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Synopsis
Y0106 106G KOl VAOTOIN 61 VOGS YPOoVIKOD reasoner ywa eaymyn yvaong o RDFS éyypaoa

Awvdovtog v tpitn dekaetio amod ) yévvnon tov aykdopov Iotov, ot xprioteg Tov omoiot
mAéov amapBpodv o dtoekaToppdpla, ot avaykn ylo eTKOvovie, LABNon Kot ETEPNUOTIKOTI T
eEeMooeton axoun paydaia. Etotl o moykoouiog 16Tog £xel TV avaykn va eEEAIGGETOL GUUPOVE, LIE TIG
avaykes ¢ avOporomrog. Kot v mpodtn dekaetio To Web Mtov 6ToTikd, amoTteELoVUEVO and
16T00eAdEG KUPImG KEWEVOD pe ehdyioTes duvatdtnteg avaltnong TAnpogopiog, avtd GAAAEE e TOV
EPYOUO TOV Unyovmv ovalnTnong Kot e apyns e ET0YNS NG o0, SpUcTIKOTNTAG, LLE TO SVVOUIKO
méov web 2.0. Efquepa, o 1610g anotereitan amd 980 exaToppvpla 16T0GENISEG OV TEPIEYOVY KGO
gldovg TANpoPopie Ge OTOLONTOTE LOPPT.

AvTo 00MYel atn dnuovpyio Tov exdUEvoL Prpatog oty EEMEN TOL TUYKOGUIOL 16TOD, TO
Aeyouevo onpooctoroyikd 10td 1 web 3.0. Tov 6po avtd pag Tov €6MGE 0 EPEVPETNG TOV APYLKOD
TOoyKOGUI0L 16700, 0 Tim Berners-Lee.

2KOTOG NG TaPoVGOS EPYACIOG Eival 1 Onpovpyio evog xpovikoD reasoner, (oG Unyoving He
m ovvatotnTo v, €EAYEL AOYIKG GULUTEPAGUOTO HE TN Y¥PNON KOVOV®V YPOUUEVOV GTNV
KATNYOPNUOTIKY AoYiKT. O ypovikdg reasoner dtopépet amod Eva omAd reasoner, ensidn ot kKavOoveg Tov
TEPLEYEL  APOPOVV  YPOVIKEG KOTAGTACELS. TOvg Feasoner Tovg YPNOLUOTOOVUE GE  EYYpPaOa
UETOSEOOUEV®DVY TOV ONUaGIoA0YIKOD 16T00. Ta éyypoga avtd umopeil va givar tomov RDFS,Turtle,
OWL xao.
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Abstract

Nowadays, in the third decade of the birth of the Web, its users list in the billions and the need
for communication, learning and entrepreneurship is still evolving rapidly. Thus the Web has the need
to evolve according to the needs of humanity. During its first decade the web was static, consisting of
mainly text sites with poor information search, this changed with the advent of search engines and the
beginning of the era of lifelong activity, with the most dynamic web 2.0.

These days, the web consists of 980 million web pages containing all kind of information in
any form. This leads to the creation of the next step in the evolution of the Web, called semantic web
or web 3.0. This term was given to us from the inventor of the original World Wide Web, Tim Berners-
Lee.

The purpose of this work is to create a time reasoner, a piece of code with the ability to draw
inferences using rules written in predicate logic. The time reasoner differs from a simple reasoner,
because the rules contain statements relating to time. The reasoner uses metadata from documents from
the semantic web. Those documents may be of RDFS, Turtle, and OWL syntax.

Keywords: Semantic reasoner, time reasoner, RDFS, Allen’s Integral Algebra, Semantic Web,
Predicate Logic, Ontology, fluents, Jena API, Eclipse, Owl-Time
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1 Web 3.0 and Web standards

1.1 World Wide Web (World Wide Web)

The World Wide Web (commonly known as the Web) is a system of interlinked hypertext
documents that are accessed through the Internet. Those documents are called Web Pages. To view
those Pages you need a piece of software called a browser. Nowadays almost every computer, cellphone
and tablet can access the Internet, bringing information to the people wherever they are. Information
that consist of text, images, videos and other multimedia.

The invention of the Web is acclaimed from a British computer scientist and former CERN
employee, Tim Berners-Lee.

1.2 Semantic Web

Semantic Web (or Web 3.0) is the third stage in the evolution of the Web (World Wide Web)
in which the content of web pages will bring a predetermined structure based on metadata. This change
is requested to assist the better kind of compilation and processing of information, forming sites and
extraction of knowledge from them.

The Semantic Web uses existed technologies such as XML and URI as well as Web 2.0, but
also grows as new as RDF, RDFS, OWL, SPARQL, etc. In the Semantic Web ontologies are predefined
and developed by companies, research centers and organizations in order to better organize the data so
that it is easier for search engines to find the information that the user wants and can extract knowledge
from more complicated questions.

The term Semantic Web has been proposed by Tim Berners-Lee, inventor of the World Wide
Web since 2001. In 2006 it has been adopted by the W3C (World Wide Web Consortium). The main
goal is the representation of knowledge by computers. To make this possible there should be a
mechanism of information processing by the rules of logic in order to draw conclusions, the creation of
new knowledge, decision support or even to automatically perform actions.

1.3 Ontologies

Page 6 of 65



Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

Ontology is a formal and explicit definition of common and agreed conceptual formatting on a field of
interest. This formal representation of knowledge as a set of concepts, relationships and properties can
be used for reasoning (inference / new knowledge) and knowledge structured description of a field of
interest. Ontologies are introduced as a structured framework for organizing information and are used
mainly in Artificial Intelligence in the Semantic Web, in Bioinformatics, Library science and other
disciplines / branches as a form of knowledge representation about the world. The most widely used
free software for creating ontologies is Protégé and it’s been developed by Stanford University.

Ontology issue

One problem that appears in the representation of ontologies is the time variable (temporal) information.
The use of languages that use descriptive logic and binary relations such as RDF and OWL are not
enough to solve the problem. What we need now is triadic relationships where the third argument is
time. Suppose we have an ontology of objects and relationships that show the lives of residents of a
town in the example below.

Ex: Vasilis lives in Riga Fereou Street 6

e object (Riga Fereou type Street)
e object (Vasilis type Resident)
e Relationship (livesin Riga Fereou)

In this representation of the data the main drawback is the lack of the variable time. It is a contemporary
(synchronic) data representation, while in the real world relationships between objects are timeless
(diachronic) that change over time. The problem would satisfy the following embodiment.

Ex: Vasilis lives in Riga Fereou Street from 6 February 1990

e object (Riga type Fereou Street)
e object (Vasilis type Resident)
e Relationship (livesIn Vasilis, Riga Fereou, t1)

In this example it is clear that Vasilis lived elsewhere before 1990 and that the relationship (livesin Riga
Fereou) is true for a specific time period that starts in 1990. To solve this problem we need the so-called
fluents. Fluents call relationships that are true for a certain period of time and only then used to transfer
the representation of a relationship from synchronic to diachronic. This is done by changing a
relationship from binary to ternary, placing third argument for the period for which the relation is true.
So in the example relation (livesin Riga Fereou) will (livesIn Vasilis, Riga Fereou, t1) where t1 is the
period beginning with the date 02/01/1990. The fluents are not supported by languages such as OWL.

1.4 XML

In order to signify the importance of the Web, the influence of metadata was substantial.
Metadata is essentially data-about-data whose purpose is to assist us to understand, use and operate
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data. In essence serve human-user to more easily clarify the information and its place among a large
amount of data. The main language used for describing data on the web is the XML (eXtensible Markup
Language).

The XML gives us the ability to create unlimited texts with complex structure and syntax. This
makes the information easier to process by computers. Similarly, HTML and XML as markup languages
that are using tags . The contents along with each tag called elements. But unlike with HTML, XML is
not limited by predefined structures and can describe arbitrary structures and data. The only limitation
is the one set of rules for designing text formats that facilitates the design documents.

The main problem with XML documents is due to the arbitrary structure of tags. Assume that
you want two websites to exchange or compare data similar to each other, to arise if the structure being-
completely-arbitrary likely to be different between the two files (. xml). The problem is called to solve
a kind of grammar for defining constraints, called Document Type Definitions (DTD) and the DTD
comes to replace the newest standard XML Schema.

The XML Schema is a standard for writing predefined dictionaries and grammars for XML
documents. It supposed to work as a structural markup language in XML, increasing the ease of reading
an XML file and achieving reusability important files.

1.5 RDF

While XML is the markup language that is widely used in Web and Web2.0, the Semantic Web
(Web3.0)that is based on knowledge and not on information, needed a new markup language. This gap
fills with the RDF language (Resource Description Framework). This standard was adopted by the W3C
for describing information resources and knowledge representation in the online environment. The RDF
is based on the idea of identifying objects by using URIs (Uniform Resource Identifiers). The RDF uses
a graph model to represent proposals using nodes and arrows.

So one sentence as
"David Billington is the owner of the Web page http://www.cit.gu.edu.au/ ~ db"
Consisting of:

e a node on the subject
e a node for the object
e and an arrow on the predicate of the subject to the object

To graph model is the following:

— — site—owner —
www.cit.gu.edu.au/~db P, :‘--—-\\ #DavidBillington >

-
.

The RDF model is capable of expressing virtually any form of knowledge representation in the above
manner. If you do not want to recreate the proposal writing can do with triplet (triplet).

<http://www.cit.gu.edu.au/~db>
<http://www.mydomain.org/site-owner>
<#DavidBillington>

1.6 RDFS

RDF Schema (Resource Description Framework Schema, variously abbreviated
as RDFS, RDF(S), RDF-S, or RDF/S) is a set of classes with certain properties using
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the RDF extensible knowledge representation language, providing basic elements for the description
of ontologies, otherwise called RDF vocabularies, intended to structure RDF resources. These resources
can be saved in a triple store to reach them with the query language SPARQL.

The first version was published by the World-Wide Web Consortium (W3C) in April 1998, and
the final W3C recommendation was released in February 2004. Many RDFS components are included
in the more expressive Web Ontology Language (OWL).RDFS constructs are the RDFS classes,
associated properties and utility properties built on the limited vocabulary of RDF.

RDFS Classes

o rdfs:Resource is the class of everything. All things described by RDF are resources.

e rdfs:Class declares a resource as a class for other resources.

A typical example of an rdfs:Class is foaf:Person in the Friend of a Friend (FOAF) vocabulary. An
instance of foaf:Person is a resource that is linked to the classfoaf:Person using the rdf:type property,
such as in the following formal expression of the natural language sentence : 'John is a Person'.

ex:John rdf:type foaf:Person
The definition of rdfs:Class is recursive: rdfs:Class is the rdfs:Class of any rdfs:Class.

The other classes described by the RDF and RDFS specifications are:

o rdfs:Literal — literal values such as strings and integers. Property values such as textual strings
are examples of RDF literals. Literals may be plain or typed.

e rdfs:Datatype — the class of datatypes. rdfs:Datatype is both an instance of and a subclass of
rdfs:Class. Each instance of rdfs:Datatype is a subclass of rdfs:Literal.

e rdf:XMLLiteral — the class of XML literal values. rdf:XMLLiteral is an instance of
rdfs:Datatype (and thus a subclass of rdfs:Literal).

e rdf:Property — the class of properties.

RDFS Properties

Properties are instances of the class rdf:Property and describe a relation between subject resources and
object resources. When used as such a property is a predicate.
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e rdfs:domain of an rdf:predicate declares the class of the subject in a triple whose second
component is the predicate.

e rdfs:range of an rdf:predicate declares the class or datatype of the object in a triple whose second
component is the predicate.

For example, the following declarations are used to express that the property ex:employer relates a
subject, which is of type foaf:Person, to an object, which is of typefoaf:Organization:

ex:employer rdfs:domain foaf:Person
ex:employer rdfs:range foaf:Organization

Given the previous two declarations, the following triple requires that ex:John is necessarily
a foaf:Person, and ex:CompanyX is necessarily a foaf:Organization:

ex:John ex:employer ex:CompanyX

e rdf:type is a property used to state that a resource is an instance of a class. A commonly
accepted gname for this property is "a".
o rdfs:subClassOf allows to declare hierarchies of classes.

For example, the following declares that 'Every Person is an Agent'":
foaf:Person rdfs:subClassOf foaf:Agent

Hierarchies of classes support inheritance of a property domain and range (see definitions in next
section) from a class to its subclasses.

o rdfs:subPropertyOf is an instance of rdf:Property that is used to state that all resources related by
one property are also related by another.

o rdfs:label is an instance of rdf:Property that may be used to provide a human-readable version of
a resource's name.

e rdfs:comment is an instance of rdf:Property that may be used to provide a human-readable

description of a resource.
Utility properties

o rdfs:seeAlso is an instance of rdf:Property that is used to indicate a resource that might provide
additional information about the subject resource.

o rdfs:isDefinedBy is an instance of rdf:Property that is used to indicate a resource defining the
subject resource. This property may be used to indicate an RDF vocabulary in which a resource is

described.
RDFS entailment

An entailment regime defines by RDFs (OWL, etc.) not only which entailment relation is used, but also
which queries and graphs are well-formed for the regime. The RDFS entailment is a standard entailment
relations in the semantic web.
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For example, the following declares that 'Dogl is an animal’,'Catl is a cat', 'Zoos host animals' and
'Zoo1 hosts the ‘Cat2".

ex:dogl rdf:type ex:animal
ex:catl rdf:type ex:cat
zoo:host rdfs:range ex:animal
ex:zool zoo:host ex:cat?2

But this graph is not well formed because the system cannot guess that a cat is an animal. We have to
add 'Cats are animals' to do a well-formed graph with:

ex:cat rdfs:subClassOf ex:animal
The correct example:

In English The graph

rdf:type .
ex:dogl b —{ex:anima
=l

e Doglis an animal oCe=
e Catlisacat e

e Cats are animals : e ,

e Z00s host animals

e Z001 hosts the Cat2 @: zoo:host @

{_RDF special terms ) {_ RDFS special terms )
RDF/turtle
@PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@PREFIX ex: <http://example.org/>
@PREFIX z0O: <http://example.org/zoo/>
ex:dogl rdf:type ex:animal
ex:catl rdf:type ex:cat
ex:cat rdfs:subClassOf ex:animal
zoo:host rdfs:range ex:animal
ex:zool zoo:host ex:cat?2

If your triple store (or RDF database) implements the regime entailment of RDF and RDFS,
the SPARQL query as follows (the keyword "a" is equivalent to rdf:type in SPARQL):

PREFIX ex: <http://example.org/>

SELECT ?animal

WHERE

{ ?animal a ex:animal . }
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Gives the following result with catl in it because the Cat's type inherits of Animal's type:

animal

<http://example.org/dog1>

<http://fexample.org/catl>

<http://fexample.org/cat2>

1.7 Protégé

Protégé is a tool made from Stanford University for the purpose of creating and maintaining
ontologies. It is open source, free and fully customizable. Today many companies, government
organizations and colleges use Protégé to create ontologies, using OWL. Protégé is capable of exporting
the ontologies in RDF(S), OWL, N3, Turtle and RDF(S)/XML syntax. Protégé also supports plug-ins
to expand its capabilities.

The user interface looks simple but it is very powerful. It consists of Tabs mainly, that represent
the Individuals, Entities, Classes, Object properties etc. of the ontology. Another Tab is for writing
SparQL queries and another for representing the Graph Model of the ontology.
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2 Artificial Intelligence
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2.1 Avrtificial Intelligence and Logic

Al (Artificial Intelligence) is the area of computer science that deals with the design of
intelligent systems, namely computing systems that exhibit characteristics with human behavior. The
goal of Artificial Intelligence is to solve problems of computing and the equation that describes it is
“Al = Knowledge Representation + Search”.

Knowledge Representation is a way of representing knowledge about a problem, with the aim
of describing the problem and automating the reasoning to solve it. The search terms of various
algorithms that automate the process of solving a problem, seeking solutions using the appropriate
representation of knowledge that describes the problem. The search algorithms, together with
knowledge representation, form the core of every application of Al. The First Order Predicate Calculus
is one of the most popular methods of knowledge representation.

2.2 Knowledge Representation

The Knowledge Representation is the area of Artificial Intelligence that deals with how can
knowledge be represented better and more efficiently. It is a field that attracts great interest from the
famous search engines (Google, Bing, Yahoo) and services like Wolfram Alpha and personal assistants
of mobile phones (Apple Siri, Google Voice, Microsoft Cortana) targeting the most accurate
performance information required than to return a large volume of information. To do this, however,
the search engines should look for information based on the meaning of propositions questions instead
of keywords.

Every computer system that exhibits intelligent behavior involves two basic components. The
first is a knowledge base and the second is a mechanism of inference. Knowledge is not programmed
into the system, but explicitly described in the knowledge base (KB) with the help of a standard-strict
language, called Knowledge Representation Language (KRL). The knowledge base consists of a set of
KRL expression proposals that describe the knowledge embedded in the system.

A knowledge representation language can be defined as a set of syntactic and semantic
conventions enables the description of some knowledge. This set is accompanied by another set of rules
that allows the efficient handling of this knowledge. A KRL has two key elements. One is the syntax or
notation and determine how to form the correct expressions of the language. The syntax of a language
includes: a) a set of primary symbols (vocabulary) and b) a set of grammatical rules (syntax rules) to
form expressions of the language. Expressions of KRL with correct syntax called well-formed
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expressions or well-formed formulas (WFF). The second aspect is the semantics or significant of a
KRL, which determines whether an expression is true or false. It consists of a set of rules (semantic
rules) fourteen (14) of witch define the concept of a complex of KRL concepts of individual elementary
expressions which they constitute.

The KRL handles the WFF language to produce new knowledge, in the sense that knowledge
not explicitly described, but inherent in the KB, becomes evident. E.g. of the proposals "every man is

mortal"”, "Socrates is a man" may be inferred "Socrates is mortal”, which however is not entirely new
knowledge, but revelation knowledge implied in the preceding two sentences. This manipulation -
knowledge processing is done using certain abstract rules, called rules of inference rules or conclusive
and general i.e. not dependent on specific knowledge located in the knowledge base. .

The most popular methods of knowledge representation fall into three main categories: Logic,
structured knowledge representations and rules (if-then rules). In Logic belongs the propositional logic,
the predicate logic and the disjunctive form of logical (clausal form of logic). On Structured Knowledge
Representation belong semantic networks, frames, the conceptual dependency and scripts.

2.3 Logic

Logic provides a way to clarify and standardize the process of human thought and offers an
important and convenient method for representing and solving problems. The need to use a strictly
specific language, with a mathematical concept, originated by the inadequacy to use natural language
in computer systems. Instead, the logic provides a clear, accurate and simple to language syntax, and
the possibility of generating new knowledge from existing.

Logic is defined as the study of correct inference. A minimum requirement for proper inference
is to maintain the truth, i.e. the requirement of true cases - recommendations exported to true
conclusions - recommendations. This is why Logic is defined as a minimum as the study of the
preservation of truth in drawing conclusions (inference). To define a logical language we need to define
three key elements: i) the structure, ii) the significance, and iii) the probative theory (conclusive rules).

There are two main types of formal logic, the Propositional Calculus and
Predicate Calculus. The Propositional Calculus or propositional logic uses full sentences as building
blocks, while the Predicate Calculus and Predicate Logic analyzes a proposal to more structural units.
Most advanced and most useful kind of logic, especially for Artificial Intelligence applications, is the
Predicate Logic and more specifically the First Order Predicate Calculus, abbreviated FOL.
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2.4 Propositional Logic

The propositional logic is the simplest kind of logic. In this logic every event of the real world
is represented by a logical sentence, which is characterized as either true or as false. Reasonable
proposals usually represented by characters: P, Q, R, etc. and called interest-free (atoms). The interest-
free can be combined using logical symbols or connectives, which are shown in the table below along
with the names and their explanations:

Symbol Name/ Meaning

A Conjunction (logical AND)

v Disjunction(logical OR)

- Negation (logical NOT)

- Material implication (If - Then)
VRN Biconditional (If Only)

The resulting complex sentences correctly called structured types. The logical value of properly
structured types calculated using truth tables or proof. Examples of knowledge representation using
propositional logic shown below. In each proposal (called event) we want to represent a corresponding
Latin character:

P: «Nick is a developer"

Q: «Nick has a computer”

The representation of the knowledge that if Nick is a developer, and has since computer is made by
combining the above two proposals through the appropriate binder in P — Q: If "Nick is a developer"
then "Nick has a computer." Assuming that the proposals P and Q are true, then the correctly structured
type P — Q is true. In the two following proposals represented knowledge concerning the properties of
a given triangle ABC:

R: <<The triangle ABC is equilateral>>
V: <<The triangle ABC has all sides of equal>>

The equivalence of the R and V is indicated by the following well-structured formula: R <> V: “The
triangle ABC is equilateral” if and only if “The triangle ABC has all sides of equal”.

The advantages of using propositional logic for knowledge representation is the simplicity of
preparation and the fact that it can always come to a conclusion. But an essential drawback is the lack
of generality leads to voluminous knowledge representations, and each event must be represented by a
separate logical proposal.
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2.5 Predicate Logic (First Order Logic)

Predicate Logic or First Order Logic solves the data accessibility problem of the events of
Propositional Logic. For example in predicate logic the proposal <Nick is a programmer> is represented
as programmer (Nick). This representation allows the object data to be inferred for the extraction of
new knowledge.

Predicate logic expands Propositional logic, importing terms, predicates and quantifiers. A fact
is represented with a personal type of the P (1, 2.....A, A, An) form, where P is the predicate and the
rest are the arguments. Every argument can me a constant, variable or functional term. Functional terms
have the f(1,2,..., nt, t) form, where f is the functional symbol and the rest are the arguments.

Predicate logic connectives are the same with the ones in Propositional logic except two more
symbols called quantifiers.

Symbol Name/ Meaning

v Universal Quantifier
(Vv x means : for every x)

3 Existential Quantifier
(3 x means : there is x)

The quantifiers are increasing the expressiveness of predicate logic. New kinds of sentences
can be created such as:
<Every human has a name>as ()() Vv 3 x y human(x) — name(x).
<Every basketball player is tall> as () Vx (basketball player(x) — tall(x)).

The advantages of predicate logic are summarized in the correspondence with the natural
language, the efficient expression quantification of concepts with appropriate quantifiers and its ability
to capture the generality. One major drawback of logic is generally the inability to express the
uncertainty, as each sentence can be true or false without being given the chance to express fuzzy values.
Disadvantages include also the additivity of effects, i.e. a drawn conclusion without added knowledge
to enable revision if you later found to be incorrect (monotonic logic).

To determine the various elements of predicate logic we need to clarify the meaning of the
following domain. Domain D (Universe of Discourse), is called the set of objects-entities associated
with the knowledge that we want to represent. Below are the basic syntax rules of predicate logic.

e A set of constants (constants): {ci},element of D. A constant represents a specific object in D.
e The logical constants true and false: {T, F}.

e A set of variables (variables): {vi}, subset of D. A variable represents an object in D without
naming what.

e A set of functions (functions): {fi}: n DD —. A function n variable is a bi-unambiguous

display corresponding set of entities in an entity. The function that refers to an entity associated with
variables - entities that are its terms.
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e A set of predicates : {Pi}: n D — {T, F}. A predicate n arguments or positions is a mapping
of a sequence of n objects in the domain D {T, F}, expresses a correlation between objects. If n objects
associated with each other’s way that indicates the predicate, then it takes the value of T, otherwise
takes value F.

e The logic interfaced (connectives): not (not —), or (or V), and (and A), implies (implies =)
and equivalent (equivalent ). We saw before in Predicate Logic with a small difference in the last two
symbols are, however, equivalent to the previous ones.

e Two quantifiers: the catholic (universal V) and existential (existential 3). And quantifiers we
saw in the section of predicate logic and the table above.

Constants, logical constants, variables, functions and predicates make up the vocabulary of
predicate logic. As we saw before, the basic building block of a logical expression in predicate logic is
the individual expression or person, and has the form P (1, ..., nt t), where P a predicate arguments n
and 1..., Nttthe conditions.

A term is recursively defined as follows:

i. A constant is a term.

ii. A variable is a term.

iii. If f is a function and n variables 1. .., Nt t are terms, then f (1, ..., ntt) is a term.
iv. All conditions produced by applying the rules (i), (ii), (iii).

Based on the foregoing, we now define a strictly well-formed expression (WFE) or simply an expression
in predicate logic:

i. A person is a WFE.

ii. If Fand G are WFE, then - vV A = © FFGFGFGFG, (), (), () and () is WFE.
iii. If F is a WFE and a free variable x in F, then () v x Fand () 3 x F is WFE.
iv. The WFE created only a finite number of applications of (i), (ii) and (iii).

For example, if the greater is a predicate that expresses the relationship 'bigger’, then the greater
(3, 2) is a person who is true (T), while the greater (1, 3) is false (F). If x, y are variables then the
expression () () greater (,) V 3 x y X y is a WFE and means "for every x there is y such that the greater
(%, y) to be true", in other words "for every X there is y such that x is greater than y ».

Each quantifier has a scope, which is the expression to which it applies. For example, the last
expression of the range of the x and y is the expression greater (X, y). A variable is called bound in an
expression, if and only if an instance of this expression is within the scope of a quantifier that identifies
it. A variable not bound is called free. For example, in the expression () (,) V X P xy, the x variable is
bound, while y is free. A proposal containing free variables called open proposal while a sentence
containing no free variables called closed proposal.
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Here is an example which is represented in predicate logic knowledge about the characteristics
of different species. This knowledge is reflected in the following set of sentences:

i. Any animal that has fur or produce milk is a mammal.

ii. Each animal that has wings and lays eggs is a bird.

iii. Every mammal that eats meat or has sharp teeth are carnivorous.

iv. Every carnivore with brown-orange tiger has stripes are.

v. Every carnivore with orange-brown color that has black dots are cheetahs.
vi. Every bird that does not fly and swims is penguin.

Below are representations of the above proposals in predicate logic:

i. (v x) (has (x, fur) vV produces (x, milk)) — mammal (x)

ii. (V x) (has (x, wings) A lays (x, eggs) — bird (x)

iii. (Vv x) (mammal(x) A (eats (X, meat) Vv has(x, sharp_teeth))) — carnivore (X)

iv. (¥x) (carnivore (x) A color (brown_orange, X) A has (x, black_dots)) — tiger (x)
v. (¥x) (carnivore (x) A color (brown_orange, X) A has(x, black_dots)) — Cheetah (x)
vi. (V x) (bird (x) A = flies (x) A swims (x)) — penguin (X)

The main advantages of predicate logic and logical languages in general are

o they have clear significance,

e they have great expressiveness,

e And they provide declarative representation.
The concepts of logical propositions can be specified, which enables control of the correct
representation of knowledge. Disadvantages, on the other hand, is inefficiency, indecisiveness, the
inability for representation of procedural knowledge and monotonicity.
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3 Fluents and Reasoners

ModelFactory Ont/Model API

InfGraph

Reasoner

Registry Reasoner

bindSchema (optional)

Graph - base assertions Graph - ontology definitions

3.1 Reasoner

Reasoner or rule engine is a software that extracts logical conclusions from a set of rules written
in the form of axioms. The basic services that make reasoners popular when developing Semantic Web
applications is the consistency checking of the knowledge base, the instance checking that the
calculation of the classes to which it belongs in every instance of our shape and categorizing classes or
classification. The most popular reasoners are divided into three categories:

e Commercial software such as Bossam, a rules engine that supports OWL Ontologies and SWRL rules
and RuleML.

e Free closed source software including machines like Cyc, Kon2 and the IBL (Internet Business Logic)
software,

e and free open source software such as the reasoner Cwm, the rules engines Prova, Flora-2, Drools
and the Jena Framework which I will refer extensively later.

3.2 Situation Logic

The situation calculus is a logic formalism designed for representing and reasoning about
dynamical domains. It was first introduced by John McCarthy in 1963. The situation calculus represents
changing scenarios as a set of first-order logic formulae.

The basic elements of the calculus are:

e The actions that can be performed in the world
e The fluents that describe the state of the world
e The situations
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A domain is formalized by a number of expressions like:

e The action precondition axioms, one for each action
e Successor state axioms, one for each fluent

e Axioms describing the world in various situations

¢ And the foundational axioms of the situation calculus

3.3 Fluents

In artificial intelligence the fluent is a condition that changes over time. The fluents can be
represented as first-order logic. For example, the condition "the box is on the table" can be represented
as On (box, table) in an ontology, but if you want to add the time factor should write On (box, table, t)
where t is time. The representation of fluents is used in Situation Calculus series, replacing old with
new situations. A fluent can be represented by a function without the time variable. In Example On
(box, table), On the may be a function instead of a predicate. The predicates conversion to functions in
first-order logic called reification.

Statements whose truth value may change are modeled by relational fluents, predicates which
take a situation as their final argument. Also possible are functional fluents, functions which take a
situation as their final argument and return a situation-dependent value. Fluents may be thought of as
properties of the world.
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3.4 Allen’s Integral Algebra

In 1983 James F. Allen published a paper in which he proposed thirteen basic relations between time
intervals that are distinct, exhaustive, and qualitative.
o distinct because no pair of definite intervals can be related by more than one of the relationships
o exhaustive because any pair of definite intervals are described by one of the relations
e (qualitative (rather than quantitative) because no numeric time spans are considered
These relations and the operations on them form Allen's interval algebra.

Thirteen basic relations

Allen's thirteen basic relations are illustrated in Table 1. This table shows all the possible
relations that two definite intervals can have. Each one is defined graphically by a diagram relating two
definite intervals a and b, with time running — from left to right. For example, the first diagram shows
that "a precedes b" means that a ends before b begins, with a gap separating them; the second shows
that "a meets b" means that b ends when a begins.

- e . _ | finished S _ | started 2 ., |overlap- | met |[preceded
precedes | meets | overlaps by contains | starts | equals % during | finishes peking by b
e o e e = = ol Il 5

p m 0 F D S e S d f O M P

The basic relations are listed in Table 1 sorted by the degree to which a begins before b and
then within that by the degree to which a ends before b. We will commonly list them in this order
(pmoFDseSAfOMP), as it makes the relations easier to remember and simplifies comparison of general
relations.

Six pairs of the relations are converses. For example, the converse of "a precedes b" is
"b preceded by a"; whenever the first relation is true, its converse is true also. Table 2 lists the relations
with each one beside its converse. The thirteenth, "equals", is its own converse. Each pair of converse
relation symbols consists of the lowercase and uppercase of the same letter (e.g. p and P; the uppercase
letters represent the relations Allen defined as converses).

Relation Converse
precedes | (p) | (P)| preceded by
meets (m) | (M) met by
overlaps | (0) | (O) | overlapped bv
finished by | (F) [ (f) finishes
contains | (D) | (d) during
starts (s) | (S)| started by
equals (&)
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Example:

O

a (pmMP)
p| L ]
"John was | M e EE "I touched the
in the room" | p4 = la light switch"
= [a]
b (mo) ¢
"I touched the | M| = l c]| "The light
light switch" | 4 was on"

The basic relations describe relations between definite intervals. Indefinite intervals whose
exact relation may be uncertain are described by a set of all the basic relations that may apply. We call
such a set of basic relations a general Allen relation, or just an Allen relation.

For example, "John was not in the room when I touched the switch to turn on the light" .
Let

¢ a be the time John was in the room,
o b be the time I touched the light switch, and
e C be the time the light was on.

Then we can say a (pmMP)b, that is, a precedes, meets, is met by, or is preceded by b;
and b(mo)c, that is, b meets or overlaps c. Table 3 shows these relations.

There is a general relation for every combination of the thirteen basic relations: 2 or 8192 of
them. Each of the basic relations is a relation, of course, as are all their combinations. The full
relation (pmoFDseSAdfOMP) holds between two intervals about whom nothing is known. The empty
relation () has no meaning in terms of relations between actual intervals, but is the result of some
operations on interval relations and is needed for sub-algebras of Allen's interval algebra (discussed
below).

Complement

Complement examples

~(p) = (MoFDseSdfOMP)

~(pmoFD) = (seSAfOMP)

~() = (pmoFDseSdfOMP)

The complement ~r of a relation r is the relation consisting of all basic relations notin r.
From the definition of complement, we see that the converse operation is its own inverse; for every
relation r,
~(~n=r
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Composition

Composition examples
(m).(m) = (p)

(pm).(pm) = (p)
(oFD).(oFDseS) = (pmoFD)

The composition (r.s) of two relations (r) and (s) is the relation that holds between a and c if
there is a b such that a(r)b and b(s)c; we then write a(r.s)c.

Calculation of composition is not simple like the other operations in this section. It can be
determined by going back to the definitions of the relations, and working from there; or by determining
the composition of each basic relation from r with each basic relation from s (using a table, perhaps),
and taking the union of the results; or by using the "allen" command.

Composition is not commutative but is both left and right associative, and distributes over union
(as seen in the procedure for calculating composition using a table of composition of basic relations).

Converse

Converse examples

'(p) = (P)

I(pmoFD) = (dfOMP)

I(mM) = (mM)

'0=0

The converse !t of a relation r is the relation consisting of the converses of all basic relations
in r. From the definition of converse, we see that the converse operation is its own inverse; for every
relation r,

I =r
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Intersection

Intersection examples

(pmo)*(FDseS) = ()

(pFsSf)N(pmoFD) = (pF)

(pmo)™(pmo) = (pmo)

The intersection (r ~ s) of two relations (r) and (s) is the set-theoretic intersection of the two
relations; it is the relation composed of all basic relations that are in both (r) and (s). Intersection is

commutative and associative.

Union

Union examples

(pmo)+(FDseS) = (pmoFDseS)

(pFsSf)+(pmoFD) = (pmoFDsSf)

(pmo)+(pmo) = (pmo)

The intersection (r + s) of two relations (r) and (s) is the set-theoretic intersection of the two
relations; it is the relation composed of all basic relations that are in either (r) or (s). Union is

commutative and associative.
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4 Jena
4.1 Jena API
>
(@]
-—g Ont Ont Ont
.E Model Resource Resource
(@) —
Y Y Y
(0]
8 Dataset Model Statement Resource Resource
=
—_—
Y / Y
s
Dataset <
g (.‘?ra: Graph Triple Node

Figure 1Jena API layers

Jena API is an open source Java Framework used for the creation of Web Services. It can be
used to offer storage, inference and query ontologies of RDF/RDFS or OWL syntax. It was first
developed by Hewlett Packard from 2000 until 2009.Then it was moved to the Apache Software
Foundation until today. The last stable release was published in September of 2013 and is the 2.11.0.
The language it uses to query the ontologies is similar to SQL but it is specifically developed for the
Semantic web. It is called SparQL and it comes preinstalled in the API. The Jena API supports DAML,
+0IL, N3, Turtle and OWL syntax.

The Jena API includes:

o AnRDF AP

e An OWL API

o RDF, OWL and a generic purpose inference engine
e The SparQL query engine

o Data storage capabilities

The RDF data model expresses the data in graph model transforming the sentences to triplets
consisting of Subject-Predicate-Object. There are usually more than one models in an RDF file. Jena is
implemented in three levels, the graph layer, the model layer and the ontology layer. The basic layer in
Jena is the Graph layer (SPI) and it is where the RDF implementation happens.

Example of a triplet created in the Graph layer:

Node s = Node.createURI("Vasilis");
Node p = Node.createURI("isLivingin");
Node o = Node.createURI("Greece");
Triple triple = new Triple(s, p, 0);
graph.add(triple);
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The second layer is the model layer. We will create the same triplet now to see the difference in the
implementation and the advance power of the resources.

Resource s = model.createResource("Vasilis");

Property p = model.createProperty("isLivingin");

Resource o = model.createResource("Greece");

model.add(subject, predicate, object);

Statement statement = model.createStatement(subject, predicate, object);

The last Jena layer, the ontology model (OntModel) is the third from the bottom. In this layer
we have the ability to infer results. This means that instead of the standard triplets of our model we can
also use the new inferred triplets that we inferred using rules. For example, if A -> B and B -> C then
A -> C is inferred. The last triplet is inferred by the use of a reasoner.

Jena Basics:

Loading a simple ontology:

public OntologyLoader (String fileName) {

// ontology that will be used

String ontologyUrl;

setOntologyUrl ("file:///" + fileName);

// create an empty ontology model (OntModel)

model = ModelFactory.createOntologyModel (OntModelSpec.OWL DL) ;
// read the file

model.read( ont );

}

Loading an ontology with Pellet Reasoner:
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public OntologyLoader (String fileName) {
private String uri = "";
private String ontologyUrl;
private String fileName;
private OntModel ontModel;
private OntDocumentManager dm;
setOntologyUrl ("file:///" + fileName);// the third slash is needed
for windows xp
OntModel base = ModelFactory.createOntologyModel (); //empty model
dm = base.getDocumentManager();// used in this class
dm.addAltEntry(uri, ontologyUrl);// used in this class
base.read (uri);
ontModel =
ModelFactory.createOntologyModel (PelletReasonerFactory.THE SPEC,base);
}

Reading Classes from the ontology:

public void readClasses () {
ExtendedIterator<OntClass> i1ter = ontoModel.listClasses ()

while (iter.hasNext ()) {
OntClass ontClass = iter.next();
System.out.println ("CLASS : "+ontClass.getLocalName ());

}

Reading the instances of a class from the ontology:

OntClass newClass = model.getOntClass( classUrl );
Iterator instances = newClass.listInstances();

Reading the Datatype & Object Properties from the ontology:

public void readProperties () {
ExtendedIterator<DatatypeProperty> iter =
ontoModel.listDatatypeProperties|();
ExtendedIterator<ObjectProperty> iter2 =
ontoModel.listObjectProperties () ;
while (iter.hasNext ()) {
DatatypeProperty dataProperty = iter.next();
System.out.println( dataProperty.getLocalName () );
}

while (iter.hasNext ()) {
ObjectProperty objProperty = iter.next();
System.out.println( objectProperty.getLocalName () );

}
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Reading Statements from the ontology:

Public void readAllStatements (OntModel model) {

StmtIterator iter;

Statement stmt;

iter = model.listStatements();
while (iter.hasNext ()) {
stmt = iter.next();

// using the statement to read SUBJECT-PREDICATE-OBJECT
Property predicate;
Resource subject;
RDFNode obj;

subject = stmt.getSubject(); System.out.println("Subject = " +
subject.getURI());

predicate = stmt.getPredicate(); System.out.println("Predicate =
"tpredicate.getLocalName ()) ;

obj = stmt.getObject(); System.out.println("Object = " +

obj.toString());
}
}

Add new statements to the ontology:

Model model;

String namespace = "http://www.example.org";

Resource res =

model.createResource ("http://www.example.com/companies#Companyl")
Property propertyl = model.createProperty(namespace,
“numOfEmployees") ;

res.addProperty (propertyl , 25);

Property property2 = model.createProperty(namespace, “Location")
res.addProperty( property2 , “Athens");

Examples of the Pellet Reasoner usage:

// Creating the model using Pellet
ontModel =
ModelFactory.createOntologyModel (PelletReasonerFactory.THE SPEC,base);
// Creating a new Pellet reasoner
PelletInfGraph reasoner;
reasoner = (PelletInfGraph) ontModel.getGraph(()
// Calling the reasoner whenever needed
Reasoner.clasify();
Reasoner.realize () ;
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Executing a Query examples:

// Create a new query
String queryString =“PREFIX exl: <http://example.org/exl/> ” + “SELECT
?x 7+
“WHERE {” +“ ?x exl:employeeName \”John\” }”;
Query query = QueryFactory.create (queryString);

// Execute the query and obtain results. model is an OntModel.

QueryExecution ge = QueryExecutionFactory.create (query, model);
ResultSet results = ge.execSelect();

// Output query results
ResultSetFormatter.out (System.out, results, query);
// Important - free up resources used running the query

ge.close();
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4.2 Inference Engines

The Jena APl and more specifically the inference engine is designed to support reasoners.
Those reasoners are used to extract New Knowledge in the form of RDF triplets. The inference engine
supports RDFS and OWL syntax. The API also includes a general purpose rule engine for custom rule
sets written in the RuleML syntax.

In the Jena API are includes the following reasoners:

Transitive reasoner

RDFS rule reasoner

OWL, OWL Mini, OWL Micro Reasoners
Generic rule reasoner

A w bR

The generic rule reasoner includes the RDFS and Owl reasoners but it can also use custom rules
from an outside file. It supports forward chaining, backward chaining and hybrid rules. The generic rule
reasoner connects with a data model to be used for querying the ontologies.

Every rule is defined as a Java rule object and includes premises, conclusions optional name and an
optional direction. Every term (Clause Entry) is either a triple pattern, an extended triple pattern or a
call to built-in primitive.

Another common thing in a rule file is the prefixes, usually on top. Those are used locally to
replace URIs with a local variable for greater readability and easier editing. It is important here to state
that @prefix is different from @include. The second is a command that includes another rule file like:
(RDFS, OWL, OWLMini, OWLMacro etc.).

Astack of rules is called a rule set. The rule files are loaded in the program with the following command:

List rules = Rule.rulesFromURL (“file: myfile.rules”);

Or

BufferedReader br = / open reader /;

List rules = Rule.parseRules( Rule.rulesParserFromReader (br) );
Or

String ruleSrc = / list of rules in line /

List rules = Rule.parseRules( rulesSrc );
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Forward chaining engine

[DescriptionOrNameOfRule:
(condition to be met)
(another condition)

->

(fact to assert)

(another fact to assert)

]

If the reasoner is configured to run in forward mode then only the forward chaining engine will
be used. The first time the inference Model is queried (or when an explicit prepare() call is made) then
all of the relevant data in the model will be submitted to the rule engine. Any rules which fire that create
additional triples do so in an internal deductions graph and can in turn trigger additional rules. There is
a remove primitive that can be used to remove triples and such removals can also trigger rules to fire in
removal mode. This cascade of rule firings continues until no more rules can fire. It is perfectly possible,
though not a good idea, to write rules that will loop infinitely at this point.

Backward chaining engine

[DescriptionOrNameOfRule:
(fact to assert)

(another fact to assert)
<-

(condition to be met)
(another condition)

]

If the rule reasoner is run in backward chaining mode it uses a logic programming (LP) engine
with a similar execution strategy to Prolog engines. When the inference Model is queried then the query
is translated into a goal and the engine attempts to satisfy that goal by matching to any stored triples
and by goal resolution against the backward chaining rules.
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GenericRuleReasoner configuration

As with the other reasoners there are a set of parameters, identified by RDF properties, to
control behavior of the GenericRuleReasoner. These parameters can be set using
theReasoner.setParameter call or passed into the Reasoner factory in an RDF Model.

The primary parameter required to instantiate a useful GenericRuleReasoner is a rule set which can be
passed into the constructor, for example:

String ruleSrc = "[rulel: (?a eg:p ?b) (?b eg:p ?c) -> (?a eg:p ?c)]";
List rules = Rule.parseRules(ruleSrc);
Reasoner reasoner = new GenericRuleReasoner(rules);
A short cut, useful when the rules are defined in local text files using the syntax described

earlier, is the ruleSet parameter which gives a file name which should be loadable from either the
classpath or relative to the current working directory.
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Basic Rule syntax:

Rule

bare-rule :

hterm

term

bhterm

functor

node

or

or

or

or

or

or

or

or

bare-rule .

[ bare-rule ]

[ ruleName : bare-rule ]

term, ... term -> hterm, ... hterm // forward rule

bhterm <- term,

term

[ bare-rule ]

(node, node, node)

. term // backward rule

// triple pattern

(node, node, functor) // extended triple pattern

builtin(node, . nhode) // invoke procedural primitive
(node, node, node) // triple pattern
functorName (node, . hode) // structured literal

uri-ref
prefix:localname
<uri-ref>
?varname

'a literal’
"lex'~typeURI

number

// e.g. http://foo.com/eg
// e.g. rdf:type
// e.g. <myscheme:myuri>
// variable
// a plain string literal
// a typed literal, xsd:* type names supported
// e.g. 42 or 25.5
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Summary of parameters

Parameter

Values

Description

PROPruleMode

"forward",
"forwardRETE",
"backward",
"hybrid"

Sets the rule direction mode as
discussed above. Default is
"hybrid".

PROPruleSet

filename-string

The name of a rule text file which
can be found on the classpath or
from the current directory.

PROPenableTGCCaching

Boolean

If true, causes an instance of the
TransitiveReasoner to be inserted
in the forward dataflow to cache
the transitive closure of the
subProperty and subClass lattices.

PROPenableFunctorFiltering

Boolean

If set to true, this causes the
structured literals (functors)
generated by rules to be filtered
out of any final queries. This
allows them to be used for storing
intermediate results hidden from
the view of the InfModel's clients.

PROPenableOWLTranslation

Boolean

If set to true this causes a
procedural preprocessing step to
be inserted in the dataflow which
supports the OWL reasoner (it
translates intersectionOf clauses
into groups of backward rules in a
way that is clumsy to express in
pure rule form).

PROPtraceOn

Boolean

If true, switches on exhaustive
tracing of rule executions to the
log4j infoappender.

PROPderivationLogging

Boolean

If true, causes derivation routes to
be recorded internally so that
future getDerivation calls can
return useful information.
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Builtin primitives

The procedural primitives which can be called by the rules are each implemented by a Java
object stored in a registry. Additional primitives can be created and registered - see below for more
details. Each primitive can optionally be used in either the rule body, the rule head or both. If used in
the rule body then as well as binding variables (and any procedural side-effects like printing) the
primitive can act as a test - if it returns false the rule will not match. Primitives using in the rule head
are only used for their side effects.

The set of built-in primitives available at the time writing are:

Builtin

Operations

isLiteral(?x) notLiteral(?x)
isFunctor(?x) notFunctor(?x)
isBNode(?x) notBNode(?x)

Test whether the single argument is or is not a
literal, a functor-valued literal or a blank-node,
respectively.

bound(?x...) unbound(?x..)

Test if all of the arguments are bound (not
bound) variables

equal(?x,?y) notEqual(?x,?y)

Test if x=y (or x !=y). The equality test is
semantic equality so that, for example, the
xsd:int 1 and the xsd:decimal 1 would test equal.

lessThan(?x, ?y),
greaterThan(?x, ?y)
le(?x, ?y), ge(?x, ?y)

Testif x is <, >, <= or >=y. Only passes if both x
and y are numbers or time instants (can be
integer or floating point or XSDDateTime).

sum(?a, ?b, ?c)
addOne(?a, ?¢c)
difference(?a, ?b, ?c)
min(?a, ?b, ?c)
max(?a, ?b, ?c)
product(?a, ?b, ?c)
quotient(?a, ?b, ?c)

Sets c to be (a+b), (a+1) (a-b), min(a,b),
max(a,b), (a*b), (a/b). Note that these do not run
backwards, if in sum a and ¢ are bound and b is
unbound then the test will fail rather than bind b
to (c-a). This could be fixed.

strConcat(?al, .. ?an, ?t)
uriConcat(?al, .. ?an, ?t)

Concatenates the lexical form of all the
arguments except the last, then binds the last
argument to a plain literal (strConcat) or a URI
node (uriConcat) with that lexical form. In both
cases if an argument node is a URI node the
URI will be used as the lexical form.

regex(?t, ?p)
regex(?t, ?p, ?m1, .. ?mn)

Matches the lexical form of a literal (?t) against a
regular expression pattern given by another
literal (?p). If the match succeeds, and if there
are any additional arguments then it will bind the
first n capture groups to the arguments ?m1 to
?mn. The regular expression pattern syntax is
that provided by java.util.regex. Note that the
capture groups are numbered from 1 and the
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first capture group will be bound to ?m1, we
ignore the implicit capature group 0 which
corresponds to the entire matched string. So for
example

regexp('foo bar', "(.*) (.*)"', ?ml, ?m2)

will bind m1 to "foo" and m2 to "bar".

now(?x) Binds ?x to an xsd:dateTime value
corresponding to the current time.
makeTemp(?x) Binds ?x to a newly created blank node.

makelnstance(?x, ?p, ?v)
makelnstance(?x, ?p, ?t, ?v)

Binds ?v to be a blank node which is asserted as
the value of the ?p property on resource ?x and
optionally has type ?t. Multiple calls with the
same arguments will return the same blank node
each time - thus allowing this call to be used in
backward rules.

makeSkolem(?x, ?vl, ... ?vn)

Binds ?x to be a blank node. The blank node is
generated based on the values of the remain ?vi
arguments, so the same combination of
arguments will generate the same bNode.

noValue(?x, ?p)
noValue(?x ?p ?v)

True if there is no known triple (x, p, *) or (X, p, V)
in the model or the explicit forward deductions so
far.

remove(n, ...)
drop(n, ...)

Remove the statement (triple) which caused the
n'th body term of this (forward-only) rule to
match. Remove will propagate the change to
other consequent rules including the firing rule
(which must thus be guarded by some other
clauses). Drop will silently remove the triple(s)
from the graph but not fire any rules as a
consequence. These are clearly non-monotonic
operations and, in particular, the behaviour of a
rule set in which different rules both drop and
create the same triple(s) is undefined.

isDType(?l, ?t) notDType(?l, ?t)

Tests if literal ?I is (or is not) an instance of the
datatype defined by resource ?t.

print(?x, ...)

Print (to standard out) a representation of each
argument. This is useful for debugging rather
than serious 10 work.

listContains(?l, ?x)
listNotContains(?l, ?x)

Passes if ?l is a list which contains (does not
contain) the element ?x, both arguments must be
ground, can not be used as a generator.

listEntry(?list, ?index, ?val)

Binds ?val to the ?index'th entry in the RDF list
?list. If there is no such entry the variable will be
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unbound and the call will fail. Only useable in

rule bodies.
listLength(?I, ?len) Binds ?len to the length of the list ?I.
listEqual(?la, ?Ib) listEqual tests if the two arguments are both lists
listNotEqual(?la, ?Ib) and contain the same elements. The equality

test is semantic equality on literals
(sameValueAs) but will not take into account
owl:sameAs aliases. listNotEqual is the negation
of this (passes if listEqual fails).

listMapAsObject(?s, ?p ?I) These can only be used as actions in the head of
listMapAsSubject(?l, ?p, ?0) arule. They deduce a set of triples derived from
the list argument ?I : listMapAsObject asserts
triples (?s ?p ?x) for each ?x in the list ?I,
listMapAsSubject asserts triples (?x ?p ?0).

table(?p) tableAll() Declare that all goals involving property ?p (or all
goals) should be tabled by the backward engine.
hide(p) Declares that statements involving the predicate

p should be hidden. Queries to the model will not
report such statements. This is useful to enable
non-monotonic forward rules to define flag
predicates which are only used for inference
control and do not "pollute” the inference results.
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4.3 SparQL

SPARQL is a recursive acronym for SPARQL Protocol and RDF Query Language) is an RDF
query language, that is, a query language for databases, able to retrieve and manipulate data stored
in Resource Description Framework format. It was made a standard by the RDF Data Access Working
Group (DAWG) of the World Wide Web Consortium, and is recognized as one of the key technologies
of the semantic web. On 15 January 2008, SPARQL 1.0 became an official W3C Recommendation and
SPARQL 1.1 in March, 2013.

SPARQL allows for a query to consist of triple patterns, conjunctions, disjunctions, and
optional patterns. Implementations for multiple programming languages exist. According to Sir Tim
Berners-Lee "SPARQL will make a huge difference” making the web machine-readable. There exist
tools that allow one to connect and semi-automatically construct a SPARQL query for a SPARQL
endpoint, for example ViziQuer. In addition, there exist tools that translate SPARQL queries to other
query languages, for example to SQL and to XQuery. SPARQL City's SPARQLVerse also allows
queries directly against non-SPARQL databases such as MongoDB and Cassandra, representing their
data as though it is RDF.

SPARQL allows users to write queries against data that can loosely be called "key-value" data,
more specifically it is data that follows the RDF specification of the W3C. The entire database is thus
a set of "subject-predicate-object” triples. This is analogous to some NoSQL database's usage of the
term "document-key-value", such as MongoDB.

RDF data can also be considered in SQL relational database terms as a table with three columns
- the subject column, the predicate column and the object column. Unlike relational databases, the object
column is heterogeneous, the per-cell data type is usually implied (or specified in the ontology) by the
predicate value. Alternately, again comparing to SQL relational, all of the triples for a given subject
could be represented as a row, with the subject being the primary key and each possible predicate being
a column and the object is the value in the cell. However, SPARQL/RDF becomes easier and more
powerful for columns that could contain multiple values (like "children™), and where the column itself
could be a joinable variable in the query, rather than directly specified.

SPARQL thus provides a full set of analytic query operations such as JOIN, SORT,
AGGREGATE for data whose schema is intrinsically part of the data rather than requiring a separate
schema definition. Schema information (the ontology) is often provided externally, though, to allow
different datasets to be joined in an unambiguous manner. In addition, SPARQL provides specific graph
traversal syntax for data that can be thought of as a graph. Some implementations, such
as SPARQLverse also allow additional triple attributes such as timestamp and allow additional analytic
functionality such as windowed aggregates.

SparQL queries RDF triplets in the subject-predicate-object form, using variables wherever we
need output. The variables come with the question mark symbol (?) ahead. (E.g. ?x, ?y, ?temp ). Every
triplet in a single query is separated with a dot symbol (.) with the exception of the same subject, then
we separate them with the semicolon (;) symbol.
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Example:

select ?x where{ exl:company exl:hasEmployee ?x.?x exl:employeeName

“JOHN” }

SparQL can also implement the class of an object in a query, using the letter (a) as a
abbreviation of rdf: type. Another tool for easier queries is the blanc node implementation, where we
supplement the subject or the object of the triplet with the (:blanc node) node. Like the owl files and
the RuleML files, the SparQL can also use prefixes to replace the full URIs, whict is really useful for
the programmer and saves a lot of time. Some of the most used prefixes include:

PREFIX owl:<“http://www.w3.0rg/2002/07/owl#">

PREFIX xsd:<http://www.w3.0rg/2001/XMLSchema>

PREFIX rdfs:<“http://www.w3.0rg/2000/01/rdf-schema#">
PREFIX rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX time:<http://www.w3.0rg/2006/time#>

PREFIX time-entry <http://www.isi.edu/~hobbs/damltime/time-entry.owl#>

With SparQL the basic query rules are the same as with every query language. For example we
can use the SELECT keyword to select a specific subset from which we want data to be extracted. As
with SQL we can add distinct to this keyword to eliminate repeated results. If we want to specify the
dataset of our query we use the FROM keyword or else it will query the default dataset. Finally the
WHERE keyword can search inside triplets, filters, unions and optional path expressions and is
optional. Filters are used also like with every other query language and can be logical (!, &&,|| ),
mathematical expressions (+, -, *, /), comparison (<, >, =, !=) but also some specific for the semantic
web such as SparQL tests(isURI, isBlanc, isLiteral, bound) or SparQL accessors (str, lang, datatype)
and others. Finally SparQL uses Modifiers like “limit”, “order by” and “offset” to define the quantity
of the results that we want to be extracted.
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5 Methodology

Purpose of this thesis is the implementation of a time reasoner with the ability to extract new

knowledge in RDF triplets from an ontology.

The first step is to create an RDF document. This document will be an ontology with an RDFS
syntax. For the purpose of the project we will create a calendar type document, consisting of six (6)
meetings. Those meetings are Interval Events, which means that they have a beginning, duration over
time and an end. The document can be created in any text editor, but these is a better solution. Using
Protégé, we can see the advantages of creating ontologies. Protégé has an easy to learn, hard to master
user interface, consisting of Tabs. Because we already know that we will use the time-entry ontology
as the base of our ontology, we already downloaded the (time-entry.owl) file and loaded it in the

software. From there, we added the Individuals we needed, as seen below.

< time-entry (http: isi.eduy/ imey/tit ntry.owl) : [C\Users\Vasilis\Desktop\Owl_begin_end.owi]

- omEm

File Edit View Reasoner Tools Refactor Window Help
@ B | O time-entry (hitp
Active Ontology = Entities | Classes | Object Properties | Data Properties | Annotation Properties | Individuals | OWLViz | DL Query | OntoGraf | SPARQL Query | Ontology Differences

Class hierarchy | Class hierarchy (inferred) Class Annotations | Class Usage.

| Aanctations
CalendarClockDescription
CalendarClockDescription
DurationDescription
DurationDescription
Instant
InstantThingPair
IntervalEvent
=@ TemporalThing
£-@Event
InstantEvent
IntervalEvent

=@ InstantThing
Instant
InstantEvent

=@ IntervalThing
Interval
IntervalEvent SubClass Of (nonymous Anceste

- @ ProperIntervalThing

- TemporalEntity
Instant
Interval

TemporalUnit

TimeZone v

Individuals by tvoe Annatation property hierarchy Datatypes
Object property hierarchy Data property hierarchy

Object property hierarchy: [ECE]

= e

[#-mtopObjectProperty

To use the reasoner click Reasoner->Start reasoner Show Inferences

e

Figur_e 2 Entities Tab

In the Figure 2 above we can see our ontology as seen from the Entities Tab. On the left we see
our Classes and on the right side we see the Annotations and Descriptions of every Class. Note that the

top Class in every ontology is the Thing class and that cannot change.
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File Edit View Reasoner Tools Refactor Window Help

<o B | O time-entry (hitp://wan.isi entry.onl) v
| Entiies | Classes | Object Properties | perties | Annokation Properties | Individuals | OWLViz | DL Query | OntoGraF | SPARQL Query | Ontology Differences.
1y | Clas hisrarchy (infered) nnotations | Usage| S
IntervalEvent ‘mm | Arvotations: Intervalevent [ECE]
Aonotations o

E-@Thing
© CalendarClockDescription
® CalendarClockDescription
© DurationDescription
© DurationDescription
© Instant
@ InstantThingPair
=8 TemporalThing
&-SEvent v
® InstantEvent
“--® IntervalEvent
©-8 InstantThing
i@ Instant
@ InstantEvent
©-@ IntervalThing
&-®Interval
&-@ Properinterval
® CalendarClocknterval

@ IntervalEvent

& ®ProperintervalThing embers
5@ Properinterval & isetinga
&-© TemporalEntity o
® Instant @ meeting2
& ®Interval @ meeting3

@ Properinterval

® CalendarClockinterval @meetingd
© Temporalunit @ meeting5
®Timezane @mestings

v

To use the reasoner dick Reasoner->Start reasoner ] Show Inferences

Figure 3 Classes Tab

In the Figure 3 we have selected the Interval Event Class and we can see the members of the
class that we have created. As we can see there are six members, meetingl to meeting6. If we selected
the Instant class we would see twelve members, consisting of the beginnings and endings of every
Interval Event. In the Duration Description class there are six members, the durations of every Interval
Event. Finally the CalendarClockDescreption has twelve members, consisting of the beginning and end
description of every interval event.

File Edit View Reasoner Tools Refactor Window Help

<0 B | O time-entry (http://www.isi.eduj~hobbs/damitime

Active Ontology | Entities | Classes | Object Properties | Data Properties | Annotation Properties | Individuals | OWLViz | DL Query | OntoGraf | SPARQL Query | Ontology Differences

(Object property hierarchy: before

=X
- mtopObjectProperty Show: []this [] disfoits
=} Found 7 uses of befc A
mintBefore = after
bt | maiter InverseOf before
‘= calendarClockDescriptionOf
= durationDescriptionOf G-mbefore
mends - before
wfirstinstantThing - mbefore Range TemporalThing
minCalendarClock mbefore Domain TemporalThing
minside ® Transitive: before
minstantPairburationDescriptionOf @ after TnverseOf ESEEE
mintContains
mintEquals
mintFinishedBy - mintBefore
wintFiniskies mintBefore SubPropertyOf before .

mintOverlappedBy
mintOverlaps
mintStartedsy

=--mmnonoverlap
mintAfter
~-mintBefore [ inverse functional
mintMeets
mintMetBy Transitive
m secondlnstantThing nverse of
5 m startsOrDuring (] Symmetric - afer
mintDuring -~
mintstarts 2 Dormains (ntersection)
mtimeZone i » st
®unitType [JReflexive ©TemporalThing
[ 1rreflexive
Ranges (ntersecton)
© TemporalThing
v

To use the reasoner click Reasoner->Start reasoner Show Inferences

Figure 4 Object Properties Tab

OWL properties represent relationships and Object Properties are relationships between
Individuals. Some object properties may have a corresponding inverse property. Properties may have a
domain and a range, for example before has TemporalThing domain and range.

Finally, Protégé supports object properties characteristics like: Functional properties, Inverse
Functional properties, Transitive property, Symmetric, Asymmetric, Reflexive, and Irreflexive.

Page 41 of 65



Design and Implementation of a Time Reasoner for Knowledge Representation on RDFS

x
File Edit View Ressoner Tools Refactor Window Help
<3 @ [ @ time-entry (http://wiw. si.edu~hobbs|damitime|time-entry.on) T

v] |
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Show Inferences.

Figure 5 Data Properties Tab

Data type properties link Individuals to XML Schema datatypes or RDF literals. They describe
relationships between individuals and data values but they can also be used as restrictions. Built-in

datatypes are specified in the XML Schema vocabulary. In our ontology we have data types like day,
hour, inCalendarClockDataType and others.

File Edit View Reasoner Tools Refactor Window Help

< ® | © time-entry (http://www.isi.edu/~hobbs/damkimeftime-entry.owl)

i J
Active Ontology | Entities | Classes | Object Properties | Data Properties | Annotstion Properties | Individuals | OWLViz | DL Query | OntoGraf | SPARQL Query | Ontology Differences
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@timeZone @ meeting3End
o 2End inCalandarClackNataT, "2014.0A-NAT14:00:00"AAd ataTi b
@ unitType
@ versioninfo
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Range (rtersection)
Superpropeties

To use the reasoner click Reasoner->Start reasoner Show Inferences

Figure 6 Annotation Properties Tab

Annotation properties are the third type of OWL properties. They are used to add information
in the form of metadata to classes, Individuals, object or data type properties. We can see the usage
above on figure 6.
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Figure 7 Individuals Tab

Above, on figure 7 we can see the Individuals Tab with the Interval Event meetingl selected.
We can spot the annotations on the right side and the description on the bottom. This view is the best
for the user to be able to see the full characteristics of an Individual class.
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Figure 8 Graph Model

Above we see the graph model of the ontology. This is the easiest way to visualize an ontology
and understand its components.

The ontology we created has Interval Events on the same day but with different time and
durations. This was on purpose for this project to be able to show the capabilities of a reasoner, as it has
to extract from the given data the knowledge of when one meeting event is chronically interchanged
with another.

To check this hypothesis we have to know how many different time based relations are possible
between two interval events at any time. The answer was given to us from a scientific paper called
”Maintaining Knowledge about Temporal Intervals” written by James F. Allen in 1983. In this paper it
was stated that there are thirteen possible relations between to events. For the First Order Logic (or
Predicate logic) that proves those relations you can refer to the Appendix.
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The next step was to translate those definitions into RuleML syntax so the General purpose
reasoner of the Jena API could read them. This was possible in any text editor, like Notepad++. First
the prefixes were created and then the rules, most of witch with the backward-chaining order.

File Edit Search View Encoding Language Settings Macre Run Plugins Window 2 X

cHHER LB sBD(oc|me x| BB 1IErEnl® >
Blienanies ] BHOWL schedue.onl £3] BIOWL schedue statements xt &3 [H10WLes £3 | 0w begin_snd owl 1]

@prefix time-entry: <http://www.isi.edu/~hobbs/damlitime/time-entr
@Gprefix rdf: <htt www.Ww3.0rq/19939/02/22-rdf-syntax-nsi>
@prefix tzont <htt www.isi.edu/~pan/damltime/timezone-ont.owl>
Gprefix owl <http://www.w3.0rg/2002/07/0wl$>.

Gprefix xsd <http://www.w3.0rq/2001/XMLSchema$>.

Gprefix rdfs <http://www.w3.o0rg/2000/01/rdf-schema¥>.

LOWlg>

W o 3 o b WK

[during: (?T1 time-entry:intDuring ?2T2) <-

)
o

(?T1 rdf:
(?2T2
(?tl1
(?t2
(?t3
(?t4

rdf:
rdf:
rdf:
rdf:
rdf:

type
type
type
type
type
type

time-entry:
time-entry:
time-entry:
time-entry:
time-entry:
time-entry:

IntervalEvent),
IntervalEvent),
Instant),
Instant},
Instant),
Instant),

(?t3
(?t2

time-entry:before ?2tl),
time-entry:before 2t4)]

[contains: (?T1 time-entry:intContains ?2T2) <-

(?T1
(?T2
(?t1
(?t2
(?t3
(?t4

rdf:
rdf:
rdf:
rdf:
rdf:
rdf:

type
type
type
type
type
type

time-entry:
time-entry:
time-entry:
time-entry:
time-entry:
time-entry:

IntervalEvent),
IntervalEvent),
Instant),
Instant),
Instant),
Instant),

(2t
(?t4

time-entry:before ?2t3),
time-entry:before ?t2)]

[before: (?T1 time-entry:intBefore ?2T2) <-
(?T1 rdf:type time-entry:IntervalEvent),

<

length: 3670 lines: 11 Ln:101 Col:27 Sel: 0|0

Dos\Windows

Figure 9 Jena Rules file

UTF-8 w/o BOM
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The results are in the Appendix. After that was done we created a java program with the Jena
APl installed that could first load the ontology and then the custom rules we created. The java program
was created in Eclipse using the Jena API. Finally it had to extract the statements in triplets along with
the new knowledge.
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6 Conclusions

As we can see, the possibilities are endless. Depending on the rules that we define, we can
extract new knowledge in triplets. Despite that the purpose of this project was to infer about the interval
relations between the Interval Events, we can see that even in a sub- ontology as the time-entry with
very few predefined classes the amount of new information can be very impressive. Time entry and
OWL Time can also support Time Zone defined classes.

For a web application oriented stand point, it is easy to see how important this new technology
is. First of all, the ability to store time related data between objects can increase incrementally the odds
of a search engine to give us more specific answers, instead of numerous insignificant results bases
strictly on keyword search. Also the agents, used in the sematic web applications can use this technology
to can use this technology to can use this technology to save the end user time.

This project shows just how important metadata manipulation and ontology creation is for the
future of the web. With predefined ontologies that can save time and help better integrate the almost
one billion web pages of the web with each other and reasoners that can extract new knowledge based
on existed one, from returning better results to making decisions.
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Jena API Installation in Eclipse
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First Order Logic Interval Relations

(VvT21,T2)intEquals(T1,T2)
= [Properinterval(T 1) A Properinterval(T 2)
A (Vt1)[begins(t1,T 1)=begins(tl,T2)]
A(Vt2)[ends(t2,T1)=ends(t2,T 2)]]]

(VT1,T2)[intBefore(T1,T2)
= Properinterval(T 1) A Properinterval(T 2 ) A before(T 1, T 2)]

(VvT1,T2)[intMeets(T1,T2)
= [Properinterval(T 1) A Properinterval(T 2)
A (3 t)[ends(t, T 1) A begins(t, T 2)]]]

(v T1,T2)[intOverlaps(T1,T 2)
= [Properinterval(T 1) A Properinterval(T 2)
A@At2,t3)[ends(t2,T1)Abegins(t3,T2)Abefore(t3,t2)
A (Vt1)[begins(tl,T 1) > before(tl,t3)]
A(Vt4)[ends(t4,T 2) o before(t 2 ,t 4)]]1]

(vT1,T2)intStarts(T 1,T 2)
= [Properinterval(T 1) A Properinterval(T 2)
A3 t2)[ends(t2,T1)A(Vtl)[beginstl,T1)=begins(tl,T2)]
A(Vt4)[ends(t4,T 2) o before(t 2 ,t 4)]]1]
(vT21,T2)[intDuring(T1,T2)
= [Properinterval(T 1) A Properinterval(T 2)
A@tl,t2)[begins(tl , T1)Aends(t2,T1)
A (V 13)[begins(t 3,T 2) > before(t3,t1)]
A(Vt4)[ends(t4,T 2) o before(t 2 ,t 4)]]1]
(v T1,T2)[intFinishes(T1,T2)
= [Properinterval(T 1) A Properinterval(T 2)
A (3 t1)[begins(t1,T1)A (Vt3)[begins(t3,T2) > before(t3,t1)]
A(Vtd)[ends(t4,T2)=ends(t4,T 1)]]1]
intAfter(T 1,T 2 ) =intBefore(T2,T1)
intMetBy(T 1 ,T 2 ) =intMeets(T 2 ,T 1)
intOverlappedBy(T 1,T 2 ) = intOverlaps(T 2,T 1)
intStartedBy(T 1 ,T 2 ) = intStarts(T 2,T 1)
intContains(T 1,T 2 ) =intDuring(T2,T 1)

intFinishedBy(T 1,T 2 ) = intFinishes(T 2,T 1)
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Appendix

RuleSet:

@prefix time-entry:

entry.owl#>.

@prefix

@prefix

@prefix

@prefix

@prefix

?7t3

[
(
(
(
(
(
(
(
(?t2

?tl

[
(
(
(
(
(
(
(
(?t4

rdf
rdf

<http://www.isi.edu/~hobbs/damltime/time-

rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
<http://www.isi.edu/~pan/damltime/timezone-ont.owl#>.

tzont
owl
xsd

type
type
type
type
ttype
ttype

<http://www.w3.0rg/2002/07/owl#>.
<http://www.w3.0rg/2001/XMLSchema#>.
rdfs <http://www.w3.0rg/2000/01/rdf-schema#>.

time-entry:
time-entry:
:Instant),
:Instant

time-entry
time-entry

time-entry:
time-entry:

during: (?T1 time-entry:intDuring ?T2) <-
rdf:
rdf:
rdf:
rdf:

IntervalEvent),
IntervalEvent),

),
Instant),
)

Instant),

time-entry:before ?tl),

time-entry:before ?2t4)]

rdf
rdf

type
type
type
type
ttype
ttype

time-entry:
time-entry:
time-entry:
time-entry:
time-entry:
time-entry:

contains: (?T1 time-entry:intContains ?T2)
rdf:
rdf:
rdf:
rdf:

IntervalEvent),
IntervalEvent),
Instant),

Instant

14

)
Instant),
Instant)

4

time-entry:before ?2t3),

time-entry:before ?2t2)]

before: (?T1l time-entry:intBefore ?T2) <-

[
(
(?T2
(
(

rdf:type time-entry:IntervalEvent),
rdf:type time-entry:IntervalEvent),
time-entry:before ?2t3),

time-entry:before ?2t3)]

after: (?T]1 time-entry:intAfter ?T2) <-

(
(
(?T2
(
(

rdf:type time-entry:IntervalEvent),

rdf:type time-entry:IntervalEvent),

time-entry:before ?2tl),

time-entry:before ?2tl)]

[overlaps: (?T1 time-entry:intOverlaps ?T2)
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?T1 rdf:type time-entry:IntervalEvent),
?T2 rdf:type time-entry:IntervalEvent),

?tl time-entry:
?t2 time-entry:

?t4 time-entry:
?tl time-entry:
?t3 time-entry: P
tbefore ?2t4) ]

?t2 time-entry

(
(
(
(
(?t3 time-entry:
(
(
(
(

begins ?T1),
ends ?T1),
begins ?T2),
ends ?T2),
before ?t3),
before ?t2)

overlappedby: (?T1 time-entry:intOverlappedBy ?T2) <-

?T1 rdf:type time-entry:IntervalEvent),
?T2 rdf:type time-entry:IntervalEvent),

?tl time-entry:

?t3 time-entry:
?t4d time-entry:
?t3 time-entry:
?tl time-entry:

begins ?T1),
ends ?T1),
begins ?T2),
ends ?T2),
before ?tl),
before ?t4)

[
(
(
(
(?t2 time-entry:
(
(
(
(
(

4
?7t4 time-entry:before ?t2)]

equals: (?T1 time-entry:intEquals ?T2) <-
?Tl rdf:type time-entry:IntervalEvent),
?T2 rdf:type time-entry:IntervalEvent),

?t2 time-entry:ends ?T1),
?tl time-entry:begins ?T2),

[
(
(
(?tl time-entry:begins ?T1),
(
(
(?t2 time-entry:ends ?T2) ]

starts: (?T1 time-entry:intStarts ?T2) <-
?T1l rdf:type time-entry:IntervalkEvent),

?tl time-entry:before ?t4),
?t2 time-entry:before ?2t4),

[
(
(?T2 rdf:type time-entry:IntervalEvent),
(
(
(?t3 time-entry:before ?t4)]

startedby: (?T1 time-entry:intStartedBy ?T2) <-
?T1 rdf:type time-entry:IntervalEvent),

[
(
(?T2 rdf:type time-entry:IntervalEvent),
(?tl time-entry:before ?t4),

(?t2 time-entry:after ?2t4),

(?t3 time-entry:before ?t4)]

[finishes: (?T1 time-entry:intFinishes ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),
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(?t3 time-entry:before ?tl),
(?t2 time-entry:ends 2T1),
(?t3 time-entry:before ?tl)
(?t4 time-entry:ends ?T2) ]

[finishedby: (?T1 time-entry:intFinishedBy ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),

(?T2 rdf:type time-entry:IntervalEvent),

(?tl time-entry:before ?t3),

(?t2 time-entry:ends ?2T1),

(?t3 time-entry:after ?tl)

(?t4 time-entry:ends ?T2) ]

meets: (?T]1 time-entry:intMeets ?T2) <-
?Tl rdf:type time-entry:IntervalEvent),

?t time-entry:ends ?T1),

[
(
(?T2 rdf:type time-entry:IntervalEvent),
(
(?t time-entry:begins ?T2) ]

metby: (?T1 time-entry:intMetBy ?T2) <-
?T1 rdf:type time-entry:IntervalEvent),

[
(
(?T2 rdf:type time-entry:IntervalEvent),
(?t time-entry:begins ?T2),

(

?t time-entry:ends ?T1)]
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Ontology shippet:
<l-- http://www.isi.edu/~hobbs/damltime/time-entry.owl#meetingl -->

<owl:NamedIndividual rdf:about="&time-entry;meeting1">
<rdf:type rdf:resource="&time-entry;IntervalEvent"/>
<durationDescriptionDataType

rdf:datatype="&xsd;duration">PT180M</durationDescriptionDataType>

<durationDescriptionOf rdf:resource="&time-entry;meeting1DurationDescription"/>
<ends rdf:resource="&time-entry;meeting1End"/>
<begins rdf:resource="&time-entry;meetinglStart"/>

</owl:NamedIndividual>

<!I-- http://www.isi.edu/~hobbs/damltime/time-entry.owl#meeting1DurationDescription -->

<owl:NamedIndividual rdf:about="&time-entry;meeting1DurationDescription">
<rdf:type rdf:resource="&time-entry;DurationDescription"/>
<minutes rdf:datatype="&xsd;decimal">180</minutes>
</owl:NamedIndividual>

<!I-- http://www.isi.edu/~hobbs/damitime/time-entry.owl#meetingl1End -->

<owl:NamedIndividual rdf:about="&time-entry;meetinglEnd">
<rdf:type rdf:resource="&time-entry;Instant"/>
<inCalendarClockDataType rdf:datatype="&xsd;dateTime">2014-06-
06T13:00:00</inCalendarClockDataType>
<inCalendarClock rdf:resource="&time-entry;meeting1StartDescription"/>
</owl:NamedIndividual>

<!-- http://www.isi.edu/~hobbs/damlitime/time-entry.owl#meeting1EndDescription -->

<owl:NamedIndividual rdf:about="&time-entry;meetinglEndDescription">
<rdf:type rdf:resource="&time-entry;CalendarClockDescription"/>
<minute rdf:datatype="&xsd;nonNegativelnteger">0</minute>
<hour rdf:datatype="&xsd;nonNegativelnteger">13</hour>
<year rdf:datatype="&xsd;gYear">2014</year>
<day rdf.datatype="&xsd;gDay">6</day>
<month rdf.datatype="&xsd;gMonth">6</month>
<unitType rdf:resource="&time-entry;unitMinute"/>
<timeZone rdf:resource="http://www.isi.edu/~hobbs/damltime/timezone-
world.owl#BTZ"/>
</owl:NamedIndividual>
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<I-- http://www.isi.edu/~hobbs/damlitime/time-entry.owl#meeting1Start -->

<owl:NamedIndividual rdf:about="&time-entry;meetinglStart">
<rdf:type rdf:resource="&time-entry;Instant"/>
<inCalendarClockDataType rdf:datatype="&xsd;dateTime">2014-06-
06T10:00:00</inCalendarClockDataType>
<inCalendarClock rdf:resource="&time-entry;meeting1StartDescription"/>
</owl:NamedIndividual>

<!-- http://www.isi.edu/~hobbs/damltime/time-entry.owl#meeting1StartDescription -->

<owl:NamedIndividual rdf:about="&time-entry;meetinglStartDescription">
<rdf:type rdf:resource="&time-entry;CalendarClockDescription"/>
<minute rdf.datatype="&xsd;nonNegativelnteger">0</minute>
<hour rdf:datatype="&xsd;nonNegativelnteger">10</hour>
<year rdf:datatype="&xsd;gYear">2014</year>
<day rdf.datatype="&xsd;gDay">6</day>
<month rdf.datatype="&xsd;gMonth">6</month>
<unitType rdf:resource="&time-entry;unitMinute"/>
<timeZone rdf:resource="http://www.isi.edu/~hobbs/damltime/timezone-
world.owl#BTZ"/>
</owl:NamedIndividual>
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Java Code:

import java.
import java.
import java.

io.BufferedReader;

io.Fil

e

io.FileNotFoundException;

import java.
import java.

import java.

import com.h
import com.h

io.IOException;
io.InputStreamReader;

util.L

p.hpl
p.hpl

ist;

.jena.
.jena.

rdf.model.

InfModel;

rdf.model.Literal;

import com.h
import com.h
import com.h
import com.h
import com.h
import com.h
import com.h
import com.h

p.hpl.
p.hpl.
p.-hpl.
p.hpl
p.hpl
p.hpl
p.-hpl
p.hpl

jena.
jena.
jena.

.jena.
.jena.
.jena.
.jena.
.jena.

rdf.model .Model;
rdf.model .ModelFactory;
rdf.model.Property;

rdf .model .RDFNode;
rdf.model.Resource;

rdf .model.Statement;
rdf.model.StmtIterator;
reasoner.Reasoner;

import com.h

p.hpl.

jena.

reasoner.ReasonerRegistry;

import com.h
import com.h
import com.h

public class
public
public

public

public static String getUserInput ()

p.hpl.
p.hpl
p.hpl

jena.

.jena.
.jena.

reasoner.rulesys.GenericRuleReasoner;

reasoner.rulesys.Rule;

shared.DoesNotExistException;

timeSchedule {
static Model m;
static BufferedReader br;

static void main (String[]
m = ModelFactory.createDefaultModel () ;

String in = "";

while

(!in.
try
{

}

catch

}

execu

args)

{

in = getUserInput();

(DoesNotExistException e)

equals ("Q"))
in = un;
te(in) ;

{

throws IOException {

throws IOException {

br = new BufferedReader (new InputStreamReader (System.in));
String input = null;

System.
System.
System.
System.
System.
System.
System.

input

out.
out.
out.
out
out.
out
out

= br.

.println

(
(

(
.println ("
(

(

.println(

println
println
println

println

readLine () ;

Load model");
Run rules");

Print all statements");
Query model");

ase enter a command");

Print number of statements");

Quit");
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return input;

public static void execute(String command) throws IOException {
if (command.equals("1")) {
System.out.print ("Enter model location: ");
String input = br.readLine();
File f = new File (input);
if (f.exists () && f.isFile())

m.read ("file:" + input);
else
System.out.println("Bad file location");
}
else if (command.equals ("2")) {

System.out.print ("Enter rules location: ");
String input = br.readlLine();

if (input == null)
return;

File f = new File (input);

if (f.exists()) {

List<Rule> rules = Rule.rulesFromURL("file:" +
input) ;

GenericRuleReasoner r = new
GenericRuleReasoner (rules);

r.setOWLTranslation (true) ;

r.setTransitiveClosureCaching (true) ;

InfModel infmodel = ModelFactory.createInfModel (r,

m.add (infmodel.getDeductionsModel ()) ;
}
else
System.out.println ("That rules file does not
exist.");

}
else if (command.equals("3")) {
StmtIterator si = m.listStatements();
Statement s = null;
while (si.hasNext ()) {
s = si.next();
System.out.println(s);
}
}

else if (command.equals("4")) {

System.out.print ("Enter a pattern to match: ");

String input = br.readLine();

String[] pattern = input.split(" ");

if (pattern.length != 3) {
System.out.println ("Bad query pattern");
return;

}

Resource s = null;

Property p = null;
RDFNode o = null;
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if (pattern[0].matches("'.+"'"))
s = getAnonNode (pattern[0] .replace("'",
else if (!pattern[0].equals("?"))
s = m.getResource (pattern[0]);

if (pattern[l].matches("'.+'"))
p = getAnonNode (pattern[l].replace("'",
"")) .as (Property.class) ;
else if (!pattern[l].equals("?"))
p = m.getProperty (pattern[l]);

if (pattern[2].matches("'.+'"))
o = getAnonNode (pattern[2].replace("'",
else if (pattern[2].matches ("\".+\""))

'pattern[2] .equals ("?"))
m.getResource (pattern([2]);

N— 1l —~ |

o)
else if
o)

StmtIterator si = m.listStatements (s, p, 0);
Statement st = null;
while (si.hasNext ()) {
st = si.next();
System.out.println(st);
}
}
else if (command.equals("5")) {
System.out.println(m.size());
}
}

private static Resource getAnonNode (String anonId) {
StmtIterator si = m.listStatements();

HH));

"H));

m.createliteral (pattern[2].replace("\"", ""));

Statement s = null;
while (si.hasNext ()) {
s = si.next();
Resource node = s.getSubject();
if (node.isAnon () && node.getId().toString().equals (anonId)) {
return node;
}
node = s.getPredicate();
if (node.isAnon () && node.getId().toString().equals (anonlId)) {

return node;
}
if (s.getObject () .canAs (Resource.class)) {
node = s.getObject () .as (Resource.class);
if (node.isAnon () &&
node.getId() .toString() .equals (anonId)) {
return node;
}
}
}
return null;

}
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Rule File (tOwl.rules)

@prefix time-entry: <http://www.isi.edu/~hobbs/damltime/time-entry.owl#>.
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.

@prefix tzont <http://www.isi.edu/~pan/damltime/timezone-ont.owl#>.
@prefix owl <http://www.w3.0rg/2002/07/owl#>.

@prefix xsd <http://www.w3.0rg/2001/XMLSchema#>.

@prefix rdfs <http://mww.w3.0rg/2000/01/rdf-schema#>.

[before:

(?x time-entry:before ?y) <-
(?x rdf:type time-entry:Instant),
(?y rdf:type time-entry:Instant),

(?x time-entry:inCalendarClockDatatype ?x1),

(?x1 time-entry:hour ?hourl),

(?y time-entry:inCalendarClockDatatype ?yl),

(?yl time-entry:hour ?hour2),
lessThan(?hourl,?hour2)

]

[during:

(?T1 time-entry:intDuring ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t3 time-entry:before ?t1),

(?t2 time-entry:before ?t4)]

[contains:(?T1 time-entry:intContains ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),
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(?T2 time-entry:ends ?t4),
(?t1 time-entry:before ?t3),
(?t4 time-entry:before ?t2)]

[intBefore:(?T1 time-entry:intBefore ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?tl1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t1 time-entry:before ?t3),

(?t2 time-entry:before ?t3)]

[after:(?T1 time-entry:intAfter ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t3 time-entry:before ?t1),

(?t4 time-entry:before ?t1)]

[overlaps:(?T1 time-entry:intOverlaps ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t1 time-entry:before ?t3),

(?t3 time-entry:before ?t2),

(?t2 time-entry:before ?t4)]
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[overlappedby:(?T1 time-entry:intOverlappedBy ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
(?t1 rdf:itype time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:itype time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t3 time-entry:before ?t1),

(?t1 time-entry:before ?t4),

(?t4 time-entry:before ?t2)]

[equals:(?T1 time-entry:intEquals ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),]

[starts:(?T1 time-entry:intStarts ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t1 time-entry:before ?t4),

(?t2 time-entry:before ?t4),

(?t3 time-entry:before ?t4)]

[startedby:(?T1 time-entry:intStartedBy ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
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(?t1 rdf:type time-entry:Instant),
(?t2 rdf:type time-entry:Instant),
(?t3 rdf:type time-entry:Instant),
(?t4 rdf:type time-entry:Instant),
(?T1 time-entry:begins ?t1),
(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),
(?T2 time-entry:ends ?t4),

(?t1 time-entry:before ?t4),

(?t2 time-entry:after ?t4),

(?t3 time-entry:before ?t4)]

[finishes:(?T1 time-entry:intFinishes ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t3 time-entry:before ?t1),

(?t2 time-entry:ends ?T1),

(?t3 time-entry:before ?t1)

(?t4 time-entry:ends ?T2)]

[finishedby:(?T1 time-entry:intFinishedBy ?T2) <-

(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t1 time-entry:before ?t3),

(?t2 time-entry:ends ?T1),

(?t3 time-entry:after ?t1)

(?t4 time-entry:ends ?T2)]

[meets:(?T1 time-entry:intMeets ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
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(?t1 rdf:type time-entry:Instant),
(?t2 rdf:type time-entry:Instant),
(?t3 rdf:type time-entry:Instant),
(?t4 rdf:type time-entry:Instant),
(?T1 time-entry:begins ?t1),
(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),
(?T2 time-entry:ends ?t4),

(?t time-entry:ends ?T1),

(?t time-entry:begins ?T2)]

[metby:(?T1 time-entry:intMetBy ?T2) <-
(?T1 rdf:type time-entry:IntervalEvent),
(?T2 rdf:type time-entry:IntervalEvent),
(?t1 rdf:type time-entry:Instant),

(?t2 rdf:type time-entry:Instant),

(?t3 rdf:type time-entry:Instant),

(?t4 rdf:type time-entry:Instant),

(?T1 time-entry:begins ?t1),

(?T1 time-entry:ends ?t2),

(?T2 time-entry:begins ?t3),

(?T2 time-entry:ends ?t4),

(?t time-entry:begins ?T2),

(?t time-entry:ends ?T1)]
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