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Abstract

In recent years, we all became witnesses of an unprecedented revolution in social media as a 
consequence of the appearance of the first large social networks, which encouraging for the first time 
individuals to  share their  thoughts  and ideas  with the  newly formed web society.  The underlying 
community structures of these networks created scientific and business value in such an extent in  
which  to  re  attract  the  interest  of  the  academic  community  on  clustering  methods  pushing  the 
boundaries of community detection methods. Motivated by the recognized void in comparative studies  
of  community  detection  methods  we  ended  up  dealing  with  an  experimental  validation  and 
comparison of five state of the art algorithms on a wide range of benchmark graphs demonstrating the 
necessity to  devise  local  and efficient  community detection techniques  that  perform well  under  a 
variety of changing conditions. Presuming on the revealed strengths and weaknesses of these methods  
we proceeded with an empirical study of the MySpace Online Social Network (OSN). Its purpose was 
threefold aiming to capture the evolution of user population, to examine user activity, and finally to 
characterize  community  formation  surrounding  seed  nodes  and  utilizing  only  local  interactions 
between nodes.

One million user profiles were randomly collected in a month’s period and stored in a local  
database for further processing. For each profile certain attributes were fetched: profile status (public,  
private, invalid), member since and last login dates, number of friends, number of views, etc. The  
profiles and their attributes were analyzed in order to reveal the evolution in user population and the 
activity of the participating members. Significant  conclusions were drawn for the synthesis of the  
population based on profile status, the number of friends, and the duration MySpace members stay 
active.

Subsequently, a large number of communities were identified aiming to reveal the structure of 
the underlying social network graph. The collected data were further analyzed in order to characterize 
community size and density but also to retrieve correlations in the activity among members of the  
same community. A total of 171 communities were detected with Fortunato’s algorithm, while using 
Clique Percolation this number was 201. Results demonstrate that MySpace members tend to form 
dense communities. For the first time, strong correlation in the last login date (the main attribute that 
shows user activity) for members of the same community was documented. It was also shown that 
members participating in the same community have similar values for other attributes like for example  
number of friends. Lastly, there is strong evidence that participation of users in communities inhibits 
them from abandoning MySpace. As a last observation, members that abandoned MySpace shortly 
after their account creation (the so-called Tourists), have very low connectivity and thus they do not  
participate in communities. 
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Περίληψη

Τα τελευταία χρόνια γίναμε μάρτυρες μίας άνευ προηγουμένου επανάστασης στα κοινωνικά 
μέσα ως συνέπειας της εμφάνισης των πρώτων μεγάλων κοινωνικών δικτύων, τα οποία ενθάρρυναν 
για πρώτη φορά χρήστες να μοιραστούν ιδέες και σκέψεις με μια νεοσύστατη διαδικτυακή κοινότητα. 
Η υποκείμενη διάρθρωση των δικτύων αυτών απέκτησε τέτοια επιστημονική αλλά και εμπορική αξία 
ώστε  να  προσελκύσει  εκ  νέου  το  ενδιαφέρον  της  ακαδημαϊκής  κοινότητας  στο  πρόβλημα  της 
αναγνώριρης  κοινοτήτων  σε  κοινωνικά  δίκτυα  οθώντας  τα  όρια  των  σημερινών  μεθόδων 
συσταδοποίησης. Αναγνωρίζοντας το υφιστάμενο βιβλιογραφικό κενό πάνω σε συγκριτικές μελέτες 
αλγορίθμων αναγνώρισης κοινοτήτων καταλήξαμε στην ανάπτυξη ενός μεθοδολογικού πακέτου για 
την σύγκριση πέντε διάσημων αλγορίθμων. Χρησιμοποιώντας ένα ευρύ φάσμα συνθετικών δικτύων 
καταφέραμε  να  καταδείξουμε  την  ανάγκη  για  ανάπτυξη  τεχνικών  που  θα  μπορούσαν  να 
λειτουργήσουν  αποδοτικά  πάνω  σε  δίκτυα  που  συνεχώς  μεταβάλλουν  μία  σειρά  παραμέτρων. 
Εκμεταλλευόμενοι  τα  πλεονεκτήματα  αλλά  και  τις  αδυναμίες  αυτών  των  μεθόδων,  όπως  αυτές 
αναδείχτηκαν  στο  πρώτο σκέλος  προχωρήσαμε με  μία  εμπειρική  μελέτη  του  κοινωνικού  δικτύου 
MySpace. Ο σκοπός της ήταν τριπλός και στόχευε στην σύλληψη της εξέλιξης του πληθυσμού του 
δικτύου, στην εξέταση της διαδικτυακής δραστηρίοτητας των χρηστών καθώς και στην αποτύπωση 
των  ειδικών  χαρακτηριστικών  που  διέπουν  τις  κοινότητες  του  συγκεκριμένου  δικτύου 
χρησιμοποιώντας μόνο τοπικές αλληλεπιδράσεις μεταξύ των κόμβων.

Στην κατεύθυνση αυτή, ένα εκατομμύριο τυχαία επιλεγμένα προφίλ χρηστών συλλέχθησαν 
εντός  ενός  χρονικού  παραθύρου  ενός  μήνα  και  αποθηκεύτηκαν  σε  μία  τοπική  βάση  δεδομένων 
αναμένοντας περεταίρω επεξεργασία. Μαζί με κάθε προφίλ ανακτήθηκαν από το διαδίκτυο και μία 
σειρά από χαρακτηριστικά όπως η κατάσταση του χρήστη, οι ημερομηνίες εγγραφής και τελευταίας 
επίσκεψης,  ο αριθμός των φίλων,  ο αριθμός εμφανίσεων προφίλ κ.α.  Στη συνέχεια  τα προφίλ σε 
συνδυασμό με τις ιδιότητες που τα συνοδεύουν αναλύθηκαν σε μία προσπάθεια να εξάγουμε χρήσιμα 
συμπεράσματα  για  την  εξέλιξη  του  πληθυσμού του  δικτύου  αλλά  και  της  δραστηριότητας  των 
χρηστών.

Ακολούθως  προχωρήσαμε  με  την  αναγνώριση  ενός  σεβαστού  πλήθους  κοινοτήτων 
στοχεύοντας στην ανάδειξη της διάρθρωσης του υποκείμενου κοινωνικού δικτύου. Χρησιμοποιώντας 
τον αλγόριθμο του Fortunato καταφέραμε να αναγνωρίσουμε 171 κοινότητες ενώ εφαρμόζοντας την 
μέθοδο του  Clique Percolation  προχωρήσαμε στην αποκάλυψη του εντυπωσιακού αριθμού των 201 
κοινοτήτων. Σε συνδυασμό με την ανάλυση των δεδομένων που συλλέξαμε προηγουμένως από το 
δίκτυο  μπορέσαμε  να  χαρακτηρίσουμε  τις  κοινότητες  που  σχηματίζουν  οι  χρήστες  ως  προς  το 
μέγεθος,  την πυκνότητα καθώς και  την ομοιογένεια τους.  Επ'  αυτού,  για πρώτη φορά συναντάμε 
ενδείξεις  σημαντικής  ομοιογένειας  πάνω στην  ημερομηνία  τελευταίας  επίσκεψης  στο  δίκτυο  ενώ 
αντίστοιχα χαμηλή απόκλιση τιμών εμφανίζεται και για το πλήθος των φίλων μεταξύ διαφορετικών 
χρηστών  ίδιων  κοινοτήτων.  Εν  τέλει,  υπάρχουν  ισχυρά  στοιχεία  που  δείχνουν  ότι  η  συμμετοχή 
χρηστών  σε  κοινότητες  λειτουργεί  αποτρεπτικά  στην  εγκατάλειψη  του  δικτύου,  υπόθεση  που 
ενισχύεται από τη διαπίστωση ότι οι χρήστες που φέρονται να έχουν εγκαταλείψει το MySpace μετά 
από σύντομη παραμονή στο δίκτυο, επονομαζόμενοι και “Τουρίστες” χαρακτηρίζονται από ιδιαίτερα 
χαμηλή  συνδεσιμότητα,  δηλαδή  πολύ  μικρό  αριθμό  φίλων  και  ως  εκ  τούτου  δεν  ευνοείται  η 
συμμετοχή τους σε κοινότητες.
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1 Introduction

Computer science from its inception until today, has experienced an unprecedented growth 
unlike any other  field.  In  just  a few years,  computers  transformed from being a  privilege of  big 
institutions and governments to a public  acquis. Computers size and cost has shrunk over the years 
while  processing capacity doubles  every four,  providing  everyone  with the  opportunity to  own a 
personal computer.  Computers have infiltrated our lives to such an extent as to be an indicator of 
quality of life. Countries are now judged by the percentage of their people that have access to internet  
services  while  persons  that  lack  computer  basic  knowledge  and  skills  are  considered  to  be 
electronically illiterate. 

The last two decades we became witnesses of a rapid development of distributed computing 
and computer networks. Users that were initially restricted to access static text data that was available  
on the internet are now enjoying multimedia content that is even produced by other users in real-time.  
The increasing proliferation and affordability of internet devices, as well as the ease of publishing,  
searching and accessing information on the web encourages the individual users to communicate their  
content with the web society. This gave birth to the idea of social interaction over the internet which in 
conjunction with the advent of web 2.0 technology led to the appearance of the first large social media. 
Social media are defined by Kaplan and Haenlein1 as a group of internet-based applications that build 
on the ideological and technological foundations of Web 2.0 and that allow the creation and exchange 
of User Generated Content (UGC). The once one way communication with the end users passively 
consuming  web  content  turned  into  many-to-many  communication  of  interactive  dialogues  and 
dynamic content. These applications are today responsible for a large proportion of the information 
that are exchanged through the internet every day. They produce data-sets of massive size that have the 
tendency to evolve over time. 

This major impact of Social Media on Information Technology Industry has emerged a variety 
of problems concerning complex networks.  In the context of network theory, complex networks are 
defined as graphs of non-trivial topological features occurring in real graphs. Networks in various 
application  domains  present  an  internal  structure,  where  nodes  form groups  of  tightly  connected  
components  which are more loosely connected to  the  rest  of  the  network.  These components are  
mostly known as communities, clusters or groups, terms used interchangeably in the rest of this thesis. 
Uncovering the community structure of a network is a fundamental problem in complex networks, 
already successfully applied in a wide range of scientific disciplines including Physics, Biology, Social  
Sciences, Discrete Mathematics and more recently Computer Science.

The task of community detection attracted once more the interest of the academic community 
on  clustering,  putting  inevitably under  reconsideration  the  capabilities  of  the  existing  community 
detection methods. The plurality of these algorithms proved to be inefficient in adapting to the modern 
distributed environment and were rendered obsolete leaving a significant void in scientific literature.  
This inconvenient truth led to the invention of new methods, able to deal with the new restrictions 
imposed by modern Online Social Networks (OSNs) including large amount of data with streaming 
nature.

In  recent  years,  the  ubiquity  of  communication  networks  speeds  up  the  development  of  
internet applications. Social networking2 has been driving a dramatic evolution due to the increasing 

1 A. M. Kaplan and M. Haenlein, “Users of the world, unite! The challenges and opportunities of Social  
Media” Business Horizons, 2010.

2 B. Buter, N. Dijkshoorn, D. Modolo, Q. Nguyen, S. van Noort, B. van de Poel, A. Ali, and A. Salah1. 
Explorative visualization and analysis of a social network for arts: The case of deviantart. Journal of 
Convergence Volume, 2(1), 2011.
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use of Web 2.0 elements such as blogs, micro-blogging services (e.g. Twitter), social networking sites 
(e.g.  MySpace,  Facebook,  LinkedIn),  social  media  news (e.g.  Digg)  and  wikis,  etc.  One  of  the 
fundamental problems in social networking with a lot of potential applications is to detect effectively 
the  communities  that  are  created  by  the  users’ interaction.  In  a  dynamic  environment  of  social 
networks the network structure evolves rapidly and the content is significantly larger in size. Such 
observations are unique in the online scenario and challenge the scientists.

Several attempts have been made to provide a formal definition for this generally described 
“community detection” concept in networks. A strong community was defined as a group of nodes for 
which each node of the community has more edges to other nodes of the same community than to  
nodes outside the community3. This is a relatively strict definition, in the sense that it does not allow 
for overlapping communities and creates a hierarchical community structure since the entire graph can 
be a community itself. A weak community, was later defined as a subgraph in which the sum of all  
node degrees within the community is larger than the sum of all node degrees toward the rest of the 
graph4.

Variations also appear in the method used to identify communities: Most of the algorithms that 
appear  in  the  literature  follow  an  iterative  approach  starting  by  characterizing  either  the  entire 
network,  or  each  individual  node  as  community,  and  splitting5,  or  merging,  respectively.  These 
methods  produce  a  hierarchy of  partitions.  There  is  an  entire  hierarchy of  communities,  because 
communities are nested: small communities compose larger ones, which in turn are put together to  
form even larger  ones.  By merging or  splitting communities  one can build a hierarchical  tree  of  
community partitions called dendrogram.  The modularity criterion6 defined n is  a measure of  the 
quality of a partition, and can be used to identify a single optimal partition, i.e. the one corresponding 
o the largest modularity value.

1.1 Motivation & Problem Statement

The  underlying  community  structure  of  real-world  networks  has  created  scientific  and 
business value. Although many algorithms exist dealing with the problem of community detection it is 
recognized that  the  methods  involved have a  long  way  to  go leaving  significant  space  for 
improvement. Motivated from the void in comparative studies on community detection methods in the 
related literature we ended up dealing with an experimental validation and comparison of five well-
known algorithms for community detection. 

Furthermore, motivated from the aforementioned observation that the social networks produce 
vast amount of data on a daily basis with a dynamic nature in forming communities we collected and 
subsequently studied data coming from the social network of MySpace. In particular, we examined its 
underlying  friendship  graph along with  other  equally interesting  profile  attributes,  in  an effort  to  
extract  valuable  information  on  the  network's  population,  the  evolution  that  takes  place  as  users  
abandon the network and the extent  to  which this  mobility can be captured applying  community 
detection techniques.

3 G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee. Self-organization and identification of web 
communities. IEEE Computer, 35:66–71, March 2002.

4 D. Katsaros, G. Pallis, K. Stamos, A. Vakali, A. Sidiropoulos, and Y. Manolopoulos. Cdns content 
outsourcing via generalized communities. IEEE Transactions on Knowledge and Data Engineering, 21:137–
151, 2009.

5 M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review 
E, 69(2):026113, Feb 2004.

6 M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proceedings of the 
National Academy of Sciences of the United States of America, 99(12):7821–7826, June 2002.
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1.2 Thesis Organization 

After this introductory section, we proceed with chapter 2, we make an introduction to basic 
concepts  that  accompany graphs,  structures  borrowed from discrete  mathematics  used in  order  to 
model social networks. Having consolidate the previous preliminaries we continue with an analysis of 
a series of state of the art community detection algorithms that dominate the related literature. Chapter  
4 describes the basic architecture of the system that was implemented as part of this thesis highlighting 
all parameters involved in the development. Among them we can distinguish restrictions imposed from 
the social networks and the World Wide Web, system requirements and other problems that chaperon 
data mining and concurrent programming. Chapter 5 introduces a methodological frame that permits 
as to evaluate the performance of the examined algorithms on a wide range of synthetic networks.  
Chapter 6 presuming on the knowledge gained from the previous chapter help us extract valuable 
conclusions on the performance of community detection methods on real-world applications while 
Chapter 7 is the final chapter of this thesis being this dissertation's summary.
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2 Complex Networks

2.1 Social Network Analysis

Social  Network Analysis (SNA) is the methodical  analysis of  social networks. In order to  
study efficiently a  social  network in the  purpose of  understanding its  dynamics,  a simplified and  
abstract model is required. A popular modeling method is to represent a network's objects and their  
relationships by a graph, allowing us to use a large set of generic methods provided by the field of  
Discrete Mathematics. In this context, individual actors within the network are represented by nodes  
and  the  relationships  formed  between  them  such  as  friendship  or  organizational  position  are 
represented by ties. The use of this specific modeling tool was considered a fail-safe choice as the 
technique had already been successfully applied to a wide range of scientific disciplines including  
mathematics, physics, biology social sciences and criminology. Tool's flexibility has allowed academic 
community to tackle with a large set of non-trivial problems. Impressively, network analysis has been 
already  conscripted  in  an  effort  to  extract  valuable  information  on  human  DNA and  molecules 
attractions  using  the  same  principles  that  allow  us  to  solve  navigation  problems  or  uncover  the 
relationships that lay between two people that share for example the same hobbies, political views,  
marital status etc.

2.2 Notion of Complex Network

The  rapid  development  of  distributed  computing  domain,  in  conjunction  with  web  2.0 
technology eventually led to the appearance of the first social networks. Data-sets produced by these  
networks are characterized by their massive size and the tendency they have to evolve over time. More 
importantly,  the plurality of the existing social networks  display substantial  non-trivial  topological 
features, with patterns of connection between their elements that are neither purely regular nor purely 
random. Before we get our hands on the basic problems that chaperon network analysis we must first 
focus on a series of important preliminaries that concern Network Theory. Objects' semantic content 
may vary requiring networks to adapt to different occasions and applications. The ability to cope with 
so diverse data-sets is based on a variety of different Graph definitions.

2.3 Basic Network Definitions

Before we get our hands on the basic problems that chaperon networks we must first 
focus  on  a  series  of  important  preliminaries  that  concern  Graph  Theory,  including  some  basic  
definitions. In mathematics and computer science, graphs represent mathematical structures used to  
model pairwise relations between objects from a certain collection. The interconnected objects are  
represented by mathematical  abstractions called vertices  or Nodes which are  connected by edges.  
Graphs can be implemented in a visual level by a set of dots or circles for the vertices, joined by lines  
that simulate the relations between them. What makes Graphs a so powerful mathematical tool is its  
flexibility. As mentioned before Graphs have the ability to adapt to the nature of the represented data.  
This ability to cope with so diverse data-sets is based on a variety of different Graph definitions.
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2.3.1 Non-Directed Network

A network whose edges have no orientation is referred as a Non-Directed Network. The edge 
that connects node x to node y is exactly the same with the edge that connects node y to node x. It is 
the simplest and most common type of networks. Unless stated otherwise, from now on the words 
“Graph” and the word “Network” for this thesis will refer to this type of graphs.

2.3.2 Directed Network

A directed network or digraph is an ordered pair D = (V, A). V refers to the set of nodes while A 
refers to a set of ordered pairs of nodes called arcs. An arc a = (x, y) is considered to be directed from 
node x to node y. y is called the head or direct successor, and x is called the tail or direct predecessor of 
the arc. If a path leads from vertex x to vertex y via one or more other nodes,  y is considered to be 
successor or reachable from x. A directed graph as described above, is considered to be symmetric if 
for every arc in  D, the corresponding inverted arc also exists in  D. A symmetric loop-less directed 
graph D = (V, A) is equivalent to a simple undirected graph G = (V, E), where the pairs of inverse arcs 
in A correspond one to one with the edges in E. As a consequence the edges in D are twice as much as 
the edges in G. 
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A more strict variation of this definition is called oriented network. The term refers to a network in  
which no more than one of (x, y) and (y, x) may exist simultaneously. For a node, the number of head 
endpoints adjacent to a node is called the in-degree of the node and the number of tail endpoints is its 
out-degree. The in-degree is denoted deg − (v) and the out-degree as deg + (v). A vertex with deg − (v)  
= 0 is called a source, as it is the origin of each of its incident edges. Similarly, a vertex with deg + (v)  
= 0 is called a sink. 

If for every node v  V∈ ,  deg + (v) = deg − (v), the graph is called a balanced digraph. Regarding its 
connectivity, a digraph G is called weakly connected if the undirected underlying graph obtained by 
replacing all directed edges of  G with undirected edges is a connected graph. A digraph is strongly 
connected if it contains a directed path from u to v and a directed path from v to u for every pair of 
vertices u,v. The strong components are the maximal strongly connected sub-graphs.

2.3.3 Mixed Network

A mixed network G is graph in which some edges may be directed and some other may not be 
directed. It can be expressed through an ordered triple G = (V, A, E)  with V, A and E as defined earlier.

2.3.4 Multinetwork

In discrete mathematics, the term multinetwork refers to a graph that allows the existence of 
multiple edges. Edges are considered to be multiple or parallel, if they have the same tail and head 
creating multiple direct  paths between these nodes.  Some authors also allow multigraphs to have 
loops, edges that connects a vertex to itself, while others call these pseudo-graphs, reserving the term 
multigraph for the case with no loops.  This definition can be combined with these of directed or 
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undirected graphs resulting in a hybrid graph.  For example in flight booking systems, multigraphs 
might be used to model the possible flight connections offered by an airline.

2.3.5 Weighted Network

Certain applications demand more information to be represented by the graph. In this case a 
real or a rational number which is called weight or cost can be assigned to each edge in order to  
represent, for example, costs, lengths or capacities, etc. depending on the problem at hand. Although  
some authors use the term network as a synonym for a weighted graph, unless stated otherwise, a 
graph is always assumed to be unweighted. Classic problems connected with weighted graphs include:

• Minimum spanning tree
• Shortest-path problem
• Max-flow/min-cut theorem
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2.3.6 Regular Network

In graph theory, the term regular graph is used to describe a graph where each node has the 
same degree, in other words the same number of neighbors. In case we are dealing with directed  
graphs, another restriction must also be satisfied. The in-degree and out-degree for every vertex has to  
be equal. A regular graph with nodes of k-degree can also be referred as a k-regular graph. 

0-regular graph 1-regular graph 2-regular graph 3-regular graph 

2.3.7 Complete Network

The term “complete”,  some times stated as “fully connected”,  defines a simple undirected 
graph in which all pairs of two distinct vertices are connected by a unique edge. The complete graph 
on n vertices has n(n − 1)/2 edges, and is denoted by Kn. Another way to see a complete graph is as a 
(k-1) regular graph. One very interesting ascertainment on complete graphs is that the only way to  
disconnect the graph is by removing the complete set of vertices. The complement graph of a fully 
connected graph is an empty graph. Essentially complete graphs form their own maximal cliques. 

K1 K2 K3 K4 K5 

K6 K7 K8 K9 K10 

Πίνακας 1: Table of basic complete networks with k<=10
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2.4 Node Sequences

2.4.1 Walk

A walk from node  x to node  y is any sequence of adjacent edges that begins with an edge 
containing x and ends with an edge containing node y. Nodes and edges can be visited several times in 
a walk, as long as these constraints are not violated.

2.4.2 Trail

On the other hand, trail is defined as a walk where the sequence of adjacent edges does not  
contain any edge for more than one times. Though, the same constraint does not apply for nodes, so a 
node can be visited through different edges numerous times.

2.4.3 Path

Path is defined as a walk in which neither edges nor nodes are visited more than once. If the  
starting node coincides with the destination node then this path is considered to be an Eulerian path. 
This specialized notion of path was first  introduced  by Leonhard Euler while solving the famous 
Seven Bridges of Konigsberg problem in 1736. 

2.4.4 Distance

In  network theory, the  shortest-path problem is the problem of finding a  path between two 
nodes in a  graph  such that the sum of the  weights of its constituent edges is minimized  which is 
analogous to the problem of finding the shortest path between two intersections on a road map. In this 
context the graph's vertices correspond to intersections and the edges correspond to road segments, 
each weighted by the length of its road segment.  In a non weighted network, the length of a path 
corresponds to the minimum hops required in order to reach node y starting from node x. On the other 
hand, in a weighted network, the length of a path is processed by summing the weights of the edges it 
includes, resulting in a slightly different definition of the distance. When a node  y is not reachable 
from a node x, their distance is theoretically infinite. However, in many situations, this infinite value  
causes problems, and this distance is then considered to be zero. The most important algorithms for 
solving this problem are:

• Dijkstra's algorithm
• Bellman-ford algorithm
• A* search algorithm
• Floyd-Warshall algorithm
• Johnson's algorithm
• Perturbation theory
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2.5 Node Sets

2.5.1 Dyad and Triad

Dyad is the smallest set of nodes. It consists of two nodes which can be linked together using 
none, one or multiple edges. Triad on the other hand, as its name betokens concerns group of nodes  
containing three nodes.

2.5.2 Triangle

Triangle's cornerstone is the triplet.  A triplet consists of three nodes that are connected by 
either two (open triplet) or three (closed triplet) non directed edges. A triangle consists of three closed 
triplets, one centered on each of the nodes. 

2.5.3 K-Clique

K-Clique  corresponds  to  a  maximally  connected  subset  of  nodes.  Each  node  must  be 
connected to every other node that participates into the clique. Its size corresponds to the number of  
nodes it contains. 

2.5.4 Component

A component is a sub-network in which any node is reachable from any other one by a walk.  
Put concisely, it is a maximal connected subgraph. For an undirected network, a component is a set of  
connected nodes with no links with other nodes from the same network. But for directed networks, it  
is less straightforward. A  component  is said to be strongly connected  if there is a  directed walk 
between each pair of  nodes. It is called weakly connected if there is  at least an undirected  walk 
between each pair of nodes.  A  network  with   only one  component is  said to be connected.  An 
isolated node  (i.e. a node with a degree zero) is a component of its own.  

2.5.5 Community

Several  definition on community exist.  Though two of them are  more popular  among the 
academic community.  A strong community is defined as a group of nodes for which each node has 
more edges to nodes of the same community than to nodes outside the community. This definition is 
relatively  strict,  since  it  does  not  allow  for  overlapping  communities  and  creates  a  hierarchical  
community structure,  since the entire graph can be a community itself. A generalized community, is  
defined as a subgraph in which the sum of all node degrees within the community is larger than the  
sum of all node degrees towards the rest of the graph. Other definitions are related to the optimization  
of some ``fitness'' criterion like for example the intracommunity edge density, or the intercommunity 
edge  cut.  In  general,  community detection  is  the  problem of  finding  a  partition  of  a  graph  into 
subgraphs that maximizes some quality criterion which reflects the density of the subgraph(s). 
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2.6 Networks Properties

2.6.1 Homophily and Eterophily

Homophily refers to the tendency for nodes to connect to other vertices with which they share 
(respectively don't share) common attributes and characteristics. In other words homophily seems to 
be responsible for emphasizing or even causing the relationships between the nodes. For example, in a 
social network where edges represent friendship connections, it is more likely that a user is connected  
to an equally young person or a user with who shares common interests. In literature this property can 
be also found as assortative mixing.

2.6.2 Clustering Coefficient

In network theory clustering coefficient is representing the extent to which nodes of a specific  
network tend to shape clusters. Evidence suggests that in most real-world networks, and in particular 
social  networks,  nodes tend  to  create  tightly connected groups  characterized by a  relatively high 
density of  ties.  Impressively,  in  real-world  networks,  this  likelihood tends  to  be  greater  than  the  
average probability of a tie randomly established between two random vertices. Two versions of this 
metric exist  in the literature, depending on their perspective. The global perspective definition was 
designed to give an overall  indication of the clustering in the network,  whereas the measure that  
follows  a  local  approach gives  an  indication  of  the  embeddedness  of  single  vertices.  The  global 
clustering coefficient is based on triplets of nodes and is defined as the number of closed triplets over  
the total number of triplets. This measure gives us an indication of the clustering in the whole network,  
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and can be applied to both non directed and directed networks.

The local clustering coefficient of a node on the other hand, acts as an indication of how close its 
neighbors are to form a complete subgraph. A graph G = (V, E) formally consists of a set of vertices V 
and a set of edges E connecting them. An edge eij connects vertex i with vertex j. The neighborhood Ni 

for a vertex ui is defined as the set that consists of all the nodes that are directly connected to vertex i.

Ni ={uj : eij  ∈ E ^ eii  ∈ E}

We define ki as the size of node's i neighborhood. The local clustering coefficient Ci for a vertex ui then 
corresponds to the proportion of links between the vertices within its neighbourhood divided by the  
number of links that could possibly exist between them. For a directed graph, eij is distinct from eij, and 
therefore for each neighbourhood Ni there are  links that ki(ki-1) could exist among the vertices within 
the neighbourhood (ki is the number of neighbors of a vertex). Though, in non directed networks,  eij 

and eji are considered identical. Therefore, if a vertex  ui has ki neighbors, ki(ki-1)/2 edges could exist among 
the vertices within the neighborhood. Thus, the local clustering coefficient for undirected graphs can 
be defined as:

2.6.3 Small World Property

Small  world  property  was  first  introduced  by  Stanley  Milgram  and  a  group  of  other  
researchers on an effort to examine the average path lengths for social networks of people living in the 
united states. The research proved to be groundbreaking suggesting that human society network is  
characterized by short path lengths. This characteristic is often associated with the idea of “the six  
degrees of separation”. According to the idea everyone is on average approximately six steps away,by 
way of introduction, from any other person in the world, so that a chain of “a friend of a friend” 
statements  can be made,  on average,  to  connect  any two people  in  six  steps  or  fewer.  As  far  as  
mathematics are concerned, a small-world network is a graph in which most nodes are not neighbors 
of one another, but most nodes can be reached from every other with a relatively low cost.  More  
specifically, a small-world network is defined to be a network where the typical distance L between 
two randomly chosen nodes (the number of hops required) grows proportionally to the logarithm of 
the number of nodes N in the network, that is:

L x log N
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2.6.4 Hierarchy

Another very interesting property found on an important number of complex networks 
and hence on most modern social networks is hierarchy which shares common characteristics with the  
tree topology, applied in real-world computer networks. Networks that adopt this property tend to have 
less links between the nodes of different levels , where vertices that participate to the same level are 
more densely connected with each other. 

2.6.5 Network Resilience

The term signifies the extent to which a network tends to maintain its topological properties 
when changes occur on its structure. By removing a series of edges or nodes, network's connectivity is 
reduced having an important impact on information flow which, when passing a critical point can lead 
to bottlenecks. 

2.7 Measures

Different  measures  are  used  to  quantify  the  previously  described   properties.  One  can 
distinguish node level  (or local)  measures and network level  (or global ) ones. Node level measures  
are mainly related to  centrality.
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2.7.1 Density

Density imprints the general level of network's connectivity. It can be defined as the ratio of 
the number of the existing edges  m to the number of all possible edges between the vertices of the 
network.  The  more  density  approaches  one,  the  more  the  network  approaches  being  a  complete  
network. A network is characterized as sparse in case that the number of links is of the same order as 
the number of nodes. Otherwise a network is considered to be dense.

d = m
n(n−1)

2.7.2 Diameter and Average Path

Diameter refers to the maximum distance that exists between two nodes of the network and 
sets the upper-bound for all distances between to any set of vertices that participate into the network. 
Another  basic  property that  defines  the  topology of  a  network is  the  average distance.  It  can be  
formulated as the  mean value of all distances over all possible pairs of the network.

l= 1
n(n−1)∑ i≠ j dij

2.7.3 Centrality

Within the scope of graph theory, a node's relative importance can be defined using a series of 
measures. Although centrality concepts were first developed in social network analysis, and many of  
the terms used to measure centrality reflect their sociological origin, they have adapted to a wide range 
of real-world problems. It can be used to value the influence of a person over a social network with the  
same success that it can be used on urban network routing. The most common centrality metrics found 
in relative literature include:

• Degree centrality 

• Betweeness centrality

• Closeness 

Degree centrality is the most trivial measure of them and is defined as the number of edges 
containing a node. The degree can be interpreted in terms of the immediate risk of a node for catching 
whatever is traveling through the network. In the case of a directed network, we usually define two 
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separate measures of degree centrality,  namely in-degree and out-degree. As mentioned earlier, in-
degree is a count of the number of ties directed to the node and out-degree is the number of ties that  
the node directs to others. When ties are associated to some positive aspects such as friendship or 
collaboration, in-degree is often interpreted as a form of popularity, and out-degree as gregariousness.  
Another definition that exists in literature denotes degree centrality as the ratio of actual degree (in 
case of directed graphs in-degree or out-degree respectively) to the possible edges leading to a specific  
node which is equal to the size of the graph minus one.

C=Vertex Degree
n−1

Betweeness centrality was first introduced as a metric for quantifying the control of a human on the 
communication between other humans in a social network by Linton Freeman. In this context, nodes 
that  have a  high  probability to  be  encountered  on a  randomly chosen  shortest  path between two 
randomly chosen nodes are characterized by a high betweenness value. The betweenness of a vertex υ 
in a graph G = (V, E) with V vertices can be calculated using the following algorithm:

1. For each pair of vertices (s,t), compute all shortest paths that lay between them. 

2. For each pair of vertices (s,t), determine the fraction of shortest paths that pass through the  
vertex in question (here, vertex v)

3. Sum this fraction over all pairs of vertices (s,t)

The algorithm can be expressed in a more compact form by the following equation:
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where  σst is total number of shortest paths from node   to node   and  σst(υ) is the number of those 
paths that pass through υ. 

Closeness of a node s is defined as the inverse of the sum of its distances to all other 
nodes. Thus,  the more central  a node is  the lower its total  distance to all  other nodes  is. 
Closeness can be regarded as a measure of how fast it will take to spread information from s 
to all other nodes in a sequential pattern.

2.7.4 Degree-Based Measures

The simplest measure regarding degree is average degree which can be defined as the mean 
degree processed over the entire network population and for non directed graphs can be formulated as 
follows:

DM =1
n ∑ ki  

Unfortunately, mean degree does not offer a clear view over the network's structure as it does 
not take into consideration the degree distribution as no assumptions can be made on properties like 
homophily  or  eterophily.  In  order  to  extract  more  valuable  information  on  the  network's  
characteristics,  degree  distribution and  degree  standard  deviation must  also  be  examined. 
Experimental studies on statistical behavior have shown that degree distribution on real-world social  
networks follow either a power or an exponential law.

2.7.5 Modularity

Modularity  essentially  indicates  the  extent  to  which  a  given  community  partition  is 
characterized by high number of intra-community edges compared to inter-community ones and is  
calculated as follows:  for a network community structure with  l communities,  an  l  x  l  symmetric 
matrix e is defined whose element eij is the fraction of all edges in the network that connect nodes in 
community i to nodes in community j. The row sums ai = Σj eij of this matrix represent the fraction of 
edges with an endpoint in community i. Modularity Q of a community partition is defined as follows: 
Q = Σl

i=1 eii-ai
2. Modularity measures the fraction of intra-community edges minus the expected value 

of the same quantity in a network with the same community division and random connections between 
nodes. If the number of intra-community edges is no better than random, we will get a modularity 
value close to 0, while modularity values approaching 1 (which is the maximum possible) indicate  
networks with strong community structure.
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2.8 Common Network Problems

2.8.1 Minimum Spanning Tree

Given a non-directed non-weighted network  G = (V, E),  a spanning tree is a subset of the 
graph's edges that has the ability to maintain network's connectivity. In other words, the resulting tree-
type data structure that contains a subset of E ensures that no vertex becomes inaccessible. For each 
graph, one or more spanning trees exist. The term Minimum Spanning Tree (MST) on the other hand  
refers to the smallest possible set of edges characterized by this property. If we assign a weight to each 
edge, representing its cost, we can use this to assign a weight to a spanning tree by computing the sum 
of the weights of the edges in that spanning tree. A minimum spanning tree (MST)  in this case or 
minimum weight spanning tree is then a spanning tree with weight less than or equal to the weight of  
every other spanning tree. 

2.8.1.1 Simple Minimum Spanning Tree Algorithm

The following function constitutes a simple solution to the problem:

function MST(G,W):
    T = {}
    while T does not form a spanning tree:
        find the minimum weigthed edge in E that is safe for T
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        T = T union {(u,v)}
    return T

2.8.2 Shortest-Path Problem Definition

The shortest path problem can be defined for a wide range of networks as mentioned earlier. In  
the case of non-directed networks, two nodes are considered to be adjacent if they are both incident to 
a common edge. As mentioned earlier path in an undirected graph is a sequence of vertices:

 P=(υ1, υ2,... , υn)∈V ×V ...×V  

such that  is adjacent to  for 1 < i < n. Such a path P is called a path of length  from  to . 
Let eij be the edge incident to both υi and υj. Given a  real-valued weight function f : E →ℝ , and a 
non-directed network  G,  the  shortest  path  from   to   is  the  path   P=(υ1, υ2,... , υn) (where 

 and ) that over all possible  minimizes the sum:

 ∑
i=1

n−1

f (eii +1)  

When the graph is unweighted or f : E →{c}, c ∈ ℝ , this is equivalent to finding the path with 
fewest  edges.  The  problem  is  also  sometimes  called  the  single-pair  shortest  path  problem,  to 
distinguish it from the following variations:

• The  single-source shortest  path problem,  in which we have to find shortest  paths from a  
source vertex v to all other vertices in the graph. 

• The single-destination shortest path problem, in which we have to find shortest paths from all  
vertices in the directed graph to a single destination vertex v. This can be reduced to the  
single-source shortest path problem by reversing the arcs in the directed graph. 

• The  all-pairs shortest path problem, in which we have to find shortest paths between every  
pair of vertices v, v' in the graph. 

These generalizations  have significantly more efficient  algorithms than the simplistic  approach of  
running a single-pair shortest path algorithm on all relevant pairs of vertices.
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2.8.2.1 Dijkstra's algorithm

The  most  popular  algorithm dealing  with  the  problem  was  introduced  by  Edsger  Wybe 
Dijkstra in  1956. Since 1959 when it was published7, Dijkstra's algorithm has been widely used in 
routing algorithms, mainly as a subroutine. Algorithm solves the single-source shortest-path problem 
for weighted networks with non-negative edge costs. For a given node in the network, the algorithm 
finds  the  shortest  path  (i.e  with  lowest  cost)  between  that  node  and  every other  node  which  is  
connected to the network. This way it can be used for finding costs of shortest paths from point A to  
point B by stopping the algorithm once the shortest path to the destination has been determined. For 
example, if the vertices of the graph represent cities and edge path costs represent driving distances 
between pairs of cities connected by a direct road, Dijkstra's algorithm can be used to find the shortest 
route  between  one  city  and  all  other  cities,  a  feature  that  is  used  by  all  modern  Geographical  
Information Systems (GIS) including the well known Google Maps.

The algorithm is uses breadth-first search (BFS) in order to explore vertices by spreading out  
as new vertices are discovered. We could liken the process with starting a fire on the graph. We light  
the source vertex, and then the fire spreads to its neighbors while going out at the starting node. The 
fire then spreads to the unburned neighbors of the burning vertices, and so on until the entire graph is  
burned. For our purpose we will assume that only one vertex can be burning at a time; that is our fire  
will always choose to spread to the closest neighbor. 

Pick a starting vertex o. We label each vertex v in the graph with a "distance" δ(v) from o. We 
start out with δ(o) = 0 and guess ∞ for the rest. We start with each vertex in the Unburned state, from 
which we will remove them as they are burned by the algorithm. Removed nodes are called Burned. 
For each vertex v we will also keep track of a  source  vertex called source(v), which is the vertex 
closest vertex to v along its shortest path to o. The algorithm can be formulated using pseudocode as 
follows:

Function Dijkstra()
For each vertex v in G 

Label v as Unburned 
Set δ(v) = &infin 
Set source(v) as undefined 

7 Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs". Numerische Mathematik 1: 269–
271. doi:10.1007/BF01386390.
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Set δ(o) = 0 

While any vertex is Unburned 
Call the Unburned vertex with smallest &delta value u 
Label u as Burned 

For each neighbor n of u 
If δ(u) + w(u,n) < &delta(n) 
Set δ(n) = δ(u) + w(u,n) 
Set source(n)=u 

End 

In the above picture starting point is marked by a double circle. The Unvisited node with the  
smallest delta value is orange. It will be visited at the next step in the algorithm. The yellow vertex is  
the one that is currently selected. Gray vertices have been labeled as already visited by the algorithm. 
Neighbors if the burning vertex whose delta is being updated have their edges marked in orange. This  
happens when δ(u) + w(u,n) < delta(n). Edges corresponding to sources are marked in blue. Note that 
the algorithm will occasionally overwrite the source of a vertex with a closer source. Once all the 
vertices are Burned the algorithm is burned. 

In order to find the shortest-path we simply follow the source edges (blue in the example) 
beginning this time from the destination until we reach the initial vertex. We also know that we have 
actually found the shortest path (it is possible to have more than one path tied for being the shortest)  
since our fire has always chosen to take the shortest steps possible when moving to a new location. 

20

Εικόνα 11: Dijkstra's algorithm's execution example



3 Community Detection Algorithms

Variations appear in the methodology used to identify communities. Certain algorithms follow 
an iterative approach starting by characterizing either the entire network, or each individual node as  
community, and splitting [2, 6] or merging [3] communities, respectively. These methods produce a 
hierarchy of nested communities. By merging or splitting communities one can build a hierarchical 
tree of community partitions called dendrogram. Several re-searcher aim to find the entire hierarchical 
community dendrogram,  while  others  try to  identify only the  optimal  community partition.  More 
recent  approaches  aim  to  identify  the  community  surrounding  one  or  more  seed  nodes.  Some 
researchers aim to discover distinct (non-overlapping) communities, while others allow for overlaps.

3.1 Newman's Algorithm

One of the well known community finding algorithms was developed by Girvan an Newman89. 
This algorithm follows, what is known as, the divisive-agglomerative method, a hierarchical approach 
based on which communities are detected by removing edges iteratively from the graph. An edge that 
belongs to many shortest paths between nodes has high betweeness and has to be removed, because it  
is more likely to be an inter-community edge. By removing gradually edges, the graph is split and its  
hierarchical  community structure  is  revealed.  The algorithm is computationally intensive,  because 
following the removal of an edge, the shortest paths between all pairs of nodes have to be recalculated.  
However,  it  reveals  not  only  individual  communities,  but  the  entire  hierarchical  community 
dendrogram of the graph. An important element of the algorithm is the modularity calculation, which 
is used to evaluate the quality of a community partition resulting and also as a termination criterion for 
the algorithm.

Although there is a wide range of betweenness measures available, shortest-path betweenness 
is used due to the lower computational cost and the satisfactory results. Shortest-path betweenness can 
be calculated by finding the shortest paths between all pairs of vertices and summing up how many of 
those  run  along  each  edge.  Experimental  results  for  implementations  of  the  algorithm based  on 
different  betweenness  metrics have shown no significant  impact  on the quality of the  community 
structure output.

The general form of Newman’s algorithm is as follows:

1. Calculate betweenness scores for all edges of the network

2. Find the edge with the highest betweenness value and remove it from the network

3. Recalculate betweenness for all remaining edges

4. Repeat from step (2)

8 M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proceedings of the 
National Academy of Sciences of the United States of America, 99(12):7821–7826, June 2002.

9 M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review 
E, 69(2):026113, Feb 2004.
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The output of this process can be represented as a dendrogram depicting the successive splits  
of the network. The detection process can be stopped at any point the output community structure is  
judged to be satisfactory. An accurate way to determine if a network division is satisfactory is to use  
an  appropriate  evaluation  metric.  A metric  that  can  carry out  this  task  is  the  modularity metric. 
Modularity essentially indicates the extent to which a given community partition is characterized by 
high number of intra- community edges compared to inter-community ones. Essentially, the algorithm 
proceeds as long as network partitions with higher modularity are produced after edge removals. An 
appropriate modularity threshold is applied in order to identity the optimal community structure and 
the algorithm to terminate.

The key in order to achieve acceptable results is the recalculation step. After the removal of an 
interconnecting edge, the workload for the remaining edges standing between two communities is in-  
creased.  The  fewer  are  the  remaining  edges,  the  more  dramatic  becomes  the  increase.  As  a  
consequence a single betweenness calculation followed by the serial removal of edges in descending  
betweenness order could lead to the faulty removal of an edge and thus poor results for the algorithm.

Summing  up,  despite  being  a  fairly  successful  and  robust  algorithm,  Newman  is 
computationally  intensive  and  thus  fails  to  keep  up  with  the  perpetual  evolution  in  the  field  of  
community detection.  This  becomes  more  obvious when we have to  deal  with  large  data-sets  or 
streaming data produced by modern web systems.
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3.2 CiBC

Compared to other community detection algorithms applied in various scientific fields, CiBC 
was designed to fulfill  the very specific  task of  identifying Web communities from a web server  
content, in order to improve the performance of CDNs.

CDN stands for Content Delivery Network.  A content delivery network (CDN) is a large  
distributed system of servers deployed in multiple data centers all over the world. The main purpose of  
a CDN is to provide web content to end-users with high availability and high performance. CDNs 
serve a large fraction of the Internet content today, including web objects (text, graphics, URLs and  
scripts), downloadable objects (media files, software, documents), applications (e-commerce, portals), 
live  streaming  media,  on-demand  streaming  media,  and  social  networks  more  importantly  social 
networks and web 2.0 applications.

The algorithm is based on a slightly different definition from what is traditionally considered 
as a network community. Usually, a community is defined as a subgraph for which each node has more 
edges to nodes of the same community than to nodes outside the community (strong community). A 
more flexible definition, called generalized community, is the following: a community is a sub- graph 
in which the sum of all node degrees within the community is larger than the sum of all node degrees 
towards the rest of the graph. Apart from the capability of identifying overlapping communities, CiBC 
has one more innovative characteristic, its hybrid nature, using both local and global graph’s properties 
in order to accomplish its mission. Community detection is performed in three phases, with each phase 
including further steps.

In the first phase, the Betweeness Centrality (BC) is calculated for each node of the graph as 
shown in [10].10 BC is a metric used to measure how “central” a node is in the graph. Last step before  
proceeding with phase two includes the sorting of the nodes of the graph by ascending BC value.

The second phase concentrates on the initialization of the cliques. This is achieved using an 
iterative procedure starting with the nodes with the lowest BC values. Although a high BC value may 
indicate that a node is central within a community, it can also be an indication of a node that is central  
within the graph, connecting different communities. Moreover, if we start with a node characterized by 
a high BC value, it is highly possible to end up with a single community that includes all nodes of the  
graph. In each iteration, if the currently-selected node υ is not assigned to any group yet, a new subset 
of  the  graph  called  clique  is  created.  In  this  clique,  we  include  all  nodes  that  belong  to  the  
neighborhood of  υ. Moreover, we further expand this clique using Bounded-BFS with typical depth 
value √ Ν (where N is the number of nodes). By applying this procedure, after the completion of all 
iterations, a set of groups (cliques) will be created. This fatefully leads to phase three of the algorithm.

The large number of the created groups raises the need for some sort of minimization, in order 
to get the desired generalized community structure. This task is carried out by merging these groups  
through an iterative process. We define an l × l matrix B , where l refers to the number of the groups 
produced at phase two. Each element B [i, j], with i≠ j  of the matrix corresponds to the number of 
edges that connect directly nodes assigned in group i to nodes assigned in group j . On the other hand, 
each element  B [i,  j] with  i  = j corresponds to the number of edges internal  in group  i.  In each 

iteration, the pair of groups with maximum 
B[ i , j ]
B[ i , i ]  value is selected for merging and then the 

recalculation and repopulation of matrix B is required. The process terminates when there is no pair of 

groups with 
B [ i , j ]
B [ i , i ]

≥1

10 S. Papadopoulos, A. Skusa, A. Vakali, Y. Kompatsiaris, and N. Wagner. Bridge bounding: A local approach 
for efficient community discovery in complex networks. Technical Report arXiv:0902.0871, Feb 2009.
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3.3 Bridge Bounding

The authors of [10] introduce a local methodology for community detection, named Bridge 
Bounding. The algorithm initiates the community detection from a certain seed node and progressively 
expands the community trying to identify bridges , i.e. edges that act as community boundaries. The 
edge clustering coefficient is calculated for each edge, looking at the edge’s neighborhood, and edges 
are characterized as bridges depending on whether their clustering coefficient exceeds a threshold. The 
method  is  local,  has  low complexity and allows  the  flexibility to  detect  individual  communities.  
Additionally, the entire community structure of a network can be uncovered starting the algorithm at  
various unassigned seed nodes, till all nodes have been assigned to a community.

In order to identify a community around a seed node s the algorithm uses a flooding technique.  
Starting at node s , nodes in the neighborhood of s are gradually attached to the community if the  
following two conditions are satisfied: neighbor v does not belong to any other community and the 
edge  connecting  s  to  v is  not  a  bridge  (community boundary).  The term bridge defines  an  edge 
connecting  two nodes  that  are  members  of  different  communities.  The steps  described  above are 
repeated for every node until no other node can be attached to the community. Repeating the same  
procedure for different nodes, inevitably leads to the discovery of the overall community structure of

the graph.

In order to identify a community around a seed node s the algorithm uses a flooding technique.  
Starting at node s , nodes in the neighborhood of s are gradually attached to the community if the  
following two conditions are satisfied: neighbor v does not belong to any other community and the 
edge  connecting  s  to  v is  not  a  bridge  (community boundary).  The term bridge defines  an  edge 
connecting  two nodes  that  are  members  of  different  communities.  The steps  described  above are 
repeated for every node until no other node can be attached to the community. Repeating the same  
procedure for different nodes, inevitably leads to the discovery of the overall community structure of 
the graph.
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3.4 Fortunato's Algorithm

An interesting method for community detection appears in [11]11. This algorithm is developed 
based on the observation that network communities may have overlaps, and, thus, algorithms should 
allow for the identification of overlapping communities. Based on this principle, a local algorithm is  
devised developing a community from a seed node and expanding around it. A community is identified 
as a subgraph that has a certain fitness. The authors provide an appropriate fitness function, whose  
calculation is based on the number of inter- and intra-community edges and a tunable parameter a . 
Starting at a node, at each iteration, the community is either expanded by a neighboring node that  
increases the community fitness, or shrinks by omitting a node if this action results in higher fitness  
for the community. The algorithm stops when the insertion of any neighboring node would lower the 
fitness of the community. This algorithm is local, and able to identify individual communities. The 
entire overlapping and hierarchical structure of complex networks can also be found. For a community 
G of the graph, the fitness fG is calculated as follows:

f G=
K i n

G

(K i n
G +K ou t

G )α

where KG
in and KG

out refer to the total internal and external degrees of community G respectively, and a 
is a positive real-valued parameter which controls the size of the community. As mentioned above, in 
order to reveal the entire community structure of a network, each node should belong to at least one  
community. To achieve this goal we apply the process summarized below:

1. Select at random node A

2. Discover the natural community of node A

3. Randomly select a node B that has not been assigned to a community 

4. Discover the natural community of B, by exploring all the candidate nodes regardless of  
whether they belong to other communities (allow for overlaps)

5. Repeat from step (3)

A major advantage of the above approach is the lower computational cost. In summary, Fortunato’s 
algorithm is a modern and highly successful algorithm as it is revealed by its experimental results.

11 A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting the overlapping and hierarchical community 
structure in complex networks. New Journal of Physics, 11(3):033015+, March 2009.
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3.5 Clique Percolation

Recognizing  the  importance  of  identification  of  overlapping  community  structures,  Palla, 
Derenyi and Vicsek12 introduced Clique Percolation in 2005. The method was applied in a variety of  
well established scientific disciplines extracting valuable information over network structures.

As the algorithm’s name betokens, the method’s cornerstone is the K-clique which correspond 
to a fully connected subgraph of K nodes. Two K-cliques are considered to be adjacent if they share K-
1 nodes. A community is defined as the maximal union of K-cliques that can be reached from each 
other through a series of adjacent K-cliques.

The whole procedure can be implemented with the help of a K-clique template which is an 
object isomorphic to a complete graph of K nodes. Such a template can be placed onto any K-clique in 
the graph, and rolled to an adjacent K-clique by locating one of its nodes and keeping its other K-1 
nodes fixed. Thus, a K-clique community of a network is a subgraph hat can be fully explored by 
rolling a k-Clique template in it.

The key in order to achieve acceptable results is the selection of the K parameter. Usually 

12 I. Derenyi, G. Palla, and T. Vicsek. Clique Percolation in Random Networks.Physical Review Letters, 
94(16):160–202, Apr 2005.
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Εικόνα 12: A network exhibiting hierarchical structure. 



choosing K = 3 or K = 4 helps us extract valuable information, and currently these values of K have  
yielded,  to  our  knowledge,  the  most  relevant  communities  in  practical  applications.  In  our 
implementation K = 3 was chosen in order to maximize output communities’ size and the possibility to 
successfully start the detection of the surrounding community from a random node.
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Εικόνα 13: Examples of 3-clique percolation clusters on ER random graphs



4 Design and Implementation 

In order  to  evaluate  the  performance and confirm the special  dynamics  that  chaperon the 
previously discussed algorithms,  a  relatively complex system had to  be developed as  part  of  this  
thesis. The current chapter discusses the basic architecture of the developed system and highlights a 
series of special implementation issues.

4.1 System Architecture

The system that has been developed as part of this thesis had to meet a series of requirements. 
These requirements emanated from the need to be able to process a large number of data-sets with 
different characteristics originating from different sources. In case of synthetic data-sets which are 
produced by the appropriate component, graphs' information is stored on simple text files where in  
case of real world data-sets, friendship graphs' information is stored on a local database server after  
being fetched from the web.

In an effort to reduce the experiment time to the bare minimum, the system should also be able 
to take advantage of the latest multi-core processors as laboratory's resources include several cluster  
computers. This feature should allow us not only process different data-sets at the same time but also  
run single data-sets faster by paralleling independent sections of the previously mentioned community 
detection methods whereas possible. Moreover, considering that this thesis does not mark the end of 
this work, additional algorithms implemented in the future must be easily adapted into the system.  
Taking into consideration the previously set  requirements we proceeded with building our system 
following a multiple layer architecture exploiting the capabilities of Java Object Oriented Language  
(OOL).

4.1.1 Synthetic Input API

The Synthetic Input API (S.I.A) is oriented to synthetic data manipulation and consists of five 
layers, each one providing information to the higher ones. Data-sets are stored in text files, with each 
line containing the id of a vertex and an id of another vertex connected to it, so our first concern is to  
retrieve this information. In a bottom to the top view, the first level we encounter is the physical level  
which is responsible for all the low level Input/Output operations regarding retrieving and writing data  
to files. After reading process has reached its end, output which is a list of doublets is provided to the  
higher level. 

One layer higher a number of basic abstract models and the appropriate methodological frame 
for  graphs  representation  are  provided.  This  permits  us  to  support  different  graph  definitions  as 
defined in  chapter  two, with the most  important  being the non-directed network and the directed 
network definitions. Based on this model, the system is now able to interpret information retrieved 
from the physical layer, in order to build network structures which will be used as input by the higher  
layer. 

One layer higher, we find the Algorithms Layer which consists of the implementations of all 
the algorithms examined in chapter three. In this layer we also find a series of classes which inherit  
attributes  of  the  basic  graph  models  provided  by  the  previous  layer,  extended  with  special 
requirements set from the community detection algorithms. 
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The  fourth  layer,  consists  of  all  appropriate  components  in  order  to  evaluate  the  output 
community structure provided by the Algorithms level. The implemented measure for evaluation is  
Modularity, however the interfaces that constitute this layer permit easy measures adaptions in the 
future.

As mentioned earlier, the system was developed taking into account the resources of “Parallel  
and  Distributed  Computing  Laboratory”  and  more  importantly  the  availability  of  three  cluster 
computers  which  had  an  invaluable  contribution  to  the  experiments,  reducing  the  total  time  for  
processing a large number of synthetic networks. However, in order to exploit these multicore units 
concurrent programming techniques must be applied. Fortunately, java through its API provides a very 
extensive package for multi-threading development. Therefore, the role of the fifth layer is to provide 
a framework to support multiple  executions at the same time.  This is  accomplished through two 
classes, one that represents a process and one that represents a batch of multiple instances of the first  
class.

At the top layer of our API's architecture we encounter the Graphical User Interface (GUI). 
This layer, thanks to a successful conceptual model allows users to organize their experiments and 
draw important conclusions exploiting the good informational awareness provided by the machine-
user interface.

4.1.2 MySpace API

Unlike Synthetic Data API, MySpace API is oriented to real-world networks manipulation. 
Because of the special nature of the data and the restrictions imposed by the world wide web and the  
applications  themselves  MySpace API  varies  significantly from the  SDI  API  as  it  is  expected to 
operate on information which is fetched from the internet. Apart from the input, these two APIs also 
produce a different output. When dealing with synthetic data, the expected output includes several  
communities whose aggregation constitutes the whole graph. On the other hand, due to the enormous 
size that characterizes the underlying friendship graphs of real-world networks like MySpace, when 
dealing with real-world networks, the output consists only of the surrounding community of a selected 
vertex. This requires only a fraction of the friendship graph which can be acquired in parts while 
community detection progresses in a procedure which shares similarities with the flooding technique  
already known from computer networks.

We will now proceed with down to the top analysis of the API's architecture. Just like the 
Synthetic Data API, the first layer we encounter is the Physical Layer. The first thing that changes  
when dealing with real-world networks is the number of times we need to retrieve stored data. In the 
case of synthetic data we only need to access the disk once for every data-set allowing us to follow a  
simpler approach based on files.  Moreover, data saving also takes place only once for storing the 
evaluation report for the under examination graph. On the other hand, MySpace API requires constant 
reading and writing data which are retrieved in real time from the web rendering files obsolete and  
forcing us to obvert to more complex solutions. The first solution we examined was storing all data  
connected to the detected community in the random access memory of the computer, a solution that  
was  quickly  abandoned  due  to  the  insufficient  size  of  it,  especially  considering  the  need  for  
uncovering multiple communities at the same time. Therefore we decided to proceed with using a 
database for the maintenance of our data choosing the well known MySQL database managements  
system.  Summarizing,  the  Physical  Layer  consists  of  appropriate  entity  relationship  model  that 
represents the underlying friendship graph and all  the classes that  are connected with storing and 
retrieving tuples from the database.

On  layer  higher  we  find  the  component  whose  role  is  to  mine  information  regarding 
MySpace’s   network's  structure  and  population.  Fortunately  enough,  in  contrast  with  the  social 
networks majority,  information about  the  underlying graph and the profiles  themselves  are  easily 
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accessible via simple HTTP requests.  Therefore, this layer is  responsible for two tasks,  managing  
HTTP requests and processing HTTP responses through a crawling process. In practice what happens 
is  that higher levels as they progress their  process of uncovering community structures constantly 
demand information without any concern whether they are already fetched and are available locally at  
the database. These requests are conveyed to the first two levels. If information is available the process 
can continue without any delay where in the case that this is not true, information are gathered from  
the web and stored at the database satisfying the initial request. At this point we must also mention that  
special care was taken in order take advantage of information already fetched for previous community 
detections.  This  feature  saves  us  significant  time  when trying  to  uncover  the  natural  surrounding 
community of the same vertex using different algorithms, or using the same algorithm with different 
parameters like the learning degree in the case of Fortunato's algorithm. Moreover, despite the vast  
proportions of MySpace and social networks in general, it is not uncommon, mainly due to the small-
world property,  to demand information regarding a profile already encountered during a detection  
started from another root vertex. It is important to understand that while it is very convenient base the 
detection process on information mined for previous detections, there is always the risk that a specific  
user has abandoned the network or has changed his friendship status by adding or removing friends. 
However, we have ascertained that at least for MySpace network users tend to change status with a  
relatively low rate. Therefore, choosing a good date-time threshold after which available information 
has to be updated or at least confirmed is a crucial task that can have a striking impact on the detected  
community's correctness. For the purposes of our experiment, and after evaluating different threshold 
values, we concluded that very few users change significantly their friendship status on the same day 
choosing this interval.

At the third layer of the API's architecture we encounter all the  classes and interfaces that 
implement the different community detection algorithms. Of course, as we are doomed to be content to 
a very restricted fraction of the whole network we can only proceed with the implementations of 
algorithms that are characterized by a local perspective and lack any global subroutine. Therefore from 
the previously mentioned five community detection algorithms, the only ones that meet the criteria are 
Clique Percolation and Fortunato's Algorithm. While Bridge Bounding method at first site follows a 
local approach, it includes a global initial step only performed once, and is thus eliminated.

The last two upper layers include a simple task scheduler which is responsible for managing a 
queue of community detection instances and a simple Graphical User Interface which shares many 
similarities with the one developed for the Synthetic Data API.
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5 Experimental Evaluation on Synthetic 
Data

In this section we describe the experimental framework, namely the way benchmark graphs 
were created,  the  modularity metric  used for  the  comparison of  the  algorithms,  and finally the  a  
comparative analysis of the algorithms’ performance. We have created a variety of benchmark graphs  
with  known  community  structure  to  test  the  accuracy  of  our  algorithm.  Benchmark  graphs  are 
essential in the testing of a community detection algorithm, since there is an apriori knowledge of the  
structure of the graph and thus one is able to accurately ascertain the accuracy of the algorithm. Our  
benchmark graphs were generated randomly given the following set of parameters: number of graph  
nodes N , number of communities Comm, node degree deg r ee, and finally ratio of intra-community  
edges to node degree local/degree . The parameters used for the creation of the benchmark graphs and 
their corresponding values are shown in the following table:

N 512, 1024

Comm 4, 8, 16, 32

Degree 10, 20, 30

Density 0.75, 0.85, 0.95

Πίνακας 2: Parameters used for the benchmark graphs.

In order to compare the performance of the algorithms, we use the well established modularity 
metric. Modularity as mentioned earlier indicates the extent to which a given community partition is 
characterized by high number of intra-community edges compared to  inter-community ones. If the 
number of intra-community edges is no better than random, we will get a modularity value close to 0,  
while modularity values approaching 1 indicate networks with strong community structure.

Figures show the performance of the four algorithms on the benchmark graphs we created with respect  
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to  modularity.  Modularity  is  plotted  against  two  parameters  that  were  shown  to  play  the  most  
important role in the performance of the algorithms. For all algorithms these two parameters are the  
number of communities in the graph and the local/degree which is an indication of the density of the  
communities.  The experimental  results  on the given benchmark  graphs demonstrate  that  although 
Newman is  a  computationally  intensive  community finding  algorithm,  it  is  not  very effective  in 
identifying communities in the given graphs, and starts to be effective only when community density 
becomes very high.

Similarly, Bridge Bounding is mostly effective for graphs with very dense communities, where 
local degree approaches 0.9 and higher. However, Bridge Bounding (BB) is a local algorithm and 
requires very little time. We can thus conclude that BB can be safely used on graphs with very dense  
communities.

CiBC  seems  to  perform  better  than  the  previous  two  algorithms.  When  cliques  are  not  
expanded with BFS , CiBC seems to give decent results when community density exceeds 0.8 (local 
degree > 0.8), as shown in the following figure.
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Εικόνα 15: Bridge bounding algorithm

Εικόνα 16: CiBC algorithm with BFS (depth=2) 



However,  comparing  CiBC to  Bridge  Bounding,  we need to  emphasize  that  CiBC is  not  a  local  
algorithm as  Bridge  Bounding  is,  and  its  operation  requires  a  global  view  of  the  entire  graph. 
However, starting with individual nodes and merging them into larger communities, renders it far less 
computationally intensive compared to Newman which uses the inverse approach, namely, starts with  
the  entire  graph  and  splits  it  into  communities  by  gradually removing  edges.  Using  community 
merging, CiBC never reaches the point to manipulate the entire graph as a whole.

Figs. 18, 19 and 20 demonstrate Fortunatos performance for two different values of a , namely 
a =0.6, a = 0.8 and a =1.0. In all cases Fortunato outperforms its previous counterparts demonstrating 
its  ability  to  identity  communities  even  in  graphs  with  community  density  local  degree  >  0.7. 
Furthermore, Fortunato is a local algorithm a little more computationally efficient compared to Bridge 
Bounding. The advantage of Fortunato is that the fitness function it utilized to expands a community 
from a seed node is directly related to the density of the community. Thus, Fortunato is the best of all  
candidates and could be safely used to identify communities in various application domains. The fact  
that it is a local algorithm makes it easy to apply in situations where a global view of the network is  
not  easy  to  obtain.  Finally,  we  have  to  mention  that  Fortunatos  algorithm  allows  for  further 
improvement.
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Εικόνα 17: CiBC algorithm without BFS

Εικόνα 18: Fortunato’s algorithm with a = 0.6



5.1 Summarizing Evaluation

We compared the performance of four community detection algorithms, each one following a 
different approach. The performance of the algorithms was demonstrated on a variety of benchmark  
graphs with known community structure. In general, based on the above observations we can derive  
the conclusion that although community finding is a problems that appears in many different version 
and exhibits a richness of solutions, there is still plenty of room for improvement of existing solutions  
and for the derivation of new ones that would allow the manipulation of graphs from various new and 
emerging application domains like social  networks and other types of collaborative environments.  
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Εικόνα 19: Fortunato’s algorithm with a = 0.8

Εικόνα 20: Fortunato’s algorithm with a = 1.0



There is an emerging need to devise community detection algorithms for dynamic graphs, i.e. graphs 
whose structure evolved over time. Such algorithms would be able to capture for example the dynamic  
evolution of social networks. 
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6 Applying Community Detection on 
Real-world Networks

As  mentioned  earlier,  in  recent  years,  social  networking13 has  been  driving  a  dramatic 
evolution due to the increasing use of Web 2.0. The major impact of Online Social Networks (OSNs), 
such as MySpace14 and Facebook15, on Information Technology paved the way for popular Internet 
applications and attracted hundreds of million of users. This evolution also attracted the interest of the 
academic community and prompted several researchers to examine population synthesis, user activity,  
evolution, and structure, of popular OSNs16 17 18 19 20.

First efforts on this direction included the analysis of the friendship relations of popular social  
networking sites from data collected online. Some studies focused on the evolution of user population 
based on data collected over a period of time [4], [19]. They also tried to capture the evolution of the 
friendship relations over time, considering this as the main element that characterize activity in social  
networks.  In  [18] authors  aim to capture  the  decline in  use  activity of  the  MySpace OSN.  Their 
research  is  based  on the collection and analysis  of  a  large  number  of  user  profiles  and provides 
significant  evidence on  the  activity of  MySpace users  from several  different  points  of  view.  The 
authors claim that cap- turing decline in the activity of an OSN is a nontrivial task since network  
administrators  tend  to  hide  such  events  from public  view,  as  much  as  possible,  in  order  not  to  
influence other members.

In  this  paper,  we  collect  a  large  number  of  profiles  from the  MySpace  OSN and  try to 
characterize the way the synthesis of the population changed over time, the friendship graph, and the  
way user activity evolves in the network. To this purpose one million user profiles were randomly  
collected over a period of time, and they were analyzed accordingly. One of the important features of 
MySpace, is the fact that it enables researches to collect user profiles along with all  accompanied  
attributes and to analyze them, deriving interesting results for the network.

Apart from characterizing user activity based on collective analysis of individual profiles, we 
go one step further, trying to derive interesting results by extracting a large number of communities 
from the underlying social graph, using the two previously analyzed community detection algorithms, 
the Fortunato et al.21,  and the Clique Percolation22, [23] algorithms.

We performed an empirical study of the MySpace OSN, collecting not only a large number of 

13 B. Buter, N. Dijkshoorn, D. Modolo, Q. Nguyen, S. van Noort, B. van de Poel, A. Ali, and A. Salah1. 
Explorative visualization and analysis of a social network for arts: The case of deviantart. Journal of 
Convergence Volume, 2(1), 2011.

14 MySpace. http://www.myspace.com.
15 Facebook. http://www.facebook.com.
16 Y.-Y. Ahn, S. Han, H. Kwak, M. S., and H. Jeong. Analysis of Topological Characteristics of Huge Online 

Social Networking Services. May 2007.
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user  profiles  in  order  to  characterize  population synthesis,  evolution in  user  population,  and user  
activity, but also extracting a large number of community structures in order to analyze the underlying  
social network graph and to correlate characteristics and activity of users participating in communities.  
Two  local  algorithms  were  used  to  extract  communities,  namely,  the  Fortunato  and  the  Clique 
Percolation  methods.  The  main  conclusions  can  be  summarizes  as  follows:  Population  synthesis 
changed over time, as the difference between public and private profiles shrunk, and invalid profiled 
overpassed  first  private  ones  and  subsequently  the  public  ones.  Use  activity  was  shown  to  be 
diminishing,  while  the  number  of  new  users  joining  the  network  remains  high.  Drawing  safe 
conclusions regarding MySpace was based on the extraction of a combination of data for every single 
profile, including among others, the status, the Member Since and Last Login dates, the number of  
friends. Indeed, these information alone had been  very enlightening helping us to shed light to all  
crucial questions mentioned before.

Based on the analysis of the communities, important conclusions were drawn on the size of the 
communities that  are formed in the network,  but  also in the community density as shown by the 
number  of  edges  among  participating  member.  As  an  important  result,  strong  correlation  was 
demonstrated in the Last Login date among members of the same community, and other attributes like 
the number of friends. We draw the conclusion that participation in strong communities inhibits users 
from abandoning the OSN in order to migrate to other more popular networks that emerge at times. As  
a  last  observation,  we  notice  that  members  that  abandoned  MySpace  shortly  after  their  account  
creation  (the  so-called  Tourists),  have  very low connectivity  and  thus  they do  not  participate  in  
communities.

The remaining of the paper is organized as follows: In section II, we present the methodology 
we followed to collect the profiles used in our experiments. In section III,  we analyze population 
evolution and user activity based on the collected profiles. The community detection algorithms we 
use are briefly presented in Section IV, and the experimental results related to the community analysis 
of the MySpace OSN are provided in Section V. Finally, we conclude in Section VI.

6.1 Profile Collection and Methodology

MySpace  is  a  popular  OSN  with  several  hundreds  of  millions  members  [15]. MySpace 
allocates numeric user IDs in a sequential fashion. This claim was documented in [18] which collected 
and analyzed a large number of user profiles in February 2009. Another important characteristic of 
MySpace that facilitates its analysis, is that user profiles are accessible via HTTP requests, and unlike  
other social networks, like for example Facebook, one does not need to rely on the availability of 
enormous static datasets, released periodically by the company. A user, writing his own scripts is able  
to dynamically collect random user profiles according to its needs. For a certain numeric user ID, the  
corresponding  profile  is  easily  accessed  through  an  http  request  with  the  following  URL 
http://www.myspace.com/ID.  The  file  downloaded  from  this  URL  provides  all  the  available 
information for  the  user with the specified ID. Using html  parsing to preprocess the downloaded  
profiles we extracted all necessary attributes for our research.

Each user profile records a number of information regarding the user. Apart from the numeric 
user ID, there is a Status attribute with values in {Public, Private, Invalid}. Other at- tributes are the  
Alias, the number of friends, and the number of views. Furthermore, for each profile the following  
dates are recorded, Member Since date, which is the date a user joined the OSN, and the Last Login 
date, which is the most recent date a user logged in the network. We verified that a user’s Last Login is  
indeed  updated  each  time  a  user  logs  into  its  MySpace  account.  Last  Login  and Member  Since  
information is available only for public profiles. The relative age of user accounts can be also inferred 
by the user ID since, as we already mentioned, user IDs are monotonically assigned, thus a smaller ID 
has been created earlier in time compared to a larger one. Finally, for each profile we recorder the date  
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it was fetched (Fetch Date) since the profiles were collected over a period of several days.

We collected a total of 999.937 user profiles over a period of one month, from the 2 nd to the 
28th of September 2011. To summarize, for each user profile we retrieved the following attributes:

• ID

• Status: Public, Private or Invalid

• Alias

• Number of friends

• Number of views

• Last login date

• Member since date

• Profile fetch date

Based on Status (Public, Private, Invalid) the user population has the following composition:

Status Fetched Profiles
Public 403183

Private 177664

Invalid 419090

Total 999937

The first indications regarding population’s composition are confirming our assumptions based 
on previous work [16]. Out of 999.937 randomly selected profiles, 419.090 were found to be invalid,  
corresponding  to  41.91% of  our  sample  population  and allowing  to  safely conclude  that  a  large 
number of MySpace users abandoned the network. The remaining 580.847 profiles (or 58.09% of the 
total)  is  shared between public  and private,  with  public  profiles  being  403.183,  corresponding to 
40.32% for the sampled population, while private profiles are only 177.664, corresponding to 17.76% 
of the sampled population. 

Compared to [16] which collected and analyzed a large number of MySpace user profiles in  
February 2009, at the time, the largest allocated user ID was 455 millions while at the time of our  
experiments the largest allocated user ID was 650 millions. Thus in a period of one year and seven  
months 200 million new MySpace user accounts were created, indicating that while MySpace users  
tend to abandon the OSN, the arrival of new users continues at a rate of approximately 348.000 new 
user accounts per day.

6.2 Dynamics of the underlying network

For all recorded IDs we followed the change in the synthesis of the population based on the 
percentage of profile status over time. Figures 21 and 22 present this information. Figure 21 shows the 
CDF (Cumulative  Distribution  Function)  for  each  different  type  of  profile  (Public  vs  Private  vs 
Invalid), while Figure 22 shows the CDF for each profile type as a percentage of the total population. 
These figures show the distribution of each group of profiles across the entire range of user IDs. The 
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results indicate that for a large initial portion of the ID space, the percentage of public profiles was  
higher  than that  of  the  private  profiles,  while  towards the  end of  the  ID space this  difference is  
vanishing. The results are even more noteworthy if we take into consideration Invalid profiles. While 
in the beginning of the ID space the percentage of Invalid profiles was lower compared to that of 
Private and Public ones, it increased over time and at some point, clearly shown in the figures, Invalid 
profiles  overpassed Private  ones,  and a  little  later  they also exceeded Private  profiles.  This  is  an 
evidence  that  users  either  abandoned  MySpace  OSN  and  migrated  to  other  OSNs  that  gained 
popularity at the given time period, or OSN administrators aggressively removed profiles for violation 
of use.
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Εικόνα 21: CDF of user ID based on profile status over total population.

Εικόνα 22: Synthesis of user population. CDF of user ID based on profile status.



Following the population synthesis based on ID Status, we approached the term activity in 
three different ways. The easiest way to determine the level of activity of a specific user is to examine  
its  number  of  friends.  In  this  context,  a  user  that  counts,  for  example,  one  hundred  friends  is 
considered to be more active than a user with a smaller number of friends. Figure 23 presents the CDF 
of IDs based on number of friends. From this figure we notice that a large number of MySpace users 
have a small number of friends. We could mention that about 5% of users have more that 100 friends.  
The second way to characterize activity is based on the difference, expressed in days, between the date 
that the user had logged in for the last time (Last Login) and the date its profile was fetched for the 
experiments (Fetch Date). Figure 24 depicts the CCDF of the difference in days between a users Last  
Login and the date his profile was fetched (Fetch Date).  According to our statistics only 1.8% of  
profiles did actually login, up to ten days before the fetch process. On the other hand, 8,3% were the  
users that logged in up to one hundred days before profile fetching took place. This leaves us with 
almost 90% of the profiles not having logged in for more than one hundred days. 

Another way to monitor the activity of users is by analyzing the number of profile views. The  
results are shown in Figures 25 and 26. Subsequently, we analyze a special category of users, the so-
called Tourists [17]. The basic characteristic of tourists is the very small time-span between the date 
they created their account and the date they logged in to the system for the last time. As shown in 
Figure 27, about 33% percent of the users abandoned the network between one to ten days after they 
created their account. Moreover, another 13% percent has been found to be active for a period of ten to  
one hundred days. Practically this means that these users had a short stay in the network.
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Εικόνα 23: CDF of number of friends.
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Εικόνα 24: CCDF of (Fetch Date - Last Login) for public profiles.

Εικόνα 25: CDF of profile number of views.



As a last indication for user activity, we study the relationship between a user ID and the users 
Last Login date, trying to collect evidence on the activity of users compared to account creation time.  
Figure 28 is a scattered plot presenting the Fetch date - Last login for Public profiles. The monotonic  
decrease of this plot is understandable and the appearance of an clear edge at the top is fully explained  
by the existence of Tourists, whose Last Login occurred shortly after their account creation time. Thus, 
in addition to Figure 27, the sharp edge isolated in Figure 29 also shows the distribution of Tourists 
over time.
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Εικόνα 26: Mean value of profiles number of views for profiles with ID less than X

Εικόνα 27: CDF of (Last Login - Member Since), i.e. number of days profiles are  
active.



6.3 Experimental results

Using Fortunato’s algorithm to extract communities, we managed to successfully identify 171 
different  communities.  A total  of  6137 different  profiles  belonged to these communities,  thus  the 
average number of members per community is  about  37.  In order to extract  the 171 successfully 
detected communities, we had to fetch a large number of nodes surrounding the communities. These 
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Εικόνα 28: (Fetch Date - Last Login) for all profiles.

Εικόνα 29: (Fetch Date - Last Login) for Tourists only.



were 18259 distinct nodes. Using the Clique Percolation algorithm we identified a total of 201 
communities. The total number of profiles that belonged to the communities is 3576, thus an average 
of about 18 members per community. In order to extract the 201 successfully detected communities,  
we had to fetch 176577 distinct nodes. Thus to summarize:

Fortunato Clique Percolation

Communities successfully 
detected 171 201

Total number of community 
members 6132 3576

Average members in each 
community 36.718 17.791

Total number of profiles fetched 18259 176577

Πίνακας 3: Parameters of the revealed community structures.

A first question we are trying to answer is “What type of communities do nodes form?” in the 
MySpace OSN. We proceeded with analyzing the surrounding community of a series of randomly 
selected profiles identified with the two algorithms, Fortunato’s (with a=1) and Clique Percolation 
(with K=3). Figure 30 shows the CDF of the community sizes identified with the two methods. It is 
interesting  to  mention  that  Fortunato’s  algorithm identifies  larger  communities  com-  pared  to  the 
Clique Percolation method. Figure 31 depicts the CDF of the community density for the two methods. 
Density is defined as the ration of the number of intra- to inter-community edges (mentioned in the  
figure as short/ total links ratio). The more this ratio approaches one, the more the specific community 
is dense and thus tends to be an independent community structure. 
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Εικόνα 30: CDF of community size. 



As shown in the plot, in case of Clique Percolation, 60% of the detected communities have a 
greater than 0.05 short/ total ratio value. For density values greater than 0.10, percentage drops to 
about 40%. At the same time, members of communities detected by Fortunato’s method, seem to be  
more closely connected achieving density values as high as 0.80. Moreover, almost half of the detected 
communities are characterized by a very satisfying 0.40 density ratio. Clique Percolation’s Achilles’ 
heel comes as a result of the conditions that needs to be met in order to be possible for a node to  
participate  into  a  community.  A node’s  participation  in  an  adjacent  triangle  alone  is  sufficient,  
regardless of the risk it carries to have disproportionately more edges leading to nodes outside the  
community. Apart from the qualitative difference that density represents, output also differs in terms of 
communities’ size. Although difference is not as striking as in the case of density, we can still observe  
a difference in small to medium communities, counting a few dozens nodes as shown in Figure 31.   

The next, less trivial questions we are trying to answer are “Do inactive users tend to abandon 
MySpace individually or the same tendency exists for their surrounding community?” and “Do tourists  
participate in community structures?”. Taking into account the previously mentioned differences and 
considering the fact that Clique Percolation demands more information to be fetched in order to reveal 
the surrounding community of a node, we continued our analysis based on Fortunato’s results.

In order to answer the first question we focus our efforts into locating members that have not  
given any signs of life for more than one hundred days. According to the collected data, the majority 
of community members is found to be satisfyingly active. It is characteristic that more than 85% of the  
communities consist of almost 90% of users that showed their presence in the network at least once in  
the last one hundred days. The vast majority of the inactive users are either tourists whose short stay  
period did not allow them to get connected with other profiles, or users with a very high degree. Both 
types  are  not  favored  by the different  community definitions  nor  by the majority of  the  existing 
community detection methods which are operating by trying to maximize community’s density and are 
thus eliminated. This can be also confirmed by the low to moderate average members’ degree which 
characterizes the plurality of the communities. More interestingly, our revealed community structures 
show a  significant  homogeneity in  members’ level  of  activity.  Impressively,  the  members  of  the 
detected  communities  show  a  significantly  low  dispersion  over  the  total  degree.  The  maximum 
standard  deviation  value  is  lower  than  150.  Moreover  60% of  the  communities  have  a  standard 
deviation lower than 20. When percentage increases by another 20%, standard deviation increases by 
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Εικόνα 31: CDF of community density



30. In conjunction with the previous observation this demonstrates an important correlation between 
the nodes. Although we have only indications, all information provided above permits us to make the 
assumption  that  the  participation  of  a  user  in  a  community,  inhibits  him  to  abandon  MySpace,  
regardless of the existence of more attractive social networks.

Concerning the question “Do tourists participate in community structures?”, Figure 33 clearly 
shows the very low participation of tourists in communities. Users that have been active for such a 
small period of time usually have a very low number of friends and are not favored by the different  
community definitions nor by the majority of the existing community detection methods which are 
operating by trying to maximize community’s density.
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Εικόνα 33: Percentage of Tourists in communities.

Εικόνα 32: Standard deviation of communities member number of friends.



6.4 Conclusion 

We performed an empirical study of the MySpace OSN, collecting not only a large number of 
user  profiles  in  order  to  characterize  population synthesis,  evolution in  user  population,  and user  
activity, but also extracting a large number of community structures in order to analyze the underlying  
social network graph and to correlate characteristics and activity of users participating in communities.  
Two  local  algorithms  were  used  to  extract  communities,  namely,  the  Fortunato  and  the  Clique 
Percolation methods.

The main conclusions can be summarizes as follows: Population synthesis changed over time,  
as the difference between public and private profiles shrunk, and invalid profiled over- passed first  
private ones and subsequently the public ones. Use activity was shown to be diminishing, while the  
number of new users joining the network remains high.

Based on the analysis of the communities, important conclusions were drawn on the size of the 
communities that  are formed in the network,  but  also in the community density as shown by the 
number of edges among participating member. As a last and most important result, strong correlation 
was demonstrated in the Last Login date among members of the same community, and other attributes 
like the number of friends. We draw the conclusion that participation in strong communities inhibits  
users from abandoning the OSN in order to migrate to other more popular networks that emerge at  
times.  As a last  observation,  we notice  that  members that  abandoned MySpace shortly after  their 
account creation (the so- called Tourists), have very low connectivity and thus they do not participate 
in communities.  
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7 Thesis Conclusions

The performed analysis on the redefined problem of community detection and its applications 
proved to by quite successful. By applying a series of state of the art community detection algorithms 
each one following a different approach, both on benchmark graphs and real-world data we were able  
to draw safe conclusions regarding the methods' strengths and weaknesses. Algorithms proved to be  
more or less robust when dealing with the synthetic networks, however they struggled in detecting the 
surrounding  community  of  a  vertex  when  applied  in  real  data-sets  leading  to  very poor  results.  
Although literature  exhibits a richness of solutions, a significant void was recognized suggesting a 
delay in adapting into the new parameters that chaperon the modern social networks and the revolution 
that takes place in the domain of the social media. Motivated by this observation we took one step 
further in an effort to conclude into the crucial parameters that leads to the inadequacy of the plurality 
of today’s community detection algorithms by examining the underlying structure of MySpace social 
network.

The most important observed characteristic of MySpace and hence of all social networks and 
collaborative environments  has to be its  tendency to evolve.  Just  like human beings or services,  
network appeared to have a cycle of life with its population synthesis changing over time. In the same 
direction,  user  activity was shown to be  diminishing  while  the  number  of  new users  joining the 
network  remained  high.  Both  observations  translate  into  significant  changes  on  the  underlying 
friendship graph over time, with new edges being added and removed constantly, information that has 
to be assimilated by the clustering methods.

 Based on the analysis of the retrieved communities, important conclusions were also drawn 
on the size of the communities that constitute the network. Size-wise community structures proved to 
be decent allowing algorithms to proceed their operation enhancing their situational awareness. This is  
not  very intuitive  however  becomes  clearer  if  we  recall  the  measures  that  algorithms  base  their  
operation on. It is proven that early additions that take place in the early stages of the detection process  
rely on significantly less information hiding the risk of misclassified nodes.

On the other hand although strong correlation was demonstrated on the number of friends 
among members of the same community, the revealed communities are characterized by poor density 
demanding much higher resolution from the algorithms,  a irreplaceable quality in order to decide  
whether a vertex participates or not into the under detection community. 

All the above show that there is still plenty of room for improvement of existing solutions and 
for the derivation of new ones that would be able to capture the dynamic evolution that characterizes 
graphs from various new and emerging application domains like social networks and other types of 
web 2.0 applications.
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8 Source Code Appendix

8.1 Benchmark Graph Generator

import java.io.File;
import java.io.FileWriter;

public class SimpleGraphGenerator
{
    static int getDegree(double d)
    {

int res = (int)Math.floor(d);
if (Math.random() < d - res) res++;
return res;

    }
    
    static int randomRange(int from, int to, int excl)
    {

int res;
to++;
double prob;
do
{
    prob = Math.random();
    res = from + (int)(prob*(to-from));
}
while (prob == 1 || res == excl);
return res;

    }

    public static void main(String []args)
    {

//nr of peers, nr of communities, short links, long links
if (args.length < 4)
{
    System.err.println("Params: nr of peers, nr of communities, short 

links, long link prob");
    return;
}
try
{
    int nrOfPeers = Integer.parseInt(args[0]);
    int nrOfComs = Integer.parseInt(args[1]);
    double SLprob = Double.parseDouble(args[2]);
    double LLprob = Double.parseDouble(args[3]);
    FileWriter out = new FileWriter(new File("simple-

graph_"+nrOfPeers+"_"+nrOfComs+"_"+SLprob+"_"+LLprob+".txt"), false);

    SLprob /= 2;
    LLprob /= 2;
    double []pops = new double[nrOfComs];
    for (int i = 0; i < pops.length; i++)
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//pops[i] = 0.5+Math.random()/2;
pops[i] = 1;

    double sum = 0;
    for (int i = 0; i < pops.length; i++)

sum += pops[i];
    for (int i = 0; i < pops.length; i++)

pops[i] = (int)(nrOfPeers*(pops[i]/sum));
    sum = 0;
    for (int i = 0; i < pops.length; i++)
    {

System.err.println(sum+" -> "+(sum+pops[i]));
sum += pops[i];

    }
    
    for (int i = 0; i < nrOfPeers; i++)
    {

int Cfrom = 0, Cto = 0;
for (int j = 0; j < pops.length; j++)
{
    if (Cfrom + pops[j] > i)
    {

Cto = Cfrom + (int)pops[j];
break;

    }
    Cfrom += pops[j];
}
int SL = getDegree(SLprob);
for (int j = 0; j < SL; j++)
{
    out.write(i+"\t"+randomRange(Cfrom, Cto-1, i)+"\n");
    out.flush();
}
int LL = getDegree(LLprob);
for (int j = 0; j < LL; j++)
{
    int n;
    do
    {

n = randomRange(0, nrOfPeers-1, i);
    }
    while(n >= Cfrom && n < Cto);
    out.write(i+"\t"+n+"\n");
    out.flush();
}

    }
    out.close();
}
catch (Exception e){e.printStackTrace();}

    }
}
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8.2 Algorithms Implementations

8.2.1 Newman's Algorithm

public class NewmanVertex extends AdvancedVertex {

    private int distance, weight;

    public NewmanVertex(int id) {
        super(id);
        distance = -1;
        weight = -1;
    }

    public void setDistance(int newDistance) {
        distance = newDistance;
    }

    public int getDistance() {
        return distance;
    }

    public void setWeight(int newWeight) {
        weight = newWeight;
    }

    public int getWeight() {
        return weight;
    }
}
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import export.ThreadedResults;
import graph.Vertex;
import graph.UndirectedGraph;
import graph.BasicVertexInterface;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Vector;
import strengthquantifier.Modularity;

public class NewmanAlgorithm extends Thread {

    private UndirectedGraph g, subgraph1, subgraph2;
    private ThreadedResults results;
    private Modularity modularity;
    private Vector<Vector<NewmanVertex>> adjacencyList;
    private Hashtable<Vertex, Double> verticesScores;
    private Hashtable<String, Double> edgesScores, edgesBetweeness;
    private int checked;

    public NewmanAlgorithm(UndirectedGraph g, ThreadedResults 
results, Modularity modularity) {
        this.g = g;
        this.results = results;
        this.modularity = modularity;
        adjacencyList = new Vector();
        edgesScores = new Hashtable();
        edgesBetweeness = new Hashtable();
        verticesScores = new Hashtable();
        checked = 0;
    }

    public void run() {
        String edgeWithHighestBetweeness = null;
        while (g.getSize() > 1) {
            NewmanVertex root = null;
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            Enumeration<BasicVertexInterface> en = g.getVertices();
            while (en.hasMoreElements()) {
                root = (NewmanVertex) en.nextElement();
                checked++;
                System.out.println("Traversing for new root:" + 
root.getID() + " Already checked:" + checked);
                this.traverseGraph((NewmanVertex) root);
                this.setVerticesEdgesScores();
                this.adjacencyList.clear();
                this.setBetweeness();
                this.verticesScores.clear();
                this.edgesScores.clear();
                this.resetVertices();

            }
            edgeWithHighestBetweeness = 
this.removeEdgeWithMaxBetweeness();
            System.out.println("Edge:" + edgeWithHighestBetweeness);
            this.edgesBetweeness.clear();
            //Copy all nodes from g to sg1
            subgraph1 = new UndirectedGraph();
            this.copyNodes(g, subgraph1);
            subgraph2 = this.createSubgraphs(root);
            if (subgraph1.getSize() == 0) {
                //Graph did not split in two.

                //empty subgraph1 & subgraph2
                subgraph1.removeAllVertices();
                subgraph2 = null;
            } else {
                //Graph did split in two
                double currentModularity = 
modularity.getStrength(results);
                //If results contain g remove it.
                if (results.containsCommunity(g)) {
                    results.removeCommunity(g);
                }
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                //Add subgraph1 & subgraph2 to results
                results.addCommunity(subgraph1);
                results.addCommunity(subgraph2);
                //Calculate newStrength without g but with subgraph1 
& subgraph2
                double newStrength = 
modularity.getStrength(results);
                System.out.println("New Strength:" + newStrength);
                if (newStrength < currentModularity) {
                    //addEdge Again
                    NewmanVertex source = (NewmanVertex) 
this.getSource(edgeWithHighestBetweeness);
                    NewmanVertex destination = (NewmanVertex) 
this.getDestination(edgeWithHighestBetweeness);
                    source.addNeighbor(destination);
                    destination.addNeighbor(source);
                    //remove subgraph1 & subgraph2 from results
                    results.removeCommunity(subgraph1);
                    results.removeCommunity(subgraph2);
                    //add g to results again
                    results.addCommunity(g);
                    results.unregisterThread();
                    return;
                } else {
                    results.registerThread();
                    NewmanAlgorithm detectCommunity1 = new 
NewmanAlgorithm(subgraph1, results, modularity);
                    detectCommunity1.start();
                    results.registerThread();
                    NewmanAlgorithm detectCommunity2 = new 
NewmanAlgorithm(subgraph2, results, modularity);
                    detectCommunity2.start();
                    return;
                }
            }
        }

        results.addCommunity(g);
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        results.unregisterThread();
    }

    private void traverseGraph(NewmanVertex root) {
        Vector<NewmanVertex> edges;
        Queue<NewmanVertex> qe = new LinkedList();

        NewmanVertex vertex, neigh;
        int newDistance, newWeight;
        qe.add(root);
        root.setDistance(0);
        root.setWeight(1);
        while (!qe.isEmpty()) {
            edges = new Vector();
            vertex = qe.remove();
            edges.add(vertex);
            newDistance = vertex.getDistance() + 1;
            for (int i = 0; i < vertex.neighborhoodSize(); i++) {
                neigh = (NewmanVertex) vertex.getNeighbor(i);
                if (neigh.getDistance() == -1) {
                    qe.add(neigh);
                    newWeight = vertex.getWeight();
                    neigh.setDistance(newDistance);
                    neigh.setWeight(newWeight);
                    edges.add(neigh);
                } else {
                    if (neigh.getDistance() == newDistance) {
                        newWeight = neigh.getWeight() + 
vertex.getWeight();
                        neigh.setWeight(newWeight);
                        edges.add(neigh);
                    }
                }
            }
            adjacencyList.add(edges);

        }
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        qe.clear();
    }

    private void resetVertices() {
        NewmanVertex vertex;

        Enumeration<BasicVertexInterface> en = g.getVertices();

        while (en.hasMoreElements()) {
            vertex = (NewmanVertex) en.nextElement();
            vertex.setDistance(-1);
            vertex.setWeight(-1);
        }
    }

    private BasicVertexInterface getSource(String edge) {
        String temp[];
        temp = edge.split(":");
        return g.getVertex(Integer.parseInt(temp[0]));
    }

    private BasicVertexInterface getDestination(String edge) {
        String temp[];
        temp = edge.split(":");
        return g.getVertex(Integer.parseInt(temp[1]));
    }

    private UndirectedGraph createSubgraphs(NewmanVertex vertex) {
        UndirectedGraph community = new UndirectedGraph();
        Vector<BasicVertexInterface> visitedVertices = new Vector();
        NewmanVertex neigh;
        Queue<BasicVertexInterface> qe = new LinkedList();
        qe.add(vertex);
        visitedVertices.add(subgraph1.getVertex(vertex.getID()));
        while (!qe.isEmpty()) {
            vertex = (NewmanVertex) qe.remove();
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            for (int i = 0; i < vertex.neighborhoodSize(); i++) {
                neigh = (NewmanVertex) vertex.getNeighbor(i);
                if (!visitedVertices.contains(neigh)) {
                    visitedVertices.add(subgraph1.getVertex(neigh.ge
tID()));
                    qe.add(neigh);
                }
            }
        }
        qe.clear();
        Enumeration<BasicVertexInterface> en = 
visitedVertices.elements();
        while (en.hasMoreElements()) {
            vertex = (NewmanVertex) en.nextElement();
            community.addVertex(subgraph1.removeVertex(vertex.getID(
)));
        }
        return community;
    }

    private String removeEdgeWithMaxBetweeness() {
        double maxBetweeness = 0, currentBetweeness;
        String currentEdge, edgeWithMaxBetweeness = null;
        Enumeration<String> en = edgesBetweeness.keys();
        while (en.hasMoreElements()) {
            currentEdge = en.nextElement();
            currentBetweeness = edgesBetweeness.get(currentEdge);
            if (currentBetweeness >= maxBetweeness) {
                maxBetweeness = currentBetweeness;
                edgeWithMaxBetweeness = currentEdge;
            }
        }
        NewmanVertex source = (NewmanVertex) 
this.getSource(edgeWithMaxBetweeness);
        NewmanVertex destination = (NewmanVertex) 
this.getDestination(edgeWithMaxBetweeness);
        source.removeNeighbor(destination);
        destination.removeNeighbor(source);
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        return edgeWithMaxBetweeness;
    }

    private void setBetweeness() {
        String edge;
        Enumeration<String> en = edgesScores.keys();
        while (en.hasMoreElements()) {
            edge = en.nextElement();
            if (edgesBetweeness.contains(edge)) {
                edgesBetweeness.put(edge, edgesBetweeness.get(edge) 
+ edgesScores.get(edge));
            } else {
                edgesBetweeness.put(edge, edgesScores.get(edge));
            }
        }
    }

    private void setVerticesEdgesScores() {
        double sum;
        NewmanVertex vertex, neigh;
        Vector<NewmanVertex> currentEdges;
        for (int i = adjacencyList.size() - 1; i >= 0; i--) {
            sum = 0;
            currentEdges = adjacencyList.get(i);
            if (currentEdges.size() > 1) {
                vertex = currentEdges.firstElement();
                for (int j = 1; j < currentEdges.size(); j++) {
                    neigh = currentEdges.get(j);
                    if (!verticesScores.contains(neigh)) {
                        edgesScores.put(vertex.getID() + ":" + 
neigh.getID(), new Double(vertex.getWeight() / neigh.getWeight()));
                        sum += vertex.getWeight() / 
neigh.getWeight();
                    } else {
                        sum += verticesScores.get(neigh) + 1;
                        edgesScores.put(vertex.getID() + ":" + 
neigh.getID(), verticesScores.get(neigh) + 1);
                    }
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                }
                verticesScores.put(vertex, sum);
            }
        }
    }

    private void copyNodes(UndirectedGraph g1, UndirectedGraph g2) {
        Enumeration<BasicVertexInterface> vertices = 
g1.getVertices();
        while (vertices.hasMoreElements()) {
            g2.addVertex(vertices.nextElement());
        }
    }
}

8.2.2 Bridge Bounding Algorithm

package bridgeBounding;

import graph.Vertex;

/**
 *
 * @author epp1640
 */
public class BridgeBoundingVertex extends Vertex {
    
    private boolean assigned;

    public BridgeBoundingVertex(int id){
        super(id);
        assigned = false;
    }

    public boolean isAssigned(){
        return assigned;
    }
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    public void assign(){
        assigned = true;
    }
    public void reset(){
        assigned = false;
    }

}

package bridgeBounding;

import graph.BasicVertexInterface;
import graph.UndirectedGraph;
import java.util.Enumeration;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Vector;
import export.ThreadedResults;
import java.util.Hashtable;

public class BridgeBoundingTraverser extends Thread {

    private BridgeBoundingVertex root;
    private double threshold;
    private Vector<BridgeBoundingVertex> frontier;
    private ThreadedResults results;
    private Hashtable<String, Double> firstOrder;
    private boolean order;

    public BridgeBoundingTraverser(BridgeBoundingVertex root, double 
threshold, Vector<BridgeBoundingVertex> frontier, ThreadedResults results, 
Hashtable<String, Double> firstOrder, boolean order) {
        this.root = root;
        this.threshold = threshold;
        this.frontier = frontier;
        this.results = results;
        this.firstOrder = firstOrder;
        this.order = order;
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    }

    public void run() {
        UndirectedGraph community = new UndirectedGraph();
        Vector<BridgeBoundingVertex> visitedVertices = new Vector();
        Queue<BridgeBoundingVertex> q = new LinkedList();
        q.add(root);
        visitedVertices.add(root);
        while (!q.isEmpty()) {
            BridgeBoundingVertex vertex = q.remove();
            visitedVertices.add(vertex);
            community.addVertex(vertex);
            vertex.assign();
            BridgeBoundingVertex link = null;
            Enumeration<BasicVertexInterface> links = vertex.getLinks();
            while (links.hasMoreElements()) {
                System.out.println("Next Element");
                link = (BridgeBoundingVertex) links.nextElement();
                if (!visitedVertices.contains(link)) {
                    if (!link.isAssigned() && !this.isBridge(vertex, link)) 

  {
                        q.add(link);
                        visitedVertices.add(link);
                    } else if (this.isBridge(vertex, link)) {
                        System.out.println("Adding link to frontier!!");
                        frontier.add(link);
                    }
                }
            }
        }
        q.clear();
        visitedVertices.clear();
        results.addCommunity(community);
        results.unregisterThread();
    }
    private boolean isBridge(BasicVertexInterface vertex, 
BasicVertexInterface link) {
        if (this.getMetric(vertex, link, order) <= threshold) {
            return false;
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        } else {
            return true;
        }
    }

    private double getMetric(BasicVertexInterface vertex, 
BasicVertexInterface link, boolean order) {
        if (order) {
            double metric = 0, sum = 0;
            metric += 0.7 * this.getMetric(vertex, link, !order);
            Enumeration<BasicVertexInterface> vertexNeighbors = 
vertex.getLinks();
            while (vertexNeighbors.hasMoreElements()) {
                BasicVertexInterface vertexNeighbor = 
vertexNeighbors.nextElement();
                if (vertexNeighbor != link) {
                    sum += this.getMetric(vertex, vertexNeighbor, !order);
                }
            }

            Enumeration<BasicVertexInterface> linkNeighbors = 
link.getLinks();
            while (linkNeighbors.hasMoreElements()) {
                BasicVertexInterface linkNeighbor = 
linkNeighbors.nextElement();
                if (linkNeighbor != vertex) {
                    sum += this.getMetric(link, linkNeighbor, !order);
                }
            }
            metric += 0.3 * sum / (vertex.degree() + link.degree() - 2);
            return metric;
        } else {
            return firstOrder.get(vertex.getID() + ":" + link.getID());
        }

    }
}
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package bridgeBounding;

import graph.BasicVertexInterface;
import graph.UndirectedGraph;
import java.util.Enumeration;
import java.util.Vector;
import export.ThreadedResults;
import java.util.Hashtable;

public class BridgeBoundingAlgorithm extends Thread {
    private UndirectedGraph g;
    private double threshold;
    private Vector<BridgeBoundingVertex> frontier;
    private Hashtable<String, Double> firstOrder;
    private ThreadedResults results;
    private boolean order;
    private Vector<BridgeBoundingVertex> visitedFrontier;

    public BridgeBoundingAlgorithm(UndirectedGraph g, double threshold, 
ThreadedResults results, boolean order) {
        this.g = g;
        this.threshold = threshold;
        this.results = results;
        this.order = order;
        frontier = new Vector();
        firstOrder = new Hashtable();
        visitedFrontier = new Vector();
    }

    public void run() {
        this.initMetrics();
        frontier.add(this.getStartingVertex());
        while (!frontier.isEmpty() || results.inProgress()) {
            if (!frontier.isEmpty()) {
                if (visitedFrontier.contains(frontier.get(0))) {
                    frontier.remove(0);
                } else {
                    visitedFrontier.add(frontier.get(0));
                    System.out.println("NEW THREAD");
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                    BridgeBoundingTraverser thread = new 
BridgeBoundingTraverser(frontier.remove(0), threshold, frontier, results, 
firstOrder, order);
                    thread.start();
                    results.registerThread();
                }
            }
        }
        System.out.println("Exited.");
    }

    private BridgeBoundingVertex getStartingVertex() {
        Enumeration<BasicVertexInterface> vertices = g.getVertices();
        if (vertices.hasMoreElements()) {
            return (BridgeBoundingVertex) vertices.nextElement();
        }
        return null;
    }

    private double getBLest(BasicVertexInterface a, BasicVertexInterface b) 
{

        double intersection = this.getIntersection(a, b).size();
        double relativeDegree = Math.min(a.degree(), b.degree());
        //System.out.println("1 - INTERSECTION:"+intersection+"/ RELATIVE 
DEGREE:"+relativeDegree);
        double BLest = 1 - intersection / relativeDegree;
        return BLest;
    }

    private Vector<BasicVertexInterface> 
getIntersection(BasicVertexInterface a, BasicVertexInterface b) {
        Vector<BasicVertexInterface> intersection = new Vector();
        Enumeration<BasicVertexInterface> aLinks = a.getLinks();
        while (aLinks.hasMoreElements()) {
            BridgeBoundingVertex aLink = (BridgeBoundingVertex) 
aLinks.nextElement();
            if (b.hasLink(aLink)) {
                intersection.add(aLink);
            }
        }
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        return intersection;
    }

    private void initMetrics() {
        Enumeration<BasicVertexInterface> vertices = g.getVertices();
        while (vertices.hasMoreElements()) {
            BasicVertexInterface vertex = vertices.nextElement();
            Enumeration<BasicVertexInterface> neighbors = 
vertex.getLinks();
            while (neighbors.hasMoreElements()) {
                BasicVertexInterface neighbor = neighbors.nextElement();
                double BLest = this.getBLest(vertex, neighbor);
                firstOrder.put(vertex.getID() + ":" + neighbor.getID(), 
BLest);
            }
        }
    }
}

8.2.3 Fortunato's Algorithm

package fortunato;

import graph.BasicVertexInterface;
import graph.Vertex;
import java.util.Enumeration;

/**
 *
 * @author epp1640
 */
public class FortunatoVertex extends Vertex {
    private double dFitness;
    public FortunatoVertex(int id) {
        super(id);
        dFitness = 0;
    }
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    public double getDFitness() {
        return dFitness;
    }

    public void setDFitness(double fitness) {
        this.dFitness = fitness;
    }

    public long getShortLinks(FortunatoCommunity community) {
        long shortLinks = 0;
        Enumeration<BasicVertexInterface> neighbors = this.getLinks();
        while (neighbors.hasMoreElements()) {
            if (community.contains(neighbors.nextElement().getID())) {
                shortLinks++;
            }
        }
        return shortLinks;
    }

    public long getLongLinks(FortunatoCommunity community) {
        return this.degree() - this.getShortLinks(community);
    }
}

package fortunato;

import graph.BasicVertexInterface;
import graph.UndirectedGraph;
import java.util.Enumeration;

public class FortunatoCommunity extends UndirectedGraph {

    ;
    @Override
    public BasicVertexInterface removeVertex(int id) {
        this.getTable().remove(id);
        return this.getVertex(id);
    }
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public long shortLinksCount() {
        long shortLinks = 0;
        Enumeration<BasicVertexInterface> vertices = this.getVertices();
        while (vertices.hasMoreElements()) {
            FortunatoVertex vertex = (FortunatoVertex) 
vertices.nextElement();
            shortLinks += vertex.getShortLinks(this);
        }
        return shortLinks / 2;
    }

public long totalLinksCount() {
        long totalLinks = 0;
        Enumeration<BasicVertexInterface> vertices = this.getVertices();
        while (vertices.hasMoreElements()) {
            FortunatoVertex vertex = (FortunatoVertex) 
vertices.nextElement();
            totalLinks += vertex.degree();
        }
        totalLinks -= this.shortLinksCount();
        return totalLinks;
    }

}

package fortunato;

import export.Results;
import graph.BasicVertexInterface;
import graph.GraphInterface;
import graph.UndirectedGraph;
import java.util.Enumeration;
import java.util.Vector;

public class FortunatoAlgorithm extends Thread {

    private UndirectedGraph g;
    private double a;
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    private Results results;
    private double currentFitness;

    public FortunatoAlgorithm(UndirectedGraph g, double a, Results results) 
{
        this.g = g;
        this.a = a;
        this.results = results;
    }

    public void run() {
        results.setProgress(true);
        Enumeration<BasicVertexInterface> vertices = g.getVertices();
        while (vertices.hasMoreElements()) {
            FortunatoVertex vertex = (FortunatoVertex) 
vertices.nextElement();
            if (this.isAssigned(vertex)) {
                continue;
            }
            FortunatoCommunity community = new FortunatoCommunity();
            currentFitness = 0;
            Vector<FortunatoVertex> candidates = new Vector();
            community.addVertex(vertex);
            this.recruitCandidates(candidates, community);
            while (!candidates.isEmpty()) {
                this.interviewCandidates(candidates, community);
                FortunatoVertex bestCandidate = 
this.getBestCandidate(candidates);
                if (bestCandidate == null) {
                    break;
                }
                community.addVertex(bestCandidate);
                currentFitness = bestCandidate.getDFitness();
                this.rateEfficiency(community);
                this.recruitCandidates(candidates, community);
            }
            results.addCommunity(community);
        }
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        results.setProgress(false);
    }

    private boolean isAssigned(FortunatoVertex v) {
        Enumeration<GraphInterface> communities = results.getCommunities();
        while (communities.hasMoreElements()) {
            if (communities.nextElement().contains(v.getID())) {
                return true;
            }
        }
        return false;
    }

    private void recruitCandidates(Vector<FortunatoVertex> candidates, 
FortunatoCommunity community) {
        candidates.clear();
        Enumeration<BasicVertexInterface> vertices = 
community.getVertices();
        while (vertices.hasMoreElements()) {
            Enumeration<BasicVertexInterface> neighbors = 
vertices.nextElement().getLinks();
            while (neighbors.hasMoreElements()) {
                FortunatoVertex neighbor = (FortunatoVertex) 
neighbors.nextElement();
                if (!community.contains(neighbor.getID()) && !
candidates.contains(neighbor)) {
                    candidates.add(neighbor);
                }
            }
        }
    }

    private void interviewCandidates(Vector<FortunatoVertex> candidates, 
FortunatoCommunity c) {

        long previousShortLinks = c.shortLinksCount();
        long previousTotalLinks = c.totalLinksCount();
        for (int i = 0; i < candidates.size(); i++) {
            long currentShortLinks = previousShortLinks + 
candidates.get(i).getShortLinks(c);
            long currentTotalLinks = previousTotalLinks + 
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(candidates.get(i).degree() - candidates.get(i).getShortLinks(c));
            double nextFitness = currentShortLinks / 
Math.pow(currentTotalLinks, a);
            candidates.get(i).setDFitness(nextFitness);
        }
    }

    private FortunatoVertex getBestCandidate(Vector<FortunatoVertex> 
candidates) {
        FortunatoVertex bestCandidate = candidates.get(0);
        for (int i = 1; i < candidates.size(); i++) {
            if (candidates.get(i).getDFitness() > 
bestCandidate.getDFitness()) {
                bestCandidate = candidates.get(i);
            }
        }
        if (bestCandidate.getDFitness() > currentFitness) {
            return bestCandidate;
        } else {
            return null;
        }
    }

    private void rateEfficiency(FortunatoCommunity c) {
        double newFitness;
        Enumeration<BasicVertexInterface> vertices;
        boolean found = true;
        while (found && c.getSize() > 2) {
            found = false;
            long previousShortLinks = c.shortLinksCount();
            long previousTotalLinks = c.totalLinksCount();
            vertices = c.getVertices();
            while (vertices.hasMoreElements()) {
                FortunatoVertex vertex = (FortunatoVertex) 
vertices.nextElement();
                long newShortLinks = previousShortLinks - 
vertex.getShortLinks(c);
                long newTotalLinks = previousTotalLinks - (vertex.degree() 
- vertex.getShortLinks(c));
                newFitness = newShortLinks / Math.pow(newTotalLinks, a);
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                if (newFitness > currentFitness) {
                    c.removeVertex(vertex.getID());
                    found = true;
                    currentFitness = newFitness;
                    break;
                }
            }
        }
    }

    private double getCurrentFitness(FortunatoCommunity c) {
        if (c.getSize() > 1) {
            return c.shortLinksCount() / Math.pow(c.totalLinksCount(), a);
        } else {
            return 0;
        }
    }
}

8.2.4 CiBC Algorithm

package cibc;

import graph.Vertex;

public class CiBCVertex extends Vertex {

    private int distance, weight;

    public CiBCVertex(int id) {
        super(id);
        distance = -1;
        weight = -1;
    }

    public void setDistance(int newDistance) {
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        distance = newDistance;
    }

    public int getDistance() {
        return distance;
    }

    public void setWeight(int newWeight) {
        weight = newWeight;
    }

    public int getWeight() {
        return weight;
    }

}

package cibc;

import export.Results;
import graph.BasicVertexInterface;
import graph.GraphInterface;
import graph.UndirectedGraph;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Vector;

public class CiBCAlgorithm extends Thread {

    private Vector<UndirectedGraph> cliques;
    private Hashtable<CiBCVertex, Integer> bcTable;
    private CiBCVertex[] verticesArray;
    private Integer[] valuesArray;
    private UndirectedGraph g;
    private Results results;
    private int[][] matrix;
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    public CiBCAlgorithm(UndirectedGraph g, Results results) {
        this.g = g;
        this.results = results;
        cliques = new Vector<UndirectedGraph>();
        bcTable = new Hashtable<CiBCVertex, Integer>();
    }

    private void initMatrix() {
        matrix = new int[cliques.size()][cliques.size()];
    }

    private void populateArrays() {
        CiBCVertex vertex;
        Vector<CiBCVertex> bcVertices = new Vector();
        Vector<Integer> bcValues = new Vector();
        Enumeration<CiBCVertex> keys = bcTable.keys();
        while (keys.hasMoreElements()) {
            vertex = keys.nextElement();
            bcVertices.add(vertex);
            bcValues.add(bcTable.get(vertex));
        }
        verticesArray = (CiBCVertex[]) bcVertices.toArray();
        valuesArray = (Integer[]) bcValues.toArray();
    }

    private void sortArrays() {
        boolean sorted = false;
        for (int top = valuesArray.length - 1; top > 0 && !sorted; top--) {
            sorted = true;

            for (int i = 0; i < top; i++) {
                if (valuesArray[i] > valuesArray[i + 1]) {
                    sorted = false;
                    int tempValue = valuesArray[i];
                    CiBCVertex tempVertex = verticesArray[i];
                    valuesArray[i] = valuesArray[i + 1];
                    valuesArray[i + 1] = tempValue;
                    verticesArray[i] = verticesArray[i + 1];
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                    verticesArray[i + 1] = tempVertex;
                }
            }
        }
    }

    private void allocateValues() {
        GraphInterface communityI, communityJ;
        for (int i = 0; i < cliques.size(); i++) {
            for (int j = 0; j < cliques.size(); j++) {
                communityI = cliques.get(i);
                communityJ = cliques.get(j);
                if (i == j) {
                    if (communityI.getSize() == 1) {
                        matrix[i][j] = 0;
                    } else {
                        matrix[i][j] = communityI.getShortLinks().size() / 
2;
                    }
                } else {
                    matrix[i][j] = 
communityI.getLongLinks(communityJ).size();
                }
            }
        }
    }

    private void calculateBC() {
        Enumeration<BasicVertexInterface> vertices = g.getVertices();
        while (vertices.hasMoreElements()) {
            CiBCVertex root = (CiBCVertex) vertices.nextElement();
            this.traverseGraph(root);
            this.sumWeights();
            this.resetVertices();
        }
    }

    private void createCliques() {
        for (int i = verticesArray.length - 1; i > 0; i--) {
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            CiBCVertex vertex = verticesArray[i];
            if (!this.isAssigned(vertex)) {
                UndirectedGraph clique = new UndirectedGraph();
                clique.addVertex(vertex);
                Enumeration<BasicVertexInterface> en = vertex.getLinks();
                while (en.hasMoreElements()) {
                    CiBCVertex neighbor = (CiBCVertex) en.nextElement();
                    if (!this.isAssigned(neighbor)) {
                        clique.addVertex(neighbor);
                    }
                }
                cliques.add(clique);
            }
        }
    }

    public void run() {
        this.calculateBC();
        this.populateArrays();
        this.sortArrays();
        this.createCliques();
        this.merge();
        this.updateResults();
    }

    private void merge() {
        boolean mergedCliques = false;
        while (cliques.size()>1 && !mergedCliques) {
            mergedCliques = false;          
            this.initMatrix();
            this.allocateValues();
            for(int i=0; i<cliques.size(); i++){
                int shortLinks = matrix[i][0];
                for(int j=1; j<cliques.size(); j++){
                    if(shortLinks<=matrix[i][j]){
                        //do the merging
                        this.mergeCliques(cliques.get(0), cliques.get(j));
                        //remove clique
                        cliques.remove(j);                
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                        mergedCliques = true;
                        break;
                    }
                }
                if(mergedCliques){
                    break;
                }
            }

        }
    }

    private void updateResults(){
        for(int i=0; i<cliques.size(); i++){
            results.addCommunity(cliques.get(i));
        }
    }

    private void traverseGraph(CiBCVertex root) {
        Queue<CiBCVertex> qe = new LinkedList();
        CiBCVertex vertex, neigh;
        int newDistance, newWeight;
        qe.add(root);
        root.setDistance(0);
        root.setWeight(1);
        while (!qe.isEmpty()) {
            vertex = qe.remove();
            newDistance = vertex.getDistance() + 1;
            for (int i = 0; i < vertex.degree(); i++) {
                neigh = (CiBCVertex) vertex.getLink(i);
                if (neigh.getDistance() == -1) {
                    qe.add(neigh);
                    newWeight = vertex.getWeight();
                    neigh.setDistance(newDistance);
                    neigh.setWeight(newWeight);
                } else {
                    if (neigh.getDistance() == newDistance) {
                        newWeight = neigh.getWeight() + vertex.getWeight();
                        neigh.setWeight(newWeight);
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                    }
                }
            }
        }
        qe.clear();
    }

    private void resetVertices() {
        CiBCVertex vertex;

        Enumeration<BasicVertexInterface> en = g.getVertices();

        while (en.hasMoreElements()) {
            vertex = (CiBCVertex) en.nextElement();
            vertex.setDistance(-1);
            vertex.setWeight(-1);
        }
    }

    private void sumWeights() {
        CiBCVertex vertex;
        Enumeration<BasicVertexInterface> en = g.getVertices();
        while (en.hasMoreElements()) {
            vertex = (CiBCVertex) en.nextElement();
            if (!bcTable.containsKey(vertex)) {
                bcTable.put(vertex, vertex.getWeight());
            } else {
                int currentValue = bcTable.get(vertex);
                int newValue = currentValue + vertex.getWeight();
                bcTable.put(vertex, newValue);
            }
        }
    }

    private boolean isAssigned(CiBCVertex vertex) {
        for (int i = 0; i < cliques.size(); i++) {
            if (cliques.get(i).contains(vertex.getID())) {
                return true;
            }
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        }
        return false;
    }

    private void mergeCliques(GraphInterface communityI, GraphInterface 
communityJ){
        Enumeration<BasicVertexInterface> en = communityJ.getVertices();
        while(en.hasMoreElements()){
            communityI.addVertex(en.nextElement());
        }
    }

}

8.3 Modularity Measure Implementation

package strengthquantifier;

import export.DetectionResultsInterface;
import graph.BasicVertexInterface;
import graph.GraphInterface;
import graph.UndirectedGraph;
import java.util.Enumeration;
import java.util.Vector;

public class Modularity implements QuantifierInterface {

    private double[][] matrix;
    private DetectionResultsInterface results;
    private double q;

    public double getStrength(DetectionResultsInterface results) {
        this.results = results;
        q = 0;
        this.initMatrix();
        this.allocateValues();
        q = this.calculateQ(this.getRows());
        System.out.println("Modularity:" + q);
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        return q;
    }

    private void initMatrix() {
        matrix = new double[results.getSize()][results.getSize()];
    }

    private void allocateValues() {
        double totalLinks = this.getTotalLinks();
        GraphInterface communityI, communityJ;
        for (int i = 0; i < results.getSize(); i++) {
            for (int j = 0; j < results.getSize(); j++) {
                communityI = results.getCommunity(i);
                communityJ = results.getCommunity(j);
                if (i == j) {
                    if (communityI.getSize() == 1) {
                        matrix[i][j] = 0;
                    } else {
                        double shortLinks = (double) 
communityI.getShortLinks().size() / 2.0;
                        System.out.println("ShortLinks["+i+"]:"+shortLinks)
;
                        System.out.println("TotalLinks["+i+"]:"+totalLinks)
;
                        double eij = shortLinks / totalLinks;
                        matrix[i][j] = eij;
                        System.out.println("Short Links 
Fraction["+i+","+i+",]:" + matrix[i][i]);
                    }
                } else {
                    double longLinks = (double) 
communityI.getLongLinks(communityJ).size();
                    System.out.println("LongLinks["+i+","+j+"]:"+longLinks)
;
                    System.out.println("totalLinks["+i+","+j+"]:"+totalLink
s);
                    double eij = longLinks / totalLinks;
                    matrix[i][j] = eij;
                    System.out.println("Long Links Fraction[" + i + "," + j 
+ "]:" + matrix[i][j]);
                }
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            }
        }
    }

    private double[] getRows() {
        double rows[] = new double[results.getSize()];
        for (int i = 0; i < rows.length; i++) {
            double sum = 0;
            for (int j = 0; j < rows.length; j++) {
                if (i != j) {
                    sum += matrix[i][j];
                }
            }
            rows[i] = Math.pow(sum, 2);
            System.out.println("Row[" + i + "]:" + rows[i]);
        }
        return rows;
    }

    private double calculateQ(double[] rows) {
        double q = 0;
        for (int i = 0; i < rows.length; i++) {
            q += matrix[i][i] - rows[i];
        }
        return q;
    }

    private double getTotalLinks(){
        double totalLinks = 0;
        Vector<BasicVertexInterface> visitedVertices = new 
Vector<BasicVertexInterface>();
        for(int i=0; i<results.getSize(); i++){
            GraphInterface communityI = results.getCommunity(i);
            Enumeration<BasicVertexInterface> vertices = 
communityI.getVertices();
            while(vertices.hasMoreElements()){
                BasicVertexInterface vertex = vertices.nextElement();
                if(!visitedVertices.contains(vertex)){
                    totalLinks += vertex.degree();
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                    visitedVertices.add(vertex);
                }
            }
        }
        return totalLinks/2.0;
    }
}

package strengthquantifier;

import export.DetectionResultsInterface;

public interface QuantifierInterface {
    public double getStrength(DetectionResultsInterface results);
}
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