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Abstract

In the last years, localization has evolved into a topic of increasing scientific interest, since
the urge to be able to detect a position at any time has become a matter of prime importance. Many
applications nowadays use localization, including GPS positioning, mobile phone technologies
and robotics. One of the main methods of localization — and the topic of this thesis — is
triangulation. Triangulation is used extensively since it offers an efficient way to determine
someone’s position just by taking bearings on them. The current thesis will be conducted on the
area of transmitters’ range free localization using triangulation. In a wide area of interest (AOl),
where many transmitters may operate, it is important for a Fixed Sensors Network (FSN) to be
able to estimate the transmitters’ positions. If more than one transmitter operate in the AOI, then
at least three sensors are needed to cover that area. In the case of obstacles/interference in the AOI,
more than three sensors are needed for adequate coverage of the area. The sensors are organized
over an area of several square kilometers, collecting data in real time. Algorithms need to be
developed for the analysis and processing of the collected data, as well as the transmitter’s position
estimation and projection on the map. The collected data needs to be analyzed, in order to find all
high-intensity bearings corresponding to the transmitter. The data must then be used in
triangulation algorithms, in order to find all triangulation areas of the transmitter’s potential
position. Finally, using the triangulation areas, the transmitter’s position must be estimated and its
geographical position must be projected on the map in real time. Following what has been
described, the thesis’ structure is formed by the following stages: a) sensor data
analysis/processing, b) triangulation areas’ determination and c) transmitter’s position estimation

and its projection on the map.



Xovoyn

Ta televtaio ypovie, o eviomopog 0éong €xer avaybel oe Bépa  avoavopevov
EMIOTNUOVIKOD EVOLPEPOVTOC, KAOMDC 1 avaykn yio TNV aviyvevon BEonG o€ 0mo1dONTOTE GTIYUN
€xel KoTooTeEL BEUA TPOTOPYIKNG ONUACTOC. XTIG HEPEG HOG TOAAEG EQPAPUOYES YPTOLLOTOLODV
evtomopo, onwg to GPS, n kvt tAepovia kat 1 pourotikn. Mia and Tig kOpleg peboddovg
EVTOTIoUOV — Kol TO KVUp1o BEpa e mapovoag epyaciog — eivar n pé€Bodog tov Tprywvicpov. H
HEB0S0G TOL TPIY®VICUOD YPNOILOTOLEITAL EKTETANEVA, KOODS TPOCPEPEL EVAV ATOTEAEGLOATIKO
TPOTO Y1 va Tpocdlopicovpe TV BEom KATOoL, AmAd EPaPUOLOVTOS LOTTEVCELS TPOG TO HEPOG
toug. H mapovoa epyocio Ba dieEaybel otov Topéa tov Tpocdioptopol Béong mopummv, pe v
xp1on LeBOSV TpyVIGHOD. e [a gvpeia TEPLOYN EVOLAPEPOVTOG, OOV UTOPEL VAL AELITOVPYOLV
moALoi moumoi, eival onpavtiko yio éva Aiktvo Ztabepov Arodntipov (Fixed Sensor Network —
FSN) va givat og 0éom va exktunoevevtonioet v Béon tov nopndv. Edv nepiocdtepot and Evag
TOUTO1 VILAPYOVY GTNV TEPLOYT EVOLAPEPOVTOG, TOTE YpeldlovTat ToLAGYLeTOV TPELS (3) ausOnTnpeg
YL TNV EMOPKT KAALYN TNG TEPLOYNG. L€ TEPIMTOON EUTOSIOV/TAPEUPOADY GTNV TTEPLOYN, TOTE
neplocoTePOl amd Tpelg (3) aobntmpeg ypedlovtor yo v emapkn KaAvyn tng meproyng. Ot
aoONTNPES Eival OPYAVOUEVOL GE L TTEPLOYN OPKETAV TETPAYOVIKDOV YIAMOUETPWV, GUAAEYOVTOG
dedopéva oe Tpaypotiko ypovo. I'a v avaivon kot v eneepyocio Tov 0edopéEVOV, Kabmg Kot
Y10L TOV TPOGOLOPIG O Kot TNV TPoorn) TG B€ong evog Toumov otov xaptn, Kabictatot amapaitnn
N avantuén KotdAANAov adyopiBumv. Ta dedopéva mov cLAAEYOVTOL TPENEL VO, AvaALOOVV, DGTE
VO EVTOTIGTOVV OAEC Ol SLOMTEVGELS UEYAANG £VTACTG MESIOV TTOV OVTIGTOLYOVV GTOV EKAGTOTE
nmound. ‘Enetta, ta dedopéva mpénet va glcayBovv oe adyoplOuovs Tprymvicol, £Tol OCTE Vo
EVTOMIGTOVV OAEC Ol SUVATEG MEPLOYES TPLYMVIGUOV, LEGO GTIS OMOIEG EVOEYETOL VO LITAPYEL O
Topundg. TELOG, YPNCILOTOIDVTAS TIC TEPLOYES TPLYOVICUOD, TPEMEL VO EVTOTIOTEL 1) YEOYPUPIKN
0¢om tov Topumov ko vo TpoPAndel To YemYpapkd TOV GTiYHO GTOV YAPTN GE TPAYLATIKO YPOVO.
AxolovOBdvrtag, Aomdv, Ta 660 S1aTLTOONKAY £mG TMOPO, 1 SOUT TNG EPYACTAG SIOUOPPDVETAL GTA
akolovba otédw: o) avdivon/encEepyacio dedopéveav Tov actntipov, ) TPocdoptopog
TEPLOYDV TPLYOVIGUOV KoL Y) TPOGOOPIGUAC/EKTIUNOT TOV YEWYPAPIKOV GTIYLOTOG TOV TOUTOV

Kol TPOPOAY| TOL GTOV YAPTN.
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Chapter 1 - Introduction

1.1 Chapter Overview
The introductory chapter provides an overview of the topics that will be addressed in the
current thesis. The thesis’ focus and contribution to existing knowledge will be presented.
Moreover, a brief summary of the chapters’ contents will be provided, in order to prepare the

reader for what to expect from the thesis.

1.2 Focus

The main focus of the thesis will be sensor data analysis and processing, in order to perform
localization using the method of triangulation. There will be a Fixed Sensor Network (FSN)
provided, with its sensors collecting amounts of data over a large area of several square kilometers
on the surface of the Earth (area of interest — AOI) in real time. The sensors will be connected
wirelessly via 4G, thus declaring our network a Wireless Sensor Network (WSN).

Our aim is to process and analyze the collected data and use it in triangulation algorithms,
in order to estimate a transmitter’s position that may potentially enter our AOL. Moreover, upon
estimating the transmitter's position, the next step is to project its geographical position on a map

in real time, in order to able to keep track of the transmitter’s activity while being in our AOI.

1.3 Contribution to knowledge
The current thesis aims to offer the following contributions:
I.  Analgorithm for analyzing and processing the data collected by various sensors in
a Wireless Sensor Network (WSN), in order to find all high-intensity bearings for
transmitters entering the area of interest (AOI)
ii.  An algorithm for finding all triangulation areas, in case a transmitter/number of
transmitters enter the area of interest (AOI), using triangulation methods and the

high-intensity bearings, as defined by the previous algorithm



An algorithm for estimating the transmitters’ locations and projecting their
geographical locations on the map

A software combining all three (3) algorithms into one (1) program, divided into
three (3) steps: a) data analysis, b) triangulation areas’ determination and ¢) position

estimation

1.4 Thesis organization

The current thesis is organized in five (5) chapters:

Chapter 1 — Introduction: contains the introductory information of the thesis
Chapter 2 — Related Work: presents the related work that has been conducted,
concerning the topics of the thesis, such as Wireless Sensor Networks (WSNs) and
the problem of localization

Chapter 3 — Methodology and Technologies: presents the localization method that
will be used in the current thesis (triangulation) and the technologies that will be
used in the development phase

Chapter 4 — Project Analysis: presents the problem statement, the algorithms’
description and the experiment/results of the thesis

Chapter 5 — Conclusion/Future Work: contains a summary of what was presented

in the thesis and lists the next steps that will be implemented as future work



Chapter 2 - Background / Related Work

2.1 Chapter Overview

The current chapter gives a detailed overview of the related work that has been conducted
on the fields of Wireless Sensor Networks (WSNs) and localization. In the last years, the problem
of localization has evolved into a topic of increasing scientific interest. Moreover, due to the
concurrent increase of Sensor Network applications in many fields, the urge to be able to detect a
transmitter’s position at any given time has been deemed a matter of great importance.

One of the many localization techniques — and the topic of the current thesis — is the process
of triangulation. In this chapter, we will present some information on both general topics — such
as Sensor Networks — and on the topics regarding this thesis, such as Fixed Sensor Networks
(FSNss), Wireless Sensor Networks (WSNSs), range-free localization and fuzzy systems that use the

process of triangulation in order to perform localization.

2.2 Sensor Networks

In recent years, various types of Sensor Networks have been used in a wide range of fields,
including environmental monitoring, medical, scientific, military purposes etc. A Sensor Network
can be defined as a group of sensor nodes that cooperate in order to carry out specific tasks [1].
Depending on the use the network is intended for, the architecture, topology, scalability and sensor
characteristics may vary. In contrast to conventional networks, Sensor Networks rely on dense
deployment and coordination.

There are numerous different types of Sensor Networks, depending on their state, the types
of sensors they consist of, their topologies and their scale. Networks deployed in broad areas may
face challenges regarding scalability and area coverage, though these issues can be successfully
confronted by the correct choice of sensors and the network’s tailoring to the demands of its
intended use. It is worth noting that each network is designed for a particular purpose, therefore
one network may not be suitable for another purpose.

In the current thesis, we will use a Fixed Sensor Network (FSN), in which all sensors

communicate wirelessly with each other via 4G. The network’s deployment can occur anywhere



on the surface of the Earth, where wiring connection may not be feasible. Therefore, wireless
communication between the sensors is required, declaring our network also a Wireless Sensor
Network (WSN). In Fixed Sensor Networks, sensors are deployed in fixed positions, therefore
their geographical positions are already known. The positions have been acquired with GPS, so
the network system is aware of their coordinates, meaning that no further action is required, in
order to determine the sensors’ positions. The network is deployed within a predetermined
geographical area, also known as area of interest (AOl), to collect large amounts of data. The data
is then forwarded to a database for analysis.

In our network, the sensors cooperate wirelessly with one another, via a Wireless Local
Area Network (WLAN). As described in [2], there are three (3) basic components that constitute
a WLAN: a) the access point (connecting the client to the Internet), b) the Wireless Medium and
the Client/Station. The client can be a laptop, tablet or a smart phone with Wi-Fi. The
communication between the sensors is very critical and depends on the topology and the internal
architecture of the wireless sensor nodes [3]. Moreover, in order to optimize the total energy
consumption of the network, the positioning of the base station that collects and handles the data
is also crucial [4].

In the unfortunate scenario of a sensor/number of sensors failure in a WSN, critical
information might be lost. The related work on connectivity recovery describes a group of sensors
using their movement, in order to contribute to the recovery process. In [5], authors presented a
novel distributed algorithm named “Autonomous Repair (AuR)” — regarding a WSN in which
sensors are movable — that enables connectivity restoration through local coordination among
sensors in the individual segments. The neighbors of a failed node collaboratively decide on the

network’s recovery, by moving one or more healthy nodes.

Note: The information stated above is not directly connected to the current thesis’ focus. It
concerns topics that refer to Sensor Network organization and technical details about the
network’s orchestration. However, it is important to be aware of our network’s contents and
behavior, since it may offer valuable help for future work and optimizations, both on the network’s

orchestration/deployment and recovery.



2.3 Fuzzy Logic in Wireless Sensor Networks

Ongoing research that implements Fuzzy Logic theory for detection in WSNSs exists in
many sectors, including fire detection and warning systems. In [6], a Fire Monitoring and Warning
System (FMWS) was presented — based on Fuzzy Logic — for the detection of a real existent and
dangerous fire incident, transmitting alerts to the Fire Management System (FMS). Energy
consumption is a crucial problem in a WSN, since it has a direct impact on the network’s operation
and lifetime. In [7], authors presented a novel energy-sufficient method which uses Fuzzy Logic
applied on cluster heads (CH) of WSNs, focusing on cluster formation. The presented model
proved that the proposed protocol improves network lifetime when compared with the low-energy
adaptive clustering hierarchy protocol.

In [8], authors used a Fuzzy Logic algorithm to estimate the sensor nodes’ positions in a
WSN. Despite the use of a fuzzy controller and a specific defuzzification method, it was noted that
there are still numerous fundamental issues that need to be solved for the development of WSNs’
technologies. In [9], a Fuzzy Logic Cluster Leach Protocol (FUZZY-LEACH) was applied, that
used a Fuzzy Logic Inference System (FIS) in the cluster process. It was proven that the network’s
energy consumption decreases when multiple parameters in the cluster are used. Fuzzy Logic in
WSNss enhances decision-making, contributes to resource consumption and generally increases the
network’s performance through effective deployment, localization, cluster head selection, security
etc. [10]. In [11], Kapitanova et al. demonstrated that Fuzzy Logic in a WSN monitoring a fire
event (fire and smoke) can provide a more accurate event detection.

By far, the most fuzzy-based reasoning used in fuzzy-based positioning systems is the
Fuzzy Inference (FI). The two (2) most commonly used aggregation functions are the Mamdani-
Type and the Sugeno-Type Fuzzy Inference Systems (FIS) [12]. In [13], Garcia-Jimenez et al.
introduced a specific generalization of the Mamdani-Type FIS, by using overlap functions and
overlap indices. The fuzzy method that was presented — based on overlap indices —aims to improve
fire detection by utilizing a WSN and analyzing fire lightness and distance. For the same purpose,
two (2) fuzzy techniques based on temporal characteristics were proposed in [14]. Through the use
of a WSN and the incorporation of Fuzzy Logic in the network’s sensor nodes, evidence of fire is
analyzed, this time however by evaluating and comparing both previous and present temperature

values.
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In [15], authors explored energy consumption of a WSN by using a fuzzy Genetic
Algorithm (GA) clustering and Ant Colony Optimization (ACO) routing. Fuzzy Logic was used
for cluster formation and clusters’ head selection. A Genetic Algorithm was used for the optimum
generation of fuzzy rules and the tuning of the output value of the Fuzzy Logic’s membership
functions, whereas the proposed Ant Colony Optimization (ACO) was used to route the
information in the shortest path between the cluster heads and the base station. The results showed
an improvement in the energy level of a single node and an enhancement in the overall network’s

lifetime.

2.4 Localization in Wireless Sensor Networks
There are two (2) main categories of localization in Wireless Sensor Networks: a)
Target/Source localization and Node self-localization [1]. Depending on the area of interest (AQl),
Target/Source localization can be classified in two (2) categories:
i.  Indoor: target may be a human or device moving inside a house

ii.  Outdoor: target may be a vehicle or aircraft

There are also cases of underwater localization, where the target may be a sea animal. Depending
on the number of targets, Target/Source localization can be either Single-Target or Multiple-
Target. A lot of research has been conducted in the Single-Target localization field. For instance,
the source location can be estimated by the Angle of Arrival (AOA) [2] or the Time Difference of
Arrival [3], [4], [16]. However, not so much research has been conducted in the field of Multiple-
Target localization and most papers are based on the likelihood estimator, thus not providing
efficient results.

Localization in WSNs can also be range-based or range-free. In range-based localization,
distance between nodes needs to be calculated, whereas in range-free techniques localization is
related between nodes and topological information of sensor nodes [17]. Range-based schemes are
distance-estimation and angle-estimation-based techniques. Classic methods of range-based
localization include Time of Arrival (TOA), Time Difference of Arrival (TDOA), Angle of Arrival
(AOA) and Received Signal Strength (RSS) [18]-[22]:
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i.  Time of Arrival (TOA): measures travel times of signals between anchor nodes

and an unknown node

ii.  Time Difference of Arrival (TDOA): locates arrival time of signals by measuring
the difference between anchor nodes and an unknown node, thus achieving high
ranging accuracy

iii.  Angle of Arrival (AOA): estimates location of an unknown node by using the
angles between anchor nodes and the node

iv.  Received Signal Strength (RSS): distance between transmitter and receiver is

estimated by measuring signal strength at the receiver

In contrast to range-based localization, range-free localization is the preferred option for
WSNSs, since it is a more inexpensive method. Range-based approaches require high-cost hardware
and consume more energy. Range-free techniques provide a cost-effective alternative, since only
a fraction of sensor nodes — anchor nodes — are used in the localization process. Classic range-free
algorithms include the Distance Vector (DV) Hop, the Centroid and the Approximate Point in
Triangulation (APIT):

i.  Distance Vector (DV) Hop: range between nodes is estimated using hop count
ii.  Centroid: uses proximity-based grained localization algorithms to estimate an
unknown node’s location
iii.  Approximate Point in Triangulation (APIT): uses regional determination to

estimate an unknown node's location

It has been shown that the Centroid algorithm is very cost-effective, whereas DV Hop is efficient
in larger networks [23]-[25].

The current thesis will be conducted on the area of range-free localization, using
triangulation and a variation of the Centroid algorithm. Despite some notable research that has
been conducted in the area of triangulation in WSNSs, there still remains a lot to be discovered. In
[26], a novel work on transmitters’ localization using triangulation with a FSN was proposed. In
order for the network to be able to continue working normally, the detection complexity was

tackled by finding the optimal detecting sensor radius. The system was able to keep a high

12



detection rate, while also identifying potential new transmitters that would enter its area of interest
(AQI).

As the triangulation problem becomes highly complicated in networks with many sensors
and transmitters, an adequate grid topology is needed, in order to tackle detection complexity. In
[27], authors proposed a network grid topology for a FSN that uses triangulation, in order to
perform localization. Moreover, concepts like sensor blindness and overall network blindness were
analyzed. Finally, in [28], Sfendourakis et al. presented a FSN that implements Fuzzy Logic, in
order to perform localization with triangulation and increase the network’s detection rate.
Furthermore, the authors proved that in the case of an increase in the transmitters’ number in the
AOI, the proposed system was able to maintain its high performance by utilizing additional groups
of sensors in a sub-region of the AOI. Therefore, even in the event of the network’s saturation by
many transmitters in one region, new transmitters can still be detected when entering the AOI. In
the next chapter, the basic triangulation principles and the methodology of the current thesis will

be further analyzed.
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Chapter 3 - Methodology and Technologies

3.1 Chapter Overview

The current chapter gives a detailed description of the methodology, basic concepts and
principles that will be used for the development of the thesis. Despite the numerous localization
categories that were mentioned in Chapter 2 (section 2.4), we will use triangulation as a
localization method, in order to determine a transmitter’s position. Moreover, we will define the
basic principles of triangulation, along with a brief analysis of the sensors that will be used for the
needs of the current thesis. Last but not least, we will refer to the technologies that will be used for
the development of the project. The technologies include Java as our programming language and
Node-RED as our synchronization environment between the stages of the program.

3.2 Triangulation as a localization method

In trigonometry and geometry, triangulation is the process of determining the location of a
point by forming triangles to it from known points [29]. Triangulation is of great importance,
because it offers a way to determine one’s location just by taking bearings to them.

A bearing (or azimuth) is the horizontal angle between the direction of an object and the
North (or another object) [30]. The line that is marked based on the angle is called a bearing path.
In the current project we will be using absolute bearings, which refer to the clockwise angles
between a point and the true North (true bearings). Bearings are usually given as a three-figure
sequence. The sequence consists of two (2) characters and one (1) number: the first character is
either N or S, referring to North or South respectively. Next part of the sequence is the angle value,
usually in degrees (e.g., 45°). The last part of the sequence is either the characters E or W —
referring to East or West respectively — and represents the direction of the angle away from the
reference ray. The angle value will always be less than 90°. For instance, if point B is located
exactly southeast of point A, the bearing from A to B is S45°E.

14



A(x, y)

Figure 3.1. Sensor A with bearing angles ¢1, ¢2

Among its many uses, triangulation is widely used in many scientific fields, some of them

including:
= Results confirmation/validation
= Bias minimization
= Data information validation

In the current chapter, however, we will look into triangulation as a method of localization, in
order to determine a transmitter’s position on the surface of the Earth. Moreover, in the next

sections we will analyze the basic methodology that will be used, as well as general information

about the concepts of triangulation.
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3.3 Determination of all triangulation areas

Triangulation area is the result of the intersections of three (3) or more bearings by different
sensors. It is defined as the common area of the intersections between the sensors’ bearing paths.
The triangulation area’s size is analogous to the distance between the sensors and the intersection
point; smaller triangulation areas are formed by sensors closer to the intersection point, in contrast
to sensors far from the intersection point, where larger triangulation areas are formed (more on
this matter at the end of section 3.6).

In order to determine all triangulation areas of more than one (1) transmitter, two sensors
in the network are not enough. The main reason is that each sensor can only detect direction —
according to its bearing angles — and not distance, preventing us from determining the exact
geographical positions of the transmitters.

For instance, if a transmitter enters our area of interest (AOI), then two (2) sensors are
enough to detect it, since both of them will bear to it and its geographical position will be the
intersection point of their bearings. More analytically, the first sensor will bear to the transmitter
but will not be able to detect its exact position, due to its inability to calculate the transmitter’s
distance from the sensor. For this reason, a second sensor needs to be placed in the network. The
second sensor’s bearing to the transmitter will intersect the first sensor’s bearing at a specific

geographical point. This point comprises the transmitter’s exact location in our AOI.
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N B Ad1

Transmitter

Sensor A

Sensor B

Figure 3.2. One transmitter is detected by two (2) sensors A and B

On the other hand, if two (2) or more transmitters enter our AOI, then two (2) sensors are
not enough to detect the transmitters’ positions. Following the above same procedure, the two
sensors will bear to the transmitters’ direction, each one acquiring two (2) bearing paths. As a
result, we will now have 4 intersection points between the sensors’ bearings (instead of two (2) as
stated above), due to each sensor’s two (2) different bearings to each transmitter. Since the
intersection points are more than the transmitters (Figure 3.3 — marked with green dots), there is

no way to know exactly which two (2) points correspond to the transmitters’ positions.
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[

Intersection Point 4

Intersection Point 1 T;ansm'tter 1

Intersection Point 3

Transmitter 2

Intersection Point 2

Sensor A

Sensor B

Figure 3.3. Two sensors are not able to detect two (2) or more transmitters

In these cases, one (1) or more sensors are placed in our network — depending on the area’s
requirements — estimating the exact location of each transmitter (Figure 3.4 — marked with blue
dots).
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Sensor A

Sensor C

Sensor B

Figure 3.4. A third sensor is placed, in order to detect the two (2) transmitters

3.4 The importance of £x degrees in bearing accuracy
When talking about triangulation and bearing, it is important to define each sensor’s
bearing accuracy. Each sensor can detect a transmitter with a certain accuracy. Due to construction
reasons, the detection accuracy may vary from 1° to 5°. This means that the bearing paths are not
one (1) bearing path, but more like two (2), resembling the sides of a triangle, with the initial

bearing being the triangle’s median side.
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A(x,y)

Figure 3.5. Sensor bearing angles with +div

Therefore, a new variable is inserted into our problem, representing the divergence (error).
The sensor’s bearing accuracy is not defined by the initial bearing angle anymore, but is

represented as a range, formed by the formula:

accuracy = [initial bearing angle — error, initial bearing angle + error] (I)

meaning that the sensor’s bearing is not defined by a single angle, but by a range of angles from
(initial bearing-error) to (initial bearing+error). In this way, a wider range of angles, including a
certain detection error, is covered. We will refer to the error as divergence (div). As stated above,

the divergence may vary from 1° to 5°, according to parameters like environment, distance and
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other external factors. Using the above formula, we end up with two (2) bearing paths (initial-div,

initial+div), instead of one (initial), that will be used in the triangulation method.

3.5 Bearing from multiple sensors for position estimation
Given two (2) sensors A (x1, y1) and B (x2, y2) in our network, along with their
corresponding bearing angles Al and Bol, we use the accuracy formula (I) described above to
provide each sensor with its two (2) bearing paths. After the application of the formula, sensor A’s
bearing accuracy ranges from (Ael-div) to (Ael+div), whereas sensor B’s bearing accuracy
ranges from (Bol-div) to (Bel+div). Combining the four (4) bearing paths creates the
quadrilateral [Q1, Q2, Q3, Q4] that represents the common area between the two sensors’ bearing

paths.
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By1+div

Byp1-div

A@1+div

A(x1,y1) : )
B(x2, y2

Figure 3.6. Quadrilateral representing the common area between bearings of sensors A, B

As mentioned earlier, in the case of two (2) or more transmitters, we need more than two (2)
sensors in order to find all triangulation areas. Applying this method to three (3) random sensors
A (x1, yl), B (x2,y2) and C (x3, y3) and their corresponding bearing angles Ae1, Bl and Col,
the image of our network is as follows:
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Bep1+div Ap1-div

3¢1-div

Ag1+div
Col+div

Co1-div

C(x3,y3)

A(x1,y1) B0, v2)

Figure 3.7. Triangulation area between the bearings of three sensors A, B and C?

As we can see, sensors A and B form the quadrilateral [Q1, Q2, Q3, Q4] (by the intersection of
their bearing paths (Ael-div), (Apl+div), (Bel-div), (Bel+div)), whereas sensors B and C form
the quadrilateral [K1, 12, 13, K4] (by the intersection of their bearing paths (Be1-div), (Bel+div),
(Col-div), (Cel+div)). On the other hand, sensors A and C form the quadrilateral [11, K2, K3,
14] (by the intersection of their bearing paths (A¢l-div), (Ael+div), (Col-div) and (Col+div)).
By defining the three (3) quadrilaterals that are formed by the bearing paths of two (2) sensors

each time, we can observe that they have common area with each other, defined by the newly

L All three (3) sensors use the same divergence value. The bearing paths for sensors A and B were drawn “wider”, in

order to achieve clarity and simplicity. In reality, they are as narrow as sensor C’s bearing paths.
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formed quadrilateral [I1, 12, 13, 14]. The new quadrilateral is the requested triangulation area,
determined by the three (3) sensors A, B and C.

As stated in section 3.3, the triangulation area’s size is analogous to the distance between
the sensors and the intersection point; smaller triangulation areas are formed by sensors closer to
the intersection point, in contrast to sensors far from the intersection point, where the formed
triangulation areas are wider. By applying the accuracy formula (1), we acquire two (2) bearing

paths for each sensor and can take a notice at the formed triangulation areas below:

bensora ‘ Sensor C

Sensor B

Figure 3.8. Small triangulation area by sensors closer to the intersection point
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Sensor A

Sensor B Sensor C

Figure 3.9. Wider triangulation area by sensors far from the intersection point

3.6 Sensor Description

The sensors that will be used in our network are a combination of an inertial system with
the transmission of Very Low (VLF) and Ultra Low (ULF) electromagnetic frequencies [31]. The
inertial system moves on a circular motion path and consists of four (4) units:

I.  An electronic box containing:

a. A signal generator system (producing electromagnetic signals)
b. A force detection circuitry

ii. A telescopic antenna (from where the signals are emitted)

iii. A perpendicular axis (fixed underneath the generator box around which the circular
motion will take place

iv. A base (through which the system will be able to rotate around its axis)
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Figure 3.10. Inertial system with its base [31]

Figure 3.11. Inertial system with its four (4) units [32]

The system’s motion is described by angular velocity o(t). The weight of units (i) and (ii)
causes a torque that makes the system rotate around its axis. The generator circuitry applies a signal
on the antenna, which may differ (depending on the material that needs to be detected) and affect
the movement. In the case of a detection — that is when a specific material is located towards the

direction pointed by the antenna — a force is exerted on the sensor’s antenna, altering its expected
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motion. The stronger the force, the sooner the system’s movement will be affected. In other words,
detection is translated as deceleration of the system.

The sensor’s angle is calculated using Gray Code [33]-[37]. Gray Code is a binary
enumerating system in which consecutive numbers differ by one (1) bit. For our system, a 9-bit
Gray Code is used, in order to have 2° = 512 angle combinations. A cycle is equal to 360°, so the

accuracy of each step in the code is:

360°/512 =0.7031°=0.7°

meaning that the minimum difference of the calculated angles is about 0.7°. The disk on which the
Gray Code is printed is attached to an electronic reader communicating with a Raspberry Pi 4
board, which sends the angles’ readings wirelessly to a computer. The readings are produced with
a rate of approximate fifteen (15) angle readings per second, according to the sensor’s

manufacturing.
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Figure 3.12. Vertical representation of the 9-bit Gray Code
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Figure 3.13. Complete inertial system

3.7 Technologies

3.7.1 Programming Language
The programming language that will be used for the development of the current project is
Java [38]. The language decision was based on objective criteria — such as the numerous
possibilities and libraries that Java offers (both in 2D and 3D) — as well as on the author’s personal
preferences. The JDK (Java Development Kit) version will be v19.0.2 and the IDE that will be
used for the development will be IntelliJ v2021.2.3 Ultimate Edition by JetBrains [39].

3.7.2 Synchronization Environment — Node-RED
Node-RED is a flow-based development tool for visual programming, used for event-
driven applications [40]. It provides a web browser-based flow editor and allows for code

execution at the flow’s nodes.
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Our project consists of three (3) individual programs, which are serially executed and
interdependent. This means that one program’s output is used as input for the next program. The
three (3) programs are synchronized via Node-RED. The flow starts by executing the first program
and acquiring its output. The output is then built into a new file that will be fed as input into the
next program of the flow. The same procedure happens between the second and the third program
as well. Synchronization, output acquisition and new input creation are executed in the
intermediary nodes of the flow between the programs. More information about the programs and

their inputs/outputs is provided in the next chapter.
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Chapter 4 - Project Analysis

4.1 Chapter Overview — Problem Statement

The current chapter gives a detailed statement of the problem, the algorithms that were
used for the purpose of the thesis and the experiment that was conducted, along with the acquired
results.

There is a Wireless Sensor Network (WSN) organized over an area of several square
kilometers, collecting data in real time. The data’s nature is of field strength from various
directions around each sensor. In order to efficiently organize and analyze the data and find high-
intensity bearings (bearings at which a transmitter was detected), algorithms need to be developed.
The existing sensors do not provide any information about the distance of a potential transmitter.
It is important to be able to recognize new bearings at which a transmitter was detected and
distinguish them from pre-existing ones, as well as how they change over time.

Furthermore, it is necessary to develop triangulation algorithms — in order to estimate the
transmitter’s position — and to project the transmitter’s geographical position on a map, showing

how it has changed over time.

4.2 Project Overview
The thesis consists of three (3) individual programs, all interdependent and executed in a
serial way, in order to produce the final result. The flow of the programs is the following: each
sensor rotates in a 360° radius collecting large amounts of data, which has to be filtered and
organized in a way such, as to be used correctly and efficiently.
In order to be able to estimate a transmitter’s position entering our area of interest (AOI),
we have to be able to perform 3 actions:
i.  Understand high-intensity bearings (meaning that “something” — a potential
transmitter — might be in that area)
ii.  Perform triangulation methods using these bearings, in order to find all
triangulation areas

iii.  Find the transmitter’s position and project it on the map
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Each of these actions are performed by the 3 individual programs referenced above and are

named Bearing Definer, Triangulation Detector and Centroid Detector respectively.

4.3 Algorithm Description

4.3.1 Bearing Definer

The first program of the flow is the Bearing Definer and acts as how its name implies: it
is responsible for understanding/detecting all high-intensity bearings from the data collected and
exporting them, in order to be used as input in the next step, the triangulation step.

As mentioned above, each sensor in our network rotates in a 360° radius collecting large
amounts of data. The data consists of the current angle the sensor is bearing to and a timestamp
for the corresponding entry. If a potential transmitter enters the AOI, the sensor’s behavior changes
as it displays a deceleration in its movement (Chapter 3 — section 3.6). This deceleration is not
instantaneous, but it may last up to 2 seconds. The program’s responsibility is to identify the
bearings at which the deceleration took place and perform certain filtering and reducing
algorithms, in order to efficiently make use of the information provided.

The program consists of six (6) stages:

I.  Reading/Storing the data
ii.  Grouping the data into averages/Computation of angular velocity-acceleration
iii.  Production of “zound.txt”-“zound with _two neighbours.txt”/Application of
“parsing_threshold”
iv.  Sorting/Removing duplicate values
v.  Exclusion of non-active ranges/Reducing

vi.  Printing final output

The program begins by reading all necessary parameters from a file called
“parameters.txt”. This file contains the following parameters:
= input_cycles: number of cycles to take into consideration when reading the data
from the sensors

= first_ceiling: used as a starting point/base for the computation of a full cycle
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mid_ceiling: used as middle point for the computation of a full cycle

last_ceiling: used as the last point for the computation of a full cycle

run_times: number of times the program should run, before computing the final
output

milliseconds: amount of time in milliseconds — used to determine the duration for
which the “Main Thread” should stay into “sleep” state (described in the next
paragraph)

min_times: minimum number of times of an appearance of an angle (used in the
algorithm for input correction — described in the General Notes section — (a)
Correct Input Algorithm, at the end of section 4.3.1)

average: number of elements that will participate in the computation of the average
(grouping of elements in the second stage)

rate: units of time used, when computing the angular velocity/acceleration
acceleration: the defining value of acceleration taken into consideration when
producing the “zound.txt” file in the third stage

zound_neighbours: number of adjacent angles taken into consideration when
producing the “zound.txt” file

parsing_threshold: used as floor in the third stage, in order to get the “winning”
bearing angles

floor_divergence: floor angle value used in the reducing algorithm in the fifth stage
angles_range: range of angles that define our AOI

exclude: range of angles excluded from our AOI
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input_cycles = 2
first_ceiling = 1000
mid ceiling = 2000
last_ceiling = 3000
run_times = 3
milliseconds = 2000
min times = 10

average = 3

rate = 4

acceleration = 7
zound_neighbours = 2
parsing threshold = 4
floor_divergence = 3.0
angles_range = [1,348]
exclude = [1,7] , [220,232] , [246,260] , [268,277] , [292,302] , [315,321] , [335,348]

Figure 4.1. “parameters.txt” file

The algorithm consists of a thread that is initialized at the beginning of the program and
runs infinitely. The thread — called “Main Thread” — is responsible for all the work executed. It
can go into two (2) states: “sleep” and ‘“awake”. The thread stays in “sleep” state for n
milliseconds, as defined by the corresponding parameter “milliseconds” in the “parameters.txt”
file. After n milliseconds, it goes into “awake ” state, in which it wakes up and searches to read an
input file called “input_for_bearing.dat” in the existing directory. If no input file is found, the
thread goes into “sleep” state. If an input file is found, the thread proceeds to start with the

execution of the main body of the algorithm.

4.3.1.1 Stage 1: Reading/Storing the data
The algorithm begins by reading data from an input file called “input_for_bearing.dat”.
Each line in the input file consists of information about the bearing angle and a timestamp at which

the specific data was collected. The input file is basically the output data of the sensor.
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149.0 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
149.0 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
European Summer Time)

149.0 Tue Apr 04 2023 06:49:25 GMTI+0300 (Easter

149.7 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
149.7 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
149.7 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
149.7 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
150.5 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
151.2 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
151.2 Tue Apr 04 2023 06:49:25 GMT+0300 (Easter European Summer Time)
151.2 Tue Apr 04 2023 06:49:25 GMI+0300 (Easter European Summer Time)

Figure 4.2. Input file "input_for_bearing.dat"

Each line is stored in a list for future computational purposes. The number of lines read (thus the
amount of data) depends on the “input_cycles” parameter, as specified in the “parameters.txt” file.
For instance, for input_cycles=2, the algorithm stops reading data when completing two (2) full
cycles.

Each cycle is computed based on the values of the bearing angles and the “first ceiling”,
“second_ceiling” and “third_ceiling” parameters, as specified in the “parameters.txt” file. The
computation of a full cycle uses the following procedure: three (3) Boolean variables are used, all
initialized with false. Each variable is set to true whenever the bearing angle falls between the
specified ceiling parameter and the sum of the ceiling parameter plus a fixed divergence number
(for simplicity reasons, in the current project the fixed value is equal to 10). For instance, let pi,
pm and pl be the Boolean variables initialized with false and “first ceiling”=100,
“second _ceiling”=200 and “third ceiling”=300. When traversing the input data, if the bearing
angle falls between 100 and 110, pi is set to true. The same method is applied for the other two
variables. When all three variables are true (hence we started from angle~100 and reached
angle=300), a full cycle is completed. The reading/storing of the data stops when the number of

cycles reaches the number of “input_cycles” specified in the “parameters.txt” file.
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4.3.1.2 Stage 2: Grouping the data into averages — Computation of angular

velocity/acceleration

4.3.1.2.(a) Grouping the data into averages

Due to its high sampling rate, the sensor produces a large amount of data. Each angle
appears numerous continuous times in the data, as the sensor produces this data at one unit of time.
This happens due to the sensor’s nature/manufacturing (as stated in Chapter 3 — section 3.6, the
sensor produces approximately about 15 angle readings per second). In order to be able to have a
more accurate insight of the data and be able to use it more effectively, we need to find a way to
group it. For this purpose, we will group the data into groups of averages. Each group of averages
will take into consideration “average” number of elements — as described in “parameters.txt” —and
will be reduced into one final value, the average value of the elements participating in the group.
For instance, for “average”=3, 3 lines from the input file will be used into the grouping method.
The bearing angles of each line from the input file will be accumulated and then divided by 3
(according to the “average” parameter), in order for the 3 bearing angles to be reduced into one
final angle. We repeat the process for all angles in the “input cycles” range and a new file is
produced. The new file is called “average.txt” and contains all reduced average bearing angles,

along with their timestamps. The “average.txt” will be used for the computations below.
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3.2>3.2 Fri Apr 07 2023 17:33:21 GMI+0300 (Eastern European Summer Time)
3.2|F°3.9 Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
3.2|| 3.9 Fri Apr 07 2023 17:33:21 GMTI+0300 (Eastern European Summer Time)
3.9 3.9 Fri Apr 07 2023 17:33:21 GMTI+0300 (Eastern European Summer Time)
3.9 3.9 ri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
3.9 3.9 Fri Apr 07 2023 17:33:21 GMI+0300 (Eastern European Summer Time)
3:9 3.9 Fri Apr 07 2023 17:33:21 GMI+0300 (Eastern European Summer Time)
3:9 3.9 Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
3.9 4.3 Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
3.9 4.6 Fri Apr 07 2023 17:33:21 GMI+0300 (Eastern European Summer Time)
3.9 4.6 Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
3.9 4.6 Fri Apr 07 2023 17:33:22 GMI+0300 (Eastern European Summer Time)
3.9 5.0 Fri Apr 07 2023 17:33:22 GMI+0300 (Eastern European Summer Time)
3.9 5.3 Fri Apr 07 2023 17:33:22 GMI+0300 (Eastern European Summer Time)
359 S7F ri Apr 07 2023 17:33:22 GMTI+0300 (Eastern European Summer Time)
3.9 6.0 Fri Apr 07 2023 17:33:22 GMTI+0300 (Eastern European Summer Time)
3.9 6.0 Fri Apr 07 2023 17:33:22 GMI+0300 (Eastern European Summer Time)
3.9 6.0 ri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
3.9 6.0 ri Apr 07 2023 17:33:22 GMI+0300 (Eastern European Summer Time)
3.9 6.0 Fri Apr 07 2023 17:33:22 GMTI+0300 (Eastern European Summer Time)

Figure 4.3. Averages file “average.txt” with “avg”=3

4.3.1.2.(b) Computation of angular velocity/acceleration

As stated earlier, each sensor in our network rotates in a 360° radius collecting large
amounts of data. Therefore, it develops angular velocity and thus, angular acceleration. Each time
the sensor detects “something”, its antenna faces a slight deceleration. We are interested in the
values of this deceleration, as the deceleration is the result of interaction between the sensor and
the potential transmitter. In other words, deceleration indicates detection (Chapter 3 — section 3.6).

In order to find the values of this deceleration, we first need to compute the sensor’s angular
velocity. We will compute both angular velocity and angular acceleration by finding the rate of
change of the respective values per unit of time. Using the “rate” parameter, we group the data
produced in the “average.txt” file per (“rate”+1) number of elements (e.g. for “rate”=4, each group
of data includes the starting angle plus 4 more angle readings — in total five (5) angle readings)
and compute the difference between the last and the first value (difference of bearing angles for
velocity, difference of velocity values for acceleration).

Starting with the velocity, we compute the difference of the bearing angles column (per 2)

in the “average.txt” file. We start by traversing the angles column — line per line — in the
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“average.txt” file (per 2) and subtract the last value in the group from the first one. This produces
a new value for the current group of elements, which corresponds to the sensor’s angular velocity

at the specific timestamp.

Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:21 GMI+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:21 GMTI+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:21 GMTI+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:21 GMTI+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:21 GMTI+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:21 GMI+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:21 GMI+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:22 GMI+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:22 GMI+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:22 GMI+0300 (Eastern European Summer Time)
Fri Apr 07 2023 17:33:22 GMI+0300 (Eastern European Summer Time)
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Figure 4.4. Angular velocities with “rate”=4

We continue the process until the end of the data and we are left with a file so long as the
“average.txt” file, which contains the angular velocities of the sensor per unit of time. By repeating
the same process, this time though on the new file’s column of velocities (instead of the angle
bearings), we will find the rate of change of the velocity per unit of time, which corresponds to the

sensor’s angular acceleration at the specific timestamp.
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0.7>-0.3 Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
0.0|] 0.7 ri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
0.0| 0.7 Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
0.0| 0.7 Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
0 0.3 ri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
0 0.0 Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
0. 0.4 Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
0. 0.7 Fri Apr 07 2023 17:33:21 GMI+0300 (Eastern European Summer Time)
0. 0.3 ri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
0. 0 Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)

i e -0.8 Fri Apr 07 2023 17:33:21 GMT+0300 (Eastern European Summer Time)
) o -1.4 Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
1. -0.6 Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
0.

WO N e
o

0.0 Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
0. 3 B | Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
0.0 1.4 Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
0.4 0.6 Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
0.7 0.0 Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
1.4 -1.4 Fri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)
1.4 0.4 ri Apr 07 2023 17:33:22 GMT+0300 (Eastern European Summer Time)

Figure 4.5. Angular accelerations with "rate"=4

By completing the process, we have a new file consisting of four (4) columns: the bearing
angles, the angular velocity, the angular acceleration and the corresponding timestamp. In order to
keep the program “clear” and not produce a huge amount of useless files/data, we overwrite the

new file on the “average.txt” and will use in the next step to produce the “zound.txt” file.

4.3.1.3 Stage 3: Production of “zound.txt” / “zound with_two_neighbours.txt” / Application

of “parsing threshold”

4.3.1.3.(a) Production of “zound.txt”

The “zound.txt” file is of prime importance to the program, as it contains the number of
times an acceleration value appeared for a specific angle, along with the corresponding angle. The
acceleration value depends on the “acceleration” parameter. After the computation of the angular
velocities and accelerations, the next step is to apply a filtering technique on the data. As we
mentioned earlier, we are interested in the sensor’s deceleration when detecting ‘“something”.

Deceleration is translated as a negative acceleration value. Since we have all acceleration values
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of the sensor (produced in the previous step), we can now filter only the values we are interested
in. For this purpose, we use the “acceleration” parameter in the “parameters.txt” file. The
“acceleration” parameter acts as a ceiling threshold, allowing us to obtain only acceleration values
less-than-or-equal to minus “acceleration” (since we are interested in negative acceleration values,
thus deceleration values).

We begin by traversing the “average.txt” file, taking into consideration only elements
belonging to the accelerations’ column. We accept acceleration values less-than-or-equal to minus
“acceleration” and greater-than-or-equal to a constant floor value (for simplicity, our floor value

is -10). The formula for an acceptable acceleration value is:

-10 <= acceleration value <= -“acceleration” parameter (1)

For instance, if “acceleration”=0.7, we want to filter all acceleration values that fall in the range [-
10, -0.7]. Any acceleration value falling in this range indicates that the deceleration is “strong”
enough to be accepted and that the sensor is in fact detecting “something”.

Each acceptable acceleration value is stored in the “zound.txt” file, along with its

corresponding bearing angle. An example of the “zound.txt” file is presented below:

o, 0.3 3
1 [T 1 0
2 YT 2
3 29 0
4 5 3ad 3
5, 3.9 3
6 ; 94:6

o S5 & 2
8 . 6.0 1
0, 6.7 -
10 , 7.9 1
1 5 Bl

2 8.8 0

Figure 4.6. File "zound.txt"
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According to the “zound.txt” provided, at bearing angle 7.4°, the number of acceleration values
acceptable according to the formula above is one (1). This means that when bearing at 7.1°, the
sensor spotted an acceptable deceleration value one (1) times.

Due to construction reasons, at each detection the sensor has an error tolerance of
approximately two (2) steps. This means that in the first cycle, a detection may occur at a certain
angle (e.g., 20°), whereas in the next cycle the same detection may occur at an earlier angle (e.g.,
18°) or a subsequent angle (e.g., 22°). In order to be accurate, we need to take into consideration
all neighboring acceleration values when forming the final result. The error tolerance is referenced

as divergence and is described in Chapter 3 — section 3.4.

12

10 -

e Seriesl

Figure 4.7. “zound.txt” chart

In the chart above, we can observe that a detection was performed at circa 62°. The event
did not happen instantaneously, but lasted for some time, affecting neighboring angle values as
well. For this reason, we need to take neighboring acceleration values into account, too, in order

to consider the error tolerance when forming the final result.

4.3.1.3.(b) Production of “zound with_two_neighbours.txt”

A new file is produced from “zound.txt” and is called “zound with two neighbours.txt”.
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[ |
-~
"I - |
w
J

3w N 5
e u Bl 6
3 ; 2.4 6
g & Jd 7
. 7
B . B.8 & 8
T s Sed =B 11
B Bal = <
S . 8.7 & 11
18 , 758 9
Y e Bal 9
B 8.8 7

Figure 4.8. File "zound_with_two_neighbours.txt"

In order to produce the “zound with _two neighbours.txt” file, we traverse the “zound.txt”
file and for each acceleration value, we add the two top and two bottom neighboring acceleration

values. For the above “zound.txt” file”:

6,46:
7,53:
8,6.0:
9,6.7:
10,7.4:
11,8.1:
12,88:

o Wk M~ P NP

the “zound with two neighbours.txt” file for the acceleration value at angle 6.0° (index 8) will
consist of the accelerations’ sum at angles 4.6°, 5.3°, 6.0°, 6.7° and 7.4° (indices 6, 7, 8, 9 and 10).
More specifically, the new acceleration value will be the acceleration at angle 6.0° plus its two (2)
neighbors up (4.6°, 5.3°) and down (6.7°, 7.4°):
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6,406:
7,53:
8,6.0:
9,6.7:

10,7.4:
11,8.1:
12,8.8:

30

11

11

25

20

15

10 -

HHHHHH

Seriesl

Figure 4.9. “zound with_two_neighbours.txt” chart

By observing the chart in Figure 4.9, we can see that the deceleration event was captured

more smoothly after computing the “zound with two neighbours.txt”. The “winning” angles are

more distinct and offer a more accurate perception of the event. The newly created file is like

passing a filter to the already “harsh” file “zound.txt”, which makes the study of the results more

efficient.
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4.3.1.3.(c) Application of “parsing threshold”

After producing the new file “zound with two neighbours.txt”, it is time to use the
“parsing_threshold” parameter, in order to only choose certain values of acceleration. We traverse
the “zound with _two neighbours.txt” file and store only acceleration values that are greater-than-
or-equal to the “parsing_threshold”. In this way, we filter all winning angles we deem worthy of

keeping.

4.3.1.4 Stage 4: Sort/Remove duplicates

Upon completion of stage 3, we have acquired all winning angles, according to the
“parsing_threshold” parameter. Since many “zound with two neighbours.txt” are produced, due
to the number of times the program is executed (based on the “run_times” parameter), we end up
with a large amount of duplicate angle values. Naturally, the next step will be to remove all
duplicate values.

We begin by sorting the list with all winning angles in ascending order, taking advantage
of the Collections.sort() function provided by Java. After sorting the angles list, we remove all
duplicate values by passing the angles in a HashSet. The main characteristic of a HashSet is that
each item is unigue, so at the insertion of each angle into the HashSet the check to see if the angle
already exists in the current HashSet is performed. All checks are performed by Java, so no extra
code is required. Finally, we copy all sorted unique angle values back to our main list and end up

with a list of winning angles sorted in ascending order and unique, ready to be fed to the next stage.

4.3.1.5 Stage 5: Exclusion of non-active ranges/Reduction
In the current stage, all winning angles from the previous stage must be checked and

reduced even further, in order to end up with a much clearer output.
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4.3.1.5.(a) Exclusion of non-active ranges

The list with the winning angles contains all angles in the range [0, 360]. Not all angles are
important for the final output, though. In the “parameters.txt” file, we have described two (2)
parameters, the “angles range” and the "exclude”. The “angles range” corresponds to the range
at which our AOI exists (depends solely on each sensor’s bearing range), whereas the “exclude”
describes the angle intervals that we want to exclude. For instance, if “angles range”=[0, 360] and
“excludes”=[50, 60] , [85, 90], then our active range of interest is split into three (3) ranges: [0,
49], [61, 84] and [91, 360].

For this purpose, we need to keep only winning angle values falling into either of these
three (3) active ranges and exclude all angle values that fall outside of our active range of interest.
At the screenshot below, with “angles range”=[1, 348] and “exclude”=[1, 7], the final angles both

before and after the exclusion of non-active ranges are depicted:

Before | After
3.1 | 8.1
3.9 | 8.8
4.6 I 9.5
5.3 | 10.2
6.0 | 10.9
6.7 | 11.6
7.4 | 12.3
8.1 | 13.0
8.8 | 13.7
9.5 | 15.1
10.2

10.9

11.6

12.3

13.0

13.7

15.1

Figure 4.10. Before/After the exclusion of non-active ranges
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4.3.1.5.(b) Reduction

After the exclusion of non-active ranges, the final output of the first program is almost
ready. By studying the remaining angles, we observe that some angle values are very close to each
other, differing even less than 1°. For this reason, we perform a specific reduction algorithm, in
order to group all these neighboring angles into one (1).

We begin by defining a “floor” variable that points to the first angle of the list. We then
traverse the list of angles by comparing the “floor” to each angle of the list. Our aim is to group
all angles that differ at most floor + “floor divergence” (as defined in “parameters.txt”) and find
their mean average. If an angle falls in the range of floor + “floor divergence”, we add it to the
group of angles for reduction. If an angle does not fall in the above range, we compute the mean
average of the group of angles until that angle, reduce them into one (1) and repeat the procedure
for the current angle and its successors. Following this method, the resulting angles list is reduced
by at least 3/4 of the initial non-reduced list. The resulting angles are the official output of the first
part of the program. At the screenshot below, the angles both before and after the reduction

algorithm are depicted:

Before | After
8.1 | 10.5
8.8 | 14.3
9.5 |
10.2 |
10.9 |
11.6 |
12.3 |
13.0 |
13.7 |
|

[
o
}

Figure 4.11. Before/after the reduction algorithm
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4.3.1.6 Stage 6: Print final results

In the sixth and final stage, the remaining reduced angles are printed. These angles are the
final output of the Bearing Definer program and will be used as input to the next program, the
Triangulation Detector. They comprise the bearing angles at which a detection was performed

and will be used to perform triangulation.

Figure 4.12. Bearing Definer flowchart

General Notes
During the development of the Bearing Definer, two (2) main problems arose concerning
the input. Due to the sensors’ nature/manufacturing, the collected data sometimes contained

corrupted data. For this purpose, two (2) ways to handle the errors were developed.

(a) Correct Input Algorithm

The Correct Input algorithm was developed to fix the corrupted data that sometimes was
produced by the sensors. As stated in Chapter 3 — section 3.6, each sensor collects data with an
approximate rate of 15 angle readings per second and a step of 0.7°, meaning that each transition
from one angle reading to the next differs at most 0.7°. Sometimes, due to the sensor’s malfunction,
the collected data contained ‘“rubbish”/error values. The “rubbish” data can be translated as
“jumps” in angle values of at least 2°-3° (way more than the allowed step of 0.7°). Moreover, these
jumps occurred at least 2°-3° forwards or backwards, a fact that is not acceptable, since the angle

readings only increase (therefore there is no decrease) at the passing of time.
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The algorithm starts by traversing the “input for bearing.dat” before it is forwarded as
input to the first stage of the Bearing Definer. The algorithm checks the angles of the file and how
they change over time. If an angle value differs from the previous angle value more than 0.8° (0.1°
more than the allowed step of 0.7°), we set the current angle value as (previous angle value + 0.7°).
We repeat the procedure for “min times” (as defined in the “parameters.txt”), ensuring that
successor angles will appear at least “min_times” in the “input for bearing.dat” and that their
values will not have a difference greater than 0.7°. In this way, the input is well organized and
each transition in the angle values is gradually smooth.

(b) Undefined values

The second problem was that sometimes the data values produced by the sensor were
“undefined”, resulting in program crashes. This problem was tackled in a simpler way. While
reading the “input_for bearing.dat” file in the above step, each time an “undefined” value was

read, the line was rejected and the program resumed with the next line.

4.3.2 Triangulation Detector
The second program of the flow is the Triangulation Detector and is responsible for
detecting all triangulation areas in our AOI.
The program consists of six (6) stages:
i.  Reading/Storing the input

ii.  Computation of bearing paths/Formation of quadrilaterals

iii.  Determination of relationship between the quadrilaterals

iv.  Reducing into triads

v. Removing duplicate values

vi.  Printing the final output

4.3.2.1 Stage 1: Reading/Storing the input

48



The program accepts a specific input file called “input for triangulation.txt”, which is
created in Node-RED and consists of the sensor’s bearing error — divergence (in angle degrees), a
parameter called “max_angle diff” and the information for each sensor. The “max angle dift”
represents an angle in degrees and is used in the filtering process of the quadrilaterals (more
information is described later on this chapter). The information of each sensor contains the sensor’s
name, its coordinates (X, y) in degrees and the bearing angles — in degrees — for each sensor, as
produced by the previous program, the Bearing Definer.

The program’s input file has the following format:

<Divergence>
<Max Angle Difference>

<Sensor’s Name> <Sensor’s Longitude> <Sensor’s Latitude> <Sensor’s Angles>

For example, given three (3) sensors:

Sensor A (long = 26.310820, lat = 35.315870), angles: 289.9, 302.6, 323.4, 331.8

Sensor B (long = 25.968806, lat = 35.190755), angles: 3.1, 7.8, 20.7, 303.3, 315.6, 327.2, 339.9,
352.6

Sensor C (long = 25.522420, lat = 35.305530), angles: 3.8, 16.3, 46.1, 310.7, 322.7, 333.1,
345.3, 349.1

a max angle difference of 40° and a divergence of 1°, the input file should have the following

form:

div=1

max_angle_diff =40

A 26.310820 35.315870 289.9 302.6 323.4 331.8

B 25.968806 35.190755 3.1 7.8 20.7 303.3 315.6 327.2 339.9 352.6
C 25.522420 35.305530 3.8 16.3 46.1 310.7 322.7 333.1 345.3 349.1
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div =

g |

max_angle_diff

A 26.
B 25
C 25
D 25.
E 24.
F 24.

310820
968806
522420
013081
689590
195738

59, 289.9

19095 3L 7:
35. 3.8 1
35.
39
< o

35

= 40
315870 302.6 323.4 331.8

8 20.7 303.3 315.6 327.2 339.9 352.6
305530 6.3 46.1 310.7 322.7 333.1 345.3 349.1
4077317 19:4 38.1 47:2 351.9

418260 17.9 30.0 42.0 56.0 78.9

408054 40.9 52.4 ©60.9 80.3

Figure 4.13. Input file "input_for_triangulation.txt"

Moreover, the program requires one more file from the same directory called

“area_of_interest.txt”. This file contains the coordinates of the four (4) vertices of the quadrilateral

that represents our AOI. When attempting to determine the position of a transmitter, we take into

consideration a specific area on the surface of the Earth the transmitter might be located in and

apply the triangulation algorithm at the area described by the vertices of the respective

quadrilateral. By following this procedure, we get rid of excessive computations, making our

algorithm more efficient in terms of time and memory complexity.

24.8333 36.2500
24.8333 35.3600
26.5000 35.3600
26.5000 36.2500

Figure 4.14. File “area_of interest.txt”

4.3.2.2 Stage 2: Computation of bearing paths/Formation of quadrilaterals

Upon reading all useful input information, we proceed to the next step, which is the creation

of all quadrilaterals. As stated in Chapter 3 — section 3.5, in order to perform the triangulation

method for two (2) or more transmitters, we need at least three (3) different sensors with their three
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(3) different bearing angles. By taking into consideration each sensor’s divergence, we have to
create the required quadrilaterals per two (2), in order to be able to determine common areas
between two quadrilaterals.

We begin by traversing the list of sensors — per two (2) — and computing the great-circle
paths for each other, according to their bearing angles and the given divergence. At this point, we
compute the absolute value of the difference between the two (2) bearing angles of the sensors. If
the difference is less than the “max_angle diff” parameter, we reject the current set of angles and
proceed with the next one. This part of the algorithm is a modification that is analyzed in the
General Notes section at the end of this section.

By applying the divergence formula (as described in Chapter 3 — section 3.4) on the bearing
angles of each sensor, we end up with two (2) bearing paths deriving from the main bearing path
of the corresponding sensor. For instance, for two (2) sensors A and B and their corresponding
angles Al and Bol, the four (4) bearing paths that are formed are defined by the angles:

Aol - div
Aol +div
Bol - div
Bol + div

Next step will be to compute all intersection points between each of these paths, in order to form
the quadrilaterals, as described in Chapter 3 — section 3.5.

The computation of the intersection points is performed based on the Intersection function
provided by Google. The Intersection function is suitable for calculations on the basis of a spherical
Earth (ignoring ellipsoidal effects), which is accurate enough for most purposes?.

2 In fact, the Earth is slightly ellipsoidal, so using a spherical model produces errors of up to 0.3%.

51



Formula: 81y = 2-asin( V(sin*(A@/2) + cos @1 - cos @) - sin*(AV/2)) )

8, =acos( (sin ¢y —sin @ - cos 615 ) / (sin 8y - cos @y ) )
B, = acos( (sin @y —sin @) - cos 817 )/ (sin b5 - cos @, ) )
if sin(Ay—11) > 0

012=6,

621 =21 — 6By
else

01p=2n—0,

821 =0y

a; =013 -0
o =01 — 03

a3 = acos( —cos a1 - cos a + sin 04 - $in @ - €os 817 )
013 = atan2( sin 817 - sin @y - sin ¢ , COS @) + COS G - COS 03 )
@3 = asin( sin @y - cos O3 + cos @y - sin 63 - cos H;3 )
Aly3 = atan2( sin 813 - sin 813 - cos @1, cos 813 — sin @y - SIN Q3 )
).3 = },1 + A}'l3
where @4, Ay, 833 : 1st start point & (initial) bearing from 1st point towards intersection point

®2, Az, 023 : 2nd start point & (initial) bearing from 2nd point towards intersection point
@3, Az : intersection point

% = (floating point) modulo

Figure 4.15. Intersection formula [41]

If any intersection point is null (meaning two (2) of the bearing paths do not “meet”
anywhere on the surface of the Earth), we ignore the specific bearing angles set and proceed with
the next one. If all intersection points are not null, we check to see if at least one of them falls
inside the area formed by the AOI’s quadrilateral. If no point meets the above condition, we ignore
the specific bearing angles set and proceed with the next one. If the above condition is met —
meaning that all intersection points are not null and at least one of them falls inside the AOI — we
proceed with the creation of the respective quadrilateral. The quadrilateral’s vertices are the four
(4) intersection points of the bearing paths and the name consists of the sensors’ names and the
bearing angles from which the quadrilateral was created. We repeat the process for all bearing
angles of all sensors — per two (2) — and store all created quadrilaterals in a list for future use. A

quadrilateral, along with its vertices’ coordinates, is depicted below:
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Quadrilateral: [A: 289.9, B: 3.1]
Vertices: (25.97, 35.40), (25.97, 35.41), (25.98, 35.41), (25.98, 35.40)

meaning that the above quadrilateral was formed by sensor A’s bearing angle 289.9° and sensor

B’s bearing angle 3.1° and its vertices’ coordinates are the intersection points of the four (4)

bearing paths defined by these two (2) bearing angles.

Notes for Intersection Formula [41]

Accuracy: The Earth is generally ellipsoidal — more specifically oblate ellipsoidal — having an
equatorial and polar radius of 6.378 km and 6.357 km respectively. The radius of curvature
varies locally, ranging from 6.336 km (at the Equator) to 6.399 km (at the poles). The average
radius of the Earth is currently accepted to be 6.371 km. Due to the Earth’s shape, utilizing
spherical geometry produces minor errors (since the Earth is not quite a sphere). When crossing
the Equator, such errors may reach up to 0.55%, though generally, they are less than 0.3%,
depending on latitude and the direction of travel.

Bearings: All bearings are measured with respect to true North (0°: N, 90°: E).
Trigonometry functions: Trigonometry functions accept arguments in radians; following this
principle, longitude, latitude and angle bearings in degrees (either decimal or
degrees/minutes/seconds) need to be converted to radians with the formula: rad=n*deg/180.
When utilizing signed decimal degrees to convert radians back to degrees (deg=180*rad/x),
West is negative. For bearings, values in the range [-x, +x] must be converted to [0, +2x]. This

can be achieved by using the formula: (brng+2*m)%2*xr, where % is the modulo operator.

4.3.2.3 Stage 3: Determination of relationship between the quadrilaterals

After the formation of all possible acceptable quadrilaterals, we proceed to find if they have

any kind of relationship with one another. Two (2) quadrilaterals may be related in three (3) ways:

I. ~ Common area with each other
ii.  “Containing” relationship (one quadrilateral contains another)

iii.  No relationship at all
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We begin by traversing the list of quadrilaterals — per two (2) — and search for any kind of
relationship between them. If a common area or a containing relationship is detected, we store the
quadrilaterals in a list, along with their relationship. If no relationship is detected, we ignore them
and proceed with the next pair. At the end of this step, we have found all triangulation areas
between the intersections of the bearing paths of all sensors in our list.

Upon determining all triangulation areas, we need to process the output, in order to be
exported in the desired format for the next program, the Centroid Detector. At this point, the output

has the following format:

[Quadrilateral 1] [Quadrilateral 2] Relationship (common area/containing)

D: 38.1]
E: 56.0]
D: 47.2]
E: 56.0]
E: 30.0]
E: 30.0]
E: 30.0]

.9, BE: 30.0])
E: 42.0]
E: 42.0]
D: 19.4]
E: 56.0]
E: 78.9]
78.9]
E: 17.9] common area
F: 52.4] common area
E: 30.0) common area
E: 30.0] common area
E: 30.0] common area
E: 30.0] common area

Figure 4.16. Output file with the quadrilaterals' relationships

4.3.2.4 Stage 4: Reducing into triads
The output consists of the information about the two (2) quadrilaterals (sensors and bearing
angles), along with their relationships. Taking a closer look at the output, we can observe that some

quadrilaterals share the same sensor and bearing angle. For instance:
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[A: 323.4,
[A: 323.4,

[A: 323.4, E: 78.9] common area
[B: 7.8, E: 78.9] common area

o w
~] )
w @

Figure 4.17. Before reduction into triads

we observe that quadrilaterals [A: 323.4, B: 7.8] and [A: 323.4, E: 78.9] share the same sensor A
and angle 323.4°. This information can be reduced to a triad, consisting of the names of the three
(3) sensors participating in the triangulation and their respective bearing angles. Following this

principle, the above quadrilaterals can be reduced into the following triad:

(A:323.4,B:7.8,E: 78.9)

We perform this procedure to all elements of the output, until all elements have been reduced to

their corresponding triads.

4.3.2.5 Stage 5: Removing duplicate values
Upon producing all triads, there is a possibility of having duplicate lines in our output. The
next to last step of the Triangulation Detector is to remove all duplicate lines from the triads

output. After the duplicates’ removal, our program’s output is ready to be printed.

4.3.2.6 Stage 6: Printing the final output

The final output of the Triangulation Detector is the “triads.txt” file. It contains all
triangulation areas (“containing” relationship — “common area” between quadrilaterals reduced
into triads), ready to be used as input to the final program of the current project, the Centroid
Detector, which will determine the exact position of a potential transmitter and project its position

on the map.
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(A: 331.8),1(B: 352.6); {€: 16.3)
(A: 289.8) _{€: 310.7), (B: 30.0)
(A: 285.9),4(8B: 303.3); (B: 30.0)
(Bz 327.2),8€: I3.3); (B 19.4)
(B: 303.3) . .{C: 310.7), (E: 30.0)
fA: 302.6),4C: 345.3), (D= 38.1)
iB: 315:0);1€: 333:1); (B 19:9)
{(B: 331.8) . (8B: 352.8), D 47.2)

Figure 4.18. Final output file "triads.txt"

Figure 4.19. Triangulation Detector flowchart

General Notes

The Triangulation Detector algorithm is an extension of my Bachelor’s Thesis
“Determining triangulation areas from multiple sensors using specific bearing
precision/accuracy”, with many modifications and bug fixes, in order to make the algorithm more
efficient. The most important modification is the introduction of the AOI quadrilateral. In the
earlier versions of the algorithm, all possible quadrilaterals were computed and stored, resulting in
unnecessary use of space and memory. No quadrilaterals were rejected and the number of

comparisons between them, in order to find all triangulation areas, was huge, as the earlier versions
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were based on the “greedy” approach. With the introduction of the AOI quadrilateral, the number
of computed quadrilaterals and thus, triangulation areas, is dramatically reduced, because we are
now keeping only the points that are of great interest to us and reject all points that fall a great
distance away from our AOL.

Another important modification was the introduction of the “max angle diff” parameter.
The “max_angle diff” helps reduce the number of useless triangulations. While traversing the list
of sensors — per two (2) — we compute the absolute value of the difference between the two (2)
bearing angles of the sensors. If the value is less than the “max_angle diff”, we reject the current
pair of angles and proceed with the next one. For instance, for a sensor A with a bearing angle of
45° and a sensor B with a bearing angle of 350°, the difference between their bearing angles is

equal to 55°.

Sensor A

350° Sensor B

Figure 4.20. Interior-Exterior angles formed between parallel norths
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This makes use of the properties of interior-exterior angles, formed between parallel lines.
In our case, the parallel lines are the paths corresponding to the true North (marked with N in
Figure 4.20). This process is approximate: in reality, paths corresponding to the true North are not
parallel — due to the Earth’s curvature — but rather meet at the Earth’s poles. In our case, though,
for a small AOI of some square kilometers on the surface of the Earth (plus, for simplicity of
computation), it is safe to accept that these paths are parallel to each other and therefore, we can
take advantage of the interior-exterior angles’ properties.

By rejecting the pair of bearing angles whose absolute difference is less than the
“max_angle diff”, we set a “floor” threshold for two (2) angles to have at least a specific difference
between each other. If that difference is too small, this translates to the two (2) bearing angles
being too close to each other and thus, being approximately almost the same; therefore, there is no
point in computing a quadrilateral whose vertices derive from the same bearing angles.

Finally, we fixed a major bug that occurred when reducing two (2) quadrilaterals in a triad.
In some cases, two (2) quadrilaterals with common area were created from the same sensor (e.g.,
sensor A) but with a different bearing angle (e.g., [A: 45.0, B: 46.0] and [A: 19.0, E: 339.0]). This
type of relationship is not acceptable, as we are only interested in the common area of
quadrilaterals from different sensors and therefore, has to be rejected. We handled this case by

ignoring the specific pair of quadrilaterals.

4.3.3 Centroid Detector

After determining the triangulation areas using the Triangulation Detector, the final step
of the project is to estimate the transmitter’s position and project it on the map. The output from
section 4.3.2 gives us information about a transmitter’s potential position. However, this position
is approximate. According to this information, the transmitter could be anywhere inside the
triangulation areas. Therefore, a more accurate way of determining its position is needed. For this
purpose, the computation of the triangulation areas’ centroid is the focus of our final program.
Since the output from the Triangulation Detector consists of triads, each one containing three (3)

sensors with three (3) of their bearing angles, the intersections of the bearing paths between the
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three (3) sensors give three (3) vertices of a triangle. The computation of the triangle’s centroid

gives a more accurate representation of the transmitters’ potential positions.

Sensor A

Sensor B Sensor C

Figure 4.21. Triangle formation by the bearing paths of three (3) sensors

The program’s input files are both the “input_for triangulation.txt” file from the previous
program, since it contains all information about the sensors (their coordinates and bearing angles),
and the “triads.txt” file that is the final output of the previous program. The “triads.txt” contains
all triangulation areas, so along with the sensor information, we are able to compute the triangle

centroids.
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Upon reading the two (2) input files, our aim is to create each triangle that corresponds to
each triad in the “triads.txt” file and compute its centroid. Since we have all the information we
need about the sensors, we can use the Intersection formula, as described in Figure 4.12, to find
the three (3) vertices of each triangle. The triangles’ vertices are the intersections of the bearing

paths (defined by the angle bearings) that participate in the triads. For instance, for the triad:

(A: 302.6), (D: 19.4), (E: 42.0)

the vertices of the respective triangle are the intersection points of the bearing paths between:

A and D (intersection point 1)
A and E (intersection point 2)
D and E (intersection point 3)

By acquiring the vertices for each triangle, we can then compute its centroid using the

formula;

G (X, y) = (x1+x2+x3)/3, (yl+y2+y3)/3)  (l11)

where:

(x1, y1): coordinates of intersection point 1
(x2, y2): coordinates of intersection point 2
(x3, y3): coordinates of intersection point 3

The formula suggests that the coordinates G (x, y) of a triangle’s centroid are defined by
the average of the coordinates of its three (3) vertices. We repeat the procedure for all the triads in
the “triads.txt” file and save all centroids in a list for the final print. The centroids are the first half
of the final output of our program, since they are the coordinates of the transmitter, and are printed

in the file “centroid_coords.txt”, along with the triad they correspond to.
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(a: 115.0), (B: 142.0), (D: 255.0) (35.153897, 25.21556)
(A: 147.0), (B: 205.0), (D: 255.0) (35.072158, 24.869162)
(B: 176.0), (C: 234.0), (D: 255.0) (35.121458, 25.077977)
(a: 117.0), (C: 234.0), (D: 255.0) (35.148169, 25.145908)
(A: 115.0), (C: 234.0), (D: 255.0) (35.154498, 25.163301)
(A: 117.0), (B: 176.0), (C: 253.0) (35.207751, 25.041359)
(A: 115.0), (B: 142.0), (C: 234.0) (35.165496, 25.198056)
(B: 142.0), (C: 198.0), (D: 236.0) (35.051122, 25.302865)

Figure 4.22. Centroid Detector’s final output “centroid_coords.txt”

The second step to complete the program is to project the transmitter’s position on the map.
For this purpose, a KML (Keyhole Markup Language) file called “centroidKML.kml” is produced,
which contains all centroid points with a colored icon, in order to be easily distinguishable on the
map. The KML’s format is:

<?xml version="1.0" encoding="UTF-8"2>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<Placemark id="1">
<name></name>
<Style>
<IconStyle>
<scale>2</scale>
<color>££f00££00</coloxr>
<Icon>
<href>httg:[Zmags.google.com[magfiles[kml[shaggs[shaded_dot.gng</href>
</Icon>
</IconStyle>
</Style>
<Point>
<coordinates> longitude, latitude, altitude (optional) </coordinates>
</Point>
</Placemark>
</Document>
</kml>

Figure 4.23. KML file format
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where longitude, latitude are the centroid’s coordinates and altitude is an optional parameter
representing the altitude from the Earth’s surface (for simplicity reasons, we set the altitude
parameter to zero (0)).

Every time the three (3) programs are executed (according to the “run_times” parameter —
Section 3.3.1), a different KML file is produced, containing all centroid points of the respective
“triads.txt” files. The “centroildKML.kml” is located in a directory, from which it is read by Google
Earth Pro. Google Earth Pro offers the ability to upload a KML file and project it on the Earth’s
surface. By setting Google Earth Pro to read the “centroidKML.kml” file from the directory it is
located in, we are able to project our results on the Earth’s surface in real time and thus, our
program’s final output is officially completed. In Figure 4.24, a screenshot of Google Earth Pro is
provided:

vensor A
Qensor B

d Sensor D
= sgensor C g

Figure 4.24. Transmitters' position projection on Google Earth Pro
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where the transmitters are marked with red dots and our AOI with green pins.

Last but not least, the Centroid Detector’s flowchart is presented below:

Read Sensor
Information

Compute triangle vertices for each Compute triangle's centroid, Print triads with their
triad, using the Intersection formula using the centroid formula centroid coordinates

]

Figure 4.25. Centroid Detector flowchart

Finally, the final flowchart displaying all stages of the project is presented below:

Read angles from . Triangulation N Project geographical
i ‘ sensor ‘ Bearing Definer | . ' Detector [Centroid Detector] location on map

Figure 4.26. Final Flowchart
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4.4 Experiment / Results

4.4.1 Experiment
In order to test the program’s validity and efficiency, four (4) sensors were deployed on
coastal areas of northern Crete, from Rethymno district to Lasithi district. Our area of interest
(AOI) laid on central Crete, as depicted in Figure 4.27.

4 > 2 o . <
_90' b TN | T _gSensor C
i b : 2 ¥ — RS T V VSensor D
> 7 § A vt O i R i N s
! ; s ¢ e TEIBN AL B
¥ o s /-

VSensor Aneg
E7s\,\/"’\VSensor B

J

Figure 4.27. Our experiment’s environment

A number of transmitters performed an activity inside our AOI. The aim of the experiment was to
estimate the transmitters’ positions in the AOI.

We deployed and ran the program twice. The first time was to detect all triangulation areas
and possible locations of transmitters in our AOI, whereas the second time was to validate the
results. In case of a false detection the first time, the second time would omit potential bias.
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4.4.2 Results
At first run, the input file that was created by Node-RED in order to be forwarded in the
Triangulation Detector algorithm was the following:

div =1

max_angle diff = 40

24.606165 35.384625 114.5 146.
25.037144 35.347293 178.3 203.
25.393828 35.301706 254.6 238.
25.716797 35.2707849 265.0 251.

120.
142
196.
237.

OO W
oMW
W M <J Wb

Figure 4.28. First run “input_for triangulation.txt”

where the sensors’ bearing angles were computed by an instance of the Bearing Definer for every
sensor. The Triangulation Detector, using the above input, produced the following

triads/triangulation areas:

C: 254.6) |
C: 196.6)
C: 238.0)
C: 254.6)

(A: 114.5), (B: 178.3),
(A: 120.4), (B: 142.7),
(A: 146.3), (B: 203.2),
(A: 120.4), (B: 203.2),

Figure 4.29. First run “triads.txt”

Similarly, forwarding the “triads.txt” file to the Centroid Detector program, the final

“centroid_coords.txt” is produced:
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(A= 1314.5), (B:s 178.3),;/(C: 254.6) (35.218292, 25.041921)

(a: 120.4), (B: 142.7),(C: 196.6) (35.051647, 25.308112)
(As 146.3),; (B:: 203:2);(C::.238:0) (35.049047, 24.882499)
(A 120.4), (B: 203.2),(c: 254.6) (35.206058, 24.9710395)

Figure 4.30. First run “centroid_coords.txt”

A screenshot from Google Earth Pro is presented below:

Sensor D

B8 SAOL 1S

Figure 4.31. First run transmitters’ position estimation

The second run of the program was performed to validate previous results and remove any
false detections. Similarly, after the execution of the Bearing Definer for each sensor, the

“input_for triangulation.txt” was formed:
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div = 1

max_angle diff = 40

A 24.606165 35.384625 115.2 146.1 128.
B 25.037144 35.347293 178.1 203.0 1leé4.
C 25.393828 35.301706 254.7 238.1 218.
D 25.716797 35.270784 265.2 252.0 244.

N o O;Ww

Figure 4.32. Second run “input.txt”

The second run’s triads/triangulation areas and final “centroid coords.txt” are presented below:

139.2), 18B: 178.1); (C: 254.7)
128.3), (B: 164.3), (C: 218.8)
(C: 2

(A: 146.1), (B: 203.0), 38.1)

Figure 4.33. Second run “triads.txt”

(A: 135:2) (B 278.2);(C: 254:7) (35.218292, 25.041921)
(A: 128.3);(B: 164.5) ,.(C: 218.8) (35.039459, 25.144578)
(A: 146.1), (B: 203.0), (C: 238.1) (35.049047, 24.882499)

Figure 4.34. Second run "centroid coords.txt”

The final screenshot from Google Earth Pro presents now three (3) geographical positions, instead
of four (4):
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Figure 4.35. Second run transmitters’ position estimation

By observing the screenshot, we can conclude that one (1) out of the four (4) positions in
the first run was a false detection, since it does not exist in the second run. Moreover, we observe
that transmitter #2 has changed position and has a direction towards West, according to its initial
position in Figure 4.31 and its final position in Figure 4.35. The other two (2) transmitters appear

to be in a fixed position.
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Chapter 5 - Conclusion / Future Work

5.1 Conclusions

In the last years, the topic of localization has been of prime research interest, where the
need for accurate position estimation has grown massively. The increasing number of sensor
network applications demands accurate detection rates in applications like GPS positioning,
mobile phone technologies, robotics etc. One of the localization techniques — and the focus of the
current thesis — is the process of triangulation.

In a Fixed Sensor Network (FSN), where sensors are connected wirelessly via 4G, the need
to estimate a transmitter’s position entering our area of interest (AOI) in real time is of prime
importance. The sensors collect large amounts of data over a large area of several square kilometers
on the Earth’s surface. The collected data needs analysis and processing, in order to find high-
intensity bearings and therefore, be able to estimate the transmitter’s position. The data is then
used in triangulation algorithms, in order to find all possible triangulation areas the transmitter
may exist in and finally, using the triangulation areas, the transmitter’s position is estimated and
projected on a map in real time.

In the current thesis we presented three (3) different algorithms for data processing and
position estimation. The Bearing Definer is responsible for the analysis of the data collected by
the sensors, as it detects and exports all high-intensity bearings received by the sensors. The
Triangulation Detector receives the high-intensity bearings collected by the previous stage and
performs triangulation algorithms, in order to find the triangulation areas in which the transmitter
may be located. Finally, the Centroid Detector receives the areas produced by the previous stage,
computes the exact geographical position (longitude, latitude) of the transmitter and projects the

position in Google Maps Pro.

5.2 Future Work

A very important addition to the current program will be the insertion of a database, in
order to store the sensors’ data (name, coordinates, bearing angles) and other information that may

prove important in the future. The use of a database will help reduce the number of “.txt” files in
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a single execution of the program, since all necessary information will be directly accessible
through the database.

Moreover, in order to determine the “winning” bearing angles more efficiently in the first
program of the flow, we plan on developing a Neural Network that will replace the Bearing
Definer’s job by making greater use of the respective weights in order to perform a better and

more accurate decision.
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