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Evyapiotieg

Ba nbeAa va evyaplomon Beppd toug kaBnynteg pov Kab. Evdayyedo TIGAAN, Ap. Evdyyero
Moapkdkn kot tov vroymeo Sibdktopa K. Iwdvvn NikoAovdakn ya v kaBodnynon kot tmy
BorBela Toug. OAot ToLg CLVEBOAQY OTNV EMITLXT| TTOPELA TNG TITLXLAKTG HOL epyaoiog KaBwg Kot
OTNV EKTTOVNON NG ONIWG EMIOTG KA1 OTNV TIEPANTEP® EVHOYOANOT) HOU HE TOV KAGSO TNG €peuvag
TAV® OTOV TopEa TOL cybersecurity. Tehog, Ba BeAa va evxaploTo® OAO TO TPOCWMIKO TOL
epyaotnpiov Pasiphae Lab mov pe forjncav onoiadnmote oTiypr} 10 xpela(Opouy.
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Abstract

The growing dependence on cyberspace, which has increased over the last decade, and the rapid
advancement in automated cyber-attacks require every Information Technology expert, such as
network administrators, to be able to detect every cyber-incident and mitigate it at the earliest
opportunity. For this to be possible, these circumstances demand the development of frameworks
that can assist with such incidents. Lately, there is a pattern for the turn of events for these kinds
of frameworks, based on "Situational Awareness". Supported by concepts of this theory, our
research involves collecting information from heterogeneous sensors, which provide further
assistance to network administrators so that they can have a comprehensive overview of what is
happening across a network.

This thesis elaborates upon the design and development of a neural network that detects
malicious traffic and is trained on an enhanced dataset, which includes not only network-related
data but also data obtained from a vulnerability assessment tool. This thesis aims to prove that a
neural network, with multiple heterogeneous data inputs, provides more accurate prediction rates
than a neural network which is solely trained on one type of data, in this case, network traffic
data. The results of our experiment showcase that a neural network that was trained with multiple
heterogeneous data inputs, has an increase in accuracy by almost 2%, in comparison with a
neural network which is trained with normal network traffic data.
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ITeptAnym

H ouvexwg auéavopevn e{aptnon twv avlBpanav anod tov Kufepvoxwpo, N omoia exel oavénbet
Katd ToAD TNV TeAevtaia dekaetia, KaBOG Ko 1 paydaio €EEMEN TV AUTOUATOTOUHEV®V
KuBepvo-embécemy amontoly amod kKabe emayyeApatia tov Topén G ITANPo@oOpIKNG, OmM®G
Slaxxelplotég SIKTLMY, va eival oe B€om va aviyvedel Kal va €MAVEL 0omolodnmoTe (T
KuBepvo-eniBeong 6co to Suvatov ypnyopotepa. [Ipokelpevov va elval €QIKTO KATL TETOLO,
UTTAPYEL T AVAYKT YOt TNV OVOMTUEN GLUOTNHAT®V Ta omoix mapéyxouv Porfela o€ autiv v
Swdikaoia. Ta teAevtaia xpovia, LTAPYEL Pia TAOT, TETOW CLOTHHATA VA AVATTOCCOVIOL
BaowWlbpeva oe pia Bewpia n omoia opifeton wg «Emiyvwon g Koatdotaong» (Situational
Awareness). Baol{opevol mdve oe 0TIG €vvoleg aUTG NG Bewplag, N Epeuvd pag epthapfavel
N oLAAOYT 6eSopEVRV amO €TEPOYEVEIC coONTPEG, DOTE VA TIAPEXEL TIEPAITEP® LTOCTHPIEN
0TOVG OLUYEPLOTEG OIKTOOV, HE OMOTEAECHA VO €XOLV Piot CLVOAIKT] EIKOVA TOL Tt GLPaivel oTo
Siktvo.

Y& aUTAV TNV TITUXLOKT, OXETI(eTOl HE TOV OXESIOHO Kol TNV SNH0LPYiX €VOG VELPWVIKOV
OKTVOL TO OToio aviKveLEl KAKOPBOLAN OIKTUAKI KIvnoT Kol €xel EKTONSEVTEL |E TN XPTOT €VOG
BeAttwpévov oet Oedopévav (dataset), to omoio, TmEPA aMO SIKTLOKA OedOpEVH, TEPIEXEL
dedopéva kot ano v adloAdynon evnabelwv (vulnerability assessment). Lkomog autng g
TITUXLOKTG epyaciag elval va amodei&el Mg éva veupwVIKO SIKTLO, EKTTINOEVHEVO OO ETEPOYEVN
Oedopéva, mapeExel Mo a&lOMoTeg TPOPAEYPEI MO €va VELPWVIKO &iKTLO TO omoio Exel
EKTIONSEVTEL AMOKAEIOTIKA HE TN xpromn Siktvak®v dedopévav. Ta anoteAdéopata TG EPELVAC
HOG, MOOEIKVOOLV TIWG EVA VELPMVIKO SIKTLO, TO OTol0 €xel ekmandevtel e eTepoyevr| Sedopéva,
amodidel axedov 2% KaALTEPQ, GE GUYKPLOT| HE EVA VELPWOVIKO SIKTUO TIOL €XEl EKMAIOEVTEL PHOVO
pe SiKTuaKa Sedopéva.
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1. Introduction

The lack of knowledge on cybersecurity is a common phenomenon for regular users of an
enterprise and corporate networks that can lead to cybersecurity incidents that can lead to serious
financial losses and data theft.

Also, more and more organizations and businesses store, process and exchange sensitive
information, which is very valuable, to malicious actors [1]. During the recent years, cyber-
attacks have been quite frequent and pose a grave threat to enterprises of different sizes, forcing
several of them to bankruptcy, and eventually closure. For this reason, network administrators
are required to have full awareness of their network's activity, as well as a strong knowledge of
proactive cybersecurity protection techniques and procedures, and cybersecurity incident
mitigation strategies [2] [3] [4] [5]. Until this day, traditional intrusion detection and prevention
systems are utilized, but their limitations impair their effectiveness against several malicious
activities. One major limitation is that most of these systems utilize only a certain type of data as
an input, to generate their results. Moreover, the intricacy and automation of cyber-attacks are
increasing daily.

According to Endsley et.al, Situational Awareness is the ability to apprehend the environmental
components and incidents relating to time or space, to realize their significance, and to
prognosticate their forthcoming condition [6]. This term by default refers to military applications
but in 1999, Bass Tim first stated that the future of Cybersecurity would be in the application of
Situational Awareness theorem [7], [8]. He recommended that the next generation of intrusion
detection systems will fuse data from heterogeneous sensors for the creation of cyberspace
situational awareness.

In consideration of the foregoing, Situational Awareness in Cybersecurity allows network
administrators or security analysts to take advantage of heterogeneous data from different
sources, such as network traffic data and vulnerability assessments, to gain an understanding of
the surrounding environment. On top of that, the interpretation of that information provides
insight and knowledge of the network, while assisting to predict what might happen in the
foreseeable future.

Situational Awareness in Cyber Security is addressed in various ways in the literature. Several
investigations purpose methods to fuse data from heterogeneous sources, while others purpose
machine learning techniques to automate the assessment process. Furthermore, multiple surveys
present mathematical and probabilistic approaches.

Even though all of those studies propose novel utilizations of Situational Awareness in Cyber
Security, most implementations depend on human intervention. Moreover, heterogeneous data
fusion approaches do not utilize intelligence-based techniques.

YeAida. 9
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Therefore, to address the aforementioned issues, this thesis proposes an ML-powered Situational
awareness (SA) framework that implements heterogeneous data fusion, provides a dynamic way
of operation, and as a result, it demands little, to no human intervention. The awareness is
achieved by utilizing a neural network, which has been trained on an enhanced network dataset,
with both network data and the system’s vulnerabilities. The results of our experiments propose
that this neural network is more efficient, by almost 2%, regarding predictions than a neural
network, trained with a simple dataset, with only network data.

The rest of the thesis is structured as follows. Section 2, presents the current state of the art
concerning Situational Awareness in the Cyber Security domain. Section 3, introduces the
technology enablers and explains the reasons why we selected them. In Section 4, we present our
ML-powered Situational Awareness framework. Section 5, presents the evaluation process that
was followed, to assess our framework. Finally, Section 6, summarizes this thesis, reviews the
results of our experiment and presents the suggested future work.

YeAida. 10
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2. State of the Art

Various research initiatives have been conducted in order to realize how Situational Awareness
can be handled, within the Cyber Security field. In this section, we will present a brief review of
the most pertinent and recent literature on that subject.

Tero Kokkonen et al. [9] proposed a novel Architecture for a Cyber Security Situational
Awareness System, based on multi-sensor data-fusion components and data sharing with trusted
associates. Their architecture utilizes every level of the data fusion model, proposed by the US
Joint Directors of Laboratories (JDL) [10]. The architecture consists of a Data Fusion engine, a
Human-Machine interface, and a Visualization layer. A security analyst is responsible for the
configuration of the sensors and for analyzing the sensor feed.

Yanfa Zhang et al. [11] presented a visual analysis technology for Cyber Security Situational
Awareness, which can display features and visual analysis of the network topology providing
dynamic query and human-computer interaction. Their proposed Network Visualization Analysis
tool is refined in comparison with their previous research [12] [13].

H. Park et al. [14] suggested an alternative course of action for Cyber Situational Awareness,
combining Regular Expressions and a proposed Evaluation Methodology. This method
overcomes the common problem that occurs when a system uses signature-based pattern
matching, which is the limited string-based matching that most pattern matching algorithms use.
The collection of the regular expressions that create the detection rules is coordinated by a
security analyst.

Elena Dynikova et al. [15] proposed a Common Vulnerability Scoring System (CVSS)-based
Probabilistic Risk Assessment for Cyber Security Situational Awareness and Countermeasure
Selection. The assessment starts by calculating attack probabilities and risks, by using their
proposed technique. Following, the system generates input data by simulating attack sequences,
followed by the recalculation of the attack probabilities and risks after every simulated attack.
Then the assessment continues by comparing the calculated risk levels with compromised attack
graph nodes. Finally, the comparison between the forecasted attack steps with real attack steps
occurs. This is a solely probabilistic/mathematical approach.

Tomas Jirsik et al. [16] proposed a Cyber Situational Awareness approach that includes IP Flow

monitoring and is based upon the improvement of the three primary issues related to this matter.
In light of the issue of host recognition in unencrypted traffic, their strategy includes the
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development of methods with regard to host identification. Regarding the lack of network
visibility and comprehension, they suggest and assess IP Flow monitoring methods that heighten
network perception. Furthermore, in their method they offer an alternative for decreasing IP
Flow monitoring delays. In terms of overcoming the challenges of raw data overloading, context
deficiency, low speed of response, and the unified view of a network, Tomas Jirsik et al. [17]
proposed a novel Network Cyber Situational Awareness framework. This framework leverages a
distributed data-stream processing system and handles big-data instantly, by utilizing a stream-
based approach instead of a batch-based one, resulting in the diminution of the required time for
response. However, this method resulted in that the network data that has already been
processed, cannot be analyzed further after the stream is finished.

X. Liu et al. [18] [19] presented a prototype of a Multiclass Support Vector Machine (SVM)-
based fusion engine. Their conclusive outcomes suggest that the SVMs have potential in real-
time Intrusion Detection System (IDS) applications that enhance network security situational
awareness, due to the faster real-time results and similar reliability of the SVM [20] approach to
the Multi-Layer Feed Forward Neural Network (MLF-NN).

Wang et al. [21] provided a thorough description of how they utilized their neural networks.
During the data aggregation, they distinguished that some features needed to be excluded in
order to prevent unnecessary data fields, of each of the IDSs, from weighing down the neural
network. They suggested the use of a MLF-NN [22] and their applied algorithm was trained and
evaluated by using the DARPA 1999 data set. A rapid fusion and assessment of the intrusion
behavior, identified in the traffic, is being produced by the output.

M. L. Mathews [23] et al. presented a cooperative procedure to Situational Awareness for Cyber
Security. Their system architecture is composed of a collaborative situation-aware IDS that
collects data from individual sensors. This is based on earlier work from the same group [24]
[25] that consists of an ontology. Weka was utilized for the learning and classification process.

Huan Wang et al. [26] proposed a network security situational assessment model that is based
upon an order of importance and combines the Analytic Hierarchy Process with the D-S
Evidence Theory [27] for the fusion of multi-source equipment. They simplify the situational
assessment problem while using the DARPA99 [28] dataset.

Yuangang Yao et al. [29] proposed a data fusion framework based on an attack model. The
attack model that has been used in this study, is able of altering the attacks that are happening
across the network into organized and normalized knowledge, which is used for representation
subsequently. Connection between network attacks is described by first-order logical
assumptions and numerical models are being used regarding the analysis of security incidents.
The attacker’s single-time behavior is being specified by the framework, which utilizes
numerous low-level alarm information in order to be able to achieve identification. Moreover,
this framework is capable of matching distinct attack actions and extracting the objective of the
attack by using casual chain reasoning. Their framework's output includes an abstract attack
pattern. Interesting extensions of their work contain studying the natural language and
knowledge maps so that the accuracy of matching attack patterns will be increased.
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As our literature review indicated, Situational Awareness in Cybersecurity is approached differ-
ently by different research initiatives. Some case studies suggest approaches that include the use
of machine learning algorithms, but they utilize outdated and possibly obsolete training datasets.
Another technique to achieve Situational Awareness, which is recommended in publications, is
the fuse of heterogeneous data. However, machine learning is not utilized on any of those studies
as an approach on that matter. Furthermore, most of the aforementioned proposals require human
intervention to a great extent.

To address those issues, we propose a Cyber Security Situational Awareness framework that:

e provides a fully automated Cyber Security Situational Awareness lifecycle, by utilizing
automated scripts

o functions with a data fusion logic, by combining different data from heterogeneous
sources to gain the required environmental awareness

o utilizes Machine Learning techniques as a means to assess the gathered information and
produce a prediction on possible cyber security incidents

e leverages a custom dataset, which did not undergo any modifications, in order to repre-
sent the network traffic during the attacks, as realistically as possible

YeAida. 13
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3.  Technology Enablers

For the design and development of the proposed framework, several different technologies, tools
and frameworks were utilized. This chapter presents all those technologies in detail. All of the
technologies are Open-Source and available for free.

3.1 Vulnerability Assessment

Vulnerability assessment' alludes to the way toward distinguishing risks and vulnerabilities in
computer networks, applications, systems, hardware and further sections of the IT environment.
Through Vulnerability Assessment it can be evaluated whether the system is at risk regarding
any known vulnerabilities. In addition to this evaluation, each vulnerability that is identified
through this process, is assigned to a severity level. If and whenever it is possible, it recommends
remediation or mitigation actions. Several types of vulnerability assessment exist, such as host,
network, wireless and database assessment. In this thesis, the Open Vulnerability Assessment
Scanner (OpenVAS)? was used, due to its open-source nature and overall popularity [30] [1] .
OpenVAS is developed and maintained by Greenbone Networks and is a comprehensive
vulnerability assessment system that can detect security issues in various types of terminals and
services. It falls into the category of Network assessment. It utilizes a large database of known
vulnerabilities and compiles an assessment report in a variety of formats. Some of the report’s
formats are illustrated in Figure 1. For this thesis, we built a RESTful API on top of the OpenVas

! https://en.wikipedia.org/wiki/Vulnerability_assessment
2 https://www.openvas.org/
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platform, to manage it programmatically. This way our automated scripts, perform vulnerability
assessments and retrieve the results in machine-readable format (JSON).

Greenbone Security Assistant - Mozilla Firefox e ® O
4 Greenbone Security Ass x| +
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Security Assistant Wed Sep 23 08:38:10 2020 UTC
Dashboard Scans Assets Seclinfo Configuration Extras Administration Help
B AnonymousxmL » |[[IEE [F @ Filter 1S]x]?]~]

=1 result_hosts_only=1 first=1 rows=100 sort-

™ - -

C5V Results -

(a HTML D 06085402-6cd-4bB88-a015- 79dal2a0balf
‘ Modified:
| ITG Created:
_ Results (1 of 19) Gommer. admin
— LaTeX
. —anm_mm
PDF
Re igine / Environment (local) 97% 127.0.0.1 (localhost) general/tcp 3

Topology SVG
(A palogy des=1 notes=1 overrides=1 result_hosts_only=1 first=1 rows=100 sort-reversi verity levels=hml min_god=70) 1-10f1

~
e

Backend operation: 0.40s Greenbone Security Assistant (GSA) Copyright 2009 - 2018 by Greenbene Networks GmbH, ww.greenbone.net

Figure 1: Some of the available OpenVAS reports

3.2 Machine Learning

Our proposal for a framework that operates without human intervention could not be possible
without the use of a Machine Learning model. Machine Learning® is a field of study that contains
data analytics techniques and computational methods that enable computer systems to acquire
knowledge and improve from experience like humans, without the requirement of explicit
programming instructions. Through the use of machine learning algorithms, computer systems
are being trained to automatically transform the acquired knowledge into usable models, with
minimal or even without human interference or support. There are many Machine Learning
Types [31] (Figure 2). The three most popular ones that are used in Learning Problems are: i)
Supervised Learning, ii) Unsupervised Learning, and iii) Reinforcement Learning. Which type
will be used, depends on factors like the size, quality, nature of data, the available computational
time, and what the desired results are. Supervised Learning is mostly used for regression,
forecasting, or regression. Unsupervised Learning is used for Clustering or Dimension
Reduction. Reinforcement Learning is set to work without a dataset, and it optimizes itself based
on the behavior of an agent inside an environment. For this research, Supervised Learning was
chosen, because our research subject lies in the group of Multi Classification problems, and for
the reason that the data processed is labelled beforehand.

® https://en.wikipedia.org/wiki/Machine_learning
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Types of Machine Learning

Machine

Learning
Supervised Unsupervised Reinforcement
Task Driven Data Driven Learn from
(Predict next value) (Identify Clusters) Mistakes

I &3 i

Figure 2 : Types of machine learning

3.2.1 TensorFlow 2.0

While coping with the development of a Machine Learning model, we came across the necessity
of a Machine Learning library. For this purpose, we chose to use TensorFlow 2.0%, which is an
Open Source library, developed by Google, for numerical computations and large-scale Machine
Learning, with a strong developer community support. TensorFlow’s library is composed of both
Machine Learning and Deep Learning algorithms and models. It has a dataflow architecture that
offers users the ability of generating dataflow graphs. These data structures may represent a
series of processing nodes or a computational graph and they depict the motion of data through
the structure. Furthermore, the nodes in these data structures correspond to mathematical
operations and multidimensional arrays serve as connections among these nodes. These
multidimensional arrays are otherwise called tensors®. TensorFlow 2.0 was selected over other
options like PyTorch®, Theano’ and scikit-learn®, because of its advantage of allowing for the
development of Machine Learning models, in abstraction. Moreover, this library includes the
TensorFlow Serving®, which is a service that enables any trained and saved model to be used
through a REST API, with external data via POST HTTP Requests. Finally, TensorFlow 2.0 is
already integrated with Keras. TensorFlow 2.0 and Keras are exclusively used for the creation of
the Neural Network algorithm used in this research.

* https://www.tensorflow.org/

> https://en.wikipedia.org/wiki/Tensor

¢ https://pytorch.org/

7 http://deeplearning.net/software/theano/

8 https://scikit-learn.org/stable/

? https://www.tensorflow.org/tfx/guide/serving
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3.2.2 Keras

Keras' is an open-source Python library. One of the advantages of Keras is that TensorFlow 2.0
library is, as a matter of course, incorporated with it. Moreover, Keras library is modular and
easy to use, as well as it is simple to extend, due to its uncomplexity, and to operate by using the
Python programming language. Keras also contains various independent modules that developers
can consolidate to create new models. Such modules include cost and activation functions,
optimizers, regularization schemes and neural networks. In this thesis, we used Keras’
characteristic modularity to create a Multi-Layer Perceptron Artificial Neural Network [32].
Multi-Layer Perceptrons, or most commonly named, Neural Networks (NN), are statistical
models inspired by biological neural networks. They acquire the capability of learning the
depiction of the observed data and identifying the optimal solution, regarding the output variable
that calls for prediction. The basic components of a Neural Network are the artificial neurons.
Artificial neurons are computational units and they are arranged in networks of neurons, which
are called layers. Every layer represents a column of neurons, it may consist of one or multiple
neurons and one network may have multiple layers. This kind of network is usually referred to as
a Network Topology (Figure 3). Each artificial neuron has the ability of receiving input signals
that are assigned to a specific weight. An output signal is then produced by the application of an
activation function on the input signal. As soon as the Neural Network is arranged, a dataset
needs to be used for the training of the network. However, before that, the data needs to be pre-
processed to have the appropriate format that is needed for the training of the Neural Network.
Once that process is finished, the model is ready to make a prediction.

Property 1

Property 2

Input Hidden Output
layer layer layer

Figure 3 : Simple representation of a Multilayer Perceptron network topology

1 https://keras.io/
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3.2.3 Weka

For the creation of the dataset used for the training of our NN, utilization of a tool was required,
to easily preview the dataset and process it further. Thus, we used Weka'!, which is an open-
source machine learning software with a graphical user interface that enables users to quickly
assess a dataset by displaying statistics about it. Weka's role was significant in the creation of our
training dataset, due to its Attribute Evaluator. Weka's Attribute Evaluator was used in the step
of dimensionality reduction. One of the most popular feature selection techniques is Info Gain
Attribute Evaluator, which is also the most efficient attribute evaluator for supervised learning

occasions, as mentioned in [33].

Figure 4 illustrates Weka’s graphical interface.

Weka Explorer -+ 8
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Search Method
Choose |Ranker -T -1.7676531348623157E308 N -1
Attribute Selection Mode ~ Attribute selection output
(®) Use full training set N
Y . . . . r
) Crosswalidation Folds 10 === Attribute Selection on all input data ===
eed 1 Search Method:
Attribute ranking.
l (Nom) Label hd Attribute Evaluator (supervised, Class (nominal): 87 Label):
Information Gain Ranking Filter
[ i —| top Ranked attributes:
Result list (right-click for options) 1.9223 1 Flow 1D
F 1.8618 5 Dst Port
21 - 3 foGai " 1.8546 7 Timestamp
21 - Ranker + InfoGainAttributeE 1611 44 Bud Pkis/s
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1.596 25 Flow IAT Max
1.5872 22 Flow Pkts/s
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1.5838 8 Flow Duration
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1.573 3 Src Port
1.564 49 Pkt Len Var
1.564 48 Pkt Len Std
1.5542 59 Pkt Size Avg
1.5388 46 Pkt Len Max
1.5357 47 Pkt Len Mean
1.5173 33 Bwd IAT Mean L
1.502 32 Bwd IAT Tot v
« . i 1 T J TS
Status .
oK Log W x0

Figure 4 : Weka's graphical interface

" https://www.cs.waikato.ac.nz/ml/weka/
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3.3 Development languages and frameworks
3.3.1 Python3

Data preprocessing is one of the most important procedures when building a Neural Network.
Data needs to be converted or encoded in order for the Machine Learning algorithm to be able to
acquire knowledge from it and that is the sole purpose of data preprocessing. [34]. There are
several features, of different types, that are used to describe data objects. Features can be
Categorical or Numerical. Some of the data preprocessing steps are Data Quality Assessment,
Feature Sampling, and Feature Encoding. For that matter, several Python3 Libraries were
utilized. Pandas was the first one. Pandas [35] is an Open Source data analysis and manipulation
tool. It can process Comma Separated Values (CSV) files which is the most common dataset file
type. In our case, it was used to import Comma Separated Values files into the Data Fusion script
from which those values were checked for missing values, inconsistent values, feature
aggregation, dimensionality reduction, and feature encoding. Numpy was also used. Numpy [36]
is used for scientific computing in Python. TensorFlow Serving’s POST Request needs Numpy’s
arrays as an input to properly function, so for the prediction to be made, we have to transform the
Comma Separated Values files, that we previously imported with Pandas, to Numpy Arrays and
then send them to the TensorFlow Serving’s API. We also used Scapy'?, which is a powerful
interactive packet manipulation python3 library. For this research, it is used for live packet
capture. Scapy captures network traffic as a Packet Capture (pcap) type of files. Captured pcap
files are then transformed into network flow files and then fed to the Tensorflow Serving API for
the prediction based on the trained model.

3.4 Cybersecurity Tools, Frameworks and Operating Systems
3.4.1 CICFlowMeter 4.0

To convert raw network traffic packet data to network flows, we used CICFlowMeter.
CICFlowMeter™ [37] [38] is an open-source and free network traffic flow (NetFlow) converter
and analyzer. It is developed and maintained by the Canadian Institute of Cybersecurity'.
CICFlowMeter generates bidirectional flows. These flows consist of packets and the first of
these is used for defining both the forward and backward direction (source-to-destination and
destination-to-source respectively). On the other hand, the packets are described by more than 80
statistical net CICFlowMeter R Duration and
Number of b rile network Help into Comma
Separated Va <] are because it
prOVides a gr' EV;:I;T?O?;.é;P;oﬂrr:’\,:gh\efklef!DownIoadsfcodefkall—codefﬁna\_dataset_testS!C\CFIowMeter—ﬁl.Ofbm!mput!fmal_dos_test.p_ llty reduction
more efﬁcien‘ Packets stats: Total=9870\Valid=9807,Discarded=63 interface, We
ou select: /home/chiefkief/Downloads/code/kali-codeffinal_dataset_tests/CICFlowMeter-4.0/bin/input/elastic_attack.pc
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3.4.2 Metasploit Framework

For the simulation of realistic attacks, the automation of the attacks was mandatory to produce a
dataset that would be large enough, so that the neural network would be trained properly.
Metasploit Framework™ (MSF) was chosen because of the Python3 API that it already has

msT-py.py - kali-code - Visual Studio Code

File Edit Selection View Go Run Terminal Help

ynb i ipynb 1 multi 3rd_11.09.2 b e msf-pypy x [
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advantage ot well-known vulnerabilities in order to penetrate a remote machine through remote
file execution. Moreover, MSF is very customizable. The purpose of using MSF in this research
was, to automate certain Remote File Inclusion type attacks, which would assist us in the
formation of the network dataset. We were able to extract Packet Capture (pcap) files from
within the victim’s virtual machine, while it was being attacked. The Python3 API was explicitly
used for the automation of the attacks.

3.4.3 Metasploitable 3

To simulate a realistic attack scenario, a vulnerable victim machine was required. For that
purpose, Metasploitable 3 was chosen. Metasploitable 3' is a pre-built virtual machine that has a
large number of security vulnerabilities. Our aim here was to use Metasploitable 3 as a potential
victim so that a realistic attack scenario would be emulated. When building the Metasploitable 3
vulnerable virtual machine, there is a choice between a vulnerable Ubuntu 14.04 Server and a
vulnerable Windows Server 2008 R2. For this thesis Windows Server 2008, R2 was used.
Metasploitable 3 was chosen because of the variety of vulnerabilities that it already has by
default, and because it is very customizable, open-source, and free. These vulnerabilities are
mapped with the list of Common Vulnerability Exposures (CVE)". CVE is an inventory of
entries, where each entry uniquely describes a publicly known vulnerability. Those CVE entries
are also included in the U.S. National Vulnerability Database (NVD)'®.s

3.4.4 Kali Linux 2020.2

Kali Linux" is a Linux distribution, which is used by ethical cyber-security penetration testers. It
contains several tools, including Metasploit Framework. Automated attacks were coordinated
from the Kali Linux virtual machine with the Metasploit Framework, Hydra, which is a tool for
SSH Bruteforce attack®, and a custom script to emulate a Denial of Service (DoS) Slow Loris
attack [39].

3.4.5 Ubuntu Vulnerable Server

For capturing DoS attack network traffic, an Ubuntu 20.04 Server®' was used where an HTTP
web server was hosted, Apache2”. Apache2 was selected because it is used on almost 40% of
the available web servers worldwide and for that reason, it fitted very well for the realistic
creation of the dataset since it represents something so common.

16 https://github.com/rapid7/metasploitable3

7 https://cve.mitre.org/

8 https://nvd.nist.gov/

' https://www.kali.org/

2 https://en.wikipedia.org/wiki/Brute-force_attack
2 https://releases.ubuntu.com/20.04/

2 https://httpd.apache.org/
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3.4.6 Wireshark / TCPDump

For the network packet capture, we used Wireshark®, which is a free and open-source protocol
analyzer, with a graphical user interface Figure 7. It allows users to perform deep inspection, for
several protocols, live, and offline. Wireshark was used because of its command-line interface
utility, TCPDump. TCPDump was used for the automation of the network packet capture after
the model was trained. Wireshark was used for the live packet capture from Windows Server
2008 R2 virtual machine, while its command-line interface, TCPDump, was used for the live
packet capture from the Ubuntu 20.04 Server.
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Figure 7 : Wireshark graphical interface

3 https://www.wireshark.org/
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4. Implementation

4.1 Environment Setup

Kali Linux 2020.2

Windows Server 2008 R2

Ubuntu Server 20.04

Figure 8 : Representation of the network topology

Figure 1 illustrates the network topology that was used for the creation of the network dataset.
This network was private and separated from the internet. The network topology includes three
entities in total. These entities are i) Kali Linux 2020.2, ii) Ubuntu Server 20.04, iii) Windows
Server 2008 R2. Their use and purpose are thoroughly explained below.

4.1.1 Windows Server 2008 R2

Windows Server 2008 R2, which is a product of the Metasploitable platform (see 3.4.3
Metasploitable 3), acted as a “victim” virtual machine. This machine is already vulnerable to a
great number of vulnerabilities. Out of all the vulnerabilities that are already built-in, three were
utilized. Those were mapped to the CVEs i) CVE-2014-3120%, ii) CVE-2015-8249%, and iii)
CVE-2016-1209%°. The afore-mentioned CVEs are Remote File Inclusion type vulnerabilities.
Moreover, an SSH Server service was employed that was vulnerable to an SSH Bruteforce attack
(CVE-2001-0553%). Also, for the evaluation process, a network packet capture component was
deployed on this virtual machine.

2 https://www.cvedetails.com/cve/CVE-2014-3120
% https://www.cvedetails.com/cve/CVE-2015-8249
% https://www.cvedetails.com/cve/CVE-2016-1209
7 https://www.cvedetails.com/cve/CVE-2001-0553/
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4.1.2 Ubuntu Server 20.04

Just like Windows Server 2008 R2 that performs as a “victim” machine, Ubuntu Server 20.04
has the same role. On Ubuntu Server 20.04, an HTTP Web service was employed. That server
was vulnerable to DoS Slow Loris attack (CVE-2007-6750*). Similarly, for the evaluation
process, a network packet capture component was deployed on this virtual machine.

4.1.3 Kali Linux 2020.2

The Kali Linux virtual machine has the role of the attacker. Through the use of Metasploit
Framework’s Python3 API, three out of five attacks were automated. Those three attacks referred
to the CVE vulnerabilities that Windows Server 2008 R2 has. Both SSH Bruteforce attack and
DoS Slow Loris attack were automatically triggered from a custom python3 script. The SSH
Bruteforce attack was initiated with the Hydra tool. DoS Slow Loris attack was initiated with a
custom python3 script.

2 https://www.cvedetails.com/cve/CVE-2007-6750/
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4.2 Concept

This subsection presents all the architectural elements that compose the presented Situational
Awareness framework. Furthermore, there is a brief description of each element's purpose and
functionality within the framework. Figure 9 illustrates a high-level conceptual diagram of the
presented framework. Nevertheless, some of the presented elements, such as the Wazuh server,
the Wazuh agent and the Risk Assessment, are not within the scope of this thesis.

Enterprise Network
@
w Vulnerability Assessment
User
Network Packet Capture

Host Assessment

Discovered CVEs

Network Data
Capture

Wazuh Agent

Aggregated Data

Security Configuration
Assessment

Incident Prediction (%)

Incident Prediction (%)

Situational Awareness Admimstrator
Framework

Figure 9 : Conceptual Diagram
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4.2.1 Architectural Elements
4.2.1.1 Network Data Capture

The Network Data Capture component is responsible for the network traffic capture procedure,
from each network entity. The captured traffic is propagated to the Data Fusion script for further
processing.

4.2.1.2 Wazuh

The Wazuh server produces the final Host Assessment Report and propagates the Security
Configuration Assessment score to a Risk Assessment component. The Wazuh server component
is out of the scope of this thesis.

4.2.1.3 Wazuh Agent

The Wazuh Agent, which is deployed on every network entity, propagates the entity’s system
logs to the Wazuh Server, for the server to generate the host assessment report of the entity.

4.2.1.4 OpenVAS

Initially, OpenVAS performs the vulnerability assessment. Afterwards, it propagates the CVE
entries that it has discovered from the network entity to the Data Fusion script. This process is
performed automatically through the use of the RESTful API that we have developed.

4.2.1.5 Data Fusion Script

The Data Fusion script aggregates and fuses the received data. As a result, it is responsible for
the enhancement of the data. Consequently, the enhanced data is sent to the Machine Learning
Model's API, as a POST Request. After the machine learning model has processed the data, the
API will then return the incident prediction score to the Data Fusion script. Finally, the incident
prediction score is sent to the Risk Assessment module for the final assessment.

4.2.1.6 Machine Learning Model API

TensorFlow's service, TensorFlow Serving, hosts the produced model of the trained Neural
Network. Through a REST API, the model can make predictions on the enhanced data that the
Data Fusion script provides. After the calculation of the incident prediction score by the model,
the REST API returns the score to the Data Fusion script.

4.2.1.7 Risk Assessment
The Risk Assessment component receives the incident prediction score from the Data Fusion
script and the Security Configuration Assessment score from the Wazuh server. Thereafter, it

produces a risk percentage for the entity. The Risk Assessment component is out of the scope of
this thesis.
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4.3 Dataset Creation

The need for a dataset arose because most of the free network traffic datasets have been under
heavy modification before they are published. This means that a part of the attack’s network
traffic is removed or filtered. This implies that the actual training of the model will not
correspond to the actual attack. For that reason, a new network traffic dataset was created,
wherein no information is excluded from the dataset, thus, providing more realistic results.

Initially, we executed and captured each attack individually. While the automated attacks were
performed, we captured the network traffic data through the " victims' " virtual machines.
Afterwards, we converted each raw network traffic batch that was captured for each attack, into
network flow with 83 features and one label. Then, we labelled each network flow after the
attack that corresponded to it. Afterwards, we concatenated those different batches to one single
network flow dataset. The network flow dataset was then assessed by Weka which then
concluded to a dimensionality reduction of 24 features. Thus, the network dataset concluded at
59 features.

The next step was to enhance the network dataset with data from the vulnerability assessment.
For each vulnerability that matched one or more CVE entries, we added one more feature in the
network dataset. Each feature could have a numerical value of 1 or O for each network flow. If
the network flow that represented a specific attack was mapped with the CVE entry the feature
would have the value 1. In any other case, it would have 0. There were five vulnerabilities, each
one mapped to a CVE entry, thus, the enhanced network dataset was concluded at 64 features
(Table 1). Then the final enhanced dataset was again assessed by Weka that resulted in that
dimensionality reduction was not required. Since the dataset has more than 2 distinct labels, it
lies upon the category of multiclass classification.

For the training and test sets to be representative of the overall distribution of data, to improve

the quality and predictive performance, and to avoid overfitting the model, each dataset was
shuffled beforehand [40] [41].
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Feature Name

Description

Flow duration

Duration of the flow in Microsecond

total Fwd Packet

Total packets in the forward direction

total Bwd packets

Total packets in the backward direction

total Length of Fwd Packet

Total size of packet in forward direction

total Length of Bwd Packet

Total size of packet in backward direction

Fwd Packet Length Min Minimum size of packet in forward direction

Fwd Packet Length Max Maximum size of packet in forward direction

Fwd Packet Length Mean Mean size of packet in forward direction

Fwd Packet Length Std Standard deviation size of packet in forward direction

Bwd Packet Length Max Maximum size of packet in backward direction

Bwd Packet Length Mean Mean size of packet in backward direction

Bwd Packet Length Std Standard deviation size of packet in backward direction

Flow Bytes/s Number of flow bytes per second

Flow Packets/s Number of flow packets per second

Flow IAT Mean Mean time between two packets sent in the flow

Flow IAT Std Standard deviation time between two packets sent in the flow

Flow IAT Max Maximum time between two packets sent in the flow

Flow IAT Min Minimum time between two packets sent in the flow

Fwd IAT Min Minimum time between two packets sent in the forward direction

Fwd IAT Max Maximum time between two packets sent in the forward direction

Fwd IAT Mean Mean time between two packets sent in the forward direction

Fwd IAT Std Standard deviation time between two packets sent in the forward direction

Fwd IAT Total Total time between two packets sent in the forward direction

Bwd IAT Min Minimum time between two packets sent in the backward direction

Bwd IAT Max Maximum time between two packets sent in the backward direction

Bwd IAT Mean Mean time between two packets sent in the backward direction

Bwd IAT Std Standard deviation time between two packets sent in the backward direction

Bwd IAT Total Total time between two packets sent in the backward direction
Number of times the PSH flag was set in packets travelling in the backward

Bwd PSH Flags direction (0 for UDP)

Fwd Header Length Total bytes used for headers in the forward direction

Bwd Header Length Total bytes used for headers in the backward direction

FWD Packets/s Number of forward packets per second

Bwd Packets/s Number of backward packets per second

Packet Length Max Maximum length of a packet

Packet Length Mean Mean length of a packet

Packet Length Std

Standard deviation length of a packet

Packet Length Variance

Variance length of a packet

FIN Flag Count

Number of packets with FIN
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SYN Flag Count

Number of packets with SYN

PSH Flag Count

Number of packets with PUSH

ACK Flag Count

Number of packets with ACK

down/Up Ratio

Download and upload ratio

Average Packet Size

Average size of packet

Fwd Segment Size Avg Average size observed in the forward direction

Bwd Segment Size Avg Average number of bytes bulk rate in the backward direction

Subflow Fwd Packets The average number of packets in a sub flow in the forward direction
Subflow Fwd Bytes The average number of bytes in a sub flow in the forward direction
Subflow Bwd Packets The average number of packets in a sub flow in the backward direction
Subflow Bwd Bytes The average number of bytes in a sub flow in the backward direction
Bwd Init Win bytes The total number of bytes sent in initial window in the backward direction
Fwd Act Data Pkts Count of packets with at least 1 byte of TCP data payload in the forward direction
Active Min Minimum time a flow was active before becoming idle

Active Mean Mean time a flow was active before becoming idle

Active Max Maximum time a flow was active before becoming idle

Active Std Standard deviation time a flow was active before becoming idle

Idle Min Minimum time a flow was idle before becoming active

Idle Mean Mean time a flow was idle before becoming active

Idle Max Maximum time a flow was idle before becoming active

Idle Std Standard deviation time a flow was idle before becoming active
CVE_1 It indicates that a CVE is present.

CVE_2 It indicates that a CVE is present.

CVE_3 It indicates that a CVE is present.

CVE_4 It indicates that a CVE is present.

CVE_5 It indicates that a CVE is present.

Label The label of the flow.

Table 1 : Enhanced Dataset Features. (64)

Table 1
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4.4 Machine Learning Model Development

To compare the two afore-mentioned datasets, we came across the necessity of a base model.
The afore-mentioned model will then be used for both datasets to be trained and tested. Below
we present and explain the whole process that was applied to achieve this.

On each iteration of the process, a change in the parameters was made. Those changes were
based on the fact that we have a dataset with more than two classes (labels), in our case we have
five classes, one for each attack simulated. This means that we have a multiclass classification
problem and based on that we have some recommended options for each parameter according to
the literature [42] [43] [44] [45].

As stated in the bibliography, the activation function of each layer is one of the most significant
parameters while training a neural network. Rectified Linear Unit (ReLU) for example is the first
activation function that someone has to experiment with, to produce high accuracy results. On
iterations one to seven, ReL.U was used as the activation function.

Some parameters did not change throughout development. The output layer of the model had the
same activation function throughout the whole process. That activation function was SoftMax.
Moreover, the loss function also remained the same, which was the sparse categorical cross-
entropy” function. According to the literature [46], the sparse categorical cross-entropy, and
SoftMax functions were chosen because they are the optimal choices for multiclass classification
problems when the labels are encoded into integers. Also, the optimizer®* Adam, which is a
version of stochastic gradient descent, which is also recommended for multiclass classification
[47], was always the same. Furthermore, the accuracy and loss diagrams must not have any
extreme outliers. If this occurs, it indicates that the model is overfitting [48].

It should be noted that the training process of the neural model that produced the results
discussed below, was performed with the normal network dataset, which contains the 59
features. To prove that a neural model, which is trained with an enhanced dataset, performs
better, we must first have an already trained model, with a normal network dataset, to compare it
with. Next, we briefly discuss what the results of each iteration were.

The results that we compared are the training and test loss and accuracy respectively. The loss
rate is estimated by adding the sum of errors made both in training and testing sets. The result of
this calculation identifies how well or how poorly the model behaves. Values closer to 0 indicate
the best possible result. On the contrary, the accuracy rate of a machine learning model is
estimated by how frequently the model produces a correct prediction, with values closer to 1
being the best.

During the first iteration of the training process, the parameters that were used are shown in
Table 2 resulting in a training accuracy of 0.671 and a test accuracy of 0.669. In this iteration, we
noticed a high value of test loss (6960.123), while the training loss was considerably lower
(1.139). In the second iteration, we chose to change the number of hidden layers from 1 to 2
(total number of layers changed from 3 to 4) and kept the rest of the parameters the same.

% https://keras.io/api/losses/probabilistic_losses/
% https://keras.io/api/optimizers/
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Results presented a higher value of train and test accuracy (both of them were 0.730 while in the
first iteration were 0.671 and 0.669 respectively) and also a significant decrease in both train and
test loss (0.581 from 1.139 and 4057.63 from 6960.123 respectively). Continuing to the third
iteration, we chose to use one hidden layer (3 in total) like in the first iteration and instead
decrease the number of epochs (from 120, in the first and second iteration, to 70). Regarding this
change, we observed an increase in accuracy, both in train and test (from 0.671 to 0.717 and
from 0.669 to 0.731 respectively, compared to the first iteration) and a significant decrease in test
loss (from 6960.123 to 886.701), although the training loss appeared to increase, compared to the
first iteration (from 1.139 to 589.973). However, both train and test accuracy increased more
during the second iteration compared to the third.

Moreover, for the fourth iteration, we decided to increase the number of hidden layers again,
from 1 to 2 (total number of layers: 4) compared to the third iteration, but we kept the number of
epochs at 70 like in the third iteration. The results of this iteration were conflicting, as it was
noted, not only a decrease in both train and test accuracy (0.609 from 0.717 and 0.613 from
0.731 respectively) but also in train and test loss (30.949 from 589.373 and 347.513 from
886.701 respectively). Also, it is worth mentioning here that both train and test accuracy levels
during the fourth iteration, not only decreased, compared to the third iteration, but they lowered
even compared to the first iteration. Based on Figure 10, we concluded that the random and
rather extreme outliers on the accuracy diagram of the fourth iteration indicate signs of
overfitting.

model accuracy

0.60
— train
0.55 A test
0.50 -
> 0.45 1 ,.J
m 0
S 0.40 -
(1]
0.35 -
0.30 -
0.25 -
0 10 20 30 40 50 60 70

epoch

Figure 10 : 4th Iteration's Model Accuracy
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Proceeding to iteration five, we kept everything as in the fourth iteration but we selected to use
10 nodes in the input layer rather than 20 nodes that we used in all preceding iterations, to see
whether the overfitting problem will be resolved. As an outcome, a great increase in both train
and test accuracy (0.904 from 0.609 and 0.915 from 0.613 respectively) was observed, and also a
great decrease in test loss (13.548 from 347.513). However, train loss appeared to slightly
increase, compared to the results of the fourth iteration (36.085 from 30.949).

In the sixth iteration, we chose to increase the batch size from 32 to 64, which resulted in an
increase in accuracy levels (0.968 from 0.904 and 0.954 from 0.915), and a slight decrease in
train loss. However, we also noticed a vast increase in test loss (from 13.548 to 3593.506). Those
results prompted us to use the hyperbolic tangent function (Tanh), instead of the ReLU. In the
seventh iteration, we used the same parameters, as in the sixth iteration, except the batch size that
was changed back to 32. The results showed a slight decrease in accuracy levels, both train, and
test (0.919 from 0.968 and 0.914 from 0.954 respectively). The mentionable outcome here is the
major decrease of train and test loss (0.229 from 34.892 and 0.225 from 3593.506 respectively),
a decrease a lot lower than in other iterations.

In our attempt to achieve better results in accuracy and loss levels, we tried to change the hidden
layers back to 3, compared to 4 layers used in the seventh iteration, but, this eighth iteration, led
to a decrease in accuracy and an increase in loss levels. Finally, in the ninth iteration, we decided
to change the number of nodes in the input layer back to twenty, as in the very first iteration,
while keeping everything else as in the eighth iteration and we got a training accuracy of 0.939,
test accuracy of 0.945, train loss of 0.122 and test loss of 0.169.

Further combinations of different values of the parameters failed to result in a better outcome,
than the one observed in the ninth iteration. This procedure led to the decision of maintaining
these parameters, which resulted in the best outcome, to be trained and tested with the second
(enhanced) dataset also.
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Figure 12 : 9th Iteration's Model Loss

Experimen 1 2 3 4 5 6 7 8 9

t Iteration

No. of 3 4 3 4 4 4 4 3 3
layers

Number of 20 20 20 20 10 10 10 10 20
nodes

of the input

layer
Activation ReLU ReLU ReLU ReLU ReLU ReLU Tanh | Tanh | Tanh
Functions

Epochs 120 70 70 70 70 70 70 70 70
Batch Size 32 32 32 32 32 64 32 32 32
Train 0.671 0.730 0.717 0.609 0.904 0.968 0.919 | 0.731 | 0.939
Accuracy

Train Loss 1.139 0.581 589.323 30.949 36.085 34.892 | 0.229 | 0.658 | 0.182
Test 0.669 0.730 0.731 0.613 0.915 0.954 0.914 | 0.713 | 0.933
Accuracy

Test Loss 6960.123 | 4057.630 | 886.701 347.513 13.548 | 3593.506 | 0.225 | 0.693 | 0.193

Table 2 : Parameters changed throughout the iterations, and Accuracy and Loss produced
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Taking everything into consideration, in our attempt to find the best model to be trained, with the
highest train and test accuracy, while retaining the lowest train and test loss, we noticed that
when we changed the activation function from ReLU, which was used in the first six iterations,
to hyperbolic tangent function (Tanh), a considerable increase in both train and test accuracy,
and a decrease in train and test loss occurred. According to the bibliography, ReLU is the
activation function that is used more often and is also the one that is expected to operate better
among most situations. However, considering each neural network's specificities and also one's
unique model architecture, it might not always be the case. Furthermore, we are aware that the
Tanh suits better for neural networks that are developed to make predictions, and possibly that is
the reason why this activation function works better in our use case.

Finally, when the best model was obtained through those iterations, we also trained it with the
enhanced dataset.

The model that is trained with the normal network traffic dataset, will be from now on referred to
as "Model #1". Similarly, the model that is trained on the network traffic dataset with enhanced

features, will be referred to as "Model #2".

The outcome of the comparison of the two differently trained models is shown in Table 3.

Trained Model with the normal Trained Model with the enhanced
dataset dataset
(Model #1) (Model #2)

Train Accuracy 0.939 0.953

Train Loss 0.182 0.118

Test Accuracy 0.933 0.951

Test Loss 0.193 0.118

Table 3 : Comparison of accuracy and loss between the two different trained models
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Figure 13 and Figure 14, showcase the accuracy and loss diagrams of Model #2.
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Figure 13 : Model #2 Accuracy
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Figure 14 : Model #2 Loss
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As presented in Table 4, train accuracy for Model #2 was measured as 0.953, whereas the train
accuracy levels of Model #1 appear to be a little bit lower, at 0.939. The test accuracy level of
Model #2 is also increased compared to Model #1, 0.951 and 0.933 respectively. We also
observe a decrease in both train and test loss regarding Model #2 in comparison with Model #1.
0.118 and 0.182 for train loss and 0.118 and 0.193 for test loss respectively. In consideration of
the foregoing, Model #2, showed an increase in both train and test accuracy by 1.6%, as well as a
decrease in train and test loss by 7% compared to Model #1.

Figure 13, indicates that because both the training and testing process of Model #2 does not show
any extreme outliers, the model appears to have a good fit learning curve. A good fitting learning
curve is a curve in which the plot of training loss gradually declines until it becomes stable. Also,
a learning curve serves a good fit when the plot of test loss showcases a small difference, or
otherwise gap, comparing to training loss, regarding the starting point of the curves and equally
declines gradually until it becomes stable. Figure 14 indicates that not only the learning curve
decreases to a point of stability, but we can also notice a small gap between the train and test
loss.

4.5 Use Case
In this section, we will look into the general use case of the proposed framework.

A vast amount of data is coming in and out of an enterprise network. Every network
administrator must be aware of this data and make sense out of it. By harnessing those data and
by distinguishing the benign from malicious activity, a network administrator can protect an
enterprise from cyber threats while preventing financial losses and sensitive information leaks.

As showcased in Figure 15, the Situational Awareness Framework will start by assessing a
network entity. Then, the network traffic of the entity is captured. After that, the Wazuh Agent
makes a host assessment. Then, OpenVAS performs a vulnerability assessment on the entity.
Finally, the Wazuh agent sends its results to the Wazuh server. Then the network packet capture
component and OpenVAS send their results on the Data Fusion script. The network packet
capture component sends the raw network traffic data, while OpenVAS sends its discovered
CVE entries. The Data Fusion script converts the raw network traffic data to network flows, and
then adds another feature to them, according to the number of CVEs discovered on the entity.
Each CVE is added as a new feature with a numeric value of 1. Then, the Data Fusion script
makes a POST request to the trained Machine Learning Model API which, in turn, returns the
Incident Prediction score. After that, the Security Configuration Assessment Score, OpenVAS,
and the Data Fusion script scores are being sent to the Risk Assessment Component.
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Figure 15 : Situational Awareness Framework Sequence Diagram

5. Evaluation

5.1 Aim

The scope of this evaluation is to assess the efficacy and overall precision of the neural network
of our proposed ML-powered Situational Awareness framework. The efficacy is defined as the
total number of false-positive predictions (Formula 1), and precision is defined as the number of
correctly predicted attacks out of all the performed attacks, which can be estimated by dividing
the sum of correct predictions by the sum of total predictions, as demonstrated in Formula 2.
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Efficacy = AllPredictions — CorrectPredictions

Formula 1

Correct Predictions
AllPredictions

Precision=

Formula 2

5.2 Method

The evaluation process is a two-fold procedure. For the first phase, we assess the efficacy and
precision of the ML, model, trained with the enhanced dataset. For the second phase, we assess
the same values for the M model, which was trained with the plain dataset.

For each phase, a network traffic sniffer and the OpenVas platform were utilized, to capture live
network flows, and system vulnerabilities, expressed in the CVE description format, respectively
(Table 4). A python-based fusion script gathers and fuses the heterogeneous data and transforms
it into a format acceptable (NumPy arrays) by the ML, model. The transformed input array was
fed to the ML model, which produced a prediction on what will happen in the next moments
(attack or no attack).

Service CVE Entry Vulnerable type of attack

Elasticsearch CVE-2014-3120 Remote File Inclusion (RFI) Attack - RFI
Attack #1

ManageEngine Remote Desktop 9 CVE-2015-8249 RFT Attack - RFI Attack #2
WordPress NinjaForms 2.9.42 CVE-2016-1209 RFI Attack - RFI Attack #3
Open 22 Port with OpenSSH Server CVE-2001-0553 SSH Bruteforce Attack - Attack #4
Service
Vulnerable HTTP Web Server CVE-2007-6750 DoS Slow Loris - Attack #5

Table 4 : Vulnerabilities and their corresponding CVE entries and attack types

5.3 Variables

5.3.1 Dependent Variables

The dependent variables of this evaluation experiment are the precision of each prediction (%),
and the total number of false-positive predictions for each differently trained model. The values
collected for each model were assessed and compared with each other. This allowed us to gain a
more detailed assessment, on the efficacy and precision of each respective model.
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5.3.2 Independent Variables
For this evaluation experiment, we required only one independent variable, the type of attack.
During the experiment, we performed all the attacks the models were trained for.

5.3.3 Fixed Variables
The fixed variables for this experiment were the total duration for each respective attack. In more
detail, the DoS Slow Loris and SSH Bruteforce attacks that are time-based lasted for two minutes
each. The three remote file inclusion (RFI) attacks were repeated forty times each

5.4 Prediction

The assumption that we are trying to prove is that Model #2, will generate a greater precision
rate on an identical cyber incident situation than Model #1. Moreover, we expect the false-
positive predictions for Model #2 to be zero (0).

5.5 Results
Both Table 5 and Figure 16 illustrate the difference in prediction precision between the two
models.
RFI Attack RFI Attack #2 | RFI Attack #3 | Attack Attack #5
#1 #4
Model #1 Accuracy 86.420 66.807 76.923 96.011 91.863
Model #2 95.556 65.966 77.198 96.065 92.827
Accuracy
Table 5 : Model's Predictions on live attacks
Pradictions
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Figure 16 : Graph representation of Models' Predictions on live attacks
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5.6 Discussion

Both models are compared in Table 5, regarding their precision on predicting each of the attacks
mentioned in subsection 5.2 Method. The first row represents the precision values of Model #1
and the second row represents the precision values of Model #2.

Results signify that Model #2 produces more accurate prediction results on four out of five
attacks. Model #1 has an average precision rate of 83.6%, and Model #2 has an average precision
rate of 85.5%. Precision is increased by almost 2% for Model #2 in comparison to Model #1. The
graphical comparison of the two models can also be shown in Figure 16.

To summarize, Model #2 performed better than Model #1, considering the prediction of the
attacks that were replicated. The precision levels of Model #2 were higher than Model #1.

Model #2 performed better in the prediction of four out of five of the attacks, although when
attack #3 was replicated, the prediction of both models was not significantly high. Even in this
case though, our prediction is confirmed because the second model performed better than the
first. In our research, there was only one attack (#2) that was not predicted accurately enough by
the second model to surpass the first model. It is worth mentioning that attack #2 also, like attack
#3, was not predicted accurately enough and that may have been caused because three out of five
attacks were the same type.

Furthermore, the results of this experiment were somewhat controversial. In general, Model #2
performs better in most of the cases. Nevertheless, in one particular case it performs
exceptionally, and in another case, Model #2 is outperformed by Model #1.

In more detail, as mentioned in subsection 4.3 Dataset Creation, Weka did not result in any
dimensionality reduction after we added the extra features. Those extra features, assisted to the
overall better prediction. However, the largest part of the dataset, consists of network traffic
related data. This means that the network traffic has a greater impact on the performance of our
model (Model #2). Therefore, taking under consideration that some attacks produce a larger
network footprint than others, it is understandable that our model’s behavior will be dependent
on the type of attack, in respect to the network footprint it produces. This is the reason that, in
one case, even if Model #2 performed better, the precision did not surpass 80%. Moreover, in
one case we observe that Model #2 was outperformed by Model #1, and the overall precision
was well under 70%. This occurrence was a result of an attack that did not leave a noteworthy
network footprint. Additionally, the extended dimensionality of the model did not act in favor of
the prediction.

Furthermore, we observe that in two occurrences Model #2 performs better than Model #1, and

the overall precision is well over 95%. Once more, the attack produced a notable network
footprint, and the extra dimensionality of the model helped the model to perform better.
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5.7 Evaluation

The evaluation presented so far, showcases and compares the different efficiency a neural
network model has on two different occasions. Firstly, when it is trained upon a network traffic
dataset, and then when it is trained upon a heterogeneous-data dataset. The results were decisive
for that comparison. Even so, the experiment's variables could be modified further for even better
results. From our perspective, concerning the neural network model, more algorithms could be
tested, to produce even higher prediction precision. Furthermore, Model #2 produces higher
precision prediction on four out of five attacks, in comparison with Model #1. However, the
method utilized for the creation of that dataset could be changed, since it now causes the model
to perform better but if the total number of attacks increases, it may not perform as well. Further
investigation is suggested for the creation of the fused heterogeneous-data dataset.

6. Conclusion

In this thesis, we proposed a framework that provides vulnerability, network, and host awareness
to an administrator of an enterprise network. Our main focus on this research was the
enhancement of the network awareness by utilizing a neural network that was trained upon an
enhanced network traffic dataset. The purpose of the study was to confirm the proof of concept
that a neural network produces higher accuracy predictions when trained upon an enhanced
network dataset, in comparison with a neural network that was trained on a normal network
traffic dataset and has the same architecture.

The results of our experiment showcase an average precision rate of 83.6% for Model #1, for the
prediction of the replicated attacks, and an average precision rate of 85.5% for Model #2, for the
prediction of the replicated attacks. In short, model#2 performed almost 2% better than model#1.

By examining the evaluation results, we deducted that the presented Situational Awareness
Neural Network performs better in attacks that produce more profound footprint.

Two limitations require discussion. Firstly, each CVE entry that was found by the vulnerability
assessment was added as a new feature on the network dataset. For this experiment, the CVE
entries were only five but in a real case scenario, where more vulnerabilities might be present,
this will end up to the addition of even more new features. This may require further
dimensionality reduction for the neural network to be trained efficiently, which may result in the
deprecation of some of the new features. Moreover, for the scope of this study, five different
attacks were replicated, but three of them were of the same type (Remote File Inclusion - RFI).
This probably led to the not as high as expected precision rates regarding attacks #2 and #3,
because of the similarity of the network traffic data that they produced.
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Further research should be conducted regarding the steps followed for the fusion of the data, to
create a more refined way to produce the enhanced network dataset, so that the possible
deprecation of newly added features would be avoided. Additionally, the architecture of the
neural network must be revised. This would cause the attacks to be uniquely recognized, thus, to
achieve higher precision rates when predicting the incoming attacks.
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