

Technological Educational Institute of Crete
School of Applied Technology

Department of Informatics Engineering

Thesis

Design and Implementation of a Time Reasoner for Knowledge
Representation on RDFS

Nikolaidis Vasileios ΑΜ: 2617

Supervisor Professor: Papadakis Nikos

Heraklion – June 2014

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 2 of 65

Ευχαριστίες

Σε αυτό το σημείο θα ήθελα να ευχαριστήσω την οικογένεια μου για την αμέριστη

συμπαράσταση που μου έδειξαν και την πίστη τους σε μένα καθ’ όλη τη διάρκεια των σπουδών μου

έως και το τέλος της παρούσας εργασίας.

Επίσης θα ήθελα να ευχαριστήσω τη φίλη μου Άννα, που με στήριξε ως το τέλος της εργασίας

αυτής. Τέλος θα ήθελα α ευχαριστήσω τον καθηγητή κ. Νίκο Παπαδάκη, για την εμπιστοσύνη μου

έδειξε με το θέμα της συγκεκριμένης εργασίας.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 3 of 65

Synopsis

Σχεδιασμός και υλοποίηση ενός χρονικού reasoner για εξαγωγή γνώσης σε RDFS έγγραφα

Διανύοντας την τρίτη δεκαετία από τη γέννηση του Παγκόσμιου Ιστού, οι χρήστες του οποίοι

πλέον απαριθμούν σε δισεκατομμύρια, οι ανάγκη για επικοινωνία, μάθηση και επιχειρηματικότητα

εξελίσσεται ακόμη ραγδαία. Έτσι ο παγκόσμιος ιστός έχει την ανάγκη να εξελίσσεται σύμφωνα με τις

ανάγκες της ανθρωπότητας. Κατά την πρώτη δεκαετία το web ήταν στατικό, αποτελούμενο από

ιστοσελίδες κυρίως κειμένου με ελάχιστες δυνατότητες αναζήτησης πληροφορίας, αυτό άλλαξε με τον

ερχομό των μηχανών αναζήτησης και της αρχής της εποχής της δια δραστικότητας, με το δυναμικό

πλέον web 2.0. Σήμερα, ο ιστός αποτελείται από 980 εκατομμύρια ιστοσελίδες που περιέχουν κάθε

είδους πληροφορία σε οποιαδήποτε μορφή.

 Αυτό οδηγεί στη δημιουργία του επόμενου βήματος στην εξέλιξη του παγκόσμιου ιστού, το

λεγόμενο σημασιολογικό ιστό ή web 3.0. Τον όρο αυτό μας τον έδωσε ο εφευρέτης του αρχικού

παγκόσμιου ιστού, ο Tim Berners-Lee.

 Σκοπός της παρούσας εργασίας είναι η δημιουργία ενός χρονικού reasoner, μιας μηχανής με

τη δυνατότητα να εξάγει λογικά συμπεράσματα με τη χρήση κανόνων γραμμένων στην

κατηγορηματική λογική. Ο χρονικός reasoner διαφέρει από ένα απλό reasoner, επειδή οι κανόνες που

περιέχει αφορούν χρονικές καταστάσεις. Τους reasoner τους χρησιμοποιούμε σε έγγραφα

μεταδεδομένων του σημασιολογικού ιστού. Τα έγγραφα αυτά μπορεί να είναι τύπου RDFS,Turtle,

OWL κα.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 4 of 65

Abstract

 Nowadays, in the third decade of the birth of the Web, its users list in the billions and the need

for communication, learning and entrepreneurship is still evolving rapidly. Thus the Web has the need

to evolve according to the needs of humanity. During its first decade the web was static, consisting of

mainly text sites with poor information search, this changed with the advent of search engines and the

beginning of the era of lifelong activity, with the most dynamic web 2.0.

These days, the web consists of 980 million web pages containing all kind of information in

any form. This leads to the creation of the next step in the evolution of the Web, called semantic web

or web 3.0. This term was given to us from the inventor of the original World Wide Web, Tim Berners-

Lee.

The purpose of this work is to create a time reasoner, a piece of code with the ability to draw

inferences using rules written in predicate logic. The time reasoner differs from a simple reasoner,

because the rules contain statements relating to time. The reasoner uses metadata from documents from

the semantic web. Those documents may be of RDFS, Turtle, and OWL syntax.

Keywords: Semantic reasoner, time reasoner, RDFS, Allen’s Integral Algebra, Semantic Web,

Predicate Logic, Ontology, fluents, Jena API, Eclipse, Owl-Time

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 5 of 65

Contents
Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS ... 1

1 Web 3.0 and Web standards .. 6

1.1 World Wide Web (World Wide Web) .. 6

1.2 Semantic Web ... 6

1.3 Ontologies ... 6

1.4 XML .. 7

1.5 RDF ... 8

1.6 RDFS... 8

1.7 Protégé .. 12

2 Artificial Intelligence ... 13

2.1 Artificial Intelligence and Logic ... 13

2.2 Knowledge Representation ... 13

2.3 Logic ... 14

2.4 Propositional Logic ... 15

2.5 Predicate Logic (First Order Logic) .. 16

3 Fluents and Reasoners... 19

3.1 Reasoner .. 19

3.2 Situation Logic .. 19

3.3 Fluents ... 20

3.4 Allen’s Integral Algebra.. 21

4 Jena ... 25

4.1 Jena API .. 25

4.2 Inference Engines .. 30

4.3 SparQL .. 38

5 Methodology ... 40

6 Conclusions .. 46

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 6 of 65

1 Web 3.0 and Web standards

1.1 World Wide Web (World Wide Web)

The World Wide Web (commonly known as the Web) is a system of interlinked hypertext

documents that are accessed through the Internet. Those documents are called Web Pages. To view

those Pages you need a piece of software called a browser. Nowadays almost every computer, cellphone

and tablet can access the Internet, bringing information to the people wherever they are. Information

that consist of text, images, videos and other multimedia.

The invention of the Web is acclaimed from a British computer scientist and former CERN

employee, Tim Berners-Lee.

1.2 Semantic Web

Semantic Web (or Web 3.0) is the third stage in the evolution of the Web (World Wide Web)

in which the content of web pages will bring a predetermined structure based on metadata. This change

is requested to assist the better kind of compilation and processing of information, forming sites and

extraction of knowledge from them.

The Semantic Web uses existed technologies such as XML and URI as well as Web 2.0, but

also grows as new as RDF, RDFS, OWL, SPARQL, etc. In the Semantic Web ontologies are predefined

and developed by companies, research centers and organizations in order to better organize the data so

that it is easier for search engines to find the information that the user wants and can extract knowledge

from more complicated questions.

The term Semantic Web has been proposed by Tim Berners-Lee, inventor of the World Wide

Web since 2001. In 2006 it has been adopted by the W3C (World Wide Web Consortium). The main

goal is the representation of knowledge by computers. To make this possible there should be a

mechanism of information processing by the rules of logic in order to draw conclusions, the creation of

new knowledge, decision support or even to automatically perform actions.

1.3 Ontologies

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 7 of 65

Ontology is a formal and explicit definition of common and agreed conceptual formatting on a field of

interest. This formal representation of knowledge as a set of concepts, relationships and properties can

be used for reasoning (inference / new knowledge) and knowledge structured description of a field of

interest. Ontologies are introduced as a structured framework for organizing information and are used

mainly in Artificial Intelligence in the Semantic Web, in Bioinformatics, Library science and other

disciplines / branches as a form of knowledge representation about the world. The most widely used

free software for creating ontologies is Protégé and it’s been developed by Stanford University.

Ontology issue

One problem that appears in the representation of ontologies is the time variable (temporal) information.

The use of languages that use descriptive logic and binary relations such as RDF and OWL are not

enough to solve the problem. What we need now is triadic relationships where the third argument is

time. Suppose we have an ontology of objects and relationships that show the lives of residents of a

town in the example below.

Ex: Vasilis lives in Riga Fereou Street 6

● object (Riga Fereou type Street)

● object (Vasilis type Resident)

● Relationship (livesIn Riga Fereou)

In this representation of the data the main drawback is the lack of the variable time. It is a contemporary

(synchronic) data representation, while in the real world relationships between objects are timeless

(diachronic) that change over time. The problem would satisfy the following embodiment.

Ex: Vasilis lives in Riga Fereou Street from 6 February 1990

● object (Riga type Fereou Street)

● object (Vasilis type Resident)

● Relationship (livesIn Vasilis, Riga Fereou, t1)

In this example it is clear that Vasilis lived elsewhere before 1990 and that the relationship (livesIn Riga

Fereou) is true for a specific time period that starts in 1990. To solve this problem we need the so-called

fluents. Fluents call relationships that are true for a certain period of time and only then used to transfer

the representation of a relationship from synchronic to diachronic. This is done by changing a

relationship from binary to ternary, placing third argument for the period for which the relation is true.

So in the example relation (livesIn Riga Fereou) will (livesIn Vasilis, Riga Fereou, t1) where t1 is the

period beginning with the date 02/01/1990. The fluents are not supported by languages such as OWL.

1.4 XML

In order to signify the importance of the Web, the influence of metadata was substantial.

Metadata is essentially data-about-data whose purpose is to assist us to understand, use and operate

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 8 of 65

data. In essence serve human-user to more easily clarify the information and its place among a large

amount of data. The main language used for describing data on the web is the XML (eXtensible Markup

Language).

The XML gives us the ability to create unlimited texts with complex structure and syntax. This

makes the information easier to process by computers. Similarly, HTML and XML as markup languages

that are using tags .The contents along with each tag called elements. But unlike with HTML, XML is

not limited by predefined structures and can describe arbitrary structures and data. The only limitation

is the one set of rules for designing text formats that facilitates the design documents.

The main problem with XML documents is due to the arbitrary structure of tags. Assume that

you want two websites to exchange or compare data similar to each other, to arise if the structure being-

completely-arbitrary likely to be different between the two files (. xml). The problem is called to solve

a kind of grammar for defining constraints, called Document Type Definitions (DTD) and the DTD

comes to replace the newest standard XML Schema.

The XML Schema is a standard for writing predefined dictionaries and grammars for XML

documents. It supposed to work as a structural markup language in XML, increasing the ease of reading

an XML file and achieving reusability important files.

1.5 RDF

While XML is the markup language that is widely used in Web and Web2.0, the Semantic Web

(Web3.0)that is based on knowledge and not on information, needed a new markup language. This gap

fills with the RDF language (Resource Description Framework). This standard was adopted by the W3C

for describing information resources and knowledge representation in the online environment. The RDF

is based on the idea of identifying objects by using URIs (Uniform Resource Identifiers). The RDF uses

a graph model to represent proposals using nodes and arrows.

So one sentence as

"David Billington is the owner of the Web page http://www.cit.gu.edu.au/ ~ db"

Consisting of:

● a node on the subject

● a node for the object

● and an arrow on the predicate of the subject to the object

To graph model is the following:

The RDF model is capable of expressing virtually any form of knowledge representation in the above

manner. If you do not want to recreate the proposal writing can do with triplet (triplet).

<http://www.cit.gu.edu.au/~db>

<http://www.mydomain.org/site-owner>

<#DavidBillington>

1.6 RDFS

RDF Schema (Resource Description Framework Schema, variously abbreviated

as RDFS, RDF(S), RDF-S, or RDF/S) is a set of classes with certain properties using

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 9 of 65

the RDF extensible knowledge representation language, providing basic elements for the description

of ontologies, otherwise called RDF vocabularies, intended to structure RDF resources. These resources

can be saved in a triple store to reach them with the query language SPARQL.

 The first version was published by the World-Wide Web Consortium (W3C) in April 1998, and

the final W3C recommendation was released in February 2004. Many RDFS components are included

in the more expressive Web Ontology Language (OWL).RDFS constructs are the RDFS classes,

associated properties and utility properties built on the limited vocabulary of RDF.

RDFS Classes

 rdfs:Resource is the class of everything. All things described by RDF are resources.

 rdfs:Class declares a resource as a class for other resources.

A typical example of an rdfs:Class is foaf:Person in the Friend of a Friend (FOAF) vocabulary. An

instance of foaf:Person is a resource that is linked to the classfoaf:Person using the rdf:type property,

such as in the following formal expression of the natural language sentence : 'John is a Person'.

ex:John rdf:type foaf:Person

The definition of rdfs:Class is recursive: rdfs:Class is the rdfs:Class of any rdfs:Class.

The other classes described by the RDF and RDFS specifications are:

 rdfs:Literal – literal values such as strings and integers. Property values such as textual strings

are examples of RDF literals. Literals may be plain or typed.

 rdfs:Datatype – the class of datatypes. rdfs:Datatype is both an instance of and a subclass of

rdfs:Class. Each instance of rdfs:Datatype is a subclass of rdfs:Literal.

 rdf:XMLLiteral – the class of XML literal values. rdf:XMLLiteral is an instance of

rdfs:Datatype (and thus a subclass of rdfs:Literal).

 rdf:Property – the class of properties.

RDFS Properties

Properties are instances of the class rdf:Property and describe a relation between subject resources and

object resources. When used as such a property is a predicate.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 10 of 65

 rdfs:domain of an rdf:predicate declares the class of the subject in a triple whose second

component is the predicate.

 rdfs:range of an rdf:predicate declares the class or datatype of the object in a triple whose second

component is the predicate.

For example, the following declarations are used to express that the property ex:employer relates a

subject, which is of type foaf:Person, to an object, which is of typefoaf:Organization:

ex:employer rdfs:domain foaf:Person

ex:employer rdfs:range foaf:Organization

Given the previous two declarations, the following triple requires that ex:John is necessarily

a foaf:Person, and ex:CompanyX is necessarily a foaf:Organization:

ex:John ex:employer ex:CompanyX

 rdf:type is a property used to state that a resource is an instance of a class. A commonly

accepted qname for this property is "a".

 rdfs:subClassOf allows to declare hierarchies of classes.

For example, the following declares that 'Every Person is an Agent':

foaf:Person rdfs:subClassOf foaf:Agent

Hierarchies of classes support inheritance of a property domain and range (see definitions in next

section) from a class to its subclasses.

 rdfs:subPropertyOf is an instance of rdf:Property that is used to state that all resources related by

one property are also related by another.

 rdfs:label is an instance of rdf:Property that may be used to provide a human-readable version of

a resource's name.

 rdfs:comment is an instance of rdf:Property that may be used to provide a human-readable

description of a resource.

Utility properties

 rdfs:seeAlso is an instance of rdf:Property that is used to indicate a resource that might provide

additional information about the subject resource.

 rdfs:isDefinedBy is an instance of rdf:Property that is used to indicate a resource defining the

subject resource. This property may be used to indicate an RDF vocabulary in which a resource is

described.

RDFS entailment

An entailment regime defines by RDFs (OWL, etc.) not only which entailment relation is used, but also

which queries and graphs are well-formed for the regime. The RDFS entailment is a standard entailment

relations in the semantic web.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 11 of 65

For example, the following declares that 'Dog1 is an animal','Cat1 is a cat', 'Zoos host animals' and

'Zoo1 hosts the ‘Cat2':

ex:dog1 rdf:type ex:animal

ex:cat1 rdf:type ex:cat

zoo:host rdfs:range ex:animal

ex:zoo1 zoo:host ex:cat2

But this graph is not well formed because the system cannot guess that a cat is an animal. We have to

add 'Cats are animals' to do a well-formed graph with:

ex:cat rdfs:subClassOf ex:animal

The correct example:

In English The graph

 Dog1 is an animal

 Cat1 is a cat

 Cats are animals

 Zoos host animals

 Zoo1 hosts the Cat2

RDF/turtle

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@PREFIX ex: <http://example.org/> .

@PREFIX zoo: <http://example.org/zoo/> .

ex:dog1 rdf:type ex:animal .

ex:cat1 rdf:type ex:cat .

ex:cat rdfs:subClassOf ex:animal .

zoo:host rdfs:range ex:animal .

ex:zoo1 zoo:host ex:cat2 .

If your triple store (or RDF database) implements the regime entailment of RDF and RDFS,

the SPARQL query as follows (the keyword "a" is equivalent to rdf:type in SPARQL):

PREFIX ex: <http://example.org/>

SELECT ?animal

WHERE

 { ?animal a ex:animal . }

http://en.wikipedia.org/wiki/File:Regime_entailment_basic.svg

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 12 of 65

Gives the following result with cat1 in it because the Cat's type inherits of Animal's type:

animal

<http://example.org/dog1>

<http://example.org/cat1>

<http://example.org/cat2>

1.7 Protégé

Protégé is a tool made from Stanford University for the purpose of creating and maintaining

ontologies. It is open source, free and fully customizable. Today many companies, government

organizations and colleges use Protégé to create ontologies, using OWL. Protégé is capable of exporting

the ontologies in RDF(S), OWL, N3, Turtle and RDF(S)/XML syntax. Protégé also supports plug-ins

to expand its capabilities.

The user interface looks simple but it is very powerful. It consists of Tabs mainly, that represent

the Individuals, Entities, Classes, Object properties etc. of the ontology. Another Tab is for writing

SparQL queries and another for representing the Graph Model of the ontology.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 13 of 65

2 Artificial Intelligence

2.1 Artificial Intelligence and Logic

AI (Artificial Intelligence) is the area of computer science that deals with the design of

intelligent systems, namely computing systems that exhibit characteristics with human behavior. The

goal of Artificial Intelligence is to solve problems of computing and the equation that describes it is

“AI = Knowledge Representation + Search”.

Knowledge Representation is a way of representing knowledge about a problem, with the aim

of describing the problem and automating the reasoning to solve it. The search terms of various

algorithms that automate the process of solving a problem, seeking solutions using the appropriate

representation of knowledge that describes the problem. The search algorithms, together with

knowledge representation, form the core of every application of AI. The First Order Predicate Calculus

is one of the most popular methods of knowledge representation.

2.2 Knowledge Representation

The Knowledge Representation is the area of Artificial Intelligence that deals with how can

knowledge be represented better and more efficiently. It is a field that attracts great interest from the

famous search engines (Google, Bing, Yahoo) and services like Wolfram Alpha and personal assistants

of mobile phones (Apple Siri, Google Voice, Microsoft Cortana) targeting the most accurate

performance information required than to return a large volume of information. To do this, however,

the search engines should look for information based on the meaning of propositions questions instead

of keywords.

Every computer system that exhibits intelligent behavior involves two basic components. The

first is a knowledge base and the second is a mechanism of inference. Knowledge is not programmed

into the system, but explicitly described in the knowledge base (KB) with the help of a standard-strict

language, called Knowledge Representation Language (KRL). The knowledge base consists of a set of

KRL expression proposals that describe the knowledge embedded in the system.

A knowledge representation language can be defined as a set of syntactic and semantic

conventions enables the description of some knowledge. This set is accompanied by another set of rules

that allows the efficient handling of this knowledge. A KRL has two key elements. One is the syntax or

notation and determine how to form the correct expressions of the language. The syntax of a language

includes: a) a set of primary symbols (vocabulary) and b) a set of grammatical rules (syntax rules) to

form expressions of the language. Expressions of KRL with correct syntax called well-formed

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 14 of 65

expressions or well-formed formulas (WFF). The second aspect is the semantics or significant of a

KRL, which determines whether an expression is true or false. It consists of a set of rules (semantic

rules) fourteen (14) of witch define the concept of a complex of KRL concepts of individual elementary

expressions which they constitute.

The KRL handles the WFF language to produce new knowledge, in the sense that knowledge

not explicitly described, but inherent in the KB, becomes evident. E.g. of the proposals "every man is

mortal", "Socrates is a man" may be inferred "Socrates is mortal", which however is not entirely new

knowledge, but revelation knowledge implied in the preceding two sentences. This manipulation -

knowledge processing is done using certain abstract rules, called rules of inference rules or conclusive

and general i.e. not dependent on specific knowledge located in the knowledge base. .

The most popular methods of knowledge representation fall into three main categories: Logic,

structured knowledge representations and rules (if-then rules). In Logic belongs the propositional logic,

the predicate logic and the disjunctive form of logical (clausal form of logic). On Structured Knowledge

Representation belong semantic networks, frames, the conceptual dependency and scripts.

2.3 Logic

Logic provides a way to clarify and standardize the process of human thought and offers an

important and convenient method for representing and solving problems. The need to use a strictly

specific language, with a mathematical concept, originated by the inadequacy to use natural language

in computer systems. Instead, the logic provides a clear, accurate and simple to language syntax, and

the possibility of generating new knowledge from existing.

Logic is defined as the study of correct inference. A minimum requirement for proper inference

is to maintain the truth, i.e. the requirement of true cases - recommendations exported to true

conclusions - recommendations. This is why Logic is defined as a minimum as the study of the

preservation of truth in drawing conclusions (inference). To define a logical language we need to define

three key elements: i) the structure, ii) the significance, and iii) the probative theory (conclusive rules).

 There are two main types of formal logic, the Propositional Calculus and

Predicate Calculus. The Propositional Calculus or propositional logic uses full sentences as building

blocks, while the Predicate Calculus and Predicate Logic analyzes a proposal to more structural units.

Most advanced and most useful kind of logic, especially for Artificial Intelligence applications, is the

Predicate Logic and more specifically the First Order Predicate Calculus, abbreviated FOL.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 15 of 65

2.4 Propositional Logic

The propositional logic is the simplest kind of logic. In this logic every event of the real world

is represented by a logical sentence, which is characterized as either true or as false. Reasonable

proposals usually represented by characters: P, Q, R, etc. and called interest-free (atoms). The interest-

free can be combined using logical symbols or connectives, which are shown in the table below along

with the names and their explanations:

Symbol Name/ Meaning

∧ Conjunction (logical AND)

∨ Disjunction(logical OR)

¬ Negation (logical NOT)

→ Material implication (If - Then)

↔ Biconditional (If Only)

The resulting complex sentences correctly called structured types. The logical value of properly

structured types calculated using truth tables or proof. Examples of knowledge representation using

propositional logic shown below. In each proposal (called event) we want to represent a corresponding

Latin character:

P: «Nick is a developer"

Q: «Nick has a computer"

The representation of the knowledge that if Nick is a developer, and has since computer is made by

combining the above two proposals through the appropriate binder in P → Q: If "Nick is a developer"

then "Nick has a computer." Assuming that the proposals P and Q are true, then the correctly structured

type P → Q is true. In the two following proposals represented knowledge concerning the properties of

a given triangle ABC:

R: <<The triangle ABC is equilateral>>

V: <<The triangle ABC has all sides of equal>>

The equivalence of the R and V is indicated by the following well-structured formula: R ↔ V: “The

triangle ABC is equilateral” if and only if “The triangle ABC has all sides of equal”.

The advantages of using propositional logic for knowledge representation is the simplicity of

preparation and the fact that it can always come to a conclusion. But an essential drawback is the lack

of generality leads to voluminous knowledge representations, and each event must be represented by a

separate logical proposal.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 16 of 65

2.5 Predicate Logic (First Order Logic)

 Predicate Logic or First Order Logic solves the data accessibility problem of the events of

Propositional Logic. For example in predicate logic the proposal <Nick is a programmer> is represented

as programmer (Nick). This representation allows the object data to be inferred for the extraction of

new knowledge.

 Predicate logic expands Propositional logic, importing terms, predicates and quantifiers. A fact

is represented with a personal type of the P (1, 2…..A, A, An) form, where P is the predicate and the

rest are the arguments. Every argument can me a constant, variable or functional term. Functional terms

have the f(1,2,…, nt, t) form, where f is the functional symbol and the rest are the arguments.

 Predicate logic connectives are the same with the ones in Propositional logic except two more

symbols called quantifiers.

Symbol Name/ Meaning

∀ Universal Quantifier

(∀ x means : for every x)

∃ Existential Quantifier

(∃ x means : there is x)

 The quantifiers are increasing the expressiveness of predicate logic. New kinds of sentences

can be created such as:

<Every human has a name> as ()() ∀ ∃ x y human(x) → name(x).

<Every basketball player is tall> as () ∀x (basketball_player(x) → tall(x)).

The advantages of predicate logic are summarized in the correspondence with the natural

language, the efficient expression quantification of concepts with appropriate quantifiers and its ability

to capture the generality. One major drawback of logic is generally the inability to express the

uncertainty, as each sentence can be true or false without being given the chance to express fuzzy values.

Disadvantages include also the additivity of effects, i.e. a drawn conclusion without added knowledge

to enable revision if you later found to be incorrect (monotonic logic).

To determine the various elements of predicate logic we need to clarify the meaning of the

following domain. Domain D (Universe of Discourse), is called the set of objects-entities associated

with the knowledge that we want to represent. Below are the basic syntax rules of predicate logic.

● A set of constants (constants):{ci},element of D. A constant represents a specific object in D.

● The logical constants true and false: {T, F}.

● A set of variables (variables): {vi}, subset of D. A variable represents an object in D without

naming what.

● A set of functions (functions): {fi}: n DD →. A function n variable is a bi-unambiguous

display corresponding set of entities in an entity. The function that refers to an entity associated with

variables - entities that are its terms.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 17 of 65

● A set of predicates : {Pi}: n D → {T, F}. A predicate n arguments or positions is a mapping

of a sequence of n objects in the domain D {T, F}, expresses a correlation between objects. If n objects

associated with each other’s way that indicates the predicate, then it takes the value of T, otherwise

takes value F.

● The logic interfaced (connectives): not (not ¬), or (or ∨), and (and ∧), implies (implies ⇒)

and equivalent (equivalent ⇔). We saw before in Predicate Logic with a small difference in the last two

symbols are, however, equivalent to the previous ones.

● Two quantifiers: the catholic (universal ∀) and existential (existential ∃). And quantifiers we

saw in the section of predicate logic and the table above.

Constants, logical constants, variables, functions and predicates make up the vocabulary of

predicate logic. As we saw before, the basic building block of a logical expression in predicate logic is

the individual expression or person, and has the form P (1, ..., nt t), where P a predicate arguments n

and 1. . . , Nt t the conditions.

A term is recursively defined as follows:

i. A constant is a term.

ii. A variable is a term.

iii. If f is a function and n variables 1. . . , Nt t are terms, then f (1, ..., nt t) is a term.

iv. All conditions produced by applying the rules (i), (ii), (iii).

Based on the foregoing, we now define a strictly well-formed expression (WFE) or simply an expression

in predicate logic:

i. A person is a WFE.

ii. If F and G are WFE, then ¬ ∨ ∧ ⇒ ⇔ FFGFGFGFG, (), (), () and () is WFE.

iii. If F is a WFE and a free variable x in F, then () ∀ x F and () ∃ x F is WFE.

iv. The WFE created only a finite number of applications of (i), (ii) and (iii).

For example, if the greater is a predicate that expresses the relationship 'bigger', then the greater

(3, 2) is a person who is true (T), while the greater (1, 3) is false (F). If x, y are variables then the

expression () () greater (,) ∀ ∃ x y x y is a WFE and means "for every x there is y such that the greater

(x, y) to be true", in other words "for every x there is y such that x is greater than y ».

Each quantifier has a scope, which is the expression to which it applies. For example, the last

expression of the range of the x and y is the expression greater (x, y). A variable is called bound in an

expression, if and only if an instance of this expression is within the scope of a quantifier that identifies

it. A variable not bound is called free. For example, in the expression () (,) ∀ x P x y, the x variable is

bound, while y is free. A proposal containing free variables called open proposal while a sentence

containing no free variables called closed proposal.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 18 of 65

Here is an example which is represented in predicate logic knowledge about the characteristics

of different species. This knowledge is reflected in the following set of sentences:

i. Any animal that has fur or produce milk is a mammal.

ii. Each animal that has wings and lays eggs is a bird.

iii. Every mammal that eats meat or has sharp teeth are carnivorous.

iv. Every carnivore with brown-orange tiger has stripes are.

v. Every carnivore with orange-brown color that has black dots are cheetahs.

vi. Every bird that does not fly and swims is penguin.

Below are representations of the above proposals in predicate logic:

i. (∀ x) (has (x, fur) ∨ produces (x, milk)) → mammal (x)

ii. (∀ x) (has (x, wings) ∧ lays (x, eggs) → bird (x)

iii. (∀ x) (mammal(x) ∧ (eats (x, meat) ∨ has(x, sharp_teeth))) → carnivore (x)

iv. (∀x) (carnivore (x) ∧ color (brown_orange, x) ∧ has (x, black_dots)) → tiger (x)

v. (∀x) (carnivore (x) ∧ color (brown_orange, x) ∧ has(x, black_dots)) → Cheetah (x)

vi. (∀ x) (bird (x) ∧ ¬ flies (x) ∧ swims (x)) → penguin (x)

The main advantages of predicate logic and logical languages in general are

 they have clear significance,

 they have great expressiveness,

 And they provide declarative representation.

 The concepts of logical propositions can be specified, which enables control of the correct

representation of knowledge. Disadvantages, on the other hand, is inefficiency, indecisiveness, the

inability for representation of procedural knowledge and monotonicity.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 19 of 65

3 Fluents and Reasoners

3.1 Reasoner

Reasoner or rule engine is a software that extracts logical conclusions from a set of rules written

in the form of axioms. The basic services that make reasoners popular when developing Semantic Web

applications is the consistency checking of the knowledge base, the instance checking that the

calculation of the classes to which it belongs in every instance of our shape and categorizing classes or

classification. The most popular reasoners are divided into three categories:

● Commercial software such as Bossam, a rules engine that supports OWL Ontologies and SWRL rules

and RuleML.

● Free closed source software including machines like Cyc, Kon2 and the IBL (Internet Business Logic)

software,

● and free open source software such as the reasoner Cwm, the rules engines Prova, Flora-2, Drools

and the Jena Framework which I will refer extensively later.

3.2 Situation Logic

The situation calculus is a logic formalism designed for representing and reasoning about

dynamical domains. It was first introduced by John McCarthy in 1963. The situation calculus represents

changing scenarios as a set of first-order logic formulae.

The basic elements of the calculus are:

 The actions that can be performed in the world

 The fluents that describe the state of the world

 The situations

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 20 of 65

A domain is formalized by a number of expressions like:

 The action precondition axioms, one for each action

 Successor state axioms, one for each fluent

 Axioms describing the world in various situations

 And the foundational axioms of the situation calculus

3.3 Fluents

 In artificial intelligence the fluent is a condition that changes over time. The fluents can be

represented as first-order logic. For example, the condition "the box is on the table" can be represented

as Οn (box, table) in an ontology, but if you want to add the time factor should write On (box, table, t)

where t is time. The representation of fluents is used in Situation Calculus series, replacing old with

new situations. A fluent can be represented by a function without the time variable. In Example On

(box, table), On the may be a function instead of a predicate. The predicates conversion to functions in

first-order logic called reification.

Statements whose truth value may change are modeled by relational fluents, predicates which

take a situation as their final argument. Also possible are functional fluents, functions which take a

situation as their final argument and return a situation-dependent value. Fluents may be thought of as

properties of the world.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 21 of 65

3.4 Allen’s Integral Algebra

In 1983 James F. Allen published a paper in which he proposed thirteen basic relations between time

intervals that are distinct, exhaustive, and qualitative.

 distinct because no pair of definite intervals can be related by more than one of the relationships

 exhaustive because any pair of definite intervals are described by one of the relations

 qualitative (rather than quantitative) because no numeric time spans are considered

These relations and the operations on them form Allen's interval algebra.

Thirteen basic relations

Allen's thirteen basic relations are illustrated in Table 1. This table shows all the possible

relations that two definite intervals can have. Each one is defined graphically by a diagram relating two

definite intervals a and b, with time running → from left to right. For example, the first diagram shows

that "a precedes b" means that a ends before b begins, with a gap separating them; the second shows

that "a meets b" means that b ends when a begins.

The basic relations are listed in Table 1 sorted by the degree to which a begins before b and

then within that by the degree to which a ends before b. We will commonly list them in this order

(pmoFDseSdfOMP), as it makes the relations easier to remember and simplifies comparison of general

relations.

 Six pairs of the relations are converses. For example, the converse of "a precedes b" is

"b preceded by a"; whenever the first relation is true, its converse is true also. Table 2 lists the relations

with each one beside its converse. The thirteenth, "equals", is its own converse. Each pair of converse

relation symbols consists of the lowercase and uppercase of the same letter (e.g. p and P; the uppercase

letters represent the relations Allen defined as converses).

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 22 of 65

Example:

The basic relations describe relations between definite intervals. Indefinite intervals whose

exact relation may be uncertain are described by a set of all the basic relations that may apply. We call

such a set of basic relations a general Allen relation, or just an Allen relation.

For example, "John was not in the room when I touched the switch to turn on the light" .

 Let

 a be the time John was in the room,

 b be the time I touched the light switch, and

 c be the time the light was on.

 Then we can say a (pmMP)b, that is, a precedes, meets, is met by, or is preceded by b;

and b(mo)c, that is, b meets or overlaps c. Table 3 shows these relations.

 There is a general relation for every combination of the thirteen basic relations: 213 or 8192 of

them. Each of the basic relations is a relation, of course, as are all their combinations. The full

relation (pmoFDseSdfOMP) holds between two intervals about whom nothing is known. The empty

relation () has no meaning in terms of relations between actual intervals, but is the result of some

operations on interval relations and is needed for sub-algebras of Allen's interval algebra (discussed

below).

Complement

The complement ~r of a relation r is the relation consisting of all basic relations not in r.

From the definition of complement, we see that the converse operation is its own inverse; for every

relation r,

~ (~r) = r

Complement examples

~(p) = (moFDseSdfOMP)

~(pmoFD) = (seSdfOMP)

~() = (pmoFDseSdfOMP)

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 23 of 65

Composition

Composition examples

(m).(m) = (p)

(pm).(pm) = (p)

(oFD).(oFDseS) = (pmoFD)

The composition (r.s) of two relations (r) and (s) is the relation that holds between a and c if

there is a b such that a(r)b and b(s)c; we then write a(r.s)c.

 Calculation of composition is not simple like the other operations in this section. It can be

determined by going back to the definitions of the relations, and working from there; or by determining

the composition of each basic relation from r with each basic relation from s (using a table, perhaps),

and taking the union of the results; or by using the "allen" command.

 Composition is not commutative but is both left and right associative, and distributes over union

(as seen in the procedure for calculating composition using a table of composition of basic relations).

Converse

Converse examples

!(p) = (P)

!(pmoFD) = (dfOMP)

!(mM) = (mM)

!() = ()

The converse !r of a relation r is the relation consisting of the converses of all basic relations

in r. From the definition of converse, we see that the converse operation is its own inverse; for every

relation r,

!(!r) = r

http://www.ics.uci.edu/~alspaugh/cls/shr/allen.html#BasicCompositionsTable

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 24 of 65

Intersection

Intersection examples

(pmo)^(FDseS) = ()

(pFsSf)^(pmoFD) = (pF)

(pmo)^(pmo) = (pmo)

The intersection (r ^ s) of two relations (r) and (s) is the set-theoretic intersection of the two

relations; it is the relation composed of all basic relations that are in both (r) and (s). Intersection is

commutative and associative.

Union

Union examples

(pmo)+(FDseS) = (pmoFDseS)

(pFsSf)+(pmoFD) = (pmoFDsSf)

(pmo)+(pmo) = (pmo)

The intersection (r + s) of two relations (r) and (s) is the set-theoretic intersection of the two

relations; it is the relation composed of all basic relations that are in either (r) or (s). Union is

commutative and associative.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 25 of 65

4 Jena

4.1 Jena API

Figure 1Jena API layers

Jena API is an open source Java Framework used for the creation of Web Services. It can be

used to offer storage, inference and query ontologies of RDF/RDFS or OWL syntax. It was first

developed by Hewlett Packard from 2000 until 2009.Then it was moved to the Apache Software

Foundation until today. The last stable release was published in September of 2013 and is the 2.11.0.

The language it uses to query the ontologies is similar to SQL but it is specifically developed for the

Semantic web. It is called SparQL and it comes preinstalled in the API. The Jena API supports DAML,

+OIL, N3, Turtle and OWL syntax.

The Jena API includes:

 An RDF API

 An OWL API

 RDF, OWL and a generic purpose inference engine

 The SparQL query engine

 Data storage capabilities

The RDF data model expresses the data in graph model transforming the sentences to triplets

consisting of Subject-Predicate-Object. There are usually more than one models in an RDF file. Jena is

implemented in three levels, the graph layer, the model layer and the ontology layer. The basic layer in

Jena is the Graph layer (SPI) and it is where the RDF implementation happens.

Example of a triplet created in the Graph layer:

Node s = Node.createURI("Vasilis");

Node p = Node.createURI("isLivingin");

Node o = Node.createURI("Greece");

Triple triple = new Triple(s, p, o);

graph.add(triple);

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 26 of 65

The second layer is the model layer. We will create the same triplet now to see the difference in the

implementation and the advance power of the resources.

Resource s = model.createResource("Vasilis");

Property p = model.createProperty("isLivingin");

Resource o = model.createResource("Greece");

model.add(subject, predicate, object);

Statement statement = model.createStatement(subject, predicate, object);

The last Jena layer, the ontology model (OntModel) is the third from the bottom. In this layer

we have the ability to infer results. This means that instead of the standard triplets of our model we can

also use the new inferred triplets that we inferred using rules. For example, if A -> B and B -> C then

A -> C is inferred. The last triplet is inferred by the use of a reasoner.

Jena Basics:

Loading a simple ontology:

public OntologyLoader(String fileName) {
// ontology that will be used

String ontologyUrl;

setOntologyUrl("file:///" + fileName);

// create an empty ontology model (OntModel)

model = ModelFactory.createOntologyModel(OntModelSpec.OWL_DL);

// read the file

model.read(ont);
}

Loading an ontology with Pellet Reasoner:

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 27 of 65

public OntologyLoader(String fileName) {
 private String uri = "";
 private String ontologyUrl;
 private String fileName;
 private OntModel ontModel;
 private OntDocumentManager dm;
 setOntologyUrl("file:///" + fileName);// the third slash is needed

for windows xp
 OntModel base = ModelFactory.createOntologyModel(); //empty model
 dm = base.getDocumentManager();// used in this class
 dm.addAltEntry(uri, ontologyUrl);// used in this class
 base.read(uri);

 ontModel =

ModelFactory.createOntologyModel(PelletReasonerFactory.THE_SPEC,base);
 }

Reading Classes from the ontology:

public void readClasses(){
 ExtendedIterator<OntClass> iter = ontoModel.listClasses();

 while(iter.hasNext()){
 OntClass ontClass = iter.next();

 System.out.println("CLASS : "+ontClass.getLocalName());
 }

 }

Reading the instances of a class from the ontology:

OntClass newClass = model.getOntClass(classUrl);

Iterator instances = newClass.listInstances();

Reading the Datatype & Object Properties from the ontology:

public void readProperties(){
 ExtendedIterator<DatatypeProperty> iter =

ontoModel.listDatatypeProperties();

 ExtendedIterator<ObjectProperty> iter2 =

ontoModel.listObjectProperties();

 while(iter.hasNext()){
 DatatypeProperty dataProperty = iter.next();

 System.out.println(dataProperty.getLocalName());

 }

while(iter.hasNext()){
 ObjectProperty objProperty = iter.next();

 System.out.println(objectProperty.getLocalName());

 }

}

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 28 of 65

Reading Statements from the ontology:

Public void readAllStatements(OntModel model){
 StmtIterator iter;

 Statement stmt;

 iter = model.listStatements();

 while (iter.hasNext()) {
 stmt = iter.next();

// using the statement to read SUBJECT-PREDICATE-OBJECT
Property predicate;

Resource subject;

RDFNode obj;

subject = stmt.getSubject(); System.out.println("Subject = " +

subject.getURI());

predicate = stmt.getPredicate(); System.out.println("Predicate =

"+predicate.getLocalName());

obj = stmt.getObject(); System.out.println("Object = " +

obj.toString());

 }

}

Add new statements to the ontology:

. . .

Model model;

String namespace = "http://www.example.org"; . . .

Resource res =

model.createResource("http://www.example.com/companies#Company1")

Property property1 = model.createProperty(namespace,

“numOfEmployees");

res.addProperty(property1 , 25);

Property property2 = model.createProperty(namespace, “Location")

res.addProperty(property2 , “Athens");

Examples of the Pellet Reasoner usage:

// Creating the model using Pellet

ontModel =

ModelFactory.createOntologyModel(PelletReasonerFactory.THE_SPEC,base);

// Creating a new Pellet reasoner

 PelletInfGraph reasoner;

 reasoner = (PelletInfGraph) ontModel.getGraph();

// Calling the reasoner whenever needed

 Reasoner.clasify();

 Reasoner.realize();

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 29 of 65

Executing a Query examples:

// Create a new query

String queryString =“PREFIX ex1: <http://example.org/ex1/> ” + “SELECT

?x ” +

 “WHERE {” +“ ?x ex1:employeeName \”John\” }”;

Query query = QueryFactory.create(queryString);

// Execute the query and obtain results. model is an OntModel.

QueryExecution qe = QueryExecutionFactory.create(query, model);

ResultSet results = qe.execSelect();

// Output query results

ResultSetFormatter.out(System.out, results, query);

// Important – free up resources used running the query

qe.close();

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 30 of 65

4.2 Inference Engines

The Jena API and more specifically the inference engine is designed to support reasoners.

Those reasoners are used to extract New Knowledge in the form of RDF triplets. The inference engine

supports RDFS and OWL syntax. The API also includes a general purpose rule engine for custom rule

sets written in the RuleML syntax.

In the Jena API are includes the following reasoners:

1. Transitive reasoner

2. RDFS rule reasoner

3. OWL, OWL Mini, OWL Micro Reasoners

4. Generic rule reasoner

The generic rule reasoner includes the RDFS and Owl reasoners but it can also use custom rules

from an outside file. It supports forward chaining, backward chaining and hybrid rules. The generic rule

reasoner connects with a data model to be used for querying the ontologies.

Every rule is defined as a Java rule object and includes premises, conclusions optional name and an

optional direction. Every term (Clause Entry) is either a triple pattern, an extended triple pattern or a

call to built-in primitive.

 Another common thing in a rule file is the prefixes, usually on top. Those are used locally to

replace URIs with a local variable for greater readability and easier editing. It is important here to state

that @prefix is different from @include. The second is a command that includes another rule file like:

(RDFS, OWL, OWLMini, OWLMacro etc.).

A stack of rules is called a rule set. The rule files are loaded in the program with the following command:

List rules = Rule.rulesFromURL (“file: myfile.rules”);

 Or

BufferedReader br = / open reader /;

List rules = Rule.parseRules(Rule.rulesParserFromReader(br));

Or

String ruleSrc = / list of rules in line /

List rules = Rule.parseRules(rulesSrc);

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 31 of 65

Forward chaining engine

[DescriptionOrNameOfRule:

(condition to be met)

(another condition)

->

(fact to assert)

(another fact to assert)

]

If the reasoner is configured to run in forward mode then only the forward chaining engine will

be used. The first time the inference Model is queried (or when an explicit prepare() call is made) then

all of the relevant data in the model will be submitted to the rule engine. Any rules which fire that create

additional triples do so in an internal deductions graph and can in turn trigger additional rules. There is

a remove primitive that can be used to remove triples and such removals can also trigger rules to fire in

removal mode. This cascade of rule firings continues until no more rules can fire. It is perfectly possible,

though not a good idea, to write rules that will loop infinitely at this point.

Backward chaining engine

[DescriptionOrNameOfRule:

(fact to assert)

(another fact to assert)

<-

(condition to be met)

(another condition)

]

If the rule reasoner is run in backward chaining mode it uses a logic programming (LP) engine

with a similar execution strategy to Prolog engines. When the inference Model is queried then the query

is translated into a goal and the engine attempts to satisfy that goal by matching to any stored triples

and by goal resolution against the backward chaining rules.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 32 of 65

GenericRuleReasoner configuration

As with the other reasoners there are a set of parameters, identified by RDF properties, to

control behavior of the GenericRuleReasoner. These parameters can be set using

theReasoner.setParameter call or passed into the Reasoner factory in an RDF Model.

The primary parameter required to instantiate a useful GenericRuleReasoner is a rule set which can be

passed into the constructor, for example:

String ruleSrc = "[rule1: (?a eg:p ?b) (?b eg:p ?c) -> (?a eg:p ?c)]";

List rules = Rule.parseRules(ruleSrc);

...

Reasoner reasoner = new GenericRuleReasoner(rules);

A short cut, useful when the rules are defined in local text files using the syntax described

earlier, is the ruleSet parameter which gives a file name which should be loadable from either the

classpath or relative to the current working directory.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 33 of 65

Basic Rule syntax:

Rule := bare-rule .

 or [bare-rule]
 or [ruleName : bare-rule]

bare-rule := term, ... term -> hterm, ... hterm // forward rule

 or bhterm <- term, ... term // backward rule

hterm := term

 or [bare-rule]

term := (node, node, node) // triple pattern

 or (node, node, functor) // extended triple pattern

 or builtin(node, ... node) // invoke procedural primitive

bhterm := (node, node, node) // triple pattern

functor := functorName(node, ... node) // structured literal

node := uri-ref // e.g. http://foo.com/eg

 or prefix:localname // e.g. rdf:type

 or <uri-ref> // e.g. <myscheme:myuri>

 or ?varname // variable

 or 'a literal' // a plain string literal

 or 'lex'^^typeURI // a typed literal, xsd:* type names supported

 or number // e.g. 42 or 25.5

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 34 of 65

Summary of parameters

Parameter Values Description

PROPruleMode "forward",

"forwardRETE",

"backward",

"hybrid"

Sets the rule direction mode as

discussed above. Default is

"hybrid".

PROPruleSet filename-string The name of a rule text file which

can be found on the classpath or

from the current directory.

PROPenableTGCCaching Boolean If true, causes an instance of the

TransitiveReasoner to be inserted

in the forward dataflow to cache

the transitive closure of the

subProperty and subClass lattices.

PROPenableFunctorFiltering Boolean If set to true, this causes the

structured literals (functors)

generated by rules to be filtered

out of any final queries. This

allows them to be used for storing

intermediate results hidden from

the view of the InfModel's clients.

PROPenableOWLTranslation Boolean If set to true this causes a

procedural preprocessing step to

be inserted in the dataflow which

supports the OWL reasoner (it

translates intersectionOf clauses

into groups of backward rules in a

way that is clumsy to express in

pure rule form).

PROPtraceOn Boolean If true, switches on exhaustive

tracing of rule executions to the

log4j infoappender.

PROPderivationLogging Boolean If true, causes derivation routes to

be recorded internally so that

future getDerivation calls can

return useful information.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 35 of 65

Builtin primitives

The procedural primitives which can be called by the rules are each implemented by a Java

object stored in a registry. Additional primitives can be created and registered - see below for more

details. Each primitive can optionally be used in either the rule body, the rule head or both. If used in

the rule body then as well as binding variables (and any procedural side-effects like printing) the

primitive can act as a test - if it returns false the rule will not match. Primitives using in the rule head

are only used for their side effects.

The set of built-in primitives available at the time writing are:

Builtin Operations

isLiteral(?x) notLiteral(?x)

isFunctor(?x) notFunctor(?x)

isBNode(?x) notBNode(?x)

Test whether the single argument is or is not a

literal, a functor-valued literal or a blank-node,

respectively.

bound(?x...) unbound(?x..) Test if all of the arguments are bound (not

bound) variables

equal(?x,?y) notEqual(?x,?y) Test if x=y (or x != y). The equality test is

semantic equality so that, for example, the

xsd:int 1 and the xsd:decimal 1 would test equal.

lessThan(?x, ?y),

greaterThan(?x, ?y)

le(?x, ?y), ge(?x, ?y)

Test if x is <, >, <= or >= y. Only passes if both x

and y are numbers or time instants (can be

integer or floating point or XSDDateTime).

sum(?a, ?b, ?c)

addOne(?a, ?c)

difference(?a, ?b, ?c)

min(?a, ?b, ?c)

max(?a, ?b, ?c)

product(?a, ?b, ?c)

quotient(?a, ?b, ?c)

Sets c to be (a+b), (a+1) (a-b), min(a,b),

max(a,b), (a*b), (a/b). Note that these do not run

backwards, if in sum a and c are bound and b is

unbound then the test will fail rather than bind b

to (c-a). This could be fixed.

strConcat(?a1, .. ?an, ?t)

uriConcat(?a1, .. ?an, ?t)

Concatenates the lexical form of all the

arguments except the last, then binds the last

argument to a plain literal (strConcat) or a URI

node (uriConcat) with that lexical form. In both

cases if an argument node is a URI node the

URI will be used as the lexical form.

regex(?t, ?p)

regex(?t, ?p, ?m1, .. ?mn)

Matches the lexical form of a literal (?t) against a

regular expression pattern given by another

literal (?p). If the match succeeds, and if there

are any additional arguments then it will bind the

first n capture groups to the arguments ?m1 to

?mn. The regular expression pattern syntax is

that provided by java.util.regex. Note that the

capture groups are numbered from 1 and the

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 36 of 65

first capture group will be bound to ?m1, we

ignore the implicit capature group 0 which

corresponds to the entire matched string. So for

example

regexp('foo bar', '(.*) (.*)', ?m1, ?m2)

will bind m1 to "foo" and m2 to "bar".

now(?x) Binds ?x to an xsd:dateTime value

corresponding to the current time.

makeTemp(?x) Binds ?x to a newly created blank node.

makeInstance(?x, ?p, ?v)

makeInstance(?x, ?p, ?t, ?v)

Binds ?v to be a blank node which is asserted as

the value of the ?p property on resource ?x and

optionally has type ?t. Multiple calls with the

same arguments will return the same blank node

each time - thus allowing this call to be used in

backward rules.

makeSkolem(?x, ?v1, ... ?vn) Binds ?x to be a blank node. The blank node is

generated based on the values of the remain ?vi

arguments, so the same combination of

arguments will generate the same bNode.

noValue(?x, ?p)

noValue(?x ?p ?v)

True if there is no known triple (x, p, *) or (x, p, v)

in the model or the explicit forward deductions so

far.

remove(n, ...)

drop(n, ...)

Remove the statement (triple) which caused the

n'th body term of this (forward-only) rule to

match. Remove will propagate the change to

other consequent rules including the firing rule

(which must thus be guarded by some other

clauses). Drop will silently remove the triple(s)

from the graph but not fire any rules as a

consequence. These are clearly non-monotonic

operations and, in particular, the behaviour of a

rule set in which different rules both drop and

create the same triple(s) is undefined.

isDType(?l, ?t) notDType(?l, ?t) Tests if literal ?l is (or is not) an instance of the

datatype defined by resource ?t.

print(?x, ...) Print (to standard out) a representation of each

argument. This is useful for debugging rather

than serious IO work.

listContains(?l, ?x)

listNotContains(?l, ?x)

Passes if ?l is a list which contains (does not

contain) the element ?x, both arguments must be

ground, can not be used as a generator.

listEntry(?list, ?index, ?val) Binds ?val to the ?index'th entry in the RDF list

?list. If there is no such entry the variable will be

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 37 of 65

unbound and the call will fail. Only useable in

rule bodies.

listLength(?l, ?len) Binds ?len to the length of the list ?l.

listEqual(?la, ?lb)

listNotEqual(?la, ?lb)

listEqual tests if the two arguments are both lists

and contain the same elements. The equality

test is semantic equality on literals

(sameValueAs) but will not take into account

owl:sameAs aliases. listNotEqual is the negation

of this (passes if listEqual fails).

listMapAsObject(?s, ?p ?l)

listMapAsSubject(?l, ?p, ?o)

These can only be used as actions in the head of

a rule. They deduce a set of triples derived from

the list argument ?l : listMapAsObject asserts

triples (?s ?p ?x) for each ?x in the list ?l,

listMapAsSubject asserts triples (?x ?p ?o).

table(?p) tableAll() Declare that all goals involving property ?p (or all

goals) should be tabled by the backward engine.

hide(p) Declares that statements involving the predicate

p should be hidden. Queries to the model will not

report such statements. This is useful to enable

non-monotonic forward rules to define flag

predicates which are only used for inference

control and do not "pollute" the inference results.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 38 of 65

4.3 SparQL

SPARQL is a recursive acronym for SPARQL Protocol and RDF Query Language) is an RDF

query language, that is, a query language for databases, able to retrieve and manipulate data stored

in Resource Description Framework format. It was made a standard by the RDF Data Access Working

Group (DAWG) of the World Wide Web Consortium, and is recognized as one of the key technologies

of the semantic web. On 15 January 2008, SPARQL 1.0 became an official W3C Recommendation and

SPARQL 1.1 in March, 2013.

 SPARQL allows for a query to consist of triple patterns, conjunctions, disjunctions, and

optional patterns. Implementations for multiple programming languages exist. According to Sir Tim

Berners-Lee "SPARQL will make a huge difference" making the web machine-readable. There exist

tools that allow one to connect and semi-automatically construct a SPARQL query for a SPARQL

endpoint, for example ViziQuer. In addition, there exist tools that translate SPARQL queries to other

query languages, for example to SQL and to XQuery. SPARQL City's SPARQLverse also allows

queries directly against non-SPARQL databases such as MongoDB and Cassandra, representing their

data as though it is RDF.

 SPARQL allows users to write queries against data that can loosely be called "key-value" data,

more specifically it is data that follows the RDF specification of the W3C. The entire database is thus

a set of "subject-predicate-object" triples. This is analogous to some NoSQL database's usage of the

term "document-key-value", such as MongoDB.

 RDF data can also be considered in SQL relational database terms as a table with three columns

- the subject column, the predicate column and the object column. Unlike relational databases, the object

column is heterogeneous, the per-cell data type is usually implied (or specified in the ontology) by the

predicate value. Alternately, again comparing to SQL relational, all of the triples for a given subject

could be represented as a row, with the subject being the primary key and each possible predicate being

a column and the object is the value in the cell. However, SPARQL/RDF becomes easier and more

powerful for columns that could contain multiple values (like "children"), and where the column itself

could be a joinable variable in the query, rather than directly specified.

 SPARQL thus provides a full set of analytic query operations such as JOIN, SORT,

AGGREGATE for data whose schema is intrinsically part of the data rather than requiring a separate

schema definition. Schema information (the ontology) is often provided externally, though, to allow

different datasets to be joined in an unambiguous manner. In addition, SPARQL provides specific graph

traversal syntax for data that can be thought of as a graph. Some implementations, such

as SPARQLverse also allow additional triple attributes such as timestamp and allow additional analytic

functionality such as windowed aggregates.

 SparQL queries RDF triplets in the subject-predicate-object form, using variables wherever we

need output. The variables come with the question mark symbol (?) ahead. (E.g. ?x, ?y, ?temp). Every

triplet in a single query is separated with a dot symbol (.) with the exception of the same subject, then

we separate them with the semicolon (;) symbol.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 39 of 65

Example:

select ?x where{ ex1:company ex1:hasEmployee ?x.?x ex1:employeeName

“JOHN” }

SparQL can also implement the class of an object in a query, using the letter (a) as a

abbreviation of rdf: type. Another tool for easier queries is the blanc node implementation, where we

supplement the subject or the object of the triplet with the (:blanc node) node. Like the owl files and

the RuleML files, the SparQL can also use prefixes to replace the full URIs, whict is really useful for

the programmer and saves a lot of time. Some of the most used prefixes include:

PREFIX owl:<“http://www.w3.org/2002/07/owl#">

PREFIX xsd:<http://www.w3.org/2001/XMLSchema>

PREFIX rdfs:<“http://www.w3.org/2000/01/rdf-schema#">

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX time:<http://www.w3.org/2006/time#>

PREFIX time-entry <http://www.isi.edu/~hobbs/damltime/time-entry.owl#>

 With SparQL the basic query rules are the same as with every query language. For example we

can use the SELECT keyword to select a specific subset from which we want data to be extracted. As

with SQL we can add distinct to this keyword to eliminate repeated results. If we want to specify the

dataset of our query we use the FROM keyword or else it will query the default dataset. Finally the

WHERE keyword can search inside triplets, filters, unions and optional path expressions and is

optional. Filters are used also like with every other query language and can be logical (!, &&,||),

mathematical expressions (+, -, *, /), comparison (<, >, =, !=) but also some specific for the semantic

web such as SparQL tests(isURI, isBlanc, isLiteral, bound) or SparQL accessors (str, lang, datatype)

and others. Finally SparQL uses Modifiers like “limit”, “order by” and “offset” to define the quantity

of the results that we want to be extracted.

http://www.w3.org/2006/time

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 40 of 65

5 Methodology

Purpose of this thesis is the implementation of a time reasoner with the ability to extract new

knowledge in RDF triplets from an ontology.

The first step is to create an RDF document. This document will be an ontology with an RDFS

syntax. For the purpose of the project we will create a calendar type document, consisting of six (6)

meetings. Those meetings are Interval Events, which means that they have a beginning, duration over

time and an end. The document can be created in any text editor, but these is a better solution. Using

Protégé, we can see the advantages of creating ontologies. Protégé has an easy to learn, hard to master

user interface, consisting of Tabs. Because we already know that we will use the time-entry ontology

as the base of our ontology, we already downloaded the (time-entry.owl) file and loaded it in the

software. From there, we added the Individuals we needed, as seen below.

Figure 2 Entities Tab

In the Figure 2 above we can see our ontology as seen from the Entities Tab. On the left we see

our Classes and on the right side we see the Annotations and Descriptions of every Class. Note that the

top Class in every ontology is the Thing class and that cannot change.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 41 of 65

Figure 3 Classes Tab

In the Figure 3 we have selected the Interval Event Class and we can see the members of the

class that we have created. As we can see there are six members, meeting1 to meeting6. If we selected

the Instant class we would see twelve members, consisting of the beginnings and endings of every

Interval Event. In the Duration Description class there are six members, the durations of every Interval

Event. Finally the CalendarClockDescreption has twelve members, consisting of the beginning and end

description of every interval event.

Figure 4 Object Properties Tab

OWL properties represent relationships and Object Properties are relationships between

Individuals. Some object properties may have a corresponding inverse property. Properties may have a

domain and a range, for example before has TemporalThing domain and range.

Finally, Protégé supports object properties characteristics like: Functional properties, Inverse

Functional properties, Transitive property, Symmetric, Asymmetric, Reflexive, and Irreflexive.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 42 of 65

Figure 5 Data Properties Tab

Data type properties link Individuals to XML Schema datatypes or RDF literals. They describe

relationships between individuals and data values but they can also be used as restrictions. Built-in

datatypes are specified in the XML Schema vocabulary. In our ontology we have data types like day,

hour, inCalendarClockDataType and others.

Figure 6 Annotation Properties Tab

Annotation properties are the third type of OWL properties. They are used to add information

in the form of metadata to classes, Individuals, object or data type properties. We can see the usage

above on figure 6.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 43 of 65

Figure 7 Individuals Tab

Above, on figure 7 we can see the Individuals Tab with the Interval Event meeting1 selected.

We can spot the annotations on the right side and the description on the bottom. This view is the best

for the user to be able to see the full characteristics of an Individual class.

Figure 8 Graph Model

Above we see the graph model of the ontology. This is the easiest way to visualize an ontology

and understand its components.

The ontology we created has Interval Events on the same day but with different time and

durations. This was on purpose for this project to be able to show the capabilities of a reasoner, as it has

to extract from the given data the knowledge of when one meeting event is chronically interchanged

with another.

 To check this hypothesis we have to know how many different time based relations are possible

between two interval events at any time. The answer was given to us from a scientific paper called

”Maintaining Knowledge about Temporal Intervals” written by James F. Allen in 1983. In this paper it

was stated that there are thirteen possible relations between to events. For the First Order Logic (or

Predicate logic) that proves those relations you can refer to the Appendix.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 44 of 65

The next step was to translate those definitions into RuleML syntax so the General purpose

reasoner of the Jena API could read them. This was possible in any text editor, like Notepad++. First

the prefixes were created and then the rules, most of witch with the backward-chaining order.

Figure 9 Jena Rules file

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 45 of 65

The results are in the Appendix. After that was done we created a java program with the Jena

API installed that could first load the ontology and then the custom rules we created. The java program

was created in Eclipse using the Jena API. Finally it had to extract the statements in triplets along with

the new knowledge.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 46 of 65

6 Conclusions

As we can see, the possibilities are endless. Depending on the rules that we define, we can

extract new knowledge in triplets. Despite that the purpose of this project was to infer about the interval

relations between the Interval Events, we can see that even in a sub- ontology as the time-entry with

very few predefined classes the amount of new information can be very impressive. Time entry and

OWL Time can also support Time Zone defined classes.

 For a web application oriented stand point, it is easy to see how important this new technology

is. First of all, the ability to store time related data between objects can increase incrementally the odds

of a search engine to give us more specific answers, instead of numerous insignificant results bases

strictly on keyword search. Also the agents, used in the sematic web applications can use this technology

to can use this technology to can use this technology to save the end user time.

 This project shows just how important metadata manipulation and ontology creation is for the

future of the web. With predefined ontologies that can save time and help better integrate the almost

one billion web pages of the web with each other and reasoners that can extract new knowledge based

on existed one, from returning better results to making decisions.

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 47 of 65

Jena API Installation in Eclipse

Figure 10 New Java Project

Figure 11 Project Name

Figure 12 Create Java Class

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 48 of 65

Figure 13 Create New User Library

Figure 14 Insert Jar library files

Figure 15 Define Javadoc and Sources

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 49 of 65

Figure 16 Import User Library Jena Libs

Figure 17 Final Results

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 50 of 65

First Order Logic Interval Relations

(∀ T 1 ,T 2)[intEquals(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∀ t 1)[begins(t 1 ,T 1) ≡ begins(t 1 ,T 2)]

 ∧ (∀ t 2)[ends(t 2 ,T 1) ≡ ends(t 2 ,T 2)]]]

(∀ T 1 ,T 2)[intBefore(T 1 ,T 2)

 ≡ ProperInterval(T 1) ∧ ProperInterval(T 2) ∧ before(T 1 ,T 2)]

(∀ T 1 ,T 2)[intMeets(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∃ t)[ends(t,T 1) ∧ begins(t,T 2)]]]

(∀ T 1 ,T 2)[intOverlaps(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∃ t 2 ,t 3)[ends(t 2 ,T 1) ∧ begins(t 3 ,T 2) ∧ before(t 3 ,t 2)

 ∧ (∀ t 1)[begins(t 1 ,T 1) ⊃ before(t 1 ,t 3)]

 ∧ (∀ t 4)[ends(t 4 ,T 2) ⊃ before(t 2 ,t 4)]]]]

(∀ T 1 ,T 2)[intStarts(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∃ t 2)[ends(t 2 ,T 1) ∧ (∀ t 1)[begins(t 1 ,T 1) ≡ begins(t 1 ,T 2)]

 ∧ (∀ t 4)[ends(t 4 ,T 2) ⊃ before(t 2 ,t 4)]]]]

(∀ T 1 ,T 2)[intDuring(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∃ t 1 ,t 2)[begins(t 1 ,T 1) ∧ ends(t 2 ,T 1)

 ∧ (∀ t 3)[begins(t 3 ,T 2) ⊃ before(t 3 ,t 1)]

 ∧ (∀ t 4)[ends(t 4 ,T 2) ⊃ before(t 2 ,t 4)]]]]

(∀ T 1 ,T 2)[intFinishes(T 1 ,T 2)

 ≡ [ProperInterval(T 1) ∧ ProperInterval(T 2)

 ∧ (∃ t 1)[begins(t 1 ,T 1) ∧ (∀ t 3)[begins(t 3 ,T 2) ⊃ before(t 3 ,t 1)]

 ∧ (∀ t 4)[ends(t 4 ,T 2) ≡ ends(t 4 ,T 1)]]]]

intAfter(T 1 ,T 2) ≡ intBefore(T 2 ,T 1)

intMetBy(T 1 ,T 2) ≡ intMeets(T 2 ,T 1)

intOverlappedBy(T 1 ,T 2) ≡ intOverlaps(T 2 ,T 1)

intStartedBy(T 1 ,T 2) ≡ intStarts(T 2 ,T 1)

intContains(T 1 ,T 2) ≡ intDuring(T 2 ,T 1)

intFinishedBy(T 1 ,T 2) ≡ intFinishes(T 2 ,T 1)

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 51 of 65

Bibliography

1. Feng Pan, Jerry R. Hobbs, Temporal Aggregates in OWL-Time, Information Sciences Institute,

University of Southern California, 2005

2. Feng Pan, Jerry R. Hobbs, Time in OWL-S, Information Sciences Institute, University of

Southern California, 2004

3. Jerry R. Hobbs, James Pustejovsky, Annotating and Reasoning about Time and Events,

University of Southern California, Brandeis University,2003

4. Chris WELTY, Richard FIKES, A Reusable Ontology for Fluents in OWL, IBM Watson

Research Center, USA, Stanford AI Lab - Knowledge Systems, USA,2006

5. JAMES F. ALLEN, Maintaining Knowledge about Temporal Intervals, The University of

Rochester,1983

6. Sotiris Batsakis, Euripides G.M. Petrakis, Representing Temporal Knowledge in the Semantic

Web: The Extended 4D Fluents Approach, Department of Electronic and Computer

Engineering, Technical University of Crete (TUC),2010

7. Nikos Papadakis, Dimitris Plexousakis, Actions with Duration and Constraints: the

Ramification Problem in Temporal Databases, Department of Computer Science University

of Crete and Institute of Computer Science FORTH Greece, 2003

8. Steven Schockaert, Martine De Cock, and Etienne E. Kerre, Fuzzifying Allen’s Temporal

Interval Relations, 2008

9. Viorel Milea, Flavius Frasincar, and Uzay Kaymak, A Temporal Web Ontology Language ,

Erasmus Research Institute of Management (ERIM), RSM Erasmus University / Erasmus

School of Economics, Erasmus Universiteit Rotterdam, September 2009

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 52 of 65

References

http://www.ics.uci.edu/~alspaugh/cls/shr/allen.html

http://en.wikipedia.org/wiki/Fluent_(artificial_intelligence)

http://jena.apache.org/documentation/

http://owl.cs.manchester.ac.uk/research/co-ode/

http://wenku.baidu.com/view/39a29416866fb84ae45c8ddd.html

https://wiki.csc.calpoly.edu/

http://www.slideshare.net/

http://hydrogen.informatik.tu-cottbus.de/wiki/index.php/JenaRules

http://www.ibm.com/developerworks/java/library/j-jena/index.html

http://staff.um.edu.mt/cabe2/lectures/webscience/docs/jena.pdf

http://owl.cs.manchester.ac.uk/research/co-ode/

http://webdam.inria.fr/Jorge/html/wdmch9.html#x14-1830008

http://docs.openlinksw.com/virtuoso/rdfsparqlrule.html

http://www.w3.org/TR/owl-time/

http://www.isi.edu/~hobbs/owl-time.html

http://en.wikipedia.org/wiki/RDFS

https://wiki.csc.calpoly.edu/
http://www.slideshare.net/
http://hydrogen.informatik.tu-cottbus.de/wiki/index.php/JenaRules
http://www.ibm.com/developerworks/java/library/j-jena/index.html
http://staff.um.edu.mt/cabe2/lectures/webscience/docs/jena.pdf
http://webdam.inria.fr/Jorge/html/wdmch9.html#x14-1830008
http://docs.openlinksw.com/virtuoso/rdfsparqlrule.html
http://www.w3.org/TR/owl-time/
http://www.isi.edu/~hobbs/owl-time.html

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 53 of 65

Appendix

RuleSet:

@prefix time-entry: <http://www.isi.edu/~hobbs/damltime/time-

entry.owl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix tzont <http://www.isi.edu/~pan/damltime/timezone-ont.owl#>.

@prefix owl <http://www.w3.org/2002/07/owl#>.

@prefix xsd <http://www.w3.org/2001/XMLSchema#>.

@prefix rdfs <http://www.w3.org/2000/01/rdf-schema#>.

[during:(?T1 time-entry:intDuring ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?t3 time-entry:before ?t1),

(?t2 time-entry:before ?t4)]

[contains:(?T1 time-entry:intContains ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?t1 time-entry:before ?t3),

(?t4 time-entry:before ?t2)]

[before:(?T1 time-entry:intBefore ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 time-entry:before ?t3),

(?t2 time-entry:before ?t3)]

[after:(?T1 time-entry:intAfter ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t3 time-entry:before ?t1),

(?t4 time-entry:before ?t1)]

[overlaps:(?T1 time-entry:intOverlaps ?T2) <-

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 54 of 65

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 time-entry:begins ?T1),

(?t2 time-entry:ends ?T1),

(?t3 time-entry:begins ?T2),

(?t4 time-entry:ends ?T2),

(?t1 time-entry:before ?t3),

(?t3 time-entry:before ?t2),

(?t2 time-entry:before ?t4)]

[overlappedby:(?T1 time-entry:intOverlappedBy ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 time-entry:begins ?T1),

(?t2 time-entry:ends ?T1),

(?t3 time-entry:begins ?T2),

(?t4 time-entry:ends ?T2),

(?t3 time-entry:before ?t1),

(?t1 time-entry:before ?t4),

(?t4 time-entry:before ?t2)]

[equals:(?T1 time-entry:intEquals ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 time-entry:begins ?T1),

(?t2 time-entry:ends ?T1),

(?t1 time-entry:begins ?T2),

(?t2 time-entry:ends ?T2)]

[starts:(?T1 time-entry:intStarts ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 time-entry:before ?t4),

(?t2 time-entry:before ?t4),

(?t3 time-entry:before ?t4)]

[startedby:(?T1 time-entry:intStartedBy ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 time-entry:before ?t4),

(?t2 time-entry:after ?t4),

(?t3 time-entry:before ?t4)]

[finishes:(?T1 time-entry:intFinishes ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 55 of 65

(?t3 time-entry:before ?t1),

(?t2 time-entry:ends ?T1),

(?t3 time-entry:before ?t1)

(?t4 time-entry:ends ?T2)]

[finishedby:(?T1 time-entry:intFinishedBy ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 time-entry:before ?t3),

(?t2 time-entry:ends ?T1),

(?t3 time-entry:after ?t1)

(?t4 time-entry:ends ?T2)]

[meets:(?T1 time-entry:intMeets ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t time-entry:ends ?T1),

(?t time-entry:begins ?T2)]

[metby:(?T1 time-entry:intMetBy ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t time-entry:begins ?T2),

(?t time-entry:ends ?T1)]

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 56 of 65

Ontology snippet:

 <!-- http://www.isi.edu/~hobbs/damltime/time-entry.owl#meeting1 -->

 <owl:NamedIndividual rdf:about="&time-entry;meeting1">

 <rdf:type rdf:resource="&time-entry;IntervalEvent"/>

 <durationDescriptionDataType

rdf:datatype="&xsd;duration">PT180M</durationDescriptionDataType>

 <durationDescriptionOf rdf:resource="&time-entry;meeting1DurationDescription"/>

 <ends rdf:resource="&time-entry;meeting1End"/>

 <begins rdf:resource="&time-entry;meeting1Start"/>

 </owl:NamedIndividual>

 <!-- http://www.isi.edu/~hobbs/damltime/time-entry.owl#meeting1DurationDescription -->

 <owl:NamedIndividual rdf:about="&time-entry;meeting1DurationDescription">

 <rdf:type rdf:resource="&time-entry;DurationDescription"/>

 <minutes rdf:datatype="&xsd;decimal">180</minutes>

 </owl:NamedIndividual>

 <!-- http://www.isi.edu/~hobbs/damltime/time-entry.owl#meeting1End -->

 <owl:NamedIndividual rdf:about="&time-entry;meeting1End">

 <rdf:type rdf:resource="&time-entry;Instant"/>

 <inCalendarClockDataType rdf:datatype="&xsd;dateTime">2014-06-

06T13:00:00</inCalendarClockDataType>

 <inCalendarClock rdf:resource="&time-entry;meeting1StartDescription"/>

 </owl:NamedIndividual>

 <!-- http://www.isi.edu/~hobbs/damltime/time-entry.owl#meeting1EndDescription -->

 <owl:NamedIndividual rdf:about="&time-entry;meeting1EndDescription">

 <rdf:type rdf:resource="&time-entry;CalendarClockDescription"/>

 <minute rdf:datatype="&xsd;nonNegativeInteger">0</minute>

 <hour rdf:datatype="&xsd;nonNegativeInteger">13</hour>

 <year rdf:datatype="&xsd;gYear">2014</year>

 <day rdf:datatype="&xsd;gDay">6</day>

 <month rdf:datatype="&xsd;gMonth">6</month>

 <unitType rdf:resource="&time-entry;unitMinute"/>

 <timeZone rdf:resource="http://www.isi.edu/~hobbs/damltime/timezone-

world.owl#BTZ"/>

 </owl:NamedIndividual>

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 57 of 65

 <!-- http://www.isi.edu/~hobbs/damltime/time-entry.owl#meeting1Start -->

 <owl:NamedIndividual rdf:about="&time-entry;meeting1Start">

 <rdf:type rdf:resource="&time-entry;Instant"/>

 <inCalendarClockDataType rdf:datatype="&xsd;dateTime">2014-06-

06T10:00:00</inCalendarClockDataType>

 <inCalendarClock rdf:resource="&time-entry;meeting1StartDescription"/>

 </owl:NamedIndividual>

 <!-- http://www.isi.edu/~hobbs/damltime/time-entry.owl#meeting1StartDescription -->

 <owl:NamedIndividual rdf:about="&time-entry;meeting1StartDescription">

 <rdf:type rdf:resource="&time-entry;CalendarClockDescription"/>

 <minute rdf:datatype="&xsd;nonNegativeInteger">0</minute>

 <hour rdf:datatype="&xsd;nonNegativeInteger">10</hour>

 <year rdf:datatype="&xsd;gYear">2014</year>

 <day rdf:datatype="&xsd;gDay">6</day>

 <month rdf:datatype="&xsd;gMonth">6</month>

 <unitType rdf:resource="&time-entry;unitMinute"/>

 <timeZone rdf:resource="http://www.isi.edu/~hobbs/damltime/timezone-

world.owl#BTZ"/>

 </owl:NamedIndividual>

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 58 of 65

Java Code:

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.List;

import com.hp.hpl.jena.rdf.model.InfModel;
import com.hp.hpl.jena.rdf.model.Literal;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.rdf.model.ModelFactory;
import com.hp.hpl.jena.rdf.model.Property;
import com.hp.hpl.jena.rdf.model.RDFNode;
import com.hp.hpl.jena.rdf.model.Resource;
import com.hp.hpl.jena.rdf.model.Statement;
import com.hp.hpl.jena.rdf.model.StmtIterator;
import com.hp.hpl.jena.reasoner.Reasoner;
import com.hp.hpl.jena.reasoner.ReasonerRegistry;
import com.hp.hpl.jena.reasoner.rulesys.GenericRuleReasoner;
import com.hp.hpl.jena.reasoner.rulesys.Rule;
import com.hp.hpl.jena.shared.DoesNotExistException;

public class timeSchedule {
 public static Model m;
 public static BufferedReader br;

 public static void main(String[] args) throws IOException {
 m = ModelFactory.createDefaultModel();

 String in = "";
 while (!in.equals("Q")) {
 try
 {
 in = getUserInput();
 }
 catch (DoesNotExistException e) {
 in = "";
 }
 execute(in);
 }
 }

 public static String getUserInput() throws IOException {
 br = new BufferedReader(new InputStreamReader(System.in));
 String input = null;

 System.out.println("Please enter a command");
 System.out.println("[1] Load model");
 System.out.println("[2] Run rules");
 System.out.println("[3] Print all statements");
 System.out.println("[4] Query model");
 System.out.println("[5] Print number of statements");
 System.out.println("[Q] Quit");

 input = br.readLine();

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 59 of 65

 return input;
 }

 public static void execute(String command) throws IOException {
 if (command.equals("1")) {
 System.out.print("Enter model location: ");
 String input = br.readLine();
 File f = new File(input);
 if (f.exists() && f.isFile())
 m.read("file:" + input);
 else
 System.out.println("Bad file location");
 }
 else if (command.equals("2")) {
 System.out.print("Enter rules location: ");
 String input = br.readLine();
 if (input == null)
 return;
 File f = new File(input);
 if (f.exists()) {
 List<Rule> rules = Rule.rulesFromURL("file:" +

input);
 GenericRuleReasoner r = new

GenericRuleReasoner(rules);
 r.setOWLTranslation(true);
 r.setTransitiveClosureCaching(true);

 InfModel infmodel = ModelFactory.createInfModel(r,

m);
 m.add(infmodel.getDeductionsModel());
 }
 else
 System.out.println("That rules file does not

exist.");
 }
 else if (command.equals("3")) {
 StmtIterator si = m.listStatements();
 Statement s = null;
 while(si.hasNext()) {
 s = si.next();
 System.out.println(s);
 }
 }
 else if (command.equals("4")) {
 System.out.print("Enter a pattern to match: ");
 String input = br.readLine();
 String[] pattern = input.split(" ");
 if (pattern.length != 3) {
 System.out.println("Bad query pattern");
 return;
 }
 Resource s = null;
 Property p = null;
 RDFNode o = null;

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 60 of 65

if (pattern[0].matches("'.+'"))
 s = getAnonNode(pattern[0].replace("'", ""));
 else if (!pattern[0].equals("?"))
 s = m.getResource(pattern[0]);

 if (pattern[1].matches("'.+'"))
 p = getAnonNode(pattern[1].replace("'",

"")).as(Property.class);
 else if (!pattern[1].equals("?"))
 p = m.getProperty(pattern[1]);

 if (pattern[2].matches("'.+'"))
 o = getAnonNode(pattern[2].replace("'", ""));
 else if (pattern[2].matches("\".+\""))
 o = m.createLiteral(pattern[2].replace("\"", ""));
 else if (!pattern[2].equals("?"))
 o = m.getResource(pattern[2]);

 StmtIterator si = m.listStatements(s, p, o);
 Statement st = null;
 while(si.hasNext()) {
 st = si.next();
 System.out.println(st);
 }
 }
 else if (command.equals("5")) {
 System.out.println(m.size());
 }
 }

 private static Resource getAnonNode(String anonId) {
 StmtIterator si = m.listStatements();
 Statement s = null;
 while(si.hasNext()) {
 s = si.next();
 Resource node = s.getSubject();
 if (node.isAnon() && node.getId().toString().equals(anonId)) {
 return node;
 }
 node = s.getPredicate();
 if (node.isAnon() && node.getId().toString().equals(anonId)) {
 return node;
 }
 if (s.getObject().canAs(Resource.class)) {
 node = s.getObject().as(Resource.class);
 if (node.isAnon() &&

node.getId().toString().equals(anonId)) {
 return node;
 }
 }
 }
 return null;
 }

}

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 61 of 65

Rule File (tOwl.rules)

@prefix time-entry: <http://www.isi.edu/~hobbs/damltime/time-entry.owl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix tzont <http://www.isi.edu/~pan/damltime/timezone-ont.owl#>.

@prefix owl <http://www.w3.org/2002/07/owl#>.

@prefix xsd <http://www.w3.org/2001/XMLSchema#>.

@prefix rdfs <http://www.w3.org/2000/01/rdf-schema#>.

[before:

(?x time-entry:before ?y) <-

(?x rdf:type time-entry:Instant),

(?y rdf:type time-entry:Instant),

(?x time-entry:inCalendarClockDatatype ?x1),

(?x1 time-entry:hour ?hour1),

(?y time-entry:inCalendarClockDatatype ?y1),

(?y1 time-entry:hour ?hour2),

lessThan(?hour1,?hour2)

]

[during:

(?T1 time-entry:intDuring ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t3 time-entry:before ?t1),

(?t2 time-entry:before ?t4)]

[contains:(?T1 time-entry:intContains ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 62 of 65

(?T2 time-entry:ends ?t4),

(?t1 time-entry:before ?t3),

(?t4 time-entry:before ?t2)]

[intBefore:(?T1 time-entry:intBefore ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t1 time-entry:before ?t3),

(?t2 time-entry:before ?t3)]

[after:(?T1 time-entry:intAfter ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t3 time-entry:before ?t1),

(?t4 time-entry:before ?t1)]

[overlaps:(?T1 time-entry:intOverlaps ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t1 time-entry:before ?t3),

(?t3 time-entry:before ?t2),

(?t2 time-entry:before ?t4)]

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 63 of 65

[overlappedby:(?T1 time-entry:intOverlappedBy ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t3 time-entry:before ?t1),

(?t1 time-entry:before ?t4),

(?t4 time-entry:before ?t2)]

[equals:(?T1 time-entry:intEquals ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),]

[starts:(?T1 time-entry:intStarts ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t1 time-entry:before ?t4),

(?t2 time-entry:before ?t4),

(?t3 time-entry:before ?t4)]

[startedby:(?T1 time-entry:intStartedBy ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 64 of 65

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t1 time-entry:before ?t4),

(?t2 time-entry:after ?t4),

(?t3 time-entry:before ?t4)]

[finishes:(?T1 time-entry:intFinishes ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t3 time-entry:before ?t1),

(?t2 time-entry:ends ?T1),

(?t3 time-entry:before ?t1)

(?t4 time-entry:ends ?T2)]

[finishedby:(?T1 time-entry:intFinishedBy ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t1 time-entry:before ?t3),

(?t2 time-entry:ends ?T1),

(?t3 time-entry:after ?t1)

(?t4 time-entry:ends ?T2)]

[meets:(?T1 time-entry:intMeets ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Page 65 of 65

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t time-entry:ends ?T1),

(?t time-entry:begins ?T2)]

[metby:(?T1 time-entry:intMetBy ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t time-entry:begins ?T2),

(?t time-entry:ends ?T1)]

