ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΦΥΣΙΚΗΣ & ΣΕΙΣΜΟΛΟΓΙΑΣ

ΥΔΡΟΓΕΩΦΥΣΙΚΗ ΚΑΙ ΥΔΡΟΓΕΩΛΟΓΙΚΗ ΜΕΛΕΤΗ ΣΤΗ ΛΙΜΝΗ ΤΗΣ ΑΓΙΑΣ ΚΑΙ ΣΤΗ ΛΕΚΑΝΗ ΤΟΥ ΠΟΤΑΜΟΥ ΚΕΡΙΤΗ

HYDROGEOPHYSICAL AND HYDROGEOLOGICAL STUDY IN THE BROADER AREA OF KERITI'S RIVER

ΕΠΙΜΕΛΕΙΑ : Β. ΤΣΙΟΥΜΑ

ΕΠΙΒΛΕΠΩΝ: Π. ΣΟΥΠΙΟΣ

XANIA 2005

ΠΕΡΙΕΧΟΜΕΝΑ

ΠΕΡΙΕΧΟΜΕΝΑ	1
ΠΡΟΛΟΓΟΣ	3
1. ΕΙΣΑΓΩΓΗ	5
2. Γεωλογία	7
2.1 Η Γεωλογική Δομή Της Κρήτης	7
2.2 Η Γεωλογική Δομή Του Νομού Χανίων	11
2.3 Γεωλογικές και Υδρογεωλογικές Συνθήκες της Μελετούμενης	
Περιοχής (Υδρολογική Λεκάνη Κερίτη)	19
2.3.1 Γεωγραφική θέση	19
2.3.2 Γεωλογία της περιοχής	19
2.3.3 Υδρολογικές- Υδρογεωλογικές συνθήκες	20
2.3.4 Γενικές παρατηρήσεις- συμπεράσματα	27
3. Γεωφυσική Έρευνα	29
3.1 Εισαγωγή	29
3.2 Ηλεκτρικές Μέθοδοι	30
3.3 Μέθοδος Ειδικής Ηλεκτρικής Αντίστασης	31
3.3.1 Ειδική ηλεκτρική αντίσταση	31
3.3.2 Ειδική αντίσταση των πετρωμάτων και ορυκτών	32
3.3.3 Συμπεριφορά του ηλεκτρικού ρεύματος μέσα στο έδαφος	34
3.3.4 Φαινόμενη ειδική αντίσταση	38
3.4 Τρόποι Διάταξης των Ηλεκτροδίων	39
3.4.1 Παράγοντες επιλογής της κατάλληλης διάταξης ηλεκτροδίω	v.43
3.4.2 Επιλογή Διατάξεων Ηλεκτροδίων	46
3.5 Γεωηλεκτρικές Διασκοπήσεις	47
3.6 Γεωηλεκτρική Χαρτογράφηση	48
3.7 Γεωηλεκτρική Βυθοσκόπηση	50

3.8 Εξοπλισμός Γεωηλεκτρικής Βυθοσκόπησης51
3.9 Προβλήματα στην ερμηνεία των Γεωηλεκτρικών Βυθοσκοπήσεων
54
3.10 Ερμηνεία των Γεωηλεκτρικών Βυθοσκοπήσεων56
3.10.1 Εισαγωγή56
3.10.2 IN SITU Βυθοσκοπήσεις58
3.10.2.1IN SITU Βυθοσκόπηση στον Ασβεστόλιθο58
3.10.2.2 IN SITU Βυθοσκόπηση στον Φυλλίτη59
3.10.2.3 Βυθοσκοπήσεις στην ευρύτερη περιοχή
3.10.3 Δισδιάστατη Απεικόνιση της Κατανομής των Γεωηλεκτρικών
Αντιστάσεων61
4. Συμπεράσματα75
Βιβλιογραφία
ABSTRACT79

ΠΡΟΛΟΓΟΣ

Στόχος της παρούσας διπλωματικής εργασίας είναι η υδρογεωλογική και υδρογεωφυσική έρευνα της λεκάνης του Ποταμού Κερίτη και της περιοχής της Αγυιάς. Αρχικά περιγράφεται η περιοχή της έρευνας. Στη συνέχεια παρουσιάζεται η γεωλογική, υδρογεωλογική, τεκτονική και σεισμοτεκτονική διερεύνηση της περιοχής του έργου. Διερευνάται επίσης η υδρολογία της λεκάνης του Κερίτη. Κατόπιν, γίνεται εκτενής αναφορά στη θεωρία που διέπει τη γεωφυσική μεθοδολογία που εφαρμόστηκε καθώς και στον τρόπο ερμηνείας και παρουσίασης των αποτελεσμάτων. Για την καλύτερη κατανόηση όλων των παραπάνω, χρησιμοποιούνται πίνακες, σχήματα, τύποι και διαγράμματα. Τέλος, αναλύονται τα συμπεράσματα από την ερμηνεία των γεωηλεκτρικών βυθοσκοπήσεων και της μονοδιάστατης, δυσδιάστατης και τρισδιάστατης απεικόνισης του υδροφόρου ορίζοντα.

Θα ήθελα να ευχαριστήσω ιδιαίτερα τον Επίκουρο καθηγητή κ. Παντελή Σουπιό για την σημαντική και ουσιαστική καθοδήγηση που μου παρείχε, καθώς και την επιστημονική του κατάρτιση σε τύπους και όρους που χρησιμοποιήθηκαν για την εκπόνηση της διπλωματικής μου. Επίσης για όλη τη διάρκεια των σπουδών μου στο Τμήμα Φυσικών Πόρων και Περιβάλλοντος, όπου οι γνώσεις που αποκόμισα από την διδασκαλία του ήταν χρήσιμες.

Ευχαριστώ τους Αναπληρωτές καθηγητές κους. Φίλιππο Βαλλιανάτο και Ταξιάρχη Παπακώστα για τις χρήσιμες παρατηρήσεις και διορθώσεις που έκαναν στο παρόν κείμενο.

Ευχαριστώ θερμά τον Γεωλόγο, κ. Κωνσταντίνο Βοζινάκη για την πολύτιμη βοήθεια του σε πληροφορίες και υλικό που μου παρείχε κατά τις συνεχείς επισκέψεις μου στον Υπηρεσία Εγγείων Βελτιώσεων της Περιφέρειας Κρήτης – Παράρτημα Χανίων.

1. ΕΙΣΑΓΩΓΗ

Στα πλαίσια της παρούσης διπλωματικής εργασίας έγινε επαναξιολόγηση των γεωφυσικών – γεωηλεκτρικών μετρήσεων που ελήφθησαν κατά την εκτέλεση του έργου «Υδρογεωλογική Μελέτη Κάμπου Χανίων – Γεωφυσική Έρευνα» από τους γεωφυσικούς Δρ. Γ. Αποστολόπουλο, Κ. Αντωνιάδη και τους γεωλόγους, Μ. Λιόνη, Β. Περλέρο και Ε. Δρακοπούλου. Επικουρικά, χρησιμοποιήθηκαν και τα αποτελέσματα της έρευνας που εκτελέστηκε από το Πολυτεχνείο Κρήτης στα πλαίσια της διπλωματικής εργασίας με τίτλο «Γεωηλεκτρική Διασκόπηση στη λεκάνη του ποταμού Κερίτη του Ν. Χανίων».

Σκοπός της παρούσης εργασίας είναι,

- </u> Ο εντοπισμός του υποβάθρου της υπό μελέτης υδρογεωλογικής λεκάνης.
- Η διερεύνηση του υποβάθρου και του πάχους των σύγχρονων αλλουβιακών αποθέσεων στη λεκάνη του Κερίτη.
- Η διερεύνηση της τεκτονικής και των πιθανών διαφοροποιήσεων του υποβάθρου στην ευρύτερη περιοχή έρευνας.
- Η εξοικείωση των φοιτητών σε υδρογεωφυσικές και υδρογεωλογικές έρευνες και η γνώση των παραγόντων που ορίζουν το υδρογεωλογικό καθεστώς σε μια πολύπλοκη –γεωλογικά- περιοχή έρευνας.

2. Γεωλογία

2.1 Η Γεωλογική Δομή Της Κρήτης

Η γεωλογική δομή της Κρήτης συνδέεται άμεσα με την συνολική γεωλογική δομή της Ελλάδας, η οποία χωρίζεται σε διάφορες γεωτεκτονικές ζώνες με γενική διεύθυνση στον ηπειρωτικό χώρο της ΒΔ - ΝΑ.

Κάθε ζώνη, χαρακτηρίζεται από ορισμένη και χαρτογραφίσιμη στρωματογραφική / λιθολογική διαδοχή των πετρωμάτων της όπως αυτά προέκυψαν από την επαλληλία των τεκτονικών γεγονότων που οδήγησαν στην δημιουργία του ορογενούς.

Οι κύριες γεωτεκτονικές ζώνες των Ελληνίδων οροσειρών με διεύθυνση από BA προς ΝΔ είναι (σχήμα 1):

- > Η μάζα της Ροδόπης εμφανίζεται στην Ανατολική Μακεδονία, Θράκη και στη Θάσο. Αποτελείται κυρίως από κρυσταλλοσχιστώδη και πυριγενή πετρώματα.
- > Η Σερβομακεδονική μάζα εμφανίζεται δυτικά του Στρυμώνα από τα σύνορα μέχρι και την Χαλκιδική. Αποτελείται κυρίως από κρυσταλλοσχιστώδη πετρώματα.
- > Η Περιροδοπική ζώνη εκτείνεται στη δυτική πλευρά της Σερβομακεδονικής μάζας με διεύθυνση BΔ -NA.
- > Η ζώνη του Αξιού εμφανίζεται στην Κεντρική Μακεδονία, χαρακτηρίζεται από τις μεγάλες οφειολιθικές μάζες που απαντώνται σε αυτήν.
- > Η Πελαγονική ζώνη εμφανίζεται σε όλη την Ελλάδα. Αποτελείται από κρυσταλλοσχιστώδες υπόβαθρο, γνευσιωμένους γρανίτες και ανθρακικά καλύμματα.
- > Η Αττικο-Κυκλαδική ζώνη εμφανίζεται κυρίως στα νησιά των Κυκλάδων και σε ένα τμήμα της Αττικής και της Νότιας Εύβοιας.
- > Η Υποπελαγονική ζώνη ή ζώνη «Ανατολικής Ελλάδας» εμφανίζεται στη Δυτική πλευρά της Πελαγονικής ζώνης. Χαρακτηρίζεται από τις μεγάλες οφειολιθικές μάζες που απαντώνται σε αυτήν.
- > Η ζώνη Παρνασσού-Γκιώνας εμφανίζεται στην κεντρική Στερεά Ελλάδα, και αποτελείται από ασβεστόλιθους και δολομίτες.
- > Η ζώνη Ωλονού-Πίνδου ή ζώνη Γαβρόβου-Τρίπολης εμφανίζεται στην Ήπειρο, στην κεντρική Ελλάδα, στη δυτική και βορειανατολική

- > Η ζώνη Γαβρόβου-Τρίπολης
- > Η Αδριατικοϊόνιος ζώνη
- > Η ζώνη Παξών ή Προαπουλία

Σχήμα 1. Γεωτεκτονικό σχλημα των Ελληνίδω ζωνών. (Μουντράκης, 1985)

Από τις γεωτεκτονικές ζώνες της Ελλάδας οι μάζες Ροδόπης και Σερβομακεδονικής θεωρούνται ότι αποτελούν την "Ελληνική Ενδοχώρα", οι ζώνες Περιροδοπική, Παιονίας, Πάικου, Αλμωπίας, Πελαγονική, Αττικοκυκλαδική και Υποπελαγονική ονομάζονται "Εσωτερικές Ελληνίδες" και οι ζώνες Παρνασσού-Γκιώνας, Ωλονού-Πίνδου, Γαβρόβου-Τρίπολης, Αδριατικοϊόνιος και Παξών ονομάζονται "Εξωτερικές Ελληνίδες".

Εκτός από τις κύριες γεωτεκτονικές ζώνες αναφέρονται σαν ξεχωριστές ενότητες,

η ενότητα «Ταλέα όρη-Πλακώδεις ασβεστόλιθοι» που πιθανόν ανήκει στην Αδριατικοϊόνιο ζώνη, και η ενότητα της Βοιωτίας που μάλλον ανήκει στην Υποπελαγονική ζώνη.

Η Κρήτη έχει μια πολύπλοκη γεωλογική δομή και έχουν διατυπωθεί διάφορες απόψεις σχετικά με τη δομή της, αυτό οφείλεται στην γεωτεκτονική θέση που κατέχει σε σχέση με τις δύο συγκλίνουσες λιθοσφαιρικές πλάκες, της Αφρικανικής και της Ευροασιατικής. Χαρακτηριστικό στοιχείο της δομής της είναι τα αλλεπάλληλα τεκτονικά καλύμματα των διαφόρων ζωνών (σχήμα 2), τα οποία αναπτύσσονται πάνω στην ενότητα Ταλέα όρη- των πλακωδών ασβεστόλιθων.

Σχήμα 2. Σχηματική απεικόνιση της γεωλογικής δομής της Κρήτης με τα αλλεπάλληλα τεκτονικά καλύμματα.(Μουντράκης, 1985)

Το αυτόχθονο ή σχετικά αυτόχθονο σύστημα της Κρήτης αποτελεί η ακολουθία Ταλέα Όρη-Πλακώδεις Ασβεστόλιθοι (σχήμα 3). Η ενότητα αυτή έχει ηλικία από το Πέρμιο μέχρι το Ηώκαινο και είναι ημιμεταμορφωμένη και πιθανώς ανήκει στην ζώνη της Αδριατικοϊονίου, αποτελείται κυρίως από κλαστικά ιζήματα χωρίς ηφαιστειακά πετρώματα στη βάση που εξελίσσονται σε τυπικούς «πλακώδεις ασβεστόλιθους» (μάρμαρα) που περιέχουν σε σημαντικό βαθμό κερατολιθικούς κονδύλους και πυριτικές ενστρώσεις. Εμφανίζονται επίσης μεγάλες μάζες άστρωτων (μετα)ασβεστόλιθων, δολομιτών, ασβεστολιθικών κροκαλοπαγών και φυλλιτικών-χαλαζιακών πετρωμάτων. Αποκαλύπτεται σε πολλές περιοχές της Κρήτης υπό μορφή τεκτονικού

Σχήμα 3. Σχηματική γεωλογική τομή εγκάρσια στην Κεντρική Κρήτη. Απεικονίζεται η δομή των βουνών Ταλέα όρη, Ίδη (Ψηλορείτης) και Αστερούσια. 1: Νεογενείς αποθέσεις, 2: Οφεόλιθοι, 3: μεταμορφωμένα πετρώματα των αστερουσιών, 4: πρώτος φλύσχης της Πίνδου (Κάτω Κρητιδικό), 5: ενότητα Άρβης, 6: τεκτονικό κάλυμμα της Πίνδου, 7: φλύσχης ζώνης Γαβρόβου - Τρίπολης, 8: ασβεστόλιθοι Γαβρόβου - Τρίπολης, 9: φυλλίτης, 10-14: σειρά των πλακωδών ασβεστόλιθων (Plattenkalk), 15-18: επωθήσεις των διαφόρων τεκτονικών καλυμμάτων. (Μουντράκης, 1985, σελ. 187).

Τεκτονικά επωθημένη στην ενότητα Ταλέα Όρη- Πλακωδών Ασβεστόλιθων βρίσκεται η ενότητα του Τρυτταλίου, που αποτελείται από μεταμορφωμένους δολομίτες, δολομιτικούς ασβεστόλιθους, λατυποπαγείς ασβεστόλιθους έως γραουβάκες, σκούρους κυψελώδεις δολομίτες, άσπρα ζαχαρόκοκκα μάρμαρα και εμφανίσεις γύψου στη βάση. Η ηλικία τους καθορίστηκε με την βοήθεια απολιθωμάτων μεταξύ Άνω Τριαδικού-Κάτω Ιουρασικού.

Πάνω από την ενότητα του Τρυπαλίου βρίσκεται η ενότητα των Φυλλιτών-Χαλαζιτών, η οποία περιλαμβάνει φυλλίτες, χαλαζίτες, μετα-ψαμμίτες, μετακροκαλοπαγή, φακοειδείς ανακρυσταλλωμένους ασβεστόλιθους, μετα-ανδεσίτες, μεταβασίτες. Η ηλικία της είναι μεταξύ Περμίου-Τριαδικού. Στην ενότητα αυτή συμπεριλαμβάνεται από τους περισσότερους ερευνητές και το ημιμεταμορφωμένο σύστημα των Ραβδούχων που αποτελεί και το υπόβαθρο της ανθρακικής ακολουθίας της ζώνης της Τρίπολης που ακολουθεί επίσης με τεκτονική επίσης επαφή και αποτελείται από στο υποκείμενο και τους μεγάλου πάχους νηριτικούς ασβεστόλιθους. Σε ανώτερη τεκτονική θέση βρίσκεται απωθημένο το τεκτονικό κάλυμμα της Πίνδου.

Πάνω από τις παραπάνω αναφερόμενες εξωτερικές ζώνες υπάρχουν σε ανώτερη τεκτονική θέση αλλόχθονα τεκτονικά λέπια των εσωτερικών ζωνών, όπως είναι η ενότητα της Άρβης. Πάνω από την ενότητα του Τρυπαλίου βρίσκεται η ενότητα των Φυλλιτών-Χαλαζιτών, η οποία περιλαμβάνει φυλλίτες, χαλαζίτες, μετα-ψαμμίτες, μετακροκαλοπαγή, φακοειδείς ανακρυσταλλωμένους ασβεστόλιθους, μετα-ανδεσίτες, μεταβασίτες. Η ηλικία της είναι μεταξύ Περμίου-Τριαδικού. Στην ενότητα αυτή συμπεριλαμβάνεται από τους περισσότερους ερευνητές και το ημιμεταμορφωμένο σύστημα των Ραβδούχων που αποτελεί και το υπόβαθρο της ανθρακικής ακολουθίας της ζώνης της Τρίπολης που ακολουθεί επίσης με τεκτονική επίσης επαφή και αποτελείται από στο υποκείμενο και τους μεγάλου πάχους νηριτικούς ασβεστόλιθους. Σε ανώτερη τεκτονική θέση βρίσκεται απωθημένο το τεκτονικό κάλυμμα της Πίνδου.

Πάνω από τις παραπάνω αναφερόμενες εξωτερικές ζώνες υπάρχουν σε ανώτερη τεκτονική θέση αλλόχθονα τεκτονικά λέπια των εσωτερικών ζωνών, όπως είναι η ενότητα της Άρβης που περιλαμβάνει τμήματα οφιολιθικού συμπλέγματος, η ενότητα των Αστερουσίων που περιέχει γνεύσιους, σχιστόλιθους και αμφιβολίτες.

Τέλος, πάνω από τους αλπικούς σχηματισμούς βρίσκονται ιζήματα του Νεογενούς (κυρίως κλαστικά θαλάσσια ιζήματα) και Τεταρτογενούς (κυρίως ηπειρωτικής φάσης) τα οποία συνήθως έχουν κυμαινόμενο πάχος και εξάπλωση στις διάφορες περιοχές της Κρήτης.

2.2 Η Γεωλογική Δομή Του Νομού Χανίων

Οι στρωματογραφίες και τεκτονικές ενότητες που αποτελούν την γεωλογική δομή του νομού Χανίων (σχήμα 4 α,β,γ,δ,ε), αρχίζοντας από τις νεώτερες και καταλήγοντας στις παλαιότερες, είναι:

<u>Τεταρτογενείς αποθέσεις.</u>

Αποτελούνται από χαλαρά αργιλοαμμώδη υλικά, πηλούς, ψαμμίτες, κροκάλεςλατύττες ποικίλης σύστασης, αναλόγως της προέλευσης τους, ασύνδετες έως συνεκτικά συνδεδεμένες, καθώς και από υλικά του αλλουβιακού μανδύα. Η εμφάνιση τους γίνεται κυρίως σε απολήξεις λεκανών ανοικτών προς τη θάλασσα, στις μείζονες κοίτες των ποταμών, σε μικρές εσωτερικές λεκάνες καθώς και σε μορφή πλευρικών κορημάτων και αναβαθμίδες χειμάρρων.

Νεογενείς αποθέσεις.

Αποτελούνται από εναλλασσόμενα στρώματα κίτρινων-κιτρινόλευκων μάργων με κλαστικούς μαργαϊκούς ασβεστόλιθους, συχνά βιογενείς-υφαλογενείς, ομοιόμορφα στρωμένους, που το πάχος τους κυμαίνεται από μερικά εκατοστά έως ένα-δύο μέτρα. Επίσης, εντός των αποθέσεων αυτών συναντώνται και μαργαϊκοί ψαμμίτες, αμμούδες άργιλοι, λατύπες και κροκαλοπαγή. Τα κροκαλοπαγή-λατυποπαγή εμφανίζονται κυρίως στην περιοχή Χοιροσπηλίου νοτιότερα της Αγιάς και στην περιοχή Τοπολίων. Χαρακτηριστικό τους γνώρισμα η έντονη συνεκτικότητα την οποία παρουσιάζουν, κυρίως ανθρακικής προέλευσης, με ανθρακικό συνδετικό υλικό. Οι λατύπες και κροκάλες που συνιστούν τις παραπάνω αποθέσεις, έχουν προέλθει από την διάβρωση και απόθεση των προϊόντων, τόσο του τεκτονικού καλύμματος της ζώνης Τρίπολης όσο σε μικρότερο βαθμό και των άλλων ενοτήτων που αποτελούν υπόβαθρο των νεογενών αποθέσεων. Οι ενότητες που επίσης συμμετέχουν στην παραπάνω διεργασία είναι η Φυλλιτική-Χαλαζιτική, των Πλακωδών ασβεστόλιθων και της Πίνδου.

<u>Τεκτονικό κάλυμμα της ζώνης Πίνδου</u>

Οι ανθρακικοί σχηματισμοί του τεκτονικού αυτού καλύμματος παρουσιάζονται με μικρή επιφανειακή ανάπτυξη στον νομό Χανίων. Εμφανίζονται στο βορειοδυτικό τμήμα του νομού και πιο συγκεκριμένα στην ευρύτερη περιοχή Καστέλου, καθώς και στην ευρύτερη περιοχή της Παλαιόχωρας. Αποτελούνται από πελαγικούς ασβεστόλιθους με παρεμβολές κερατολίθων.

Τεκτονικό κάλυμμα της ζώνης Τρίπολης

Οι σχηματισμοί της ενότητας αυτής καταλαμβάνουν σχετικά μεγάλη έκταση στον νομό Χανίων. Είναι συνηθισμένο φαινόμενο να είναι επωθημένοι αυτοί οι σχηματισμοί, είτε στην ενότητα Ταλέα Όρη-Πλακώδεις ασβεστόλιθοι, είτε στην ενότητα των Φυλλιτών-Χαλαζιτών. Αποτέλεσμα είναι να εμφανίζονται οι σχηματισμοί της ζώνης Τρίπολης στην βάση τους έντονα κατακερματισμένοι λόγω τεκτονισμού. Οι σχηματισμοί της ενότητας που βρίσκονται στα χαμηλότερα στρώματα συνίστανται από δολομίτεςδολομιτικούς ασβεστόλιθους παχυστρωματώδεις μέχρι άστρωτους, έντονα τεκτονισμένους και καρστικοποιημένους με σπηλαιώδη υφή. Το χρώμα τους κυμαίνεται από τεφρό έως τεφρόλευκο.

Σχήμα 4. α) Τάταρη Αθ., Χριστοδούλου Ε., 1969, Γεωλογικός Χάρτης (φύλλο Αλικιανού), Ι.Γ.Μ.Ε Κλίμακα 1:50000

Σχήμα 4. β) Τάταρη Αθ., Χριστοδούλου Ε., 1969, στρωματογραφική στήλη, Ι.Γ.Μ.Ε, Κλίμακα 1:50000

YNOMNHMA

TETAPTOPENES

NEGTEPON

Ιύγχρονοι όποθέσεις : Παράχτιοι (άμμοι, δίνες ». ά.) ή εντός χωμάρρων, καθώς και προσχώσεις.

Πλευρικά κορήματα και κώνοι κορημάτων.

'Αναθαθμίδες χειμαροώδους, ώς έπι το πλείστων, ένίοτε όμως και θαλασσίας προελεύσεως, ίδις αι σχετικώς νεώτεραι. Κυρίως έντος των ποιλάδων και είς τές έξόδους των φαράγγων. Αι παλαιότεραι (c₀) μέχρι 30-40 μ. αι νεώτεραι (c₀) μέχρι 4 μ. και αι νεώταται (c₀) 1-9 μ.

MAAAIOTEPON

Μάργαι, ψαμμίται, κροκαλοπαγή κ.δ., πιτρίνου, έν γένει, χρώματος. Έπιχεινται διαβρωπιγενούς έπωρανείας των νεοτριτογενών άποθέσεων, έπ των άποίων δέν διεχωρίσθησαν.

Έρυδροί σχηματισμοί χειμαρφώδους προκλεύσεως (d1 - c₄) έκ φαιμιτικών μαργών, πηλών, φαιμιτών και προκαλοπαγών, έπικείμενοι τών προηγουμένων άποθέσεων. Έχουν σημαντικόν πάχος και έξικνούνται μέχρι τοῦ θροες τών 350 και πλέον μέτρων. Έμφανίζονται, προσέτι, και είς τός παρυφάς τής πόλγης τοῦ Όμαλοῦ, ένθα έπικάθηνται τών παροτοποιημένων άσβεστολίθων -δολομιτών, συνιστώντες τό στεγανόν έπόβαθρον τών νεωτέρων τεταρτογενών άποθέσεων, διαμορφωμένου ούτω, είς τήν έπαφήν τούτων, φρεατίου όρίζοντος.

NEOTPITOTENEZ

NAEKOKAINON

Θαλάσσιοι σχηματισμοί. Κροπαλοπαγή, άσβεστιτικοί ψαμμίται, κίτριναι φαμμιτικαί μάργαι και μαργαϊκοί άσβεστολιθοι. "Εγκλείσον, είς τινος θέσεις, κοιτάσματα γώφου (περιοχή Βουκολιών) "Επίκεινται έπικλυσιγενώς τών άφαλμόψων - λιμναίων σαφματίων σχηματισμών (Λόφος Κάστελλος, ΒΑ χωρίου "Βαρύπετρο,.). Έλασματοβοάγχια :

MEIOKAINON

Σαρμάτιον: Υφάλμοροι- ληναίοι σχηματισμοί. Έναλλασσόμενα στρώματα, άμμων, μαργών, άργίλων και κροκαλοκαγών, καθώς και σαπροπηλοί. Έγκλείουν καιτάσματα λιγνιτών (περιοχή Βαρυπέτρου - Φαυρνέ). 'Αποτυκώματα ίχθύων, 'Οστρακώδη, έλάχιστα Τρηματοφόρα, ώργόνια Χαροφέτων και έτερα φυτικά λείψανα. Σαρμάτιον - Τορτόνιον : Οι προηγούμενοι και έπόμε-

νοι σχηματισμοί μή διαχωριζόμενοι (περιοχή Ποιχολιών).

Τορτόνιον: Μάργαι χυαναί, πρασινότεφραι, λευχοχίτριναι. κιτρινόχροιι, δπάλευχαι και μαργαϊκοί άσθεστόλιθοι. Τρηματοφόρα:

Σχήμα 4. γ) Τάταρη Αθ., Χριστοδούλου Ε., 1969, Υπόμνημα υπ'αριθμό 1, Ι.Γ.Μ.Ε., Κλίμακα 1:50000

54

Κροκαλοπαγή, ψηφιτοψαιμηταλατυποπαγή μετά λατυποπαγών δοδεστολίδων καί ψαρμιτομαργαϊκών παρεμδολών καί δαδεοτόλιδοι λατυποπαγούς όφής (Μ. k. Stükenkalke). Οι τελευταίοι δποτελούν την δροφήν τών οιδηφομεταλλωμάτων Κακααίτρου.

ZEIPA TPITIOAEOZ ANOTEPON KPHTIAIKON

'Ασδεστόλιδοι καί δολομίται, συνήθως σχοτεινόχου. Ρομόνοται κ.ά.

ANOTEFON IOYPAEKON

"Ασβεστόλιδοι σκοτεινόχροσι. Η ήλικία κων συνάγεται μάνον έτ συγκρίσει πρός τους όπο κού Καθ. Μαρτικί χαρακτηρισθέντας ώς τανούτους είς το φάλλον «Πλατανιάς».

'Αμφότεροι οί άνωτέρω έσβεστόλιδοι παρουσιάζονται είς περιερισμένην δικασιν και με ήλατιωμένην άνάπτυζιν.

IYITHMA EFIKEIMENON EFIKAYIIFENDI TON KPYITAAAIKON

AZBEITONIOON

TPIAAIKON

ΑΝΟΥΕΡΟΝ: "Άνωτέρα σειρά (φυλλιτική). Μεταξώ οπότος και τής έκορώνης σωφάς άπάρχει, ένδεχομένως, άσυμφωνία, μή διαπιστωθείου δμως μετά βεβοιότηνος, λόγφ τής φόσκως και τών έν γένει χαροκτήρων τών συνιστώντων τάς σειράς πότάς σχηματωμών.

Φολλίται (ph), χαλαζίται (q), άσβεστόλιδαι (k), δολομίται (m) φαουβάποι (Rw), γόμοι (G), βασικά έπομξιγενή (δ) και σιδημομεταλλεύματα (Fo). Σχετικός διαχωρμομός τούτων έγένττο, δπουήτα έφιπτός, ώς πατωτέρω :

Φυλλίται (pb), γραφιτικοί, χλαριτικοί, ένίστε αίματιτικοί κ.ά. Συνιστούν, κυρίως, τά μεσαία ώς άνώτερα μέλη της σποράς. Είς αύτούς κυρεμβάλλονται, ένίστε, άργιλικοί σχιστάλιθει καί φαμμίται, καθώς έπίσης σημαντικαί ένατρώσεις χαλαζιτών (g) καί λατιοστραματικδάν έως λεκτοπλακοδών άπαλιθυσματορόμαν (Mysphoria a.d.) άνωτεριοδικής ήλικίας άσβεσταλίθεαν, ίδις είς τούς μεσαίους καί άνωτέρους όρ(ζοντας τών φυλλιτών. Περιλαμβάνουν, προσέτι, γύφους (G), καθώς καί σώματα βασικών έκοηξυγενών, διαβάσην α.ά. (δ) (Καρίον Λάκκοι κ.ά.), με τά έπαία συνδέονται, ένδεχομένας, οι έμαρανίσεις λαιρονίτον (Γε) έκαριοχαί χωρίων Σκηνές, Φυιονές, Παλ. Ρούματα), ός καί μισμός ήμοραίσεις (περιοχή χωρίου Κουστογέρανα), άκόμη δε καί μισμός ήμοραίσιας άλιγιστου.

³Δεθεστάλιθοι και δολομίται (Ts k - o), siς μεγάλους δγκους, αυχνά κυφελώδους ύφης, παραμβαλλόμενοι άπεύνως siς κούς guilling nai siς την γειτονίαν των όποίων παρατηροθνιαι δμαρανίσεις λειμονίτου (Fc).

Ροουβάκαι (Rw) ποικίλου μεγέδαυς και άκανονίστου σχήματος, μετά λεπτοπτρωματωδών έως παχυστρισματωδών ή παι άστρώτων, ερμοτολλικών &ς έπι το πλείστον, άσβεστολίδων παι φαλλιτικών, ένίστε, ένστρώπεων. Συνιστούν τά κατώτερα μέλη τής σειράς, είς τὰ όποξα άπαντούν αί γύφοι (G) (Σσύγια, Καμπανού κ.ά.), αίτινες, είς τινας θέσεις, άνευρίσκονται και ένεδς αύτών των φυλλιτών (βλ. άνωτέρω).

ΜΕΙΟΝ - ΚΑΤΟΤΕΡΟΝ: Κοτωτέρα σειρό (άνθραμική). "Επίπηται ται άσυμφώνως του συστήμοτος των πρυσταλλικών πλακωδάν άσθαστολίθων.

Σχήμα 4. δ) Τάταρη Αθ., Χριστοδούλου Ε., 1969, Υπόμνημα υπ'αριθμό 2, Ι.Γ.Μ.Ε., Κλίμακα 1:50000

*Ασθεστόλιθοι - Δολομίται (T k - D, Madarakaike), σκοτεινότεφροι έως μέλανες, ένίστε λευκότεφροι, άστρωτοι έως παχυστρωματιώδεις ή και καλώς έστρωμέναι.

Είς τινας θέσεις όμοιάζουν πρός τούς πλακώδεις κρυσταλλικούς, άνευ όμως πυριτολίθων. Τά σκοτεινόχοσα μέλη της σειράς είναι βιτουμενοθχα και παρουσιάζουν συχνά κυψελώδη όφην, ίδίς οι δολομίται, μέ δολομιτικόν άλευρον έντος τών κυψελών των. Η ήλικία της σειράς τεκμαίρεται έκ παλαιοντολογικών εύοημάτων (Gyropwrella κ.τ.λ.) είς θέσεις έκτος της χαριογραφηθείσης περιοχής.

IVITHMA MAAKOAON KPYITAAAIKON AIBEITOAIOON

MEPMION - AIGANGPAKODOPON

'Ασδεστόλιδοι πλακώδεις κρυσταλλικαί (PC k), άνοικτότεφροι έως σκοτεινότεφοι, μετά λεπτών φυλλιτικών παρεμβολών. Συνήθως είναι λεπτοπλακώδεις έως λεπτοστρωματώδεις μετά βολβών ή λεπτών ένστρώσεων πυριτολίθων, καθιστάμεναι, ένίοτε, ίδία πρός τούς άνωτέρους αύτών άφίζοντας, παχυστρωματώδεις, άνευ πυριτολίδιον. Πρός τά άνω μεταπίπτουν, είς τινας θέσεις, είς άσβεστιτικούς φυλλίτας. Περιέχουν, προσέτι, φύκη μή προσδιορίσιμα.

ΣΥΣΤΗΜΑ ΥΠΟΚΕΙΜΕΝΟΝ ΤΩΝ ΠΛΑΚΩΔΩΝ ΑΣΒΕΣΤΟΛΙΘΩΝ ΛΙΘΑΝΘΡΑΚΟΦΟΡΟΝ

Φυλλίται, ασβεστιτικοί, χλωριτικοί, σερικιτικοί κ. α., διά των όποίων οι πλαμώδαις ασβεστόλιθοι μεταπίστουν είς τό έν λόγφ σύστημα. Γαστερόποδο.

Δολομίται, συμπαγείς ή κυφελώδεις, μετά ή άνευ βολβών πυοιτολίθων. Είς τινας θέσεις (Μιτάτο Κίγπιλου) περιέχουν ούτοι μέλανας άλβίτας, Κηματογενούς προελεύσεως, παθώς έπίσης άπολιθώματα. Ούκη, Όστρακώδη και Τρειμοτοφόρα.

"Ασδεστόλιδοι, συμπαγείς μετά πλαστικών άλιπών ή Lentonlaπάδεις μετά φυλλιτικών και μαργαϊκών σαρεμβολών. "Ενίστε περιέχουν δολομιτικάς ένοτοφωτες ώς και βολβούς πυριτολίθων. Χαλαζισκοί φαρμίται και άργιλικοί σχιστόλιδοι, παρεμβαλλόμενοι είς τά μεσαία παι κατώτερα μέλη του συστήματος. Λόγορ πλευμικών μεταβάσεων ή στοφματογραφική διαδοχή κών ώς άνω σχηματισμών διαφέρει κατά περιοχώς.

Σχήμα 4. ε) Τάταρη Αθ., Χριστοδούλου Ε., 1969, Υπόμνημα υπ'αριθμό 3, Ι.Γ.Μ.Ε., Κλίμακα 1:50000

Στους σχηματισμούς της ενότητας των υψηλότερων στρωμάτων εμφανίζονται ασβεστόλιθοι που το χρώμα τους κυμαίνεται από μαύρο έως τεφρόμαυρο. Το πάχος

των σχηματισμών είναι μέσο και συνήθως παρουσιάζουν μικρολατυποπαγή υφή. Χαρακτηριστικό τους γνώρισμα είναι το έντονο ανάγλυφο και το φτωχό υδρογραφικό δίκτυο, που συμπίπτει με τεκτονικές ασυνέχειες. Εξίσου σημαντικό χαρακτηριστικό είναι το φαινόμενο καρστικής διάλυσης που εμφανίζεται με διάφορες μορφές, μεγέθη και σχήματα. Το πάχος της ζώνης φθάνει τις λίγες εκατοντάδες μέτρα και η ηλικία αυτής της σειράς κυμαίνεται από το Άνω Τριαδικό έως και το Άνω Κρητιδικό.

Τεκτονικό κάλυμμα της ενότητας των Φυλλιτών-Χαλαζιτών.

Η ενότητα αυτή καταλαμβάνει σημαντική έκταση στο δυτικό τμήμα του νομού Χανίων. Οι σχηματισμοί που συναντώνται στο τεκτονικό κάλυμμα είναι κυρίως μαρμαρυγιακοίανθρακικοί ασβεστόλιθοι, σερικιτικοί-χλωριτικοί φυλλίτες και χαλαζιακοί μεταψαμμίτες. Στα πετρώματα αυτά παρεμβάλλονται τόσο ποσότητες χαλαζία σημαντικού πάχους υπό μορφή φλεβών, καθώς και ενστρώσεις μαύρων κρυσταλλικών κατακερματισμένων ασβεστόλιθων μικρού πάχους. Χαρακτηριστικό γνώρισμα αυτής της σειράς είναι οι εμφανίσεις γύψου σε αρκετές περιοχές, όπως στη Σούγια, στην Παλαιόχωρα κ.α. Η ηλικία της ενότητας εκτείνεται μεταξύ Περμίου και Άνω Τριαδικού, ενώ το πάχος της μπορεί και να ξεπερνάει σε ορισμένες περιπτώσεις τα 1.500 μέτρα στην ευρύτερη περιοχή της δυτικής Κρήτης.

Τεκτονικό κάλυμμα της ενότητας Τρυπαλίου

Οι σχηματισμοί της ενότητας αυτής βρίσκονται επωθημένοι στην ενότητα των Πλακωδών ασβεστόλιθων. Το κάλυμμα Τρυπαλίου αποτελεί το πρώτο τεκτονικό κάλυμμα της Κρήτης. Η μεγαλύτερη ανάπτυξη του γίνεται στην περιοχή του Ομαλού των Λευκών Ορέων. Τα πετρώματα που εμφανίζονται σ' αυτή την σειρά είναι μάρμαρα, κρυσταλλικοί ασβεστόλιθοι, δολομίτες και δολομιτικοί ασβεστόλιθοι. Έτσι πιο συγκεκριμένα, στην βάση του σχηματισμού εμφανίζεται τεκτονικό λατυποπαγές με σημαντικό πάχος μερικές φορές. Στα κατώτερα πετρώματα της ενότητας επικρατούν κυψελώδεις δολομίτες. Συνήθως, αυτό το κάλυμμα περιέχει λεπτές κερατολιθικές ενστρώσεις ή βολβούς κερατολίθων πράγμα που το καθιστά όμοιο ττετρογραφικά με την ενότητα Ταλέα Όρη-Πλακώδεις ασβεστόλιθοι. Το πάχος του καλύμματος φθάνει τα 400 μέτρα, ενώ η ηλικία του σχηματισμού κυμαίνεται μεταξύ Τριαδικού και Κάτω Ιουρασικού.

Η ενότητα Ταλέα Όρη-Πλακώδεις ασβεστόλιθοι.

Οı σχηματισμοί που εμφανίζονται στην ενότητα συνήθως, είναι ανακρυσταλλωμένοι ασβεστόλιθοι. Σε ορισμένες περιπτώσεις οι σχηματισμοί έχουν υποστεί μεταμόρφωση και έχουν μετατραπεί σε μάρμαρα. Εμφανίζονται καλοστρωμένοι σε πάγκους, που το πάχος τους κυμαίνεται από μερικά εκατοστά έως και ένα μέτρο. Στα κατώτερα μέλη τους εμφανίζονται παχυστρωματώδεις, ενώ προς τα ανώτερα εξελίσσονται σε μεσοστρωματώδεις και στη συνέχεια σε λεπτοστρωματώδεις. Το χρώμα τους μπορεί να είναι από τεφρό έως και τεφρόμαυρο. Επίσης σημαντικό γεγονός αποτελεί η εμφάνιση πυριτικού υλικού είτε με την μορφή ενστρώσεων, είτε με την μορφή φακών. Η εμφάνιση του πυριτικού υλικού στα μεσαία μέλη του σχηματισμού είναι μεγάλη, σε αντιδιαστολή με τα υπόλοιπα μέλη όπου οι παρεμβολές αυτές περιορίζονται αισθητά. Η καρστικοποίηση του σχηματισμού είναι περιορισμένη και ανομοιόμορφη. Στο φαινόμενο αυτό συμβάλλουν οι πυριτικές παρεμβολές. Το πάχος της ενότητας φθάνει τα 1200 μέτρα και η ηλικία της προσδιορίζεται στο Μέσο Ιουρασικό-Ηώκαινο.

2.3 Γεωλογικές και Υδρογεωλογικές Συνθήκες της Μελετούμενης Περιοχής (Υδρολογική Λεκάνη Κερίτη)

2.3.1 Γεωγραφική θέση

Πρόκειται για μια από τις σημαντικότερες υδρολογικές λεκάνες του Νομού Χανίων. Βρίσκεται στο βόρειο κεντρικό τμήμα της επαρχίας Κυδωνιάς του Νομού Χανίων, με διεύθυνση τον άξονα Βορράς-Νότος και σε μέση απόσταση από την πόλη των Χανίων, 15 Km περίπου.

Εντός της περιοχής της λεκάνης περιλαμβάνονται τα χωριά Φουρνές, Σκινές, Σκορδαλού, Καράνου, Αλικιανού, Βατόλακκος, Κουφός, Αγιά, Πατελάρι, Πλατανιάς και Γεράνι, ενώ στις παρυφές της, οι Λάκκοι, Ψαθογιάννος, Μανωλιόπουλο, Βαρύπετρο, Περιβόλια και Μεσκλά κ.ά.

2.3.2 Γεωλογία της περιοχής

Γεωλογικά η λεκάνη Κερίτη χαρακτηρίζεται από τρεις κύριους γεωλογικούς σχηματισμούς (Ριγλής 1996):

α) Ανθρακικά πετρώματα. Καταλαμβάνουν το ΝΑ τμήμα της, και

επεκτείνονται πολύ νοτιότερα, και εκτός της εν λόγω υδρολογικής λεκάνης, έως τον κύριο ασβεστολιθικό όγκο των λευκών Ορέων.

β) Φυλλίτες-Χαλαζίτες. Συναντώνται στο ΝΑ-κεντρικό τμήμα της λεκάνης, επίσης εμφανίζονται σε μικρότερη έκταση και στο Βόρειο τμήμα της.

γ) Νεογενείς σχηματισμοί. Στη λεκάνη Κερίτη αναπτύσσονται τα κροκαλολατυποπαγή, νότια της Αγιάς, στην ευρύτερη περιοχή Χοιροσπηλίου. Είναι ανθρακικής προέλευσης με ανθρακικό συνδετικό υλικό, με γνώρισμα την ψηλή υδροπερατότητά τους. Επίσης, πρέπει να επισημανθεί, ότι η ύπαρξη νεογενών πετρωμάτων (μαργαϊκοί ασβεστόλιθοι, μάργες, γύψοι κ.ά.) στην περιοχή Βλυχάδες, είναι πιθανή. Θα πρέπει να τονιστεί ότι οι δυο ανωτέρω σχηματισμοί βρίσκονται σε τεκτονική επαφή, και οριοθετούν δύο ημιανεξάρτητα υδρογεωλογικά συστήματα.

δ) Τεταρτογενείς σχηματισμοί. Είναι οι νεότερες αποθέσεις, οι οποίες αποτελούνται από αδρομερή εν γένει υλικά, καθώς και αργίλους, άμμους κλπ, και καταλαμβάνουν ένα σημαντικό τμήμα της λεκάνης στην περιοχή Αγιάς, Αλικιανού, Βατόλακκου, Σκινέ, Κουφού, με σημαντικό πάχος και αξιόλογη υδροφορία. Οι σχηματισμοί αυτοί όσον αφορά το πάχος τους αλλά και την υδροφορία που παρουσιάζουν, δεν έχουν διερευνηθεί πλήρως.

2.3.3 Υδρολογικές- Υδρογεωλογικές συνθήκες

Στην υδρολογική λεκάνη Κερίτη, οι ανωτέρω περιγραφέντες περιληπτικά γεωλογικοί σχηματισμοί, έχουν διαφορετική υδρολογική συμπεριφορά, που μαζί με την τεκτονική τους, δηλαδή τον τρόπο τοποθέτησης τους στον χώρο, καθορίζουν το υδρογεωλογικό καθεστώς στην περιοχή. Σημαντική είναι η παρουσία δύο βασικών υδρογεωλογικών συστημάτων και ενός δευτερεύοντος (ως προς τον τρόπο λειτουργίας τους και όχι ως προς την δυναμικότητα τους). Τα συστήματα αυτά είναι:

 Το υπόγειο υδρογεωλογικό σύστημα των περάτων ανθρακικών σχηματισμών, που βρίσκονται στην ανατολική πλευρά της λεκάνης Μυλωνιανά - Φουρνές - Μεσκλά, με κύρια τροφοδοσία από τους νοτιότερα ευρισκόμενους ασβεστολιθικούς σχηματισμούς, που επιτείνονται έως τον κύριο ορεινό ανθρακικό όγκο των Λευκών Ορέων. Στο βόρειο τμήμα του ο ανθρακικός αυτός σχηματισμός διακόπτεται τεκτονικά (Μυλωνιανά, Αγιά) με ρήγμα διεύθυνσης Α-Δ, που έχει σαν αποτέλεσμα την πλευρική επαφή με τον αδιαπέρατο φυλλιτικό σχηματισμό (που βρίσκεται βορειότερα), και τη δημιουργία των πηγών υπερπλήρωσης της Αγιάς σε υψόμετρο 40m περίπου (Πλάτανος -Κολύμπα -Καλαμιώνας). Τα υδρολογικά στοιχεία των πηγών αυτών βρίσκονται στον πίνακα (1).

Εκτός του συνολικού όγκου νερού των ετησίων απορροών των πηγών Αγιάς (πίνακας 1), πρέπει να τονιστεί η ύπαρξη ενός μόνιμου αποθέματος στην λεκάνη τροφοδοσίας των πηγών, του οποίου δεν είναι γνωστό ούτε το μέγεθος, ούτε η ποσότητα ύδατος, ούτε τα υδραυλικά χαρακτηριστικά του. Εκτιμάται όμως η ύπαρξη μεγαλύτερων ποσοτήτων ύδατος από αυτές που απορρέουν ετησίως από τις πηγές. Αναφέρεται, ότι στη λεκάνη τροφοδοσίας των πηγών λειτουργούν τρεις γεωτρήσεις, του ΟΑΔΥΚ, στα Μυλωνιανά με 2.700 m³/h, και δύο στον Φούρνε με 260 m³/h (μερική αναρίθμηση των πηγών). Ποιοτικά το νερό των πηγών της Αγιάς είναι καλής ποιότητας, κατάλληλο για υδρευτική και αρδευτική χρήση, ενώ το νερό των πηγών του Καλαμιώνα παρουσιάζει αυξημένη αγωγιμότητα, λόγω της παρουσίας των Γύψων (μεγάλη συγκέντρωση σε θειικά). Επίσης, πιθανή είναι και η παρουσία υδρόθειου.

2) Ένα επιφανειακό υδρογεωλογικό σύστημα των φυλλιτών-χαλαζιτών στο νότιο τμήμα της λεκάνης, οι οποίοι σαν αδιαπέρατος σχηματισμός συγκεντρώνουν επιφανειακά τις βροχοπτώσεις που πέφτουν πάνω στους χείμαρρους Μαύρο ποταμό, Βαλσαμιώτη, Φαζάς, Αλικιανιώτης, και οι οποίοι συγκλίνουν στον Κερίτη, στο ύψος του Σκινέ-Αλικιανού. Στοιχεία για τις απορροές αυτών των παραποτάμων δεν υπάρχουν.

Στο ΝΑ τμήμα των φυλλιτών στο χωριό Μεσκλά και στην τεκτονική επαφή τους με τους ασβεστόλιθους, που επεκτείνονται νοτιότερα, σε υψόμετρο 210m, εμφανίζονται οι πηγές των Μεσκλών (Παναγιά-Κεφαλοβρύσια) με τροφοδοσία από τους ασβεστόλιθους και απορροή επιφανειακά επί των φυλλιτών του Κερίτη. Ποιοτικά το νερό των Μεσκλών είναι καλό (πίνακας 2).

ΜΕΣΗ ΕΤΗΣΙΑ	МЕΣН ПАРОХН	МЕΣН ПАРОХН	
ПАРОХН	EEAMHNOY	ΑΥΓΟΥΣΤΟΥ	
	ΜΑΙΟΣ-ΟΚΤΩΒΡΙΟΣ		
1970-1984	1970-1984	1970-1984	

Πίνακας 1. Στοιχεία πηγών Αγιάς (Ρίγλης, 1996, σελ.129)

7.855 m ³ /h	7.772 m ³ /h	6.750 m ³ /h
ΣΥΝΟΛΙΚΟΣ ΕΤΗΣΙΟΣ	ΣΥΝΟΛΙΚΟΣ ΘΕΡΙΝΟΣ	ΣΥΝΟΛΙΚΟΣ ΟΓΚΟΣ
ογκοσ	ογκος	ΑΥΓΟΥΣΤΟΥ
69.000.000 m ³	33.500.00 m ³	4.860.000 m ³

Πίνακας 2. Στοιχεία πηγών Μεσκλών (Ρίγλης, 1996, σελ.130)

ΜΕΣΗ ΕΤΗΣΙΑ	МЕΣН ПАРОХН	МЕΣН ПАРОХН
ПАРОХН	ΕΞΑΜΗΝΟΥ	ΑΥΓΟΥΣΤΟΥ
	ΜΑΙΟΣ-ΟΚΤΩΒΡΙΟΣ	
1970-1993	1970-1993	1970-1993
$3.452 \text{ m}^3/\text{h}$	$1.875 \text{ m}^3/\text{h}$	$1.166 \text{ m}^3/\text{h}$
ΣΥΝΟΛΙΚΟΣ ΕΤΗΣΙΟΣ	ΣΥΝΟΛΙΚΟΣ ΘΕΡΙΝΟΣ	ΣΥΝΟΛΙΚΟΣ ΟΓΚΟΣ
ογκος	ογκός αυγούστα	
3.000.000 m ³	8.100.000 m ³ 840.000 m ³	

3) Στο δευτερεύον υδρογεωλογικό σύστημα των τεταρτογενών αποθέσεων, που υπέρκειται των φυλλιτών στο κεντρικό τμήμα της λεκάνης Κερίτη και στα χωριά Σκινές, Αλικιανός, Φουρνές, Βατόλακκος, Κουφός η τροφοδοσία του γίνεται από τον Κερίτη, από την απ' ευθείας επιφανειακή απορροή των φυλλιτών, που βρίσκονται νοτιότερα, και από υπόγειες πλευρικές μεταγγίσεις των ανάντη ευρισκομένων ανθρακικών σχηματισμών.

Πρέπει να τονιστεί η ιδιαιτερότητα αυτής της λεκάνης των τεταρτογενών ως προς την ποιότητα του νερού, η οποία παρουσιάζεται διαφορετική στην περιοχή Σκινέ-Αλικιανού στο νότιο τμήμα της, από εκείνο του Κουφού, ΒΔ τμήμα, γεγονός που οδηγεί στην σκέψη της ύπαρξης δυο υπολεκανών στη περιοχή. Επίσης, γίνεται εκμετάλλευση της υδρογεωλογικής λεκάνης των τεταρτογενών με αξιόλογες γεωτρήσεις (πίνακας 3) μεγάλων παροχών με μικρές πτώσεις στάθμης, γεγονός που δεικνύει και την δυναμικότητα του υδροφορέα η οποία υπολογίζεται, σύμφωνα με τη μελέτη για την αξιοποίηση του υδατικού δυναμικού Δυτικής Κρήτης (ΟΑΔΥΚ), ότι η υδατοχωρικότητα της λεκάνης είναι της τάξεως των 22.000.000 m³ (έργο 372702).

ΓΕΩΤΡΗΣΕΩΣ-	ΣΥΝΟΛΟ	ПАРОХН	
ΥΔΡΟΛΗΨΙΕΣ	ΓΕΩΤΡΗΣΕΩΝ		
ΤΕΤΑΡΤΟΓΕΝΗ	19	2.350 m ³ /h	
ΑΣΒΕΣΤΟΛΙΘΟΣ	7	1000 m ³ /h	
ΥΔΡΟΛΗΨΙΑ ΤΟΕΒ	2 ΠΗΓΕΣ	350 m ³ /h	
ΜΕΣΚΛΩΝ			
ΥΔΡΟΛΗΨΙΑ ΤΟΕΒ	1 ПНГН	350 m ³ /h	
ΦΟΥΡΝΕ			
ΣΥΝΟΛΟ	29	$4.050 \text{ m}^3/\text{h}$	

ΠΙΝΑΚΑΣ 3 (Ριγλής, 1996, σελ. 129)

Τονίζεται ότι είναι δυνατή η αύξηση της ποσότητας νερού που εκμεταλλεύεται από την λεκάνη των τεταρτογενών.

Παρακάτω παρουσιάζεται ο υδρολιθολογικός χάρτης (σχήμα 5) της μελετούμενης περιοχής. Κοντά στην περιοχή της Αγιάς, η οποία και μας ενδιαφέρει, παρατηρούνται μειοκαινικές αποθέσεις μέτριας έως μικρής διαπερατότητας, κροκαλοπαγή και μαργαικοί ασβεστόλιθοι. Αναπτύσσονται επιμέρους υπόγειες υδροφορίες μέσου έως μικρού δυναμικού. Νοτιοδυτικά και νοτιοανατολικά της περιοχής της Αγιάς έχουμε μικρά δείγματα πρακτικά αδιαπέρατων ή εκλεκτικής κυκλοφορίας σχηματισμών μικρής ή μεγάλης διαπερατότητας. Έχουμε εναλλαγές χαλαζιτών και μαρμάρων. Νοτιοανατολικά της περιοχής επίσης, παρατηρούνται σχηματισμοί υψηλής έως μέτριας υδροπερατότητας, ρωγμές, οπότε η κυκλοφορία του νερού εδώ γίνεται μέσω δευτερογενούς πορώδους. Επίσης έχουμε στην ίδια θέση την εμφάνιση γύψων όπου αναπτύσσεται υψηλού δυναμικού υπόγεια υδροφορία εξαιτίας της διάλυσης τους, "ψευδοκάρστ" με υψηλή περιεκτικότητα σε θειικά ιόντα.

Σχήμα 5 Υδρολιθολογικός χάρτης, Φύλλο Αλικιανού Κλίμακα: 1:50.000

ΥΠΟΜΝΗΜΑ

R. . . .

ΚΑΡΣΤΙΚΟΙ ΣΧΗΜΑΤΙΣΜΟΙ

Υψηλής έως μέτριας υδροπερατότητας (K1)

Η κυκλοφορία του νερού γίνεται εδώ μέσω του δευτερογενούς πορώδους (ρωγμές, καρστικά κενά). Ασβεστόλιθα, δολομίτες, κρυσταλλικοί ασβεστόλιθα, μάρμαρα υψηλής έως μέτριας υδροπερατότητας Κατατάσσονται εδώ οι έντονα καρστικοποιημένοι ανθρακικοί σχηματισμοί της ζώνης της Τρίπολης, τα ανθρακικά Τρυπαλίου και οι κρυσταλλικοί Τριαδικοί ασβεστόλιθοι και δολομίτες της Ιονίου ζώνης. Αναπτύσσονται εδώ υψηλού δυναμικού υπόγειες υδροφορίες που εκφορτίζονται μέσω μεγάλων καρστικών πηγών.

Μέτριας έως μικρής υδροπερατότητας (K2)

Ασβεστόλιθοι μέτριας έως μικρής υδροπερατότητας. Κατατάσσονται εδώ οι οι ασβεστόλιθοι της ζώνης της Πίνδου, οι κρυσταλλικοί ασβεστόλιθοι Ιουρασικής - Ηωκαινικής ηλικίας της Ιονίου ζώνης και οι μικρότερες ανθρακικές εμφανίσεις των εσωτερικών καλυμμάτων. Η κυκλοφορία του νερού στους σχηματισμούς αυτούς ελέγχεται από τις παρεμβολές πυριτολίθων, κερατολίθων, αργιλικών σχιστολίθων. Αναπτύσσονται εδώ μέσου έως μικρού δυναμικού υπόγειες υδροφορίες. Κατά θέσεις οι σχηματισμό αυτοί αποτελούν το υδρογεωλογικό υπόβαθρο των υψηλής υδροπερατότητας ανθρακικών σχηματισμών, όταν έχουν μικρή υδροπερατότητα και η τεκτονική θέση τους το επιτρέπει.

Μειοκαινικά ασβεστολιθικά λατυποκροκαλοπαγή Τοπολίων, μέτριας έως υψηλής υδροπερατότητας (K3) Παρουσιάζουν τόσο πρωτογενές όσο και δευτερογενές πορώδες. Αναπτύσσονται εδώ αξιόλογες υδροφορίες που εκφορτίζονται μέσω αξιόλογων πηγών.

ΠΟΡΩΔΕΙΣ ΣΧΗΜΑΤΙΣΜΟΙ

Κοκκώδεις προσχωματικές κυρίως αποθέσεις κυμαινόμενης υδροπερατότητας (Π1) Η κυκλοφορία του νερού στις αποθέσεις αυτές γίνεται μέσω του πρωτογενούς πορώδους (πορώδες κόκκων). Κατατάσσονται εδώ οι αλλουβιακές αποθέσεις, οι ποτάμες και θαλάστις αναβαθμίδες, τα κροκαλοπαγή ποτάμιας προέλευσης, τα πλευρικά κορήματα και οι κώνοι κορημάτων. Στις περιπτώσεις που οι σχηματισμοί των πλευρικών κορημάτων, των κώνων κορημάτων και των αναβαθμίδων καλύπτουν μικρή έκταση και έχουν μικρό πάχος δεν έχουν υδρογεωλογική σημασία. Αναπτύσσονται ιδιαίτερα στις σύγχρονες αποθέσεις των ποταμών και χειμάρρων αξιόλογες φρεάτιες υδροφορίες. Κοντά στη θάλασσα οι υδροφορίες αυτές έχουν υποστεί κατά θέσεις, υποβάθμιση εξαιτίας υφαλμύρινσης.

Μειοκαινικές και πλειοκαινικές αποθέσεις μέτριας έως μικρής υδροπερατότητας (Π2). Η κυκλοφορία του νερού γίνεται μέσω του πρωτογενούς πορώδους (πορώδες κόκκων). Κατατάσσονται εδώ τα κροκαλοπαγή και οι μαργαϊκοί ασβεστόλιθοι των νεογενών σχηματισμών. Καταλαμβάνουν τις παρυφές των ορεινών ασβεστολιθικών όγκων και μερικές φορές τροφοδοτούνται πλευρικά από τους ασβεστολίθους όταν η πιεζομετρία το επιτρέπει. Ανεπτύσσονται εδώ επιμέρους υπόγειες υδροφορίες μέσου έως μικρού δυναμικού.

Κοκκώδεις μη προσχωματικές αποθέσεις μικρής έως πολύ μικρής υδροπερατότητας (Π3) Κατατάσσονται εδώ οι πλειοκαινικές και μειοκαινικές μάργες, καθώς και ο αδιαίρετος σχηματισμός του νεογενούς. Τοπικά στον αδιαίρετο σχηματισμό των νεογενών αναμένεται η ανάπτυξη υδροφοριών μέσα σε παρεμβολές κροκαλοπαγών ή μαργαϊκών ασβεστολίθων. Κατά θέσεις στις νεογενείς αποθέσεις αναπτύσσονται στρώματα γύψου που παρουσιάζουν αξιόλογη υδροφορία έντονα υποβαθμισμένη εξαιτίας των θεϊκών ιόντων.

ΑΔΙΑΠΕΡΑΤΟΙ ΣΧΗΜΑΤΙΣΜΟΙ

Πρακτικά αδιαπερατοί σχηματισμοί μικρής έως πολύ μικρής υδροπερατότητας (A1) Περιλαμβάνονται εδώ οι σχημτισμοί του φλύσχη των διαφόρων ζωνών. Κατά θέσεις εντός των στρωμάτων του φλύσχη αναπτύσσονται τοπικού χαρακτήρα υδροφορίες μικρού έως μέσου δυναμικού.

Πρακτικά αδιαπερατοί ή εκλεκτικής κυκλοφορίας σχηματισμοί μικρής έως πολύ μικρής διαπερατότητας (A2) Κατατάσσονται εδώ τα μεταμορφωμένα και πυριγενή πετρώματα των διαφόρων ζωνών και καλυμμάτων. Κατά θέσεις στους σχηματισμούς αυτούς, τόσο εξαιτίας του έντονου κερματισμού τους όσο και εξαιτίας της πετρολογικής σύνθεσης τους (π.χ. εναλλαγές χαλαζιτών, μαρμάρων) αναπτύσσονται επιμέρους, τοπικού χαρακτήρα, υδροφορίες.

ΓΥΨΟΙ

Στο σχηματισμό των γύψων αναπτύσσεται υψηλού δυναμικού υπόγεια υδροφορία εξαιτίας της διάλυσης τους "ψευδοκαρστ" με υψηλή περιεκτικότητα σε θειϊκά ιόντα.

Υδρολιθολογικό όριο γεωλογικών σχηματισμών

Τεκτονική επαρή, επώθηση ή εφίππεσυ η Θέση εκφόρτιση πηγής

Υψηλή συγκέντρωση θεικών

Ζώνη υφαλμύρινσηs

Παρατηρήσεις: Η ψηφιοποίηση των γεωλογικών ορίων προέρχεται από τα εκτυπωμένα και υπό έκδοση Φύλλα Γεωλογικών Χαρτών του ΙΓΜΕ κλίμακος 1:50000 και γεωλογικές παρατηρήσεις που έγιναν στα πλαίσια της παρούσας μελέτης. Περισσότερες πληροφορίες για την περιοχή που ερευνούμε, μπορούμε να αποκομίσουμε από τον ακόλουθο τεκτονικό χάρτη (σχήμα 6). Εστιάζοντας στην περιοχή της Αγιάς, παρατηρούμε με κατεύθυνση βορειοανατολικά προς νοτιοδυτικά ένα μεγάλο ρήγμα, (απεικονίζεται στο χάρτη με κόκκινη διακεκομμένη γραμμή), παράλληλα στην Εθνική οδό να περνά μέσα από την περιοχή της Αγιάς. Η ύπαρξη αυτού του ρήγματος δρα ως το μέσο της υπόγειας κυκλοφορίας του νερού με την προαναφερθείσα κατεύθυνση. Μελετώντας και τις γύρω περιοχές της Αγιάς, Βαρύπετρο, Φουρνές, Αλικιανός, παρατηρούμε την ύπαρξη μικρών ρηγμάτων τα οποία όμως δεν συνδέονται με το μεγάλο ρήγμα που περνά μέσα από την περιοχή της Αγιάς. Επίσης στον τεκτονικό χάρτη παρουσιάζονται οι ισοϋψείς όπου μπορούμε να υπολογίσουμε το υψόμετρο των σημείων που επιθυμούμε.

Σχήμα 6. Τεκτονικός χάρτης, Φύλλο Αλικιανού Κλίμακα:1:50.000

2.3.4 Γενικές παρατηρήσεις- συμπεράσματα

Μετά την επιγραμματική περιγραφή των υδρογεωλογικών συνθηκών στην περιοχή της λεκάνης του Κερίτη της επαρχίας Κυδωνίας και τις ήδη υπάρχουσες γεωλογικές-υδρογεωλογικές μελέτες προκύπτουν οι παρακάτω γενικές παρατηρήσεις συμπεράσματα:

- Το όλο υδρογεωλογικό σύστημα είναι σύνθετο, και απαιτεί προσεκτικές επεμβάσεις σταδιακού χαρακτήρα, με άμεση και συνεχή παρακολούθηση κάθε σταδίου.
- Από τις πηγές Αγιάς αξιοποιείται ουσιαστικά μόνο ο θερινός όγκος • νερού, ο οποίος μπορεί να αυξηθεί, με περαιτέρω αναρίθμηση τους, επηρεάζοντας ακόμη περισσότερο τις πηγές, εφόσον βέβαια υπάρξει συναίνεση από τους ενδιαφερόμενους φορείς. Με τις σημερινές συνθήκες Κερίτη-Αγιάς-Μεσκλών από το ευρύτερο σύστημα εκμεταλλεύονται ετησίως 36.000.000 m³ νερού, τα οποία χρησιμοποιούν οι διάφοροι ΤΟΕΒ, ο Δήμος Χανίων και ο ΟΑΔΥΚ. Οι συνολικές ετησίως ποσότητες που απορρέουν από το παραπάνω σύστημα ανέρχονται, σύμφωνα με παλαιότερες μελέτες, μετρήσεις και εκτιμήσεις στα 120.000.000 m³, χωρίς να λαμβάνονται υπ'όψιν τα μόνιμα αποθέματα των ανθρακικών σχηματισμών της ευρύτερης περιοχής, τα οποία δεν είναι γνωστά.
- Οι πηγές Μεσκλών, σε συνδυασμό με τις επιφανειακές απορροές της ευρύτερης υδρογεωλογικής λεκάνης του Κερίτη συμβάλλουν στην τροφοδοσία του εκτεταμένου υδροφορέα των τεταρτογενών. Στις πηγές αυτές δεν είναι δυνατή η αναρίθμηση. Τα 2/3 του συνολικού όγκου νερού απορρέουν τον χειμώνα με σημαντικές διακυμάνσεις μέσα στην ίδια περίοδο (πλημμυρικές περιοχές).
- Οι τεταρτογενές αποθέσεις αποτελούν πλούσιο υδροφόρο ορίζοντα για την περιοχή, και υπάρχουν δυνατότητες περαιτέρω αξιοποίηση τους.
- Η δέσμευση επιφανειακών νερών γενικά μειώνει την τροφοδοσία των υπόγειων υδροφορέων.

3. Γεωφυσική Έρευνα

3.1 Εισαγωγή

Στη παρούσα έρευνα χρησιμοποιήθηκε, η μέθοδος της ειδικής ηλεκτρικής αντίστασης η οποία είναι μια από τις πιο σημαντικές μεθόδους της γεωφυσικής διασκόπησης. Ο όρος Γεωφυσική Διασκόπηση αναφέρεται στη μελέτη της δομής των απρόσιτων στην άμεση παρατήρηση στρωμάτων του γήινου φλοιού, με βάση τις μετρήσεις γεωφυσικών μεγεθών και με εφαρμογή των νόμων της Φυσικής, και έχει σαν στόχο της τον εντοπισμό περιοχών με οικονομική σημασία. Οι βασικότερες κατηγορίες των μεθόδων της γεωφυσικής διασκόπησης είναι:

- Βαρυτικές Μέθοδοι. Άμεσος σκοπός αυτών των μεθόδων είναι ο καθαρισμός των οριζόντιων μεταβολών της πυκνότητας των επιφανειακών στρωμάτων του φλοιού της Γης με μέτρηση των μεταβολών της έντασης του πεδίου βαρύτητας και των χωρικών παραγώγων αυτής.
- 2) Μαγνητικές Μέθοδοι. Βασίζονται στον εντοπισμό μεταβολών της μαγνήτισης των πετρωμάτων μέσα στα επιφανειακά στρώματα του φλοιού της Γης, με μετρήσεις στην επιφάνεια της Γης μαγνητικών ανωμαλιών μικρής κλίμακας (τοπικών μεταβολών της έντασης του γεωμαγνητικού πεδίου).
- Με 3) Ηλεκτρικές Μέθοδοι. αυτές μεθόδους τις επιδιώκεται 0 καθορισμός των ηλεκτρικών ιδιοτήτων των πετρωμάτων των Γης στρωμάτων φλοιού επιφανειακών του της με μετρήσεις ηλεκτρικών ποσοτήτων (ηλεκτρική τάση) στην επιφάνεια της Γης.
- 4) Ηλεκτρομαγνητικές Μέθοδοι. Βασίζονται στον καθορισμό της ειδικής γεωηλεκτρικής δομής (κατανομή της αγωγιμότητας) στα επιφανειακά στρώματα του φλοιού της Γης με βάση τις ιδιότητες του δευτερογενούς ηλεκτρομαγνητικού πεδίου, που παράγεται μέσα στα στρώματα αυτά, σε σχέση με τις ιδιότητες του αρχικού (πρωτογενούς) πεδίου που μας είναι γνωστές.
- 5) Σεισμικές Μέθοδοι. Με τις μεθόδους σεισμικής διασκόπησης επιδιώκεται ο καθορισμός των μεταβολών των ταχυτήτων διάδοσης των ελαστικών (σεισμικών) κυμάτων στα επιφανειακά στρώματα του

φλοιού της Γης, με μετρήσεις των χρόνων διαδρομής τους μέσα στα στρώματα αυτά και εφαρμογή γνωστών νόμων της φυσικής, στους οποίους υπακούει η διάδοση αυτή (νόμοι διάθλασης, ανάκλασης, κλπ).

Εκτός από τις παραπάνω μεθόδους εφαρμόζονται και κάποιες άλλες όπως είναι η θερμική μέθοδος και η ραδιομετρική μέθοδος. Όμως ενώ οι αρχές πάνω στις οποίες στηρίζονται είναι πολύ απλές, πολλές από τις μεθόδους αυτές εμφανίζουν σημαντικές δυσκολίες στην εφαρμογή τους, λόγω του ότι η δομή της Γης είναι πολύπλοκη.

Οι γεωφυσικές μέθοδοι μπορούν να χρησιμοποιηθούν σε ένα μεγάλο αριθμό προβλημάτων όπως για τον εντοπισμό δόμων, που ευνοούν τον σχηματισμό κοιτασμάτων πετρελαίου, φυσικού αερίου και μεταλλευμάτων. Επιπλέον μπορούν να χρησιμοποιηθούν για τον καθαρισμό των μηχανικών ιδιοτήτων του εδάφους, για τον εντοπισμό υδροφόρων οριζόντων, γεωθερμικών πεδίων κ.α.

Η εργασία αυτή επικεντρώνεται κυρίως στις ηλεκτρικές μεθόδους γι'αυτό και θα αναλυθούν εκτενέστερα.

3.2 Ηλεκτρικές Μέθοδοι

Όπως αναφέρθηκε προηγουμένως οι ηλεκτρικές μέθοδοι έχουν σαν στόχο τον προσδιορισμό των ηλεκτρικών ιδιοτήτων των επιφανειακών στρωμάτων του φλοιού της Γης. Η μετρούμενη ποσότητα είναι η ηλεκτρική τάση, από την οποία επιδιώκεται ο καθορισμός της ειδικής ηλεκτρικής αντίστασης και της κατανομής των τιμών της μέσα στα επιφανειακά στρώματα του φλοιού της Γης.

Οι ηλεκτρικές μέθοδοι της γεωφυσικής διασκόπησης χωρίζονται σε δύο κατηγορίες: Η πρώτη κατηγορία βασίζεται σε μετρήσεις ηλεκτρικών μεγεθών φυσικών ηλεκτρικών ρευμάτων ή πεδίων, και περιλαμβάνει:

- Μέθοδο του φυσικού δυναμικού
- Μέθοδο των τελλουρικών ρευμάτων

Η δεύτερη κατηγορία βασίζεται σε μετρήσεις ηλεκτρικών μεγεθών τα οποία εξαρτώνται από παραγόμενα τεχνητά ηλεκτρικά ρεύματα ή πεδία, και περιλαμβάνει:

- Μέθοδο της ειδικής αντίστασης
- Μέθοδο της επαγόμενης πολικότητας
- Μέθοδο των ισοδυναμικών γραμμών

Οι ηλεκτρικές μέθοδοι χρησιμοποιούνται κυρίως στην αναζήτηση μεταλλευμάτων και γεωθερμικών πεδίων, στην Υδρογεωλογία, και στην Τεχνική Γεωλογία.

3.3 Μέθοδος Ειδικής Ηλεκτρικής Αντίστασης

Η μέθοδος της ειδικής ηλεκτρικής αντίστασης είναι η πιο διαδεδομένη από τις ηλεκτρικές μεθόδους τόσο από την λειτουργική πλευρά όσο και από την θεωρητική πλευρά.

Έχει σκοπό τον καθορισμό της ειδικής ηλεκτρικής αντίστασης του υπεδάφους, ή καλύτερα την κατανομή της ειδικής ηλεκτρικής αντίστασης στο υπέδαφος που ονομάζεται γεωηλεκτρική δομή. Αυτό επιτυγχάνεται με την δημιουργία τεχνιτών ηλεκτρικών πεδίων. Το ηλεκτρικό πεδίο επηρεάζεται από τη δομή του υπεδάφους, και επομένως από τις μετρήσεις του δυναμικού είναι δυνατός ο καθορισμός της δομής.

Για την καλύτερη κατανόηση αυτής της μεθόδου γίνεται παρακάτω η εξήγηση κάποιων εννοιών που είναι πολύ σημαντικές για την εφαρμογή της.

3.3.1 Ειδική ηλεκτρική αντίσταση

Η ειδική ηλεκτρική αντίσταση ρ, είναι η ηλεκτρική ιδιότητα των πετρωμάτων που παρουσιάζει το μεγαλύτερο ενδιαφέρον για την ηλεκτρική διασκόπηση. Ο υπολογισμός της στηρίζεται στο νόμο του ohm (σχήμα 7): Αν μια ορθογώνια ράβδος με διατομή Α και μήκος L διαρρέεται από ρεύμα έντασης Ι, η τάση V ανάμεσα στις άκρες της ράβδου θα είναι:

$$V = IR \tag{3.1}$$

όπου R η ηλεκτρική αντίσταση (Ω)

Η ειδική ηλεκτρική αντίσταση ρυπολογίζεται από την σχέση:

$$\rho = \frac{RA}{L} \tag{3.2}$$

Σχήμα 7. Υπολογισμός της ειδικής ηλεκτρικής αντίστασης

Η μονάδα μέτρησης της ειδικής αντίστασης στο διεθνές σύστημα μονάδων, SI, είναι το 1 Ωm, ή μερικές φορές χρησιμοποιείται και η μονάδα 1 Ωcm όπου 1 Ωm = 100 Ωcm. Το αντίστροφο, $\sigma = 1/\rho$, της ειδικής ηλεκτρικής αντίστασης ονομάζεται ειδική ηλεκτρική αγωγιμότητα του πετρώματος, με μονάδα μέτρησης στο διεθνές σύστημα το siemens/m.

3.3.2 Ειδική αντίσταση των πετρωμάτων και ορυκτών

Η ειδική ηλεκτρική αντίσταση των πετρωμάτων και ορυκτών είναι μια από τις περισσότερο μεταβαλλόμενες φυσικές, ιδιότητες των πετρωμάτων και ορυκτών. Οι τιμές της κυμαίνονται από 10⁻⁶ Ωm σε ορισμένα ορυκτά όπως είναι ο γραφίτης, μέχρι 10¹⁵ Ωcm σε ορισμένα ξηρά χαλαζιακά πετρώματα, Τυπικές τιμές της ειδικής ηλεκτρικής αντίστασης εμφανίζονται στους πίνακες (4 & 5). Τα πετρώματα και τα ορυκτά που έχουν ειδικές αντιστάσεις μεταξύ 10⁻⁶ και 10⁻¹ Ωm χαρακτηρίζονται ως καλοί αγωγοί, ενώ κακοί αγωγοί θεωρούνται αυτά που έχουν ειδικές αντιστάσεις μεταξύ 10⁸ και 10¹⁵ Ωm.

Πίνακας 4. Πεδίο τιμών ειδικών ηλεκτρικών αντιστάσεων ορυκτών της Γης

(Robinson, Coruh, $\sigma\epsilon\lambda.477$)

EARTH MATERIAL	RESISTIVITY. AVERAGE OR RANGE (ohm-m)	EARTH MATERIAL	RESISTIVITY. AVERAGE OR RANG (obm-m)
Metals	Aurrage R	Other Minerali	Range of R
France Contact	17 × 10**	Calcier	1047-1033
Contract	94 × 10-*	Ashydrine	10*-10**
5.43%X		Haine	10-10**
SHIVET		Coal	113-1012
1.6 × 10	10-3		
Graphile	10-7	Constalling Huch	Bauna at B
lron	10	CAUSSING AND AND A	states in 10
Lead	2.2 36 141	Francisco	x n2 + nk
Nickel	7.8 × 10	LIFARME	5 55 m \$ 5.8
Tin	1.1 × 10	WORKE	10-10
Zinc	5.8 × 10**	Liabhres	10'-10
		Andesite	1010.
Subble Ore Minerals	Aurrage H	Basali	10-10'
	~	Peridotite	10-10*
Chalcocke	10**	Schin	10-10*
Canton ward a	4 × 10**	Cineiss	10*-10*
Second Street States	3 × 10 ⁻¹	Slave	102-103
North Arit A	10*	Marble	10 ² -10 ⁸
2 Think donies	10)	Quartaile	10-10*
259424 4 586 JE 1343 E	* × 105-3		
Charlessa Sinkalarita	102	Sedimentary Rocks	Range of R
whitemakes are			~ /
Built Buy Minewate	Runge at R	Shale	10-103
CARACE LARE IN CONTRACT	service and ve	Sandstone	1-10*
Yee	¥81 ² - 165*	Limescore	30-10 ³
RAMARC .	110*	Dolomite	107-10*
Chronute	1013 1000		
Caprac	10 ~303	I'm comerchid aread & action and	Ramer of #
Hematur	10 -11	CHANTING HAMPING DELAMATU	amongs of as
Magnetite	118	Sand	1.103
Bascrate	10 103	274010	1.302
Ruthe	10~10-	Mari	1-10*
1.11 66	Druger of P	ANALY Y	
Success symmetry	mange of n	Commission	Romos is R
200	+ also + als	6.84 met 6536 Series 7	· · · · · · · · · · · · · · · · · · ·
Quarte	111 - 112	Baunchie wall water	0 1. 103
Muscoviic	1010.	FINISOIC WESS WALET	6. K., I
Bicake	102-112	DESCRIPTION MALET	0.2** S
Hornblende	10,~10,	Derwäller	0.4
Feldspar	10~-10*	supervalue brine	0.03-0.2
Divise	10*-10*		

Αυτό το εύρος τιμών της ειδικής ηλεκτρικής αντίστασης των διαφόρων ορυκτών και πετρωμάτων αποτελεί τη βάση για τις μεθόδους των ηλεκτρικών διασκοπήσεων. Έτσι, ο γραφίτης, ο πυρίτης και ο σιδερίτης εντοπίζονται λόγω της μεγάλης τους ηλεκτρικής αγωγιμότητας σε σχέση με τα πετρώματα

που τα περιβάλλουν.

Οι σημαντικότεροι παράγοντες που επηρεάζουν την ειδική ηλεκτρική αντίσταση είναι:

 ρ_{θ} : ειδική ηλεκτρική αντίσταση σε θερμοκρασία θ 0 C

 $ρ_{18}$: ειδική ηλεκτρική αντίσταση σε θερμοκρασία 18 0 C

α: θερμικός συντελεστής ίσος με την τιμ
ή0.025/ 0 C

ΓΕΩΛΟΓΙΚΗ	ΘΑΛΑΣΣΙΑ	ΧΕΡΣΑΙΑ	ΗΦΑΙΣΤΕΙΑΚΑ	ΠΛΟΥΤΩΝΙΑ	ΑΣΒΕΣΤΟΛΙΘΟΣ
ΗΛΙΚΙΑ	IZHMATA	IZHMATA	ΠΕΤΡΩΜΑΤΑ	ΠΕΤΡΩΜΑΤΑ	ΔΟΛΟΜΙΤΗΣ
					ΑΝΥΔΡΙΤΗΣ
Τεταρτογενές,	1-10	15-50	10-200	500-2000	50-5000
Τριτογενές					
Μεσοζωικό	5-20	25-100	20-500	500-2000	100-10000
Λιθανθρακοφόρο	10-40	50-300	50-1000	1000-5000	200-100000
Παλαιοζωικό	40-200	100-500	100-2000	1000-5000	10000-100000
Προκάμβιο	100-2000	300-5000	200-5000	5000-20000	10000-110000

Πίνακας 5. Ειδικές ηλεκτρικές αντιστάσεις ρ (σε Ωm) για πετρώματα τα οποία είναι διαποτισμένα με νερό (Dorbin 1976)

3.3.3 Συμπεριφορά του ηλεκτρικού ρεύματος μέσα στο έδαφος

Όπως αναφέρθηκε προηγουμένως, η μέθοδος της ειδικής ηλεκτρικής αντίστασης βασίζεται στην τεχνητή εισαγωγή ρεύματος μέσα στο έδαφος που γίνεται μέσω μιας πηγής ηλεκτρικού ρεύματος, της οποίας ο θετικός και ο αρνητικός πόλος συνδέονται με την επιφάνεια της Γης, χρησιμοποιώντας δύο ηλεκτρόδια, που καλούνται και ηλεκτρόδια ρεύματος. Για την καλύτερη κατανόηση της ροής του ηλεκτρικού ρεύματος μέσα στο έδαφος θεωρείται ότι αυτό είναι ομογενές. Τότε, το έδαφος θα διαρρέεται από ηλεκτρικό ρεύμα λόγω της διαφοράς δυναμικού μεταξύ των δύο ηλεκτροδίων, και επειδή ο αέρας της ατμόσφαιρας είναι κακός αγωγός του ηλεκτρισμού, θεωρείται ότι όλο το ρεύμα από την πηγή μπαίνει μέσα στην Γη. (σχήμα 8).

Το ηλεκτρικό ρεύμα θα έχει διεύθυνση από τον θετικό πόλο προς τον αρνητικό, και θα ρέει ομοιόμορφα προς όλες τις διευθύνσεις, επειδή θεωρήθηκε ότι η Γη είναι ομογενής άρα έχει σταθερή ηλεκτρική αντίσταση. Σε απόσταση d από το θετικό ηλεκτρόδιο, το ρεύμα διαρρέει ημικύκλιο ακτίνας d, και εμβαδού 2πd², που αποτελεί την επιφάνεια του ημισφαιρίου. Η πτώση τάσης, λόγω της ροής του ρεύματος διαμέσου της αντίστασης της ημισφαιρικής περιοχής, σύμφωνα με τον νόμο του Ohm είναι

$$\mathbf{V} = \mathbf{IR} = \mathbf{V}_{\Theta} \cdot \mathbf{V}_{\mathrm{d}} \tag{3.5}$$

όπου

και

 V_{θ} η ηλεκτρική τάση στον θετικό πόλο

 V_d η ηλεκτρική τάση σε οποιοδήποτε σημείο του εδάφους και σε απόσταση d από τον πόλο

Σχήμα 8. Ισοδυναμικές γραμμές (στιγμένες καμπύλες) και γραμμές ρεύματος (συνεχείς καμπύλες) στην περίπτωση που εισάγονται τα ηλεκτρόδια ρεύματος μιας ηλεκτρικής πηγής σε ομογενές έδαφος.

Η αντίσταση R όμως ισούται με το λόγο του γινομένου της ειδικής ηλεκτρικής αντίστασης ρ, επί την διατομή $2\pi d^2$, οπότε

$$R = \frac{\rho d}{2pd^2} = \frac{\rho}{2\pi d}$$
(3.6)

$$V_{\theta} - V_{d} = \frac{I\rho}{2\pi} \left(\frac{1}{2d}\right)$$
(3.7)

Η τάση αυτή, θα έχει την ίδια τιμή σε οποιοδήποτε σημείο του ημικυκλίου (σχήμα 9), και ονομάζεται ισοδυναμική γραμμή ή επιφάνεια.

- 35 -

Σχήμα 9. Οι γραμμές ρεύματος ξεκινούν από το θετικό ηλεκτρόδιο του ρεύματος, και καταλήγουν στο αρνητικό. Όταν τα δύο ηλεκτρόδια είναι τοποθετημένα σε σχετικά μεγάλη απόσταση και η ηλεκτρική αντίσταση του εδάφους είναι παντού η ίδια, το ρεύμα ρέει ακτινικά και ομοιόμορφα από το θετικό ηλεκτρόδιο με φορά προς τα έξω. Ανάλογη είναι και η ροή του ρεύματος και στον αρνητικό πόλο, προς τον οποίο το ρεύμα συγκλίνει ακτινικά και ομοιόμορφα. Στο σχήμα φαίνεται, για κάθε ηλεκτρόδιο, από μια ισοδυναμική γραμμή σε απόσταση d, κάθετη στις γραμμές του ρεύματος. (Γκανιάτσος, 1995, σελ.15)

Είναι φανερό ότι το ίδιο ισχύει και για τον αρνητικό πόλο, οπότε, για απόσταση d από τον αρνητικό πόλο, η διαφορά δυναμικού θα υπολογίζεται από τη σχέση

$$V = IR = \frac{I\rho}{2\pi} \left(\frac{1}{2d}\right) = v_d - v_\theta$$
(3.8)

επειδή ο αρνητικός πόλος εμφανίζει δυναμικό - V_{θ} (είναι συνδεδεμένος με την ίδια ηλεκτρική πηγή και τον αρνητικό πόλο της).

Σε ένα τυχαίο σημείο του υπεδάφους, το δυναμικό σαν μονόμετρο μέγεθος, ισούται με το αλγεβρικό άθροισμα των δυναμικών που δημιουργούν οι δύο πόλοι, οπότε:

$$V = \frac{I\rho}{2\pi} \left(\frac{1}{d1} - \frac{1}{d2} \right) \tag{3.9}$$

όπου d_1 και d_2 οι αποστάσεις του τυχαίου σημείου από το θετικό και αρνητικό ηλεκτρόδιο αντίστοιχα.

Αυτή η σχέση δίνει το δυναμικό για κάθε σημείο του υπεδάφους. Αν ενωθούν τα σημεία που έχουν το ίδιο δυναμικό θα προκύψουν οι ισοδυναμικές επιφάνειες (σχήμα 9). Παρατηρείται ότι οι γραμμές του ρεύματος και στους δύο πόλους τέμνουν κάθετα τις ισοδυναμικές γραμμές.

Το σχήμα (10) αντιπροσωπεύει μια τυπική διάταξη που χρησιμοποιείται στη μέθοδο της ειδικής ηλεκτρικής αντίστασης. Υπάρχουν τα ηλεκτρόδια ρεύματος AB που είναι συνδεδεμένα με ένα αμπερόμετρο για τον υπολογισμό της έντασης του ρεύματος που εισάγεται στο έδαφος, ενώ τα ηλεκτρόδια MN είναι τα ηλεκτρόδια τάσης, που συνδέονται με βολτόμετρο για τη μέτρηση της τάσης. Εφαρμόζοντας τη σχέση (3.9) σⁱαυτή τη διάταξη προκύπτει:

Στο ηλεκτρόδιο M το δυναμικό είναι

$$V_{\rm M} = \frac{\mathrm{I}\rho}{2\pi} \left(\frac{1}{\mathrm{A}\mathrm{M}} - \frac{1}{\mathrm{B}\mathrm{M}} \right) \tag{3.10}$$

Στο ηλεκτρόδιο N το δυναμικό είναι

$$V_{\rm N} = \frac{I\rho}{2\pi} \left(\frac{1}{\rm AN} - \frac{1}{\rm BN} \right)$$
(3.11)

Η διαφορά δυναμικού V_{MN} που μετράται από το βολτόμετρο είναι,

$$V_{\rm MN} = V_{\rm M} - V_{\rm N} = \frac{I\rho}{2\pi} \left(\frac{1}{\rm AM} - \frac{1}{\rm BM} - \frac{1}{\rm AN} + \frac{1}{\rm BN} \right)$$
 (3.12)

Σχήμα 10. Σχηματική απεικόνιση των ηλεκτροδίων ρεύματος Α, Β και ηλεκτροδίων δυναμικού (Παπαζάχος, 1986, σελ.247)

Η ειδική ηλεκτρική αντίσταση είναι (υπολογίζεται από την 3.12)

$$\rho = 2\pi \frac{V_{\rm MN}}{\rm I} \left(\frac{1}{\rm AM} - \frac{1}{\rm BM} - \frac{1}{\rm AN} + \frac{1}{\rm BN} \right)^{-1}$$
(3.13)

➢ Θέτοντας AM=r₁, BM=r₂, AN=R₁ και BN=R₂, βρίσκουμε ότι θα είναι:

$$\rho = 2\pi \frac{V_{\rm MN}}{I} \left(\frac{1}{r_1} - \frac{1}{r_2} - \frac{1}{R_1} + \frac{1}{R_2} \right)^{-1}$$
(3.14)

Η σχέση αυτή θα χρησιμοποιηθεί κατά την ανάπτυξη της μεθόδου της ειδικής ηλεκτρικής αντίστασης.

3.3.4 Φαινόμενη ειδική αντίσταση

Η σχέση (3.14) προέκυψε θεωρώντας ότι τα επιφανειακά στρώματα της Γης είναι

ομογενή, αυτό όμως δεν ισχύει και συνεπώς η ειδική ηλεκτρική αντίσταση δεν είναι σταθερή σε αυτά. Η αντίσταση που υπολογίζεται από την προηγούμενη σχέση εκφράζει το μέσο όρο των τιμών των αντιστάσεων των διαφόρων υλικών που βρίσκονται στα επιφανειακά στρώματα, και ονομάζεται φαινόμενη ειδική ηλεκτρική αντίσταση (ρ_α).

Η τιμή της φαινόμενης ειδικής ηλεκτρικής αντίστασης εξαρτάται από την κατανομή της ειδικής αντίστασης στο υπέδαφος και από τη γεωμετρία των ηλεκτροδίων. Ο υπολογισμός της είναι πολύ σημαντικός και οδηγεί στον καθορισμό της πραγματικής ειδικής ηλεκτρικής αντίστασης του υπεδάφους. Για τον υπολογισμό της χρησιμοποιείται μεγάλος αριθμός διαφορετικών διατάξεων ηλεκτροδίων που θα περιγραφούν παρακάτω.

3.4 Τρόποι Διάταξης των Ηλεκτροδίων

Υπάρχουν διάφοροι τρόποι διάταξης των ηλεκτροδίων, το σχήμα (11) δείχνει τις τρεις πιο σημαντικές διατάξεις πού είναι:

α) Διάταξη Wenner

Στη διάταξη Wenner τα ηλεκτρόδια διατάσσονται σε ίσες μεταξύ τους αποστάσεις, δηλαδή, AM = MN = NB = α, όπως φαίνεται στο σχήμα (11α), έτσι η φαινόμενη ειδική ηλεκτρική αντίσταση $ρ_{\alpha}$ σύμφωνα με την σχέση (3.14) θα υπολογίζεται από την σχέση:

$$\rho_{\alpha} = 2\pi \frac{V_{\rm MN}}{I} \left(\frac{1}{\alpha} - \frac{1}{2\alpha} - \frac{1}{2\alpha} + \frac{1}{\alpha}\right)^{-1} = 2\pi \alpha \frac{V_{\rm MN}}{I}$$
(3.15)

Η ποσότητα

$$2\pi \left(\frac{1}{\alpha} - \frac{1}{2\alpha} - \frac{1}{2\alpha} + \frac{1}{\alpha}\right)^{-1} = 2\pi\alpha$$
(3.16)

ονομάζεται γεωμετρικός συντελεστής και συμβολίζεται με Κ. Η τιμή του μπορεί να υπολογιστεί αν οι αποστάσεις των ηλεκτροδίων είναι γνωστές.

Κατά την εφαρμογή της διάταξης Wenner για ηλεκτρική βυθοσκόπηση, δηλαδή κατακόρυφη ηλεκτρική διασκόπηση που δίνει την δομή του υπεδάφους, τα ηλεκτρόδια αναπτύσσονται κάθε φορά συμμετρικά ως προς ένα σημείο, που θεωρείται κέντρο της διασκόπησης.

Στην περίπτωση της ηλεκτρικής χαρτογράφησης, δηλαδή οριζόντια ηλεκτρική διασκόπηση με μετρήσεις σε μια γραμμή, το α παραμένει σταθερό και τα τέσσερα ηλεκτρόδια μεταφέρονται κατά μήκος γραμμής μελέτης. Η τιμή της φαινόμενης ειδικής ηλεκτρικής αντίστασης χαρτογραφείται στο κέντρο κάθε διάταξης.

Η διάταξη Wenner παρά τη γεωμετρική της απλότητα παρουσιάζει ένα σημαντικό μειονέκτημα, αφού κατά την πραγματοποίηση κάθε νέας μέτρησης πρέπει να μετακινούνται όλα τα ηλεκτρόδια.

β) Διάταξη Schlumberger.

Στη διάταξη Schlumberger, τα ηλεκτρόδια ρεύματος Α και Β βρίσκονται σε απόσταση L και σε συμμετρικές θέσεις ως προς το κέντρο της διάταξης. Τα ηλεκτρόδια του δυναμικού M και N είναι ανάμεσα στα Α και Β και σε απόσταση b από το κέντρο της διάταξης. Έτσι είναι AB = 2L και MN = 2b = I (σχήμα 11b), η απόσταση 2b μεταξύ των ηλεκτροδίων δυναμικού είναι πολύ μικρότερη από την απόσταση 2L μεταξύ των ηλεκτροδίων ρεύματος. Έτσι ο γεωμετρικός συντελεστής K θα υπολογίζεται από την σχέση:

$$\mathbf{K} = 2\pi \left(\frac{1}{L-b} - \frac{1}{L+b} - \frac{1}{L+b} - \frac{1}{L-b}\right)^{-1} = \left(L^2 - b^2\right)\frac{\pi}{2b}$$
(3.17)

Επειδή όμως (L>>b) τότε $(L^2-b^2) \sim L^2$, και έτσι η φαινόμενη ειδική ηλεκτρική αντίσταση θα υπολογίζεται από την σχέση :

$$\rho_{\alpha} = \frac{\pi L^2}{2b} \frac{\Delta V}{i} \tag{3.18}$$

Κατά την εφαρμογή της διάταξης Schlumberger για ηλεκτρική βυθοσκόπηση, τα ηλεκτρόδια δυναμικού παραμένουν σταθερά. Αντίθετα η απόσταση για τα ηλεκτρόδια ρεύματος αυξάνεται σταδιακά και συμμετρικά ως προς το κέντρο της διάταξης.

Στην ηλεκτρική χαρτογράφηση τα τέσσερα ηλεκτρόδια μετακινούνται κατά μήκος

ορισμένης τομής, ενώ η απόσταση τους παραμένει σταθερή όπως και στη διάταξη Wenner.

Η διάταξη Schlumberger είναι η πιο διαδεδομένη διάταξη. Αυτό οφείλεται κυρίως στο μικρό χρόνο πραγματοποίησης των μετρήσεων, επειδή αντίθετα με τις άλλες διατάξεις απαιτεί μετακίνηση μόνο των δύο ηλεκτροδίων ρεύματος κατά την γεωηλεκτρική βυθοσκόπηση. Τα ηλεκτρόδια του δυναμικού παραμένουν σταθερά, γεγονός που βοηθάει επίσης στον περιορισμό των πιθανοτήτων ανεπιθύμητων επιδράσεων που μπορεί να οφείλονται σε τοπικές γεωλογικές ασυνέχειες.

γ) Διάταξη Διπόλου-Διπόλου

Από τις παραπάνω διατάξεις, η πιο σημαντική είναι αυτή του διπόλου-διπόλου, όπου η απόσταση ανάμεσα στα ηλεκτρόδια του ρεύματος είναι ίση με α . Ομοίως α είναι και το διάστημα μεταξύ των ηλεκτροδίων δυναμικού. Η απόσταση μεταξύ των ζευγαριών των ηλεκτροδίων είναι μεγάλη και ίση με na (n»a), όπως φαίνεται στο σχήμα (11γ).

Ο γεωμετρικός συντελεστής Κ για την διάταξη διπόλου-διπόλου και για η»1, υπολογίζεται από τη σχέση:

$$K = \pi n (n+1) (\eta + 2) \alpha$$
 (3.19)

και η φαινόμενη ειδική αντίσταση από την σχέση

$$\rho_{\alpha} = \pi n(n-1)(n+2)\alpha \frac{\Delta V}{i}$$
(3.20)

Οι μετρήσεις για ηλεκτρική χαρτογράφηση πραγματοποιούνται μετακινώντας κατά μήκος γραμμής μελέτης τα τέσσερα ηλεκτρόδια, ενώ η τιμή του n παραμένει σταθερή. Οι

μετρήσεις της ηλεκτρικής βυθοσκόπησης επιτυγχάνονται αυξάνοντας την τιμή του n κατά βήματα.

Το μεγαλύτερο πλεονέκτημα της διάταξης αποτελεί η απόσταση 2na, ανάμεσα στα δίπολα ρεύματος και δυναμικού, που μπορεί να αυξηθεί αρκετά χωρίς να χρειάζονται μεγάλα μήκη καλωδίων. Η διάταξη περιορίζεται μόνο από τη δυνατότητα των καταγραφικών οργάνων και από τον εδαφικό θόρυβο.

3.4.1 Παράγοντες επιλογής της κατάλληλης διάταξης ηλεκτροδίων.

Η επιλογή της κατάλληλης διάταξης των ηλεκτροδίων κατά την πραγματοποίηση των γεωφυσικών διασκοπήσεων είναι πολύ σημαντική και επηρεάζει την ακρίβεια των μετρήσεων. Έτσι, η επιλογή πρέπει να γίνει ανάλογα με τον σκοπό της γεωφυσικής διασκόπησης σύμφωνα με τα παρακάτω κριτήρια:

<u>Λόγος σήματος προς θόρυβο</u>

Η διαφορά δυναμικού (δηλ. το σήμα) είναι μεγάλη όταν ο λόγος της απόστασης των ηλεκτροδίων δυναμικού προς την απόσταση των ηλεκτροδίων ρεύματος είναι μεγάλος και όταν το ζεύγος των ηλεκτροδίων δυναμικού βρίσκεται ανάμεσα στα ηλεκτρόδια ρεύματος. Ως προς τον παράγοντα λοιπόν αυτό κατά σειρά προτεραιότητας οι διατάξεις είναι: Wenner, Schlumberger, διπόλου-διπόλου.

Ευαισθησία σε οριζόντιες ανομοιογένειες

Οι οριζόντιες ανομοιογένειες φαίνεται να προκαλούν μεγαλύτερη ευαισθησία στην διάταξη διπόλου-διπόλου και λιγότερη σε Wenner και Schlumberger. (σχήμα 12).

Ευαισθησία σε βάθος και διεισδυτικότητα δια μέσου επιφανειακού αγώγιμου στρώματος

Οι διατάξεις Schlumberger και Wenner έχουν σχεδιαστεί για να χρησιμοποιούνται σε βυθοσκοπήσεις και η συνεχώς αυξανόμενη απόσταση των ηλεκτροδίων ρεύματος με 6 αποστάσεις ανά λογαριθμικό κύκλο δίνει λεπτομερή ανάλυση της ειδικής αντίστασης σε βάθος, σε αντίθεση με τη διάταξη διπόλου-διπόλου, που συνήθως οι μετρήσεις είναι 6 με βήμα μέτρησης το μήκος διπόλου.

Σχήμα 12. Διάγραμμα φαινόμενης ειδικής ηλεκτρικής αντίστασης πάνω από σφαίρα ειδικής αντίστασης ρ1, θαμμένη σε έδαφος ειδικής αντίστασης ρα. (Αποστολόπουλος, 1993, σελ.19)

<u>Διεισδυτικότητα δια μέσου επιφανειακού αγώγιμου στρώματος (Επίδραση του</u> <u>επιδερμικού φαινομένου</u>)

Όταν το εισαγόμενο ρεύμα συναντήσει ένα αγώγιμο στρώμα κοντά στην επιφάνεια της Γης, προτιμά να ρέει σ'αυτό με αποτέλεσμα να μειώνεται σημαντικά το βάθος διασκόπησης. Το φαινόμενο αυτό είναι γνωστό σαν επιδερμικό φαινόμενο, και επηρεάζει την ικανότητα διείσδυσης σε μεγάλα βάθη. Η δυνατότητα μεγάλου ανοίγματος ηλεκτροδίων ρεύματος της διάταξης Schlumberger μαζί με την ευαισθησία σε βάθος που έχει, της παρέχουν ένα σαφές προβάδισμα.

<u>Βάθος διασκόπησης</u>

Το βάθος διασκόπησης εξαρτάται κυρίως από το οριζόντιο ανάπτυγμα (απόσταση μεταξύ των ηλεκτροδίων) όπως φαίνεται στο σχήμα (13),που σημαίνει ότι η διάταξη Schlumberger πλεονεκτεί. Επίσης το βάθος διασκόπησης επηρεάζεται από επιφανειακές ή βαθιές ανομοιογένειες, από την τοπογραφία, από την κλίση των στρωμάτων, από το ανάγλυφο του υπόβαθρου, και από το μοντέλο των στρωμάτων του

υπεδάφους.

Σχήμα 13. Βάθος διασκόπησης σε σχέση με την απόσταση μεταξύ των ηλεκτροδίων.

Ευαισθησία στις επιφανειακές ανομοιογένειες

Η φαινόμενη, ειδική αντίσταση επηρεάζεται, πολύ περισσότερο αν το ηλεκτρόδιο δυναμικού διέλθει από επιφανειακή ανομοιογένεια παρά από όσο εάν περάσει το ηλεκτρόδιο ρεύματος (σχήμα 13). Έτσι η διάταξη Schlumberger πλεονεκτεί των άλλων διατάξεων μιας και τα ηλεκτρόδια δυναμικού παραμένουν σε μία περιοχή επί περισσότερο διάστημα μετρήσεων.

Ευαισθησία στην μορφολογία του υποβάθρου

Η διάταξη διπόλου-διπόλου υπερτερεί των άλλων διατάξεων στην περίπτωση των γεωλογικών ανωμαλιών.

Σχήμα 14. Μεταβολή της φαινόμενης ειδικής ηλεκτρικής αντίστασης στη διάταξη διπόλουδιπόλου όταν το δίπολο δυναμικού παραμένει σταθερό (διακεκομμένη γραμμή) και όταν κινείται (συνεχής γραμμή). (Αποστολόπουλος, 1993, σελ.20)

Ευαισθησία στο τοπογραφικό ανάγλυφο της περιοχής έρευνας.

Το έντονο τοπογραφικό ανάγλυφο δημιουργεί πύκνωση και αραίωση των ρευματικών γραμμών (σχήμα 14 & 15). Σε κοιλάδα, η πύκνωση των ρευματικών γραμμών δημιουργεί μετρήσεις μικρών τιμών φαινόμενων ειδικών αντιστάσεων με διάταξη διπόλου-διπόλου σαν να υπάρχει στην περιοχή σώμα χαμηλής ειδικής αντίστασης.

Τα παραπάνω οδηγούν στο συμπέρασμα ότι οι διατάξεις ηλεκτροδίων πρέπει να έχουν διεύθυνση παράλληλη με το τοπογραφικό ανάγλυφο της περιοχής.

3.4.2 Επιλογή Διατάξεων Ηλεκτροδίων.

Σύμφωνα με τα όσα έχουν αναφερθεί στα προηγούμενα, τα περισσότερα πλεονεκτήματα ως διάταξη ηλεκτροδίων για βυθοσκόπηση έχει η διάταξη Schlumberger, κατά την οποία οι αποστάσεις ηλεκτροδίων ρεύματος αυξάνουν συνεχώς με σταθερή απόσταση ηλεκτροδίων δυναμικού. Για το λόγο αυτό επιλέχτηκε η διάταξη Schlumberger για τη πραγματοποίηση των βυθοσκοπήσεων.

Σχήμα 15. Επίδραση της τοπογραφίας στις ισοδυναμικές επιφάνειες (διακεκομμένες γραμμές) και στις γραμμές ρεύματος (συνεχείς γραμμές), αν θεωρηθεί ότι η πηγή είναι στο άπειρο.(Αποστολόπουλος, 1993, σελ.21)

3.5 Γεωηλεκτρικές Διασκοπήσεις

Ο στόχος των γεωηλεκτρικών διασκοπήσεων είναι η περιγραφή της δομής του υπεδάφους. Έτσι, με μετρήσεις που γίνονται στην επιφάνεια και μελετώντας την ειδική ηλεκτρική αντίσταση των πετρωμάτων και τον τρόπο διάδοσης των ηλεκτρικών ρευμάτων στο υπέδαφος, επιτυγχάνεται η περιγραφή της δομής του υπεδάφους.

Ανάλογα με τον τρόπο που προσεγγίζεται ο προσδιορισμός της γεωλογικής δομής του υπεδάφους, οι γεωηλεκτρικές διασκοπήσεις χωρίζονται σε δύο κατηγορίες, την ηλεκτρική χαρτογράφηση και την ηλεκτρική βυθοσκόπηση – τομογραφία.

3.6 Γεωηλεκτρική Χαρτογράφηση

Στη Γεωηλεκτρική χαρτογράφηση, η περιγραφή της γεωλογικής δομής βασίζεται στη μελέτη των μεταβολών της ειδικής ηλεκτρικής αντίστασης κατά την οριζόντια διεύθυνση, εντοπίζοντας έτσι ασυνέχειες κατά την οριζόντια ανάπτυξη των σχηματισμών, όπως π.χ. μεταπτώσεις. Η ιδιότητα αυτή της γεωηλεκτρικής χαρτογράφησης την κάνει ιδιαίτερα χρήσιμη στην περίπτωση αναζήτησης μεταλλευμάτων ή αρχαιοτήτων.

Κατά τη γεωηλεκτρική χαρτογράφηση, η τιμή της φαινόμενης ειδικής αντίστασης R_{α} , για σταθερή τιμή του γεωμετρικού συντελεστή K, προσδιορίζεται σε σημεία που ανήκουν σε τομές κατά το δυνατό κάθετες στην παράταξη των σχηματισμών. Πολύ σημαντικός είναι ο καθορισμός της απόστασης των ηλεκτροδίων ρεύματος πριν να ξεκινήσει η χαρτογράφηση, καθώς από αυτή την απόσταση εξαρτάται το βάθος μέχρι το οποίο οι σχηματισμοί στο υπέδαφος επιδρούν στη διαμόρφωση της τιμής της R_{α} .

Μια σειρά από μετρήσεις της φαινόμενης ειδικής αντίστασης πραγματοποιείται μετακινώντας τη διάταξη των ηλεκτροδίων από θέση σε θέση κατά μήκος της γραμμής μελέτης. Οι τιμές αυτές, κατά μήκος αρκετών παράλληλων γραμμών, τοποθετούνται σε χάρτη φαινόμενων ειδικών ηλεκτρικών αντιστάσεων (σχήμα 16). Στη συνέχεια, μπορεί να γίνει επεξεργασία των τιμών της φαινόμενης ειδικής αντίστασης χρησιμοποιώντας κάποια υπολογιστικά προγράμματα για τον υπολογισμό προσεγγιστικών τιμών της πραγματικής ειδικής ηλεκτρικής αντίστασης.

Σχήμα 16. Χαρακτηριστικό παράδειγμα που παρουσιάζει α)προφίλ τιμών της φαινόμενης ειδικής ηλεκτρικής αντίστασης σε περιοχή κοντά στο Kongsberg (Νορβηγία). β) Χάρτης φαινόμενων ειδικών ηλεκτρικών αντιστάσεων που έγινε στο Tri-state κοντά στο Cherokee, Κάνσας.(Robinson, Coruh, 1988,σελ.465)

3.7 Γεωηλεκτρική Βυθοσκόπηση

Η περιγραφή της γεωλογικής δομής του υπεδάφους κατά την εφαρμογή της γεωηλεκτρικής βυθοσκόπησης, βασίζεται στις κατακόρυφες μεταβολές, με αποτέλεσμα τον υπολογισμό των τιμών της ειδικής ηλεκτρικής αντίστασης και του πάχους ή/και του βάθους των γεωλογικών στρωμάτων.

Με τη γεωηλεκτρική βυθοσκόπηση προσδιορίζεται η φαινόμενη ειδική ηλεκτρική αντίσταση R_a σε σταθερό σημείο της επιφάνειας για διαδοχικά αυξανόμενες τιμές του γεωμετρικού συντελεστή Κ. Αυτό συμβαίνει αυξάνοντας συνεχώς την απόσταση μεταξύ των ηλεκτροδίων του ρεύματος. Καθώς η διάταξη των ηλεκτροδίων απλώνεται, η ίδια ποσότητα ρεύματος διανέμεται διάμεσο παχύτερης ζώνης. Άρα, οι ηλεκτρικές αντιστάσεις των βαθύτερων γεωλογικών στρωμάτων έχουν μία αναλογική επίδραση στη φαινόμενη ειδική ηλεκτρική αντίσταση. Εναλλασσόμενα, υψηλής και χαμηλής ηλεκτρικής αντίστασης, στρώματα μπορούν να εμφανισθούν σε γράφημα της φαινόμενης ειδικής ηλεκτρικής αντίστασης και της απόστασης των ηλεκτροδίων του ρεύματος (σχήμα 17).

Ανάμεσα στις διάφορες διατάξεις ηλεκτροδίων, η διάταξη Wenner είναι η λιγότερο κατάλληλη για τις γεωηλεκτρικές βυθοσκοπήσεις (παρόλο που χρησιμοποιείται αρκετά συχνά), λόγω της μετακίνησης των τεσσάρων ηλεκτροδίων σε κάθε πρόσθετη μέτρηση. Αντίθετα στη διάταξη Schlumberger τα ηλεκτρόδια δυναμικού παραμένουν στην ίδια θέση, και μόνο τα ηλεκτρόδια του ρεύματος μετακινούνται για κάθε επιπλέον μέτρηση. Τέλος, η διάταξη διπόλου-διπόλου, όπου τα ηλεκτρόδια ρεύματος παραμένουν και μετακινούνται τα ηλεκτρόδια δυναμικού, είναι η πιο κατάλληλη για βαθιές βυθοσκοπήσεις.

Σχήμα 17. Γράφημα της φαινόμενης ειδικής ηλεκτρικής και της αντίστασης των ηλεκτροδίων του ρεύματος, για τον υπολογισμό εναλλασσόμενων υψηλής και χαμηλής ηλεκτρικής αντίστασης στρωμάτων, με τη βοήθεια της διάταξης Wenner.(Robinson, Coruh, 1988, σελ.466)

3.8 Εξοπλισμός Γεωηλεκτρικής Βυθοσκόπησης

Ο εξοπλισμός που χρησιμοποιείται συνήθως κατά την εφαρμογή της μεθόδου της γεωηλεκτρικής βυθοσκόπησης αποτελείται από: πηγή παραγωγής ηλεκτρικής ενέργειας, όργανα μέτρησης του δυναμικού και της έντασης του ηλεκτρικού ρεύματος, ηλεκτρόδια και μονωμένα καλώδια μεγάλου μήκους.

<u>1) Πηγή Ρεύματος:</u>

Όπως έχει αναφερθεί, η γεωηλεκτρική βυθοσκόπηση βασίζεται στην εισαγωγή τεχνητού ρεύματος μέσα στο έδαφος. Αυτό επιτυγχάνεται με μια πηγή ρεύματος που μπορεί να είναι είτε πηγή συνεχούς ρεύματος DC ή πηγή εναλλασσόμενου ρεύματος AC.

Στην περίπτωση της πηγής συνεχούς ρεύματος DC, που αποτελεί και την ιδανική πηγή για την γεωηλεκτρική βυθοσκόπηση ειδικά για μεγάλα βάθη, υπάρχει πιθανότητα εμφάνισης ηλεκτρικής πόλωσης λόγω της συγκέντρωσης των φορτίων κοντά στα ηλεκτρόδια ρεύματος. Για την αποφυγή αυτού του φαινομένου πρέπει η κατεύθυνση του ρεύματος να αναστρέφεται περιοδικά μεταξύ διαδοχικών παρατηρήσεων. Αυτό επιτυγχάνεται με έναν εναλλάκτη ή κύκλωμα με διακόπτες που αναστρέφουν την διεύθυνση της έντασης του ηλεκτρικού ρεύματος μερικές φορές κάθε δευτερόλεπτο.

Για την πηγή εναλλασσόμενου ρεύματος χρησιμοποιούνται χαμηλές συχνότητες, συνήθως μικρότερες των 100 Hertz, επειδή σε υψηλότερες συχνότητες τα αποτελέσματα δεν δύναται να ερμηνευθούν από το νόμο του Ohm, αφού υποθέτει ροή συνεχούς ρεύματος. Όμως το χαμηλής συχνότητας εναλλασσόμενο ρεύμα πετυχαίνει το ίδιο αποτέλεσμα με το συνεχές ρεύμα με εναλλάκτη.

2) Αμπερόμετρο :

Χρησιμοποιείται για την μέτρηση της έντασης του ηλεκτρικού ρεύματος πού εισάγεται μέσα στο έδαφος. Το εύρος τιμών έντασης ηλεκτρικού ρεύματος στο οποίο πρέπει να είναι ευαίσθητο το αμπερόμετρο κυμαίνεται από λίγα μιλιαμπέρ μέχρι μερικές εκατοντάδες μιλιαμπέρ.

3) Βολτόμετρο :

Για τη μέτρηση του δυναμικού του ρεύματος, το εύρος τιμών δυναμικού στο οποίο πρέπει να είναι ευαίσθητο το βολτόμετρο, είναι από μερικά μιλιβόλτ έως και

μερικά βολτ.

Χαρακτηριστικό είναι ότι συνήθως η πηγή ρεύματος, το αμπερόμετρο και το βολτόμετρο, περιέχονται σε μια συσκευή όπως είναι η Megger, η Tellohm, η ABEM Terrameter IRIS Syscal κ.α. (σχήμα 18)

Σχήμα 18. Μια συσκευή ABEM Terrameter που περιέχει πηγή ρεύματος, αμπερόμετρο και το βολτόμετρο

4) Ηλεκτρόδια:

Τα ηλεκτρόδια είναι Μεταλλικά πασαλάκια που είναι συνήθως φτιαγμένα από αλουμίνιο, χαλκό ή ατσάλι, έχουν μήκος 70 cm περίπου και χρησιμοποιούνται για τη μεταφορά του ρεύματος από την πηγή στο έδαφος. Η τοποθέτηση τους γίνεται πάνω στην επιφάνεια του εδάφους και σε βάθος που κυμαίνεται από μερικά εκατοστά μέχρι και μερικές δεκάδες εκατοστά για αξιόπιστες μετρήσεις. Οι ξηρές συνθήκες επιβάλλουν το βρέξιμο της περιοχής γύρω από το ηλεκτρόδιο ώστε να βελτιωθεί η επαφή. Μερικές φορές χρησιμοποιούνται πορώδη ηλεκτρόδια για την αποφυγή της πόλωσης τους με το έδαφος.

5) Μονωμένα Καλώδια:

Μονωμένο ηλεκτρικό καλώδιο χαμηλής αντίστασης μεταφερόμενο σε κυλίνδρους (καρούλι), χρησιμοποιείται για να ενώσει τα ηλεκτρόδια με το κύκλωμα του ρεύματος και του δυναμικού. Το μήκος καλωδίων εξαρτάται από το βάθος της βυθοσκόπησης. Για αβαθείς διασκοπήσεις αρκετό καλώδιο πρέπει να είναι διαθέσιμο για να τοποθετηθούν τα ηλεκτρόδια σε αποστάσεις τουλάχιστον μερικών εκατοντάδων μέτρων, ενώ για βαθύτερες ηλεκτρικές διασκοπήσεις χρειάζεται ειδικός εξοπλισμός.

Κατά την πραγματοποίηση των γεωηλεκτρικών βυθοσκοπήσεων ο εξοπλισμός που χρησιμοποιήθηκε είναι:

- Ι. Δύο καρούλια το καθένα με καλώδιο των 1000 M για την ανάπτυξη της γραμμής ηλεκτροδίων ρεύματος AB.
- II. Δύο καλώδια για τη σύνδεση των ηλεκτροδίων δυναμικού.
- ΙΙΙ. Τα ηλεκτρόδια ρεύματος και δυναμικού είναι απλές ανοξείδωτοι ράβδοι από χάλυβα.
- IV. Ακόντια και σημαίες για τη σήμανση της γραμμής ανάπτυξης των ηλεκτροδίων ρεύματος και δυναμικού.
- Ν. Πολύμετρο για τη μέτρηση της αντίστασης επαφής του συστήματος
 "ηλεκτρόδιο γη".
- VI. Πυξίδα για το προσανατολισμό της γραμμής μελέτης.
- VII. Δοχεία μεταφοράς αλατούχου ύδατος για τη βελτίωση επαφής του συστήματος "ηλεκτρόδιο - γη".
- VIII. Ηλεκτρονικό διακόπτη για τη μετατροπή των διατάξεων.
- ΙΧ. Όργανο Μέτρησης: Κατά την εκτέλεση της γεωηλεκτρικής βυθοσκόπησης χρησιμοποιήθηκε όργανο μέτρησης ειδικών αντιστάσεων, ABEM Terrameter, το οποίο λειτουργεί:

α) σαν πομπός: εισάγει στην γη ρεύμα DC με τάση εφαρμογής 40, 80, 150, 200 Volts και ένταση 2.75, 1.37, 1.87, 1.4 Α αντίστοιχα και με μέγιστη τάση 710 Volts και μέγιστη ισχύ 1KW.

b) Σαν δέκτης: μετράει τάση από τάξη μεγέθους 10 μVolt έως τάξης μεγέθους 2 Volt.
4.5 Διεξαγωγή Της Γεωηλεκτρικής Βυθοσκόπησης

Κατά την εκτέλεση των γεωηλεκτρικών βυθομετρήσεων ακολουθείται η εξής διαδικασία.

- Λαμβάνεται μέριμνα ώστε η ανάπτυξη των γραμμών ρεύματος να γίνεται σε ευθεία και όσο το δυνατόν παράλληλα στην παράταξη των τοπογραφικών φαινομένων. Έτσι, ελέγχεται η περιοχή μελέτης πριν να ξεκινήσει η βυθοσκόπηση για την αποφυγή προβλημάτων όπως η ύπαρξη χειμάρρων, φαραγγιών, λόφων, οικημάτων, φρακτών κ.α
- Συνδέεται το όργανο με τα καλώδια, και τοποθετείται στο σημείο που θα αποτελεί το κέντρο της Βυθοσκόπησης (Ο), το οποίο επιλέγεται ανάλογα με την τοπογραφία της περιοχής.
- > Τοποθετούνται τα ηλεκτρόδια δυναμικού και ρεύματος εκατέρωθεν του

σημείου Ο σε απόσταση MN/2 και AB/2 αντίστοιχα. Στη συνέχεια γίνεται η σύνδεση των ηλεκτροδίων A, B με τα καλώδια, διοχετεύεται ηλεκτρικό ρεύμα και πραγματοποιείται η μέτρηση, όπου λαμβάνονται συγκεκριμένες τιμές ρεύματος I και δυναμικού V. Στη συνέχεια τοποθετούνται τα ηλεκτρόδια του ρεύματος σε μεγαλύτερη απόσταση AB/2 και επαναλαμβάνεται η ίδια διαδικασία.

- Οι διαδοχικές στάσεις των ηλεκτροδίων ρεύματος (AB) γίνονται στις ακόλουθες αποστάσεις (m) από το κέντρο της διάταξης 1.0, 1.47, 2.15, 3.16, 4.64, 6.81, 10.0, 14.7, 21.5, 31.6, 46.4, 68.1, 100.0, 147.0, 215.0, 320.0 κ.λ.π. Καθ' όλη τη διάρκεια των μετρήσεων λήφθηκε μέριμνα ώστε 5<AB/MN <20.</p>
- Η συνάρτηση μεταβολής της φαινόμενης ειδικής ηλεκτρικής αντίστασης, R_α, με το βάθος σχεδιάζεται σε διπλό λογαριθμικό χαρτί κατά τη λήψη των μετρήσεων έτσι ώστε να ελέγχεται με ένα ακόμη τρόπο η αξιοπιστία των μετρήσεων.
- Η διαφορά δυναμικού μειώνεται με την αύξηση της απόστασης AB/2, ενώ όταν η τιμή προσεγγίζει το 0,1 mV, η μέτρηση θεωρείται μη αξιόπιστη. Σε αυτή την περίπτωση αυξάνεται το μήκος του MN/2 και για το ίδιο AB/2 λαμβάνεται νέα μέτρηση.
- Το μέγιστο μήκος της ανάπτυξης των ηλεκτροδίων ρεύματος καθορίζεται από το αν έχει εντοπιστεί γεωηλεκτρικά το πέτρωμα που στόχο έχει η βυθοσκόπηση. Η κατάσταση αυτή διαπιστώνεται από την ανοδική ή καθοδική πορεία της καμπύλης.
- Οι αποστάσεις των ημιαναπτυγμάτων AB/2 και οι μετρούμενες τιμές της έντασης του ρεύματος και της διαφοράς δυναμικού καταγράφονται σε ειδικά διαμορφωμένα έντυπα για την αργότερη επεξεργασία τους.

3.9 Προβλήματα στην ερμηνεία των Γεωηλεκτρικών Βυθοσκοπήσεων

Κατά την ερμηνεία των γεωηλεκτρικών δεδομένων, παρουσιάζονται κάποια προβλήματα όπως είναι η αρχή της ισοδυναμίας και η αρχή της επικάλυψης. Γι'αυτό, θεωρείται απαραίτητη η ύπαρξη πληροφοριών για το πάχος των στρωμάτων και για τις τιμές της ειδικής αντίστασης, για την αντιμετώπιση των παραπάνω προβλημάτων και την καλύτερη ερμηνεία των γεωηλεκτρικών δεδομένων. Τα πιο σημαντικά προβλήματα είναι :

1) Αρχή Της Ισοδυναμίας:

Η αρχή της ισοδυναμίας παρουσιάζεται όταν η καμπύλη της φαινόμενης ειδικής

ηλεκτρικής αντίστασης αντιστοιχεί σε μοντέλο τριών στρωμάτων, όπου το ενδιάμεσο στρώμα εμφανίζει ειδική ηλεκτρική αντίσταση μεγαλύτερη ή μικρότερη σε σχέση με τα δύο στρώματα που το περικλείουν (σχήμα 19).

Στην περίπτωση που το ενδιάμεσο στρώμα έχει την μεγαλύτερη ειδική ηλεκτρική αντίσταση, η καμπύλη της φαινόμενης αντίστασης δεν μεταβάλλεται όταν το γινόμενο της ειδικής ηλεκτρικής αντίστασης R επί το πάχος του ενδιάμεσου στρώματος h είναι σταθερό, ενώ ξεχωριστά οι δύο παράμετροι μεταβάλλονται. Αυτό σημαίνει ότι υπάρχουν άπειρα μοντέλα για τα οποία το πάχος και η αντίσταση του ενδιάμεσου στρώματος έχουν διαφορετική τιμή, ενώ το γινόμενο τους, που ονομάζεται Εγκάρσια Αντίσταση Τ, παραμένει σταθερό. Η Εγκάρσια Αντίσταση T δίνεται από τον τύπο,

$$T = h R \tag{3.21}$$

Στην περίπτωση που το ενδιάμεσο στρώμα είναι αγώγιμο, η καμπύλη της φαινόμενης ειδικής ηλεκτρικής αντίστασης δε μεταβάλλεται όταν ο λόγος πάχους του ενδιάμεσου στρώματος προς την ειδική ηλεκτρική αντίσταση R είναι σταθερός, ανεξάρτητα αν οι επιμέρους παράμετροι μεταβάλλονται. Ο παραπάνω λόγος χαρακτηρίζεται ως Διαμήκης Αγωγιμότητα και είναι,

2) Αρχή της επικάλυψης:

Η αρχή της επικάλυψης αναφέρεται σε μοντέλο τριών στρωμάτων όπου το ενδιάμεσο στρώμα έχει μικρό πάχος και η φαινόμενη ειδική αντίσταση αυτού είναι ενδιάμεση των στρωμάτων που το περικλείουν. Το ενδιάμεσο στρώμα επιδρά ελάχιστα στην καμπύλη της φαινόμενης ειδικής ηλεκτρικής αντίστασης που προκύπτει, και συνεπώς δεν είναι εύκολη η αναγνώριση του με τη μέθοδο της γεωηλεκτρικής βυθοσκόπησης.

Σχήμα 19. Απεικόνιση της αρχής της ισοδυναμίας για ένα αγώγιμο στρώμα ανάμεσα από δύο μη αγώγιμα.(P.V.Sharma, 1986, σελ.283).

3.10 Ερμηνεία των Γεωηλεκτρικών Βυθοσκοπήσεων

3.10.1 Εισαγωγή

Στα πλαίσια της εργασίας αυτής, χρησιμοποιήθηκαν 27 βυθοσκοπήσεις, 11 εκ των οποίων έγιναν εκ μέρους του πολυτεχνείου Κρήτης (1991) στα πλαίσια του ερευνητικού έργου ΠΕΝΕΔ "87ΕΔ53" με τίτλο "Ανάπτυξη μεθόδων αξιοποίησης των υπογείων νερών Δυτ. Κρήτης", Πιο συγκεκριμένα η γεωφυσική έρευνα αφορά την περιοχή βόρεια της Αγιάς και πιο πυκνά μεταξύ Κυρτωμάδου και Πατελαρίου όπου έγιναν οι ηλεκτρικές βυθοσκοπήσεις με την ανάπτυξη ηλεκτροδίων Schlumberger από το Πολυτεχνείο Κρήτης υπό την επίβλεψη του Καθηγητού κ. Βαφείδη. Α. Στις μετρήσεις υπαίθρου που πάρθηκαν, έγινε εκ νέου επεξεργασία και ερμηνεία με τη χρήση του προγράμματος IPI2win. Οι θέσεις των βυθοσκοπήσεων αυτών φαίνονται στον σχήμα (20) όπου συμβολίζονται με το γράμμα V.

Άλλες 4 έγιναν εκ μέρος της γαλλικής εταιρείας C.G.G (1972) για λογαριασμό του Υπουργείου Δημοσίων Έργων. Από αυτές τις βυθοσκοπήσεις χρησιμοποιήθηκαν μόνο τα αποτελέσματα καθώς δεν ήταν εφικτή η εύρεση των στοιχείων των, έκτος από το σημείο L5 όπου έγινε νέα επεξεργασία με το πρόγραμμα IPI2win. Τα υπόλοιπα 3 σημεία είναι O2, M3, και N4. Οι θέσεις των τεσσάρων σημείων φαίνονται στο σχήμα (20).

Οι υπόλοιπες 12 βυθοσκοπήσεις έγιναν στο πλαίσιο της Γεωλογικής Υδρογεωλογικής Μελέτης στο Νομό Χανίων και στις περιοχές Αγιάς -Αλικιανού - Βατόλακκου -Φουρνέ (Κερίτης Ποταμός). Η μελέτη έγινε από το γεωφυσικό Δρ. Γ. Αποστολόπουλο (2000). Στις μετρήσεις που πάρθηκαν έγινε επεξεργασία και ερμηνεία των βυθοσκοπήσεων με το πρόγραμμα IPI2win. Οι θέσεις των βυθοσκοπήσεων αυτών φαίνονται επίσης στο σχήμα (20) όπου συμβολίζονται με τα γράμματα CH. Παρατηρείται ότι χωρίζονται σε δυο υποπεριοχές, την "Υποπεριοχή Αγιάς" και την "Υποπεριοχή Φούρνε". Οι γεωφυσικές τομές έγιναν με τρόπο ώστε να καλύπτουν την περιοχή και να δίνουν την περισσότερη και ακριβέστερη πληροφορία για τη δομή του υπεδάφους.

Η αναγκαιότητα ακρίβειας εύρεσης της δομής του υπεδάφους και το τοπογραφικό ανάγλυφο που μπορεί να οδηγήσει σε εσφαλμένες μετρήσεις αν δεν ληφθεί υπόψη, οδήγησαν σε πυκνή τοποθέτηση των βυθοσκοπήσεων κατά μήκος των γεωφυσικών τομών.

Οι μεγαλύτερες ημιαποστάσεις ηλεκτροδίων ρεύματος για την Schlumberger διάταξη ήταν 316m ή 464m ή 681m, λόγω αδυναμίας μεγαλύτερου ανοίγματος στη συγκεκριμένη περιοχή.

Για την ερμηνεία των γεωηλεκτρικών βυθοσκοπήσεων είναι απαραίτητη η γνώση των χαρακτηριστικών τιμών της ειδικής ηλεκτρικής αντίστασης των διάφορων πετρωμάτων που συνθέτουν τους ανάλογους σχηματισμούς. Οι τιμές αυτές μπορούν να βρεθούν από πίνακες που υπάρχουν στη διεθνή βιβλιογραφία. Στην παρούσα εργασία, και συγκεκριμένα για τις τιμές της ειδικής ηλεκτρικής αντίστασης του ασβεστόλιθου και του φυλλίτη, χρησιμοποιήθηκαν τιμές που προέκυψαν από γεωηλεκτρικές βυθοσκοπήσεις σε σημεία όπου τα πετρώματα εμφανίζονται επιφανειακά (in situ). Ενώ για τις τιμές της ειδικής ηλεκτρικής αντίστασης των άλλων πετρωμάτων χρησιμοποιήθηκαν τιμές με βάση την διεθνή βιβλιογραφία. Αυτές φαίνονται στον πίνακα (6).

Πίνακας 6. Τιμές ειδικών ηλεκτρικών αντιστάσεων εδάφους

Επιφανειακές προσχώσεις	80-250 Ωm
Αλλούβια	80-100 Ωm
Διλούβια	100-250 Ωm

Νεογενή Ιζήματα	20-60 Ωm
Μάργες	

Σχήμα 20. Τοπογραφικός χάρτης και οι θέσεις των γεωηλεκτρικών βυθοσκοπήσεων, κλίμακα 1:50000

3.10.2 IN SITU Βυθοσκοπήσεις

3.10.2.1 IN SITU Βυθοσκόπηση στον Ασβεστόλιθο

Ο ασβεστόλιθος παρουσιάζει γενικά μεγάλο εύρος τιμών ειδικής αντίστασης

κυρίως λόγω των διαφορών καρστικοποιησής του. Για αυτό, θεωρήθηκε αναγκαία η πραγματοποίηση μιας in situ βυθοσκόπηση. Συγκεκριμένα, επιλέχτηκε ένα σημείο στην περιοχή του Φούρνε κοντά στην Αγ. Ειρήνη, όπου και έγινε η βυθοσκόπηση, τα αποτελέσματα της οποίας φαίνονται στο σχήμα (21).

Από το σχήμα (21), παρατηρούνται οι μεγάλες αλλαγές που δέχονται οι τιμές της ειδικής ηλεκτρικής αντίστασης του ασβεστόλιθου με την αλλαγή του βάθους, όπου ξεκινάνε με σχετικά μικρές τιμές (230 Ωm) σε μικρά βάθη και φτάνουν σε πολύ υψηλές τιμές (7300 Ωm) σε μεγαλύτερα βάθη. Οι σχετικά μικρές τιμές των ειδικών αντιστάσεων των ασβεστόλιθων στην επιφάνεια είναι πιθανόν να οφείλονται στην επίδραση εξωτερικών παραγόντων.

3.10.2.2 IN SITU Βυθοσκόπηση στον Φυλλίτη

Ο φυλλίτης επίσης παρουσιάζει μεγάλο εύρος τιμών ειδικής αντίστασης. Αυτό οφείλεται στις διαφορές στη σύνθεσή του. Το σημείο που επιλέχτηκε για την πραγματοποίηση της in situ βυθοσκόπησης είναι στην περιοχή του Κουφού επάνω σε φυλλίτη, τα αποτελέσματα της οποίας φαίνονται στο σχήμα (22). Παρατηρείται ότι η τιμή της ειδικής ηλεκτρικής αντίστασης του φυλλίτη κυμαίνεται μεταξύ των 80 Ωm και των 120 Ωm.

Παρουσιάζουμε ενδεικτικά κάποια παραδείγματα από την ερμηνεία των in situ βυθοσκοπήσεων μέσω του προγράμματος IPI2win.

3.10.2.3 Βυθοσκοπήσεις στην ευρύτερη περιοχή

Πέρα των μετρήσεων που ελήφθησαν στο υπόβαθρο για τη βαθμονόμηση των υπολοίπων δεδομένων, εκτελέστηκαν και όλες οι άλλες βυθοσκοπήσεις στην ευρύτερη περιοχή των οποίων η ερμηνεία έγινε με το ίδιο λογισμικό όπως φαίνεται στο σχήμα 23.

Σχήμα 21. Προσεγγιστική απεικόνιση της βυθοσκόπησης στον ασβεστόλιθο σε μορφή καμπύλης

Σχήμα 22. Προσεγγιστική απεικόνιση της βυθοσκόπησης στο φυλλίτη σε μορφή καμπύλης

Σχήμα 23. Προσεγγιστική απεικόνιση της βυθοσκόπησης CH7 σε μορφή καμπύλης

3.10.3 Δισδιάστατη Απεικόνιση της Κατανομής των Γεωηλεκτρικών Αντιστάσεων

Με σκοπό την πληρέστερη απεικόνιση των γεωηλεκτρικών δομών που υπάρχουν στην ευρύτερη περιοχή ενδιαφέροντος, έγινε μια προσπάθεια δισδιάστατης και τρισδιάστατης απεικόνισης του χώρου έρευνας, ορίζοντας διατομές που περιλαμβάνουν 2 ή περισσότερες βυθοσκοπήσεις και από τις οποίες μπορεί με ευκολία με τη χρήση του λογισμικού IPI2Win να αναπαραστήσουμε τον υπόγειο υδροφόρο. Για τον λόγο αυτό επιλέχθηκαν 7 διατομές με τυχαία κατεύθυνση όπως φαίνεται στο σχήμα 24.

Σχήμα 24. Τοπογραφικός χάρτης και οι θέσεις των γεωηλεκτρικών βυθοσκοπήσεων, κλίμακα 1:50000

Στο παραπάνω χάρτη φαίνονται οι γραμμές που ορίσαμε αυθαίρετα μεταξύ των 12 γεωηλεκτρικών βυθοσκοπήσεων. Από τη ερμηνεία των 7 διατομών και με τη χρήση του IPI2Win, μελετήσαμε κάθε γραμμή ξεχωριστά με σκοπό τη εύρεση του υπόγειου υδροφόρου (τη χωρική του κατανομή).

Για τη σωστή παραγωγή των δισδιάστατων μοντέλων κατανομής των ειδικών ηλεκτρικών αντιστάσεων, απαιτείται η σωστή χωροθέτηση (x,y,z) των θέσεων των γεωηλεκτρικών βυθοσκοπήσεων. Μέσω ενός τοπογραφικού διαγράμματος και έχοντας τη θέση των βυθοσκοπήσεων πάνω σε αυτό, ορίσαμε τα x, y των θέσεων καθώς και το υψόμετρό τους. Ειδικότερα, η CH1 βρίσκεται στα 100μ, η CH2 στα 100μ, ομοίως η CH3, η

CH4, η CH5, η CH6 βρίσκεται στα 200μ, η CH7 στα 100μ, η CH8 στα 100μ, η CH9 στα 100μ, η CH10 βρίσκεται περίπου στα (100-200)μ, η CH11 στα 100μ και η CH12 στα (300-400)μ.

Εν συνεχεία μελετώντας την κάθε γραμμή χωριστά, υπολογίσαμε τις αποστάσεις μεταξύ των βυθοσκοπήσεων ανά γραμμή, χρησιμοποιώντας την κλίμακα του χάρτη. Στη LINE 1, η απόσταση μεταξύ του φυλλίτη και της γεωηλεκτρικής βυθοσκόπησης CH5 είναι 0,765 Km, η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH5 και CH3 είναι 0,956 Km, η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH3 και CH10 είναι 2,057 Km, μεταξύ της γεωηλεκτρικής βυθοσκόπησης CH10 και του ασβεστόλιθου βρέθηκε 1,052 Km και τέλος η απόσταση μεταξύ του ασβεστόλιθου και της γεωηλεκτρικής βυθοσκόπησης CH12 bβρέθηκε 0,526 Km. Στη LINE 2, η απόσταση μεταξύ του φυλλίτη και της γεωηλεκτρικής βυθοσκόπησης CH6 είναι 1.100 Km, η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH6 και CH4 είναι 0,956 Km, η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH4 και CH1 είναι 1.913 Km. Στη LINE 3, η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH6 και CH4 είναι 0,956 Km, η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH4 και CH3 είναι 0,956 Km, η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH3 και CH8 είναι 2,152 Km και τέλος η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH8 και CH11 είναι 0,717 Km. Στη LINE 4 η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH2 και CH1 είναι 0,861 Km, η απόσταση μεταξύ της γεωηλεκτρικής βυθοσκόπησης CH1 και του ασβεστόλιθου είναι 2,439 Km και τέλος η απόσταση μεταξύ του ασβεστόλιθου και της γεωηλεκτρικής βυθοσκόπησης CH12 είναι 0,478 Km. Στη LINE 5, η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH7 και CH5 είναι 0,956 Km, η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH5 και CH3 είναι 0,956 Km, η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH3 και CH4 είναι 0,956 Km και τέλος η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH4 και CH2 είναι 1,674 Km. Στη LINE 6 η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH9 και CH11 είναι 1,052 Km, η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH11 και CH8 είναι 0,717 Km, η απόσταση μεταξύ της γεωηλεκτρικής βυθοσκόπησης CH8 και του ασβεστόλιθου είναι 1,674 Km και τέλος η απόσταση μεταξύ του ασβεστόλιθου και της γεωηλεκτρικής βυθοσκόπησης CH12 είναι 0,478 Km. Στη LINE 7 απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH9 και CH10 είναι 1,339 Km και τέλος η απόσταση μεταξύ των γεωηλεκτρικών βυθοσκοπήσεων CH10 και CH2 είναι 3,348 Km.

Με τη βοήθεια του προγράμματος IPI2Win δημιουργήσαμε για την κάθε διατομή,

την ψευδοτομή της κατανομής της ηλεκτρικής αντίστασης με το βάθος (PseudoResistivity cross-section), όπως αυτές παρουσιάζονται αναλυτικά παρακάτω:

Σχήμα 25. Δισδιάστατη απεικόνιση της κατανομής της ηλεκτρικής αντίστασης με το βάθος κατά μήκος της γραμμής 1.

Παρατηρούμε ότι οι αντιστάσεις κυμαίνονται από 70 έως 670 Ωhm. Με βάση την ερμηνεία που δίνεται παραπάνω δεν μπορούμε να ορίσουμε θέσεις με πιθανή υδροφορία. Οι χαμηλές αντιστάσεις συσχετίζονται με τις τιμές αντιστάσεων του φυλλίτη όπως αναφέρθηκε

παραπάνω.

Σχήμα 26. Δισδιάστατη απεικόνιση της κατανομής της ηλεκτρικής αντίστασης με το βάθος κατά μήκος της γραμμής 2.

Παρατηρούμε ότι οι αντιστάσεις κυμαίνονται από 104 έως 360 Ωhm. Με βάση την ερμηνεία που δίνεται παραπάνω δεν μπορούμε να ορίσουμε θέσεις με πιθανή υδροφορία. Οι χαμηλές αντιστάσεις συσχετίζονται με τις τιμές αντιστάσεων του φυλλίτη όπως αναφέρθηκε παραπάνω.

Σχήμα 27. Δισδιάστατη απεικόνιση της κατανομής της ηλεκτρικής αντίστασης με το βάθος κατά μήκος της γραμμής 3.

Παρατηρούμε ότι οι αντιστάσεις κυμαίνονται από 145 έως 445 Ωhm. Με βάση την ερμηνεία που δίνεται παραπάνω δεν μπορούμε να ορίσουμε θέσεις με πιθανή υδροφορία. Οι χαμηλές αντιστάσεις συσχετίζονται με τις τιμές αντιστάσεων του φυλλίτη όπως αναφέρθηκε παραπάνω.

Παρατηρούμε ότι οι αντιστάσεις κυμαίνονται από 44 έως 850 Ωhm. Με βάση την ερμηνεία που δίνεται παραπάνω συναντούμε σε βάθος 25m, την ύπαρξη υπόγειου υδροφορέα. Οι χαμηλές αντιστάσεις συσχετίζονται με τις τιμές αντιστάσεων του φυλλίτη

όπως αναφέρθηκε παραπάνω.

Σχήμα 29. Δισδιάστατη απεικόνιση της κατανομής της ηλεκτρικής αντίστασης με το βάθος κατά μήκος της γραμμής 5.

Παρατηρούμε ότι οι αντιστάσεις κυμαίνονται από 64.5 έως 547 Ωhm. Με βάση την ερμηνεία που δίνεται παραπάνω συναντούμε σε βάθος 15m, την ύπαρξη υπόγειου υδροφορέα. Οι χαμηλές αντιστάσεις συσχετίζονται με τις τιμές αντιστάσεων του φυλλίτη όπως αναφέρθηκε παραπάνω.

Σχήμα 30. Δισδιάστατη απεικόνιση της κατανομής της ηλεκτρικής αντίστασης με το βάθος κατά μήκος της γραμμής 6.

Παρατηρούμε ότι οι αντιστάσεις κυμαίνονται από 105 έως 741 Ωhm. Με βάση την ερμηνεία που δίνεται παραπάνω δεν μπορούμε να ορίσουμε θέσεις με πιθανή υδροφορία. Οι χαμηλές αντιστάσεις συσχετίζονται με τις τιμές αντιστάσεων του φυλλίτη όπως αναφέρθηκε παραπάνω.

Σχήμα 31. Δισδιάστατη απεικόνιση της κατανομής της ηλεκτρικής αντίστασης με το βάθος κατά μήκος της γραμμής 7.

Παρατηρούμε ότι οι αντιστάσεις κυμαίνονται από 45 έως 705 Ωhm. Με βάση την ερμηνεία που δίνεται παραπάνω συναντούμε σε βάθος 20m, την ύπαρξη υπόγειου υδροφορέα. Οι χαμηλές αντιστάσεις (70-120 Ωhm) συσχετίζονται με τις τιμές αντιστάσεων του φυλλίτη όπως αναφέρθηκε παραπάνω.

Με βάση τα παραπάνω σχήματα και τις τιμές της ειδικής ηλεκτρικής αντίστασης, παρατηρούμε ότι στις διατομές 4, 5 και 7 έχουμε την πιθανή ύπαρξη υπόγειου υδροφόρου νερού γιατί μόνο σε αυτές υπάρχει χαμηλή τιμή αντίστασης συμβατή με τις τιμές νερού στο υπέδαφος (30-50 Ωhm). Στις υπόλοιπες διατομές οι τιμές της ειδικής ηλεκτρικής αντίστασης είναι αρκετά μεγαλύτερες από 70 Ωm.

Στη συνέχεια, στα παραπάνω δισδιάστατα μοντέλα, έγινε ψηφιοποίηση της πάνω επιφάνειας του υδροφόρου, με σκοπό την απεικόνισή με τη βοήθεια του λογισμικού Surfer 8.0. Τα αποτελέσματα της ψηφιοποίησης παρουσιάζονται στον επόμενο πίνακα όπου στη πρώτη στήλη δίνεται η θέση της κάθε βυθοσκόπησης, η δεύτερη και Τρίτη στήλη αφορά την X και Y συντεταγμένη της κάθε θέσης με βάση ένα αυθαίρετο σύστημα καρτεσιανών συντεταγμένων και η τελευταία στήλη απεικονίζει το βάθος της άνω επιφάνειας του υδροφόρου από την επιφάνεια του εδάφους.

Πίνακας 7. Χωροθέτηση των θέσεων των γωεηλεκτρικών βυθοσκοπήσεων κατά X και Y (2 και 3^η στήλη) και στην τελευταία στήλη καταγράφηκε το βάθος της πάνω επιφάνειας του υδροφόρου στρώματος.

ΘΕΣΗ	$X - \Sigma Y N.$	$Y - \Sigma Y N.$	Z (m)
CH1	2598.987	2657.879	250
CH2	2639.928	3294.832	40
CH3	1602.223	2249.253	250
CH4	1699.852	2764.169	250
CH5	1021.958	2355.543	250
CH6	1185.724	3033.437	250
CH7	801.505	2044.546	250
CH8	2296.651	1104.470	250
CH9	1871.491	932.832	250
CH10	2513.168	1353.268	250
CH11	2354.126	736.786	250
CH12	3343.017	1113.131	250

Τα δεδομένα αυτά εισάγονται στο Surfer και ακολουθεί η εφαρμογή του αλγόριθμου kriging με σκοπό την κατασκευή ενός καννάβου μετρήσεων ανά 100 μέτρα και στις 2

διευθύνσεις (X, Y) με σκοπό την τελική τους απεικόνιση σε τρισδιάστατο μοντέλο. Το τελικό τρισδιάστατο μοντέλο φαίνεται στο παρακάτω σχήμα.

Σχήμα 32. Σχηματική απεικόνιση των γεωηλεκτρικών βυθοσκοπήσεων σε τρισδιάστατη μορφή

Η τρισδιάστατη απεικόνιση των βυθοσκοπήσεων που εκτελέστηκαν στην υπό μελέτη περιοχή έγινε με σκοπό την ανάδειξη της θέσης που παρουσιάζει ρηχότερα τον μελετούμενο υδροφόρο ορίζοντα. Σύμφωνα με το παραπάνω μοντέλο η θέση αυτή είναι εμφανής και απεικονίζεται με τη μορφή της κορυφής ενώ κώνου στην εγγύς περιοχή της Αγιάς.

Επειδή θα θέλαμε να παρουσιάσουμε τη πιθανή συσχέτιση μεταξύ τεκτονικής και υδροφορίας, ψηφιοποιήθηκαν όλα τα πιθανά και ορατά ρήγματα που υπάρχουν στην περιοχή που μας ενδιαφέρει και κατασκευάσαμε την ακόλουθη απεικόνιση η οποία παρουσιάζει τη τρισδιάστατη μορφή της πάνω επιφάνειας του υδροφόρου με τη ταυτόχρονη απεικόνιση των τεκτονικών γραμμών. Παρατηρούμε ότι η περιοχή με την ρηχότερη εμφάνιση του υδροφόρου, εντοπίζεται μεταξύ δύο κύριων τεκτονικών γραμμών. Επίσης, ένα μεγάλο ρήγμα φαίνεται να διαπερνά την κορυφή του σχήματος μας, δηλαδή την περιοχή της Αγιάς ενώ υπάρχουν και άλλα ρήγματα σε μεγαλύτερο υψόμετρο από την περιοχή μας.

Σχήμα 33. Σχηματική απεικόνιση των γεωηλεκτρικών βυθοσκοπήσεων σε τρισδιάστατη τεκτονική μορφή.
4. Συμπεράσματα

Η υδρογεωλογικκή και υδρογεωφυσική διερεύνηση της περιοχής ενδιαφέροντος υποδεικνύει τα κάτωθι,

- Η περιοχή ενδιαφέροντος παρουσιάζει ένα ρηχό και ασθενή φρεάτιο ορίζοντα ο οποίος είναι υπερκείμενος του βαθύτερου καρστικού υδροφόρου ο οποίος ελέγχεται από την παρουσία των ανθρακικών πετρωμάτων και της τεκτονικής της περιοχής.
- Η πλειοψηφία των υδατικών πόρων της υπό μελέτη λεκάνης απορροής, κινούνται μέσα στα ανθρακικά πετρώματα και μετά μέσω των τεκτονικών στοιχείων κινούνται σε χαμηλότερα υψόμετρα, όπου και αποφορτίζονται στη λίμνη της Αγυιάς.
- Οι τεταρτογενείς προσχώσεις (επιφανειακές προσχώσεις των διλουβίων και αλλουβίων) παρουσιάζουν το μέγιστο πάχος των 200 μέτρων.
- Οι ασβεστόλιθοι αποτελούν τα βαθύτερα πετρώματα που εντοπίστηκαν με τις γεωηλεκτρικές βυθοσκοπήσεις. Υπερκείμενο των ασβεστολίθων είναι οι φυλλίτες.
- Στη περιοχή των βυθοσκοπήσεων CH1 και CH2 βρίσκεται πιθανά κάποιο ρήγμα στο οποίο οφείλεται και η ασυμφωνία των αποτελεσμάτων στις 2 κοντινές θέσεις έρευνας.

Βιβλιογραφία

- Αποστολόπουλος, Γ., (1993), "Γεωφυσικές έρευνες στη Λεκάνη του Σπερχειού ποταμού", Διδακτορική Διατριβή, Γεωλογικό τμήμα, Πανεπιστήμιο Αθηνών.
- Γκανιάτσος Ιωάννης, 1995, Γεωηλεκτρική τομογραφία σε τρεις διαστάσεις, Διατριβή ειδίκευσης, Πολυτεχνείο Κρήτης.
- Dobrin, M. B., 1960, Introduction to geophysical prospecting (2nd edition): New York McGraw-Hill Book Co., Inc., 446p.
- Μουντράκης, Δ., (1985), "Γεωλογία της Ελλάδος", Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.
- Παπαζάχος, Β., (1986), "Εισαγωγή στην Εφαρμοσμένη Γεωφυσική", Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.
- Ριγλής, Σ., 1996, Το Υδατικό Δυναμικό του Ν. Χανίων, Νομαρχιακή Αυτοδιοίκηση Ν. Χανίων, Χανιά.
- Robinson, E. S. & Coruh, C., (1988), "Basic Exporation Geophysics", New York : Johny Wily.
- Sharma, P. V., (1986), Geophysical methods in Geology, University of Copenhagen, Copenhagen Denmard, Elsevier Science Publishing.

ABSTRACT

In the frames of this work, were realised 27 soundings, 11 from which they became on behalf of the Technical University of Crete in the region of north Agia and between Kyrtomadou and Patelariou, with the growth of electrodes Schlumberger. Other 4, they became on behalf of French company C. G. G. and the remainder 12 soundings became in the frame of Geological and Hydrogeological of Study in the County of Chania, in the regions Agia-Alikianou-Batolakkou-Fourne (Keritis River). In all the measurements that were taken became process and new interpretation with program IPI2win. Then became in situ soundings and their interpretation became with IPI2win, with result the approximate depiction of each sounding in form of curve. Aiming at the more complete depiction of geological structures in the region of interest, we made 2-D and 3-D depiction of space, specified 7 cross-sections with accidental direction that includes 2 or more soundings and with the help of IPI2win, represented the underground water level. That is to say via this program, we created for the each cross-section, pseudo section of the distribution of electric resistance with the depth. Continuing, in the 2-D models, became digitization of on surface of water level aiming at the depiction via Surfer 8.0. The results of digitalisation were imported in the surfer and with application of algorithm Kriging, created the final depiction of undergroundwater level n in 3-D form.