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Abstract

Smart farming can be defined as the application of supplementary technologies to help

minimize  waste  and  boost  productivity.   Agriculture  sector  involves  a  huge  number  of

heterogeneous devices that are used for collecting, transferring, exchanging and processing data.

Integration into a common infrastructure of diverse data from such devices is challenging due to

compatibility  issues.  Data  fusion,  data  transmission  protocols,  and  serialization  formats  are

essential components of agriculture IoT-based solutions as they enable seamless communication,

data exchange, and interoperability. Despite the fact that IoT technologies are promptly evolving,

some issues concerning the interoperability and the semantic annotation of heterogeneous data

have to be handled within rural deployments that necessitate meeting certain requirements such

as long range and coverage in areas with challenging terrains, where radio communications are

difficult  or not available.  We have developed a platform that  can deal with data and device

diversity while supporting edge processing and dynamic context-based operation profiles for end

nodes, by leveraging low energy consumption communication protocols and ultra simple end-to-

end deployment. On the edge there is an ARM-based single-board computer (SBC) Hybrid IoT

node  that  is  able  to  be  adapted  in  any  deployment.  It’s  RTOS  is  based  on  a  distributed

middleware that supports  heterogeneity and offers flexibility  on working both as an extreme

edge dummy node, as edge computing node with processing capabilities, or as a Fog gateway

able to communicate with subnetworks. Data transaction between the end nodes and the cloud is

agnostic and is feasible through an application-level zero-copy binary serialization approach. For

the data transfer LoRaWAN offers us flexibility due to its support for multiple spreading factors

(SFs) and device classes. On the cloud core application, all IoT devices are distributed to virtual

subnets that are handled by functionally independent resource managers. End devices can start

working automatically once they are registered according to the operating scenario and system

wide preferences. Decision making is done through adaptable computational models that could

be fused,  depending on the use case with third-party data  in order  to  enrich the application

context and improve the decision efficiency. 
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Chapter 1 - Introduction

Ιndustrialized  food  production  and  distribution  has  facilitated  the  use  of  modern

technologies  such  as  sensor  networks,  satellite  imagery,  and  cloud  computing  for  remote

monitoring and control of agricultural operations. Precision Agriculture and Smart Farming use

technologies  such  as  IoT,  big  data,  and  AI  to  improve  agricultural  practices  and maximize

productivity  while  minimizing  waste.  The  Internet  of  Things  (IoT)  provides  a  global

infrastructure that connects physical objects, allowing them to collect and exchange data. Low

Power  Wide  Area  Networks  (LPWANs)  facilitate  long-range,  low-power,  and  cost-effective

communication. Big Data analysis can extract meaningful information from a large amount of

data collected from various sources, including IoT devices. Computer vision involves developing

algorithms and techniques to analyze images and extract information, which can be applied to

monitor plant growth and yield. Artificial Intelligence (AI) enables machines to perform tasks

that typically require human intelligence and it has a wide range of applications in agriculture,

including predicting weather patterns, optimizing irrigation, and identifying pests and diseases.

Within this context, multiple aspects of agriculture should be included in data collection, within

scalable and interoperable smart farming systems that can support wide deployments and diverse

low-cost  and  versatile  IoT devices.  Generally,  IoT  platforms  serve  as  an  interface  between

devices and end-users and offer services such as device management, data analytics, connection

management, storage, processing, and visualization. It is significant for IoT-based agricultural

solutions,  to  enable  seamless  communication,  data  exchange,  and  interoperability  between

devices, sensors, and systems. There are a lot of proprietary and open-source platforms that are

designed to provide a standardized architecture for building IoT applications that can be easily

integrated  with  different  sensors  and  devices,  making  them  suitable  for  various  domains,

including agriculture.

These platforms offer a range of tools for data collection,  analysis,  visualization,  and

support for machine learning and AI. Nevertheless there are remaining some critical issues and

challenges in the development and implementation of IoT technologies in the agricultural sector.

These  issues  include  interoperability,  standardization,  connectivity,  security,  fault  tolerance,

energy management, data management, analytics, and sustainability. It is crucial to address these

challenges to fully realize the potential of IoT in agriculture. In parallel, the agriculture industry
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in many cases dictates long-distance communication in rural and suburban areas where there is

no  internet  connection  or  cellular  network  coverage.  While  there  are  several  solutions,

LoRaWAN is suitable for rural IoT deployments due to its ability to handle a large number of

devices, long battery life, low operating costs, but also because it is simple and has a low-cost

and  sustainable  architecture.  Nevertheless,  there  are  some  trade-offs  between  scalability,

coverage,  and  power  consumption  in  LoRaWAN  deployments  that  can  affect  network

performance.

Τhe  current  thesis  represents  the  development  of  an  integrated  IoT  platform  for

agriculture 4.0 scenarios that overcomes challenges such as system simplicity, scalability, and

energy  optimization.  Our  solution  is  built  on  a  4-tier  architecture:  perception,  network,

processing, and application layers. It includes edge processing, dynamic context-based operation

profiles,  and  low  energy  consumption  communication  protocols,  while  supporting  data  and

device  diversity  and  provides  value-added  services  for  crop  management  and  precision

agriculture.

Data transaction between the nodes and the cloud is agnostic, and the contextualization is

done on the cloud using predefined configuration schemas. The data is structured in a pointer-

based approach and uses bit-packing to generate a buffer sequence with interdependent offsets.

The  cloud  core  application  handles  IoT  devices  distributed  to  virtual  subnets  managed  by

resource managers. It includes the physical capabilities of edge devices as digital representations

at the software level, creating a virtual ecosystem between end-users and remote end devices.

The Cloud also includes a decision support service (DSS) that operates based on edge node data

and manager-wide data processing models. The system uses adaptable computational models for

decision-making based on sensor data collected at the edge nodes, with the option to fuse third-

party data to improve decision efficiency. REST API endpoints provide read and write services

for accessing and manipulating data in JSON format.

The IoT platform has been evaluated through two water resource management scenarios.

The first scenario covers the management of water resources of multiple fields at the point of

distribution, and the second scenario covers the autonomous management of irrigation of a farm

consisting of several hectares of olive crops.
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This  thesis  is  organized  into  several  chapters  that  aim  to  provide  a  comprehensive

analysis  of the current state and future potential  of agriculture 4.0, as well  as to propose an

innovative  solution  for  the  challenges  faced  within  IoT-based systems.  In  chapter  2  we are

making an analysis of Agriculture 4.0 and its current state. In chapter 3 we are discussing the

background technologies behind agriculture 4.0 digitization. In chapter 4 we are summarizing the

most important aspects of IoT platforms while also presenting the state-of-the-art and assessing

the communication background of such systems. In chapter 5 we are presenting our innovative

solution, including its architecture, subsystems and workflow. In chapter 6 we summarize our

evaluation  use  cases  and  describe  them.  In  chapter  7  we  are  discussing  the  outcomes  and

conclusions  that  have  been  made.  In  chapter  8  we  are  representing  our  future  work  goal

regarding our solution.

Chapter 2 - Agriculture 4.0

Agricultural Digitalization

It is accepted that global food production needs to be increased by 60% until 2050 due to

the population growing to 9 billion people [2]. On the other hand the climate change that is

enforced, between others, from the agriculture industry needs to be taken into account and the

land needs to continue to be arable as much as possible, so fertilizers and pesticides usage should

be minimized. Around 50% of the world’s vegetated land is already used for food production

where 70% of global freshwater is consumed, while 33% of soils are degraded by erosion [13].

Efficiency should be increased by simultaneously avoiding misuse of resources and the pollution

of  the  environment.  At  the  same  time,  food  production  meets  several  challenges,  like  the

reduction  of  the  workforce  in  rural  areas,  but  also  the  increase  in  production  costs,  while

sustainability tends to be crucial  from now on, so the usage of natural resources, like water,

should be reasonable [3]. These facts are giving more and more attention to the aforementioned

agriculture  orientation,  where  scaling  is  taking  place  for  a  decade  now  facilitating  the

industrialisation of food production. In our days, industrialized food production and distribution

is dominating the global agriculture industry following the tendency of increased productivity

and cost effectiveness [1]. This trend leverages a variety of modern technologies, such as sensor
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networks, satellite imagery, and cloud computing, to enable remote monitoring and control of

agricultural  operations.  [13].  Generally,  Agriculture  4.0,  as  the  4th  evolution  in  farming

technology, is defined by four essential requirements: (a) increasing productivity, (b) allocating

resources reasonably, (c) adapting to climate change, and (d) avoiding food waste [34].

Although,  two important  barriers  are  faced throughout  this  evolution  period:  lack  of

digitization and intelligence in agriculture. [1] Thus, the adoption of modern technologies within

the agriculture domain is a slow process. Indicatively, 10% to 15% of US farmers are already

using IoT solutions on their farms across 1200 million hectares and 250,000 farms [2]. Though it

is considered that sensors will be used in approximately 525 million farms globally by the year

2050 [14]. Young farmers have a more positive attitude than older ones in utilization of new

smart tools providing key information. However, the average age of farmers in the last decades

has been remarkably increasing. For instance, in the USA and Europe the mean age is about 58

years old, 60 in sub-Saharan Africa or 63 in Japan. Generally, several motivations are given to

farmers in order to support a generational renewal (e.g. European policies etc). Although, there

are also opportunities for young farmers due to their high familiarization with technology. Data-

less intuition-driven management will no longer represent the workflow of professional farms in

the future. This is a positive assessment in which there is an upcoming balance of the aging

population in rural areas, mainly in industrialized countries. [2]

Precision agriculture

Precision Agriculture consists of applying what is needed when and where is needed [2].

Precision agriculture  is  not a new concept,  but  is  still  in its  preliminary stage [1].  Precision

agriculture emerged in the 1990s, as academic and industry groups began exploring the potential

of information technology and automation to improve agricultural  practices. [1]. The concept

incorporates yield monitoring, guidance farming systems and variable rate applications.

It  is  proven  that  the  adoption  of  precision  agriculture  technologies  is  increasing  net

returns  and  operating  profits.  For  these  reasons  agricultural  digitalization  has  been  greatly

accelerated globally and a lot of companies dealing with farm management have established [2].

Based  on  USDA,  the  highest  adoption  rates  included  three  technologies  named  computer

mapping, guidance, and variable-rate equipment. [2] Nevertheless, within the last thirty years the

involvement  of such technology in agriculture by the application  of telecommunications  and
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automations has not yielded the results that were expected, but the technology evolution of the

last decade seems promising for the further improvement of the efficiency of managing farms by

the adoption of data-based digital systems. [2]

Smart Farming

New  technologies  such  as  IoT,  big  data,  computer  vision,  artificial  intelligence,

blockchain and fuzzy logic are playing an important role in agriculture’s increased intelligence.

Smart farming, which is the foundation of Agriculture 4.0, can be defined as the application of

supplementary technologies to agricultural production techniques to help minimize waste and

boost productivity [3]. It refers to the use of technologies such as the Internet of things (IoT) to

collect data, monitor levels, detect patterns and prevent problems. Smart farming is not limited to

performing precise measurements, but rather in how to access data and how these data will be

used for applications [14]. The main objective is to identify how the collected information can be

used intelligently [6]. This concept involves all farm operations [14]. For instance, the use of

modern technologies can be utilized for collection of weather data, monitoring of crop’s growth,

early detection of crops diseases, prevention of crops wastage dues to effective harvesting of

crops,  monitoring  of  livestock’s  behavioral  patterns,  animal  location  within  and  outside  the

farms, increase of production for both crops and livestock. [14] Productivity, agri-food supply

chain efficiency, food safety, and the use of natural resources are issues that will benefit from

such an ecosystem that incorporates real-time farm management, a high degree of automation,

and data-driven intelligent decision-making [1]. In that sense it is a logical consequence that

agricultural tech startups have raised over 800 million dollars in the last five years [2].

Farm management  information  systems  (FMIS)  and Agricultural  Decision

Support Systems (ADSS)

Crop management based on field data already evolved when Precision Agriculture firstly

adopted  thirty  years  ago.  Though,  the  digital  information  era  is  greatly  transforming  the

evolution of this domain [2]. Nowadays, large-scale monitoring of farmlands, yield forecasting

and crop identification are available through remote sensing [1], thus a wide range of strategic

and operational  decisions  can  be  supported  [2].  The new era  of  cultivation  systems include

various innovative technologies, like IoT, Unmanned Aerial Vehicles (UAV), machine learning
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etc, and moving beyond legacy decision support systems that were equipped with predefined

time scheduling functions of the past [6].

Farm management  information  systems  (FMIS)  designed to  assist  farmers  with  their

tasks, ranging from operational planning, implementation and documentation to the assessment

of performed field work. Such a system may support the automation of data acquisition and

monitoring,  processing,  planning,  decision  making,  documenting,  and  managing  the  farm

operations and include basic functions for record keeping like crop production rates (harvests

and yields), profits and losses, farm tasks scheduling, soil nutrients tracking, weather prediction

and  field  mapping,  up  to  more  complex  functionalities  for  automating  field  management

accounting for farms and agribusinesses (accounting, inventory management, or labor contracts)

[2].  An important  part  of such systems is  the Agriculture Decision Support  System (ADSS)

where the processing of the data happens, in order to facilitate the decision stage, by filtering

routines and AI algorithms. Generally, an ADSS can be defined as a human-computer system

which utilizes data from various sources, aiming at providing farmers with a list of advice for

supporting their decision-making under different circumstances [34]. This helps getting only the

right  data  and  helping  the  grower  make  efficient  decisions.  In  this  way,  an  assessment  by

quantitative data produces objective decisions.  In contrast,  traditional  farm growers judge by

visual  assessment,  so decisions  are  relative  and subjective.  These  decisions  produced by an

ADSS may be utilized for manual or even automatic actuation through the system. Actuation

refers to the physical execution of an action which is commanded by the ADSS, and is typically

carried out by advanced equipment on the field that can receive orders from a computerized

control unit [2]. Illustratively there are various kinds of ADSS including among others crop data

management,  water  resources  management,  mission planning,  climate  change adaptation  and

food waste control [1].
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Figure  2.1.  Cycle  that  embodies  a  general  data-driven  management  system  for  advanced

agriculture [2]

Nevertheless, at the moment the majority of systems that developed on the domain are

still in prototype form (not commercial) and usually address a specific cultivation process or a

set of them. Systems that incorporate the management of a group of cultivation processes, the

processes of the whole cultivation period (from sowing to harvest), or even the processes for a

whole farm are still missing [6]. The shift from just a specific crop, to platforms that can support

multiple smart farming applications for crop productivity is crucial. These platforms should form

systems  without  geographical  limitations  that  can  be  easily  modified  to  support  multiple

agricultural applications ranging from monitoring to managing [4]. Furthermore, to improve the

automation capability, which is a necessity for autonomous tasks, full connectivity of agricultural

machinery  is  very  important  during  the  whole  production  process  [1].  At  the  moment,  the

decisive evolution of the whole agriculture domain is perceived as the incorporation of robotics

within data-driven farms and embedded AI algorithms, which will lead to autonomous farming,

which is noted by some researchers as the next agricultural revolution (Agriculture 5.0) [2].

Chapter 3 - Background of Smart Farming solutions

Technological advancements

7



IoT

IoT may be  defined  as  “A global  infrastructure  for  the  information  society  enabling

advanced  services  by  interconnecting  (physical  and  virtual)  things  based  on,  existing  and

evolving, interoperable information and communication technologies” [28] In [28] the authors

define  IoT  as  a  network  of  physical  objects,  devices,  vehicles,  buildings,  and  other  items

embedded  with  electronics,  software,  sensors,  and  network  connectivity,  that  enables  these

objects to collect and exchange data. The goal of IoT is to make the physical world smarter by

connecting everyday objects to the Internet, allowing them to communicate with each other and

with other systems to make intelligent decisions and provide new services. IoT cloud platforms

provide a framework for managing the data generated by IoT devices and making it accessible to

other  applications  and services.  Within  the  agriculture  domain,  IoT can  be  used  to  monitor

environmental conditions in the fields, such as temperature, humidity, and soil moisture. This

data can be used to optimize irrigation, fertilization, and other management practices.

Low Power Wide Area Networks (LPWANs)

IoT  applications  for  rural  areas  are  mostly  characterized  by  sensors  reporting  small

amounts of data at a time, low cost and limited battery life. The geographical allocation of these

sensors may be covering, from a suburban area to a whole country’s uninhabited areas. Such

kinds of IoT deployments have some very specific requirements, in order to function but also to

be viable, such as long range communications, low power consumption and cost effectiveness.

[36] Application domains that are taking place in such suburban and wide areas, are precision

agriculture,  asset  tracking,  smart  metering  and  more.  Such  applications  have  relaxed  delay

constraints  and  a  reduced  number  of  periodic  messages,  but  at  the  same  time  their

communication coverage must be wide enough to handle connections with dispersed location of

end devices. [35] For these purposes network operators started to deploy machine-to-machine

solutions  to  cover  the  necessities  of  market  and  vendors,  by  using  low  power  wide  area

networking  (LPWAN)  technologies,  because  short-range  radio  protocols  like  ZigBee  or

Bluetooth can not be adapted for such scenarios that  require  long  range  transmissions. The

fundamental  constraints  for  the  deployment  of  such  solutions  are  limited  in  the  ability  of

handling a huge batch of devices and the ability of functioning for several years with zero touch

operation. LPWAN offers  low  power,  long  range and low-cost communication characteristics.
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It includes technologies with long-range communication up to 10–40 km in rural zones, long

battery lifetime of 10+ years, low cost of radio chipsets and low operating cost per device per

year. In general to achieve such multi-kilometer communication range LPWAN protocols are

combining  low  data  rate  and  robust  modulation.  [35]  LoRaWAN,  NB-IoT  and  Sigfox  are

reported as  the  three  leading  LPWAN  technologies  that  compete  for  large-scale  IoT

deployment.  [36] Apart  from these there is  a wide range of other  LPWAN protocols  in the

market  like  Ingenu,  Weightless  W,  N  and  P,  DASH7  and  eMTC.  However,  LoRaWAN

technology has received a lot of attention from network operators and solution providers. It is

arguably  the  most  adopted  because  it  offers  a  great  deal  of  flexibility,  simplicity  and

performance [35]. Within the agriculture domain, LPWANs can be used to connect IoT devices

over long distances and in areas with limited connectivity. This can enable farmers to monitor

and manage their fields remotely and in real-time.

Big Data

The large amount of data generated by sensors stored in databases and form the so-called

Big Data [3]. With Big Data analysis meaningful information from a large amount of diverse

data could be extracted [4]. In the current technology-based era, the concept of big data is present

in many economic sectors, though in agriculture at the moment the volume of data retrieved from

commercial fields cannot yet be considered as Big Data [2]. The concept can be characterized

from  six  dimensions,  namely  Volume,  Velocity,  Variety,  Veracity,  and  Valorization  and

Visualization [15]. Generally, within the smart farming concept the processing of Big Data may

be  used  to  obtain  crop  insights,  optimize  water  resources  and  increase  the  crop  quality  by

preventing  disease  and  reducing  the  amount  of  chemical  products  employed  [3].  Big  data

analytics can be used to analyze large volumes of data collected from various sources, including

IoT devices, to identify trends, patterns, and insights that can inform decision-making.

Figure 3.1. The data chain of Big Data in Smart Farming
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Computer Vision

Computer vision is a field of study that focuses on enabling machines to interpret and

understand  visual  data  from the  world  around  them,  such  as  images  or  videos.  It  involves

developing algorithms and techniques to enable computers to analyze and process images, and

extract meaningful information from them. This includes tasks such as image recognition, object

detection and tracking, facial recognition, scene reconstruction, and more. Computer vision has a

wide range of applications in various industries, including healthcare, security, entertainment,

and agriculture.  [53] Within the agriculture domain,  computer vision can be used to analyze

images and videos of crops to detect diseases, pests, and other abnormalities. It can also be used

to monitor plant growth and yield.

Artificial Intelligence

Artificial  intelligence  (AI)  refers  to  the  development  of  computer  systems  that  can

perform  tasks  that  typically  require  human  intelligence,  such  as  visual  perception,  speech

recognition, decision-making, and language translation. AI involves the use of algorithms and

statistical models to enable machines to learn from experience and improve their performance on

a  given  task.  AI  is  an  interdisciplinary  field  that  draws  on  computer  science,  engineering,

mathematics,  psychology,  and  other  areas.  Some  of  the  key  techniques  used  in  AI  include

machine learning, deep learning, natural language processing, computer vision, and robotics.

AI has a wide range of applications in various industries, including healthcare, finance,

transportation, and agriculture. In agriculture, AI can be used to improve crop yields, optimize

resource management, and automate various tasks, such as planting and harvesting. [54]

Fog Computing

Fog computing was introduced in 2012 by Cisco to assist Cloud computing to enhance

QoS and to  extend  the  kinds  of  supported  applications  within  the  IoT domain  [16].  It  is  a

paradigm of data processing distribution to the edge, where Fog gateways can intercommunicate

and typically only the crucial data is sent to the Cloud [18]. Fog layer usually consists of Single-

Board Computers (SBCs), which is the case for most Fog gateways setup, bringing network,

processing, decision and storage closer to the source of data [28, 21]. Specifically, Fog gateways

are converting raw data gathered from Fog nodes to smart data, by filtering, removing repetition,

aggregating or classifying, which reduces the data size. In many cases Fog gateways are used to
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run data processing or even decision based models providing a low latency availability of service

on the edge, yet in scenarios without internet connectivity [16].

One significant purpose of fog computing is to leverage the on demand scalability of

cloud  computing  resources  by  taking  the  advantage  of  both  cloud  and edge  computing  [4].

Among  the  advantages  of  Fog  computing  are  the  improved  context-awareness,  conserving

network bandwidth,  support for mobility,  fewer resource requirements for edge devices,  data

fusion on the Fog layer and low latency real-time processing [24, 26, 29]. Sensors, gateways and

services can potentially interoperate at different levels which enables the Collaborative IoT (C-

IoT) concept where each of the three tiers (Edge, Fog, Cloud) manipulate and evolve the initial

data within a context [19]. Fog computing can be used to process data locally on IoT devices or

gateways, reducing latency and improving response time. This can be especially useful in real-

time applications such as precision agriculture.

Digital Twins

Evolutionaly, the distribution of virtual systems over separate processing environments

that can work as a single system, where each subsystem or component can be fully simulated in

several different computing environments is getting facilitated. Detecting errors, acquiring new

information and predicting the behaviour of each subsystem or component are Digital  Twins

features  that  exploit  the  edge,  fog  and  cloud  computing  capabilities  and  point  to  the

“softwarization” of physical objects. The possibility  to reconstruct a virtual representation of

large  environment  contexts  is  strongly  related  to  IoT because  of  the ability  to  measure and

determine  the  state  of  physical  objects  [9].  Specifically,  Digital  Twin  (DT)  is  an  emerging

concept within the IoT domain where physical objects (PO) have digital counterparts that are

named Logical objects (LO). The physical entities that could be reflected, may include products,

living  and non-living  resources,  components  and processes.  Important  properties,  conditions,

behaviour(s) and characteristics of the PO within a specific application context, are composing a

comprehensive  software  representation  through  models  and  data  (LO).  Generally,  the  PO

becomes context-aware within the deployed environment  and its  behaviour can be simulated

through a set of realistic models. The capability to represent and deal with a constant flux of data

turns out to be an enabler for Data Fusion, Artificial Intelligence (AI) and Machine Learning

(ML) techniques  [13, 14]. Within the agriculture domain, Digital twins can be used to create
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virtual models of physical assets such as crops, soil, and machinery. These models can be used to

simulate different scenarios and optimize management practices.

IoT and Its Potential on Smart Farming

IoT within agriculture context refers to the transformation of every element and action

during  the  production  into  data  [2].  Within  this  context  intelligent  farms  are  using  this

technology to facilitate various stages of the production process, such as fertilizers and pesticides

control, irrigation control, soil management, disease prevention, vehicles and machinery control,

weed management, plant growth monitoring, etc [3]. Data-driven farms can increase efficiency

by avoiding the misuse of resources and pollution of the environment [2], while it is estimated

that with IoT solutions and new techniques the agricultural productivity can be increased up to

70% by 2050 [2]. At the moment there is evidence that the facilitation of IoT in some cases

yielded 30% decrease in water consumption, 20% increase in crop production, reduction of labor

cost by 60%, fertilization reduction by 60% and pesticides reduction by 80% [5].

Data-driven farming requirements

A great challenge in agriculture is the utilization of big data because agricultural data are

collected  from individuals,  research  groups,  and companies  using different  types  of devices,

which causes a multiple sources problem and also heterogeneity problems [1]. Additionally, the

agriculture sector involves a huge number of heterogeneous devices that are used for collecting,

transferring, exchanging and processing these data. The integration into a common infrastructure

of diverse data from different sensors is challenging due to hardware and software compatibility

issues  [6].  Thus the  interoperability  issue  is  a  high  importance  challenge  for  smart  farming

systems,  that  is  not  limited  to  the  lack  of  standards  for  semantics,  data  modeling  and agri-

machinery,  nor to technologies  or protocols,  but focus mainly  on the great number of these

devices and data,  and the proper selection among them [5]. Additionally,  the integration and

multi-functionality of many, different protocol versions in IoT hardware can contribute towards a

much more effective performance [5]. Summarily, within smart farming, collection of data from

multiple aspects of agriculture is necessary, both on the extreme edge but also from third sources

(e.g. Earth observation data, weather forecasts etc). Crop, substrate, environment and more need

to  be  monitored  within  cultivations.  Typically  electronic  sensors  are  used  to  collect

environmental  data,  such  as  luminosity,  temperature  and  humidity,  or  for  monitoring  the
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temperature,  moisture  and  nitrogen  of  substrate,  or  even  for  measuring  the  acidity  or  the

alkalinity of the water in hydroponic cultivations. Cameras and multispectral sensors are used for

crop monitoring, both installed on UAVs to obtain aerial images of large plantations or even

used in robots to retrieve detailed images of plant leaves [3]. These devices, due to the nature of

farming, need to be widely deployed [5], in rural areas, where sometimes there is no telecom

infrastructure [1], and often have limited or no energy supply [3]. Different types of wireless

communication technologies based on radio frequency, sonar, vibration, and other signals could

be  required  for  information  exchange  depending  on  the  case.  Additionally,  the  physical

equipment  is  directly  exposed  to  harsh  environmental  experience  such  as  rain,  high  level

temperature, extreme humidity, hard winds and other possible dangers which can destroy the

electronic  circuits  [4].  It  is  noted  that  there  is  also  an  impact  of  vegetation  in  the  signal

propagation,  and more oftenly sensor node communication is affected by rain, snow or solar

radiation  [3].  Such weather  conditions and the dynamic agricultural  environment  dictate  that

robust network protocols are required to cope with such conditions, but also to overcome issues

related to wireless interference due to heterogeneous agricultural IoT networks and the dense

deployment [1]. To avoid quality degradation of the service several methods need to be utilized

like,  efficient  channel  scheduling  between  heterogeneous  sensing  devices,  cognitive  radio-

assisted WSNs and concurrent transmissions [1]. Network deployments are getting even more

complicated due to the potential diversity of network size, node density, transmission distance,

throughput and latency between different agricultural use cases [1], while the communication

under different physical layers and multi-protocol chains is essential [1, 5]. Specifically, cross-

technology communication  is  needed between cellular-based networks,  Bluetooth-low-energy

networks, 802.15.4 mesh networks and LoRa networks that would coexist in the same location

[1]. Typically, implementation of networks in an IoT agriculture ecosystem may be physically

restricted, while in most cases we have to deal with farming applications over wide geographical

areas. There is a requirement for architectures that are scalar and can support wide deployments,

preferably separated in several smaller networks which could minimize the operational hazards

over a huge agricultural area [5]. Edge and fog computing utilization in smart farming could be a

way to deal with challenges associated with centralized cloud computing solutions such as high

communication  latencies,  lack  of  support  for  real-time  reaction  to  detected  events,  large

bandwidths,  etc.  [3]  In any case,  new devices  should be able  to  be added over  the existing
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infrastructure without affecting the functionality, the performance and QoS, to make the systems

scalable which is a key factor [5]. In any case, developers will be influenced on their choices

from the availability of an IoT application protocol, the cost of implementing or integrating these

protocols, the easiness of development,  the openness of software or the existence of suitable

hardware and software that can be used to deliver the desired services within the frame of IoT

[5]. Smart farming products have to consist of low cost but versatile hardware, like Single board

computers  (SBCs)  [3],  but  also  software,  in  order  to  be  globally  available  to  markets  with

economic diversity [5]. For instance, Wireless Sensor Networks (WSNs) at the moment are small

scale  and short  term due to the high deployment and maintenance cost [1]. Improved signal

coverage in rural areas, based on telecommunications infrastructure upgrade will help to increase

agricultural  productivity,  while  network  bandwidth  and  delivery  latency  improvements  may

ensure large-scale high-throughput plant phenotyping [1]. Reliability is required from cases of

simple  measurements  with  low  periodicity,  to  real-time  multimedia  that  may  have  huge

variability  in  velocity.  Unreliable  data  can  lead  to  inaccurate  decisions  and  inappropriate

automated procedures which may result in significant or even intolerable cost. Critical factors

that  affect  data  veracity  and  accuracy  need  to  be  taken  into  account,  such  as  diverse  and

unpredictable propagation conditions which may range from free space to severe attenuation and

fading [5]. To evaluate all these requirements, fully developed IoT networks with a huge number

of nodes under different environmental conditions that create a big volume of diverse data should

be tested in real-world and not only in emulations [5].

Escalating with Edge & Fog computing

Modern ICT domain and especially IoT technology implies a tremendous amount of raw

data to be generated and an exponential amount of computation power. It is estimated that the

annual amount of data generated by the millions of globally deployed IoT sensors in the near

future will be of the order of zettabytes. Within this context the viability of handling these data

from cloud centric systems is doutable [17]. Additionally, energy consumption and operational

costs of Fog computing systems are very low in comparison to traditional Cloud systems [20].

These aspects turn the adoption of Fog computing into a sustainable and efficient solution for

high performance regional IoT applications with a relatively lesser carbon footprint [17]. An

International Data Corporation prediction showed that the amount of data processed on devices
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with high proximity to the edge is approaching 40%, which indicates the rate of Fog computing

adoption [23].

Within  the  agriculture  domain  there  are  a  lot  of  cases  that  mobility  support,  data

processing, better power management, high hardware costs and poor internet connectivity should

be addressed by utilising appropriate technologies [20]. Especially, when dealing with a range of

time-sensitive tools and technologies  such as UAVs and UGVs that are requiring immediate

response to actions and co-operation support, data processing should happen in real time and in

high proximity. Alongside, irrigation systems, phenological observation models etc, are delay

sensitive applications, requiring real-time control for better performance [21]. Furthermore, the

wide  density  of  deployments  over  rural  areas  drive  the  adoption  of  Low-Power  Wide  Area

Networks  (LPWAN) communication  protocols  that  have  the  disadvantage  of  low-bandwidth

transmissions.  Fog computing deals with this  issue,  by implementing data compression,  data

aggregation and data processing methods near end devices and thus reducing the large amount of

data to be transmitted [22]. Although, at the moment the state of research for agriculture oriented

publications, is noticed to be mainly limited to Cloud-based approaches without the utilization of

the Fog computing paradigm [20]. While smart agriculture is evolving, the proposed solutions

are  based  mostly  on  the  Cloud computing  model,  which  is  not  an  environmentally  friendly

technology.  Cloud  computing  majorly  contributes  to  global  warming due  to  ever  increasing

carbon  emissions  of  huge  data  centers  which  could  negate  the  benefits  gained  from smart

agriculture.  On the  other  hand,  Fog computing  by reducing the  large  amount  of  data  to  be

transmitted  can  augment  Cloud  computing  and  play  a  pivotal  role  in  the  growth  of  smart

agriculture  in  sustainable  terms.  United  Nations  Sustainable  Development  Goals  (SDG)

emphasize on climate protection and smart agriculture for sustainable development. [17]

Improving efficiency with Digital Twins

Manufacturing, Healthcare, Autonomous Vehicles, and Aviation are the main domains

that  are  at  the moment  gaining the benefits  of  the Digital  Twin technology [12].  While  the

concept has an identified potential for application in agriculture, the research outcomes are still

in early stages. At the moment there are a lot of prototypes arising within the domain, but there is

a  lack  of  openness  over  these  solutions  that  is  a  reason  for  not  being  widely  used  [9].

Specifically, at the moment there is a lack of case studies and models [13]. This kind of slow
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adoption can be reasoned by the fact that agriculture is a highly complex and dynamic domain

because the production process introduce aspects like the mobility of resources (like cattle), lack

of communication in rural areas, unpredictable environment, continuous climatic changes, lack

of willingness to share farm information and lack of technical skills of farmers [12].

From this  perspective,  the development  of Digital  Twins  and their  facilitation  within

agriculture domain case studies is still an open challenge that seems promising as an enabler for

the evolution of sustainable agriculture and the increasing smart farming efficiency.

While Digital Twins is a relatively new concept, it is already implicitly used within smart

farming but most existing applications,  including ours, focus on basic monitoring capabilities

[8].

By utilising Digital Twins, a bigger picture of the different aspects and parameters that

impact a farm's behaviour, the final yield production and resource consumption will be available.

[7] Resources will  be saved, irreversible  damages will  be treated precautionarily  and critical

decision-making will be facilitated. Spatiotemporal characteristics and human observation, that

are fundamental constraints for remote and automated monitoring, control, and coordination of

farm operations, are decoupled from planning and control. Physical proximity could be optional

as  long  as  information  from sensors,  satellites  or  other  holders,  that  also  oftenly  cannot  be

counted  in  by  humans,  are  enriching  the  digital  counterparts'  context.  [8]  The Digital  Twin

concept is already well accepted by both the academic and industrial environments, though it is

kind of abstract and its implementation in IoT software may be ambiguous. [13, 14]

Nevertheless, with a typical implementation of this concept, producers and customers can

have a clear idea on the functioning of a product in each moment of its lifecycle through this

kind of softwarization, which is taking over the processes of many industries, converging to an

increased rate of servitization, which however is controversial for many people.

IoT Platforms

Overview

Despite the fact that there are a lot of definitions for what an IoT platform is, a common

sense can be extracted. An IoT platform can be mainly described as an interface between devices

and end-users, responsible for devices management and control, as well as gathering, managing

and analyzing data to achieve the goals of IoT solutions. Generally, IoT ecosystems are offering
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services through gathering  and processing end device data. Data analytics, device management,

connection management, storage, processing and visualization are mandatory mechanisms that

should be delivered with these ecosystems in order to be able to provide central management

services to the end user [29]. Additionally, it can be concluded that generally, operating systems

of devices, gateways, application development tools and platforms, but also central management

services are considered as IoT platform’s components. Providing a set of development tools and

application deployment is considered as the most important function of an IoT platform [29]. In a

more comprehensive and novel approach based on [28], the concept of IoT cloud platforms may

be formulated by definition as: “a platform offered by a service provider as a hosted service

which facilitates the deployment of software applications without the cost and complexity of

acquiring and managing the underlying hardware and software layers to hinder a model designed

to facilitate the information society, enabling advanced services by interconnecting (physical and

virtual)  things based on, existing and evolving, interoperable information and communication

technologies through ennoblement  of ubiquitous, convenient,  on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction that leverage the need and heterogeneous connectivity issues of the

user centric things in well defined fashion”. In simple terms, IoT platforms have a common goal,

to  simplify the input  and the utilization  of  data  from all  kinds  of  sources,  using a  common

Application Programming Interface (API) [6]. In focus, data fusion, data transmission protocols,

and serialization formats are the most essential components of agriculture IoT-based solutions as

they  enable  seamless  communication,  data  exchange,  and  interoperability  between  devices,

sensors, and systems.

Data Fusion

Data fusion (DF) is a concept that includes the theory, techniques and tools which are

used  to  combine  sensor  data  or  data  derived  from sensory  data  (e.g.  third  party  data)  and

construct  a  common representational  format.  In  this  way information  coming  from multiple

sensors  and sources  gets  more intelligent,  decisive,  sensible  and precise,  while  enabling  the

ability to extract inferences that are not feasible from a single sensor. Data from a sensor alone

may have no sense on its own, which is a common case, because of the increased establishment
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of low power sensors that achieve energy efficiency but have low accuracy [25]. Different types

of information are handled in different ways in most modern DF applications. Information is

distinguished into three different categories with different nature and potential  support to the

output of the fusion process: (a) Observational Data are collected from heterogeneous sensors

with  different  observational  capability  of  real  world  entities  of  interest,  (b)  Contextual

Information can be defined as the set of circumstances surrounding a task that are potentially of

relevance to its completion, (c) Learned Knowledge is the potential extraction of non-existing

knowledge, such as relationships among targets and behaviors of entities of interest,  through

online machine learning processes operating on observational data and context information [27].

Fusing data from heterogeneous observations brings the potential to extract complex multivariate

relationships among data sets. Though, the transformation of heterogeneous data from several

feature spaces to homogenous space is required. Hopefully, Artificial neural networks (ANNs)

can extract patterns and find new trends in highly complex data sets by complex training and

learning, while they support adaptive learning with self-organization in a real time environment

and can achieve a high degree of fault tolerance [25]. Furthermore, DF has multiple challenges to

overcome  such  as,  sensor  data  imperfection  including  impreciseness  and  inconsistencies,

conflicts  in  data,  data alignment  (sensor registration problem),  velocity  of data  triviality  and

iterative nature of such algorithms. When DF is utilized within an IoT platform these challenges

are forced to be lateral constraints for the whole IoT ecosystem [25]. Agriculture IoT solutions

generate  massive  amounts  of  data  from  various  sources,  such  as  sensors,  drones,  weather

stations,  and satellite  imagery.  Data fusion techniques  can combine  such data from different

sources and sensors to create  more accurate  and reliable  data that  can be used for decision-

making. For example, data fusion can combine data from weather sensors, soil sensors, and crop

sensors to provide farmers with more precise information about soil moisture, temperature, and

nutrient levels.

Data transmission protocols

In  IoT  ecosystems,  the  communication  network  architecture  and  technology  play  a

crucial  role  in  collecting  and  managing  data.  The  diverse  requirements  of  IoT  agricultural

applications, including data types and node installation environments, pose significant challenges

related to the volume, variety, veracity, and velocity of data. To address these challenges, two
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major  protocols  have  emerged  as  effective  solutions:  Message  Queue  Telemetry  Transport

(MQTT) and Constrained Application Protocol (CoAP) [5]. Such protocols are facilitating the

communication  between  non-standardized  IoT  devices  and  IoT  platforms  [3].  MQTT  is  a

bandwidth-efficient  machine to machine (M2M) network protocol,  introduced in 1999 and is

based on the publish/subscribe model. Therefore is suitable for devices with resource constraints

(limited computing resources) and non-ideal networking conditions. It uses little battery power

and is mainly designed for receiving and transmitting sensor information [4]. It is one of the

most popular choices for IoT applications due to its simplicity and the very small header size.

MQTT defines three QoS levels through which the message could not be confirmed or stored by

the receiver, the message could be followed by a confirmation message with the option of many

retransmissions,  or  each  message  is  received  once  and  only  once  by  the  receiver  with

confirmation (four messages being exchanged between the client and the broker). MQTT clients

should support TCP and will typically hold a connection open to the broker continuously. [5]

The  CoAP  (Constrained  Application  Protocol)  protocol  was  developed  by  the  Internet

Engineering Task Force CoRE (Constrained RESTful Environments) to cater to devices with

limited computing capabilities. It is a Web transfer protocol that operates based on the principles

of the Representational State Transfer (REST) architecture and is specifically designed for use in

constrained environments. CoAP is known for its lightweight nature, offering minimal overhead.

When  using  CoAP,  clients  send  requests  to  servers,  but  unlike  traditional  request-response

protocols, the corresponding response is not sent over a pre-existing connection. Instead, it is

sent  asynchronously,  allowing  for  efficient  communication  and  resource  utilization  in

constrained environments. [5] MQTT with QoS = 0 provides balanced trade-off between latency

and transmitted data volume when reliability is not crucial, when it is, instead of using MQTT

QoS = 1, CoAP offers a better trade-off [11]. Although, generally CoAP has UDP embedded

which is not that reliable as TCP that MQTT uses. On the other hand UDP offers the lowest

overhead and presents lower bandwidth requirements than MQTT, but with worse throughput.

MQTT was found to be more energy efficient than CoAP, a parameter that has very significant

importance because networking protocol plays a pivotal role in the overall energy consumption

of  IoT nodes.  At  the moment,  MQTT seems to be  the  safest  option,  either  for   end-to-end

network architectures, or for gateway-server architectures. It is noted that in some large scale

implementations, MQTT is combined with REST HTTP. Especially for agricultural applications
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that  have  already  been  deployed  using  HTTP,  usage  of  MQTT  for  IoT  node-to-gateway

communication is beneficial.  Also, it  is preferable for smart farming due to its resiliency, its

interoperability across different network protocols and its transmission rate [3].

Figure 3.2. Comparison of MQTT and CoAP messaging models

Serialization formats

Serialization is the process that translates an in-memory representation of a data structure

into a language and architecture independent streamlined format ready to be sent to another peer

across  the  network  or  stored  locally  to  disk.  Serialization  formats  are  differing  on  how the

schema is described or on how the data are encoded. Respectively, there are schema-less (self-

describing) or schema-based methods,  text-based or binary encoding methods. A great variety of

data serialization formats have been proposed over the years, assembling different trade-offs like

human readability versus space efficiency or performance versus expressiveness [32]. On self-

describing serialization formats, text-based data is perceived as data that are typically structured

into key-value pairs in a human readable text format. In binary serialization, the same key-value

pairs  are  encoded  in  binary  format  which  is  a  method  that  typically  reduces  the  space

requirements. Schema based methods are facilitated to further reduce space requirements, while

the  schema  can  be  used  for  both  serialization  and  deserialization  processes.  [11]  Thus,

serialization formats play a pivotal role when message size needs to be reduced. Reductions in

payload size are helping in the reduction of transfer times, in lowering the risk of packets being

dropped and in reducing transfer costs when using LPWANs or even mobile networks. Google

has lead the way for such methods because it has released two formats that are widely adopted
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and very efficient. Protobuf supports binary data serialization with great performance based on

predefined message schemas, while Flatbuffers is a zero-copy serialization format designed to

have  shorter  deserialization  time  and  use  less  memory  [11].  Additionally,  there  are  also

MessagePack  and  BSON  that  offer  high  flexibility,  when  implemented  in  an  end-to-end

application,  because they are schema-less formats with significant small  size and lightweight

codebases [33]. However, schema-less formats introduce larger payload sizes which comes as a

trade-off between their flexibility. MessagePack library shows significant fast string serialization

and  deserialization  with  extremely  low  power  consumption.  Thus,  its  schema-less

implementations  are  basically  directed  towards  embedded  systems  and  low-level  platforms.

Alongside,  the  schema-based  Protobuf  protocol  shows  an  adequate  and  resource-efficient

performance when handling typical sensor node payloads. [33] Additionally, Protobuf achieves

better  size  reduction  than  Flatbuffers  make  it  more  suitable  for  end-to-end  communication

scenarios as both latency and bandwidth usage are related to the message size. Flatbuffers format

is based on a zero-copy methodology which means that serialization should structure the data in

the same way as in working memory. Thus, the pointer-based serialized data has a specific offset

in memory from the start  of the buffer which removes the need for expensive encoding and

decoding  processing  that  speeds  up  deserialization.  In  this  way,  Flatbuffers  show  higher

processing  and  serialization  times  only  on  the  sender  side.  [11]  Generally,  in  many  cases

serialization could be a bottleneck for applications. Typically, during serialization the application

accesses  fresh  data  recently  received  over  the  network.  This  requires  a  number  of  steps.

Accessing encoded data for the first time results in cold misses through memory hierarchy. Later

the CPU must perform the computations for data encoding or decoding. It ends by writing the

native data back to memory [32].

Scalability

Scalability is an important consideration when it comes to IoT platforms, especially those

that involve large numbers of devices and data streams. In addition to using containerization

technologies like Docker, platforms can employ a range of techniques to ensure scalability. One

such  technique  is  to  use  a  microservices  architecture,  which  involves  breaking  down  an

application into smaller, loosely coupled services that can be developed, deployed, and scaled

independently. This allows the platform to be more agile and flexible, since different services
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can be scaled up or down as needed to meet  changing demand. Another technique is to use

horizontal  scaling,  which involves  adding more nodes or  servers  to  a system to increase  its

capacity.  This  can be achieved through load balancing,  clustering,  and other  techniques  that

distribute  processing  across  multiple  machines.  Regarding  the  management  of  IoT  devices,

platforms can use a range of techniques to ensure scalability. These might include device auto-

provisioning, remote device management, and the use of edge computing to distribute processing

and storage closer to the devices themselves. Additionally, platforms can use data compression

and other techniques to reduce the amount of data transmitted from devices to the cloud, which

can improve scalability and reduce costs. Auto-provisioning is a process in which devices or

resources are automatically provisioned, or configured, without the need for human intervention.

In the context of IoT platforms, auto-provisioning refers to the automatic provisioning of IoT

devices  on  the  platform,  including  the  assignment  of  unique  identifiers,  authentication

credentials, and other configuration settings. Auto-provisioning can save time and reduce errors

that may occur when manually provisioning devices, especially in large-scale IoT deployments.

Domain independent solutions

Numerous multinational corporations are currently engaged in the development of their

own IoT ecosystem platforms, employing pay-per-service cloud services such as Amazon's AWS

IoT, Microsoft's Azure IoT Suite,  Facebook's Parse platform, Samsung's  ARTIK technology,

ARM's ARM mbed, and more. These platforms are characterized as proprietary and closed, as

they operate exclusively within a cloud deployment managed by a third-party entity. Conversely,

there  exist  open  source  initiatives  that  readily  facilitate  utilization  and  customization  for

academic, industrial, and scientific research through private deployments. Moreover, researchers

are also undertaking prototyping endeavors in this field. [37,40]

ThingSpeak

ThingSpeak is an open IoT platform developed by MathWorks that provides capabilities

to collect, store, analyze, visualize, and act on data from sensors or other devices. It is built on

top of the MATLAB analytics platform, which is designed to support large-scale data analysis

and processing. It supports several protocols such as MQTT, HTTP, and HTTPS, and provides

APIs for integration with other applications. ThingSpeak enjoys a robust user community and

finds extensive applications in agriculture and various other industries for the purpose of data
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monitoring and analysis. It facilitates real-time data collection, analysis, and actuation through its

Open API. This platform encompasses a range of plugins designed for tasks like data storage,

visualization,  monitoring,  and  integration  with  diverse  third-party  platforms.  Notably,  it

seamlessly integrates  with leading IoT platforms such as ioBridge,  Arduino, Twilio,  Twitter,

ThingHTTP,  and  MATLAB.  ThingSpeak  offers  several  supported  reactions,  including

automated  execution  of  actions  at  predetermined  times,  real-time  responsiveness  to  Twitter

activity, triggering responses based on specific conditions within the channel data, and queueing

up  commands  for  the  user's  device.  One  negative  issue  is  that  few  devices  can  connect

simultaneously.  ThingSpeak  is  an  open-source  platform  for  building  IoT  applications.  The

platform provides a range of tools for data collection,  analysis,  and visualization,  as well  as

support for machine learning and AI.  The development  process typically  involves creating a

custom  configuration  using  the  ThingSpeak  API,  writing  custom  code,  and  deploying  the

application to a cloud-based or on-premise infrastructure.[28]

Open Remote

Open Remote is an open-source IoT platform that allows users to monitor and control

various  devices  and  sensors.  It  is  built  on  Java  and  can  run  on  various  platforms  such  as

Windows, Linux, and Android. Open Remote has a modular architecture, and users can create

their own modules or integrate third-party modules. It supports various communication protocols

such as MQTT, HTTP, and WebSocket. The middleware of OpenRemote provides users with the

flexibility  to  integrate  any  device  or  protocol  by  utilizing  available  resources  such  as  iOS,

Android, or web browsers. By leveraging OpenRemote's cloud service, users have the ability to

design and develop highly personalized solutions that can incorporate a wide range of protocols,

including  but  not  limited  to  Wi-Fi  and  ZigBee.  This  empowers  users  to  create  customized

solutions  that  seamlessly  integrate  diverse  devices  and  protocols  according  to  their  specific

requirements.  The  most  negative  issue  is  that  it  is  too  costly  for  developers.  The  platform

provides a range of tools for data collection, analysis, and visualization, as well as support for

machine  learning  and  AI.  The  development  process  typically  involves  creating  a  custom

configuration  using  the  Open  Remote  Designer,  writing  custom  code,  and  deploying  the

application to a cloud-based or on-premise infrastructure. [28]

Thinger.io
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Thinger.io  is  an  open  source  platform for  deploying  data  fusion  applications  in  IoT

environments. It is able to collect,  manage and analyze big amounts of heterogeneous sensor

data. It supports several communication protocols such as MQTT and CoAP and provides APIs

for integration with other applications.  Thinger.io also provides several features such as data

logging,  rules  engine,  and  dashboard  creation.  The  preceding  research  effort  behind  the

Thinger.io  platform  successfully  addressed  various  challenges  associated  with  transmission

efficiency, real-time bidirectional communication, interoperability, and simplified deployment of

data  fusion  applications.  Thinger.io  stands  out  for  its  unique  capability  to  model  sensorized

environments using a high-level language,  facilitating straightforward implementation of data

fusion  applications.  Moreover,  it  is  hardware-agnostic,  ensuring  scalability  and  cost-

effectiveness.  Thinger.io  incorporates  its  own  modeling  language,  allowing  designers  to

transparently  model  services,  supported  by  efficient  communication  protocols.  Furthermore,

Thinger.io promotes interoperability with other platforms, enabling third-party access to devices

for  sensing  and  actuation  via  a  REST  API,  effectively  abstracting  the  underlying  protocol

optimizations between devices and the server. The wide community that maintains, evaluates and

tests the software is creating a confidence that is important for production deployments. The

platform provides a range of tools for data collection,  analysis,  and visualization,  as well  as

support for machine learning and AI.  The development  process typically  involves creating a

custom configuration using the Thinger.io Dashboard, writing custom code, and deploying the

application to a cloud-based or on-premise infrastructure. [27]

FIWARE

FIWARE is one of the popular platforms for IoT solutions in agriculture. It is an open-

source project that provides a set of APIs and components for developing smart applications. It is

based on Java and other open-source technologies and provides a standardized architecture for

building IoT applications that can be easily integrated with different sensors and devices, making

it suitable for agriculture IoT solutions. It also offers several tools for data management, data

visualization,  and  analytics,  which  can  help  in  making  informed  decisions  for  farming

operations. Additionally, FIWARE has a large and active community that provides support and

contributes to the development of the platform. It is an open source platform with many available

enablers  for  agriculture  due to  its  novel  promising architecture.  Its  underlying  technology is

based on Fog Computing that improves the services of Cloud Computing at the edge of the
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network. Due to this fact low latency is promised since Fog Nodes are at the proximity of edge

devices. Thus it supports low latency and immediate response to actions. Local Fog Nodes near

the field can offer their computational and storage resources with low latency and reliability, in

order  to  support  heavily  automated  machinery.  Additionally,  due  to  the  utilization  of  Fog

computing  paradigm the  amount  of  data  transferred  from the  field  to  the  Cloud is  reduced

because Fog Nodes can participate in computational efforts and accomplish tasks on the field

while filtering the results before send them to the Cloud. FIWARE provides a set of tools and

components  that  can  be  used  to  build  IoT  applications.  The  development  process  typically

involves creating a custom configuration using the FIWARE Generic Enabler Catalogue, writing

custom  code,  and  deploying  the  application  to  a  cloud-based  or  on-premise  infrastructure.

FIWARE supports a range of programming languages and deployment options, including Docker

containers, Kubernetes, and more. It can be easily scaled horizontally by adding more instances

to meet increasing demand. It also provides a container-based architecture using Docker, which

enables easy deployment of applications to different environments. FIWARE has been used in

large-scale smart city projects such as the SmartSantander project, which involved over 12,000

sensors deployed across the city of Santander in Spain. In addition, FIWARE has been used in

the development of the European Data Portal, which serves as a central access point to open data

from  public  administrations  across  Europe.  These  projects  demonstrate  the  scalability  and

reliability of FIWARE in large-scale deployments. [15]

CHARIOT

CHARIOT  (Cloud  Hybrid  Architecture  for  IoT)  is  a  cloud-based  IoT  platform  that

provides tools for data collection, storage, analysis, and visualization. CHARIOT also provides

several  features  such  as  data  encryption,  access  control,  and  machine  learning.  It  has  a

middleware  for  the  integration  of  heterogeneous  entities  that  deals  with  networking  of  IoT

entities representing devices or services, with support to device heterogeneity while ensuring

continuous availability.  It consists  of a middleware that provides an SDK that facilitates  the

integration of any type of device, software entities to human actors, and development tools that

deal with monitoring,  maintenance and control.  It offers context-  and location-awareness and

error-resistant planning for operations by continuously monitoring QoS parameters of services.

Through a fog computing architecture is able  to decrease latency and enable data processing at

the edge without transmitting all the data to the cloud. Under the hood it enables device querying
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through their semantic service descriptions which are a way to map the physical devices to their

virtual  entities.  Additionally,  the  services  of  the  platform may  transfer  obtained  knowledge

previously extracted between them, which forms a learning capability.  The platform supports

different  communication  protocols  such as  Wi-Fi,  BLE,  Zigbee,   different  data  transmission

protocols like CoAP, MQTT, REST, SNMP, ModBus, TCP, UDP and different data formats

between server and devices like XML and JSON. CHARIOT is mainly a platform for building

IoT  applications  for  the  industrial  sector.  The  platform  provides  a  range  of  tools  for  data

collection,  analysis,  and visualization,  as  well  as  support  for  machine  learning  and AI.  The

development process typically  involves creating a custom configuration using the CHARIOT

Designer, writing custom code, and deploying the application to a cloud-based or on-premise

infrastructure.  It also supports scalable deployment of applications across multiple nodes and

provides a mechanism for dynamically adding or removing nodes to support scalability. [31]

State of the art

AgriLoRa

AgriLoRa is  an  open-source  digital  twins-based smart  agriculture  framework.  It  is  a

LoRa-based platform that focuses specifically on precision agriculture.  It includes a range of

sensors and devices for monitoring soil moisture, temperature, and other key parameters, as well

as a cloud-based platform for data storage and analysis.  Its codebase is available on GitHub

under the Apache License 2.0. The project is built  using the LoRaWAN technology and the

ThingsBoard platform. AgriLoRa provides tools for crop monitoring,  irrigation management,

and pest control, among others. In terms of soil analysis, AgriLoRa can integrate with various

sensors and devices that measure soil parameters such as temperature, moisture, and pH. The

data from these sensors can be transmitted via LoRaWAN to the AgriLoRa platform, where it

can be processed and analyzed. AgriLoRa also provides a dashboard where farmers can view

real-time  data  on  soil  conditions  and  make  adjustments  to  their  irrigation  and  fertilization

schedules accordingly. It also integrates with third-party services such as weather forecasting and

soil analysis to provide more accurate insights. Third-party soil analysis tools enable AgriLoRa

to provide more detailed information on soil health, nutrient levels, and microbial activity. This

integration  allows  farmers  to  optimize  their  use  of  fertilizers  and  other  inputs,  leading  to

improved crop yields and reduced environmental impact. The platform provides a range of tools
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for data collection, analysis, and visualization, as well as support for LoRaWAN networks. The

development  process  typically  involves  creating  a  custom configuration  using the AgriLoRa

Dashboard, writing custom code, and deploying the application to a cloud-based or on-premise

infrastructure. [7]

RIoT

RIoT (Rural IoT) is an open source platform that aims to provide low-cost, easy-to-use

IoT solutions for rural areas, including agriculture. It includes a range of hardware and software

components, as well as a cloud-based platform for data storage and analysis. It is focused on

providing a modular architecture to support a wide range of IoT applications. It is built on top of

the Eclipse IoT framework (Python) and uses several popular open-source technologies such as

Apache Kafka, MongoDB, and Docker. RIoT allows users to connect different IoT devices and

sensors to collect data and store them in a database for further analysis. It also provides tools for

data visualization and real-time monitoring. It provides a mechanism for dynamically adding or

removing nodes to support scalability The platform provides a range of tools for data collection,

analysis, and visualization, as well as support for machine learning and AI. The development

process  typically  involves  creating  a  custom configuration  using  the  RIoT Console,  writing

custom code, and deploying the application to the cloud-based RIoT infrastructure. [52]

Critical issues and cutting-edge challenges

Several  reviews  have  remarked  in  common  that  although  the  IoT  technologies  are

promptly evolving and providing considerable novel agricultural applications and services, some

critical issues concerning the interoperability as well as the semantic annotation of heterogeneous

data  have  to  be  handled  [26].  Additionally,  various  challenges  related  to  technological

complexity, parameterization, user-friendliness, installation, performance, and system efficiency

need to be overcomed [6]. Furthermore, Cloud infrastructure introduces some extra challenges to

Cloud  based  IoT  ecosystems  like  interoperation,  trust,  and  complexity  of  spontaneous

management of cloud and IoT systems, because of their different resources and components [29].

As summarized by [27] and [28], there are some critical issues within IoT platforms and the
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corresponding technology ecosystems that  need to be progressively addressed to get  the full

potential of such systems:

● Complex environment monitoring: Currently several sensors allow the system

to capture a great number of different parameters, which creates a highly dense

environment. It is necessary to select the type of sensors to be integrated in our

data  fusion  applications  especially  when there  are  physical  limitations  that  in

many cases inferred low computing resources and energy autonomy.

● Modeling: The IoT environment is characterized by having to gather information

from highly  heterogeneous  devices,  technologies  and protocols  that  should  be

modeled  in  order  to  enable  processing  and  data  fusion  by  respecting  the

constraints of all the technologies involved within the ecosystem.

● Context awareness: Due to the great number of sensors that are already deployed

it may not be feasible for users to handle all the data collected to the cloud. A way

should  be  used  to  decide  what  data  needs  to  be  processed.  Surrounding

environmental parameters and self-assessment may transfer the localized context

to others while making a well connected independent periphery aware IoT cloud

ecosystem.

● Standardization: Many applications utilize their own proprietary formats, which

complicates the sharing of data among data acquisition and processing systems

[2]. IoT centric applications need to include standardization as a core component

which  may  precisely  be  operated  for  their  growth.  Barriers  that  create

interoperability  issues  between  different  applications  or  systems  need  to  be

overcomed. Documentation of industry-specific guidelines and required standards

within specifications are important for efficient implementation of IoT.

● Connectivity: Currently, devices have the capability to connect through a wide

range  of  technologies,  including  WiFi,  Bluetooth  4.0,  4G  LTE,  and  more.

However,  this  diversity  of  interfaces  poses  a  technological  challenge  when it

comes  to  ensuring  compatibility  and  support  for  these  various  technologies.

Meeting this challenge involves developing optimized network protocols that can

effectively  handle  communication  with  sensors  that  have  limited  resources.

Additionally, it requires addressing the scalability of computing architectures to
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accommodate  the  concurrent  connection  of  millions  of  devices.  Moreover,

ensuring  the  permanent  access  required  by  these  devices  further  adds  to  the

complexity. Overall, these challenges necessitate innovative solutions to handle

the diverse technologies, optimize network protocols, and provide the necessary

scalability and availability for seamless connectivity and functionality of a large

number of devices.

● IoT node identity: All the attached enormous number of devices and data shall

be retrievable by a unique identity. New addressing policies should be used, apart

from IPv4 that is nearly overflowing.

● Security: The security in the IoT ecosystem is a real concern, to avoid leaking

sensitive  data,  or granting  access  to  non-authorized actors  to  actuate  over  our

environment.  It is required to have secure clouds, secure connections, anonymity

in the information stored in the cloud, etc.

● Fault tolerance: Hardware modules may fail due to depleted battery or any other

reason. Similarly generation of erroneous value by the sensor, faulty calibration,

and failure in communication may develop a fault situation. Α flawless system

should keep a very high level of fault tolerance so that despite a technical error it

keeps working.

● Autonomy: Many data fusion applications require the deployment of distributed

battery  powered  sensors  and  actuators  in  a  geographic  area.  Optimizations  at

different levels of the IoT architecture should be carried out to extend the lifetime

of the deployment.

● Energy Management: Non-conventional source of energy harvesting solutions

such as solar power, wind, biomass, and vibration cloud should be tested while

designing IoT based systems.

● Interoperability: With so many devices and protocols in use, interoperability is a

major challenge.  IoT platforms need to be able to connect to a wide range of

devices and systems in order to provide a comprehensive view of operations.

● Data management: The sheer amount of data generated by IoT devices can be

overwhelming. IoT platforms need to be able to store, manage, and process this

data efficiently in order to derive meaningful insights.
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● Analytics:  IoT  platforms  need  to  be  able  to  provide  sophisticated  analytics

capabilities in order to make sense of the data they collect. This includes real-time

analytics as well as more complex machine learning algorithms.

● Edge computing:  As  more  devices  are  connected  to  the  internet,  there  is  a

growing  need  to  process  data  closer  to  the  source.  Edge  computing  involves

processing data on the device itself,  rather than sending it  to a central  server,

which can reduce latency and improve performance.

● Sustainability:  The increasing use of IoT devices is leading to concerns about

their environmental impact. IoT platforms need to consider the full lifecycle of

devices, from manufacturing to disposal, in order to minimize their environmental

impact.

Communication in suburban and rural areas

Within  the  smart  farming  domain  IoT devices  communicate  using  different  types  of

network connections, wired or wireless. Wired networks, such as CAN and Ethernet, are mainly

used for indoor agriculture (e.g., greenhouses), especially due to the high proximity in between

them. On the other hand, wireless networking is used both in indoor and outdoor applications.

The ubiquitous solution of Wi-Fi protocol is widely used, but its power consumption and signal

range characteristics limit its utilization in larger projects or in projects with power restrictions.

To overcome such barriers, energy-efficient protocols such as ZigBee and BLE are used to form

Wireless Sensor Networks (WSNs) within agriculture, but these protocols are effective only for

short distance coverage areas [14]. Also, cellular networks are prevalent in IoT solutions for

Smart Farming because they allow communication of devices in long distances and with a high

data rate. Nevertheless, Sigfox and LoRaWAN also enable communication in very long distances

while requiring low energy to operate and are used as an alternative to cellular networks or in

rural and suburban areas where there is no cellular network coverage. [3]

Generally,  IoT  deployments  in  rural  areas  encompass  a  wide  range  of  scenarios  for

diverse types  of  data  gathering.  Depending on the specific  case,  data  collection  can involve

sensors with or without latency, transmitting payloads of varying sizes at short or long intervals.

However,  rural  IoT  deployments  necessitate  meeting  certain  requirements.  The  primary
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considerations for such applications are long range and extensive coverage. The network should

function  effectively  in  areas  with  challenging  terrains,  where  radio  communications  are

inherently  difficult,  and  where  telecommunication  providers  may  not  offer  coverage.

Additionally, rural IoT networks often involve a substantial number of end devices, particularly

in  smart  metering  applications.  Therefore,  the  communication  infrastructure  must  exhibit

excellent  scalability  to  accommodate  all  devices  without  compromising  the  overall  network

performance. Furthermore, the required lifespan of rural IoT deployments may extend up to 10 to

15  years,  or  even  longer,  emphasizing  the  need  for  long-term  reliability  and  durability.

Replacement  of  batteries  may  be  infeasible  because  of  the  access  in  environments  that  are

deployed. Therefore, the end devices of technology that will be used for communication should

consume minimum energy in order to prolong the lifetime of their batteries. Finally, the total

cost  of  each  end  device  as  long  as  the  annual  operating  cost  should  be  low because  such

deployments contain a huge number of end devices. Maintenance and installation cost should

also be taken into account. The last few years a huge number of LPWAN deployments have been

achieved, connecting millions of end devices into several private or public networks. When it

comes to adopting a technology solution and designing an application, one important choice is to

take advantage of the technology characteristics and get rid of any constraints. It is stated that

LPWANs can handle a huge number of devices and have the ability of functioning for several

years with zero touch operation. These statements applied from LoRaWAN to NB-IOT. When

we dive into these technologies we are realizing that each one has its own cons and pros, but also

several technical differences.

  

LοRaWAN

LoRaWAN is a network stack based on the LoRa physical layer and sometimes is touted

as the connectivity enabler for any Internet of Things (IoT) use case. It was firstly introduced by

Cycleo (France, Grenble) in 2009 and was acquired by Semtech in 2012. The standardization

took place in 2015 by LoRa-Alliance. Currently deployments exist in more than 40 countries

while it continues to be developed in other countries due to many network operators investments.

LoRaWAN features include low power operation (lifetime of battery is over 10 years), low data
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rate varying between 300 bps and 50 kbps and long channel communication range (more than

10km  in  suburban  areas).  When  we  are  talking  about  LoRaWAN  we  are  referring  to  two

separated distinct components: the LoRa physical layer that uses a Chirp Spread Spectrum (CSS)

modulation on the bottom and the ALOHA-based MAC layer protocol (LoRaWAN) on the top

[40]. There are also other communication protocols that work on top of the LoRa physical layer

like Symphony LinkTM and LoRaBlink [45].

LoRa Physical Layer

LoRa uses Sub-GHz Industrial, Scientific and Medical (ISM) bands while its wide band

nature  allows  better  handling  of  low Signal  to  Noise  Ratio  (SNR).  This  means  that  it  can

demodulate signals at even 19.5 DB below the noise floor, enabling very long communication

distances [41]. LoRa uses a chirp (Compressed High Intensity Radar Pulse) spread spectrum

(CSS), with integrated Forward Error Correction (FEC) [41], for modulation of wideband linear

frequency  pulses  that  continuously  vary  in  frequency  (increases  or  decreases  based  on  the

encoded information). This feature offers substantial increase in receiver sensitivity due to the

processing  gain  of  the  spread  spectrum  technique  and  a  high  tolerance  to  frequency

misalignment between receiver and transmitter [39]. Based on analysis and evaluations, it looks

like,  LoRa physical layer, thanks to the Chirp Spread Spectrum (CSS)  modulation and high

receiver sensitivity [40], offers resilience and robustness against interference [37], while also

allows longer communication ranges than Frequency-Shift Keying (FSK) without increasing the

power consumption that derives to a great communication link budget [41]. Simultaneously, it is

resistant to multipath propagation fading and Doppler effect [37] [38]. LoRa is a patent protected

technology and thus the evidence on its workflow is mostly based on researchers that reverse

engineered the modulation over SDR-based platforms [41]. The modulation can be customized

by several parameters including Bandwidth (BW), Spreading Factor (SF) and Code Rate (CR)

[39]. In LoRa the large channel bandwidths achieve higher data rates but experience more noise,

limiting the range [44]. The minimum number of mandatory channels is  three [41] while  in

Europe the upper  limits  for  channels  is  10.  The spectrum access  is  regulated by duty cycle

restrictions while there are no channel dwell time limitations [42]. The maximum duty cycle,

defined as the maximum percentage of time during which an end device can occupy a channel,

and it is a key constraint for networks operating in unlicensed bands. Therefore, pseudo-random

channel hopping selection implementation and be compliant with the maximum duty cycle, is
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required at each transmission [35]. Because LoRa assumes an unslotted ALOHA protocol and

implements Random access capacity, it does not depend on which end device is transmitting, but

on its packet duration, which is transmitted unscheduled in random time and channel [48], while

there  is  no  collision  avoiding  mechanism  [39].  Each  frame  is  transmitted  with  a  specific

spreading factor (SF) which is a trade-off parameter between transmission duration and data rate

with communication range [35]. The nominal packet format consisted of a preamble block for

synchronization, a physical layer header and the payload. Optionally the header and the payload

including a Cyclic Redundancy Check (CRC). Additionally, Forward Error Correction (FEC) is

used to allow the recovery from transmission errors due to bursts of interference, that is adding

some more encoding overhead. Extra data overhead is added when low data rate optimization is

enabled, which reduces the impact on transmission due to drift in the reference frequency of the

oscillator. For detecting the channel activity, the Carrier Activity Detection (CAD) is adopted,

which is faster than Received Signal Strength Indicator (RSSI) identification [46]. The maximum

transmission power is 14 dBm (25 mW), with a link budget of 154 dB and a data rate of 0.3

kbit/s up to 50kbit/s [38].

LoRaWAN Protocol

LoRaWAN is  a  well-established LPWAN technology which is  on the  top of  choices

because  it  enables  simple  deployments  that  support  large  scale  networks  without  involving

operators.  The  architecture  implements  a  star-of-stars  topology,  in  which  the  end  devices

communicate directly to a base station (gateway), who works as a relay and forwards messages

transparently  through  an  Internet  backbone  to  a  network  server.  [43]  Device  to  device

communication  is  not  enabled to  achieve  a  single wireless hop,  but  instead the end devices

transmit packets to the network server through the gateway [40]. Communication is bidirectional,

although uplink communication from end devices to the network server is strongly favored [35].

Each end device (ED) transmits data that is received by multiple gateways [2]. In some cases it is

noted that gateways received packets from thousands of end devices that are deployed kilometers

away, which is a performance target for these base stations. [35] Each gateway is connected to

the back-end system, which includes the network server (NS), via ethernet, cellular, WiFi etc.

Each  NS can be connected  to  many gateways.  The gateways  send the  received  data  to  the

network server, thus, an end-device is associated with a NS, which is responsible for detecting

and discard duplicate packets, checks data integrity, choosing the appropriate gateway to send a
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reply  (if  any),  sending  back  packets  to  the  end-devices  and  identifies  the  corresponding

application server (AS) and transmits it the decrypted data [40]. The application server decrypts

the message completely, interprets the payload and makes the data available to the user [38].

LoRaWAN messages are encrypted with two keys as can be seen in Fig. 1. One for the MAC

commands  and  application  payload  (NWkSKey),  and  one  for  end-to-end  encryption  of  the

application payload (AppSKey). The NWSKey is only known by the network to prove data-

integrity and the AppSKey is distributed to the application-server, for decrypting the application

payload [39]. LoRaWAN provides three different classes for end devices (A, B and C). This is

an additional way it provides a balance between energy consumption and performance. Class A

devices utilize pure ALOHA access for the uplink communication. Following the transmission of

a  frame,  a  Class  A  device  listens  for  a  response  during  two  designated  downlink  receive

windows.  Each  receive  window is  characterized  by  its  duration,  offset  time,  and  data  rate.

Although  the  offset  time  can  be  customized,  the  recommended  values  for  the  two  receive

windows are  1  second  and  2  seconds,  respectively.  Notably,  downlink  transmission  is  only

permitted  following  a  successful  uplink  transmission.  The  data  rate  employed  in  the  first

downlink window is calculated based on the uplink data rate and the receive window offset.

However,  in  the  second  window,  the  data  rate  is  fixed  at  the  minimum  value  of  0.3  kb/s.

Consequently,  downlink traffic  cannot be transmitted  until  the gateway decodes a  successful

uplink transmission. It's important to note that the second receive window is disabled when the

end device receives downlink traffic in the first window. [35]. Class A is the class of LoRaWAN

devices with the lowest power consumption because after receiving windows, it goes to sleep in

order to conserve energy [45]. Class B devices are specifically designed to cater to applications

with  higher  downlink  traffic  requirements.  These  devices  operate  in  synchronization  with

periodic beacons transmitted by the gateway. These beacons enable the scheduling of additional

receive windows for downlink traffic, even without the requirement of prior successful uplink

transmissions.  However,  it's  important  to  note that  a trade-off exists  between the amount  of

downlink traffic and the power consumption of Class B devices. Increased downlink traffic may

lead  to  higher  power  consumption,  which  needs  to  be carefully  managed  to  ensure optimal

device performance and battery life. [35]. Last, class C devices, as they are usually not battery-

powered, can afford to continuously have their radio in receive mode (as long as they are not

transmitting  themselves),  allowing  for  instantaneous  transmission  of  data  towards  a  device
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without having to wait for a receive window to open [45]. The three classes can coexist in the

same network, and devices can switch from one class to another, but there is no defined message

that informs the gateway about the class of a device [35]. An ED, independently on its class, can

be activated over the air called Over the Air Activation or by Personalization called Activation

By  Personalization.  Once  an  ED  is  activated,  it  joins  a  LoRaWAN  network  and  can

communicate with the NS [36]. The long range with low consumption orientation is achieved

with  the  LoRa  Modulation  technology  in  conjunction  with  the  Adaptive  Data  Rate  (ADR)

mechanism.  The  logic  behind  the  ADR system is  the  reduction  of  the  energy  that  will  be

consumed to transmit a packet. This mechanism continuously tries to use the highest possible

data rate and lowest SF, to reduce the Time-on-Air of each packet. This has an additional benefit

of increasing network capacity, as messages sent with different SFs are orthogonal and can thus

be  received  simultaneously  [47].  It  is  concluded  that  the  10-year  operational  goal  of  the

specification could be met if care is taken on using proper payload size, transmission interval and

the lowest possible spreading factor. The maximum payload size that is supported is 243 bytes,

while the uplinks and downlinks that could be transmitted in a day are unlimited [36].

Comparison with NB-IoT

NB-IoT (Aka LTE Cat NB1) is a 3GPP standard published in 2016 and based on narrow-

band radio. NB-IoT reduces LTE protocol functionalities to  the  minimum  based on the needs

of  IoT  applications. [49] It is a cellular based protocol and in most cases requires an operator

renting  licensed  frequency  bands  (e.g.,  700MHz,  800  MHz,  and  900  MHz)  and  providing

infrastructure  (e.g.  Vodafone   NB-IoT   network).  [49]  The  technology  supports  up  to  100

thousands end devices per cell by taking advantage of existing cellular network operators and

also offers the potential for scaling up the capacity by adding more NB-IoT carriers. It provides

8-10 years of battery lifetime (when  transmitting  200  bytes  per  day  on average), long range

and high network security. The communication data rate is 200 kbps for uplinks and 20 kbps for

downlinks. The maximum payload size for each message is 1600 bytes.  NB-IoT uses for uplinks

the single-carrier frequency division multiple access (FDMA) and for downlinks the orthogonal

FDMA(OFDMA), while  employing the quadrature phase-shift  keying modulation (QPSK). It

occupies a frequency band width of 200 KHz,  which corresponds  to  one  resource block in

GSM  and  LTE  transmission.  It  can  function  in  two  operations,  stand-alone  in  which  the
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utilization of GSM frequencies bands currently used is possible and guard-band in which utilize

the  unused  resource blocks of an LTE carrier’s guard band. [36] NB-IoT core network is based

on the evolved packet system (EPS) and two optimizations for the cellular internet of things

(CIoT). The architecture complexity is high due to the cellular technology, the evolved UMTS

terrestrial  radio  access  network  (E-UTRAN)  is  responsible  for  handling   the   radio

communications while the network consists of evolved base stations called eNodeBor (eNB).

The overall data transmitted to the packet data network gateway (PGW) via serving gateway

(SGW). The  protocol  structure  is  divided  into  control  plane and user plane. The radio

resource  control  (RRC)  layer  minimizes  signaling  by  suspend/resume  operation  of  the  user

plane.  [50]  The  LTE  radio  resource  control  (RRC)  protocol  has  only  two  states,  the

RRCconnected and RRC idle. During RRCconnected, the UE can access the network and request

communication resources [49]. Non-access stratum (NAS) of the protocol  conveys non-radio

signals  between  UE (user  equipment)  and  core  network.   The  NAS  performs  security

control,  authentication  and  mobility/bearer   management.  Access  stratum (AS) is  one layer

below NAS and functions between UE and radio network. There is also a random access channel

(RACH)  procedure  which  is  always  contention  based  and  starts  with  the  transmission  of  a

preamble.  In the case that  preamble  transmission fails,  the UE will  retransmit.  [50] NB-IoT

technology can be seen as a new air interface from the protocol stack point of view, while being

built on the well-established LTE infrastructure, but is not known yet what an adopter can expect

in  the   long  term  from  this  technology.  [49]  In  general  terms  we  see  that  LoRaWAN  is

advantageous in terms of battery lifetime, capacity, and cost, while NB-IoT offers benefits in

terms of latency and quality of service. [36] As LoRaWAN is the major actor in IoT, the goal is

to compare deeper NB-IoT to it. [49]

Power consumption

In NB-IoT energy consumption is more or less unpredictable. This happens due to the

inability to control inactivity timer of the UE, and at the same time the restrictions on adjustment

of the allocated bandwidth and path loss through the API. Performance observations showed that

mainly  these  characteristics  are  linked  with  consumption  peaks  on  transmissions  that

approximately   range   from  100  to  220  mA,  when  the  average  peaks  in  transmission  of

LoRaWAN’s radio are around 40 mA. In these terms the average expected battery lifetime for an

NB-IoT end device is about 2–3 years. These values are comparable to LoRaWAN, with SF12,
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which is the lowest data rate selection, sending an average of 64 bytes per hour  in  messages  of

51  bytes. On the other hand, NB-IoT is able to send large messages (up to 512 bytes) which has

almost no impact. LoRaWAN  performs  better  with  short payloads,  when more  than  one

message  per  data  block  is  required there is a great penalty. [49]

Deployment

LoRaWAN system has a major difference in outdoor IoT applications from any cellular

technology. Star topology makes the architecture simple, low cost and easily maintainable. In

NB-IoT, which is based on cellular network structure, the complexity of the devices behavior

increases, which leads to  unpredictability. Also, because LoRaWAN, which works over ISM

bands, allows the user to reduce energy consumption of the devices by  deploying  a  gateway

closer  to  them,  which  is  impossible  for  Nb-IoT  because  it  is  based  on  private  operator

infrastructure, which also has limitations on application development of user equipment where

the API only exposes  a  subset  of  operating  points. [49]

Quality of service

It  is  noted  that  unnecessary  interference  can  be  eliminated  by  using  NB-IoT  which

accesses a licensed spectrum. But, when using cellular licensed spectrum the reprocess of non-

orthogonal multiple access method can create hindrance due to restricted pilot  assignment in

cellular band [4]. While LoRaWAN can bounce interference, multipath and fading, an NB-IoT

network  guarantees  the delivery. This  is  an  important  aspect  because LoRaWAN  can  incur

significant  energy  costs  for  guaranteed  delivery,  while it is also limited by  duty cycle

regulations because of the ISM band. [49]

Coverage and range

NB-IoT is limited only to suburban or rural regions that benefit from LTE coverage. [36]

In this case NB-IoT  provides  better  network  capacity  for  large packets while also providing

deep indoor coverage. [49] LoRaWAN with the use of the highest  spreading  factors  (SF11  and

SF12),  which  implies  a wide coverage that can reach an entire city with only three gateways.

While the range of LoRaWAN is on average 20 km, NB-IoT only offers 10 km range. [36]

Cost
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The proprietary  spectrum used by NB-IoT  NB-IoT  is  offered  as  a  connectivity

service under a contract that mainly charges for each  transmitted  byte.   In LoRaWAN the

infrastructure  is  owned  by the user who needs to acquire this but the use of it is free. Also the

end device equipment is cheaper in for LoRaWAN than NB-IoT. [36]

Performance

NB-IoT by default offers a greater scalability, while LoRaWAN is based on the gateway

deployment  and  setup  to  scale  without  side  effects  and  increase  capacity.  [35]  LoRaWAN

scalability also depends on payload size and data rate. It is designed  to  transmit  a  few  bytes

per  hour,  even per  day. NB-IoT on the other hand can handle larger messages with very low

latency  but  with  high   variability   in   delivery   time.  [49]   LoRaWAN confronts  an  open

challenge regarding the duty-cycle  regulations  in the ISM bands that  arise  as a key limiting

factor which may affect the actual capacity of large-scale deployments. [35]

Comparison conclusion

As a  conclusion,  LoRaWAN seems  more  appropriate  for  several  types  of  rural  IoT

deployments, due to its long range and low power consumption and also the fact that it works on

an unlicensed radio spectrum, meaning that no costs are associated. More specifically offers the

ability to reduce device cost, increase battery lifetime on devices, improve network capacity and

support a large number of devices. NB-IoT provides the best scalability compared to LoRaWAN

and thus is able to support a huge number of devices with a low packet error rate. While in terms

of  latency  NB-IoT  is  the  best  choice  it  uses  synchronous  communication  and  is  a  cellular

technology. This consumes additional energy and thus decreases end devices' battery lifetime.

LoRaWAN offers a great deal of flexibility  due to its support for multiple spreading factors

(SFs) and device classes while the number of LoRaWAN network deployments is increasing

continuously. NB-IoT will serve the higher-value IoT markets that are willing to pay more for

very low latency and high quality of service. In our point of view, LoRaWAN is a technology

that has been designed from scratch to handle the traffic generated by IoT applications and meets

their  requirements,  on  the  other  hand  NB-IoT  is  based  on  cells,  which  is  a  pre-existing

technology that partially serves different aspects of communication.
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Based on the aforementioned comparison, we define LoRAWAN as the main protocol to

utilize. It differentiates from its competitor especially because it offers a great deal of flexibility

due to its support for multiple device classes and spreading factors, while claims that a single

gateway can successfully receive data from thousands of nodes that transmit from kilometers

away within the free ISM spectrum. License free spectrum utilization is an important choice

because when opting for a network that requires pay-per-use, like NB-IoT, for a huge number of

nodes a considerable operating cost is revealed.

Assessment of crucial factors that affect LoRaWAN performance

In order to implement LoRaWAN solutions it is crucial for us to analyze the constraints

and barriers of the communication technology that our IoT platform will be based on. We have

conducted  an  assessment  of  some  factors  that  are  crucial  for  any  deployment  based  on

LoRaWAN. In this way we have extracted some key directions for designing our platform.

As LoRaWAN is using the license  free ISM bands,  one can think of that  as a huge

advantage. If we analyze it from a scope of fixed costs, it is. On the other hand, when we are

planning massive capacity IoT networks in suburban and rural areas within Europe we are also

facing problems that arise from the ISM spectrum access regulations. The duty cycle limitations

unrevealed  a lot  of issues that  are  common for the majority  of large scale  deployments.  To

overcome this issue the obvious answer is to set communication parameters in a way to achieve

balance between capacity and coverage without reaching the duty cycle  limits.  Some studies

have proven that in this step of the deployment several other problems could occur related to

collisions, interference and power consumption of the EDs. As we mentioned before, both ADR

mechanism  and  bidirectional  traffic  issues  are  pointing  somehow  to  these  spectrum  access

regulations as a factor that exponentially affects the network performance in a non recovery way.

ADR mechanism convergence time is increasing as Data Rate (DR) is increasing. Convergence

time indirectly affects the time-on-air (ToA), which is increased directly when SF or payload

size increases. Additionally, we have seen that bidirectional traffic causes issues on scalability,

especially  because  downlinks  in  Europe  are  transmitted  with  SF12  which  results  in  long

transmission ToA. The impact is that as the number of EDs asking for ACKs increased, the

39



successfully transmitted downlinks decreased, while as the number of Retransmissions of EDs

decreased also the acknowledged uplinks decreased.

The main issue is that all variables between uplinks that got acknowledged, successfully

transmitted downlinks and convergence time, are indirectly negatively affected by the increase of

the number of deployed EDs, which drives us to the conclusion that every crucial factor tends to

reflect on scalability. Simultaneously, frequent and significant level of external interference is

also argued as causing issues that lead to the limitation of LoRaWAN deployments capacity.

This is a reasoning that forecomes the optimal planning of the network itself even if scalability

issues have been solved and drives us to the restriction of the total network capacity.

    In depth, there are several basic factor relations that are known. First of all in all radio

communications PDR is clearly related to the range but in LoRaWAN more specifically, and

based on the literature, PDR is also decreased proportional to the amount of EDs (EDs) that are

communicating  with  a  GW  (GW)  and  while  simultaneously  Spreading  Factors  (SFs)  or

Acknowledgements  (ACKs)  or  Retransmissions  or  Payload  size,  getting  increased  too.  Of

course, we have to mention that based on previous studies, deploying more GWs can overcome

these casualties but also causing some scalability issues when more than one GW is accessible

by an ED. Furthermore, if the ToA of a transmission between an ED and a GW increases, then

the power consumption will also increase. Apart from ToA, power consumption of EDs is related

inversely to the interval between transmissions and to the DR, and of course is directly affected

from the TX parameter of the ED which controls the transmission power. If TX is decreased, the

range of the communication is also decreased, which is also happening if the SF is decreased.

Finally, capacity is by the book increased if the channels to be used for the communication also

increased, which indirectly leads to more capacity on the long ED clusters, that implies better

coverage. [55]

Safe pathway for LoRaWAN network deployment

It is proved that collisions (interference between different transmissions within the same

network channel) has the most significant negative impact on PDR. We have explored numerous

possibilities  and  we  have  seen  conclusively  that  Time-on-air  (ToA)  is  directly  related  to

collisions.  Specifically,  as  bigger  is  the SF, the payload size and the distance,  that  longer  a

transmission would last. Further, we can say that as much time a spectrum channel is occupied,
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that much is the possibility of collisions.  This means that we don’t care about the ToA of a

payload transmission itself but the sum of its repetitions, acknowledgments or retries of all EDs

that occurred within the same SF. Thus, we can say that the most crucial  factors that affect

LoRaWAN performance are those that affect the channel occupancy exponentially. Based on the

observations we determine that those are the number of EDs and the transmission interval, with

the respective cruciality. Though, the more direct aspect of the problem is not the overall number

of EDs but the number of them within each SF, especially as the SF gets higher. It is clear that

SF7 can handle a tremendous number of EDs itself but cannot work on its own if we want wider

coverage.  Finally  we see that  it  is  far  better  to  use  more GWs to avoid  the usage of  SF12

completely, which causes a huge number of problems for realistic data acquisition frequency

requirements, especially when ACKs are active because in Europe most deployments use SF12

for RX2. Optimal deployments should aim to include as many EDs as possible (scalability),

cover wide range (coverage) and use as less power as possible (power efficiency). In simple

words, the parameters for the protocol adoption, is the trade-off between scalability, coverage

and power consumption and a parallel goal is to offer LoRaWAN-wide solutions depending on

the application requirements,  in order to  avoid the withdrawal  to other LPWAN alternatives

(NB-IoT, Sigfox) without reason. It is worth mentioning here that Things Industries proposed

and facilitated some great concepts to overcome a lot of the issues arised. Fair access policy but

also the ability to configure RX2 to SF9 are by far the most advanced methods to maintain great

capacity common infrastructure LoRaWAN networks while respecting the shared ISM spectrum.

[55]

Chapter 4 - Development  of  an  Ιntegrated  IoT  solution  for

Agriculture 4.0

The purpose of this  thesis  is  the development  of an integrated  IoT platform solution

which facilitates agriculture 4.0 scenarios and trying to overcome a batch of challenges for smart

farming,  including  system  simplicity  and  scalability,  user-friendliness,  easy  installation,

reliability, energy and power optimization, parameterization and system efficiency.

Despite the fact that state of the art platforms at the moment covered our IoT needs, our

final  desire  is  to  build a  fully  compatible  platform with Agriculture  4.0 scenarios.  Thus we
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decide to build our solution from scratch due to certain key functionalities of the project and

challenges  we want to overcome.  Our goal is  a platform that can deal  with data and device

diversity while supporting edge processing and dynamic context-based operation profiles for end

nodes, by leveraging low energy consumption communication protocols and ultra simple end-to-

end deployment.

Our  end-to-end  IoT  solution  is  built  upon  a  4-tier  architecture  that  consists  of  the

following layers:

●Perception layer:  This  layer  is  responsible  for  collecting  data  from sensors  and

other sources, and transmitting it to the network layer for processing. Generally it

includes various types of sensors, such as temperature sensors, humidity sensors, and

flow  sensors,  as  well  as  actuators  that  can  control  devices  based  on  the  data

collected. Our information system consists of a design that includes an extreme edge

tier with sensors (and actuators) responsible for generating raw data, the Fog tier that

consists of ARM-based gateways with sufficient resources to process data to reduce

latency and forward them to the Cloud. Also, heterogeneous devices are able to be

deployed in run time without an exhaustive installation process (plug-n-play).

●Network layer: This layer is responsible for transmitting data from the perception

layer  to  the  processing  layer,  and  vice  versa.  Generally  itt  includes  the

communication infrastructure, such as Wi-Fi, Bluetooth, or cellular networks, as well

as the protocols used for data transmission. Our platform’s network layer stands on a

transport layer based on LoRaWAN, which publishes the edge messages through an

MQTT broker.

●Processing layer: This layer is responsible for processing the data collected from the

perception layer and providing insights and analytics. Generally, it includes various

types of data processing technologies, such as big data analytics, machine learning,

and artificial intelligence. In our case cloud is responsible for the storage, intelligent

management and publication of the data trafficked to and from the end devices on

the Internet.  The core services are hosted on the Cloud and are subscribed to the

MQTT broker messages, while they transform them into meaningful data that getting

stored in the database, exposed through a REST API and processed by an agriculture
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decision  support  system  (ADSS)  for  mission  planning  and  water  resources

management

●Application layer: This layer is responsible for providing value-added services and

applications  that  leverage  the  data  collected  from the  IoT devices.  In  general  it

includes  various types of applications,  such as smart home automation,  industrial

automation,  and  healthcare  monitoring.  In  our  domain  specific  solution  we  are

concentrated in services regarding crop management and precision agriculture.

Perception Layer

Hybrid IoT edge node

Each use case has unique requirements that inferred some different network architecture,

from  the  simpler  to  the  most  complex  case.  For  that  reason  an  ARM-based  single-board

computer (SBC) end node that is able to be adapted in any deployment is the ideal solution for

our system. Our novel hybrid IoT node can work as an extreme edge dummy node able to just

send and receive data, as edge computing node with capabilities of process, filter and aggregate

self-sensed data, or as a Fog gateway able to process, filter and aggregate data of subnetworks

edge nodes. The Hybrid IoT node in any condition can support multiple affordable and versatile

sensors  and/or  actuators.  The  deployment  initialization  process  is  only  based  on  a  unique

network identifier and on a preset of functionality, called Device Group. The latter is a set of

commands that are describing templates of grouped physical end devices (e.g. SBCs, sensors,

actuators, etc). These are shared configuration schemas, distributed as common assumptions on

both  Hybrid  IoT nodes  and the  Cloud,  consisting  of  a  group structure,  as  well  as  tags  and

relations that describe the workflow orientation of this group. This is a vital way of handling

hardware abstractions and form a robust system able to function with the minimum deployment

effort, while supporting device diversity.

Distributed middleware that supports Heterogeneity

The Hybrid IoT node is not aware of what it measures, nor of what it transmits. Thus,

data transaction between the end nodes and the cloud is agnostic. The contextualization is being

made on the cloud, which identifies and correlates the Hybrid IoT node Device Group with its
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predefined configuration schema. Device Group schemas mainly include some predefined device

addresses (GPIOs, Serial Ports, Subnetwork node IDs) of the connected devices. Additionally,

the aforementioned data structures that  are represented in memory, should be converted into

architecture and language independent formats that are transmitted across the network [32]. This

practice is also a way to facilitate the minimum communication message length between cloud

and edge and thus utilizing the efficiency of our custom made Data Serialization Format for

LPWANs.

Application-level Zero-copy Binary Serialization Library

According to our study for communication performance influencing factors, there is a

trade-off triangle between coverage, scalability and energy consumption. Also, there could be

issues regarding ISM spectrum access regulations when designing mass-capacity IoT networks

in suburban and rural areas within Europe. Thus, IoT end node communication requirements on

rural areas dictates small size data exchange through the network, in order to prevail bandwidth

capacity and save energy. In order to make targeted performance optimization in our system, we

decided to use data serialization techniques in order to minimize payload size. In this way, we

managed to achieve a balance between capacity and coverage without reaching duty cycle limits.

In the IoT context numeric-based data is much more efficient because numbers constitute the

majority  of data that is exported from sensors. Consequently,  schema-based logic becomes a

better fit for us because in that way we avoid the encoding of field names into the payload as an

additional string [33]. In this way we achieve smaller message size than schema-less techniques,

which  is  essential  for  our  requirements.  Additionally,  LPWANs  derive  the  requirement  of

reducing  expensive  encoding  and  decoding  steps  due  to  additional  power  consumption  and

instead using fewer resources to directly read values contained inside a serialized data structure

without deserializing them. For that reason our pointer-based approach follows the principle that

data should be structured in the same way as in memory [11] to achieve space efficiency. We

have designed and developed a bit-packing process that generates a buffer sequence where each

chunk has an interdependent offset in memory from the start of the buffer. To achieve this we

have  divided  the  messages  in  known  chunks  with  a  known  sequence.  Each  chunk  has  a

corresponding scheme that defines its length in bits which is exported from the possible values

that need to represent (e.g. with 8 bit an integer between 0 and 255 can be expressed which is

44



fine  for  addressing  devices).  Furthermore,  scheme  values  in  all  cases  are  integers  that  are

sometimes bit-packed as is, but also could be the index of an array of possible values (e.g. in 4

bits we can have 16 different values which are enough for indexing an array of the message type

flags). We are also utilizing some chunks as relays for the existence or size of other chunks

which generates interdependencies between message fields. Additionally, our solution supports

multiple  device reports  per buffer that offer an exponential  reduction on the message length

which is vital to scale the system. The general idea is to have small messages that describe a lot

of different devices independently. This means that we need to avoid communicating with end

devices based on their identifiers that typically are big strings. For that reason we are using an

enumeration for each device that is directly connected to an SBC or for each device from a

subnetwork. This enumeration is corresponding to an integer value that is equal to the index of

its identifier on the enumeration array. Despite the fact that we need extremely small data sizes,

we also need to be temporally consistent, which introduces the requirement for time and/or date

annotation within the message. To overcome this data size constraint we have implemented a

time synchronization logic. Each payload has a sync timestamp (32 bits) as a custom local epoch

declaration while each report or action on payload has the difference of the sensor measurement

or action schedule since this custom epoch.

Table 4.1. Zero-copy binary serialization global chunks types

chunk title
size in
bits values

min
value

max
value dependent comments

cmd 8 indexOf[0, 1, o, r, a, c]
Flag for the message (0 = init,  1 = ping, o = operation profile, r =
report, a = action, c = continue)

is_part 8 integer
Indicates  if  the  following  message  is  just  a  part  of  the  whole
message

epoch 32 integer Epoch timestamp in seconds of the message generation

device_index 8 integer 0 255 The root microcontroler index of a device for the data that follows

value_type 3 indexOf[m, e, t, p, i]
The value type that follows (m = measurement, e = event, t = trigger,
p = percent, i = instruction)

value_subvalues_nu
mber 4 integer 0 15 Indicates how many chunks of values follows from the same device

value_has_time_diff 1 boolean If the value has a time difference related to the epoch timestamp

value_minutes_diff 16 integer 0 2043 value_has_time_diff
The  time difference  in  minutes  of  the value  related  to  the epoch
timestamp

long_value_has_frac
tion 1 boolean value_type If the long value that follows has a decimal part

long_value_fraction 8 integer 0 99 long_value_has_fraction The decimal part of the value

long_value_size 6 indexOf[8, 16, 24, 32] value_type The size in bits of the following integer base of the value

long_value_sign 1 indexOf[-, +] value_type The sign of the value
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long_value_base

8  ||  16
||  24  ||
32 integer

value_type,
long_value_size The integer base of the value

boolean_value 8 boolean value_type General purpose boolean

report_percent_value 7 integer 0 100 value_type Value in percentage

action_trigger_value 8 boolean value_type Boolean for trigger an action (on/off)

action_percent_valu
e 7 integer 0 100 value_type Value in percentage for actions

op_io_type 2
indexOf[gpio,  port,
subnetwork]

The  type  of  the  physical  address  that  the  following  device  is
connected to the root microcontroler

op_io_gpio 6 integer 0 63 op_io_type The gpio that the following device is connected

op_io_port 6

indexOf[ttyACM0,
ttyS0,  ttyUSB0,
ttyUSB1] op_io_type The port that the following device is connected

op_subnetwork_netw
ork_id 8 integer 0 255 op_io_type The network id of a device that is within a subnetwork

op_subnetwork_nod
e_id 8 integer 0 255 op_io_type The node id of a device that is within a subnetwork

op_subnetwork_devi
ce_id 8 integer op_io_type The deviced of a device that is within a subnetwork

dev_code 8

indexOf[d,  ir,  mir,  mth,
cl,  sn,  snrs,  rrv,
cl_legacy,  cl_debug,
cl_debug_mini] The device code of a root microcontroler

Table 4.2.  Zero-copy binary serialization message format representing the example of a LoRa

node  that  sends  report  to  the  cloud  for  device  with  index=0  with  value=756.39  and  time

difference of 5 minutes related to the epoch time in seconds= 1631115456

cmd epoch
device
_index

value_
type

value_su
bvalues_
number

value_has
_time_diff

value_minutes
_diff

long_value_h
as_fraction

long_value_f
raction

long_value
_size

long_value
_sign long_value_base

3 1631115456 0 0 1 1 5 1 39 1 1 756

"0000
0011"

"0110000100111
00011011000110
00000"

"00000
000" "000" "001" "1"

"00000000000
00101" "1" "00100111" "000001" "1" "0000001011110100"

Snippet 4.1.  Converting the value to base2 and then create  a map of binary chars which is

needed for bitwise operations

if (chunkScheme.min && parseInt(value) < chunkScheme.min) {
    value = parseInt(chunkScheme.min);

}
if (chunkScheme.max && parseInt(value) > chunkScheme.max) {

    value = parseInt(chunkScheme.max);
}

let size = 0;
if (!Array.isArray(chunkScheme.size)) { 

  size = chunkScheme.size;
} else if (Array.isArray(chunkScheme.size)) {   size = value.size;
}
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if(typeof value.data != 'undefined') {   value = value.data;
}
let binary = parseInt(value).toString(2).split('').map(Number);
if (binary.length > size) {

    binary = Array.from({
    length: size
  }, (v, i) => 1);

}

let maskedPaddedBinary = self.addZeroPadding(size - binary.length, binary);

Network Layer

End devices communication by using LMIC (LoraWAN-MAC-in-C)

We have chosen the LMIC library to develop our end nodes, which is a useful library to

deploy  LoRaWAN  devices  that  can  communicate  with  LoRaWAN  gateways  using  the

LoRaWAN protocol. LMIC (LoraWAN-MAC-in-C) is an open-source, lightweight library that

provides a way to communicate with LoRaWAN gateways using the LoRaWAN protocol. It is

designed for use with low-power, low-data-rate wireless networks and is commonly used in IoT

applications. The library is written in C and can be used on a range of microcontrollers, including

Arduino boards,  ESP32,  and STM32.  LMIC provides  a  range of  functions  for  sending and

receiving  data  packets,  managing  device  communication  with  LoRaWAN  gateways,  and

implementing security features such as message encryption. LMIC operates in two modes: ABP

(Activation-By-Personalization)  and  OTAA  (Over-The-Air-Activation).  In  ABP  mode,  the

device  is  pre-configured  with  keys  and  network  parameters,  and  the  device  can  begin

communicating with the network immediately. In OTAA mode, the device first performs a join

procedure  to obtain  the necessary security  keys and network parameters  before it  can begin

communicating  with the network.  Our end nodes are  developed to function with the OTAA

mode  because  it  provides  greater  security  than  ABP  mode,  as  it  allows  for  dynamic  key

exchange and reduces the risk of key compromise. Additionally, it allows for better scalability,

as devices can join and leave the network dynamically without requiring manual configuration.

The workflow we have followed for implementing OTAA mode using the LMIC library is as

following:
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● Configure  the  device  parameters:  The  device  parameters  that  need  to  be

configured include the device EUI, application EUI, and application key. These

values are obtained from the The Things Stack network server.

● Initialize the LMIC library: The LMIC library needs to be initialized with the

device parameters and LoRaWAN frequency plan. This can be done using the

os_init() and lmic_init() functions.

● Start the join procedure: The device sends a Join Request message to the network

using the LMIC_startJoining() function.

● Handle  the  Join  Accept  message:  The  network  responds  with  a  Join  Accept

message that contains the necessary security keys and network parameters. The

device needs to handle this  message and extract  the required values using the

LMIC_getSessionKeys() function.

● Store the security keys and network parameters: The security keys and network

parameters  obtained  from the  Join  Accept  message  need  to  be  stored  in  the

device's non-volatile memory for future use.

● Begin  communicating  with  the  network:  Once  the  device  has  successfully

completed the join procedure, it can begin communicating with the network using

the  LMIC  library  functions  such  as  LMIC_setTxData2()  to  send  data  to  the

network.

Cloud Prerequisites

For our deployment we have set up a virtual machine to be used as a server with an 64-bit

version of Ubuntu Bionic 18.04 (LTS), 4 virtual CPUs and 16GB RAM. Our cloud infrastructure

consists of several Docker containers with isolated environments. We have followed the official

guide to install  Docker Engine on Ubuntu and make the necessary configurations to manage

Docker  as  a  non-root  user  while  configuring  it  to  start  on boot.  Additionally  we have used

Docker  Compose  that  offers  us  the  ability  to  use  a  single  YAML  file  to  configure  our

application’s services. With a single command, we can create and start all the services. Compose

is a tool for defining and running multi-container Docker applications.
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The Things Stack (TTS)

In our workflow, LoRaWAN devices  communicate  with LoRaWAN gateways,  which

forward the data to The Things Stack. The Things Stack processes the data and sends it to the

application  server,  which can then use the data  to  perform various  actions  according to  our

needs.

The Things Stack is a LoRaWAN network server stack, built upon an open source core,

developed and maintained by The Things Industries. The Things Stack allows us to build and

manage our LoRaWAN networks with our own hardware and in our cloud. The Things Stack

includes it’s core which is written basically in Go language, along with a Redis server and a

Cockroach database.

The Things Stack consists of several components, including:

● Network  Server:  The  Network  Server  receives  and  processes  data  from

LoRaWAN  gateways,  performs  device  authentication  and  authorization,  and

routes data to the correct application.

● Application  Server:  The  Application  Server  is  responsible  for  managing

applications, receiving and processing data from devices, and triggering actions

based on device data.

● Join Server: The Join Server is responsible for managing device activation and

providing security keys to devices.

● Gateway Server: The Gateway Server manages LoRaWAN gateways and receives

data from gateways.

● Identity  Server:  The  Identity  Server  manages  user  authentication  and

authorization.

Developers can leverage The Things Stack in a number of ways, such as setting up a

private LoRaWAN network, connecting IoT devices, collecting and processing data, integrating

with other cloud-based services and building custom applications by leveraging the APIs and

SDKs to manage devices, collect and process data, and trigger actions based on device data.

Overall, The Things Stack provides us a powerful platform for building our IoT solution,

enabling us to quickly and easily develop, deploy, and scale our application through The Things

Stack Console. The Console is the management application of The Things Stack for LoRaWAN.

It is a web application that we are using to register our applications, end devices and gateways,
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monitor network traffic, or configure network related options, among other things. Additionally,

it does provide a command-line interface (CLI) tool that can be installed locally and used to

interact with The Things Stack via the command line. The CLI tool is called "ttn-lw-cli" and can

be installed on Windows, Linux, and macOS. It provides a range of commands for managing

LoRaWAN  networks  and  devices,  such  as  creating  applications,  registering  devices,  and

managing network settings.

To initialize The Things Stack (TTS) for LoRaWAN network deployment, we first need

to create an account on the TTS website and set up a new application. Then, we need to add your

LoRaWAN gateways and devices to the application by specifying their unique identifiers and

network parameters. Once the devices are added based on our network design methodology, we

can start receiving and sending data between the devices and the TTS network. Additionally, we

can use the TTS APIs and integrations to connect our LoRaWAN devices to our IoT platform.

Finally, we can use the TTS console to monitor and manage our LoRaWAN network, including

viewing device activity, managing network settings, and configuring integrations.

LoRaWAN network design methodology

When we can configure a LoRaWAN network of thousands of devices over a range of

several km with the least power consumption, we can define some different application oriented

demands named, data acquisition assurance, data acquisition frequency, and data size, which all

are  different  aspects  of  Quality  of  service  (QoS),  as  long  as  a  hybrid  solution  for  serving

applications based on data-level requirements such as the distinction of data and so in EDs level

QoS.  The  level  of  data  acquisition  assurance  is  not  directly  connected  with  ACK  and

retransmissions,  as  it  could,  but  to  the  PDR cut-off  which  is  acceptable  for  our  needs.  For

example this cut-off could be 0.50 if our application is not precise centric and we don’t care if

we lose one out of two messages. [55]

The clustering method we have followed can be described as:

1. Count the overall EDs that needed

2. Deploy  as  many  GW are  needed  to  avoid  the  DR0  allocation  that  could  be

necessary for far deployed nodes.
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3. Separate  the  EDs  in  several  clusters  based  on  the  distance  from  the  closer

gateway. The clusters should be in donut shape with the inner cycle being the

shortest distance and the outer being the furthest.

4. If there is not an application wide QoS level, further distribute the EDs in each

distance cluster to several new clusters based on QoS aspects (data acquisition

assurance, data acquisition frequency and data size).

5. Distribute the EDs for each of the previous clusters to DR-TX groups based on

the following criteria:

a. As bigger is the distance and data acquisition frequency that bigger is the

DR  that  should  be  allocated,  which  are  proportional  volumes  to  the

acknowledgment and amount of retransmissions.

b. As high is the DR that high should be the TX power to simultaneously

achieve the best trade-off between coverage and power consumption.

c. As more EDs are in the same cluster, the higher the DR allocation should

be.

6. Exhaust the distance limits of each DR cluster in order to use as high DRs as

possible, while DR5 cluster should configured to around 64% of the total EDs

[51]

7. Lint the distance based clusters to equalise as possible the maintenance intervals,

or  distribute  final  clusters  in  power  needs  clusters  to  determine  which  set  of

power capacity configuration should be used in each case (if this is a possible

capability for the deployment).

Interoperability and MQTT Broker

To achieve interoperability between the cloud core application and TTS we can either set

up  Webhooks  or  an  MQTT broker.  Webhooks,  which  is  a  technology  based  on  Hypertext

Transfer Protocol (HTTP), is a way that applications can send automated messages to other apps.

When  events  like  getting  uplink  payloads  occur,  TTS makes  an  HTTP request  to  the  URL

configured  for  the webhook. Nevertheless,  our  choice  is  to  use the MQTT protocol  instead,

because it uses a reduced overhead related to HTTP. This feature offers better energy efficiency

which  is  critical  in  IoT applications  where  the  number  of  connected  IoT  devices  increases
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considerably [30]. RabbitMQ, which has been selected as a broker component, is an open source

message broker that uses a binary application layer protocol, designed to efficiently support a

wide  variety  of  messaging  applications  and  communication  patterns.  It  facilitates  the

development of distributed, fault-tolerant and asynchronous applications. From a security point

of view, RabbitMQ uses Simple Authentication and Security Layer (SASL) for authentication

and data security in Internet protocols. RabbitMQ MQTT offers a wide range of MQTT clients

and adds the possibility to interoperate with AMQP and STOMP clients. RabbitMQ operates on

top of two core protocol entities. These two entities are called exchanges and queues. Messages

published to MQTT topics use a topic exchange internally. Subscribers consume from RabbitMQ

queues  bound  to  the  topic  exchange.  These  features  allow  interoperability  with  different

protocols and make it feasible to use a unique management module to examine queue sizes or

message rates. [30]

Processing layer

Cloud core application

On the Cloud core application, all IoT devices are distributed to virtual subnets that are

handled by functionally independent resource managers. Each running resource manager is the

root of the application layer of an IoT subsystem with individualized configuration, operational

settings, and spatial data, while corresponding to a specific stakeholder (user or operator) on the

business logic. Additionally, resource managers are using a decoupled service to load data from

the DB, including the device map which includes the end devices of the IoT network and the

operation  scenario  which  in  turn  is  a  specification  containing  end  user  preferences  and/or

decision  models.  The core  application  service  includes  the  physical  capabilities  of  the  edge

devices as digital representations at the software level. This creates a virtual ecosystem between

end users and remote end devices (IoT). In this way the workflow and the relationships between

the end devices and their data are integrated into the cloud. Each edge node consists of three

virtual  objects  that  define  what  essentially  constitutes  the  context  of  the  node.  The

Microcontroller object is an emulation of a physical SBC placed at a spatial point that controls

the software it runs, the communication interface, any sensors or actuators that are connected,

and any subnets. The Communication Interface object represents the physical communication

interface (modem) of each point that is responsible for communicating with the Cloud through
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the network layer of LoRaWAN. The Device object is reflected in an end device receiving data

or  implementing  actions  and  operating  based  on  the  device  model  specification  and  the

instructions given by the Cloud to the Microcontroller that controls it. This end device can be a

sensor, actuator or a subnet gateway (WSN gateway) forwarding data to a possible WSN sensor

network.  Each  type  of  sensor  or  actuator  corresponds  to  a  Device  Specification  schema.  It

consists of some rules and options related to the capabilities of the physical devices, in order to

facilitate the easiness and adaptiveness of adaptation and deployment of the system. In this way,

there is no need to make custom settings by a qualified technician for each device. Instead the

user can include devices from a range of predefined device properties for which the system has

all the necessary information to start them up, adjust their operation, communicate with them and

read their data. The Cloud composes a profile with the operating instructions of the edge nodes,

which  are  thus  not  responsible  for  knowing exactly  what  to  do.  With  this  method all  SBC

execute  a  basic  core  of  commands  that  are  shipped  with  the  device  model  specification,

combined with the operating profile received from the Cloud. The operation composition service

includes  operation profiling  based on system and device  specification  schemas,  system-wide

operation  settings  and manager-wide  operation  scenarios.  Specifically,  operation  profiles  are

workflow descriptions  for edge nodes and the data they consist  of are sensors and actuators

enumerations  and  parameters  for  performing  tasks.  Also  includes  the  ID  of  their  serial

connection,  and  especially  for  sensors,  the  measurement  frequency  as  well  as  the  uplink

frequency. In such a way we can change our device behaviour dynamically, like changing the

reporting intervals or control  the workflow of complicated edge node modules such as edge

processing nodes or even agents such as unmanned aerial vehicles (UAV) or unmanned ground

vehicles  (UGV).  Finally,  the  Cloud  also  includes  a  decision  support  service  (DSS)  which

operates based on the edge node data and the manager-wide data processing models that are

defined. This system produces commands for alerting and actuating on the edge. Alerts could be

generated to notify the end user or to feed other services within the cloud (e.g. logging), while

actions commands are triggering events on the edge devices. Our cloud core application consists

of a Node.js Express Docker container as the server framework / controller layer, one MongoDB

Docker container as the database layer and an NGINX server Docker container as a proxy /

content-caching layer. Its installation is straightforward in contradiction with The Things Stack.

The application basically consisted of models, classes, services, handlers and routers. Models are
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Mongoose schema definitions and their associated models, while classes define these models in

an application  oriented way.  Services  contain the main  application  logic  while  handlers  and

routers utilize Express.js modules to expose the RESTful API.

Application Classes

The cloud core application consists of several services to function. The most important of

them are listed and briefly described below:

● Orchestrator: Orchestrate the cloud by utilizing individual services/modules in

order to emulate network devices, manage the data they produce or receive, and

implement the communication protocol. This service can simultaneously support

the management of many different ΙοΤ deviceσ and data management subsystems

of different  operators  that  operating  with their  custom setup and management

models.  The purpose  of  this  orchestration  is  the  processing of  the  data  to  be

collected that leads to decision making.

● Resource Manager: Resource managers are operation independent systems that

support the management of an IoT network of devices in a cloud way. This is the

root instance,  corresponding to an operator  user role,  that  consisted of service

class instances, specification maps (system configuration, operation setup, device

map, recipe) and spatial data. The resource manager additionally uses a decoupled

service  to  load  database  models  (Model  Accessor),  including  the  device  map

which includes the end devices of the IoT network and the operation scenario

which  is  a  specification  map  containing  end  user  preferences  and/or  decision

models.

● Device Controller:  The device manager  is  the core service of the application

because  it  integrates  the  end  devices  in  the  field  including  their  physical

capabilities at the software level creating a virtual ecosystem between end users

and remote end devices  (IoT).  In this  way the workflow and the relationships

between the end devices are integrated into the computing cloud. Also, the device

manager takes over all the communication processes and acts as a data input /

output  router  to  and  from the  end  devices  by  exchanging  messages  with  the

LoRaWAN server.
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● Network Gateway:  Service  for  handling  the  interoperability  between  the

application  core  of  the  cloud  and  The  Things  Stack  (TTS)  which  is  the

LoRaWAN server.

● Data Handler:  Service  that  interacts  with  database  storage.  Handles  the

modification of the data coming from the communication with the field and stores

or serves it.

● Operation Composer: Service that configures the operating instructions of the

end  devices,  which  are  thus  not  responsible  for  knowing exactly  what  to  do.

Operation  synthesis  involves  building  operation  profiles  based  on system and

device specification maps, operation settings, and operation scenarios.

● Decision Processor:  A decision  support  system (DSS) that  operates  based on

input data and management models defined for each resource manager.

Additionally  there  are  several  object  classes  that  used  to  accommodate  the  data

management on the cloud. Several of them are listed below:

● Microcontroller:  Emulation  of  a  physical  microprocessor  (e.g.  Raspberry  Pi)

placed at  a spatial  point  that  controls  the software it  runs,  the communication

interface, any sensors or actuators that are connected, and any subnets.

● Communication Interface: It represents the physical communication interface of

each  point  that  is  responsible  for  communicating  with  the  cloud  computing

through  the  LoRaWAN  network  layer  or  for  communicating  between  some

subnet.

● Sensor/  Actuator -  Device:  It  is  reflected  in  an end device  receiving  data  or

implementing actions that operates based on the device model specifications and

the instructions given by the cloud computing to the microprocessor that drives it.

● Point: Represents a geographic point of interest in the cloud. It could be a ground

station, a crop, a field, a water collector, a water course, a water resource. The

water resource is directly connected to the water routes that are directly connected

to the collectors. Collectors must include at least one field which should include

one or more different crops which could include ground stations.
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● Uplink/  Downlink -  Payload:  Represents  an  uplink  or  downlink  load  of  the

LoRaWAN server.

● Measurement: Ingest data at a single point in time from an end-to-end physical

field device.

● Event: Event that occurred at a single time from a final physical field device.

● Action:  It  contains  an action that  must occur  at  a field end device and is  the

product of a decision made by the decision processing unit.

● Management Model: It contains scientific calculations related to the respective

operating scenario of the resource manager and is used in decision making.

Figure 4.1.  Cloud application core class diagram
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Figure 4.2.  Diagram represents application models and their relations and inheritance

Workflow

The system is distributed so that it can start working automatically after the end devices

are  installed  and  registered  in  the  management  interface,  which  will  be  developed  for  this

purpose  later,  in  combination  with  the  registration  of  some  preferences  according  to  the

operating  scenario.  Thus,  after  the  aforementioned  are  registered  in  the  cloud  computing

database,  the  orchestrator  starts  the  function  composition,  device  management  and  data

manipulation units (Figure 4.3).
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Figure 4.3.  Initialization flow diagram of cloud computing core application modules

The  device  manager  loads  all  connected  devices  (microcontrollers,  communication

interfaces,  sensors,  actuators)  in  tree  form into  memory  from the  database,  specifying  their

capabilities  from the  database.  This  is  done  by  associating  the  root  microcontroller  devices

contained in the respective resource manager's device map. (Code Snippet 1) The generated tree

is structured by repeating the communication interfaces associated with the microcontroller and

the subnet nodes that are also loaded (microcontrollers, communication interfaces and devices).

Snippet 4.2.   Individually load devices into memory per resource manager
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await Promise.all(deviceMap.nodes.map(async (node) => { 
  const rmcId = node.rmc_id;
  await self.createMicroControlerTree(rmcId).then(async(rmc) => {
    self.map[rmc.id] = rmc;
    return self.map;
  })
}));

The  operation  composition  module  then  creates  an  operation  profile  for  each

microprocessor based on the operation scenario preferences of the respective resource manager.

The operation profile is a map of instructions, options, and device mappings that depend on the

operation  of the  physical  microcontrollers  (Code Snippet  2).  Because microcontrollers  know

nothing more than what happened locally in the field, we must have a way to achieve mapping of

sensors and data, as well as actuators and actions. Operation profiles also define the behavior and

routing of data managed by the microcontroller. These operating profiles are then via the device

management module encoded into messages and forwarded to the end devices.

Snippet 4.3.   Enumerate microcontroller devices and map them to models in memory

Object.keys(mc.devs).forEach((d)=>{
  let dev = mc.devs[d];
  opMap.cis.enum.push(dev.id);  // enumerate from now the root mc connected devices
  let specs = config.specifications;
  opMap.devs[dev.id] = {};
  let specDevType = Object.keys(specs).find((k) => {
    return specs[k] === dev.specification.type;
  });
  let task = mc.devGroup.task;
  opMap.devs[dev.id]['io'] = dev.io;
  opMap.devs[dev.id][dev.role] = setup[task][dev.role][specDevType];
});

Following this sequence the application core is ready to receive messages and coordinate

actions towards the end devices. When an uplink payload arrives from the LoRaWAN server the

application associates the receiver with the resource manager and then associates the data with

the corresponding device and stores it in the database (Code Snippet 3). This is achieved by the

device manager collecting the payloads and decoding the protocol messages they contain. The

59



data handling unit then maps each part of the message to the corresponding data type (count,

event) and stores them in the database (Figure 4.4).

Snippet 4.4.   Uplink payload collection from field

  const raw = payload.uplink_message.decoded_payload.raw;
  const  ci  =  rms.deviceControler.interfaces.find((i)  =>  i.id  ==
payload.end_device_ids.device_id);
  const timestamp = payload.received_at;
  const uplink = rms.deviceControler.gatherUplink(id, raw, timestamp, ci);
  const inputData = rms.dataHandler.gatherReportsFromDevices(uplink, timestamp);
  rms.dataHandler.storeData(inputData);

Figure 4.4.  Uplink download flow diagram from LoRaWAN server

During cloud-to-field command initiation, the appropriate action objects are created and

grouped by end device by the device management module, which then creates multiple routing

processes for each node (communication interface) of the recipient list and then a data map.

These  data  maps  are  then  encoded  into  a  protocol  message  based  on  the  respective

microcontroller's  operating  profile  (Code  Snippet  4),  inserted  into  a  downlink  payload,  and

queued for sending to the field (Figure 4.5).
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Figure 4.5.  Decision and downlink flow diagram to the LoRaWAN server

Application Layer

Introduction  of  a  novel  autonomous  resource  management  system for  rural

areas

Decision making, which is done through adaptable computational models, uses data from

one or more sensors that are distributed at the Edge nodes as the initial input. Later on, these data

could be fused, depending on the use case with third-party data in order to enrich the application

context  and  improve  the  decision  efficiency.  Additionally,  in  order  to  facilitate  scheduled

actions, decision computational models are able to extract data on specific time periods based on

cron jobs. Generally, any action decided to be performed on the edge corresponds to one or more

context or situational related actuators according to the inputs. Thus, in order for the system to
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automatically  associate  the  recipients  of  an  action  command,  we  are  correlating  devices  to

groups for the decision making (computational model feeding). To do so we have implemented

dependency  schemes  for  each  Device  group,  which  can  be  described  as  both  the  input

(dependee) and output (dependent) of a decision computation from a model. We are using this

concept to know that data processing for an input/s has some certain corresponding outputs for

any action that will  happen. Furthermore,  because on each LoRaWAN based system we are

having the limitation of message size in order to be scalable in rural areas we have implemented

a queueing system. This is working by placing every potential action command to a timestamped

ordered queue and shift from there whenever there is a downlink window open on the edge node.

The current workflow is driven by the LoRaWAN specification, which includes three different

classes of devices with different power consumption properties. By default we are using class A

devices, which implements availability for downlinks once an uplink is sent. So the shortest time

that an action can be sent to an edge device is equal to the default interval of pings setted up on

the Edge node operation profile. To facilitate this gap, the class C devices are also implemented,

where all downlinks are sended immediately to the edge, offering real time availability. On the

other hand, Quality of Service (QoS) in some cases is quite doubtful for LoRaWAN deployments

and  can  be  a  serious  constraint  for  an  autonomous  system's  stability.  To  handle  this  issue

whenever an action is triggered from the Cloud a corresponding event in pending condition is

created. Events are related to actuator devices that have a state which is setted from the latest

related event. Once the action is triggered on the edge the Edge node adds the corresponding

event to the reports queue. When the Cloud gathers this event, it gets compared with the latest

corresponding event that is fetched for this device. If the value is the same the event condition

gets  completed  and the device  states  the event  value  (on/off).  If  the  values  mismatched the

event’s condition set to canceled.

Restful Services

Any data that gets stored or generated on the cloud is available through a POST request

on  the  REST API  endpoint  and  a  Bearer  token  authentication  workflow.  The  requests  and

responses are encoded in a JSON data format.
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● Available Read Services: read_rm, read_points, read_mcs, read_cis, read_devs,

read_ops, read_events, read_notifications, read_devs_reports, read_devs_actions,

read_cis_payloads, read_user

● Available Write Services: create_rm, create_points, create_mcs, create_actions,

update_points, delete_rm, delete_points, delete_mcs

The  overall  logic  of  the  routing  mechanism  is  based  on  easy  establishment  of  new

endpoints based on a list of available routes that are directly pointing to an orchestrator function.

The workflow consists  of the initialization  of the functions  that  will  be used as middleware

functions and the setup of  their context of responding.

Support for value-added services

The application layer of the platform is responsible for providing value-added services

and applications  that can be offered in the agriculture domain by leveraging the data collected

from the IoT devices. Indicatively the system is built with the vision to support several types of

end-user applications:

● Crop management:  This  includes  real-time  monitoring  of  crops,  providing

insights into crop growth patterns, soil moisture content, nutrient levels, and other

important parameters that can help farmers optimize crop yields and reduce waste.

● Predictive analytics:  IoT solutions can provide data analytics  capabilities  that

enable  farmers  to  make  data-driven  decisions  about  crop  management,  pest

control, and irrigation.

● Livestock management:  IoT solutions can be used to monitor  the health  and

well-being of livestock, including tracking their location, feed consumption, and

overall health.

● Supply chain management:  IoT  solutions  can  help  farmers  and  distributors

monitor the temperature and humidity of goods in transit, ensure product quality

and safety, and optimize supply chain efficiency.

● Environmental monitoring:  IoT  solutions  can  be  used  to  monitor  the

environment, including temperature, humidity, air quality, and other factors that

can impact crop growth and yield.
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● Precision agriculture: IoT solutions can enable farmers to use data to make more

precise decisions about planting, fertilization, irrigation, and other key aspects of

crop management.

● Decision support systems: IoT solutions can provide farmers with real-time data

and insights that can be used to make informed decisions about crop management,

pest control, and other key factors that impact crop yields and quality.
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Chapter 5 - Use cases and results

Many agricultural systems focus on addressing specific aspects of the cultivation process,

rather than integrating the entire lifecycle from planting to harvesting. An example of this is

irrigation systems, which use IoT solutions to optimize the use of water resources in agriculture.

These systems can help prevent soil diseases caused by excessive watering by measuring soil

moisture levels through sensors and using this data to control the irrigation source. Alternatively,

more sophisticated systems can combine humidity data with weather datasets to determine the

appropriate amount of water required during irrigation.

The development of the current IoT platform has been conducted throughout the master

degree of the author. In parallel, in order to assess the feasibility of utilizing our IoT platform for

precision agriculture we have tested and evaluated it based on two water resource management

scenarios throughout the two related scientific field projects that the author participated ("Action

for Research in the Agri-Food Sector of Crete" and “Integrated irrigation network monitoring

system”). The developed platform complements the server on the cloud infrastructure. Thus, this

thesis includes some shared research and evaluation that was conducted and a network and cloud

infrastructure on top of which modules have been developed with the aforementioned projects.

Specifically,  the  LoRaWAN  infrastructure  has  been  used  to  make  assessments  on

communication and project use cases have been used to design and evaluate the IoT platform.

Additionally,  three more subsystems, that have been developed throughout the aforementioned

projects, are required to complete the evaluation: a Mesh WSN network, an Arduino-based node

with  smart  flowmeters  and  an  end  user  application  based  on  cloud  web  sockets  services.

However, the details of these additional subsystems fall outside the scope of this study.

Because  the  system  is  dynamic  the  usage  scenarios  differ  only  at  the

installation/hardware level and management model (as long as data processing is necessary). The

usage scenarios we have currently implemented, installed and tested are two. The first covers the

management of water resources of multiple fields at the point of distribution (collector) and the

second covers the autonomous management  of the irrigation of a  farm consisting of several

hectares of olive crops.
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Scenario of integrated management of irrigation water resources

In order to implement the specific scenario, we installed a "collector" node in the HMU

experimental olive grove. The goal of the node is to manage water resources by measuring water

consumption and controlling the supply through solenoid valves. More generally,  the goal of

irrigation water collectors is to measure the consumption of multiple irrigation supplies at the

point of distribution. To test this scenario we proceed with a customized solution where at each

output of the collector instead of a field we have a row of olive trees, while in total we use 2

outputs. In this way, the members of the arboriculture department of HMU will be able to control

the amount of watering for each row separately through our platform. Although this scenario is

hybrid, it still remains suitable for us in the case of a single collector and the supplies are many

and the quantities of water quite large, comparable to a normal irrigation network collector.

The  installation  consists  of  a  specially  designed  water  collector  and  the  electronic

equipment.  The  electronic  equipment  includes  the  node,  the  sensors,  which  are  flowmeters,

pressure gauge and thermometer, and the actuators which are the electrovalves (Figure 5.1). All

sensors and actuators were connected according to the "collector" device group standard to be

compatible  with  the  platform.  Also,  integrated  in  the  collector  are  the  power  supply  circuit

supplied by photovoltaic (12V 20W) with dimensions 44*35 cm and a lead battery (12V 7AH).
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Figure 5.1.  Collector node electronic circuit

The usage process starts with device initialization. We open the application and run the

resource manager initialization wizard. To create the resource manager and start the system we

add the spatial  points where the node is  located,  select  the type of the node,  as well  as the

operation scenario. The cloud computing then processes the request and creates a new resource

manager. We then run the end node which is configured to send flow measurements to the cloud

every 10 minutes. Cloud computing stores the metrics in the database and pushes them to the

application when requested by the user. The user has the ability to access all devices included in

a field end node, along with graphs depicting reference values in the time domain, and can open

and close any solenoid valve from the same device list.
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Irrigation scenario depending on microclimate and soil conditions

To test the irrigation scenario of a farm consisting of several acres of olive trees based on

soil moisture, we decided to add an "extended irrigator node" type node (based on our Hybrid

IoT edge node) to an output of the collector node of the HMU experimental olive grove. This

node is completely separate from the collector node as the only thing they share is a water line.

The extended sprinkler hub consists of a solenoid valve mounted on the inlet line and the hub

with 2 lithium batteries (18650 3.7V) (Figure 5.2). Also, the term extended means that there is

also a wireless sub-network of sensors (Mesh WSN RFM69) which forwards data to the central

node. In this case, we installed a wireless soil moisture sensor placed at a point in the row of the

olive grove that we control in this particular scenario. This node is powered by a lithium battery

(18650  3.7V).  All  devices  were  connected  according  to  the  device  group  standard  to  be

compatible with the platform.

Figure 5.2.   Electronic circuit of an extended irrigator node

The usage process starts with device initialization. We open the application and run the

resource manager initialization wizard. To create the resource manager and start the system we

add the  spatial  points  where  the  nodes  are  located,  we select  the node type,  as  well  as  the

operation scenario. The cloud computing then processes the request and creates a new resource
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manager. Next we run the end nodes. The central endpoint starts the self-adaptation process. The

node sends an initialization message to the cloud computing and it responds with the operating

profile it creates based on our choices. Then the node receives the operation profile, defines the

parameters  and  starts  its  operation.  The  node  of  the  particular  installation  is  set  to  send

measurements every 5 minutes which include the soil moisture measurements forwarded by the

subnet. The end nodes throughout their operation collect and send data from the sensors. Cloud

computing stores them in the database and pushes them to the application when requested by the

user. The user has the ability to access all devices included in a field endpoint, along with graphs

depicting reference values in the time domain. Actuators in the field are activated according to

the operating scenario or manually on user demand. In this scenario, we chose the Drip API as

the  decision-making  model  and  thus  during  the  initialization  it  was  defined  that  scheduled

executions of the computational model would be done, once a day, collecting data from the node

with the soil moisture sensor. The model decides if actions need to be programmed, which are

limited to opening and closing the solenoid valve based on the desired watering time. Finally,

from the list of devices of a node, the user can open and close any solenoid valve.

Figure 5.3.    Excerpt  from the log file  from the field end node (right)  and from the cloud

computing (left) when collecting, sending and storing measurements.
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Chapter 6 - Outcomes & Conclusions

The  tests  showed  that  the  core  of  the  application  running  in  the  cloud  responds

satisfactorily to the cases of heavy workload (multiple resource managers, many users, etc.) that

meets  the  scalability  necessities  of  such  a  system.  Furthermore,  the  flexibility  and the  easy

customization showed that a developer or a user can tailor his/her specific needs with a small

learning curve.

Achieving data and device diversity is especially important in the context of agriculture,

where a variety of sensors and devices  are used to monitor  different  aspects of the farming

process.  The  presented  IoT  platform  supports  diverse  data  types,  such  as  soil  moisture,

temperature,  and humidity,  and is suitable for providing farmers with a more comprehensive

understanding of their crops and soil. Additionally, the current IoT platform can support a variety

of devices, such as low-power sensors, drones, and cameras, which provide farmers a range of

tools to monitor their fields and crops. By achieving data and device diversity in an agriculture-

focused IoT platform, farmers can gain valuable insights into their farming practices, optimize

their resource usage, and improve their crop yields. The data diversity that we have achieved can

help  to  ensure  that  the  platform  can  be  used  in  a  variety  of  value-added  services  within

agriculture. Also the device diversity nature of the platform provides more options for users and

developers, allowing them to choose the most suitable devices for their specific application. It is

essential that the IoT platform could support both LoRaWAN and Wi-Fi because in such a way it

can support a wider range of devices, such as low-power sensors and high-bandwidth cameras.

Finally, our main objective from the beginning that has been lastly met was to achieve hardware

agnosticism in the platform. An effective platform should be capable of supporting a wide range

of  devices,  ranging  from low-capacity  devices  to  full-fledged  computers  with  an  operating

system, as well as both wired and wireless connections. It is up to the user or expert designing

the IoT product to decide which devices to use. Ultimately, when the previous summarization

concatenated  with  the  low  cost  of  the  supported  hardware  along  with  the  integration  with

LoRaWAN solutions that provided make the proposed solution a well based IoT platform able to

offer data and device diversity for Agriculture 4.0 scenarios.
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Chapter 7 - Future work

 Our desire is to extend the existing IoT platform with modules and algorithms in order to

create a novel unit-level granularity Digital Twin platform for Smart Farming. To do so we need

to adapt our scalable and open architecture IoT platform to a Digital Twin technology ecosystem

and facilitate it within a Fog computing infrastructure. Our thought is to get the full potential of

Digital Twin technology is the Fog-based approach that efficiently bypasses the constraints of

real-time  synchronization  and  the  seamless  access  to  data  within  low-bandwidth  channels.

Digital  Twins  will  detect  errors,  acquire  new information  and  predict  the  behavior  of  each

subsystem or  component.  These  features  are  exploiting  the  edge,  fog  and  cloud  computing

capabilities and point to the “softwarization” of physical objects [9]. More specifically, our novel

approach on contextualizing the behavior of plants in a unit level is based on the fuse of spectral

cognitions with several other environmental and electrochemical features. In this way we will

handle a large variety of interrelated objects that create interdependencies between entities over

different granularity levels. With this approach our research proposal goes beyond the state-of-

the-art by increasing the granularity of Digital Twins while contextualizing other data sources

that  the PO itself  [32,  34] and decode the physiological  activities  within a plant  through its

lifetime [14]. Additionally, our time series recollection machine learning prediction algorithm

and  the  fuzzy  logic  DSS are  advancing  capabilities  dealing  with  the  literature  concerns  on

prediction  and prescription of Digital  Twin [24].  While  some projects  have dealt  with those

concerns, their overall output is not yielding an evaluated platform ready to be used by a farmer

on a specific use case [18, 34]. The assistance on critical decision-making that will finally affect

the farmer’s choices is a pivotal objective for us and also is placed on the literature [30, 34].

Because our goal in that case  is to research and develop a novel unit-level Digital Twin system

we have to depend on non-vague schemes to form a real Digital Twin implementation. To have

at least the basic implementation of the concept we need to ensure that the LO fully represents

and behaves  like  the  PO within  its  operational  context.  To do so Reflection,  Entanglement,

Virtualization,  Representativeness  and  Spatiotemporal  Contextualization  are  some  key

requirements we need to initial study and design [9]. Additionally, to extend and increase the

intrinsic value of the Digital Twin relation we need to study about the ways to achieve concepts
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such  as  Connectivity,  Promptness,  Association,  Persistency,  Predictability,  Memorization,

Augmentation and Servitization [9].
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