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Abstract 

In the last years, localization has evolved into a topic of increasing scientific interest, since 

the urge to be able to detect a position at any time has become a matter of prime importance. Many 

applications nowadays use localization, including GPS positioning, mobile phone technologies 

and robotics. One of the main methods of localization – and the topic of this thesis – is 

triangulation. Triangulation is used extensively since it offers an efficient way to determine 

someone’s position just by taking bearings on them. The current thesis will be conducted on the 

area of transmitters’ range free localization using triangulation. In a wide area of interest (AOI), 

where many transmitters may operate, it is important for a Fixed Sensors Network (FSN) to be 

able to estimate the transmitters’ positions. If more than one transmitter operate in the AOI, then 

at least three sensors are needed to cover that area. In the case of obstacles/interference in the AOI, 

more than three sensors are needed for adequate coverage of the area. The sensors are organized 

over an area of several square kilometers, collecting data in real time. Algorithms need to be 

developed for the analysis and processing of the collected data, as well as the transmitter’s position 

estimation and projection on the map. The collected data needs to be analyzed, in order to find all 

high-intensity bearings corresponding to the transmitter. The data must then be used in 

triangulation algorithms, in order to find all triangulation areas of the transmitter’s potential 

position. Finally, using the triangulation areas, the transmitter’s position must be estimated and its 

geographical position must be projected on the map in real time. Following what has been 

described, the thesis’ structure is formed by the following stages: a) sensor data 

analysis/processing, b) triangulation areas’ determination and c) transmitter’s position estimation 

and its projection on the map.  

 



  

Σύνοψη 

 Τα τελευταία χρόνια, ο εντοπισμός θέσης έχει αναχθεί σε θέμα αυξανόμενου 

επιστημονικού ενδιαφέροντος, καθώς η ανάγκη για την ανίχνευση θέσης σε οποιαδήποτε στιγμή 

έχει καταστεί θέμα πρωταρχικής σημασίας. Στις μέρες μας πολλές εφαρμογές χρησιμοποιούν 

εντοπισμό, όπως το GPS, η κινητή τηλεφωνία και η ρομποτική. Μία από τις κύριες μεθόδους 

εντοπισμού – και το κύριο θέμα της παρούσας εργασίας – είναι η μέθοδος του τριγωνισμού. Η 

μέθοδος του τριγωνισμού χρησιμοποιείται εκτεταμένα, καθώς  προσφέρει έναν αποτελεσματικό 

τρόπο για να προσδιορίσουμε την θέση κάποιου, απλά εφαρμόζοντας διοπτεύσεις προς το μέρος 

τους. Η παρούσα εργασία θα διεξαχθεί στον τομέα του προσδιορισμού θέσης πομπών, με την 

χρήση μεθόδων τριγωνισμού. Σε μια ευρεία περιοχή ενδιαφέροντος, όπου μπορεί να λειτουργούν 

πολλοί πομποί, είναι σημαντικό για ένα Δίκτυο Σταθερών Αισθητήρων (Fixed Sensor Network – 

FSN) να είναι σε θέση να εκτιμήσει/εντοπίσει την θέση των πομπών. Εάν περισσότεροι από ένας 

πομποί υπάρχουν στην περιοχή ενδιαφέροντος, τότε χρειάζονται τουλάχιστον τρεις (3) αισθητήρες 

για την επαρκή κάλυψη της περιοχής. Σε περίπτωση εμποδίων/παρεμβολών στην περιοχή, τότε 

περισσότεροι από τρεις (3) αισθητήρες χρειάζονται για την επαρκή κάλυψη της περιοχής. Οι 

αισθητήρες είναι οργανωμένοι σε μια περιοχή αρκετών τετραγωνικών χιλιομέτρων, συλλέγοντας 

δεδομένα σε πραγματικό χρόνο. Για την ανάλυση και την επεξεργασία των δεδομένων, καθώς και 

για τον προσδιορισμό και την προβολή της θέσης ενός πομπού στον χάρτη, καθίσταται απαραίτητη 

η ανάπτυξη κατάλληλων αλγορίθμων. Τα δεδομένα που συλλέγονται πρέπει να αναλυθούν, ώστε 

να εντοπιστούν όλες οι διοπτεύσεις μεγάλης έντασης πεδίου που αντιστοιχούν στον εκάστοτε 

πομπό. Έπειτα, τα δεδομένα πρέπει να εισαχθούν σε αλγόριθμους τριγωνισμού, έτσι ώστε να 

εντοπιστούν όλες οι δυνατές περιοχές τριγωνισμού, μέσα στις οποίες ενδέχεται να υπάρχει ο 

πομπός. Τέλος, χρησιμοποιώντας τις περιοχές τριγωνισμού, πρέπει να εντοπιστεί η γεωγραφική 

θέση του πομπού και να προβληθεί το γεωγραφικό του στίγμα στον χάρτη σε πραγματικό χρόνο. 

Ακολουθώντας, λοιπόν, τα όσα διατυπώθηκαν έως τώρα, η δομή της εργασίας διαμορφώνεται στα 

ακόλουθα στάδια: α) ανάλυση/επεξεργασία δεδομένων των αισθητήρων, β) προσδιορισμός 

περιοχών τριγωνισμού και γ) προσδιορισμός/εκτίμηση του γεωγραφικού στίγματος του πομπού 

και προβολή του στον χάρτη. 
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Chapter 1 - Introduction 

 1.1 Chapter Overview 

The introductory chapter provides an overview of the topics that will be addressed in the 

current thesis. The thesis’ focus and contribution to existing knowledge will be presented. 

Moreover, a brief summary of the chapters’ contents will be provided, in order to prepare the 

reader for what to expect from the thesis. 

 

 

 1.2 Focus 

The main focus of the thesis will be sensor data analysis and processing, in order to perform 

localization using the method of triangulation. There will be a Fixed Sensor Network (FSN) 

provided, with its sensors collecting amounts of data over a large area of several square kilometers 

on the surface of the Earth (area of interest – AOI) in real time. The sensors will be connected 

wirelessly via 4G, thus declaring our network a Wireless Sensor Network (WSN).  

Our aim is to process and analyze the collected data and use it in triangulation algorithms, 

in order to estimate a transmitter’s position that may potentially enter our AOI. Moreover, upon 

estimating the transmitter's position, the next step is to project its geographical position on a map 

in real time, in order to able to keep track of the transmitter’s activity while being in our AOI. 

 

 

 1.3 Contribution to knowledge 

The current thesis aims to offer the following contributions: 

i. An algorithm for analyzing and processing the data collected by various sensors in 

a Wireless Sensor Network (WSN), in order to find all high-intensity bearings for 

transmitters entering the area of interest (AOI) 

ii. An algorithm for finding all triangulation areas, in case a transmitter/number of 

transmitters enter the area of interest (AOI), using triangulation methods and the 

high-intensity bearings, as defined by the previous algorithm 
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iii. An algorithm for estimating the transmitters’ locations and projecting their 

geographical locations on the map 

iv. A software combining all three (3) algorithms into one (1) program, divided into 

three (3) steps: a) data analysis, b) triangulation areas’ determination and c) position 

estimation 

 

 

 1.4 Thesis organization 

The current thesis is organized in five (5) chapters: 

i. Chapter 1 – Introduction: contains the introductory information of the thesis 

ii. Chapter 2 – Related Work: presents the related work that has been conducted, 

concerning the topics of the thesis, such as Wireless Sensor Networks (WSNs) and 

the problem of localization 

iii. Chapter 3 – Methodology and Technologies: presents the localization method that 

will be used in the current thesis (triangulation) and the technologies that will be 

used in the development phase 

iv. Chapter 4 – Project Analysis: presents the problem statement, the algorithms’ 

description and the experiment/results of the thesis 

v. Chapter 5 – Conclusion/Future Work: contains a summary of what was presented 

in the thesis and lists the next steps that will be implemented as future work 
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Chapter 2 - Background / Related Work 

 2.1 Chapter Overview 

The current chapter gives a detailed overview of the related work that has been conducted 

on the fields of Wireless Sensor Networks (WSNs) and localization. In the last years, the problem 

of localization has evolved into a topic of increasing scientific interest. Moreover, due to the 

concurrent increase of Sensor Network applications in many fields, the urge to be able to detect a 

transmitter’s position at any given time has been deemed a matter of great importance.  

One of the many localization techniques – and the topic of the current thesis – is the process 

of triangulation. In this chapter, we will present some information on both general topics – such 

as Sensor Networks – and on the topics regarding this thesis, such as Fixed Sensor Networks 

(FSNs), Wireless Sensor Networks (WSNs), range-free localization and fuzzy systems that use the 

process of triangulation in order to perform localization. 

 

 

 2.2 Sensor Networks 

In recent years, various types of Sensor Networks have been used in a wide range of fields, 

including environmental monitoring, medical, scientific, military purposes etc. A Sensor Network 

can be defined as a group of sensor nodes that cooperate in order to carry out specific tasks [1]. 

Depending on the use the network is intended for, the architecture, topology, scalability and sensor 

characteristics may vary. In contrast to conventional networks, Sensor Networks rely on dense 

deployment and coordination. 

There are numerous different types of Sensor Networks, depending on their state, the types 

of sensors they consist of, their topologies and their scale. Networks deployed in broad areas may 

face challenges regarding scalability and area coverage, though these issues can be successfully 

confronted by the correct choice of sensors and the network’s tailoring to the demands of its 

intended use. It is worth noting that each network is designed for a particular purpose, therefore 

one network may not be suitable for another purpose. 

In the current thesis, we will use a Fixed Sensor Network (FSN), in which all sensors 

communicate wirelessly with each other via 4G. The network’s deployment can occur anywhere 
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on the surface of the Earth, where wiring connection may not be feasible. Therefore, wireless 

communication between the sensors is required, declaring our network also a Wireless Sensor 

Network (WSN). In Fixed Sensor Networks, sensors are deployed in fixed positions, therefore 

their geographical positions are already known. The positions have been acquired with GPS, so 

the network system is aware of their coordinates, meaning that no further action is required, in 

order to determine the sensors’ positions. The network is deployed within a predetermined 

geographical area, also known as area of interest (AOI), to collect large amounts of data. The data 

is then forwarded to a database for analysis. 

In our network, the sensors cooperate wirelessly with one another, via a Wireless Local 

Area Network (WLAN). As described in [2], there are three (3) basic components that constitute 

a WLAN: a) the access point (connecting the client to the Internet), b) the Wireless Medium and 

the Client/Station. The client can be a laptop, tablet or a smart phone with Wi-Fi. The 

communication between the sensors is very critical and depends on the topology and the internal 

architecture of the wireless sensor nodes [3]. Moreover, in order to optimize the total energy 

consumption of the network, the positioning of the base station that collects and handles the data 

is also crucial [4].  

In the unfortunate scenario of a sensor/number of sensors failure in a WSN, critical 

information might be lost. The related work on connectivity recovery describes a group of sensors 

using their movement, in order to contribute to the recovery process. In [5], authors presented a 

novel distributed algorithm named “Autonomous Repair (AuR)” – regarding a WSN in which 

sensors are movable – that enables connectivity restoration through local coordination among 

sensors in the individual segments. The neighbors of a failed node collaboratively decide on the 

network’s recovery, by moving one or more healthy nodes. 

 

Note: The information stated above is not directly connected to the current thesis’ focus. It 

concerns topics that refer to Sensor Network organization and technical details about the 

network’s orchestration. However, it is important to be aware of our network’s contents and 

behavior, since it may offer valuable help for future work and optimizations, both on the network’s 

orchestration/deployment and recovery. 
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 2.3 Fuzzy Logic in Wireless Sensor Networks 

Ongoing research that implements Fuzzy Logic theory for detection in WSNs exists in 

many sectors, including fire detection and warning systems. In [6], a Fire Monitoring and Warning 

System (FMWS) was presented – based on Fuzzy Logic – for the detection of a real existent and 

dangerous fire incident, transmitting alerts to the Fire Management System (FMS). Energy 

consumption is a crucial problem in a WSN, since it has a direct impact on the network’s operation 

and lifetime. In [7], authors presented a novel energy-sufficient method which uses Fuzzy Logic 

applied on cluster heads (CH) of WSNs, focusing on cluster formation. The presented model 

proved that the proposed protocol improves network lifetime when compared with the low-energy 

adaptive clustering hierarchy protocol.  

In [8], authors used a Fuzzy Logic algorithm to estimate the sensor nodes’ positions in a 

WSN. Despite the use of a fuzzy controller and a specific defuzzification method, it was noted that 

there are still numerous fundamental issues that need to be solved for the development of WSNs’ 

technologies. In [9], a Fuzzy Logic Cluster Leach Protocol (FUZZY-LEACH) was applied, that 

used a Fuzzy Logic Inference System (FIS) in the cluster process. It was proven that the network’s 

energy consumption decreases when multiple parameters in the cluster are used. Fuzzy Logic in 

WSNs enhances decision-making, contributes to resource consumption and generally increases the 

network’s performance through effective deployment, localization, cluster head selection, security 

etc. [10]. In [11], Kapitanova et al. demonstrated that Fuzzy Logic in a WSN monitoring a fire 

event (fire and smoke) can provide a more accurate event detection. 

By far, the most fuzzy-based reasoning used in fuzzy-based positioning systems is the 

Fuzzy Inference (FI). The two (2) most commonly used aggregation functions are the Mamdani-

Type and the Sugeno-Type Fuzzy Inference Systems (FIS) [12]. In [13], Garcia-Jimenez et al. 

introduced a specific generalization of the Mamdani-Type FIS, by using overlap functions and 

overlap indices. The fuzzy method that was presented – based on overlap indices – aims to improve 

fire detection by utilizing a WSN and analyzing fire lightness and distance. For the same purpose, 

two (2) fuzzy techniques based on temporal characteristics were proposed in [14]. Through the use 

of a WSN and the incorporation of Fuzzy Logic in the network’s sensor nodes, evidence of fire is 

analyzed, this time however by evaluating and comparing both previous and present temperature 

values. 
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In [15], authors explored energy consumption of a WSN by using a fuzzy Genetic 

Algorithm (GA) clustering and Ant Colony Optimization (ACO) routing. Fuzzy Logic was used 

for cluster formation and clusters’ head selection. A Genetic Algorithm was used for the optimum 

generation of fuzzy rules and the tuning of the output value of the Fuzzy Logic’s membership 

functions, whereas the proposed Ant Colony Optimization (ACO) was used to route the 

information in the shortest path between the cluster heads and the base station. The results showed 

an improvement in the energy level of a single node and an enhancement in the overall network’s 

lifetime. 

 

 

 2.4 Localization in Wireless Sensor Networks 

There are two (2) main categories of localization in Wireless Sensor Networks: a) 

Target/Source localization and Node self-localization [1]. Depending on the area of interest (AOI), 

Target/Source localization can be classified in two (2) categories: 

i. Indoor: target may be a human or device moving inside a house 

ii. Outdoor: target may be a vehicle or aircraft 

 

There are also cases of underwater localization, where the target may be a sea animal. Depending 

on the number of targets, Target/Source localization can be either Single-Target or Multiple-

Target. A lot of research has been conducted in the Single-Target localization field. For instance, 

the source location can be estimated by the Angle of Arrival (AOA) [2] or the Time Difference of 

Arrival [3], [4], [16]. However, not so much research has been conducted in the field of Multiple-

Target localization and most papers are based on the likelihood estimator, thus not providing 

efficient results. 

 Localization in WSNs can also be range-based or range-free. In range-based localization, 

distance between nodes needs to be calculated, whereas in range-free techniques localization is 

related between nodes and topological information of sensor nodes [17]. Range-based schemes are 

distance-estimation and angle-estimation-based techniques. Classic methods of range-based 

localization include Time of Arrival (TOA), Time Difference of Arrival (TDOA), Angle of Arrival 

(AOA) and Received Signal Strength (RSS) [18]–[22]: 
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i. Time of Arrival (TOA): measures travel times of signals between anchor nodes 

and an unknown node 

ii. Time Difference of Arrival (TDOA): locates arrival time of signals by measuring 

the difference between anchor nodes and an unknown node, thus achieving high 

ranging accuracy 

iii. Angle of Arrival (AOA): estimates location of an unknown node by using the 

angles between anchor nodes and the node 

iv. Received Signal Strength (RSS): distance between transmitter and receiver is 

estimated by measuring signal strength at the receiver 

 

In contrast to range-based localization, range-free localization is the preferred option for 

WSNs, since it is a more inexpensive method. Range-based approaches require high-cost hardware 

and consume more energy. Range-free techniques provide a cost-effective alternative, since only 

a fraction of sensor nodes – anchor nodes – are used in the localization process. Classic range-free 

algorithms include the Distance Vector (DV) Hop, the Centroid and the Approximate Point in 

Triangulation (APIT): 

i. Distance Vector (DV) Hop: range between nodes is estimated using hop count 

ii. Centroid: uses proximity-based grained localization algorithms to estimate an 

unknown node’s location 

iii. Approximate Point in Triangulation (APIT): uses regional determination to 

estimate an unknown node's location 

 

It has been shown that the Centroid algorithm is very cost-effective, whereas DV Hop is efficient 

in larger networks [23]–[25]. 

 The current thesis will be conducted on the area of range-free localization, using 

triangulation and a variation of the Centroid algorithm. Despite some notable research that has 

been conducted in the area of triangulation in WSNs, there still remains a lot to be discovered. In 

[26], a novel work on transmitters’ localization using triangulation with a FSN was proposed. In 

order for the network to be able to continue working normally, the detection complexity was 

tackled by finding the optimal detecting sensor radius. The system was able to keep a high 
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detection rate, while also identifying potential new transmitters that would enter its area of interest 

(AOI).  

As the triangulation problem becomes highly complicated in networks with many sensors 

and transmitters, an adequate grid topology is needed, in order to tackle detection complexity. In 

[27], authors proposed a network grid topology for a FSN that uses triangulation, in order to 

perform localization. Moreover, concepts like sensor blindness and overall network blindness were 

analyzed. Finally, in [28], Sfendourakis et al. presented a FSN that implements Fuzzy Logic, in 

order to perform localization with triangulation and increase the network’s detection rate. 

Furthermore, the authors proved that in the case of an increase in the transmitters’ number in the 

AOI, the proposed system was able to maintain its high performance by utilizing additional groups 

of sensors in a sub-region of the AOI. Therefore, even in the event of the network’s saturation by 

many transmitters in one region, new transmitters can still be detected when entering the AOI. In 

the next chapter, the basic triangulation principles and the methodology of the current thesis will 

be further analyzed. 
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Chapter 3 - Methodology and Technologies 

 3.1 Chapter Overview 

The current chapter gives a detailed description of the methodology, basic concepts and 

principles that will be used for the development of the thesis. Despite the numerous localization 

categories that were mentioned in Chapter 2 (section 2.4), we will use triangulation as a 

localization method, in order to determine a transmitter’s position. Moreover, we will define the 

basic principles of triangulation, along with a brief analysis of the sensors that will be used for the 

needs of the current thesis. Last but not least, we will refer to the technologies that will be used for 

the development of the project. The technologies include Java as our programming language and 

Node-RED as our synchronization environment between the stages of the program. 

 

 

 3.2 Triangulation as a localization method 

In trigonometry and geometry, triangulation is the process of determining the location of a 

point by forming triangles to it from known points [29]. Triangulation is of great importance, 

because it offers a way to determine one’s location just by taking bearings to them. 

A bearing (or azimuth) is the horizontal angle between the direction of an object and the 

North (or another object) [30]. The line that is marked based on the angle is called a bearing path. 

In the current project we will be using absolute bearings, which refer to the clockwise angles 

between a point and the true North (true bearings). Bearings are usually given as a three-figure 

sequence. The sequence consists of two (2) characters and one (1) number: the first character is 

either N or S, referring to North or South respectively. Next part of the sequence is the angle value, 

usually in degrees (e.g., 45°). The last part of the sequence is either the characters E or W – 

referring to East or West respectively – and represents the direction of the angle away from the 

reference ray. The angle value will always be less than 90°. For instance, if point B is located 

exactly southeast of point A, the bearing from A to B is S45°E. 
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Figure 3.1. Sensor A with bearing angles φ1, φ2 

 

 

Among its many uses, triangulation is widely used in many scientific fields, some of them 

including: 

▪ Results confirmation/validation 

▪ Bias minimization 

▪ Data information validation 

 

In the current chapter, however, we will look into triangulation as a method of localization, in 

order to determine a transmitter’s position on the surface of the Earth. Moreover, in the next 

sections we will analyze the basic methodology that will be used, as well as general information 

about the concepts of triangulation. 
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3.3 Determination of all triangulation areas 

Triangulation area is the result of the intersections of three (3) or more bearings by different 

sensors. It is defined as the common area of the intersections between the sensors’ bearing paths. 

The triangulation area’s size is analogous to the distance between the sensors and the intersection 

point; smaller triangulation areas are formed by sensors closer to the intersection point, in contrast 

to sensors far from the intersection point, where larger triangulation areas are formed (more on 

this matter at the end of section 3.6). 

In order to determine all triangulation areas of more than one (1) transmitter, two sensors 

in the network are not enough. The main reason is that each sensor can only detect direction – 

according to its bearing angles – and not distance, preventing us from determining the exact 

geographical positions of the transmitters. 

For instance, if a transmitter enters our area of interest (AOI), then two (2) sensors are 

enough to detect it, since both of them will bear to it and its geographical position will be the 

intersection point of their bearings. More analytically, the first sensor will bear to the transmitter 

but will not be able to detect its exact position, due to its inability to calculate the transmitter’s 

distance from the sensor. For this reason, a second sensor needs to be placed in the network. The 

second sensor’s bearing to the transmitter will intersect the first sensor’s bearing at a specific 

geographical point. This point comprises the transmitter’s exact location in our AOI. 
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Figure 3.2. One transmitter is detected by two (2) sensors A and B 

 

 

On the other hand, if two (2) or more transmitters enter our AOI, then two (2) sensors are 

not enough to detect the transmitters’ positions. Following the above same procedure, the two 

sensors will bear to the transmitters’ direction, each one acquiring two (2) bearing paths. As a 

result, we will now have 4 intersection points between the sensors’ bearings (instead of two (2) as 

stated above), due to each sensor’s two (2) different bearings to each transmitter. Since the 

intersection points are more than the transmitters (Figure 3.3 – marked with green dots), there is 

no way to know exactly which two (2) points correspond to the transmitters’ positions. 
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Figure 3.3. Two sensors are not able to detect two (2) or more transmitters 

 

 

In these cases, one (1) or more sensors are placed in our network – depending on the area’s 

requirements – estimating the exact location of each transmitter (Figure 3.4 – marked with blue 

dots). 
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Figure 3.4. A third sensor is placed, in order to detect the two (2) transmitters 

 

 

 3.4 The importance of ±x degrees in bearing accuracy 

When talking about triangulation and bearing, it is important to define each sensor’s 

bearing accuracy. Each sensor can detect a transmitter with a certain accuracy. Due to construction 

reasons, the detection accuracy may vary from 1° to 5°. This means that the bearing paths are not 

one (1) bearing path, but more like two (2), resembling the sides of a triangle, with the initial 

bearing being the triangle’s median side.  
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Figure 3.5. Sensor bearing angles with ±div 

 

 

Therefore, a new variable is inserted into our problem, representing the divergence (error). 

The sensor’s bearing accuracy is not defined by the initial bearing angle anymore, but is 

represented as a range, formed by the formula:  

 

accuracy = [initial bearing angle – error, initial bearing angle + error]  (I) 

 

meaning that the sensor’s bearing is not defined by a single angle, but by a range of angles from 

(initial bearing-error) to (initial bearing+error). In this way, a wider range of angles, including a 

certain detection error, is covered. We will refer to the error as divergence (div). As stated above, 

the divergence may vary from 1° to 5°, according to parameters like environment, distance and 
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other external factors. Using the above formula, we end up with two (2) bearing paths (initial-div, 

initial+div), instead of one (initial), that will be used in the triangulation method. 

 

 

 3.5 Bearing from multiple sensors for position estimation 

Given two (2) sensors A (x1, y1) and B (x2, y2) in our network, along with their 

corresponding bearing angles Aφ1 and Bφ1, we use the accuracy formula (I) described above to 

provide each sensor with its two (2) bearing paths. After the application of the formula, sensor A’s 

bearing accuracy ranges from (Aφ1-div) to (Aφ1+div), whereas sensor B’s bearing accuracy 

ranges from (Bφ1-div) to (Bφ1+div). Combining the four (4) bearing paths creates the 

quadrilateral [Q1, Q2, Q3, Q4] that represents the common area between the two sensors’ bearing 

paths. 
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Figure 3.6. Quadrilateral representing the common area between bearings of sensors A, B 

 

 

As mentioned earlier, in the case of two (2) or more transmitters, we need more than two (2) 

sensors in order to find all triangulation areas. Applying this method to three (3) random sensors 

A (x1, y1), B (x2, y2) and C (x3, y3) and their corresponding bearing angles Aφ1, Bφ1 and Cφ1, 

the image of our network is as follows: 
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Figure 3.7. Triangulation area between the bearings of three sensors A, B and C1 

 

 

As we can see, sensors A and B form the quadrilateral [Q1, Q2, Q3, Q4] (by the intersection of 

their bearing paths (Aφ1-div), (Aφ1+div), (Bφ1-div), (Bφ1+div)), whereas sensors B and C form 

the quadrilateral [K1, I2, I3, K4] (by the intersection of their bearing paths (Bφ1-div), (Bφ1+div), 

(Cφ1-div), (Cφ1+div)).  On the other hand, sensors A and C form the quadrilateral [I1, K2, K3, 

I4] (by the intersection of their bearing paths (Aφ1-div), (Aφ1+div), (Cφ1-div) and (Cφ1+div)). 

By defining the three (3) quadrilaterals that are formed by the bearing paths of two (2) sensors 

each time, we can observe that they have common area with each other, defined by the newly 

 

1 All three (3) sensors use the same divergence value. The bearing paths for sensors A and B were drawn “wider”, in 

order to achieve clarity and simplicity. In reality, they are as narrow as sensor C’s bearing paths. 
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formed quadrilateral [I1, I2, I3, I4]. The new quadrilateral is the requested triangulation area, 

determined by the three (3) sensors A, B and C.  

As stated in section 3.3, the triangulation area’s size is analogous to the distance between 

the sensors and the intersection point; smaller triangulation areas are formed by sensors closer to 

the intersection point, in contrast to sensors far from the intersection point, where the formed 

triangulation areas are wider. By applying the accuracy formula (I), we acquire two (2) bearing 

paths for each sensor and can take a notice at the formed triangulation areas below: 

 

 

Figure 3.8. Small triangulation area by sensors closer to the intersection point 
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Figure 3.9. Wider triangulation area by sensors far from the intersection point 

 

 

 3.6 Sensor Description 

The sensors that will be used in our network are a combination of an inertial system with 

the transmission of Very Low (VLF) and Ultra Low (ULF) electromagnetic frequencies [31]. The 

inertial system moves on a circular motion path and consists of four (4) units:  

i. An electronic box containing: 

a. A signal generator system (producing electromagnetic signals) 

b. A force detection circuitry 

ii. A telescopic antenna (from where the signals are emitted) 

iii. A perpendicular axis (fixed underneath the generator box around which the circular 

motion will take place 

iv. A base (through which the system will be able to rotate around its axis) 

 

 



26 

 

 

Figure 3.10. Inertial system with its base [31] 

 

 

 

Figure 3.11. Inertial system with its four (4) units [32] 

 

 

The system’s motion is described by angular velocity ω(t). The weight of units (i) and (ii) 

causes a torque that makes the system rotate around its axis. The generator circuitry applies a signal 

on the antenna, which may differ (depending on the material that needs to be detected) and affect 

the movement. In the case of a detection – that is when a specific material is located towards the 

direction pointed by the antenna – a force is exerted on the sensor’s antenna, altering its expected 
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motion. The stronger the force, the sooner the system’s movement will be affected. In other words, 

detection is translated as deceleration of the system. 

The sensor’s angle is calculated using Gray Code [33]–[37]. Gray Code is a binary 

enumerating system in which consecutive numbers differ by one (1) bit. For our system, a 9-bit 

Gray Code is used, in order to have 29 = 512 angle combinations. A cycle is equal to 360°, so the 

accuracy of each step in the code is: 

 

360° / 512 = 0.7031° ≈ 0.7° 

 

meaning that the minimum difference of the calculated angles is about 0.7°. The disk on which the 

Gray Code is printed is attached to an electronic reader communicating with a Raspberry Pi 4 

board, which sends the angles’ readings wirelessly to a computer. The readings are produced with 

a rate of approximate fifteen (15) angle readings per second, according to the sensor’s 

manufacturing. 
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Figure 3.12. Vertical representation of the 9-bit Gray Code 
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Figure 3.13. Complete inertial system 

 

 

 3.7 Technologies 

 3.7.1 Programming Language 

The programming language that will be used for the development of the current project is 

Java [38]. The language decision was based on objective criteria – such as the numerous 

possibilities and libraries that Java offers (both in 2D and 3D) – as well as on the author’s personal 

preferences. The JDK (Java Development Kit) version will be v19.0.2 and the IDE that will be 

used for the development will be IntelliJ v2021.2.3 Ultimate Edition by JetBrains [39]. 

 

 

 3.7.2 Synchronization Environment – Node-RED 

Node-RED is a flow-based development tool for visual programming, used for event-

driven applications [40]. It provides a web browser-based flow editor and allows for code 

execution at the flow’s nodes.  
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Our project consists of three (3) individual programs, which are serially executed and 

interdependent. This means that one program’s output is used as input for the next program. The 

three (3) programs are synchronized via Node-RED. The flow starts by executing the first program 

and acquiring its output. The output is then built into a new file that will be fed as input into the 

next program of the flow. The same procedure happens between the second and the third program 

as well. Synchronization, output acquisition and new input creation are executed in the 

intermediary nodes of the flow between the programs. More information about the programs and 

their inputs/outputs is provided in the next chapter. 
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Chapter 4 - Project Analysis 

 4.1 Chapter Overview – Problem Statement 

The current chapter gives a detailed statement of the problem, the algorithms that were 

used for the purpose of the thesis and the experiment that was conducted, along with the acquired 

results. 

There is a Wireless Sensor Network (WSN) organized over an area of several square 

kilometers, collecting data in real time. The data’s nature is of field strength from various 

directions around each sensor. In order to efficiently organize and analyze the data and find high-

intensity bearings (bearings at which a transmitter was detected), algorithms need to be developed. 

The existing sensors do not provide any information about the distance of a potential transmitter. 

It is important to be able to recognize new bearings at which a transmitter was detected and 

distinguish them from pre-existing ones, as well as how they change over time. 

Furthermore, it is necessary to develop triangulation algorithms – in order to estimate the 

transmitter’s position – and to project the transmitter’s geographical position on a map, showing 

how it has changed over time. 

 

 

 4.2 Project Overview 

The thesis consists of three (3) individual programs, all interdependent and executed in a 

serial way, in order to produce the final result. The flow of the programs is the following: each 

sensor rotates in a 360° radius collecting large amounts of data, which has to be filtered and 

organized in a way such, as to be used correctly and efficiently.  

In order to be able to estimate a transmitter’s position entering our area of interest (AOI), 

we have to be able to perform 3 actions:  

i. Understand high-intensity bearings (meaning that “something” – a potential 

transmitter – might be in that area) 

ii. Perform triangulation methods using these bearings, in order to find all 

triangulation areas 

iii. Find the transmitter’s position and project it on the map 
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Each of these actions are performed by the 3 individual programs referenced above and are 

named Bearing Definer, Triangulation Detector and Centroid Detector respectively. 

 

 

 4.3 Algorithm Description 

 4.3.1 Bearing Definer 

The first program of the flow is the Bearing Definer and acts as how its name implies: it 

is responsible for understanding/detecting all high-intensity bearings from the data collected and 

exporting them, in order to be used as input in the next step, the triangulation step. 

As mentioned above, each sensor in our network rotates in a 360° radius collecting large 

amounts of data. The data consists of the current angle the sensor is bearing to and a timestamp 

for the corresponding entry. If a potential transmitter enters the AOI, the sensor’s behavior changes 

as it displays a deceleration in its movement (Chapter 3 – section 3.6). This deceleration is not 

instantaneous, but it may last up to 2 seconds. The program’s responsibility is to identify the 

bearings at which the deceleration took place and perform certain filtering and reducing 

algorithms, in order to efficiently make use of the information provided. 

The program consists of six (6) stages: 

i. Reading/Storing the data 

ii. Grouping the data into averages/Computation of angular velocity-acceleration 

iii. Production of “zound.txt”-“zound_with_two_neighbours.txt”/Application of 

“parsing_threshold” 

iv. Sorting/Removing duplicate values 

v. Exclusion of non-active ranges/Reducing 

vi. Printing final output 

 

The program begins by reading all necessary parameters from a file called 

“parameters.txt”. This file contains the following parameters: 

▪ input_cycles: number of cycles to take into consideration when reading the data 

from the sensors 

▪ first_ceiling: used as a starting point/base for the computation of a full cycle 
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▪ mid_ceiling: used as middle point for the computation of a full cycle 

▪ last_ceiling: used as the last point for the computation of a full cycle 

▪ run_times: number of times the program should run, before computing the final 

output 

▪ milliseconds: amount of time in milliseconds – used to determine the duration for 

which the “Main Thread” should stay into “sleep” state (described in the next 

paragraph) 

▪ min_times: minimum number of times of an appearance of an angle (used in the 

algorithm for input correction – described in the General Notes section – (a) 

Correct Input Algorithm, at the end of section 4.3.1) 

▪ average: number of elements that will participate in the computation of the average 

(grouping of elements in the second stage) 

▪ rate: units of time used, when computing the angular velocity/acceleration 

▪ acceleration: the defining value of acceleration taken into consideration when 

producing the “zound.txt” file in the third stage 

▪ zound_neighbours: number of adjacent angles taken into consideration when 

producing the “zound.txt” file 

▪ parsing_threshold: used as floor in the third stage, in order to get the “winning” 

bearing angles 

▪ floor_divergence: floor angle value used in the reducing algorithm in the fifth stage 

▪ angles_range: range of angles that define our AOI 

▪ exclude: range of angles excluded from our AOI 
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Figure 4.1. “parameters.txt” file 

 

 

The algorithm consists of a thread that is initialized at the beginning of the program and 

runs infinitely. The thread – called “Main Thread” – is responsible for all the work executed. It 

can go into two (2) states: “sleep” and “awake”. The thread stays in “sleep” state for n 

milliseconds, as defined by the corresponding parameter “milliseconds” in the “parameters.txt” 

file. After n milliseconds, it goes into “awake” state, in which it wakes up and searches to read an 

input file called “input_for_bearing.dat” in the existing directory. If no input file is found, the 

thread goes into “sleep” state. If an input file is found, the thread proceeds to start with the 

execution of the main body of the algorithm. 

 

 

4.3.1.1 Stage 1: Reading/Storing the data 

The algorithm begins by reading data from an input file called “input_for_bearing.dat”. 

Each line in the input file consists of information about the bearing angle and a timestamp at which 

the specific data was collected. The input file is basically the output data of the sensor. 
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Figure 4.2. Input file "input_for_bearing.dat" 

 

 

Each line is stored in a list for future computational purposes. The number of lines read (thus the 

amount of data) depends on the “input_cycles” parameter, as specified in the “parameters.txt” file. 

For instance, for input_cycles=2, the algorithm stops reading data when completing two (2) full 

cycles.  

Each cycle is computed based on the values of the bearing angles and the “first_ceiling”, 

“second_ceiling” and “third_ceiling” parameters, as specified in the “parameters.txt” file. The 

computation of a full cycle uses the following procedure: three (3) Boolean variables are used, all 

initialized with false. Each variable is set to true whenever the bearing angle falls between the 

specified ceiling parameter and the sum of the ceiling parameter plus a fixed divergence number 

(for simplicity reasons, in the current project the fixed value is equal to 10). For instance, let pi, 

pm and pl be the Boolean variables initialized with false and “first_ceiling”=100, 

“second_ceiling”=200 and “third_ceiling”=300. When traversing the input data, if the bearing 

angle falls between 100 and 110, pi is set to true. The same method is applied for the other two 

variables. When all three variables are true (hence we started from angle≈100 and reached 

angle≈300), a full cycle is completed. The reading/storing of the data stops when the number of 

cycles reaches the number of “input_cycles” specified in the “parameters.txt” file. 
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 4.3.1.2 Stage 2: Grouping the data into averages – Computation of angular 

velocity/acceleration 

 4.3.1.2.(a) Grouping the data into averages 

Due to its high sampling rate, the sensor produces a large amount of data. Each angle 

appears numerous continuous times in the data, as the sensor produces this data at one unit of time. 

This happens due to the sensor’s nature/manufacturing (as stated in Chapter 3 – section 3.6, the 

sensor produces approximately about 15 angle readings per second). In order to be able to have a 

more accurate insight of the data and be able to use it more effectively, we need to find a way to 

group it. For this purpose, we will group the data into groups of averages. Each group of averages 

will take into consideration “average” number of elements – as described in “parameters.txt” – and 

will be reduced into one final value, the average value of the elements participating in the group. 

For instance, for “average”=3, 3 lines from the input file will be used into the grouping method. 

The bearing angles of each line from the input file will be accumulated and then divided by 3 

(according to the “average” parameter), in order for the 3 bearing angles to be reduced into one 

final angle. We repeat the process for all angles in the “input_cycles” range and a new file is 

produced. The new file is called “average.txt” and contains all reduced average bearing angles, 

along with their timestamps. The “average.txt” will be used for the computations below. 
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Figure 4.3. Averages file “average.txt” with “avg”=3 

  

 

 4.3.1.2.(b) Computation of angular velocity/acceleration 

As stated earlier, each sensor in our network rotates in a 360° radius collecting large 

amounts of data. Therefore, it develops angular velocity and thus, angular acceleration. Each time 

the sensor detects “something”, its antenna faces a slight deceleration. We are interested in the 

values of this deceleration, as the deceleration is the result of interaction between the sensor and 

the potential transmitter. In other words, deceleration indicates detection (Chapter 3 – section 3.6). 

In order to find the values of this deceleration, we first need to compute the sensor’s angular 

velocity. We will compute both angular velocity and angular acceleration by finding the rate of 

change of the respective values per unit of time. Using the “rate” parameter, we group the data 

produced in the “average.txt” file per (“rate”+1) number of elements (e.g. for “rate”=4, each group 

of data includes the starting angle plus 4 more angle readings – in total five (5) angle readings) 

and compute the difference between the last and the first value (difference of bearing angles for 

velocity, difference of velocity values for acceleration). 

Starting with the velocity, we compute the difference of the bearing angles column (per 2) 

in the “average.txt” file. We start by traversing the angles column – line per line – in the 
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“average.txt” file (per 2) and subtract the last value in the group from the first one. This produces 

a new value for the current group of elements, which corresponds to the sensor’s angular velocity 

at the specific timestamp. 

 

 

 

Figure 4.4. Angular velocities with “rate”=4 

 

 

We continue the process until the end of the data and we are left with a file so long as the 

“average.txt” file, which contains the angular velocities of the sensor per unit of time. By repeating 

the same process, this time though on the new file’s column of velocities (instead of the angle 

bearings), we will find the rate of change of the velocity per unit of time, which corresponds to the 

sensor’s angular acceleration at the specific timestamp. 
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Figure 4.5. Angular accelerations with "rate"=4 

 

 

 By completing the process, we have a new file consisting of four (4) columns: the bearing 

angles, the angular velocity, the angular acceleration and the corresponding timestamp. In order to 

keep the program “clear” and not produce a huge amount of useless files/data, we overwrite the 

new file on the “average.txt” and will use in the next step to produce the “zound.txt” file. 

 

 

 4.3.1.3 Stage 3: Production of “zound.txt” / “zound_with_two_neighbours.txt” / Application 

of “parsing_threshold” 

 4.3.1.3.(a) Production of “zound.txt” 

 The “zound.txt” file is of prime importance to the program, as it contains the number of 

times an acceleration value appeared for a specific angle, along with the corresponding angle. The 

acceleration value depends on the “acceleration” parameter. After the computation of the angular 

velocities and accelerations, the next step is to apply a filtering technique on the data. As we 

mentioned earlier, we are interested in the sensor’s deceleration when detecting “something”. 

Deceleration is translated as a negative acceleration value. Since we have all acceleration values 
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of the sensor (produced in the previous step), we can now filter only the values we are interested 

in. For this purpose, we use the “acceleration” parameter in the “parameters.txt” file. The 

“acceleration” parameter acts as a ceiling threshold, allowing us to obtain only acceleration values 

less-than-or-equal to minus ”acceleration” (since we are interested in negative acceleration values, 

thus deceleration values). 

 We begin by traversing the “average.txt” file, taking into consideration only elements 

belonging to the accelerations’ column. We accept acceleration values less-than-or-equal to minus 

“acceleration” and greater-than-or-equal to a constant floor value (for simplicity, our floor value 

is -10). The formula for an acceptable acceleration value is: 

 

-10 <= acceleration value <= -“acceleration” parameter  (II) 

 

For instance, if “acceleration”=0.7, we want to filter all acceleration values that fall in the range [-

10, -0.7]. Any acceleration value falling in this range indicates that the deceleration is “strong” 

enough to be accepted and that the sensor is in fact detecting “something”. 

 Each acceptable acceleration value is stored in the “zound.txt” file, along with its 

corresponding bearing angle. An example of the “zound.txt” file is presented below: 

 

 

 

Figure 4.6. File "zound.txt" 
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According to the “zound.txt” provided, at bearing angle 7.4°, the number of acceleration values 

acceptable according to the formula above is one (1). This means that when bearing at 7.1°, the 

sensor spotted an acceptable deceleration value one (1) times. 

 Due to construction reasons, at each detection the sensor has an error tolerance of 

approximately two (2) steps. This means that in the first cycle, a detection may occur at a certain 

angle (e.g., 20°), whereas in the next cycle the same detection may occur at an earlier angle (e.g., 

18°) or a subsequent angle (e.g., 22°). In order to be accurate, we need to take into consideration 

all neighboring acceleration values when forming the final result. The error tolerance is referenced 

as divergence and is described in Chapter 3 – section 3.4. 

 

 

 

Figure 4.7. “zound.txt” chart 

 

 

In the chart above, we can observe that a detection was performed at circa 62°. The event 

did not happen instantaneously, but lasted for some time, affecting neighboring angle values as 

well. For this reason, we need to take neighboring acceleration values into account, too, in order 

to consider the error tolerance when forming the final result. 

 

 

 4.3.1.3.(b) Production of “zound_with_two_neighbours.txt” 

A new file is produced from “zound.txt” and is called “zound_with_two_neighbours.txt”. 
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Figure 4.8. File "zound_with_two_neighbours.txt" 

 

 

 In order to produce the “zound_with_two_neighbours.txt” file, we traverse the “zound.txt” 

file and for each acceleration value, we add the two top and two bottom neighboring acceleration 

values. For the above “zound.txt” file”: 

 

6 , 4.6 :  1 

7 , 5.3 :  2 

8 , 6.0 :  1 

9 , 6.7 :  4 

10 , 7.4 :  1 

11 , 8.1 :  3 

12 , 8.8 :  0 

 

the “zound_with_two_neighbours.txt” file for the acceleration value at angle 6.0° (index 8) will 

consist of the accelerations’ sum at angles 4.6°, 5.3°, 6.0°, 6.7° and 7.4° (indices 6, 7, 8, 9 and 10). 

More specifically, the new acceleration value will be the acceleration at angle 6.0° plus its two (2) 

neighbors up (4.6°, 5.3°) and down (6.7°, 7.4°): 
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6 , 4.6 :    8 

7 , 5.3 :  11 

8 , 6.0 :    9 

9 , 6.7 :  11 

10 , 7.4 :    9 

11 , 8.1 :    9 

12 , 8.8 :    7 

 

 

 

 

Figure 4.9. “zound_with_two_neighbours.txt” chart 

 

 

By observing the chart in Figure 4.9, we can see that the deceleration event was captured 

more smoothly after computing the “zound_with_two_neighbours.txt”. The “winning” angles are 

more distinct and offer a more accurate perception of the event. The newly created file is like 

passing a filter to the already “harsh” file “zound.txt”, which makes the study of the results more 

efficient. 
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 4.3.1.3.(c) Application of “parsing_threshold” 

After producing the new file “zound_with_two_neighbours.txt”, it is time to use the 

“parsing_threshold” parameter, in order to only choose certain values of acceleration. We traverse 

the “zound_with_two_neighbours.txt” file and store only acceleration values that are greater-than-

or-equal to the “parsing_threshold”. In this way, we filter all winning angles we deem worthy of 

keeping. 

 

 

 4.3.1.4 Stage 4: Sort/Remove duplicates 

Upon completion of stage 3, we have acquired all winning angles, according to the 

“parsing_threshold” parameter. Since many “zound_with_two_neighbours.txt” are produced, due 

to the number of times the program is executed (based on the “run_times” parameter), we end up 

with a large amount of duplicate angle values. Naturally, the next step will be to remove all 

duplicate values. 

We begin by sorting the list with all winning angles in ascending order, taking advantage 

of the Collections.sort() function provided by Java. After sorting the angles list, we remove all 

duplicate values by passing the angles in a HashSet. The main characteristic of a HashSet is that 

each item is unique, so at the insertion of each angle into the HashSet the check to see if the angle 

already exists in the current HashSet is performed. All checks are performed by Java, so no extra 

code is required. Finally, we copy all sorted unique angle values back to our main list and end up 

with a list of winning angles sorted in ascending order and unique, ready to be fed to the next stage. 

 

 

 4.3.1.5 Stage 5: Exclusion of non-active ranges/Reduction 

In the current stage, all winning angles from the previous stage must be checked and 

reduced even further, in order to end up with a much clearer output. 
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 4.3.1.5.(a) Exclusion of non-active ranges 

The list with the winning angles contains all angles in the range [0, 360]. Not all angles are 

important for the final output, though. In the “parameters.txt” file, we have described two (2) 

parameters, the “angles_range” and the "exclude”. The “angles_range” corresponds to the range 

at which our AOI exists (depends solely on each sensor’s bearing range), whereas the “exclude” 

describes the angle intervals that we want to exclude. For instance, if “angles_range”=[0, 360] and 

“excludes”=[50, 60] , [85, 90], then our active range of interest is split into three (3) ranges: [0, 

49], [61, 84] and [91, 360].  

For this purpose, we need to keep only winning angle values falling into either of these 

three (3) active ranges and exclude all angle values that fall outside of our active range of interest. 

At the screenshot below, with “angles_range”=[1, 348] and “exclude”=[1, 7], the final angles both 

before and after the exclusion of non-active ranges are depicted: 

 

 

 

Figure 4.10. Before/After the exclusion of non-active ranges 
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 4.3.1.5.(b) Reduction 

After the exclusion of non-active ranges, the final output of the first program is almost 

ready. By studying the remaining angles, we observe that some angle values are very close to each 

other, differing even less than 1°. For this reason, we perform a specific reduction algorithm, in 

order to group all these neighboring angles into one (1).  

We begin by defining a “floor” variable that points to the first angle of the list. We then 

traverse the list of angles by comparing the “floor” to each angle of the list. Our aim is to group 

all angles that differ at most floor + “floor_divergence” (as defined in “parameters.txt”) and find 

their mean average. If an angle falls in the range of floor + “floor_divergence”, we add it to the 

group of angles for reduction. If an angle does not fall in the above range, we compute the mean 

average of the group of angles until that angle, reduce them into one (1) and repeat the procedure 

for the current angle and its successors. Following this method, the resulting angles list is reduced 

by at least 3/4 of the initial non-reduced list. The resulting angles are the official output of the first 

part of the program. At the screenshot below, the angles both before and after the reduction 

algorithm are depicted: 

 

 

 

 

Figure 4.11. Before/after the reduction algorithm 
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 4.3.1.6 Stage 6: Print final results 

In the sixth and final stage, the remaining reduced angles are printed. These angles are the 

final output of the Bearing Definer program and will be used as input to the next program, the 

Triangulation Detector. They comprise the bearing angles at which a detection was performed 

and will be used to perform triangulation. 

 

 

 

Figure 4.12. Bearing Definer flowchart 

 

 

 General Notes 

During the development of the Bearing Definer, two (2) main problems arose concerning 

the input. Due to the sensors’ nature/manufacturing, the collected data sometimes contained 

corrupted data. For this purpose, two (2) ways to handle the errors were developed. 

(a) Correct Input Algorithm 

The Correct Input algorithm was developed to fix the corrupted data that sometimes was 

produced by the sensors. As stated in Chapter 3 – section 3.6, each sensor collects data with an 

approximate rate of 15 angle readings per second and a step of 0.7°, meaning that each transition 

from one angle reading to the next differs at most 0.7°. Sometimes, due to the sensor’s malfunction, 

the collected data contained “rubbish”/error values. The “rubbish” data can be translated as 

“jumps” in angle values of at least 2°-3° (way more than the allowed step of 0.7°). Moreover, these 

jumps occurred at least 2°-3° forwards or backwards, a fact that is not acceptable, since the angle 

readings only increase (therefore there is no decrease) at the passing of time. 
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The algorithm starts by traversing the “input_for_bearing.dat” before it is forwarded as 

input to the first stage of the Bearing Definer. The algorithm checks the angles of the file and how 

they change over time. If an angle value differs from the previous angle value more than 0.8° (0.1° 

more than the allowed step of 0.7°), we set the current angle value as (previous angle value + 0.7°). 

We repeat the procedure for “min_times” (as defined in the “parameters.txt”), ensuring that 

successor angles will appear at least “min_times” in the “input_for_bearing.dat” and that their 

values will not have a difference greater than 0.7°. In this way, the input is well organized and 

each transition in the angle values is gradually smooth. 

 

(b) Undefined values 

The second problem was that sometimes the data values produced by the sensor were 

“undefined”, resulting in program crashes. This problem was tackled in a simpler way. While 

reading the “input_for_bearing.dat” file in the above step, each time an “undefined” value was 

read, the line was rejected and the program resumed with the next line. 

 

 

 4.3.2 Triangulation Detector 

The second program of the flow is the Triangulation Detector and is responsible for 

detecting all triangulation areas in our AOI.  

The program consists of six (6) stages: 

i. Reading/Storing the input 

ii. Computation of bearing paths/Formation of quadrilaterals 

iii. Determination of relationship between the quadrilaterals 

iv. Reducing into triads 

v. Removing duplicate values 

vi. Printing the final output 

 

 

 4.3.2.1 Stage 1: Reading/Storing the input 



49 

 

The program accepts a specific input file called “input_for_triangulation.txt”, which is 

created in Node-RED and consists of the sensor’s bearing error – divergence (in angle degrees), a 

parameter called “max_angle_diff” and the information for each sensor. The “max_angle_diff” 

represents an angle in degrees and is used in the filtering process of the quadrilaterals (more 

information is described later on this chapter). The information of each sensor contains the sensor’s 

name, its coordinates (x, y) in degrees and the bearing angles – in degrees – for each sensor, as 

produced by the previous program, the Bearing Definer.  

The program’s input file has the following format: 

 

<Divergence> 

<Max Angle Difference> 

<Sensor’s Name> <Sensor’s Longitude> <Sensor’s Latitude> <Sensor’s Angles> 

 

 

For example, given three (3) sensors: 

 

Sensor A (long = 26.310820, lat = 35.315870), angles: 289.9, 302.6, 323.4, 331.8 

Sensor B (long = 25.968806, lat = 35.190755), angles: 3.1, 7.8, 20.7, 303.3, 315.6, 327.2, 339.9,  

                      352.6 

Sensor C (long = 25.522420, lat = 35.305530), angles: 3.8, 16.3, 46.1, 310.7, 322.7, 333.1,  

           345.3, 349.1 

 

a max angle difference of 40° and a divergence of 1°, the input file should have the following 

form: 

 

div = 1 

max_angle_diff = 40 

A 26.310820 35.315870 289.9 302.6 323.4 331.8 

B 25.968806 35.190755 3.1 7.8 20.7 303.3 315.6 327.2 339.9 352.6 

C 25.522420 35.305530 3.8 16.3 46.1 310.7 322.7 333.1 345.3 349.1 

 



50 

 

 

 

Figure 4.13. Input file "input_for_triangulation.txt" 

 

 

 Moreover, the program requires one more file from the same directory called 

“area_of_interest.txt”. This file contains the coordinates of the four (4) vertices of the quadrilateral 

that represents our AOI. When attempting to determine the position of a transmitter, we take into 

consideration a specific area on the surface of the Earth the transmitter might be located in and 

apply the triangulation algorithm at the area described by the vertices of the respective 

quadrilateral. By following this procedure, we get rid of excessive computations, making our 

algorithm more efficient in terms of time and memory complexity.  

 

 

 

Figure 4.14. File “area_of_interest.txt” 

 

 

 4.3.2.2 Stage 2: Computation of bearing paths/Formation of quadrilaterals 

 Upon reading all useful input information, we proceed to the next step, which is the creation 

of all quadrilaterals. As stated in Chapter 3 – section 3.5, in order to perform the triangulation 

method for two (2) or more transmitters, we need at least three (3) different sensors with their three 
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(3) different bearing angles. By taking into consideration each sensor’s divergence, we have to 

create the required quadrilaterals per two (2), in order to be able to determine common areas 

between two quadrilaterals.  

We begin by traversing the list of sensors – per two (2) – and computing the great-circle 

paths for each other, according to their bearing angles and the given divergence. At this point, we 

compute the absolute value of the difference between the two (2) bearing angles of the sensors. If 

the difference is less than the “max_angle_diff” parameter, we reject the current set of angles and 

proceed with the next one. This part of the algorithm is a modification that is analyzed in the 

General Notes section at the end of this section. 

 By applying the divergence formula (as described in Chapter 3 – section 3.4) on the bearing 

angles of each sensor, we end up with two (2) bearing paths deriving from the main bearing path 

of the corresponding sensor. For instance, for two (2) sensors A and B and their corresponding 

angles Aφ1 and Bφ1, the four (4) bearing paths that are formed are defined by the angles: 

 

Aφ1 - div 

Aφ1 + div 

Bφ1 - div 

Bφ1 + div 

 

Next step will be to compute all intersection points between each of these paths, in order to form 

the quadrilaterals, as described in Chapter 3 – section 3.5. 

The computation of the intersection points is performed based on the Intersection function 

provided by Google. The Intersection function is suitable for calculations on the basis of a spherical 

Earth (ignoring ellipsoidal effects), which is accurate enough for most purposes2. 

 

 

 

2 In fact, the Earth is slightly ellipsoidal, so using a spherical model produces errors of up to 0.3%. 
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Figure 4.15. Intersection formula [41] 

 

 

 If any intersection point is null (meaning two (2) of the bearing paths do not “meet” 

anywhere on the surface of the Earth), we ignore the specific bearing angles set and proceed with 

the next one. If all intersection points are not null, we check to see if at least one of them falls 

inside the area formed by the AOI’s quadrilateral. If no point meets the above condition, we ignore 

the specific bearing angles set and proceed with the next one. If the above condition is met – 

meaning that all intersection points are not null and at least one of them falls inside the AOI – we 

proceed with the creation of the respective quadrilateral. The quadrilateral’s vertices are the four 

(4) intersection points of the bearing paths and the name consists of the sensors’ names and the 

bearing angles from which the quadrilateral was created. We repeat the process for all bearing 

angles of all sensors – per two (2) – and store all created quadrilaterals in a list for future use. A 

quadrilateral, along with its vertices’ coordinates, is depicted below: 
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Quadrilateral: [A: 289.9, B: 3.1] 

Vertices: (25.97, 35.40), (25.97, 35.41), (25.98, 35.41), (25.98, 35.40) 

 

meaning that the above quadrilateral was formed by sensor A’s bearing angle 289.9° and sensor 

B’s bearing angle 3.1° and its vertices’ coordinates are the intersection points of the four (4) 

bearing paths defined by these two (2) bearing angles. 

 

 Notes for Intersection Formula [41] 

▪ Accuracy: The Earth is generally ellipsoidal – more specifically oblate ellipsoidal – having an 

equatorial and polar radius of 6.378 km and 6.357 km respectively. The radius of curvature 

varies locally, ranging from 6.336 km (at the Equator) to 6.399 km (at the poles). The average 

radius of the Earth is currently accepted to be 6.371 km. Due to the Earth’s shape, utilizing 

spherical geometry produces minor errors (since the Earth is not quite a sphere). When crossing 

the Equator, such errors may reach up to 0.55%, though generally, they are less than 0.3%, 

depending on latitude and the direction of travel. 

▪ Bearings: All bearings are measured with respect to true North (0°: N, 90°: E). 

▪ Trigonometry functions: Trigonometry functions accept arguments in radians; following this 

principle, longitude, latitude and angle bearings in degrees (either decimal or 

degrees/minutes/seconds) need to be converted to radians with the formula:  rad=π*deg/180. 

When utilizing signed decimal degrees to convert radians back to degrees (deg=180*rad/π), 

West is negative. For bearings, values in the range [-π, +π] must be converted to [0, +2π]. This 

can be achieved by using the formula: (brng+2*π)%2*π, where % is the modulo operator.  

 

 

 4.3.2.3 Stage 3: Determination of relationship between the quadrilaterals 

 After the formation of all possible acceptable quadrilaterals, we proceed to find if they have 

any kind of relationship with one another. Two (2) quadrilaterals may be related in three (3) ways: 

i. Common area with each other 

ii. “Containing” relationship (one quadrilateral contains another) 

iii. No relationship at all   
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We begin by traversing the list of quadrilaterals – per two (2) – and search for any kind of 

relationship between them. If a common area or a containing relationship is detected, we store the 

quadrilaterals in a list, along with their relationship. If no relationship is detected, we ignore them 

and proceed with the next pair. At the end of this step, we have found all triangulation areas 

between the intersections of the bearing paths of all sensors in our list. 

 Upon determining all triangulation areas, we need to process the output, in order to be 

exported in the desired format for the next program, the Centroid Detector. At this point, the output 

has the following format: 

 

 

 

Figure 4.16. Output file with the quadrilaterals' relationships 

 

 

 4.3.2.4 Stage 4: Reducing into triads 

The output consists of the information about the two (2) quadrilaterals (sensors and bearing 

angles), along with their relationships. Taking a closer look at the output, we can observe that some 

quadrilaterals share the same sensor and bearing angle. For instance: 
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Figure 4.17. Before reduction into triads 

 

 

we observe that quadrilaterals [A: 323.4, B: 7.8] and [A: 323.4, E: 78.9] share the same sensor A 

and angle 323.4°. This information can be reduced to a triad, consisting of the names of the three 

(3) sensors participating in the triangulation and their respective bearing angles. Following this 

principle, the above quadrilaterals can be reduced into the following triad: 

 

(A: 323.4, B: 7.8, E: 78.9) 

 

We perform this procedure to all elements of the output, until all elements have been reduced to 

their corresponding triads.  

 

 

 4.3.2.5 Stage 5: Removing duplicate values 

Upon producing all triads, there is a possibility of having duplicate lines in our output. The 

next to last step of the Triangulation Detector is to remove all duplicate lines from the triads 

output. After the duplicates’ removal, our program’s output is ready to be printed. 

 

 

 4.3.2.6 Stage 6: Printing the final output 

The final output of the Triangulation Detector is the “triads.txt” file. It contains all 

triangulation areas (“containing” relationship – “common area” between quadrilaterals reduced 

into triads), ready to be used as input to the final program of the current project, the Centroid 

Detector, which will determine the exact position of a potential transmitter and project its position 

on the map. 
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Figure 4.18. Final output file "triads.txt" 

 

 

 

 
Figure 4.19. Triangulation Detector flowchart 

 

 

 

 General Notes 

The Triangulation Detector algorithm is an extension of my Bachelor’s Thesis 

“Determining triangulation areas from multiple sensors using specific bearing 

precision/accuracy”, with many modifications and bug fixes, in order to make the algorithm more 

efficient. The most important modification is the introduction of the AOI quadrilateral. In the 

earlier versions of the algorithm, all possible quadrilaterals were computed and stored, resulting in 

unnecessary use of space and memory. No quadrilaterals were rejected and the number of 

comparisons between them, in order to find all triangulation areas, was huge, as the earlier versions 
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were based on the “greedy” approach. With the introduction of the AOI quadrilateral, the number 

of computed quadrilaterals and thus, triangulation areas, is dramatically reduced, because we are 

now keeping only the points that are of great interest to us and reject all points that fall a great 

distance away from our AOI. 

Another important modification was the introduction of the “max_angle_diff” parameter. 

The “max_angle_diff” helps reduce the number of useless triangulations. While traversing the list 

of sensors – per two (2) – we compute the absolute value of the difference between the two (2) 

bearing angles of the sensors. If the value is less than the “max_angle_diff”, we reject the current 

pair of angles and proceed with the next one. For instance, for a sensor A with a bearing angle of 

45° and a sensor B with a bearing angle of 350°, the difference between their bearing angles is 

equal to 55°. 

 

 

Figure 4.20. Interior-Exterior angles formed between parallel norths 
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This makes use of the properties of interior-exterior angles, formed between parallel lines. 

In our case, the parallel lines are the paths corresponding to the true North (marked with N in 

Figure 4.20). This process is approximate: in reality, paths corresponding to the true North are not 

parallel – due to the Earth’s curvature – but rather meet at the Earth’s poles. In our case, though, 

for a small AOI of some square kilometers on the surface of the Earth (plus, for simplicity of 

computation), it is safe to accept that these paths are parallel to each other and therefore, we can 

take advantage of the interior-exterior angles’ properties.  

By rejecting the pair of bearing angles whose absolute difference is less than the 

“max_angle_diff”, we set a “floor” threshold for two (2) angles to have at least a specific difference 

between each other. If that difference is too small, this translates to the two (2) bearing angles 

being too close to each other and thus, being approximately almost the same; therefore, there is no 

point in computing a quadrilateral whose vertices derive from the same bearing angles. 

 Finally, we fixed a major bug that occurred when reducing two (2) quadrilaterals in a triad. 

In some cases, two (2) quadrilaterals with common area were created from the same sensor (e.g., 

sensor A) but with a different bearing angle (e.g., [A: 45.0, B: 46.0] and [A: 19.0, E: 339.0]). This 

type of relationship is not acceptable, as we are only interested in the common area of 

quadrilaterals from different sensors and therefore, has to be rejected. We handled this case by 

ignoring the specific pair of quadrilaterals. 

 

 

 4.3.3 Centroid Detector 

After determining the triangulation areas using the Triangulation Detector, the final step 

of the project is to estimate the transmitter’s position and project it on the map. The output from 

section 4.3.2 gives us information about a transmitter’s potential position. However, this position 

is approximate. According to this information, the transmitter could be anywhere inside the 

triangulation areas. Therefore, a more accurate way of determining its position is needed. For this 

purpose, the computation of the triangulation areas’ centroid is the focus of our final program. 

Since the output from the Triangulation Detector consists of triads, each one containing three (3) 

sensors with three (3) of their bearing angles, the intersections of the bearing paths between the 
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three (3) sensors give three (3) vertices of a triangle. The computation of the triangle’s centroid 

gives a more accurate representation of the transmitters’ potential positions. 

 

 

Figure 4.21. Triangle formation by the bearing paths of three (3) sensors 

 

 

The program’s input files are both the “input_for_triangulation.txt” file from the previous 

program, since it contains all information about the sensors (their coordinates and bearing angles), 

and the “triads.txt” file that is the final output of the previous program. The “triads.txt” contains 

all triangulation areas, so along with the sensor information, we are able to compute the triangle 

centroids. 
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Upon reading the two (2) input files, our aim is to create each triangle that corresponds to 

each triad in the “triads.txt” file and compute its centroid. Since we have all the information we 

need about the sensors, we can use the Intersection formula, as described in Figure 4.12, to find 

the three (3) vertices of each triangle. The triangles’ vertices are the intersections of the bearing 

paths (defined by the angle bearings) that participate in the triads. For instance, for the triad: 

 

(A: 302.6), (D: 19.4), (E: 42.0) 

 

the vertices of the respective triangle are the intersection points of the bearing paths between:  

 

A and D (intersection point 1) 

A and E (intersection point 2) 

D and E (intersection point 3) 

 

 By acquiring the vertices for each triangle, we can then compute its centroid using the 

formula: 

 

G (x, y) = ((x1+x2+x3)/3, (y1+y2+y3)/3) (III) 

 

where:  

 

(x1, y1): coordinates of intersection point 1 

(x2, y2): coordinates of intersection point 2 

(x3, y3): coordinates of intersection point 3 

 

 The formula suggests that the coordinates G (x, y) of a triangle’s centroid are defined by 

the average of the coordinates of its three (3) vertices. We repeat the procedure for all the triads in 

the “triads.txt” file and save all centroids in a list for the final print. The centroids are the first half 

of the final output of our program, since they are the coordinates of the transmitter, and are printed 

in the file “centroid_coords.txt”, along with the triad they correspond to. 
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Figure 4.22. Centroid Detector’s final output “centroid_coords.txt” 

 

 

 The second step to complete the program is to project the transmitter’s position on the map. 

For this purpose, a KML (Keyhole Markup Language) file called “centroidKML.kml” is produced, 

which contains all centroid points with a colored icon, in order to be easily distinguishable on the 

map. The KML’s format is: 

 

 

Figure 4.23. KML file format 
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where longitude, latitude are the centroid’s coordinates and altitude is an optional parameter 

representing the altitude from the Earth’s surface (for simplicity reasons, we set the altitude 

parameter to zero (0)). 

 Every time the three (3) programs are executed (according to the “run_times” parameter – 

Section 3.3.1), a different KML file is produced, containing all centroid points of the respective 

“triads.txt” files. The “centroidKML.kml” is located in a directory, from which it is read by Google 

Earth Pro. Google Earth Pro offers the ability to upload a KML file and project it on the Earth’s 

surface. By setting Google Earth Pro to read the “centroidKML.kml” file from the directory it is 

located in, we are able to project our results on the Earth’s surface in real time and thus, our 

program’s final output is officially completed. In Figure 4.24, a screenshot of Google Earth Pro is 

provided: 

 

 

 

Figure 4.24. Transmitters' position projection on Google Earth Pro 
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where the transmitters are marked with red dots and our AOI with green pins. 

 Last but not least, the Centroid Detector’s flowchart is presented below: 

 

 

Figure 4.25. Centroid Detector flowchart 

 

 

 

Finally, the final flowchart displaying all stages of the project is presented below: 

 

 

 

Figure 4.26. Final Flowchart 
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 4.4 Experiment / Results 

 4.4.1 Experiment 

In order to test the program’s validity and efficiency, four (4) sensors were deployed on 

coastal areas of northern Crete, from Rethymno district to Lasithi district. Our area of interest 

(AOI) laid on central Crete, as depicted in Figure 4.27. 

 

 

Figure 4.27. Our experiment’s environment 

 

 

A number of transmitters performed an activity inside our AOI. The aim of the experiment was to 

estimate the transmitters’ positions in the AOI. 

We deployed and ran the program twice. The first time was to detect all triangulation areas 

and possible locations of transmitters in our AOI, whereas the second time was to validate the 

results. In case of a false detection the first time, the second time would omit potential bias. 
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 4.4.2 Results 

At first run, the input file that was created by Node-RED in order to be forwarded in the 

Triangulation Detector algorithm was the following: 

 

 

Figure 4.28. First run “input_for_triangulation.txt” 

 

where the sensors’ bearing angles were computed by an instance of the Bearing Definer for every 

sensor. The Triangulation Detector, using the above input, produced the following 

triads/triangulation areas: 

 

 

Figure 4.29. First run “triads.txt” 

 

 

Similarly, forwarding the “triads.txt” file to the Centroid Detector program, the final 

“centroid_coords.txt” is produced: 
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Figure 4.30. First run “centroid_coords.txt” 

 

 

A screenshot from Google Earth Pro is presented below: 

 

 

Figure 4.31. First run transmitters’ position estimation 

 

 The second run of the program was performed to validate previous results and remove any 

false detections. Similarly, after the execution of the Bearing Definer for each sensor, the 

“input_for_triangulation.txt” was formed: 
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Figure 4.32. Second run “input.txt” 

 

 

The second run’s triads/triangulation areas and final “centroid_coords.txt” are presented below: 

 

 

Figure 4.33. Second run “triads.txt” 

 

 

 

Figure 4.34. Second run "centroid_coords.txt” 

 

 

The final screenshot from Google Earth Pro presents now three (3) geographical positions, instead 

of four (4): 



68 

 

 

Figure 4.35. Second run transmitters’ position estimation 

 

 

By observing the screenshot, we can conclude that one (1) out of the four (4) positions in 

the first run was a false detection, since it does not exist in the second run. Moreover, we observe 

that transmitter #2 has changed position and has a direction towards West, according to its initial 

position in Figure 4.31 and its final position in Figure 4.35. The other two (2) transmitters appear 

to be in a fixed position. 
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Chapter 5 - Conclusion / Future Work 

 5.1 Conclusions 

In the last years, the topic of localization has been of prime research interest, where the 

need for accurate position estimation has grown massively. The increasing number of sensor 

network applications demands accurate detection rates in applications like GPS positioning, 

mobile phone technologies, robotics etc. One of the localization techniques – and the focus of the 

current thesis – is the process of triangulation.  

In a Fixed Sensor Network (FSN), where sensors are connected wirelessly via 4G, the need 

to estimate a transmitter’s position entering our area of interest (AOI) in real time is of prime 

importance. The sensors collect large amounts of data over a large area of several square kilometers 

on the Earth’s surface. The collected data needs analysis and processing, in order to find high-

intensity bearings and therefore, be able to estimate the transmitter’s position. The data is then 

used in triangulation algorithms, in order to find all possible triangulation areas the transmitter 

may exist in and finally, using the triangulation areas, the transmitter’s position is estimated and 

projected on a map in real time. 

In the current thesis we presented three (3) different algorithms for data processing and 

position estimation. The Bearing Definer is responsible for the analysis of the data collected by 

the sensors, as it detects and exports all high-intensity bearings received by the sensors. The 

Triangulation Detector receives the high-intensity bearings collected by the previous stage and 

performs triangulation algorithms, in order to find the triangulation areas in which the transmitter 

may be located. Finally, the Centroid Detector receives the areas produced by the previous stage, 

computes the exact geographical position (longitude, latitude) of the transmitter and projects the 

position in Google Maps Pro. 

 

 

 5.2 Future Work 

A very important addition to the current program will be the insertion of a database, in 

order to store the sensors’ data (name, coordinates, bearing angles) and other information that may 

prove important in the future. The use of a database will help reduce the number of “.txt” files in 



70 

 

a single execution of the program, since all necessary information will be directly accessible 

through the database.  

Moreover, in order to determine the “winning” bearing angles more efficiently in the first 

program of the flow, we plan on developing a Neural Network that will replace the Bearing 

Definer’s job by making greater use of the respective weights in order to perform a better and 

more accurate decision. 
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