

TECHNOLOGICAL EDUCATIONAL

 INSTITUTE OF CRETE

Department of Applied Informatics & Multimedia

CoAP-enabled Sensors for the Internet-of-Things

Evagelia Raptopoulou (ΑΜ: 3421)

Afroditi Argiropoulou (AM: 2795)

Supervisor: Mr. Manifavas Charalambos

Crete 2014 ©

Statement

We declare that we have developed this semester project individually under the leadership of

Mr.Manifavas Charalambos. We have mentioned all the sources and publications we have

used.

……………………

Evagelia Raptopoulou, Afroditi Argiropoulou

October 1, 2014

Acknowledgments

We thank everyone that helped us with the elaboration of our project. We would like to

specially thank our teachers that provided us with knowledge and motive.

© Evagelia Raptopoulou, Afroditi Argiropoulou, 2014

3

Abstract

 Ubiquitous sensing enabled by Wireless Sensor Network (WSN) technologies affects

many areas of our modern day living. This offers the ability to measure, interfere and

understand environmental statistics, from delicate ecologies and natural resources to smart

homes and urban environments. The continuous increment of the number of these devices in

an interactive network creates the Internet of Things (IoT) and the information is shared

across platforms. Fed by the recent adaptation of a variety of enabling wireless technologies

the IoT has made its kick-start and is the next revolutionary technology in transforming the

Internet into a fully integrated Future Internet. As we move from www (static pages web) to

web2 (social networking web) to web3 (ubiquitous computing web), the need for fast data

access increases significantly. This paper presents an implementation of the Constrained

Application Protocol (CoAP) on sensor modes using the Contiki OS. Several services are

exposed and made available to conventional web browsers.

Keywords: Internet of Things; Wireless sensor networks, Contiki, Cooja;

4

Σύνοψη

 H έμππλε αλίρλεπζε πνπ ελεξγνπνηείηαη από αζύξκαην δίθηπν αηζζεηήξωλ (WSN)

επεξεάδεη πνιινύο ηνκείο ηεο ζύγρξνλεο δωήο καο. Απηή πξνζθέξεη ηε δπλαηόηεηα λα

θαηαγξαθνύλ θαη λα θαηαλνεζνύλ πεξηβαιινληηθνί παξάγνληεο, από επαίζζεηα

νηθνζπζηήκαηα θαη θπζηθνύο πόξνπο κέρξη ηα έμππλα ζπίηηα θαη ηα αζηηθά πεξηβάιινληα. Η

ζπλερόκελε αύμεζε ηνπ αξηζκνύ ηωλ ζπζθεπώλ απηώλ κέζα ζε έλα δηαδξαζηηθό δίθηπν

απνηειεί ην Δηαδίθηπν γηα Αληηθείκελα (ΙoT) θαη νη πιεξνθνξίεο δηακνηξάδνληαη από

πιαηθόξκα ζε πιαηθόξκα. Λόγω ηεο πξόζθαηεο πξνζαξκνγήο ζε κηα γθάκα αζύξκαηωλ

ηερλνινγηώλ, ην Δηαδίθηπν γηα Αληηθείκελα έθαλε κηα εληππωζηαθή αξρή θαη απνηειεί πιένλ

ηελ ηερλνινγία πνπ ζα εμειίμεη ην δηαδίθηπν πέξα από απηό πνπ μέξνπκε. Καζώο πξνρωξάκε

από ην www(ζηαηηθέο ηζηνζειίδεο) ζην web2(θνηλωληθόο δηαδηθηπαθόο ηζηόηνπνο) θαη ζην

web3(έμππλε ρξήζε δηαδηθηύνπ), ε αλάγθε γηα γξήγνξε πξνζπέιαζε δεδνκέλωλ απμάλεηαη

ζεκαληηθά. Απηή ε εξγαζία παξνπζηάδεη ηελ πινπνίεζε ηνπ Πξωηνθόιινπ Εμαλαγθαζκέλεο

Εθαξκνγήο (Constrained Application Protocol-CoAP) ζε αηζζεηήξεο, ρξεζηκνπνηώληαο ην

ιεηηνπξγηθό ζύζηεκα Contiki. Δηάθνξεο ππεξεζίεο κειεηνύληαη θαη είλαη πξνζβάζηκεο ζε

ζπλήζεηο θπιινκεηξεηέο.

5

6

Contents

1 Introduction ... 8

1.1 Background .. 7

1.2 Ubiquitous computing in the next decade .. 9

1.3 Motive .. 11

1.4 Purpose ... 11

1.5 Structure of Thesis ... 11

1.6 Definitions .. 12

1.7 IoT elements .. 13

1.7.1 Radio Frequency Identification (RFID) .. 14

1.7.2 Wireless Sensor Networks (WSN) .. 14

1.7.3 Addressing schemes .. 16

1.7.4 Data storage and analytics ... 17

1.7.5 Visualization ... 18

2 COAP ... 19

2.1 Interaction ... 19

2.2 Methods .. 20

3 Technologies Used... 23

3.1 Introduction .. 23

3.2 Sensors ... 23

3.3 Contiki .. 23

3.3.1 General Contiki Program Structure ... 23

3.4 Cooja .. 25

3.4.1 About Cooja... 30

3.4.2 Starting Cooja.. 30

4 Implementation .. 26

4.1 Design Principles .. 26

4.2 TCP/IP .. 27

4.3 Create Resource .. 28

4.3.1 Create Periodic Resource .. 29

4.3.2 Create Event Resource .. 31

4.4 Program Parameters ... 32

4.4.1 Humidity ... 32

4.4.2 Temperature .. 32

7

4.4.3 LED status ... 33

4.5 Server ... 33

4.6 Client .. 35

4.7 Makefile ... 35

5 Problems encountered and Future directions ... 36

5.1 Problems encountered .. 36

5.2 Open challenges ... 36

6 Summary and Conclusions .. 38

7 References ... 39

8 Appentix .. 42

Table with all the document‘s figures.

Figure 1 Internet of Things schematic showing the end users and application areas

Figure 2 Internet Of Things

Figure 3 The WSN position in Internet

Figure 4 Work flow of Sensors

Figure 5 WSN layers

Figure 6 Abstract Coap layering

Figure 7 Two basic GET transactions, one successful, one not found

Figure 8 An asynchronous GET transaction

Figure 9 An orphaned transaction

Figure 10 The IoT/IP stack

Figure 11 Screenshot while simulate Cooja with two motes

Figure 12 Create new simulation interface

Figure 13 The simulation interface

Figure 14 The create mote type interface

Figure 15 The network window

Figure 16 The RPL route status, as visible to the border router

8

Figure 17 Server-Client Module

Figure 18 The TCP 3-way handshake

Figure 19 Screenshot from console 1

Figure 20 Cooja

Figure 21 Screenshot from console 2

Figure 22 Cooja on startup

Figure 23 GET method of the humidity resource in COAP

Figure 24 Observing humidity resource

Figure 25 Observing humidity resource moments later

Figure 26 GET method of the temperature resource in COAP

Figure 27 Observing temperature resource

Figure 28 Observing temperature resource moments later

Figure 29 GET method of the LedS resource in COAP

Figure 30 Observing LedS resource

Figure 31 Observing LedS resource moments later

9

1 Introduction

 This chapter gives a short introduction to the background and purpose of this thesis

and also the abbreviations used in this report.

1.1 Background

 The next wave in the era of computing will be outside the realm of the traditional

desktop. In the Internet of Things (IoT) paradigm, many of the objects that surround us will

be on the network in one form or another. Sensor network technologies will rise to meet this

new challenge, in which information and communication systems are invisibly embedded in

the environment around us. These results in the generation of enormous amounts of data

which have to be stored processed and presented in a seamless, efficient, and easily

interpretable form. This model will consist of services that are commodities and delivered in

a manner similar to traditional commodities. Cloud computing is a option that provides the

virtual infrastructure for such utility computing which integrates monitoring devices, storage

devices, analytics tools, visualization platforms and client delivery.

 Smart connectivity with existing networks and context-aware computation using

network resources is an indispensable part of IoT. With the growing presence of WiFi and

4G-LTE wireless Internet access, the evolution towards ubiquitous information and

communication networks is already evident. However, for the Internet of Things vision to

successfully emerge, the computing paradigm will need to go beyond traditional mobile

computing scenarios that use smart phones and portables, and evolve into connecting

everyday existing objects and embedding intelligence into our environment. For technology

to disappear from the consciousness of the user, the Internet of Things demands:

A shared understanding of the situation of its users and their appliances.

Software architectures and pervasive communication networks to process and convey the

contextual information to where it is relevant, and the analytics tools in the Internet of Things

that aim for autonomous and smart behavior. With these three fundamental grounds in place,

smart connectivity and context-aware computation can be accomplished.

10

 The term Internet of Things was first coined by Kevin Ashton in 1999 in the context

of supply chain management [1]. However, in the past decade, the definition has been more

inclusive covering wide range of applications like healthcare, utilities, transport, etc.

Although the definition of ‗Things‘ has changed as technology evolved, the main goal of

making a computer sense information without the aid of human intervention remains the

same. A radical evolution of the current Internet into a Network of interconnected objects

that not only harvests information from the environment (sensing) and interacts with the

physical world (actuation/command/control), but also uses existing Internet standards to

provide services for information transfer, analytics, applications, and communications.

Fueled by the prevalence of devices enabled by open wireless technology as well as

embedded sensor and actuator nodes, IoT has stepped out of its infancy and is on the verge of

transforming the current static Internet into a fully integrated Future Internet [2]. The Internet

revolution led to the interconnection between people at an unprecedented scale and pace. The

next revolution will be the interconnection between objects to create a smart environment.

Only in 2011 did the number of interconnected devices on the planet overtake the actual

number of people. Currently there are 9 billion interconnected devices and it is expected to

reach 24 billion devices by 2020. According to the GSMA, this amounts to $1.3 trillion

revenue opportunities for mobile network operators alone spanning vertical segments such as

health, automotive, utilities and consumer electronics. A schematic of the interconnection of

objects is depicted in Fig. 1, where the application domains are chosen based on the scale of

the impact of the data generated. The users span from individual to national level

organizations addressing wide ranging issues.

11

1.2 Ubiquitous computing in the next decade

The effort by researchers to create a human-to-human interface through technology in

the late 1980s resulted in the creation of the ubiquitous computing discipline, whose

objective is to embed technology into the background of everyday life. Currently, we are in

the post-PC era where smart phones and other hand-held devices are changing our

environment by making it more interactive as well as informative. Mark Weiser, the

forefather of Ubiquitous Computing, defined a smart environment [3] as ―the physical world

that is richly and invisibly interwoven with sensors, actuators, displays, and computational

elements, embedded seamlessly in the everyday objects of our lives, and connected through a

continuous network‖.

The creation of the Internet has marked a foremost milestone towards achieving

ubicomp‘s vision which enables individual devices to communicate with any other device in

Figure 1, Internet of Things schematic showing the end users and application areas

 Figure 1

12

the world. The inter-networking reveals the potential of a seemingly endless amount of

distributed computing resources and storage owned by various owners.

In contrast to Weiser‘s Calm computing approach, Rogers proposes a human centric

ubicomp which makes use of human creativity in exploiting the environment and extending

their capabilities [4]. He proposes a domain specific ubicomp solution when he says—―In

terms of who should benefit, it is useful to think of how ubicomp technologies can be

developed not for the Sal‘s of the world, but for particular domains that can be set up and

customized by an individual firm or organization, such as for agricultural production,

environmental restoration or retailing‖.

Caceres and Friday discuss the progress, opportunities and challenges during the 20

year anniversary of ubicomp. They discuss the building blocks of ubicomp and the

characteristics of the system to adapt to the changing world. More importantly, they identify

two critical technologies for growing the ubicomp infrastructure:

Cloud Computing

Internet of Things.

The advancements and convergence of MEMS technology, wireless communications,

and digital electronics has resulted in the development of miniature devices having the ability

to sense, compute, and communicate wirelessly in short distances. These miniature devices

called nodes interconnect to form a WSN and find wide ranging applications in

environmental monitoring, infrastructure monitoring, traffic monitoring, retail, etc. [5]. This

has the ability to provide a ubiquitous sensing capability which is critical in realizing the

overall vision of ubicomp as outlined by Weiser. For the realization of a complete IoT vision,

efficient, secure, scalable and market oriented computing and storage resourcing is essential.

This platform acts as a receiver of data from the ubiquitous sensors; as a computer to analyze

and interpret the data; as well as providing the user with easy to understand web based

visualization. The ubiquitous sensing and processing works in the background, hidden from

the user.

1.3 Motive

 Main motive of ours was to study the possibilities given by the Contiki OS. The use

of C programming language was important for us because it is the main language used in

Contiki applications. Both core programming and web user interface were important for us.

13

Contiki especially opens a whole wide ocean of opportunities that someone can just pick and

innovate with, as long as he has the proper knowledge Furthermore the topic is really

interesting for us because IoT is a technology with many fun applications such as smart

homes and other.

1.4 Purpose

 The main purpose of this project, from the user's point of view, is to suggest an easy

web interface that provides information about temperature, humidity and led status of

sensors.

 The main purposes for us given in the project's specifications were to study the

possibilities given by the use of Contiki OS and implement a virtual modes for humidity,

temperature and led status. An important part is to study the structure of Contiki programs

and satisfy the short memory constrains.

 The main features are developed using C programming language. Cooja tool is used.

1.5 Structure of Thesis

 This paper presents the current trends in IoT supported by Contiki OS and the

development process of this technology. Specifically, in Section 2, we present an overview of

CoAP and the methods it is using. In Section 3 we quote about the operating system Contiki

and its usability in our thesis and generally in IoT technologies. Also we present Cooja the

sensor simulator. In Section 4 we show the technologies that we needed in order to

experiment with server-side applications in REST. In Section 5 and we conclude with

discussions on open challenges and future trends. Section 6 is a summarize with some

conclusions that we came up. In Section 7 we quote our references where we found a lot of

useful sources which help us to finish this paper. The last Section is our source code.

1.6 Definitions

As identified by Atzori et al. [6], Internet of Things can be realized in three

paradigms—internet-oriented (middleware), things oriented (sensors) and semantic-oriented

14

(knowledge). Although this type of delineation is required due to the interdisciplinary nature

of the subject, the usefulness of IoT can be unleashed only in an application domain where

the three paradigms intersect.

The RFID group defines the Internet of Things as– The worldwide network of

interconnected objects uniquely addressable based on standard communication protocols.

According to Cluster of European research projects on the Internet of Things– ‗Things‘

are active participants in business, information and social processes where they are enabled

to interact and communicate among themselves and with the environment by exchanging

data and information sensed about the environment, while reacting autonomously to the

real/physical world events and influencing it by running processes that trigger actions and

create services with or without direct human intervention.

According to Forrester [7], a smart environment– Uses information and

communications technologies to make the critical infrastructure components and services of

a city‘s administration, education, healthcare, public safety, real estate, transportation and

utilities more aware, interactive and efficient.

In our definition, we make the definition more user centric and do not restrict it to any

standard communication protocol. This will allow long-lasting applications to be developed

and deployed using the available state-of-the-art protocols at any given point in time. Our

definition of the Internet of Things for smart environments is–

Interconnection of sensing and actuating devices providing the ability to share

information across platforms through a unified framework, developing a common operating

picture for enabling innovative applications. This is achieved by seamless ubiquitous sensing,

data analytics and information representation with Cloud computing as the unifying

framework.

CoAP Constrained Application Protocol

IoT Internet-of-Things

IETF Internet Engineering Task Force

REST Representational state transfer

URI Uniform Resource Identifier

15

CoRE Constrained RESTful Environments

UDP User Datagram Protocol

UART Universal asynchronous receiver/transmitter

Ubicomp Ubiquitous Computing

GIS Geographic Information System

MEMS Micro-electro-mechanical systems

UDGM Unit Disk Graph Medium

JNI Java Native Interface

WSN Wireless Sensor Networks

Table 1, Abbreviations

1.7 IoT elements

 We present a taxonomy that will aid in defining the components required for the

Internet of Things from a high level perspective. There are three IoT components which

enables seamless Ubicomp:

1. Hardware - made up of sensors, actuators and embedded communication hardware

2. Middleware - on demand storage and computing tools for data analytics

3. Presentation - novel easy to understand visualization and interpretation tools which

can be widely accessed on different platforms and which can be designed for different

applications. In this section, we discuss a few enabling technologies in these

categories which will make up the three components stated above.

16

Figure 2,Internet Of Things

1.7.1 Radio Frequency Identification (RFID)

 RFID technology is a major breakthrough in the embedded communication paradigm

which enables design of microchips for wireless data communication. They help in the

automatic identification of anything they are attached to acting as an electronic bar-code. The

passive RFID tags are not battery powered and they use the power of the reader‘s

interrogation signal to communicate the ID to the RFID reader. This has resulted in many

applications particularly in retail and supply chain management. The applications can be

found in transportation (replacement of tickets, registration stickers) and access control

applications as well. The passive tags are currently being used in many bank cards and road

toll tags which are among the first global deployments. Active RFID readers have their own

battery supply and can instantiate the communication. Of the several applications, the main

application of active RFID tags is in port containers [8] for monitoring cargo.

17

Figure 3,The WSN position in Internet

1.7.2 Wireless Sensor Networks (WSN)

 Recent technological advances in low power integrated circuits and wireless

communications have made available efficient, low cost, low power miniature devices for

use in remote sensing applications. The combination of these factors has improved the

viability of utilizing a sensor network consisting of a large number of intelligent sensors,

enabling the collection, processing, analysis and dissemination of valuable information,

gathered in a variety of environments. Active RFID is nearly the same as the lower end WSN

nodes with limited processing capability and storage. The scientific challenges that must be

overcome in order to realize the enormous potential of WSNs are substantial and

multidisciplinary in nature. Sensor data are shared among sensor nodes and sent to a

distributed or centralized system for analytics. The components that make up the WSN

monitoring network include:

1. WSN hardware - Typically a node (WSN core hardware) contains sensor interfaces,

processing units, transceiver units and power supply. Almost always, they comprise

18

of multiple A/D converters for sensor interfacing and more modern sensor nodes have

the ability to communicate using one frequency band making them more versatile.

2. WSN communication stack - The nodes are expected to be deployed in an ad-hoc

manner for most applications. Designing an appropriate topology, routing and MAC

layer is critical for the scalability and longevity of the deployed network. Nodes in a

WSN need to communicate among themselves to transmit data in single or multi-hop

to a base station. Node drop outs, and consequent degraded network lifetimes, are

frequent. The communication stack at the sink node should be able to interact with

the outside world through the Internet to act as a gateway to the WSN sub-net and the

Internet [9].

3. WSN Middleware - A mechanism to combine cyber infrastructure with a Service

Oriented Architecture (SOA) and sensor networks to provide access to heterogeneous

sensor resources in a deployment independent manner. This is based on the idea of

isolating resources that can be used by several applications. A platform-independent

middleware for developing sensor applications is required, such as an Open Sensor

Web Architecture (OSWA). OSWA is built upon a uniform set of operations and

standard data representations as defined in the Sensor Web Enablement Method

(SWE) by the Open Geospatial Consortium (OGC).

4. Secure Data aggregation - An efficient and secure data aggregation method is

required for extending the lifetime of the network as well as ensuring reliable data

collected from sensors. Node failures are a common characteristic of WSNs, the

network topology should have the capability to heal itself. Ensuring security is critical

as the system is automatically linked to actuators and protecting the systems from

intruders becomes very important.

19

Figure 4,Work flow of Sensors

1.7.3 Addressing schemes

 The ability to uniquely identify ‗Things‘ is critical for the success of IoT. This will

not only allow us to uniquely identify billions of devices but also to control remote devices

through the Internet. The few most critical features of creating a unique address are:

uniqueness, reliability, persistence and scalability.

 Every element that is already connected and those that are going to be connected,

must be identified by their unique identification, location and functionalities. The current

IPv4 may support to an extent where a group of cohabiting sensor devices can be identified

geographically, but not individually. The Internet Mobility attributes in the IPV6 may

alleviate some of the device identification problems; however, the heterogeneous nature of

wireless nodes, variable data types, concurrent operations and confluence of data from

devices exacerbates the problem further [10].

 Persistent network functioning to channel the data traffic ubiquitously and relentlessly

is another aspect of IoT. Although, the TCP/IP takes care of this mechanism by routing in a

20

more reliable and efficient way, from source to destination, the IoT faces a bottleneck at the

interface between the gateway and wireless sensor devices. Furthermore, the scalability of

the device address of the existing network must be sustainable. The addition of networks and

devices must not hamper the performance of the network, the functioning of the devices, the

reliability of the data over the network or the effective use of the devices from the user

interface.

 To address these issues, the Uniform Resource Name (URN) system is considered

fundamental for the development of IoT. URN creates replicas of the resources that can be

accessed through the URL. With large amounts of spatial data being gathered, it is often

quite important to take advantage of the benefits of metadata for transferring the information

from a database to the user via the Internet [11]. IPv6 also gives a very good option to access

the resources uniquely and remotely. Another critical development in addressing is the

development of a lightweight IPv6 that will enable addressing home appliances uniquely.

 Wireless sensor networks (considering them as building blocks of IoT), which run on

a different stack compared to the Internet, cannot possess IPv6 stack to address individually

and hence a subnet with a gateway having a URN will be required. With this in mind, we

then need a layer for addressing sensor devices by the relevant gateway. At the sub-net level,

the URN for the sensor devices could be the unique IDs rather than human-friendly names as

in the www, and a lookup table at the gateway to address this device. Further, at the node

level each sensor will have a URN (as numbers) for sensors to be addressed by the gateway.

The entire network now forms a web of connectivity from users (high-level) to sensors (low-

level) that is addressable (through URN), accessible (through URL) and controllable (through

URC).

1.7.4 Data storage and analytics

 One of the most important outcomes of this emerging field is the creation of an

unprecedented amount of data. Storage, ownership and expiry of the data become critical

issues. The internet consumes up to 5% of the total energy generated today and with these

types of demands, it is sure to go up even further. Hence, data centers that run on harvested

energy and are centralized will ensure energy efficiency as well as reliability. The data have

to be stored and used intelligently for smart monitoring and actuation. It is important to

develop artificial intelligence algorithms which could be centralized or distributed based on

21

the need. Novel fusion algorithms need to be developed to make sense of the data collected.

State-of-the-art non-linear, temporal machine learning methods based on evolutionary

algorithms, genetic algorithms, neural networks, and other artificial intelligence techniques

are necessary to achieve automated decision making. These systems show characteristics

such as interoperability, integration and adaptive communications. They also have a modular

architecture both in terms of hardware system design as well as software development and

are usually very well-suited for IoT applications. More importantly, a centralized

infrastructure to support storage and analytics is required. This forms the IoT middleware

layer and there are numerous challenges involved which are discussed in future sections. As

of 2012, Cloud based storage solutions are becoming increasingly popular and in the years

ahead, Cloud based analytics and visualization platforms are foreseen.

1.7.5 Visualization

Visualization is critical for an IoT application as this allows the interaction of the user

with the environment. With recent advances in touch screen technologies, use of smart

tablets and phones has become very intuitive. For a lay person to fully benefit from the IoT

revolution, attractive and easy to understand visualization has to be created. As we move

from 2D to 3D screens, more information can be provided in meaningful ways for

consumers. This will also enable policy makers to convert data into knowledge, which is

critical in fast decision making. Extraction of meaningful information from raw data is non-

trivial. This encompasses both event detection and visualization of the associated raw and

modeled data, with information represented according to the needs of the end-user.

22

2 COAP

 Constrained Application Protocol (CoAP) is a specialized web transfer protocol for

use with constrained networks and nodes for machine-to-machine applications such as smart

energy and building automation. It is particularly targeted for small low power sensors,

switches, valves and similar components that need to be controlled or supervised remotely,

through standard Internet networks. CoAP provides a method/response interaction model

between application end-points, supports built-in resource discovery, and includes key web

concepts such as URIs and content-types. CoAP easily translates to HTTP for integration

with the web while meeting specialized requirements such as multicast support, very low

overhead and simplicity for constrained environments.

Figure 5,How WSN works on layers

23

 The use of web services (web APIs) on the Internet has become ubiquitous in most

applications and depends on the fundamental Representational State Transfer [REST]

architecture of the Web. The work on Constrained RESTful Environments (CoRE) aims at

realizing the REST architecture in a suitable form for the most constrained nodes (e.g., 8-bit

microcontrollers with limited RAM and ROM) and networks (e.g., 6LoWPAN, [RFC4944]).

Constrained networks such as 6LoWPAN support the fragmentation of IPv6 packets into

small link-layer frames; however, this causes significant reduction in packet delivery

probability. One design goal of CoAP has been to keep message overhead small, thus

limiting the need for fragmentation.

 One of the main goals of CoAP is to design a generic web protocol for the special

requirements of this constrained environment, especially considering energy, building

automation, and other machine-to-machine (M2M) applications. The goal of CoAP is not to

blindly compress HTTP [RFC2616], but rather to realize a subset of REST common with

HTTP but optimized for M2M applications. Although CoAP could be used for refashioning

simple HTTP interfaces into a more compact protocol, more importantly it also offers

features for M2M such as built-in discovery, multicast support, and asynchronous message

exchanges.

Figure 6,Abstract Coap layering

24

2.1 Interaction

 The interaction model of CoAP is similar to the client/server model of HTTP.

However, Machine-to-machine interactions typically result in a CoAP implementation acting

in both client and server roles (called an end-point). A CoAP exchange is equivalent to that

of HTTP, and is sent by a client to request an action on a resource (identified by a URI) on a

server. A response is then sent with a Response Code and resource representation if

appropriate.

Unlike HTTP, CoAP deals with these interchanges asynchronously over a UDP

transport with support for both unicast and multicast interactions. This is achieved using

transaction messages supporting optional reliability (with exponential back-off) and

transaction IDs between end-points to carry requests and responses. These transactions are

transparent to the request/response interchanges. The only difference being that responses

may arrive asynchronously.

One could think of CoAP as using a two-layer approach, a transactional layer used to

deal with UDP and the asynchronous nature of the interactions, and the request/response

interactions using Method and Response codes. The most basic interaction between the

Req/Res and Transaction layers works by sending a request in a confirmable CoAP message

and waiting for an acknowledgment message that also carries the response. E.g., two possible

interactions for a basic GET are shown in Figure 7.

Client Server Client Server

 | | | |

 | CON tid=47 | | CON tid=53 |

 | GET /foo | | GET /baz |

 +---------------->| +---------------->|

 | | | |

 | ACK tid=47 | | ACK tid=53 |

 | 200 "<temp... | | 404 "Not... |

 |<----------------+ |<----------------+

 | | | |

Figure 7,Two basic GET transactions, one successful, one not found

25

Note that at the transaction layer, the response is returned in an ACK message,

independent of whether the request was successful at the Req/Res layer. In effect, the

response is piggy-backed on the ACK message, so no separate acknowledgment is

required that the GET message was received. The relationship between the confirmable

message (CON) and the acknowledgment message (ACK) is indicated by the transaction

ID, which is echoed back by the server in the ACK. Transaction IDs are short-lived,

they only serve to couple CON and ACK messages. The tight coupling between CON

and ACK also relieves the ACK of the need to echo back information from the request,

such as the Token Option supplied by the client. We say that a response carried in an

ACK pertains to the request in the corresponding CON. Not all interactions are as

simple as the basic synchronous exchange shown. For example, a server might need

longer to obtain the representation of the resource requested than it can wait sending

back the acknowledgment, without risking the client to repeatedly retransmit the

request. To handle this case, the response is decoupled from the transaction layer

acknowledgment. Actually, the latter does not carry any message at all.

As the client cannot know that this will be the case, it sends exactly the same

confirmable message with the same request. The server maybe attempts to obtain the

resource (e.g., by acting as a proxy) and times out an ACK timer, or it immediately

sends an acknowledgment knowing in advance that there will be no quick answer. The

acknowledgment effectively is a promise that the request will be acted upon, see Figure

8 . Since no Token Option was included in the initial request, an "Token Option required

by server (CoAP 240)" error will be returned in the ACK. The client would then repeat

the request, now including a Token Option. For a request where an asynchronous

response is expected, the Token Option can be included in the first request.

26

Client Server

 | |

 | CON tid=48 |

 | TOKEN = 3a |

 | GET http://n.. |

 +---------------->|

 | |

 | ACK tid=48 |

 |<----------------+

 | |

 ... Time Passes ...

 | |

 | CON tid=783 |

 | TOKEN = 3a |

 | 200 "<html.. |

 |<----------------+

 | |

 | ACK tid=783 |

 +---------------->|

 | |

Figure 8,An asynchronous GET transaction

When the server finally has obtained the resource representation and is ready to

send the response, it initiates a transaction to the client. This new transaction has its own

transaction ID, so there is no automatic coupling of the response to the request. Instead,

the Token Option is echoed back to the client in order to associate the response to the

original request. To ensure that this message is not lost, it is again sent as a confirmable

message and answered by the client with an ACK, citing the new TID chosen by the

server. As a special failure situation, a client may no longer be aware that it sent a

request, e.g., if it does not have stable storage and was rebooted in the meantime. This

can be indicated by a special "Reset" message, as shown in Figure 9.

27

Client Server

 ... Client reboots ...

 | |

 | CON tid=783 |

 | TOKEN = 3a |

 | 200 "<html.. |

 |<----------------+

 | |

 | RST tid=783 |

 +---------------->|

 | |

Figure 9,An orphaned transaction

2.2 Methods

 CoAP supports the basic methods of GET, POST, PUT, DELETE, which are easily

mapped to HTTP. As CoAP methods manipulate resources, they have the same properties of

safe (only retrieval) and idempotent (you can invoke it multiple times with the same effects)

as HTTP Section 9.1 [RFC2616]. The GET method is safe, therefore it MUST NOT take any

other action on a resource other than retrieval. The GET, PUT and DELETE methods MUST

be performed in such a way that they are idempotent. Unlike PUT, POST is not idempotent

because the URI in the request indicates the resource that will handle the enclosed body. This

resource indicated by the POST may be used for data processing, a gateway to other

protocols and it may create a new resource as a result of the POST.

The basic methods are :

GET

The GET method retrieves the information of the resource identified by the request

URI. Upon success a 200 (OK) response SHOULD be sent.

POST

The POST method is used to request the server to create a new subordinate resource

under the requested parent URI. If a resource has been created on the server, the response

SHOULD be 201 (Created) including the URI of the new resource in a Location Option with

any possible status in the message body. If the POST succeeds but does not result in a new

28

resource being created on the server, a 200 (OK) response code SHOULD be returned.

Responses to this method are not cacheable.

PUT

The PUT method requests that the resource identified by the request URI be updated or

created with the enclosed message body. If a resource exists at that URI the message body

SHOULD be considered a modified version of that resource, and a 200 (OK) response

SHOULD be returned. If no resource exists then the server MAY create a new resource with

that URI, resulting in a 201 (Created) response. If the resource could not be created or

modified, then an appropriate error response code SHOULD be sent.

Responses to this method are not cacheable.

DELETE

The DELETE method requests that the resource identified by the request URI be

deleted. The response 200 (OK) SHOULD be sent on success.

Responses to this method are not cacheable.

29

3 Related Technologies

In order to assimilate this report a brief description of important technologies is given.

3.1 Introduction

Several complementary technologies are associated with this IoT application. As

previously discussed, the most common technique to start is the sensors, so influences on

sensors are likewise influences on Contiki OS itself. Both of them are going to be extended

in detail later. However, other specifications and technologies also impact on, with most

important Cooja tool(chapter 3.4).

3.2 Sensors

There is a wide range of application areas in which sensor networks can be used.

Military applications include surveillance and reconnaissance, and in the health area sensor

nodes could help monitor and aid patients. As deployment time can be very short, sensor

networks can be used for monitoring disaster areas. Another example is to use sensor nodes

in smart homes as alarms controlling devices.

Advances in wireless communication and electronic enable development of cheaper

and smaller sensor nodes. Basically, a sensor node has processing power, wireless

communication abilities and sensing devices. But to minimize costs they are often very

limited, a typical sensor node has a short communication range, low initial amount of energy

source, as that often is the main factor corresponding to the length of the sensor node life.

A sensor network may consist of up to the thousands or even millions of sensor nodes

densely deployed and without pre-determined positions. The network has to be fault tolerant,

scalable and of low production costs. These circumstances demand a new set of ad-hoc

protocols and algorithms to be developed. Those used in traditional networks are often note

well suited for sensor networks, for reasons such as the larger amount of nodes in

communication range, high failure rates and limited resources of individual nodes.

30

Sensor networks are very application-specific, different networks‘ ideal nodes may

differ in both hardware and algorithms. And of course, sensor node hardware can be

constructed in several different ways. A simulator should therefore be adjustable to easily

simulate different software as well as deferent underlying hardware platforms.

Also, similar wireless sensor network may include deferent kinds of sensor nodes with

different purposes. As an example consider a network with two different types of nodes, a

cheap type and an expensive type. The cheap nodes are simple, the only gather temperature

data and forwards it to the nearest expensive and present the average temperature on the

Internet. Note that these sensor node type differ not only in their running software, but also in

their hardware platforms. To simulate the above example, a simulator must support such

heterogeneous networks, with several node types differing in both hardware and software.

3.3 Contiki

Contiki is an operating system designed for memory constrained environments, such

as the nodes used in WSN. It is built around an event-driven kernel, and features include

dynamic loading and unloading of individual programs and services, and optional preprocess

pre-emptive multi-threading. It also supports a full TCP/IP stack via the uIP library, as well

as the programming abstraction Protothreads. Contiki is implemented in the C language and

has been designed to be easily portable to new platforms. It has been ported to more than 20

deferent platforms since its release 2003.

In a purely event-based system, a process is implemented as an event handler, letting

different blocks of code execute depending on which event is given. These blocks are always

allowed to run to completion once called. Since a single code block will never be interrupted,

these blocks can be designed so that they may all share the same stack. Compared to a multi-

threaded model this requires less memory and computation overhead when having several

concurrent processes. In Contiki, a process consists of an event handler and an optional poll

handler function. The Contiki kernel holds the event scheduler that dispatches events to

processes and periodically polls processes that registered a poll handler function. It uses a

single stack for all processes, which is rewound between each invocation of an event handler.

To better understand Contiki one should take a look at its system architecture.

31

Typically, a running Contiki system consists of the kernel, libraries, the program loader, and

a set of processes. Communication between the processes always goes through the kernel,

which does not provide a hardware abstraction layer, but lets device drivers and applications

communicate directly with the hardware. A process is defined by an event handler function

and an optional poll handler function. The process state is held in the process‘ private

memory and the kernel only keeps a pointer to the process state. All processes share the same

address space and do not run in different protection domains. Interprocess communication is

done by posting events. Looking at it from a higher perspective, the Contiki system is made

up of two parts: the core and the loaded programs. Typically, the core consists of the kernel,

the program loader, the most commonly used parts of the language runtime, and a

communication stack with device drivers for the communication hardware. The core is

compiled into a single binary image and is usually not modified after deployment (although it

is possible to use a special boot loader to overwrite or patch the core). The program loader is

in charge of loading/unloading the programs into the system either by using the

communication stack or directly attached storage (such as EEPROM). It is also important to

note here the abstraction model:

Programs know the core; the core does not know the program.

Using Contiki as the operating system of the motes offers many advantages. As

mentioned before, Contiki‘s kernel is event based, which means that the block wait

abstraction is not supported. For this reason, when programming such a system one will have

to use a state machine to implement the control flow for high level logic that cannot be

expressed as a single event handler. However this approach is cumbersome and programmers

usually have problems with it. To overcome this shortcoming and simplify the programs,

Contiki implements a programming abstraction called protothreads. One has to remember

though, that as the name implies, they are merely tools for creating a conditional blocking

wait statement [14].

32

Figure 10,The IoT/IP stack

When developing software for large sensor networks it is very important to be able

to dynamically download program code into the network. One possible advantage of this is

the ability to patch bugs in operational networks. As opposed to most operating systems for

embedded systems, such as TinyOS, which require a complete binary image of the entire

system to be flushed into each device, Contiki has the ability to load and unload individual

applications or services at runtime. Of course, this greatly reduces the actual time required to

do the modifications. As an example just think of a network of 30 motes at the time when

some routing protocol is tested and modifications to the code are bound to be numerous. If it

takes us around 2 minutes to program one mote than we would need an hour to program the

entire network. With Contiki, this reprogramming can be done in less than 5 minutes! This

is why dynamically loading programs into the system and programming over the radio is one

of the key features of Contiki. Dynamic loading of programs is done using ELF object files

and more information can be found in.

The support of a native TCP/IP protocol stack is very important in the context of

embedded systems because it provides interoperability with the existing systems and makes it

easy to integrate Contiki into the existing IP network infrastructure. As mentioned in one of

the goals of future research in WSN should be the consideration of the Internet side of them,

i.e. the exchange of data between different WSN and organizations.

33

Contiki uses two communication stacks uIP and RIME. UIP is a minimal RFC

compliant implementation that has a 5kB footprint. It is important to remember that uIP has

several limitations: no IP options, no sliding window, can handle only one network interface,

uses a single buffer for both incoming and outgoing packets and does not buffer sent packets.

A more detailed description of these can be found in. Note however that this paper is a bit old

and UDP is now implemented by Contiki uIP (contrary to what is written there). The other

communication stack used by Contiki is RIME. Rime is a new lightweight communication

stack designed for low-power radios. Rime provides a wide range of communication

primitives, from best-effort local area broadcast, to reliable multi-hop bulk data flooding.

Another noticeable feature of Contiki is the ability to support multi-threading by

implementing it as a library that can be optionally linked with programs that explicitly

require it. This feature is important whenever a lengthy computation is performed, which

given the event-driven kernel, will monopolize the CPU and will make the system

unresponsive to external events.

Other differences between Contiki and the more popular embedded operating

systems, like TinyOS include the code footprint and also in the underlying architecture, such

as scheduling. While the native TCP/IP support offered by Contiki is nice, it requires more

resources from the system (and might not be essential for all WSN deployments). Concerning

scheduling, Contiki uses FIFO event queue and pool handlers with priority, as opposed to

only a FIFO event queue, in TinyOS.

The ability to do simulations for WSNs is incredibly important for system

development. Although a variety of simulators exist, they allow simulations only at a fixed

level, such as application, operating system or hardware level. One more advantage of

Contiki is that is has a specially designed cross-level simulator, named COOJA, which has

been shown to perform well .This means that developers of Contiki based WSNs have a

powerful tool on their hands for thoroughly testing different system ideas before they are to

be implemented in practice, thus enabling them to save time and money.

One last advantage of Contiki is that once the porting for a platform is done, there are

a number of very useful applications available, such as Telnet. These applications can come

in very handy for developers. The Contiki repository is well maintained by the small

community involved in this project and the feedback received so far by those who adopted

this OS is positive.

34

3.3.1 General Contiki Program Structure

 A Contiki program has a predefined structure. Simple instructions on how to program

WSN motes on the Contiki operating system platform is illustrated here. The most exciting

thing we can find as a WSN programmer is the proto-threads in Contiki. Proto-threads allow

us to write multi-threaded applications on top of the Contiki operating system. Therefore we

can get rid of writing codes to implement state machines to run on the event driven kernel.

The below program is the simplest Contiki program you can write which contains most of the

necessary components that should be included in any Contiki program. The following

example is the simple hello world novice program:

#include "contiki.h"

#include <stdio.h> /* For printf() */

PROCESS(hello_world_process, "Hello world process");

AUTOSTART_PROCESSES(&hello_world_process);

PROCESS_THREAD(hello_world_process, ev, data)

{

PROCESS_BEGIN();

printf("Hello, world\n");

PROCESS_END();

}

 The header file ―contiki.h‖ which is included at the very first contains all the

declarations of the Contiki operating systems abstractions. Stdio.h is included only because

the used printf () function inside the program. The Macro in third line declares a new Contiki

process. First parameter of it is the variable for the process and the second parameter is a

string name for the process. Fourth line, specify that this process should be started in the

35

start-up of the Contiki operating system. Therefore, when the hardware device which will be

the destination of compiled code switches on, our process also begins running.

 Fifth line of the code opens the definition of our process. As the first parameter, we

pass the process‘ variable which is my_first_process in this scenario. The second parameter

is ‗ev‘ which is the event parameter. It can be used to make the program responding to events

that occur in the system. The third parameter ‗data‘ can be used to receive some data which

are coming with those events.

 The rest of the instructions of the Contiki process will be included inside two important

lines which are PROCESS_BEGIN() and PROCESS_END(). In this Contiki process only a

string is printed. This output goes to the standard output in the platform where our code will

be running. If you compile this code to native platform and run in the terminal, the output

will be printed in the terminal. If you run this in a mote, the output most probably will go to

the UART port of the mote. However this behavior depends on the design of a particular

WSN mote.

Protothreads have a low memory overhead and are also stackless, i.e. they all run on

the same stack and context switching is done by stack rewinding. Since processes in Contiki

are nothing more than protothreads it makes sense to take a closer look at this abstraction.

Protothreads are written in C and no compiler changes are required. The only problem with

this abstraction is the following restrictions to the programmers: automatic variables not

stored across a blocking wait and no switch statements are allowed. To overcome this one

has to use static local variables and avoid switch statements completely below we show the

simple implementation of protothreads:

#define PT_END (pt)

#define PT_WAIT UNTIL

#define PT_EXIT (pt)

#define PT_BEGIN (pt)

#define PT_INIT (pt)

struct pt {

unsigned short lc ;

} ;

36

pt−>lc = 0

switch (pt−>lc) {

 case 0:

 pt−>lc = 0;

return 2

 case LINE:

(pt, c) pt−>lc = LINE;

if (!(c))

return 0;

}

pt−>lc = 0 ;

return 1;

Analyzing this implementation it is easy to see why the restrictions mentioned above

exist. As previously mentioned, Contiki processes are just protothreads. To better illustrate

how this works we present the following piece of code which gets light sensor readings and

prints it to the screen when the mote is connected to the computer via USB and a special

program, tunslip, is running (it creates the tun and SLIP interface for communication over

the serial line).

/ *declare the process */

PROCESS (light_process, ” light_process ”) ;

/ *make the process start when the module is loaded */

AUTOSTART_PROCESS (&light_process);

37

/ *define the actual process code */

PROCESS_THREAD (light_process, ev, data)

{

PROCESS_BEGIN (); / *must begin with this */

/ *note that we have to make the variable static */

static struct etimer etimer ;

/ *Photosynthetically Active Radiation. */

unsigned static reading1 ;

/ *Total Solar Radiation. */

unsigned static reading2 ;

printf (” light process starting \n ”) ;

/ *initialize the light sensors */

sensors light init () ;

while (1) { / *do this forever */

/ *set active timer */

etimer_set (&etimer , CLOCK SECOND) ;

/ *take readings at discrete time intervals */

PROCESS_WAIT_UNTIL(etimer_expired (&etime r)) ;

reading1 = sensors_light1 ();

reading2 = sensors_light2 ();

printf(”READING1:%2d\nREADING2:%u\n”,reading1 ,reading2);

}

PROCESS_END (); / * finish process * /

}

38

In the example above we also saw how to use timers. There are basically four types of timers

that can be used depending on the needs of the programmer:

- struct timer : passive and only keeps track of its expiration time

- struct etimer: active and sends an event when it expires

- struct ctimer: active and calls a function when it expires

- struct rtimer: real-time timer and calls a function when it expires

There are two ways to make a process run. You can post an event and asynchronously

run the process: process post(process ptr, eventno, ptr), or run it immediately: process post

synch(process ptr, eventno, ptr). However if you post a process you should not call it from an

interrupt. The other way to make a process run is to poll the process using: process

poll(process ptr).

3.4 Cooja

With the rapid increase in the amount of wireless sensor nodes and other wireless

devices forming heterogeneous networks, it becomes unfeasible to test real setups using

physical hardware.While one can test systems and protocols on an abstract level by

simulating wireless phenomena, such simulation alone is insufficient because software can be

prone to bugs and unexpected interrelations. Simulating complicated wireless setups using

exactly the same firmware image that will later be used on real wireless nodes is therefore

crucial.

The Cooja wireless simulator [6] is widely used, but the range of hardware it can

emulate has been limited. The original approach, in which MSPSim [2] was tightly integrated

into the Cooja source code, limited the ability of running unmodified firmware images to

nodes based on either 16-bit TI MSP430 CPUs using MSPSim or 8-bit Atmel AVR CPUs

using Avrora.

Taking into consideration the growing popularity of low-power 32-bit CPUs,

39

which are gaining a widespread adoption in the wireless sensor field [5], we need a way to

integrate Cooja with an emulation framework that can support Cortex-M3. This was the

reason for creating EmuLink, an abstract solution for interconnecting Cooja and hardware

emulation software.

Although Cooja has proven to be useful for interoperability tests of hetero-geneous

software stacks before creating EmuLink [3, 4], the emulated hardware was limited to a

single platform. By using EmuLink it becomes possible to take interoperability testing one

step further and have both heterogeneous software and hardware.

3.4.1 About Cooja

COOJA is a flexible Java-based simulator designed for simulating networks of

sensors running the Contiki operating system. COOJA simulates networks of sensor nodes

where each node can be of a different type; differing not only in on-board software, but also

in the simulated hardware. COOJA is flexible in that many parts of the simulator can be

easily replaced or extended with additional functionality. Example parts that can be extended

include the simulated radio medium, simulated node hardware, and plug-ins for simulated

input/output.

A simulated node in COOJA has three basic properties: its data memory, the node

type, and its hardware peripherals. The node type may be shared between several nodes and

determines properties common to all these nodes. For example, nodes of the same type run

the same program code on the same simulated hardware peripherals. And nodes of the same

type are initialized with the same data memory. During execution, however, nodes' data

memories will eventually differ due to e.g. different external inputs.

COOJA currently is able to execute Contiki programs in two different ways. Either by

running the program code as compiled native code directly on the host CPU, or by running

compiled program code in an instruction-level TI MSP430 emulator. COOJA is also able to

simulate non-Contiki nodes, such as nodes implemented in Java or even nodes running

another operating system. All different approaches have advantages as well as disadvantages.

Javabased nodes enable much faster simulations but do not run deployable code. Hence, they

are useful for the development of e.g. distributed algorithms. Emulating nodes provides more

_ne-grained execution details compared to Javabased nodes or nodes running native code.

Finally, native code simulations are more efficient than node emulations and still simulate

40

deployable code. Since the need of abstraction in a heterogeneous simulated network may

differ between the different simulated nodes, there are advantages in combining several

different abstraction levels in one simulation. For example, in a large simulated network a

few nodes may be simulated at the hardware level while the rest are implemented at the pure

Java level. Using this approach combines the advantages of the different levels. The

simulation is faster than when emulating all nodes, but at the same time enables a user to

receive _ne-grained execution details from the few emulated nodes.

COOJA executes native code by making Java Native Interface (JNI) calls from the

Java environment to a compiled Contiki system. The Contiki system consists of the entire

Contiki core, pre-selected user processes, and a set of special simulation glue drivers. This

makes it possible to deploy and simulate the same code without any modifications,

minimizing the delay between simulation and deployment.

The Java simulator has full control over the memory of simulated nodes. Hence the

simulator may at all times view or change Contiki process variables, enabling very dynamic

interaction possibilities from the simulator. Another interesting consequence of using JNI is

the ability to debug Contiki code using any regular debugger, such as gdb, by attaching it to

the entire Java simulator and breaking when the JNI call is performed. Also entire simulation

states may be saved and later restored, skipping back simulations over time.

The hardware peripherals of simulated nodes are called interfaces, and enable the

Java simulator to detect and trigger events such as incoming radio traffic or a LED being lit.

Interfaces also represent properties of simulated nodes such as positions that the actual node

is not aware of.

All interactions with simulations and simulated nodes are performed via plugins. An

example of a plugin is a simulation control that enables a user to start or pause a simulation.

Both interfaces and plugins can easily be added to the simulator, enabling users to quickly

add custom functionality for specific simulations.

41

Figure 11,Screenshot while simulate Cooja with two motes

42

3.4.2 Starting Cooja

You can start the Cooja simulator with the following commands:

 cd contiki -2.7/ tools/cooja

 and run

Figure 12, Create new simulation interface

You will see lots of text go past as the Cooja environment is compiled, built and started

Firstly you will need to create a new simulation. To do this, click ―File >New

Simulation‖. This will present a dialog box, shown in Figure 11. Give your simulation a more

uitable title, and then select the radio medium that best suits your simulation type. For most

simulations, Unit Disk Graph Medium (UDGM) is quite suitable. Turning radio simulation

off by selecting ―No Radio Traffic‖, when not needed saves CPU time and makes the

simulation run quicker. Random start-up delays the booting of each mote simulated,

simulated randomly so they don‘t all start exactly at the same time. The main random seed is

a seed for the random number generator. You can tick the box at the end to get a random

seed. When you‘re ready click "Create". You will now see the Cooja desktop once more, but

with the simulation environment presented, as shown in Figure 12.

The simulation interface, shown in Figure 12, consists of five windows. The Network

window shows the physical layout of the network, i.e. you will be able to physically place

motes here and move them around, as needed, in order to form the topology and layout you

are interested in. The Simulation Control window lets you start, stop and reload the

simulation. It also lets you control the rate at which the simulation proceeds. The Mote

43

Output window shows any serial output generated by all the motes, i.e. the output from the

printf command. You may filter the output shown based on the string you enter into the

―Filter‖ field. For example, if you wish to filter the output such that it only shows output

from mote 2, then you can enter ―ID:2‖ in this field. The Timeline window shows events that

occur on each mote over the timeline of simulation. These events can be radio traffic, LED

activity or anything else. The Notes window can be used to take temporary notes in the

simulation.

Figure 13, The simulation interface

The next stage is to set the mote types. In Cooja, you create a list of mote types,

define their parameters and assign their program code/binary. You then, as a seperate task,

create instances of them to simulate. Here we address the first part: creating the mote types.

Click ―Motes > Add Motes > Create New Mote Type > Sky Mote‖. Give the mote type a

useful description. Let the first mote type be the border router, so we name this mote Border

Router, as shown in Figure 13. In the ―Contiki Process / Firmware‖ field, you should specify

your source file (the .c file) or the binary file (the .sky file). If you specify the binary file, you

44

won‘t see any compile instructions (binary files are the result of compilation – there is no

need to compile). If you specify the source code, then the compile commands field becomes

active, and you can specify specific instructions for compilation. In this case, since we have

already compiled our binaries before, we will just use the Browse button to select the border-

router.sky file. If you have specified source code, you need to press Compile before you can

create the mote type. You can see the compilation output/results in the compilation output

tab. If successful, the Create button becomes available. You may now use this button to

create a mote of the Border Router type.

Similarly, you may create the UDP Server mote by using the udp-server.

Figure 14, The create mote type interface

 Now that you have created the Border Router and UDP Server type motes, we can

start adding physical nodes to the simulation. The ―Add motes‖ dialogue allows you to set

the number and configuration of these new motes. This can be accessed by clicking ―Motes >

Add Motes‖. Add one mote of the type Border Router and five mote of type UDP Server.

You may use random positioning for adding the nodes. Once you do this, you will notice that

a total of six randomly placed nodes will appear in the Network window. One possible

random arrangement can be seen in Figure 14(a). Amongst these, node 1 is the Border Router

and the rest are nodes which will execute the UDP Server code. You can interact with each of

45

the motes by clicking and dragging them around. You may re-organize the layout of the

nodes by dragging them around, such that they will form a topology that you are interested

in. When you click on a node, it also shows the radio environment in green and grey color.

The green circle represents the area within which the signal is successfully received by other

nodes and grey represents the area where radio interference from the current node exists. An

example of this radio environment and a new layout such that only a maximum of two nodes

are within range of each node, can be seen in Figure 14(b).

Figure 15, The network window

Even though the network layout is now setup, before starting the simulation a bridge

with the RPL network must be created. Since node 1 is the Border Router, the bridge will be

created with this node. Right click mote 1 and then select ―More tools for Border Router >

Serial Socket (SERVER)‖. This creates a serial port on the simulated node 1, which is

accessible via UDP port number 60001 on the local machine.

You can now start the simulation by clicking the ―Start‖ button in the Simulation

Control window.

46

Now, in a terminal window, enter the following commands in order to setup the

bridge:

 cd contiki -2.6/ tools

 make tunslip6

 sudo ./tunslip6 -a 127.0.0.1 aaaa::1/64

This will now setup a bridge into the RPL network, via node 1 of the simulation. The

prefix of all nodes in the network will be aaaa:: /64. Once you enter this command, you will

see output that looks similar to the following:

 slip connected to ‗‗127.0.0.1:60001‘‘

 opened tun device ‗‗/dev/tun0 ‘‘

 ifconfig tun0 inet ‗hostname ‗ up

 ifconfig tun0 add aaaa::1/64

 ifconfig tun0 add fe80::0:0:0:1/64

 ifconfig tun0

 tun0 Link encap:UNSPEC Hwaddr

 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

 inet addr:127.0.1.1 P-t-P:127.0.1.1 Mask:255.255.255.255

 inet6 addr: fe80::1/64 Scope:Link

 inet6 addr: aaaa::1/64 Scope:Global

 *** Address:aaaa::1 => aaaa:0000:0000:0000

 Got configuration message of type P

 Setting prefix aaaa::

 Server IPv6 addresses:

 aaaa::212:7401:1:101

 fe80::212:7401:1:101

47

Figure 16, The RPL route status, as visible to the border router

 This output confirms that the bridging is setup and that the border router has the

address aaaa::212:7401:1:101 setup. We can verify this by pinging this address using the

ping6 command.You can also see the current RPL network status by going to the web

interface located at the border router, as shown in Figure 15. The IP address for node 2 is

aaaa:: 212:7402:2:202.You now know how to work with the Contiki Cooja simulator.

3.4.3 Cooja Architecture/MSPSim/Prisma

Cooja is a cross-level network simulator implemented in Java. Cooja handles the

simulation of radio mediums and communication between nodes. The simulated nodes are

implemented using a plugin architecture enabling various types of nodes. Node types range

from abstract nodes implemented in Java to nodes executing firmware images using cycle-

accurate hardware emulators.

MSPSim is a Java-based emulator of the TI MSP430 microprocessor series. MSPSim

is tightly integrated in Cooja and provides cycle-accurate emulation, which enables

evelopment of timing-sensitive applications in Cooja. Exactly the same firmware that runs on

48

a real sensor node can be loaded and executed in MSPSim, thereby providing a highly

valuable development and debugging capability as well. Furthermore, we have earlier shown

that Cooja/MSPSim enables accurate network-scale power profiling of sensor networks [2].

The Prisma Emulator is partly based on QEMU and supports emulation of a wide

variety of ARM microprocessors. The Prisma Emulator is extensible through Python plug-ins

that make it possible to easily set up emulation of specific boards and System on Chip. For

the Cooja integration we implement emulation of the STM32W platform, which is a Cortex-

M3 with an integrated IEEE 802.15.4 radio.

The Prisma Emulator is implemented partly in native code, partly for the .NET

framework. It executes in the Mono platform, which provides a crossplatform .NET

development framework [1]. The different run-time environment used by Prisma Emulator

makes it difficult to integrate into the Java-based Cooja platform. Hence, this initial hurdle in

creating heterogeneous simulation support for Cooja is what motivated us to create the

EmuLink component to connect emulators implemented in any language.

EmuLink consists of an EmuLink component in Cooja that connects external

emulators into Cooja and EmuLink-enabled emulators that act as emulation servers. When

running a simulation, Cooja will schedule the emulators for execution and deliver radio

messages as well as serial data to and from the nodes that execute in the external emulators.

By using the concept of abstract emulation servers, EmuLink enables the use of emulators

written in any programming language with Cooja and also makes it possible to distribute the

hardware emulators on multiple computers to be able to scale the simulations to large

networks.

49

4 Implementation

 The first puprose of this chapter is to describe the implementation process, follow the

developer's steps and expand the interesting parts of the source code. Various screenshots are

showing basic steps and outputs of the programm.

In the course of this project, a Server and a Client have been implemented for the

Contiki Operating system. The implementation includes the support of GET operation and

have been accomlished in the C programming language.

Section 4.1 describes the implementation design principples. In Section 4.2 and

overview of the Server is presented. Section 4.3 provides an overview of the Client.

4.1 Design Principles

 The main principle is to have a small programm to satisfy the low memory

constrains(10 kilobytes of RAM and 30 kilobytes of ROM). Besides that a Server-Client

model needs to be followed in order to implement this project on IoT.

 In Computer science server-client is a software architecture model consisting of two

parts, client systems and server systems, both communicate over a computer network or on

the same computer. A client-server application is a distributed system consisting of both

client and server software. The client process always initiates a connection to the server,

while the server process always waits for requests from any client. Especially, a TCP/IP

protocol is followed in this project.

50

4.2 TCP/IP

 The Internet protocol suite is the computer networking model and communications

protocols used in the Internet and similar computer networks. It is commonly known as

TCP/IP, because its most important protocols, the Transmission Control Protocol (TCP) and

the Internet Protocol (IP), were the first networking protocols defined in this standard.

TCP/IP provides end-to-end connectivity specifying how data should be packetized,

addressed, transmitted, routed and received at the destination. This functionality is organized

into four abstraction layers which are used to sort all related protocols according to the scope

of networking involved. From lowest to highest, the layers are the link layer, containing

communication technologies for a single network segment (link), the internet layer,

connecting hosts across independent networks, thus establishing internetworking, the

transport layer handling host-to-host communication, and the application layer, which

provides process-to-process application data exchange.

The TCP/IP model and related protocols are maintained by the Internet Engineering

Task Force (IETF).

Figure 17, Server-Client Module

51

4.5.1 TCP 3-Way Handshake/Protocols

The TCP three-way handshake in Transmission Control Protocol (also called the TCP-

handshake; three message handshake and/or SYN-SYN-ACK) is the method used by TCP set

up a TCP/IP connection over an Internet Protocol based network. TCP's three way

handshaking technique is often referred to as "SYN-SYN-ACK" (or more accurately SYN,

SYN-ACK, ACK) because there are three messages transmitted by TCP to negotiate and start

a TCP session between two computers. The TCP handshaking mechanism is designed so that

two computers attempting to communicate can negotiate the parameters of the network TCP

socket connection before transmitting data such as SSH and HTTP web browser requests.

This 3-way handshake process is also designed so that both ends can initiate and

negotiate separate TCP socket connections at the same time. Being able to negotiate multiple

TCP socket connections in both directions at the same time allows a single physical network

interface, such as ethernet, to be multiplexed to transfer multiple streams of TCP data

simultaneously.

EVENT DIAGRAM

Host A sends a TCP SYNchronize packet to Host B

Host B receives A's SYN

Host B sends a SYNchronize-ACKnowledgement

Host A receives B's SYN-ACK

Host A sends ACKnowledge

Host B receives ACK.

TCP socket connection is ESTABLISHED.

TCP Three Way Handshake

(SYN,SYN-ACK,ACK)

Figure 18,This is a (very) simplified diagram of the TCP 3-way handshake process

 Have a look at the diagram on the right as you examine the list of events on the left.

SYNchronize and ACKnowledge messages are indicated by a either the SYN bit,

or the ACK bit inside the TCP header, and the SYN-ACK message has both the SYN

and the ACK bits turned on (set to 1) in the TCP header.

52

TCP knows whether the network TCP socket connection is opening,

synchronizing, established by using the SYNchronize and ACKnowledge messages

when establishing a network TCP socket connection.

When the communication between two computers ends, another 3-way

communication is performed to tear down the TCP socket connection. This setup and

teardown of a TCP socket connection is part of what qualifies TCP a reliable protocol.

TCP also acknowledges that data is successfully received and guarantees the data is

reassenbled in the correct order.

Note that UDP is connectionless. That means UDP doesn't establish connections

as TCP does, so UDP does not perform this 3-way handshake and for this reason, it is

referred to as an unreliable protocol. That doesn't mean UDP can't transfer data, it just

doesn't negotiate how the conneciton will work, UDP just transmits and hopes for the

best.

Note also that FTP, Telnet, HTTP, HTTPS, SMTP, POP3, IMAP, SSH and any

other protocol that rides over TCP also has a three way handshake performed as

connection is opened. HTTP web requests, SMTP emails, FTP file transfers all manage

the messages they each send. TCP handles the transmission of those messages.TCP

'rides' on top of Internet Protocol (IP) in the protocol stack, which is why the combined

pair of Internet protocols is called TCP/IP (TCP over IP). TCP segments are passed

inside the payload section of the IP packets. IP handles IP addressing and routing and

gets the packets from one place to another, but TCP manages the actual communication

sockets between endpoints (computers at either end of the network or internet

connection).

53

4.6 Create Resource

In order to create a Resource, a standart format is followed. A Resource is defined by

the RESOURCE macro. The attributes of a Resource are: resource name, the RESTful

methods it handles, and its URI path (omitting the leading slash). Besides the definition a

function is needed to implement a Resource.

 A handler function named [resource name]_handler must be implemented for each

Resource. A buffer for the response payload is provided through the buffer pointer. Simple

resources can ignore preferred_size and offset, but must respect the

REST_MAX_CHUNK_SIZE limit for the buffer. If a smaller block size is requested for

CoAP, the REST framework automatically splits the data. For example:

RESOURCE(helloworld, METHOD_GET, "hello", "title=\"Hello world:

?len=0..\";rt=\"Text\"");

void helloworld_handler(void* request, void* response, uint8_t

*buffer, uint16_t preferred_size, int32_t *offset)

{

const char *len = NULL;

char const * const message = "Hello World ABCDEFGHIJKL

MNOPQRSTUVWXYZab cdefghijklmnopqrstuvwxy";

int length = 12;

if (REST.get_query_variable(request, "len", &len)){

length = atoi(len);

if (length<0)

length = 0;

if(length>REST_MAX_CHUNK_SIZE)

length = REST_MAX_CHUNK_SIZE;

memcpy(buffer, message, length);

}

54

else {

memcpy(buffer, message, length);

}

REST.set_header_content_type(response, REST.type.TEXT_PLAIN);

REST.set_header_etag(response, (uint8_t *) &length, 1);

REST.set_response_payload(response, buffer, length);

}

A ―helloworld‖ resource is implemented. Although the variable message is assigned a

big string, because the length variable is set to 12, only the first 12 characters of the message

are copied to the buffer. Finally, the message is send throught the last instructions of the

handler.

The query string can be retrieved by rest_get_query() or parsed for its key-value pairs.

Also, at set_header_content_type, text/plain is the default, hence this option could be

omitted.

4.6.1 Create Periodic Resource

 In order to create a Periodec Resource, a format similar to the simple Resource is

followed. A Periodic Resource is defined by the PERIODIC_RESOURCE macro. The

attributes of a Periodic Resource are: resource name, the RESTful methods it handles, and its

URI path (omitting the leading slash), as seen at the simple Resource. Furthermore, it takes

an additional period parameter, which defines the interval to call [name]_periodic_handler().

 A default post_handler takes care of subscriptions by managing a list of subscribers to

notify. Again, a handler function named [resource name]_handler must be implemented for

each Resource. A buffer for the response payload is provided through the buffer pointer.

Simple resources can ignore preferred_size and offset, but must respect the

REST_MAX_CHUNK_SIZE limit for the buffer. If a smaller block size is requested for

CoAP, the REST framework automatically splits the data.

55

Additionally, a handler function named [resource name]_handler must be implemented

for each PERIODIC_RESOURCE and it will be called by the REST manager process with

the defined period.

For example:

PERIODIC_RESOURCE(pushing,METHOD_GET, "test/push", "title=\"Periodic

demo\";obs", 5*CLOCK_SECOND);

void pushing_handler(void* request, void* response, uint8_t *buffer,

uint16_t preferred_size, int32_t *offset)

{

REST.set_header_content_type(response, REST.type.TEXT_PLAIN);

const char *msg = "It's periodic!";

REST.set_response_payload(response, msg, strlen(msg));

}

void pushing_periodic_handler(resource_t *r){

static uint16_t obs_counter = 0;

static char content[11];

 ++obs_counter;

 PRINTF("TICK %u for /%s\n", obs_counter, r->url);

coap_packet_t notification[1];

coap_init_message(notification,COAP_TYPE_NON,REST.status.OK,0);

coap_set_payload(notification, content, snprintf(content,

sizeof(content), "TICK %u", obs_counter));

REST.notify_subscribers(r, obs_counter, notification);

}

 In this example, the period is set to 5*CLOCK_SECOND. A CLOCK_SECOND

equals second/10 so the period is not 5 seconds but 5/10 seconds. Usually, a CoAP server

would response with the resource representation matching the periodic_handler, thus the msg

is set to ―It's periodic!‖. Also a post_handler that handles subscriptions will be called for

periodic resources by the REST framework.

56

The lines:

coap_packet_t notification[1];

coap_init_message(notification, COAP_TYPE_NON, REST.status.OK, 0);

coap_set_payload(notification, content, snprintf(content, sizeof(content), "TICK %u",

obs_counter));

Are used to build a notification and:

REST.notify_subscribers(r, obs_counter, notification);

Is to notify the registered observers with the given message type, observe option, and

payload.

4.6.2 Create Event Resource

 In order to create an Event Resource, a format similar to the Periodic Resource is

followed. An Event Resource is defined by the EVENT_RESOURCE macro. The attributes

of an Event Resource are: resource name, the RESTful methods it handles, and its URI path

(omitting the leading slash), as seen at the simple Resource.

 A default post_handler takes care of subscriptions by managing a list of subscribers to

notify. Again, a handler function named [resource name]_handler must be implemented for

each Resource. A buffer for the response payload is provided through the buffer pointer.

Simple resources can ignore preferred_size and offset, but must respect the

REST_MAX_CHUNK_SIZE limit for the buffer. If a smaller block size is requested for

CoAP, the REST framework automatically splits the data.

Additionally, a handler function named [resource name]_handler must be implemented

for each EVENT_RESOURCE and it will be called by the REST manager process with the

defined period.

For example:

57

EVENT_RESOURCE(event,METHOD_GET,"sensors/button","title=\"Event

demo\";obs");

void event_handler(void* request, void* response, uint8_t *buffer,

uint16_t preferred_size, int32_t *offset)

{

REST.set_header_content_type(response, REST.type.TEXT_PLAIN);

const char *msg = "It's eventful!";

REST.set_response_payload(response, (uint8_t *)msg,

strlen(msg));

}

void event_event_handler(resource_t *r)

{

static uint16_t event_counter = 0

static char content[12];

++event_counter;

PRINTF("TICK %u for /%s\n", event_counter, r->url);

coap_packet_t notification[1];

coap_init_message(notification,COAP_TYPE_CON,REST.status.OK,0);

coap_set_payload(notification, content, snprintf(content,

sizeof(content), "EVENT %u", event_counter));

REST.notify_subscribers(r, event_counter, notification);

}

58

4.7 Program Parameters

In this chapter we quote our RESTful example. We create three resources:

humidity, temperature and led status. Each resource has two servers which interact with a

CoAP client.

 A prerequisite to run correctly the program is to define the Cooja addresses in

/etc/hosts file that we can find in contiki root folder.

These addresses are :

aaaa::0212:7401:0001:0101 cooja1

 aaaa::0212:7402:0002:0202 cooja2

 aaaa::0212:7403:0003:0303 cooja3

First we have to compile the application. So we open an terminal console and type:

 make TARGET=cooja server-only.csc

Figure 19,Screenshot from the console after we typed the make command. The program starts to run

59

In order to add motes servers we have to add also the corresponding address in the /etc/hosts

file.

Figure 20,Screenshot after we run Cooja

As we can see in Network window we have 2 erbium servers the motes 2 and 3.

60

Before we start Cooja we to type another one make command to connect the router and the

cooja.

So we open a new terminal and type:

make connect-router-cooja

Figure 21,Screenshot after the second command

61

Now we can start Cooja by clicking the start button.

Figure 22,This screenshot is after we started Cooja and request some acks from the CoAP client that we

present in the next chapters.

The blue line in timeline which shows mote 2 is a radio transmitting. The other two green

lines inform us that the motes 1 and 3 are open to receive.

62

4.7.1 Humidity

Humidity is a periodic resource and is defined by the RESOURCE macro:

PERIODIC_RESOURE(humidity,METHOD_GET,"humidity","title=\"Hello

humidity: ?len=0..\";rt=\"Text\"", 30*CLOCK_SECOND);

The first parameter (humidity) is the resource name, the second (METHOD_GET) is

the RESTful method it handles, the third ("humidity") is a string name for this resource,the

fourth ("title=\"Hello humidity: ?len=0..\";rt=\"Text\"") is its URI path and the last one

(30*CLOCK_SECOND) is the period time which defines the dead time between two

responses.

The default handler for this resource and its implement:

void

humidity_handler (void* request, void* response, uint8_t

*buffer, uint16_t preferred_size, int32_t *offset)

{

REST.set_header_content_type(response,

REST.type.TEXT_PLAIN);

 const char *msg = "Observe Periodic Humidity!";

REST.set_response_payload(response,(uint8_t*)msg,strlen(

msg));

}

This handler will print the string "Observe Periodic Humidity!" if we choose the

method get.

63

The first line is a function call which sets the type of the response parameter as a text

message.

The second line creates a const char and initializes it with a string.

The third line in the handler‘s implantation is a function call which sets the payload

that will be printed.

The REST.set_header_content_type() and the REST.set_response_payload() are both

functions which have been defined ant implemented in the rest.h and rest.c files which we

must include.

Figure 23,Screenshot while we choose the GET method of the humidity resource in COAP

The payload appears in the incoming.

In order to make this resource periodic we have to create another handler function

which will be called by the REST manager process with the defined period:

64

void

humidity_periodic_handler (resource_t *r)

{

 static uint16_t humidityVal = 0;

 static char content[30];

 humidityVal=(uint16_t)rand()%100;

 coap_packet_t notification[1];

coap_init_message(notification,COAP_TYPE_NON,REST.st

atus.OK, 0);

coap_set_payload(notification,content,snprintf(conte

nt,sizeof(content),"Humidity: %u %%", humidityVal));

 REST.notify_subscribers(r,humidityVal, otification);

}

In this handler we create a humidity variable which takes random values.

Also we need a char table that we will use as a payload. The following lines needed to build a

notification so the packet can be treated as a usual pointer. So we need the

coap_init_message() call and the coap_set_payload() which defines the format and merges

the message that we want to be printed.

These two functions are defined and implemented in the coap-server.h and coap-

server.c which we have to include. The function REST.notify.subscribers() is required to

notify the registered observers with the given message type, the periodic value and the

payload .

65

Figure 24,Screenshot while observe the humidity resource

66

Figure 25,Screenshot while observing the same resource some periods after

The message ID now is 6754 . So, 15 messages after the first screenshot.

67

4.7.2 Temperature

Temperature is a periodic resource and is defined by the RESOURCE macro:

PERIODIC_RESOURCE(temperature,METHOD_GET,"temperature","title=\

"Hello temperature: ?len=0..\";rt=\"Text\"", 30*CLOCK_SECOND);

The first parameter (temperature) is the resource name, the second (METHOD_GET) is

the RESTful method it handles, the third ("temperature") is a string name for this resource,

the fourth ("title=\"Hello temperature: ?len=0..\";rt=\"Text\"") is its URI path and the last one

(30*CLOCK_SECOND) is the period time which defines the dead time between two

responses.

The default handler for this resource and its implement:

void

temperature_handler (void* request, void* response, uint8_t *buffer,

uint16_t preferred_size, int32_t *offset)

{

REST.set_header_content_type(response,REST.type.TEXT_PLAIN);

const char *msg = "Observe Periodic Temperature!";

REST.set_response_payload(response,(uint8_t*)msg,strlen(msg));

}

68

This handler will print the string "Observe Periodic Temperature!" if we choose the

method get.

The first line is a function call which sets the type of the response parameter as a text

message.

The second line creates a const char and initializes it with a string.

The third line in the handler‘s implantation is a function call which sets the payload

that will be printed.

The REST.set_header_content_type() and the REST.set_response_payload() are both

functions which have been defined ant implemented in the rest.h and rest.c files which we

must include.

Figure 26,Screenshot while we choose the GET method of the temperature resource in COAP

The payload appears in the incoming.

69

In order to make this resource periodic we have to create another handler function

which will be called by the REST manager process with the defined period:

void

temperature_periodic_handler (resource_t *r)

{

 static uint16_t temperatureVal = 0;

 static char content[30];

 temperatureVal=(uint16_t)rand()%100;

 coap_packet_t notification[1];

coap_init_message(notification,COAP_TYPE_NON,REST.status.OK,0);

coap_set_payload(notification,content,snprintf(content,sizeof(c

ontent), "Temperature: %u F", temperatureVal));

REST.notify_subscribers(r, temperatureVal, notification);

}

In this handler we create a temperature variable which takes random values.

Also we need a char table that we will use as a payload.

The following lines needed to build a notification so the packet can be treated as a usual

pointer. So we need the coap_init_message() call and the coap_set_payload() which defines

the format and merges the message that we want to be printed.

These two functions are defined and implemented in the coap-server.h and coap-server.c

which we have to include.

70

The function REST.notify.subscribers() is required to notify the registered observers with the

given message type, the periodic value and the payload .

Figure 27,Screenshot while observe the temperature resource

71

Figure 28,Screenshot while observing the same resource some periods after

The message ID now is 6930. So, 13 messages after the first screenshot.

72

4.7.3 LED status

Led status is a periodic resource and is defined by the RESOURCE macro:

PERIODIC_RESOURCE (ledS, METHOD_GET, "ledS", "title=\"Hello

ledS: ?len=0..\";rt=\"Text\"", 30*CLOCK_SECOND);

The first parameter (ledS) is the resource name, the second (METHOD_GET) is the

RESTful method it handles, the third ("ledS ") is a string name for this resource, the fourth

("title=\"Hello ledS: ?len=0..\";rt=\"Text\"") is its URI path and the last one

(30*CLOCK_SECOND) is the period time which defines the dead time between two

responses.

The default handler for this resource and its implement:

void

ledS _handler (void* request, void* response, uint8_t *buffer,

uint16_t preferred_size, int32_t *offset)

{

 REST.set_header_content_type(response, REST.type.TEXT_PLAIN);

 const char *msg = "LedS!";

REST.set_response_payload(response,(uint8_t*)msg,strlen(msg));

}

This handler will print the string "LedS!" if we choose the method get.

The first line is a function call which sets the type of the response parameter as a text

message.

73

The second line creates a const char and initializes it with a string.

The third line in the handler‘s implantation is a function call which sets the payload

that will be printed.

The REST.set_header_content_type() and the REST.set_response_payload() are both

functions which have been defined and implemented in the rest.h and rest.c files which we

must include.

Figure 29,Screenshot while we choose the GET method of the LedS resource in COAP

The payload appears in the incoming.

74

In order to make this resource periodic we have to create another handler function

which will be called by the REST manager process with the defined period:

void

temperature_periodic_handler (resource_t *r)

{

 static uint16_t ledSVal = 0;

 static char content[30];

 ledSVal=(uint16_t)rand()%120;

 coap_packet_t notification[1];

coap_init_message(notification,COAP_TYPE_NON,REST.status.OK,0);

coap_set_payload(notification,content,snprintf(content,sizeof(c

ontent), "LedS: %u ", ledSVal));

REST.notify_subscribers(r, ledSVal, notification);

}

In this handler we create a ledS variable which takes random values.

Also we need a char table that we will use as a payload.

The following lines needed to build a notification so the packet can be treated as a usual

pointer. So we need the coap_init_message() call and the coap_set_payload() which defines

the format and merges the message that we want to be printed.

These two functions are defined and implemented in the coap-server.h and coap-server.c

which we have to include.

75

The function REST.notify.subscribers() is required to notify the registered observers with the

given message type, the periodic value and the payload .

Figure 30,Screenshot while observe the LedS resource

76

Figure 31,Screenshot while observing the same resource some periods after

The message ID now is 6743. So, 7 messages after the first screenshot.

77

4.8 Server

This chapter explains the implementation of a Server in our REST example. This is a

RESTful server showing how we used the REST layer to develop this server-side application.

This lines are both in client and server and are libraries that are included.

 #include "contiki.h"

 #include "contiki-net.h"

Specifically, "contiki.h" is a sum of various libraries listed below:

 #include "contiki-version.h"

 #include "contiki-conf.h"

 #include "contiki-default-conf.h"

 #include "sys/process.h"

 #include "sys/autostart.h"

 #include "sys/timer.h"

 #include "sys/ctimer.h"

 #include "sys/etimer.h"

 #include "sys/rtimer.h"

 #include "sys/pt.h"

 #include "sys/procinit.h"

 #include "sys/loader.h"

 #include "sys/clock.h"

 #include "sys/energest.h"

The first three lines define the version of Contiki in a string and configure some types. For

example:

 typedef uint8_t u8_t;

 typedef uint16_t u16_t;

78

 typedef uint32_t u32_t;

 typedef int32_t s32_t;

 typedef unsigned short uip_stats_t;

The rest of the ―contiki.h‖ library sets core features of Contiki. For example, implements

kernel, timer, necessary features of process hierarchy model and other system core features.

These lines of code define which resources to include to meet memory constraints:

 #define REST_RES_HELLO 0

 #define REST_RES_CHUNKS 1

 #define REST_RES_SEPARATE 1

 #define REST_RES_PUSHING 1

 #define REST_RES_EVENT 1

 #define REST_RES_SUB 1

 #define REST_RES_LEDS 0

 #define REST_RES_TOGGLE 1

 #define REST_RES_LIGHT 0

 #define REST_RES_BATTERY 0

 #define REST_RES_RADIO 0

 #define REST_RES_MIRROR 0

The lines above, include chunks, separate, pushing, event, sub and toggle resources and skip

the rest.

The line ―#include "erbium.h"‖ includes and implements the Erbium engine. Erbium is a

low-power REST engine.

79

This block of code is adding the correct library for according to the use of the program:

 #if defined (PLATFORM_HAS_BUTTON)

 #include "dev/button-sensor.h"

 #endif

 #if defined (PLATFORM_HAS_LEDS)

 #include "dev/leds.h"

 #endif

 #if defined (PLATFORM_HAS_LIGHT)

 #include "dev/light-sensor.h"

 #endif

 #if defined (PLATFORM_HAS_BATTERY)

 #include "dev/battery-sensor.h"

 #endif

 #if defined (PLATFORM_HAS_SHT11)

 #include "dev/sht11-sensor.h"

 #endif

 #if defined (PLATFORM_HAS_RADIO)

 #include "dev/radio-sensor.h"

 #endif

For example, if PLATFORM_HAS_LEDS then „dev/leds.h― library is included. That

protects the code from over sizing and having more than one occurrences of the same code.

The rest of the server‘s source code is the code that implements the resources (previous

chapters) and the auto start process that runs the program (appendix).

80

4.9 Client

The first phase of our project was to develop a REST server in one node and the client

in another node so the client periodically accesses resources of server an prints the payload.

The protocol that we follow is CoAP and the libraries below are the neceseries in order to

include all the needed structs.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "contiki.h"

#include "contiki-net.h"

#include "rest.h"

#include "buffer.h"

#define SERVER_NODE(ipaddr) uip_ip6addr(ipaddr, 0xfe80, 0,

0, 0, 0x0212, 0x7401, 0x0001, 0x0101)

#define LOCAL_PORT 61617

#define REMOTE_PORT 61616

We have to inform client about the number of servicies ,or resources, that we

implement:

#define NUMBER_OF_URLS 3

char*service_urls[NUMBER_OF_URLS]={"led_status","temperature","humid

ity"}

 Client now is ready to response to server‘s requests and for that we have to add three

functions to handle the responses, to send data when we have a request and one function to

81

handle incoming data formalize the packet tha we recivied. These functions are defined and

implement in Appentix section.

82

5 Problems encountered and Future

directions

This thesis takes an exploratory approach to the Web integration of smart things and

experiments with a simple implementation. Rather than focusing on one particular problem

we looked at the bigger picture of this integration and tried to understand and experience its

implications. As a consequence, the thesis provides a holistic view of this emerging domain

but also emphasizes on several challenges instrumental to the realization of the Internet-of-

Things.

5.5 Problems encountered

Not significant obstacles were faced through this project. The main problem was to

familiarize ourselves with the new technologies and understand the concept of machine-to-

machine internet. Studding the libraries and understand the flow of the code (functions

inheritance) was the first and most difficult step to make. The fact that many libraries with

even more functions were calling each other and via versa led us to fully understand the

source of Contiki OS and furthermore make the rest of the project flow without unfortunate

events.

5.6 Open challenges

Some open challenges are discussed based on the IoT elements presented earlier. The

challenges include IoT specific challenges such as privacy, participatory sensing, data

analytics, GIS based visualization and Cloud computing apart from the standard WSN

challenges including architecture, energy efficiency, security, protocols, and Quality of

Service. The end goal is to have Plug n‘ Play smart objects which can be deployed in any

environment with an interoperable backbone allowing them to blend with other smart objects

83

around them. Standardization of frequency bands and protocols plays a pivotal role in

accomplishing this goal. The section ends with a few international initiatives in the domain

which could play a vital role in the success of this rapidly emerging technology.

Furthermore, although this thesis illustrates the suitability of Web standards and

protocols for communicating real-world objects it also reveals their shortcomings. HTTP was

designed as an architecture where clients initiate interactions and this model works fine for

control-oriented IoT applications. However, monitoring-oriented applications are often

event-based and thus smart things should also be able to push data to clients (rather than

being continuousy polled). Using syndication protocols improves the model for monitoring

applications, since devices can publish asynchronously data on an intermediate server.

In this thesis particular care was given to experiment with Contiki OS and implement

a core code fore simple sensors. However these prototypes were not tested in real sensors,

but only as virtual ones. More generally, there is a significant lack large-scale real-world

deployment of these sensors. However, the vision behind IoT is to implement a global work

of smart things. Hence, future work should also focus on larger deployments of the

developed concepts and technologies that will certainly raise challenging issues but also

pergaps make an even straonger point for using Web standards. Efforts should also be made

to bring these technologies closer to real-world use-cases and to the business. Towards this

aim we open-sourced all of our software that was presented in this thesis hoping to help

third-parties to implement their particular use-cases.

84

6 Summary and Conclusions

The general field of this thesis is the Internet of things technologies and some

particular systems that included in the wireless sensor networks. These technologies are open

to discover and this is something attract to someone who search for something new and

revolutionary in the internet area.

In this paper also, we have presented COOJA, a cross-level simulator for the Contiki

operating system. COOJA enables simultaneous simulations at the network, operating system

and machine code instruction set level. We have shown that cross-level simulation has

advantages in terms of effectiveness and memory usage. It allows a user to combine

simulated nodes from several different abstraction levels. This is especially useful in

heterogeneous networks where fine-grained execution details are only needed for a subset of

the simulated nodes.

Additionally, this document gives an introduction to Contiki OS and provides the

basics for someone who wants to use this operating system.

EmuLink enables heterogeneous simulations in Cooja. This is shown using the

Prisma Emulator and connecting it to Cooja with EmuLink. With EmuLink Cooja becomes a

platform for interoperability testing on multiple hardware and software platforms. With the

availability of Prisma Emulator, Cooja also becomes a simulation framework for the 32-bit

Cortex-M3.

A limitation with the current implementation is that Prisma Emulator is driven by the

system clock and runs in real time, thereby requiring the simulations to also run in real time.

Another effect of this design is that the simulations become non-deterministic. We plan to

improve this by driving the EmuLink-connected emulators with Cooja‘s simulation clock to

enable the simulations to run at arbitrary speeds.

85

7 References

[1]K. Ashton, That ‗‗Internet of Things‘‘ thing, RFiD Journal (2009).

[2]J. Buckley (Ed.), The Internet of Things: From RFID to the Next-Generation

Pervasive Networked Systems, Auerbach Publications, New York, 2006.

[3] M. Weiser, R. Gold The origins of ubiquitous computing research at PARC in the late

1980s IBM Systems Journal (1999)

[4]Y. Rogers, Moving on from Weiser‘s vision of calm computing: engaging ubicomp

experiences, in: UbiComp 2006: Ubiquitous Computing, 2006.

[5]I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci Wireless sensor networks: a

survey Computer Networks, 38 (2002), pp. 393–422

[6]L. Atzori, A. Iera, G. Morabito The Internet of Things: a survey

Computer Networks, 54 (2010), pp. 2787–2805

[7]J. Belissent, Getting clever about smart cities: new opportunities require new business

models, Forrester Research, 2010.

[8]A. Juels RFID security and privacy: a research survey

IEEE Journal on Selected Areas in Communications, 24 (2006), pp. 381–394

[9]A. Ghosh, S.K. Das Coverage and connectivity issues in wireless sensor networks: a

survey Pervasive and Mobile Computing, 4 (2008), pp. 303–334

[10]M. Zorzi, A. Gluhak, S. Lange, A. Bassi From today‘s Intranet of Things to a future

Internet of Things: a wireless- and mobility-related view IEEE Wireless Communications, 17

(2010), pp. 43–51

[11]N. Honle, U.P. Kappeler, D. Nicklas, T. Schwarz, M. Grossmann, Benefits of integrating

meta data into a context model, 2005, pp. 25–29.

[12]-Z. Shelby. Embedded web services. IEEE Wireless Communications, 17(6):52–57,

December 2010.

[13]-IPSO alliance: Enabling the internet of things. http://ipso-alliance.org/.

[14]-The contiki operating system - instant contiki. http://www.sics.se/contiki/

instant-contiki.html.

[15]-Internet of things - ThingSpeak. https://www.thingspeak.com/.

[16]URIs, URLs, and URNs: clarifications and recommendations 1.0. http://www.w3.

org/TR/uri-clarification/#contemporary

http://ipso-alliance.org/

86

8 Appendix

Source code from the server file:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "contiki.h"

#include "contiki-net.h"

/* Define which resources to include to meet memory constraints. */

#define REST_RES_HELLO 0

#define REST_RES_CHUNKS 1

#define REST_RES_SEPARATE 1

#define REST_RES_PUSHING 1

#define REST_RES_EVENT 1

#define REST_RES_SUB 1

#define REST_RES_LEDS 1

#define REST_RES_TOGGLE 1

#define REST_RES_LIGHT 0

#define REST_RES_BATTERY 0

#define REST_RES_RADIO 0

#define REST_RES_MIRROR 0 /* causes largest code size */

#include "erbium.h"

87

#if defined (PLATFORM_HAS_BUTTON)

#include "dev/button-sensor.h"

#endif

#if defined (PLATFORM_HAS_LEDS)

#include "dev/leds.h"

#endif

#if defined (PLATFORM_HAS_LIGHT)

#include "dev/light-sensor.h"

#endif

#if defined (PLATFORM_HAS_BATTERY)

#include "dev/battery-sensor.h"

#endif

#if defined (PLATFORM_HAS_SHT11)

#include "dev/sht11-sensor.h"

#endif

#if defined (PLATFORM_HAS_RADIO)

#include "dev/radio-sensor.h"

#endif

/* For CoAP-specific example: not required for normal RESTful Web

service. */

#if WITH_COAP == 3

#include "er-coap-03.h"

#elif WITH_COAP == 7

#include "er-coap-07.h"

#elif WITH_COAP == 12

#include "er-coap-12.h"

#elif WITH_COAP == 13

#include "er-coap-13.h"

#else

88

#warning "Erbium example without CoAP-specifc functionality"

#endif /* CoAP-specific example */

/***

******/

PERIODIC_RESOURCE(humidity, METHOD_GET, "humidity","title=\"Hello

humidity: ?len=0..\";rt=\"Text\"", 30*CLOCK_SECOND);

void

humidity_handler(void* request, void* response, uint8_t *buffer,

uint16_t preferred_size, int32_t *offset)

{

 REST.set_header_content_type(response, REST.type.TEXT_PLAIN);

 const char *msg = "Observe Periodic Humidity!";

 REST.set_response_payload(response, (uint8_t *)msg, strlen(msg));

}

void

humidity_periodic_handler(resource_t *r)

{

 static uint16_t humidityVal = 0;

 static char content[30];

 humidityVal=(uint16_t)rand()%100;

 coap_packet_t notification[1];

 coap_init_message(notification, COAP_TYPE_NON, REST.status.OK, 0

);

89

 coap_set_payload(notification, content, snprintf(content,

sizeof(content), "Humidity: %u %%", humidityVal));

 REST.notify_subscribers(r, humidityVal, notification);

}

//temperature

PERIODIC_RESOURCE(temperature, METHOD_GET,

"temperature","title=\"Hello temperature: ?len=0..\";rt=\"Text\"",

30*CLOCK_SECOND);

void

temperature_handler(void* request, void* response, uint8_t *buffer,

uint16_t preferred_size, int32_t *offset)

{

 REST.set_header_content_type(response, REST.type.TEXT_PLAIN);

 const char *msg = "Observe Periodic Temperature!";

 REST.set_response_payload(response, (uint8_t *)msg, strlen(msg));

}

void

temperature_periodic_handler(resource_t *r)

{

 static uint16_t temperatureVal = 0;

 static char content[30];

 temperatureVal=(uint16_t)rand()%120;

 coap_packet_t notification[1];

 coap_init_message(notification, COAP_TYPE_NON, REST.status.OK, 0

);

90

 coap_set_payload(notification, content, snprintf(content,

sizeof(content), "Temperature: %u F", temperatureVal));

 REST.notify_subscribers(r, temperatureVal, notification);

}

//ledstatus

PERIODIC_RESOURCE(ledS, METHOD_GET, "ledS","title=\"Hello ledS:

?len=0..\";rt=\"Text\"", 30*CLOCK_SECOND);

void

ledS_handler(void* request, void* response, uint8_t *buffer,

uint16_t preferred_size, int32_t *offset)

{

 REST.set_header_content_type(response, REST.type.TEXT_PLAIN);

 const char *msg = "LedS!";

 REST.set_response_payload(response, (uint8_t *)msg, strlen(msg));

}

void

ledS_periodic_handler(resource_t *r)

{

 static uint16_t ledSVal = 0;

 static char content[30];

 ledSVal=(uint16_t)rand()%120;

 PRINTF("LedS: %d/% for /%s\n", ledSVal, r->url);

 coap_packet_t notification[1];

91

 coap_init_message(notification, COAP_TYPE_NON, REST.status.OK, 0

);

 coap_set_payload(notification, content, snprintf(content,

sizeof(content), "LedS: %u ", ledSVal));

 REST.notify_subscribers(r, ledSVal, notification);

}

/***

******/

PROCESS(rest_server_example, "Erbium Example Server");

AUTOSTART_PROCESSES(&rest_server_example);

PROCESS_THREAD(rest_server_example, ev, data)

{

 PROCESS_BEGIN();

 PRINTF("Starting Erbium Example Server\n");

#ifdef RF_CHANNEL

 PRINTF("RF channel: %u\n", RF_CHANNEL);

#endif

#ifdef IEEE802154_PANID

 PRINTF("PAN ID: 0x%04X\n", IEEE802154_PANID);

#endif

 PRINTF("uIP buffer: %u\n", UIP_BUFSIZE);

 PRINTF("LL header: %u\n", UIP_LLH_LEN);

 PRINTF("IP+UDP header: %u\n", UIP_IPUDPH_LEN);

 PRINTF("REST max chunk: %u\n", REST_MAX_CHUNK_SIZE);

92

 /* Initialize the REST engine. */

 rest_init_engine();

 /* Activate the application-specific resources. */

rest_activate_periodic_resource(&periodic_resource_humidity);

rest_activate_periodic_resource(&periodic_resource_temperature);

rest_activate_periodic_resource(&periodic_resource_ledS);

/* Define application-specific events here. */

while(1) {

PROCESS_WAIT_EVENT();

#if defined (PLATFORM_HAS_BUTTON)

if (ev == sensors_event && data == &button_sensor) {

 PRINTF("BUTTON\n");

#if REST_RES_EVENT

 /* Call the event_handler for this application-specific

event. */

 event_event_handler(&resource_event);

#endif

#if REST_RES_SEPARATE && WITH_COAP>3

 /* Also call the separate response example handler. */

 Separate_finalize_handler();

#endif

 }

#endif /* PLATFORM_HAS_BUTTON */

 } /* while (1) */

 PROCESS_END();

}

93

Coap-client file for the first phase of this project:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "contiki.h"

#include "contiki-net.h"

#include "rest.h"

#include "buffer.h"

#define SERVER_NODE(ipaddr) uip_ip6addr(ipaddr, 0xfe80, 0, 0, 0,

0x0212, 0x7401, 0x0001, 0x0101)

#define LOCAL_PORT 61617

#define REMOTE_PORT 61616

char temp[100];

int xact_id;

static uip_ipaddr_t server_ipaddr;

static struct uip_udp_conn *client_conn;

static struct etimer et;

#define MAX_PAYLOAD_LEN 100

#define NUMBER_OF_URLS 3

char* service_urls[NUMBER_OF_URLS] =

{"led_status","temperature","humidity"};

94

static void

response_handler(coap_packet_t* response)

{

 uint16_t payload_len = 0;

 uint8_t* payload = NULL;

 payload_len = coap_get_payload(response, &payload);

 PRINTF("Response transaction id: %u", response->tid);

 if (payload) {

 memcpy(temp, payload, payload_len);

 temp[payload_len] = 0;

 PRINTF(" payload: %s\n", temp);

 }

}

static void

handle_incoming_data()

{

 PRINTF("Incoming packet size: %u \n",

(uint16_t)uip_datalen());

 if (init_buffer(COAP_DATA_BUFF_SIZE)) {

 if (uip_newdata()) {

coap_packet_t* response =

(coap_packet_t*)allocate_buffer(sizeof(coap_packet_t

));

 if (response) {

 parse_message(response, uip_appdata,

uip_datalen());

 response_handler(response);

95

 }

 }

 delete_buffer();

 }

}

static void

send_data(void)

{

 char buf[MAX_PAYLOAD_LEN];

 if (init_buffer(COAP_DATA_BUFF_SIZE)) {

 int data_size = 0;

 int service_id = random_rand() % NUMBER_OF_URLS;

 coap_packet_t* request =

(coap_packet_t*)allocate_buffer(sizeof(coap_packet_t));

 init_packet(request);

 coap_set_method(request, COAP_GET);

 request->tid = xact_id++;

 request->type = MESSAGE_TYPE_CON;

 coap_set_header_uri(request, service_urls[service_id]);

 data_size = serialize_packet(request, buf);

 PRINTF("Client sending request to:[");

 PRINT6ADDR(&client_conn->ripaddr);

 PRINTF("]:%u/%s\n", (uint16_t)REMOTE_PORT,

service_urls[service_id]);

 uip_udp_packet_send(client_conn, buf, data_size);

 delete_buffer();

 }

}

96

PROCESS(coap_client_example, "COAP Client Example");

AUTOSTART_PROCESSES(&coap_client_example);

PROCESS_THREAD(coap_client_example, ev, data)

{

 PROCESS_BEGIN();

 SERVER_NODE(&server_ipaddr);

 /* new connection with server */

 client_conn = udp_new(&server_ipaddr, UIP_HTONS(REMOTE_PORT),

NULL);

 udp_bind(client_conn, UIP_HTONS(LOCAL_PORT));

 PRINTF("Created a connection with the server ");

 PRINT6ADDR(&client_conn->ripaddr);

 PRINTF(" local/remote port %u/%u\n",

 UIP_HTONS(client_conn->lport), UIP_HTONS(client_conn-

>rport));

 etimer_set(&et, 5 * CLOCK_SECOND);

 while(1) {

 PROCESS_YIELD();

 if (etimer_expired(&et)) {

 send_data();

 etimer_reset(&et);

 } else if (ev == tcpip_event) {

 handle_incoming_data();

 }

 }

 PROCESS_END();

}

