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Abstract 

 Introducing techniques to create a game environment with AAA graphic techniques 

for optimal performance and great quality in graphic fidelity is the concept of this thesis. We 

will first understand the Unreal renderer that we will use and the performance tricks we will 

need to go through, to get the maximum performance, and we will introduce concepts such as 

Stochastic Triplanar, Volumetric lighting and Virtual Textures. We then go on how to create 

a robust pipeline for asset creation, and last, we will explore some of the gameplay logic and 

code of the AI and the player. The game consists of 3 missions for the Player to explore the 

map and experience the environment. 

 

Introduction 

 For the current thesis we are going to develop a game in Unreal Engine 4.25.1 and 

creating a realistic environment with many different shading techniques and optimal 

performance. Techniques for shading the terrain, spawning procedural foliage, creating an 

AI, and developing a mission system will be the essence of this thesis. 

 

Motivation 

 The motivation for developing this project is to explore some of the techniques used 

by big game studios in their pipelines that allow them produce stunning results, with great 

performance. Learning Unreal is a huge asset in the game development world, and it is a 

great skill for pursuing a job in this field. Along with Unreal and creating this project many 

other programs were used to create this result. Gaining experience in 3d modeling and 

texturing was a plus from this thesis, because those tools help us also understand how things 

are being done, what are the best practices to create assets for games, and how to make things 

easier for further development to be used from other program down the pipeline. In 

conclusion learning the Unreal Engine and game development in general was the goal and 

motivation of this thesis. 

 The goal is to create a realistic environment for a game, while maintaining good fps 

results (frames per second), and also creating a small gameplay example like we did with 

adding missions to the game, to make it more interesting and fun for the player, and give him 

a motivation to explore our small world. 

 

Thesis Structure 

 On this report first, we will analyze how we the deferred rendered of Unreal works, 

what are the limitations of the engine performance and some optimization we can do to help 

that. Then we are going to see what are the shading techniques we used to render our 

landscape, how we handled the landscape optimizations, how we populate the world with 

foliage in a procedural way, and how we render our grass. Then we are going to see how we 

utilized the Virtual Texturing system, to blend meshes with our landscape. After that we are 

going to analyze the lighting in the scene, and we choose the dynamic lighting. Next we are 

going to explain how we created the AI in C++, and how the behavior trees work, we are 

going to see the pipeline used to import custom assets to the engine as well as how we 

imported and rigged the player and the functions he can perform in game. Lastly, we are 

going to touch just a little the topic of particles and the Niagara system. 
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Implementation methodologies 

 In this section we are going to discuss about the programs used in this project, like 

blender and Quixel Mixer, what they do, and how we combined them together and used them 

in our pipeline. 

• Unreal Engine 4.25.1 

• Blender 2.83 

• Zbrush 2020 

• Quixel Bridge 

• Quixel Mixer 

• SpeedTree 

• xNormal 

Unreal Engine is the game engine we used to create and run our game. Is a very good 

solution for creating small and big games, has a wide variety of tools to offer to the 

developers, making it a very appealing option for new developers and indie studios. Has great 

performance in rendering and we also have the option to modify the engine code and shift the 

engine to fit our needs. The version used in this project is the 4.25.1. 

Blender is great open source 3D modelling tool. It is free with frequent updates to keep 

up to the industry standards. Unreal often recommends using Maya as the main 3d modeling 

tool, but recently has developed tools, available on GitHub that make the process of linking 

blender with Unreal a lot easier and essentially create an official support for blender. Blender 

is used for creating models, and for animations. 

Zbrush is the industry standard sculpting tool. Used by almost every big studio out there. 

We used it for create rocks, that we scatter across the whole terrain and as well for sculpting 

small details on surfaces and creating normal maps out of those. 

Quixel Bridge comes free for users who are working with Unreal. It offers the whole 

Megascans library for free. Asset like 3d cliffs, and rocks, foliage, and surface textures are all 

mainly from the Megascans library and imported with the help of the Bridge tool. 

Quixel Mixer also from the Quixel team is a great free solution for texturing our models. 

We used this tool to texture all our imported models. Has support for Box projection of the 

textures, masking the model with a variety of options like noise, curvature of the model, 

normals of the model and many more. Also offers support for material ID masking, custom 

normal maps import and a very robust texturing process. 

SpeedTree was used to create the trees in our scene. Has a great support for create 

different variation of the same type of tree, very fast and easy to use. SpeedTree used along 

with blender for modeling the branches and importing them to SpeedTree. 

xNormal is one more free software that was used to create high detail normal maps for all 

our model. By providing a high poly mesh and a low one, we get the normal map of the 

model. 
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Unreal Engine Deferred rendering pipeline 

 On this project we used the deferred renderer that Unreal Engine provides us along 

with the forward renderer. The forward shading is only used for the translucency effects. The 

main difference between those two is the way they calculate the light. First, we will look at 

the forward rendered. 

 

This shading method does all the calculations in one pass, sort of, but the main 

problem with this shading method is that in that one pass it gathers all the geometry data, runs 

the vertex shader pass and then for each light that we have in the scene (we have limited 

number of lights) , at the pixel shader or the fragment shader we calculate for each pixel or 

fragment the light for that specific pixel, and we do this for all the lights that we have in the 

scene and for all the vertices and pixel, even for that ones that are occluded even though 

unreal does a run a cull pass to optimize as much as possible the overdraw that this shading 

method is introducing because of its nature. Now if we have many lights in the scene these 

calculations must be done for each light, but in this shading method and with unreal we can 

only use up to four overlapping shadow casting movable lights in the scene, we can't sample 

from the GBuffer anymore (will explain the GBuffer later), we also have less texture 

samplers for our materials, and of course we cannot use Screen Space Techniques such as 

SSR(screen space reflections), SSAO(screen space ambient occlusion), and MSAA on D-

Buffer decals. But it also has some advantages, such as, good anti-aliasing methods like 

MSAA which can be faster than TAA(temporal anti-aliasing) that unreal offers, it is fast 

when we don’t really want many lights in our scene (even faster the deferred shading), we 

can render semi translucent objects, something we can't do with deferred shading and we 

actually use the forward pass to render that while we use the deferred renderer. 

 

Now in our project we used the Deferred Shading Renderer, which is a common 

shading technique used for many of the modern games. The whole concept of this technique 

is that we let the lighting pass, which is a very performance intensive task, for a later stage. 

So, we essentially have 2 passes. The first pass is the Geometry pass where we write all our 

geometry data to the G-Buffer that we talked about earlier. The G-Buffer consist of six render 

textures as we can see in the DeferredShadingCommon.ush file that unreal provide as.  

 

 

The first texture is the normal of all of our object that we see in the screen, and this 

texture has 4 channels, the first three are for the normals (the r, g, and g channel) and the 

alpha channel is for per object GBuffer data.  

 

 
Figure 1: World Normal texture for GBuffer 



8 
 

 

The second texture consists of four maps packed into one texture. In the R (red) 

channel of the texture we have the Metallic information, in the G (green) channel we have the 

specular information, in the B (blue)  channel we have the Roughness information and in the 

A channel we have encoded the ShadingModelID and the SelectiveOutputMask. 

 

 
Figure 2: Metallic texture from GBuffer 

 

Above we have the metallic information from the GBuffer, and as you can see it is 

black because none of the object in this scene are metals or the metallic attribute is set to 0 

inside their material. Full white means it is metal and inside the material of the object the 

metallic attribute is set to 1 and full black means no metal at all. 

 

 

Bellow we have the roughness texture and the specular texture, and both are 

represented as the metallic one, with one channel, each with values from 0 to 1 (black and 

white). In the roughness map 0 means the surface is smooth with no roughness at all and 1 

means it is very rough, and the same goes for the specular map, and of course we can see 

values higher that one and lower that zero. And the shading model ID is to identify what is 

the shading model of that material ex. Purple means double sided foliage 

 

 
Figure 3: Roughness texture from GBuffer 
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Figure 4: Specular texture from GBuffer 

 

 
Figure 5: Shading Model ID texture from GBuffer 

 

 

  

Third texture on the GBuffer is the base color information and the AO (ambient occlusion). 

In the first three channels we store the base color of our scene and the preprocessor flag 

ALLOW_STATIC_LIGHTING is false then we store the AO in the alpha channel, and we 

also set the indirect irradiance to 1. 

 

 
Figure 6: Base Color texture from GBuffer 

 

 
Figure 7: Ambient Occlusion from GBuffer 
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Next we have a texture for custom data that we can use to write our own data to the 

GBuffer, also we have one more texture for PrecomputedShadowFactors, and one more for 

the tangent normals if the flag GBUFFER_HAS_TANGENT is true. We also store in the 

GBuffer the Subsurface Color and the Depth of the scene in world units. 

 

 
Figure 8: Scene Depth from GBuffer 

 

 
Figure 9: Subsurface color from GBuffer 

 

 

 So now that we have all our render targets store in the GBuffer, we can now go to the 

second pass, the lighting pass, and with the help of the GBuffer we can calculate the light. 

The difference now with this method is that having all the data of each fragment (pixel) we 

can feed them (normals, base color etc.) to the light algorithms and calculate for each pixel 

the final lit color. But we already have the final fragments that will be shown in the picture 

(from the GBuffer) so that means we only have to calculate the light for each fragment once, 

so there is no wasted calculations done on pixel that will be not shown on the screen. And 

with this method we can have as many lights as we want in the scene with a minimum impact 

on performance. Plus, we can sample the GBuffer render targets to use the in our materials. 

 

 

  There are some disadvantages also with this method, as with every method. Firstly, 

we cannot draw Translucency, that is why we use the forward shading method to render that 

because we cannot correctly blend the translucency with another translucency. We also 

cannot have a good anti-aliasing solution such as MSAA, so we fallback to the TAA which is 

a post process effect on the final image, and we also have a bigger memory overhead as this 

method requires more memory than the forward shading. 

 But there are many advantages also, like we can have post process effects in a lower 

cost such as the Bloom effect which is an effect when we look at the light directly we see a 

blur, we can also have screen space effects like SSAO (screen space ambient occlusion) 
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based on the depth buffer, translucency can cast shadows to itself and other lit translucency. 

In general, when we have very simple scene with a few lights it is not that optimal to use the 

deferred rendering but when we have a complex scene with many lights the advantages are 

obvious. 

 So here is the final scene rendered with the deferred shading, which is rendered with 

combing all the above render textures. 

 

 
Figure 10: Final Image 

 

 

 
Figure 11: Final Image with all the buffer RTs 
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Optimizations and Limitations to think about 

 While working on this project we must take in consideration a few limitations and 

possible optimization we can try to avoid performance hits. The first “limitation” all though 

Unreal does not limit us, is the triangle count of the scene. Every model we import into the 

engine (props, static meshes, foliage, characters, etc.), we must think about the triangle count 

of that object, generally speaking for a AAA game the polycount we can target is about 4-7 

million triangles (most of the high graphic games that run on consoles such as PS4, Xbox 

One are limited to 30fps), so we have to consider very carefully the amount of triangles each 

object has, and for that reason we create LODs (level of detail) for all of our meshes in the 

scene. So, what is an LOD? 

 

 All our objects are being apart of many triangles, for example a typical tree in our 

scene has about 18,000 triangles, that is the highest LOD of that mesh and we call it LOD 0. 

But if we want to render 100 of those trees, we will need to render 1.8 million triangles! That 

is a lot and that is only our trees. But when an object is close to us we want to render the 

highest mesh available for the best quality, but in the distance we can’t really see all of that 

detail and we don’t pay that much attention on the object, so what we can do is to render the 

same object but with less triangles, so we try to re-create the mesh as close to the original but 

with some sacrifices on the triangle count and the mesh detail. In our scene the same tree has 

3 LOD’s, the highest has 18k triangles and the lowest on has about 6.5k triangles. Unreal 

handles the reducing of the triangles automatically by specifying how much of the 

percentages we want to keep. And the way we define which LOD we will render on the 

screen is by evaluating the screen percentage the object occupies in our screen, the lower that 

value is the lower the LOD we render on the screen. 

 

 One more technique we use to reduce the poly count is by creating normal maps. 

Normal maps are just 2D textures that we create in order to tell the engine how the light will 

interact with the mesh’s surface, in a way we are faking the light. When we have an object, 

like a rock , and we sculpt that mesh to create the desired look we want, that instance of one 

mesh may have more than 2 million of triangles, just a rock alone, and we can’t import that 

mesh into the engine and use it, because 2 rocks will take all of our budget alone to render 

them. So what we do is to remesh the mesh, that means we create a much lower in triangles 

mesh (about 5-15k triangles for a rock) that is similar to the overall shape of the rock and 

then we take the high poly rock and the low poly and we bake the normal of the high poly 

onto the low ones uv’s space normals. With that normal texture now, we can tell the engine in 

which way the surface is point to (normals of a surface) so the lighting will be calculated 

according to that information. Below is an example of normal bake of a high poly mesh. 
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So, let us take a default cube with 14 triangles. This mesh has already the UV 

prepared for texture projection that we are going to need to project the normal map bellow. 

 

 
Figure 12: Default Cube with 14 tris 

 

 
Figure 13: Normal Map of a rock shape baked to the UV’s of the Default cube using xNormal 

 

 And above we have a picture of a normal map that we took by baking a high poly 

mesh into the low poly mesh above, the 14-triangle cube. First let us see how we got that 

normal map for the high poly mesh. Bellow we have the same cube from above but we 

remesh it to about 3.5 million triangles. We want that many triangles to sculpt the rock 

formation we see bellow, but from the other hand 3.5 million tris are that feasible to use in 

our scene. Using xNormal we can specify the low poly mesh and the high poly one, and it 

will bake into the low poly’s UV’s the details that we get from the high poly. And then we 

can use this map to tell the light how it will interact with the mesh. 
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Figure 14: Sculpted Cube with 3.5 million triangles (rendered in blender 2.9 and Octane) 

 

 

 
Figure 15: The wireframe of the mesh shown at the Figure 14 

 

 

 The problem with this much dense geometry is not only the count of the triangles that 

will be heavy to render for the engine, because this is a simple rock we may use it multiply 

times in the scene so the polycount may skyrocket, we also introduce another problem that 

we will take about later, and that is the triangles overdraw. Because of the size of the 

triangles is too small this problem comes to life, and the GPU has to work harder to render 

that object correctly. 

 

 

 

 

 

 So, if we get the low poly mesh now and apply the normal map, we got from xNormal 

we can see that the results are pleasing. The mesh from certain angles looks the same. The 

mesh still has only 14 triangles as you can see bellow from the pictures, this illusion breaks 

only if we look the mesh perpendicular of the normals direction, because this is only a 

lighting effect and there is no displacement of the mesh like the original one. In this simple 

step we got rid of the 99% of the original triangles, and we gain a huge performance boost, 

and we use this technique for almost all of the objects in our scene. 
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Figure 16: Cube with 14 triangles rendered with the normal map from figure 13 

 

 

 

 

 
Figure 17: Cube's wireframe from figure 16 
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Overdraw 

 Overdraw is one thing to think about when it comes to performance. This is a 

common problem for the GPU, because the calculation are being done by quads (2x2 pixels), 

when we have very small triangles in the scene, or the triangles are that far away from the 

camera became very small proportionally to the screen size, so the GPU essentially is wasting 

those calculated pixels. Smalls triangles should be avoided but quad over draw can be 

produced in another way. Transparent meshes and overlapping meshes produce this problem 

as well as the GPU must render the vertices of mesh that is behind another mesh and then it 

needs to waste them and re-render the ones in front. 

But there is a way to overcome both problems. Do deal with the small triangles in 

distance we use the LOD’s. When a mesh is far away the triangles are still the same and that 

means they now occupy less screen space causing the overdraw to begin, because they are too 

small. So, when we LOD a mesh we basically lower the triangle count and that means now 

the triangles occupy more space because the overall shape of the mesh is the same, we just 

lose some details that we can’t notice far away. But now with bigger triangles there is no 

overdraw. Now with the overlapping meshes what we can do is to enable an option in the 

engine settings the “early Z-Pass test”, which is used as a culling method to eliminate what it 

shouldn’t render in the screen and only render the final pixels, which it can create some 

overhead in the performance but if we have a lot of overlapping like foliage it is a huge gain 

in performance. Bellow we can see the overdraw in our scene. 

 

 
Figure 18: The mesh in the middle is at LOD 0 (highest detail) more and smaller triangles 

 

 
Figure 19: The mesh at the middle is at LOD 3 (lower detail) triangles are less and bigger 
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Landscape 

 The focus of this project is definitively the look of the game, o the graphics we can 

say. So, let us start with the landscape of the scene, the actual map that the player can walk, 

explore, and complete all the missions of the game.  

 First, we need to know that our landscape is made from many components, and in our 

case our landscape is made from 156 components. Now each component has 391x361 

vertices that make up our triangles of the component. We need to keep the component count 

as low as possible because every component is a draw call to our GPU, and more draw calls 

to our GPU means poor performance, we should aim to about 3000-5000 draw calls for the 

whole scene (a draw call is a call that the CPU makes to GPU about the object the later one 

needs to render to the screen with the proper material, and that’s why sometimes we combine 

the static meshes into one to reduce the draw calls as each draw call has its own overhead and 

if we multiply that overhead many times we get poor performance). Now our landscape has 

many triangles too, and as we talked before many triangles is not that good but the worst part 

is the overdraw that will occur here as the triangles that are far away will get too small and 

will cause the overdraw. But we can fix that too by specifying what LOD we want to render. 

 

As you could see below here is the landscape if we rendered with the highest LOD all 

the way to the back. We render about 900k to 1 million triangles and we get a lot of overdraw 

for detail we do not really need. 

 

 
Figure 20: Landscape wireframe and Quad Overdraw visualization 

 

 Now we will specify that we want to draw a high LOD (more detail) close and far we 

want to use a lower one. That will improve the tri count (down to 180k from 900k) and will 

fix the overdraw problem at the same time. Here is a picture with the tweaked settings. 
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Figure 21: Quad overdraw with LOD's 

 

And to visualize better here we have an image only with the wireframe of the landscape to 

illustrate the difference in the LOD’s according to the distance from the camera. 

 

 
Figure 22: Landscape wireframe LOD's 
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Landscape Material & Stochastic Triplanar Projection 

 The next big part of this project, and one of the most crucial, is the material we used 

for the landscape. With the current material we have the ability to auto detect the slope of the 

terrain and shade it properly (detect and shade the cliffs), we can paint each section of the 

landscape with whatever material we want (grass, soil, gravel, snow) (Layers),  and create 

fast different worlds that fit our needs, we can instantiate procedural foliage and specify in 

which layers we want to populate with what type of foliage (short grass, flowers and every 

other static mesh we want), we can map the textures in a Triplanar way but cheaper for better 

performance and at last we can use the virtual texturing system to store all of the landscape 

data to a texture that we can sample later on from different materials for other meshes in 

order to blend them with the landscape smoothly. 

 

 
Figure 23: The landscape material 

 

 

 

 

 

 

 

 

 

 

 



20 
 

Layers 

 In the landscape material we use the concept of the layers. Each layer is basically a 

different material that we can then later use in the editor to paint our landscape with whatever 

material we want. In this material we used 7 different layers (cliff, grass1, grass2, soil, gravel, 

snow, ground forest). 

 

 
Figure 24: Different Layers for the Landscape material 

 

At the right we see the node that takes as input all the layers we want to have, and at 

the left we see each layer like the grass and the soil layer. Each layer we see in this picture 

(figure 24) is a function that we must specify how each material is described.  

Bellow we will see the grass layer, which is similar in with all the other layers because is a 

function, and the only difference with all of the other layers is the textures. So for each layer 

we have two functions (from left to right) the first one samples all of the textures of the layer 

like the soil albedo texture and the soil normal texture and the second function takes the 

output and make all the adjustments like the brightness of the final color of the layer, the 

roughness and many more. 
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Figure 25: Example of one of the layers setup 

 

If we dive in the MI_Soil_VT function, we are going to see all the texture samplers and more.  

 
Figure 26: MI_Soil_VT function 

 

At the left we see the 3 textures we sample for each layer, the first one being the 

albedo (color) texture, the second one is the normal texture and the third one is a packed 

texture containing 3 different information one in each channel. In the R channel we have the 

Ambient Occlusion, in the G channel we have the Roughness, and in the B channel we have 

the Metallic. At the bottom left we have 3 parameters the near tilling of the texture, the far 

tilling of the texture and the distance fade. 

 Now let us explain the need for those 3 parameters. To start, with a single texture for 

the whole landscape would be too small to fit across the whole landscape, and it would look 

very stretched. So, what we do is to tile the texture across the landscape, in other words 

repeat the texture repeatedly until we cover the whole space. Now we have two parameters 

for that tiling, one for near tilling which we generally want to be a bigger number than the far 

tilling because we want to keep the texture small enough to avoid making that big that all of 

the detail is gone because it is the same if we were zoom at the texture, it would look blurry 

from close. But when we are close, we cannot really notice the tilling, but far would be very 
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noticeable effect. And that is why we have the far tilling which is basically a smaller number 

meaning less repetitions and bigger textures. That way we avoid noticing tilling far away and 

because its far away we can get away with the ‘zoomed’ bigger texture. The distance fade 

now it is a value which we use to calculate from which point and on we are going to use the 

far tilling while in the rest we render the new tilling texture. That technique is a little more 

expensive than using one tilling from the whole landscape because we essentially sampling 

the same texture 2 times, one for each tilling method. 

 

 For the rest of the material we extract the sub surface scattering from the textures, and 

we can use it if we want in materials like snow which the light penetrates the snowflakes and 

create the sub scattering effect. We also have the option to multiply the ambient occlusion 

and at the final stage we can change the whole tint of the texture to make it fit in our current 

situation. Bellow we see the tint effect on the grass layer. 

 
Figure 27: Tint visualization (left with tint correction - right original tint) 

 Next, we have the auto detect slope mask. With this function we can detect based on 

the angle of the terrain which surface has to be shaded differently based on the slope. 
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Figure 28: The 2 points at which we calculate the slope shading 

 

At the left of the above image (Figure 28) we have the slope function detection 

MF_SlopeMask and at the right we get that result and we blend it with the rest of the layers 

(grass, soil, etc.). Now let us see how this function works. 

 

 
Figure 29: MF_SlopeMask material function 

 At the top we have the commented section “Slope mask” with two scalar parameters 

(scalar parameters can be changed dynamically without recompiling the shaders in runtime 

when we convert the material to material instance). This is using the Unreal’s slope mask 

function and with the parameters we can configure the slope detection to our needs. At the 

lower part of the picture we see the commented section “ Break noise texture” and we blend 

basically a noise texture at the end of the slope where the transition is being made between 
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the slope shaded material and the other material in order to randomize the transition and not 

just be a hard line like transition which is won’t feel natural. We have parameters to control 

the tilling of the breakup texture and a parameter to tweak the contrast of the texture (soft 

noise transition and hard noise transition based on the contrast value). 

 
Figure 30: Slope break up (left no texture break up - right with break up texture) 
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Procedural Instancing 

 Now that we have our textures mapped to our landscape in different layers, we can 

use that data to spawn static meshes on the terrain. Let us start with the layers. Each time we 

paint a layer (material) to the terrain we basically create a mask (a black/white texture) for 

our terrain where we specify at which spot our current layer will be rendered. If there is white 

in the mask the layer will be rendered, if its black it will not be rendered, and all the in-

between values will make it blend. But we can sample from these masks that exists for each 

layer, and we can use these values to control the spawning of the static meshes. 

 

 
Figure 31: Part of the material shown in figure 23 responsible for spawning procedural meshes 

 

 The nodes in red are the ones that sample our layers, like in this example we sample 

from the grass layer and soil layer. Basically, what we want to achieve is to spawn grass, 

flowers and more where there is a grass texture at the landscape and spawn other meshes like 

rocks where there is soil or grass too. We also have a node that samples from a layer called 

“remove procedural” which basically is a layer like the others but instead of paint an textures 

at the terrain it’s only being used as a mask that tell us in which parts we don’t want to spawn 

anything even if we are on a layer that we should spawn something. That gives us more 

artistic control over this method. The node with the light blue is the one who is responsible 

for spawning all the meshes. There we specify which meshes we want this shader to spawn. 

 

So, when we have our static meshes, and that can be whatever static mesh we want, we then 

convert it to a “grass type” object, where we specify more parameters for the instancing. 

 
Figure 32: Static mesh to Landscape grass type 
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Now that we have the Landscape Grass Type object we can specify how dense the 

population of this mesh will be, how far we want to render which in this example after 6000 

units we stop rendering the grass, we can specify the scale of the object if we want to align to 

surface and at the bottom we have the option to make it follow the density scaling which is 

basically a parameter that the engine provides us in order to tweak performance quicker, this 

parameters based on its value will adjust the density of all of the meshes that have this option 

enabled in order to reduce the count of the meshes quicker. 

 

 
Figure 33: Landscape Grass Type for Grass in the scene 

 

 With this method, spawning assets on the GPU side we can populate whatever 

landscape we have no matter how big that is very fast, without having to place be hand 

anything, and we have the ability to change all of the parameters really quick like what type 

of grass we want to spawn how dense, we can spawn flowers and many more. Here is the 

scene with this shader enabled.  
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Figure 34: Procedural Foliage Shader overview in Scene 

 

In our scene this shader has the following assets being spawned procedurally 

● Grass 

● Ferns 

● Flowers 

● Rocks 

● Trees (although we place most of the be hand for more control over the scene) 
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Stochastic Triplanar Projection on Cliffs 

 The idea for this shading method on cliffs comes from a paper for a very well-known 

AAA game FarCry 5 produced by Ubisoft. In this paper among, with many other insights on 

how the game handles the terrain rendering, we can see how the team managed to render the 

cliffs. They used the method of stochastic Triplanar projection. 

 

 First let us take about the Triplanar projection of the textures on the mesh. The 

Triplanar projection is a world space projection of the texture onto the mesh based on the 

normals of the mesh or the camera vector. And what does that mean is that we do not follow 

the UV layout of the mesh to project the texture, and we use the x, y, and z axis to project the 

texture. 

 

 
Figure 35: Sphere with normal UV texture mapping 

 

Above we see the projection of the texture onto the UV’s of the sphere. If we move the 

sphere, the texture will remain in the same place as a regular object you would expect to 

behave like so. But in the second and third picture (Figure 36 & 37) you can see now with the 

Triplanar projection the texture and the object are not connected in the same way because we 

project the texture from world space to the mesh based on the 3 planes, one for each axis (x, 

y, z). And each time we move the object, in this case the sphere, a different part of the texture 

will be projected onto the mesh. 

 

 

 
Figure 36: Sphere with basic Triplanar projection 1 
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Figure 37: Sphere with basic Triplanar projection 

(but moved to the right from what we see at figure 36) to show the effect. 

 

As you can see above when we move the sphere to the right the texture changes to a 

different projection. We use this Triplanar technique because with the landscape and the cliffs 

having a big slope the normal projection would cause the texture to be stretched and be blurry 

and that is why we use the Triplanar technique. But this has its downsides as well and comes 

with a cost. Normal Triplanar projection will cause the material to sample 3 textures each one 

for every axis (we mirror the results for the -x and +x and so on, otherwise we would need 6 

projections). Now sampling 3 times a texture than 1 is not that big of a difference but we do 

not have only one texture. We have one texture for base color, one for the normal map and 

one for the ambient occlusion, roughness and metallic. Plus, as we talked before to avoid the 

tilling issue of the textures far away, we sample all the textures one more time and use them 

with a different tilling parameter. So, before Triplanar we had (1 + 1 + 1) x 2 samples, to a 

total of 6 textures and that is for each component of the terrain. And with normal Triplanar 

we now have (3 + 3 + 3) x 2 samples which equals to 18 samples. But with the stochastic 

technique we only sample the texture once. But it also comes with a cost. 

 To start with, we have the same material setup for the cliff as the one from before we 

used for the soil or the grass (figure 26), but instead on normal sampling we used the 

stochastic Triplanar one. Let us see again the sphere we saw earlier but the stochastic 

technique to see the results. 

 

 
Figure 38: Sphere with Stochastic Triplanar Projection 
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For far we do not really see the problem that much, but there is one. To blend each 

projection with each other instead of doing that gradient linearly, we use a noise for the 

gradient transition. To see the noise, we can visualize each axis projected to the sphere 

represented with a different color. 

 

 
Figure 39: Stochastic Triplanar projection but with each axis represented with a different color 

 

 

As you can see between each transition of each axis there is noise that simulates the linear 

gradient but its random noise. The actual noise itself is shown in the image bellow. 

 

 
Figure 40: Noise gradient 
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And the linear gradient that replaces look like this. 

 

 
Figure 41: Linear Gradient 

 

 

 

So, the noise is not perfect in every point but its good enough on average. The noise 

comes through in each different axis projection in the normal material but only if we really 

pay attention to the detail and look close to the mesh. Bellow we see that effect on the cliffs 

shading. 

 

 
Figure 42: Noise gradient on cliffs 
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And again this effect only takes places where we need to blend 2 different axis, which 

most of the time we are not doing that because the cliffs in this scene are very sharp and flat, 

because we don’t use any sort of displacement on the terrain so this effect is minimized. In 

conclusion, random noise is cheaper than the linear gradient and we only have to sample the 

textures once and not three times like we did with the normal Triplanar projection, but instead 

we get this weird artifact with the noise and the wrong anti-aliasing but this is fixed by doing 

the mip map level calculations manually with the DDX and DDY functions that we can use 

inside the material. 

 

 
Figure 43: DDX and DDY functions inside the stochastic Triplanar function 
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Virtual Texturing Landscape 

 Unreal provide us with two different methods of virtual texturing. The first one is the 

Streaming Virtual Texturing, which is a different method of stream our textures. Basically, 

this allows us to handle very big textures with lower memory cost, streaming them from the 

disk, as to the traditional way of mip map streaming. We can utilize this method by enabling 

the option in each texture we desire to be streamed like a virtual texture. With this type of 

streaming the further we are from a mesh the lower the resolution of the texture will be, and 

as we get closer the texture resolution is growing. We only stream the texture part (tile) that is 

visible in the camera, which the GPU decides based on the depth buffers. This method does 

require more performance power because of more texture lookups and some math calculation 

but it reduces the GPU memory cost. Bellow we have an example in our scene of a mesh that 

uses streaming virtual texturing for its textures. 

 

 
Figure 44: Streaming Virtual Texturing overview 

 

What we can see here is that the further we are from the mesh, the bigger are the tiles that we 

stream just like the traditional mip map techniques, it’s a lower resolution, and the closer we 

get to that mesh we stream more and smaller tiles that contain more detail. Not many objects 

in our scene use that technique, because we only use up to 2K textures but that would be 

useful if we wanted to contain our texture memory budget in case we wanted to stream 4K or 

even 8K textures. 
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What we use a lot in our scene is the second method of virtual texturing, which is 

called Runtime Virtual Texturing. This method allows us to render the output of a material 

that an object has to virtual texture. First, we take a Virtual Texturing Volume that we place 

in our scene and make the bounds big enough to fit the mesh we want to capture, in our case 

the landscape. 

 

 
Figure 45: RVT volume bounds 

 

After that we need to create a virtual texture asset from the editor where we are going to store 

the results of this process. We can specify there how big our RVT will be and how many mip 

map levels we want to have. The more mip map levels we have the bigger the memory cost 

will be. Now that we have that we need to adjust our landscape material to write its output to 

that RVT. 

 

 
Figure 46: Landscape material writes to RVT Output 

 

 

 

 

 



35 
 

As you can see, we write the base color of the terrain, the specular, the roughness, the 

normals, the opacity and the world height. The result is the following two textures, one 

containing the world height and the other one for the rest of the attributes. 

 

 
Figure 47: RVT's sampled from the terrain. 

 

 Now we can sample from those 2 textures from other materials, and we can also apply 

this texture to the terrain but we need to make more changes to our material like the distance 

based shading because the camera distance concept is not available when we apply this to our 

material but we can use the mip map level to approximate the distance. But we mostly going 

to use this for other materials. The image bellow shows a mesh from MEGASCANS 

BRIDGE with the default material how it would look like if we just used the original 

textures. 

 

 
Figure 48: MEGASCANS mesh with default material 

 

 Now, if we dive into our material for this mesh (Figure 48) we can modify it like so 

we can sample from the RVT’s and specifically from the point this mesh is placed according 

to the landscape. With this modification we can combine the original color texture and the 

color of the landscape and blend between those two, to create a more seamless transition 

between mesh and landscape. Below is the material. 

 



36 
 

 
Figure 49: Material that samples from the RVT's 

 

On the left, we can see the RVT sampler. We then use some noise textures and some 

math to apply the noise as a mask for the blend to create a more random transition and just a 

flat line, like we did with the landscape at Figure 30. We have more option like how far the 

transition will go, the noise tilling and more. Bellow you can see the difference with the from 

the Figure 48, and the position of the mesh is the same. 

 

 
Figure 50: Blend Length adjustments when using the RVT's to blend the mesh. 
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Foliage & Grass 

 For the foliage we used in the scene most of them are imported through the 

MEGASCANS BRIDGE. Things like ferns and flowers are straight from there with small 

adjustments to the colors, and the subsurface scattering. 

 

 
Figure 51: Collection of Ferns and Flowers used in the scene 

 

Each mesh of the above ranges from 1k tris to 2-3k triangles. The first concept of 

grass was an import from the Megascans Bridge plugin, but again as above each clump of 

grass is about 10k triangles up close and the concept is to spread the grass all over the 

landscape meaning a lot of instances of grass spawned. 

 

 
Figure 52: A clump of grass imported directly to the engine from Megascans Bridge, with each blade modeled separately 

with 10k triangles. 

 

If we try to populate a big area with dense grass the triangle count will skyrocket, and 

we will end up taking a big performance hit. So, what we can do instead of modeling each 

blade individually we can create planes that will use opacity masks to cut out the grass shape 

on the plane. 
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 Having the opacity masks from the Megascans and all of the other textures like color 

and normals that we get from the plugin in order to use them as billboards when we are far 

away from grass, we instead are going to use them to shade our planes. 

 

 
Figure 53: Grass planes modeled in blender 2.8.3 

 

These planes are exported as one mesh to help the instancing get better performance while 

being only 12 triangles instead of 8000 triangles we had before. Below is the opacity mask 

we used for the planes. 

 

 
Figure 54: Opacity texture mask for the planes 
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Now we can map the UV’s of each plane to the opacity texture. And with the opacity 

mask texture when rendering in Engine the black parts of the texture will be rendered fully 

transparent, and the white parts will render normally. 

 

 
Figure 55: Opacity Applied to Mesh 

 

 But with this approach we have a problem when we are looking at the grass from 

above mostly. We can clearly see the planes of the grass and that does not look so good. But 

there is a solution to that problem. We can follow a similar approach that used in the game 

Horizon Zero Dawn that the developers talked about in their GDC talk. What they did is to 

tilt the planes according to the player camera position. 

 

 
Figure 56: Grass planes when looking from above 
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We need to do two things to make this work in unreal also. First, we need to paint the 

vertices of the planes with weights, and with this way we can tell which part of the mesh we 

are going to tilt and which not. We can do that in blender by going to the vertex paint menu. 

 

 
Figure 57: Grass Vertex Paint 

 

 Now that we have that we need to write the custom shader code to tilt the grass. We 

can do that by getting the distance of the camera and the distance of the mesh, and based on 

the distance of both the closer we are to the mesh, the more we are going to tilt the planes 

based on the vertex colors. 

 

 
Figure 58: With these nodes we calculate the distance and we are creating and alpha gradient we are going to use later 
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 Now we can create a custom node inside the grass material to write our custom HLSL 

code to tilt the grass. Below you can see how we take in consideration the vertex color and 

we want to displace only the red painted parts of the mesh. 

 

 
Figure 59: Custom Node inside material 

 

 The custom code looks like this. We first do a distance condition. Then we want to 

find the vector that goes from the camera to the object (grass mesh), and then we normalize 

that vector because we want only the direction of that vector. After we make the Z coordinate 

equal to 0 for the camera vector position, because we do not want that to affect the tilt 

amount, we then invert the direction of that vector to tilt the grass to the way the camera is 

facing and we multiply that value by a variable we can later adjust. 

 

 
Figure 60: Custom HLSL code to tilt the mesh 
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 Now if we look at the grass from above at an extreme angle again, we will not see the 

planes like we did before. Of course, this is a bit too much tilt but also the angle is very 

extreme and normally we do not notice this effect, but it helps a lot to sell the realism needed 

to hide the planes at other angles. 

 

 
Figure 61: Tilted grass 

 

 To optimize further the grass because of its density we use a culling effect to stop 

rendered the grass at far distances. This also causes a noticeable pop effect every time we 

move forward because the GPU will try to batch big patches of grass together in order to 

optimize the draw call count, and that means when we move forward and we need to render 

the new grass it draws the whole patch at once and causing a pop of the grass to appear on the 

screen making the culling effect noticeable. But if we use the Distance mask we talked about 

later (Figure 58) we can make the grass that lives at the edge of the culling distance be under 

the ground by displacing the vertices of the mesh. And based on the distance the grass will 

grow from the ground progressively. With this way the pop of the grass happens under the 

ground and when we go close enough the newly grass grows from the ground smoothly. 

 

 
Figure 62: Sink Grass to the ground material 
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 At last we use the traditional wind node inside the grass material to simulate the wind, 

which is just a noise displacement of the mesh based on the vertex colors. And we also have 

the option to shade the grass based on the landscape position, by sampling from the RTV’s of 

the landscape. 

 

 
Figure 63: Grass color by sampling the RVT of the landscape 

 

 The above example shows the grass sampling from the RVT of the landscape, and 

only using the color data provided by that texture and none of the original grass texture just to 

illustrate the effect better. But we can blend between those two textures in a more subtle way 

to make the grass more diverse and make it fit in the different parts of our landscape. 
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Lighting 

 To start with, the goal was to make the lighting in the scene dynamic, which means 

the light source can be both movable and change its intensity and color, to simulate a 

day/night cycle. The techniques used in this project are inspired again from “Horizon Zero 

Dawn”, based on an article from the lead lighting artist of this game. What they did is to keep 

the Directional Light dynamic, allowing it to retain all of the properties discussed before, 

using a volumetric approach with spherical harmonics, and also including a Sky light which 

lit the scene based on the sky color from all angles. The Indirect lighting is baked into 

irradiance volumes, like 3D textures to light all the static and dynamic objects. 

  

The same approach is used in our project. We have a Direction Light that mimics the 

sun and it is also dynamic. Using only that without baking anything we only get bright spots 

and very dark spots as this Light does not simulate the light bounces. Next to that we used a 

Sky Light, which is stationary light. Now what stationary means is that we cannot move the 

light but what we can do is change its intensity and color. After that we also baked the 

indirect lighting only, using volumetric lightmaps. 

 

 
Figure 64: Skylight Difference (With Skylight left / Without Skylight right) 

 

 

 

 With this solution what the engine does is to spread samples across the whole scene, 

especially nearby objects, that will capture the indirect lighting that we produce when we 

build the lighting of the scene, using third order spherical harmonics to capture the lighting 

from all of the directions. Now a dynamic object moving in the scene, like the character, will 

be lit according to its surroundings, the same if that object was static and had its light built 

offline. 
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Figure 65: Volumetric Light Samples (They are denser close to static meshes like at bottom right) 

 

 Now that we have a Directional Light, a Sky Light which is used as an ambient light, 

and our indirect light, we also need a sky, and for that we used the Unreal’s Sky Atmosphere 

component. We can assign the Direction Light as the light source for this component and it 

will solve the sky color for us automatically simulating the sunrises and all of the colors of 

the sky based on the sun position, while we can still tweak that component to adjust our sky 

color to our needs. The Sky Atmosphere is a physical correct implementation of the real sky 

on earth which gives great results out of the box. At the image below we can see the different 

colors of the sky in the early morning first, and then when the sun rises (still morning) and at 

noon. 
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Figure 66: Sky atmosphere in different times 

 

 

 

 For the fog and the volumetric effects, like volumetric fog and the “god rays” from 

the light we used the Exponential Height Fog component. The volumetric fog does cost a 

little more that the regular for, but it does help a lot the scene come through. And with the 

volumetric fog we can recreate the rays of light that scatter through the fog creating the “god 

rays” effect. The fog is also used to hide the distance meshes and their flaws and blend 

together the whole scene. 
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Figure 67: No fog - Exponential Height Fog - Volumetric Fog with “God’s rays” 

 

 

 

 

 

Lastly, for the shadows we used 2 different techniques. Shadows take a very big 

portion of the render time (from 2ms – 6ms) and are very heavy to render. For the close 

shadows we use the Cascade Shadow Maps system, and for the far shadows we use the 

Distance Fields of the mesh to render their shadows. With the CSM, we basically LOD the 

shadow quality into steps. In our scene we have 3 steps. The dynamic shadows that are 

closest to the player will be rendered with the best quality and from there and on the quality 

will decrease. At the picture below we see only the dynamic shadows for the scene. The 

render distance for these shadows is 4000 units, and we can clearly see the line where the 

shadows stop rendering. 
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Figure 68: CSM with 4000 units render distance 

 

 We can see that the trees on the background do not cast any shadows neither to 

themselves nor the terrain. Before the rocks we can see where the shadows stop rendering. 

We do that because it is very expensive to render dynamic shadows that far away. But there is 

a solution to the problem, and it is called Distance Fields. We need to enable that feature 

inside the engine settings. Basically, what the engine does is to store into a three-dimension 

texture (a volume texture) the distance to the nearest surface of every mesh. It is an 

approximation of the mesh, stored in volume textures, and we can use this data for ambient 

occlusion, shadowing, and for GPU particle collision. 

 
Figure 69: Mesh Distance Fields 

 

 Back to shadows, after the 4000units we use the distance fields to produce the static 

shadows for all the way to the end of the terrain. These shadows are very cheap and fast to 

calculate over the dynamic shadows, and they are always in the background so we cant really 

notice the change between the dynamic ones and the static, because we blend between those 

two. 
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Figure 70: Distance field shadows on 
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Asset Creation Pipeline 

 

 Now we are going to talk a little bit about the asset creation pipeline used on this 

project. The main programs used are, Quixel Bridge for the surfaces (textures), Quixel Mixer 

for texturing the meshes, Blender for creating the meshes and creating the UV’s of the 

meshes, Zbrush for sculpting the models, and xNormal for baking the normals of the meshes. 

 

 For sculpting some of the rocks we start with the Zbrush, create the high poly model 

with all of the details, then we remesh the object to have a low poly model too, that we will 

use in our game. With xNormal we will bake the high poly details to the low one. With 

blender we create the UV’s of the low poly rock. After having the normal map, we move to 

the Mixer, where we create our textures for the rock. With mixer we can create various 

textures with techniques like masking with noise, taking the curvature maps and many more. 

Now that we have the textures of the model, we then import the low poly model to the engine 

along with its textures and create the material that we will use inside the engine. This 

technique is used with every model created, the arms of the player, the gun of the player, 

rocks, trees. Below is the process for creating the enemy drone. 

 

 
Figure 71: Blender model creation & rigging 
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We then take the model to Zbrush to sculpt some fine detail, like the rust and the 

metal displacement to bake that detail with xNormal to a normal map. 

 

 
Figure 72: Model in Zbrush (left sculpted detail - right original) 

 

And then as a final step, after we have the UV’s ready and the low poly model, we take the 

final mesh to Quixel Mixer to texture it. 

 

 
Figure 73: Quixel Mixer texturing 
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Most of the foliage as we saw before came from Quixel Megascans Bridge, with some 

changes to the original and mostly to the grass, except from the trees. The trees where made 

with SpeedTree and Blender. First, we need to model several branches of the tree in 

SpeedTree to bake their textures to planes. And then use those planes to populate all the 

branches on the tree. 

 

 
Figure 74: Branches Meshes for the trees 

 

We project the branch textures we create at SpeedTree into those mesh that will act as the 

branches. This way we save a lot of triangles to render, and we do not have to model each 

leaf separately. 

 

 
Figure 75: Albedo texture of a branch 

 
Figure 76: Opacity mask of a branch 

 

 

 And now we can start generating these meshes onto the tree bark to finalize it. As you 

can see all the leaves and branches are just planes that use a texture opacity to cut out the 

shape of the branch. 
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Figure 77: Tree creation in SpeedTree 

 

 We created a total of 4 variations of branch meshes and those mesh were used to 

create 5 different variations of the same type of tree used in the scene. And of course, all the 

trees have LOD’s created by SpeedTree for better performance. 

 

 
Figure 78: Trees Variations 
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AI 

 We have covered all the graphical techniques for the game, and it is a game, so we 

must create the gameplay. One big part of the gameplay is the enemy. They are Drones that 

protect the Relics we are trying to gather, to finish the game. So, the AI system used for the 

enemies lies down to the Tree Behavior system that Unreal provides along with custom C++ 

code. 

 

 First, we need to make clear what are the possible action the AI will take during the 

gameplay. We need for example the AI to patrol an area and looking out for enemies (the 

player) and then attacking that enemies. So, the final actions of our AI are the following: 

 

o Patrol a marked area 

o Make the AI able to sense with the following senses: 

▪ Sight 

▪ Hearing 

▪ Damage 

o Make the AI able to follow the player while remaining a distance between AI 

and Player 

o Attack the Player 

o Dodge the Player Hits 

 

The Behavior Tree we made for the AI looks like this: 

 

 
Figure 79: Behavior Tree 
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 Each purple box is a task that the AI will execute, written in C++ for the best 

performance. On the right side we have the patrol actions. What those do is to first validate 

that the AI cannot see or hear the player, and then will reference the patrol path (C++ class) 

that holds the vectors or the points of the path and will designate the next point that the AI 

will have to move to. 

 

 
Figure 80: Patrol path on BT 

 

 Next, we have the Investigation part of the BT. What is this essentially is a way to 

make the AI investigate certain events. Each time the player makes a noise or hits the AI, the 

later one will move to the point where the event took place. 

 

 
Figure 81: Investigation on BT 
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And lastly, we have the attack actions. When the AI has vision on the player this part 

of the tree will be activated. Here the AI will try first and go the right place to attack the 

player. Because the AI is a ranged type attacker, we need to make sure the AI will not go too 

close to the Player and it will always respect a distance. We can make that happen for sure 

with this equation. 

 

float distance_ratio = enemy_ref->preferredDistanceFromPlayer / distance_between; 

float x = playerlocation.X + distance_ratio * (enemylocation.X - playerlocation.X); 

float y = playerlocation.Y + distance_ratio * (enemylocation.Y - playerlocation.Y); 

“code from the C++ class UBT_FindPlayerLocation.h” 

 

Where the enemy_ref->preferredDistanceFromPlayer is a variable that we can define 

and change during the runtime, and it specifies how far we want the AI to be from the player. 

The distance_between is the distance between Player and AI. And then we find the X and Y 

coordinates for the point we want to move to, and we will plug those coordinates to the 

Navigation System to output the nearest available location in the navigable area. 

 

When the AI has found the appropriate position to move, then it performs that move 

with the MoveTo task. We need to adjust the position of the AI constantly because the fire 

range of the AI is predefined by the User and the AI cannot fire from everywhere, so it needs 

to be in its fire distance. When that is achieved then the Tree will run the Attack Task, which 

will trigger an event on the AI class that will cause a projectile to be fired from the define 

sockets of the mesh of the enemy. After the Fire Event there is a Wait task to make the AI 

stop firing for 0.8 – 1 seconds until firing again. 

At last the AI after that has fired once will try to perform a dodge move. This is to 

make it more difficult for the Player to target the AI. The enemy essentially will teleport 100-

200 units to the right or left based on the Navigation System finding a proper location that it 

is navigable for the AI. That move also will trigger other event such as particle spawns to 

make the teleport move more pronounced and appealed to the User. The actions for finding 

the proper location for AI while Firing projectiles and dodging the hits, are all being done 

simultaneously, thus the node “Simple Parallel” that connects all these tasks. 
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Below we can see the radiuses that define the senses of the AI along with other 

debugging info. With the green radius representing the sight radius, the pink is the sight 

radius where the AI can lose sight, and the yellow radius is the hearing radius where the AI 

can pick up noise for it to investigate. 

 

 
Figure 82: AI Debug info 

 

  

We can see from the picture above which task is the AI executing at the exact time, and what 

are the values of the conditional variables (CanHearPlayer, CanSeePlayer, etc.). 

 

 To summarize we have an AI Controller that controls the pawn we assign it to, in our 

case the Drone_BP, which has all the logic inside of the senses (Sight, Hearing, etc.), and 

then we have the Behavior Tree that the AI Controller references to handle all the logic of the 

enemy, and lastly we have the Blackboard component where we store all of the conditional 

values from the tasks. 
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Missions 

 The goal here was to have a robust, and scalable missions’ system that will handle all 

the missions that we create in the editor. First, to demonstrate the mission’s system and make 

a small gameplay story for tis project, we conceptualize 3 different missions.  

  

 The first mission is to gather the missing relics scattered around the map, which are 3 

in number. After we complete that mission, the next one is to craft the special item, and with 

the completion of that we have to take the crafted item to the “final tower”, to deposit it there 

and release a beam of light. That is as far for the story of the game. In this project we 

recognize a pattern of sequential missions as we call it. That means each mission to be 

available needs another mission to be completed first, and this is one type of mission. Then 

there are the non-sequential missions. These missions do not require a previous mission to be 

completed, instead they are always active and ready to be complete. 

 

 The concept is to have a mission controller (MissionController.h) that will handle all 

the missions we create, if the are registered with this controller. After we create the mission 

controller with all of its functions such as storing all the missions, register them, and 

notifying various parts of the game like the UI when a mission is updated (ex. When we 

gather one of the missing relic). And then we expose this class to a blueprint for an easier 

control over this component. 

 

 Next, we have the missions. All missions inherit from the MissionInterface.h which is 

responsible for registering, updating, and finishing a mission. And then we have created a 

class called Mission.h which inherits from the interface we talked earlier and use that class to 

expose as our Blueprint mission class. So, all our missions now are blueprints inheriting from 

the Mission.h, and that way every mission that we create is controllable from our mission 

controller which only recognizes MissionInterface.h classes. 

 

 The logic of each mission goes into the blueprint we create every time, where we 

specify by which controller this mission will be handled by, what type of mission it is, and in 

which order this mission will be executed by declaring which missions this mission need to 

be completed first. 

 

 
Figure 83: OnUpdate of the Find Relics mission inside the blueprint 
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 Now we will see how the Find Relics mission is created. First, we need to have a class 

for our mission items that we gather. Every mission blueprint we talked about that we inherit 

from comes with a TArray that stores all the MissionItem.h references we have. Every 

mission item mesh comes with a collision profile, and it is where we assign the delegate 

event that will notify the mission when we overlap with the Player. We also expose the 

MissionItem.h to a blueprint class to be able to change the mesh of the collectable item fast 

without recompiling the code and add logic to the item. The item in our project is the 

following: 

  

 
Figure 84: Relic (MissionItem.h) 

 

 We have 3 of those scattered on the map and need to be collected. Each one has a 

particle system inside that is activated when we gather the item, a pickup sound that player 

when we interact with it and notifies the mission which it belongs to. The mission itself store 

the references of these object in the scene along with other information we assign to it like 

the controller and the required mission (in this case none since it is the first mission). 

 

 
Figure 85: Find Relics Mission details 
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 The blueprint of this mission holds the logic of its completion. It handles what 

happens when we gather one item and when we have gathered all the items. 

 

 
Figure 86: Find Relics OnUpdate (when we pick up one MissionItem and calls OnFinished) 

 

 
Figure 87: OnFinished, checks if we have completed the mission 
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The Player 

 For the player character now, we have a mesh (arms only since it is an FPS game) for 

the character, and a weapon all created and animated through blender using the addon created 

by Epic Games “Send to Unreal” which help to export the animation and the meshes to unreal 

faster and with the correct values adjust for the fbx export (such as scale of the model). The 

player can Walk, Run, Crouch, Jump and Mantle on static meshes. The mantle system is 

tweaked version of the ALS v4 Locomotion System on the Marketplace, to fit our needs with 

our character. The character can also shoot at the enemy. 

 Let us see first how we created and rigged the mesh of the character and the weapon 

in blender. As we talked about earlier the character has only the arms modeled, which are just 

the standard arms extracted from a basic human mesh. 

 

 
Figure 88: FPS Arms modeled in blender 

 

 
Figure 89: FPS Arms Rigged 

 

 

 

 



62 
 

And we also created the weapon mesh that we attach to the arms later inside the 

engine using a bone socket to follow all the animations created inside blender. For the 

modeling of the weapon the process of the hard surface modeling using Booleans used a lot 

in this project. 

 

 
Figure 90: Weapon model inside blender 

 

Following the asset pipeline methods, we talked about earlier we textured the weapon using 

Quixel Mixer. 

 

 
Figure 91: Weapon textured and rendered inside Unreal 

 

 

 

 The same way we created the missions using C++ classes and exposing them to 

blueprints, is the way we created our character. The base is done in C++ and more of the 

logic happens inside the Blueprints. 
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Figure 92: The character even graph Blueprint 

 

 Here are most of the events that the player can have. Things like Aiming where we 

activate the animation and changing the FOV of the camera, Sprinting, Mantling, and Firing 

our weapon are being handle here. For example at the Fire Action section we project a line 

from the middle of the screen to the world, then we take the vector hit result and the vector of 

the muzzle location we defined on the weapon mesh (where our bullet will spawn) and we 

spawn a projectile with the rotation to follow the line we projected from the muzzle location. 

After that we have some more things to handle. First, the damage from the bullet to the 

enemy will be handled from the projectile class itself so we do not have to do anything else 

for that part. But what we need to make sure we do is the following: 

o Spawn the Noise Event for the AI to pickup if its close enough 

o Spawn the Damage Event for the AI if we hit the AI 

o Spawn the particles of firing the weapon 

o Play the weapon firing sound 

o Adjust the recoil of the weapon 

o Update the ammo counter 
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Mantling is also being done inside blueprints. As we said earlier most of the logic 

came from the ALS v4 Locomotion system from the marketplace, but a few tweaks went into 

it to make it work for our character. This system is divided in 4 functions, one that checks if 

we can perform a mantle called Mantle Check, one to start the mantle called Mantle Start, 

one for updating the mantle in case we have a moving object that we want to climb on called 

Mantle Update and we also have the Mantle End which completes the mantle, and essentially 

what is does is to bring the character back to normal state. 

 

 
Figure 93: Mantle Check 

 
Figure 94: Mantle Start 
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Figure 95: Mantle Update 

 

 

 
Figure 96: Mantle End 
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Particles 

 For the particles in the scene the Niagara system was used. It is the new particle 

system that Unreal provides us, and the particles now have some special features such as 

coding them in the blueprint editor and be able to communicate with other objects in the 

scene. We generally use particles when we interact with the game, like fire from the weapon, 

hit the target, gathering and crafting items. In the next example we are going to look how the 

particle effect of the crafting interaction was created, that looks like this. 

 

 
Figure 97: Particle Emitter 

 

We can see that the particles are spawn to look like the mesh (relic) on the right. That is 

because we can communicate data for the particle simulation. What we did is to take the 

mesh of the relic and spawn particles randomly in each vertex of the mesh. 

 

 
Figure 98: BP for the Mesh data 
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Final Overview 

 Here are some photos of the final scene complete. 

 

 

 

 
Figure 99: Final Image 1 

 

 
Figure 100: Final Image 2 
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And some more, 

 

 

 

 

 
Figure 101: Final Image 3 

 

 
Figure 102: Final Image 4 
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Results 

 The game runs very good in maximum settings and that was the goal after all, have 

the best settings and great performance. On average we hit more that 70-80 fps, we never dip 

bellow 60, and there are many times we get 100+ fps. This result is achieved with an 1080p 

resolution and Epic settings, with memory not exceeding 2000mb, in an average hardware 

(Ryzen 2600x, RTX 2060 Super, 16 GB ram). The results look very promising, and the good 

thing is that they scale easy, making it also ideal for next-gen platforms. 

 

Conclusion 

 Having achieved all the above, with delivering performance and quality in graphical fidelity, 

this project was a very valuable lesson, and a great learning experience. It is hard and takes a lot of 

time to develop a triple A game, and it is also hard for a solo developer. There are many areas which 

need to be explored more, that is why it takes huge team to develop the recent AAA games, because 

its area needs its own expertise. Modeling, Animation, VFX, Engine, Editor, Particles, Storytelling, 

and many more goes into creating a game, and to create a high quality one it a difficult task. Creating 

this project made me understand somewhat what goes through creating a game, and how many 

different technologies can be combined to achieve that result. 

Feature Development 

 We could evolve this project in many ways. Lighting could be explored more, to 

create a more dynamic day/night system by baking the indirect lighting not just once but 

many times for different hours and blend them as the day progresses, but that would require 

many work on the engine level as this is not possible yet. Models could be more optimized 

and ready for shipping with better remeshing and accuracy to detail. Shadows are one more 

area we could see, because as of right now they take a big percentage of the render time. 

 And lastly, although we did some work on the gameplay, and the character, we could 

add a bigger story by adding missions, paying more attention to the character model and 

animations, and creating an open world game experience, by scaling up the landscape and 

add more variations to it. 
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