfully recognizes the reconstructed signals. We need to find a more 

effective feature selection method, which is done in the next section. 

Feature selection, creating a model from K-best points 

As is obvious from the previous graph Figure 63, the feature selection method by removing 

points related to each other did not prove to be good because some of the points that were 

removed had a strong relationship with the output on the one hand and on the other hand, we 

had additional removal of information with the reconstruction.  

The k-best method is a feature selection technique used in machine learning to select the 

strongest k features that contribute more to the accuracy of a model's prediction. By the term 

strongest, we mean those that have the highest correlation with the output and not between 

them as was done in the previous method we presented. In this method, we rank all the 
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features in the dataset based on their predictive power and only the top k features are retained 

for model training. This helps reduce data dimensionality, avoid over-fitting, and improve 

training efficiency as will be shown in the following graph. The value of k is a hyperparameter 

and is often chosen based on a trade-off between model complexity and performance and can 

be selected using cross-validation or evaluation accuracy. 

Next, we studied the performance of the svm when trained on a dataset from which the k-best 

features have been retained. The k-best varies from the value of 10 up to 534 per 10. In Figure 

64, the Cross-validation, the Evaluation accuracy from the test set, as well as the evaluation 

accuracy from the extra evaluation dataset of 30 movements that the model has never seen are 

presented. 

 

 

Figure 64: SVM (trained at kbest features) accuracy vs kbest number 

It should be noted that the SVM classifier is with the settings we derived during the study of the 

entire dataset and has been described in detail in the Machine learning implementation 

section. The system's response to the evaluation dataset is interesting, as one would expect it 

to be stable, especially from a certain point onwards. Instead, it shows fluctuations. This is due 
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to the fact that the dataset changed composition, and the data became linearly separable, and 

generally, with the change in the composition of the dataset each time, the shape of the most 

suitable kernel changed. The kernel of the svm we used was the rbf. The process was repeated, 

and this time we combined it with the grid-search method for hyper tuning, where it was 

shown that the linear kernel was the most suitable in the vast majority. We replaced the kernel 

in the previous process, ran the experiment again, and the results are shown in Figure 65. 

 

 

Figure 65: Hyper tuned SVM (trained at kbest features) accuracy vs kbest number 

It is evident that the k-best part needs to be studied thoroughly, and this is because we 

see a very good performance of the model in the evaluation dataset for low values of Kbest, 

while the evaluation test set score for these values is low. It is obvious that we have a very 

"convenient" evaluation dataset. 

In the context of this analysis, an algorithm was created which will show us the effect of 

kbest on the performance of the system. This algorithm should give us the minimum number 

(kbest) of points in the dataset at which we will train the SVM, which will recognize 

reconstructed signals created with the minimum number of points (m) from the original signal. 
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At the same time, we want the best possible model at the test set evaluation level. The 

algorithm will return both kbest and m values. 

Load initial dataset and evaluation dataset 

Create a kbest list to study 

For each kbest in list  

Feature selection to both datasets as kbest defines, using grid-search 

Hyper-tune SVM (grid-search) using ft selected dataset 

Create a list of m of initial signal 

Take first m 

While model acc using m<1 or m list is not over 

CS of evaluation dataset  

Reconstruction of cs evaluation dataset  

Evaluate model using reconstructed dataset 

Find reconstruction accuracy for specific m 

Take next m 

 Find best reconstruction accuracy per kbest 

First m that achieves max accuracy reconstruction is what I am looking for. 

In the algorithm m is the number of random sampling points that I get from initial signal 

x in order to create compressed measurement vector y. 

The implementation of the above algorithm in Python3 can be found in the appendix of this 

thesis. According to the above algorithm, we essentially create an optimized SVM based on the 

initial dataset formed by the feature selection of each kbest. Then we compress and 

reconstruct each signal found in the evaluation dataset and provide the reconstructed dataset 

for recognition. Using the accuracy of the model on the reconstructed dataset as a criterion, we 
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find at which kbest and at what percentage m we encounter the maximum response. At the 

first appearance of max accuracy, we extract the current kbest and m as a result. 

By running the above algorithm, we get the performance of the system for each kbest and for 

each m. The representation of these results can be seen in Figure 66. 

 

 

Figure 66: SVM (trained on various kbest) accuracy on reconstructed dataset vs number of 

measurements of initial signal (using random sampling matrix) 

Observing the above graph, we see that we have an excellent response of the system for 

percentages around 25% for kbest = 300 and 500. That is, we are talking about points around m 

= 75 and m = 125, which have a significant difference. A question that arises is why do the 

intermediate values, e.g., 350, have such poor performance in this area? Additionally, since 

Kbest = 300 achieves 100%, why does it fail later with more points? 

The answer comes from the sampling matrix. We saw that randomness is an essential element 

for CS to be effective. This randomness ensures reconstruction but different matrices will 

achieve different performances. Therefore, we could enrich the algorithm with the process of 
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determining the most suitable matrix. For this purpose, the above algorithm is configured as 

follows: 

Load initial dataset and evaluation dataset 

Create a kbest list to study 

For each kbest in list  

Feature selection to both datasets as kbest defines, using grid-search 

Hyper-tune SVM (grid-search) using ft selected dataset 

Create a list of m of initial signal 

Take first m 

While current m model acc <1 for or m list is not over 

Find best sampling matrix with m elements 

CS of evaluation dataset  

Reconstruction of cs evaluation dataset  

Evaluate model using reconstructed dataset 

Find reconstruction accuracy for specific m 

Take next m 

 Find best reconstruction accuracy per kbest 

First m that achieves max reconstruction accuracy is what I am looking for. 

In the algorithm m is the number of random sampling points that I get from initial signal 

x in order to create compressed measurement vector y. 

Within the framework of implementing the experiment indicated by the above 

algorithm, we obtain the following graph: 
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Figure 67: SVM (trained on various kbest) accuracy on reconstructed dataset vs number of 

measuremets of initial signal (using best samping matrix) 

Comparing with Figure 66, the impact of choosing the most appropriate sampling matrix on the 

recognition by the classifier of the reconstructed signal is evident. In this graph, we can observe 

many interesting things about CS and machine learning. 

In the algorithm that implemented the above experiment, the optimal sampling matrix Αmx534,, 

which was created randomly, has been sought among 1000. 

We should also make it clear once again that the model that makes recognitions is trained on 

the dataset where its features have been reduced from 534 to k_best. We see that for k_best 

100 and 150, the model does not generalize very well to the reconstructed signals of the 

evaluation dataset. It is obvious that at 100 points, not all the necessary information contained 

in a signal can be rendered. However, at 150 points, we can see that our model achieves the 

performance of the model trained on the whole dataset, about 97%. So, we certainly don't 

have the best results in these k_best, but in general, we don't have degradation. 

The k_best = 200 is interesting, which for a percentage between 10 and 20 percent shows an 

increase from 97 to 100. We should look for the value at which the accuracy becomes 100 for 

the first time. This will show us the smallest m for which we have CS and reconstruction of all 

signals in the evaluation dataset, and our model has the maximum performance. 
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We conduct the same experiment, limiting the k_best only to 200 and redefining the study 

percentages to [0.11, ..., 0.19]. To see even better the impact of the appropriate sampling 

matrix, the results of the experiment are depicted in three ways. In the first plot (blue line), the 

performance is shown by simply taking the best random sampling matrix among 10 (best 10). In 

the second case (orange line), the best among 100 (best 100) was chosen, and in the third 

(green line), it was chosen among 1000 (best 1000), as in the previous summary graph. The 

results are shown in Figure 68: 

 

 

Figure 68: Finding optimum kbest and minimum number m 

So, it is at the 11% point for k_best = 200 that we have the maximum accuracy for the first time. 

This means that even if we take an inertial signal, let's say x, of 534 points in size, we keep 200 

of them (which we know exactly which ones) and choose 11% of those as indicated by the 

optimal sampling matrix 

 [96,198,164,48,108,107,66,34,177,93,95,136,162,47,139,169,85,52,199,45,97,14] 

and we create the compressed signal y with 22 points. We send the y vector to the sink node. 

There, using the compressed sensing reconstruction technique with the parameters we 



131 
 

analyzed, the x_hat vector is reconstructed. The reconstructed x_hat vector is then given to the 

trained model where it is recognized. This process was repeated for all the signals in the 

evaluation dataset, and all 30 were recognized. This is a good indicator for us to understand 

that this point is the answer to our question. By selecting 22 points from an inertial signal with 

534 points, the signal is compressed and reconstructed using CS techniques, and the 

reconstructed signal is recognizable by a machine learning model that was trained with k_best = 

200 features of the uncompressed original dataset. 

In the summary graph, we can also see that while k_best = 250 achieves maximum system 

response at every percentage after 10%, choices of k_best = 500 have a smaller response in the 

area up to 15%. The explanation is again in the sampling matrix. More specifically, when I have 

k_best = 500, then the strong features are among 500, while in k_best = 250, they are among 

250. In the second case, I have twice the chances of finding a more suitable matrix among the 

1,000 I'm looking for. 

The number of combinations that can be created with a set of 250 elements, taking m of them 

but one at a time, is given by the binomial coefficient, denoted as C(250, m). This is calculated 

as follows: 

C(250, m) = 250! / (μ! * (250 - μ.)!).  

In order to determine the difference, we calculate based on the above formula: 

C(250, m) = 1.31e+45 

C(500, m)= 1.64e+57 

This means that C(500, m) is 1,258,901,483,489 times larger than C(250, m). 

We will not go through the process of calculating the optimal sampling matrix for these Kbest 

values since we found what we were looking for at Kbest=200. Let's not forget that our main 

goal is to identify the smallest number of elements. Therefore, we will not analyze further; we 

simply explain what exactly is happening and why this paradox appears. 
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6 Conclusions and future work 

In the context of conducting this thesis, we thoroughly studied the subject: "exploiting 

compressed sensing in distributed machine learning". Our goal was to develop a method with 

the help of which a signal would be captured in a distributed machine learning environment 

(sink node) and would undergo compressive sampling to the maximum extent possible. At the 

same time, however, the compression ratio on the original signal would make it capable of 

being reconstructed when it reaches its destination (leaf node). The reconstruction error of the 

method should not affect the ability of the machine learning model we have developed to 

recognize the reconstructed signal. It should be emphasized that the machine learning model, 

an SVM classifier, is trained on the uncompressed original acquisitions of the signals. 

In order to develop the above method, several questions had to be answered, and these 

questions came with the design and execution of suitable experiments. What made this study 

particularly demanding was the common application area of two techniques, machine learning 

and compressive sampling. The configuration of one technique's parameters (e.g., ML) had to 

be done in conjunction with the impact not only in its area but also in the CS area. 

At the machine learning level, the feature selection method proved that gridsearch, with 

which we maintain the kbest strongest features, is more suitable compared to the removal of 

those with the highest correlation (Pearson correlation) between them. Although the model in 

the second case has excellent performance on the evaluation dataset data, when the entire 

dataset is compressed and reconstructed, the performance is reduced. The SVM proved to be a 

more effective classifier compared to many others, and the use of the linear kernel proved to 

be more suitable after the final shaping of the dataset from the selection of features. 

At the CS level, it was proven that the most suitable solver was Lasso with the setting of 

its hyper parameter at 0.037. We saw that with the help of the random subsample sampling 

matrix, which we adopted, we can achieve very good results. Regarding signals originating from 

an IMU (accelerometer values in time), we found that the best transformation basis was the 

DCT compared to wavelets. 
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Summarizing all of the above and in response to the main research question of this 

thesis, we can say:  

In a distributed machine learning environment, at the leaf node on the extreme edge 

where an Arduino Nano 33 BLE Sense microcontroller is located, we have a signal captured 

from its embedded IMU. This signal consists of 534 data points (features). By applying feature 

selection using the grid search method, we choose the 200 best features. This signal undergoes 

compressive sampling at an 11% rate, meaning 22 features. This signal is then sent to a 

Raspberry Pi 4, a sink node, which reconstructs the signal and feeds it to an SVM for 

classification, and the signal is successfully recognized. To study the performance of the 

classifier, a set of 30 signals was compressed and reconstructed as described above, then fed to 

the SVM, and all 30 were successfully recognized. 

We will now mention some possible directions for potential future work based on our 

findings and the limitations we encountered in our research. Our approach has shown many 

useful results for addressing and managing the research problem we faced. However, there are 

several points where further investigation could help improve performance and extend the 

applicability of our approach. The research community has shown increasing interest in this 

area that we have studied, and we believe that the following directions can contribute to 

advancing the field. By exploring these directions, we can gain a deeper understanding of the 

underlying mechanisms at the intersection of machine learning (ML) and compressive sensing 

(CS). At the same time, we can evaluate the performance of our approach on different signals 

beyond IMUs (such as images, sounds, etc.) and develop new techniques and applications for 

the benefit of the broader community. 

 In the approach of the method we created, we used the traditional signal 

reconstruction process of CS. More specifically, the reconstruction came with the help of 

determining the sparsest signal representation of the original signal in the DCT representation 

basis. This is essentially the solution to a convex optimization problem. How would the findings 
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of the method we created change if a neural network was used for signal reconstruction? The 

compressed signal that would come to the sink node would feed its input and at the output we 

would get the reconstructed original. How more accurate would the reconstruction be and, 

consequently, how many fewer or more points than 22 would I have to take in order to achieve 

the same results? 

We studied the role of the sampling matrix. A subject of study could also be the 

development of a method for creating a universal sampling matrix that would be adaptable to a 

variable size of the sampling points from the original signal. That is, can a neural network be 

created that will accept the original and the compressed signal as input and output the optimal 

sampling matrix? This method could be generalized to search for a model that would be given 

the original signal and the number of points and output the compressed signal with the optimal 

sampling matrix, which would also result in the smallest reconstruction error. 

Another interesting point of study that arises from this work is how the results of the 

current method would be shaped if the machine learning model was not trained only on the 

compressed signals but on a dataset consisting of the original and reconstructed signals. What 

would be the generalization of the model? How many would be the minimum points I should 

take in this case? Generalizing this approach even further, what if the model was trained on the 

k-most significant coefficients of the DCT representation of the original signal? After 

representing the signal in a selected basis, feature selection would follow, and then 

compressive sampling and reconstruction using a neural network, and finally performance on 

the SVM for recognition. 
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Αppendix A 

Below is a documented part of the jinja code with the help of which we port the svm 

implementation code to c++. 

1. Defining the predict function: 

{{ dtype|default("int", true) }} predict(float *x) { 
    float kernels[{{ sizes.vectors }}] = { 0 }; 
    {% if sizes.classes > 1 %} 
        float decisions[{{ sizes.decisions }}] = { 0 }; 
        int votes[{{ sizes.classes }}] = { 0 }; 
    {% endif %} 
} 
The predict function is the primary interface for making predictions with the machine 

learning model. It accepts a pointer to an array of floats, representing the feature vector of the 

input data. The function initializes arrays for storing kernel values, decision values, and votes 

depending on the number of classes in the model. 

2. Calculating kernel values: 

{% for i, w in f.enumerate(arrays.supports) %} 
    kernels[{{ i }}] = compute_kernel(x, {% for j, wj in f.enumerate(w) %} {% if j > 0 %},{% endif %} {{ 

f.round(wj) }} {% endfor %}); 
{% endfor %} 
In this part of the code, the kernel values are computed for each support vector using 

the compute_kernel function. The kernel values are stored in the kernels array. 

3. Handling different numbers of classes: 

Depending on the number of classes in the model, different prediction mechanisms are 

used. The Jinja2 template engine generates the appropriate code based on the value of 

sizes.classes. 

{% if sizes.classes == 1 %} 
    ... 
{% elif sizes.classes == 2 %} 
    ... 
{% else %} 
    ... 
{% endif %} 
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i) Predicting for a one-class problem: 

float decision = {{ f.round(arrays.intercepts[0]) }} - ({% for i, coef in f.enumerate(arrays.coefs[0]) %} + 
kernels[{{ i }}] {% if coef != 1 %}* {{ f.round(coef) }}{% endif %} {% endfor %});  

return decision > 0 ? 0 : 1;  
For a one-class problem, a decision value is calculated using the intercepts and 

coefficients. The class is determined based on whether the decision value is greater than zero. 

ii) Predicting for a two-class problem: 

float decision = {{ f.round(arrays.intercepts[0]) }}; decision = decision - ({% for i in range(0, 
sizes.supports[0]) %} + kernels[{{ i }}] * {{ f.round(arrays.coefs[0][i]) }} {% endfor %}); decision = decision - ({% for i 
in range(sizes.supports[0], sizes.supports[0] + sizes.supports[1]) %} + kernels[{{ i }}] * {{ f.round(arrays.coefs[0][i]) }} 
{% endfor %});  

return decision > 0 ? 0 : 1;  
For a two-class problem, the decision value is calculated similarly, but with different 

coefficients and intercepts. The class is determined based on whether the decision value is 

greater than zero. 

iii) Predicting for multi-class problems: 

{% set helpers = {'ii': 0} %} 
{% for i in range(0, sizes.classes) %} 
    {% for j in range(i + 1, sizes.classes) %} 
        {% set start_i = sizes.supports[:i].sum() %} 
        {% set start_j = sizes.supports[:j].sum() %} 
        decisions[{{ helpers.ii }}] = {{ f.round(arrays.intercepts[helpers.ii]) }} 
        {% for k in range(start_i, start_i + sizes.supports[i]) %} 
            {% with coef=arrays.coefs[j-1][k] %} 
                {% if coef == 1 %} 
                    + kernels[{{ k }}] 
                {% elif coef == -1 %} 
                    - kernels[{{ k }}] 
                {% elif coef != 0 %} 
                    + kernels[{{ k }}] * {{ f.round(coef) }} 
                {% endif %} 
            {% endwith %} 
        {% endfor %} 
        {% for k in range(start_j, start_j + sizes.supports[j]) %} 
            {% with coef=arrays.coefs[i][k] %} 
                {% if coef == 1 %} 
                    + kernels[{{ k }}] 
                {% elif coef == -1 %} 
                    - kernels[{{ k }}] 
                {% elif coef %} 
                    + kernels[{{ k }}] * {{ f.round(coef) }} 
                {% endif %} 
            {% endwith %} 
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        {% endfor %}; 
        {% if helpers.update({'ii': helpers.ii + 1}) %}{% endif %} 
    {% endfor %} 
{% endfor %} 
{% set helpers = {'ii': 0} %} 
{% for i in range(0, sizes.classes) %} 
    {% for j in range(i + 1, sizes.classes) %} 
        votes[decisions[{{ helpers.ii }}] > 0 ? {{ i }} : {{ j }}] += 1; 
        {% if helpers.update({'ii': helpers.ii + 1}) %}{% endif %} 
    {% endfor %} 
{% endfor %} 
int val = votes[0]; 
int idx = 0; 
for (int i = 1; i < {{ sizes.classes }}; i++) { 
    if (votes[i] > val) { 
        val = votes[i]; 
        idx = i; 
    } 
} 
For multi-class problems, pairwise decisions are made for each pair of classes using the 

kernel values, intercepts, and coefficients. The code iterates through all possible pairs of classes 

and computes the decision values, storing them in the decisions array. 

After calculating the decision values, the code determines the class with the highest 

number of votes. The votes array is updated based on the pairwise decisions. The class with the 

most votes is returned as the final prediction. 
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Appendix B 

Below is the python source code that implements the main algorithm that finds the optimum 
kbest and the optimum number m measurements from the initial signal x that forms the 
compressed vector y. 
 
best_pososto=[]# gia kathe kbest to mikrotero pososto pou petixe to kalitero acc 

kalitero_accuracy_gia_kbest=[] 

kalitero_pososto_gia_kbest=[] 

kalitero_perm_gia_kbest=[] 

print("Enarksi epanaliptikis diadikasias evresis kaliterou k best") 

for kbest_param in range(100,534,50): 

# for kbest_param in range(100,101,100): 

    print("-------------------------------------------------------------------------------------------") 

    y=data['y'] 

    limited_X = data.drop(columns = ['y']) 

    # generate dataset from leftover features, after Remove collinear features in the dataframe 

    selector = SelectKBest(f_classif, k=kbest_param)# 

    selector.fit(limited_X, y) 

    # # # Get columns to keep and create new dataframe with those only 

    cols2 = selector.get_support(indices=False) 

    selected_data = limited_X.iloc[:,cols2] 

    kbest_evaluation=evaluation_df.iloc[:,cols2] 

    # array1=data.columns.values 

    selected_data['y']=y 

    print('\x1b[6;30;42m' + 

'********************************************************************************************************' + '\x1b[0m') 

    print("meletame to kbest =",kbest_param) 

    print("to shape tou original dataset me kbest = ", selector.k, " einai ", selected_data.shape) 

    print("to shape tou evaluation dataset me kbest = ", selector.k, " einai ", kbest_evaluation.shape) 

    print('\x1b[6;30;42m' + 

'********************************************************************************************************' + '\x1b[0m') 

    #pame gia train tou meiomenou dataset 

    split = StratifiedShuffleSplit(n_splits = 10,test_size = 0.2,random_state = 1) 

    for train_index, test_index in split.split(selected_data,selected_data['y']): 

        train_set = selected_data.loc[train_index] 

        test_set = selected_data.loc[test_index] 

    #dimiourgia train test 

    y_train=train_set['y'] 

    y_test=test_set['y'] 

    #dimioyrgia test test 

    X_train = train_set.drop(columns = ['y']) 

    X_test = test_set.drop(columns = ['y']) 

    models = [] 

    models.append(('SVM', SVC())) 

    # Test options and evaluation metric 

    num_folds = 5 

    seed = 7 

    scors = ['accuracy'] 

    results = [] 

    names = [] 

    my_res=[] 

    for name, model in models: 

        print("----------------------------------------------------------") 

        for scoring in scors: 

            kfold = StratifiedKFold(n_splits=num_folds,shuffle=True, random_state=seed, ) 
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            cv_results = cross_val_score(model, X_train, y_train, cv=kfold, scoring=scoring) 

            results.append(cv_results) 

            names.append(name) 

            msg = "%s: %s: Cross Validation Score %f (%f)" % (name,scoring, cv_results.mean(), cv_results.std()) 

            my_res.append(cv_results.mean()) 

    tuning_data_set=X_train 

    c_values = [0.01,0.05,0.08,0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.3, 1.5, 1.7, 2.0] 

    gamma=[0.1,0.3,0.7,1,1.2,1.5,1.8,2] 

    kernel_values = ['linear', 'poly', 'rbf', 'sigmoid'] 

    param_grid = dict(C=c_values, kernel=kernel_values,gamma=gamma) 

    model = SVC() 

    kfold = StratifiedKFold(n_splits=num_folds,shuffle=True, random_state=seed) 

    grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring=scoring, cv=kfold) 

    grid_result = grid.fit(tuning_data_set, y_train) 

    means = grid_result.cv_results_['mean_test_score'] 

    stds = grid_result.cv_results_['std_test_score'] 

    params = grid_result.cv_results_['params'] 

    

model=SVC(C=grid_result.best_params_['C'],gamma=grid_result.best_params_['gamma'],kernel=grid_result.best_params_['kernel

']) 

    print(grid_result.best_params_) 

    print("kalytero montelo gia k-best =",kbest_param," einai to :" ,model) 

    #perform predictions  

    model.fit(X_train, y_train) 

    predictions = model.predict(X_test) 

    print("Cross Validation Test set accuracy = ",accuracy_score(y_test, predictions)) 

    #perform prediction on KBEST TRAINED MODEL 

    y0=[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2] 

    predictions = model.predict(kbest_evaluation) 

    print("Evaluation Dataset accuracy = ",accuracy_score(y0, predictions)) 

    import warnings 

    warnings.filterwarnings('ignore') 

    best_perm_list=[] 

    best_acc=[] 

    # kalitero_pososto=[] 

    n=kbest_evaluation.shape[1] 

    Psi = dct(np.identity(n)) # Build Psi 

    pososta=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.7,0.9] 

#     pososta=[0.1] 

    y0=[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2] 

    # signals_4_CS_df=kbest_my_signals 

    signals=kbest_evaluation.values.tolist() 

    print("ta ipo dokimi meiomena exoun shape", kbest_evaluation.shape) 

    #     for pososto in pososta: 

    times=0#poses fores vrike sinexomeno acc=1 

    position=0 

    print("----------------------------------------------------------") 

    print("Enarksi meletis pososton") 

    #gia kathe pososto 

    sinoliko_megisto_pososton=-1 #midenisma gia kathe ena kbest 

    while (times<=1 ) and (position<=len(pososta)-1): #thelo an brei dio sinexomena acc=1 na stop...afou ola apo ekei kai 

kato 1 tha einai  

        print("times=",times) 

        pososto=pososta[position] 

        position=position+1 

        maximum=-11 #to megisto acc kathe posostou 

        m = round(n*pososto) # num. random samples 

        #enarksi dikias mou gridseach na bro to kalitero perm 
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        for i in range(1): # edo kano mia grid search na bro t kalitero perm anamesa se 1000 prospathies 

            signals_recon=[] 

            perm = np.floor(np.random.rand(m) * n).astype(int) 

            Theta = Psi[perm,:]       # Measure rows of Psi 

            for signal_4_study in signals: #edo pairnei ena ena ta stoixeia tou validation_set 

                x=np.array(signal_4_study) 

                lasso = Lasso(alpha=0.037) #to eixa brei apo ti meleti 

                y = x[perm] #to compressed vector 

                lasso.fit(Theta,y) #efarmozo solver 

                s_lasso = lasso.coef_ #pairno to S 

                s_lasso = np.squeeze(s_lasso)  

                xrecon = idct(s_lasso) # reconstruct full signal 

                signals_recon.append(xrecon) #ena ena ta anakataskevasmena ta bano se mia lista 

            reconstructed_df = pd.DataFrame(signals_recon) #kano ti lista anakataskeuasmenon dataframe 

            reconstructed_X=reconstructed_df  

            reconstructed_y=y0     

            predictions = model.predict(reconstructed_X) 

            acc=accuracy_score(y0, predictions) #brisko se poses epese mesa to montelo mou  

            if acc > maximum : 

                maximum=acc #to kalitero acc sta 1000 gride search 

                best_perm=perm #i kaliteri perm list pou dinei to max 

                # max_pososto=pososto 

            acc=-11 #midenizo kalou kakou 

        # kalitero_pososto.append(max_pososto)#macc kathe posostou 

        print("==================================================================") 

        print("Για ποσοστό  =",pososto," kai kbest =",kbest_param) 

        print("max accuracy = " , maximum) 

        print("Στοιχεία που απαιτούνται, m= " , m) 

        print("best subsample list") 

        print(*best_perm,sep=",") #auti edo einai i kaliteri lista 

        print("==================================================================") 

        best_perm_list.append(best_perm) #bale sti lista best_perm_ti kaliteri perm lista 

        best_acc.append(maximum) #best acc gia kathepososto 

        if maximum > sinoliko_megisto_pososton: 

            sinoliko_megisto_pososton=maximum 

            kalitero_pososto=pososto 

#         if maximum==1 : 

#             times=times+1 

    #edo prepei na bro to max accuracy apo to best_acc ALLA to proto pou tha bro giati an px einai to 3  

    #megisto acc=1 ola apo ekei kai kato tha einai 1. opote thelo to proto max acc kai tin perm list pou 

    #to dinei gia auto to kbest 

#     kalitero_accuracy_gia_kbest.append(best_acc)#edo mesa einai to proto kalitero accuracy gia kathe kbest 

    kalitero_accuracy_gia_kbest.append(best_acc) #auti i lista periexei kathe posostou to kalitero accuracy 

    #diladi sto kalitero_accuracy_gia_kbest[0] tha einai to kalitero accuracy pou petixame sto proto kbest 

    #apo kato i antistoixi lista me to kalitero poososto pou petixame 

    kalitero_pososto_gia_kbest.append(kalitero_pososto)#mia lista me kalitero acc an pososto kai auto gia kathe kbest 

    #ka apo kato i antistoixi lista perm pou mou to dinei 

#     kalitero_perm_gia_kbest.append(best_perm_list[best_acc.index(max_value)])#edo mesa einai to proto kalitero accuracy 

gia kathe kbest 

    kalitero_perm_gia_kbest.append(best_perm_list)#edo mesa einai to proto kalitero accuracy gia kathe kbest 

    #meta midelizo tis listes gia to epomeno kbest 

    best_perm_list=[] 

    best_acc=[] 

    # kalitero_pososto=[] 

    times=0 
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