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Abstract 
The purpose of this study is the presentation of the basic concepts, techniques and approaches to 

problems of nonlinear dynamics theory or better known as chaos theory. The approach is more theoretical 
but can be applied to a big variety of systems, most of them found in nature, that may in first sight have 
no relation or similarity. Understanding the dynamics of those systems is very important in many sciences 
like biology, chemistry, signal processing, telecommunications and many more in order to make 
conclusions about the behavior of the system. Most of the examples presented here are real applications 
and often famous systems due to their founders like the Lorenz equation and the logistic map. 
Specifically, the first 2 chapters are introductional and include some history on the field and it’s pioneers 
and  the second is about system representation and also some terminology is provided in ordrer continue 
the study.  The  third chapter is about stability and bifurcation theory adjusted to nonlinear systems. It 
provides definitions and the standard methods to determine stability and bifurcations.  The 4th chapter is 
about fractal geometry developed to study chaotic attractors which can be viewd as geometrical objects. 
Euclidean geometry is not enough to characterize these objects. In this chapter the fractal geometry and 
dimension are introduced. In chapters 5 and 6 the befomentioned concepts are organized in an analytical 
and statistical way in order to be used to make conclusions about real systems. Chaos theory is a 
relatively new field of science and although very interesting, it is also complicated in many ways. 
Although the theory can be applied to almost any system in nature, it remains bounded to complicated 
mathematical analysis and may discourage people from science fields not close to mathematics or physics 
to use it. Beside the knowledge gained from this study, learning the basic terms and concepts is a good 
start for anyone interested taking the first step so hopefully this study will help.  
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Σύνοψη 
Ο σκοπός της εργασίας είναι η παρουσίαση βασικών εννοιών και προσεγγίσεων σε προβλήµατα µη 
γραµµικών συστηµάτων ή όπως είναι ευρύτερα γνωστά, χαοτικά συστήµατα. Η προσέγγιση είναι 
περισσότερο θεωρητική αλλά µπορεί να εφαρµοστεί σε µεγάλη ποικιλία συστηµάτων, που τα 
περισσότερα από αυτά είναι φυσικά συστήµατα και µπορεί να µην δείχνουν να έχουν τόσες οµοιότητες 
µε την πρώτη µατιά. Η κατανόηση της δυναµικής αυτών των συστηµάτων είναι σηµαντική για πολλές 
επιστήµες όπως η βιολογία, η χηµεία, τηλεπικοινωνίες  κ .α. ούτος ώστε να κατανοήσουµε την 
συµπεριφορά αυτών των συστηµάτων. Τα περισσότερα παραδείγµατα που παρουσιάζονται εδώ είναι 
παραδείγµατα τέτοιων φυσικών συστηµάτων όπως το µοντέλο του Lorenz για τον καιρό που είναι και 
ένα διάσηµο σύστηµα µιας και ήταν από τα πρώτα που µελετήθηκαν. Πιο συγκεκριµένα, τα πρώτα δυο 
κεφάλαια είναι εισαγωγικά, το πρώτο περιλαµβάνει µια ιστορική αναδροµή στο πεδίο και τους 
πρωτοπόρους του και το δεύτερο ασχολείται µε την αναπαράσταση δυναµικών συστηµάτων και 
παρέχεται επίσης κάποια ορολογία. Στο τρίτο κεφάλαιο παρουσιάζονται οι θεωρίες ευστάθειας και 
διακλαδώσεων προσαρµοσµένες στην µη γραµµική δυναµική. Παρέχονται θεωρία και τεχνικές για 
εύρεση και εξέταση της ευσταθείας και των διακλαδώσεων των λύσεων. Στο πέµπτο κεφάλαιο 
παρουσιάζεται η γεωµετρία των  fractal η οποία αναπτύχθηκε και χρησιµοποιήθηκε για την µελέτη των 
περίεργων ελκυστών, οι οποίοι µπορούν να χαρακτηριστούν σαν γεωµετρικά αντικείµενα. Η ευκλείδεια 
γεωµετρία δεν είναι αρκετή για να περιγράψει τέτοια αντικείµενα.  Στο πέµπτο και το έκτο κεφάλαιο οι 
παραπάνω έννοιες οργανώνονται ε ένα αναλυτικό τρόπο για να µελετηθούν πραγµατικά πειραµατικά 
δεδοµένα τα οποία θα δώσουν στοιχεία για την συµπεριφορά του συστήµατος. Η θεωρία του χάους είναι 
ένα σχετικά καινούργιο πεδίο της επιστήµης. Είναι αρκετά ενδιαφέρον αλλά ταυτόχρονα πολύπλοκο. 
Παρόλο που η θεωρία µπορεί να εφαρµοστεί σε πολλά φυσικά συστήµατα, περιορίζεται από την 
περίπλοκη µαθηµατική ανάλυση και  µπορεί να αποθαρρύνει πολλούς, από πεδία όχι άµεσα συνδεδεµένα 
µε τα µαθηµατικά, να ασχοληθούν µε αυτήν. Πέρα από την απόκτηση των γνώσεων που είναι 
απαραίτητες για περαιτέρω µελέτη τέτοιων συστηµάτων, η εκµάθηση των βασικών προσεγγίσεων και 
τεχνικών είναι µια καλή αρχή για κάποιον που ενδιαφέρεται να κάνει τα πρώτα βήµατα σε αυτήν την 
επιστήµη και ελπίζω αυτή η µελέτη να βοηθήσει.   
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Chapter 1 - Introduction 

1.1 History of system dynamics 
The advent of computers in the last decades made it possible to tackle unsolvable nonlinear 

problems. This possibility led to a completely different view onto dynamical systems and in association 
with it to a new language about dynamical systems.  

The basic terms of this language are more geometrically oriented. In linear dynamics, one seeks the 
fundamental solutions from which one can build all other solutions. Instead of quantitative solutions 
(which can be obtained only numerically in nearly all cases), qualitative aspects are of greater interest like 
the type of solutions, the stability of solutions, and the bifurcation of new solutions.  

Nonlinear dynamics became famous because of the possibility of deterministic chaos, i.e., irregular 
solutions even though the equation of motion is deterministic. This is impossible in linear dynamics. 

 Outside the scientific community, nonlinear dynamics is therefore often called chaos theory, even 
though not all nonlinear systems behave chaotically. 

The main catalyst for the development of chaos theory was the electronic computer. Much of the 
mathematics of chaos theory involves the repeated iteration of simple mathematical formulas, which 
would be impractical to do by hand. Electronic computers made these repeated calculations practical, 
while figures and images made it possible to visualize these systems. 

Nature is essentially nonlinear and the idea that natural processes have regular behavior is a 
consequence of linear paradigms. The excessive use of linear analysis had limited the comprehension of 
natural processes for many years. One of these paradigms is the strict determinism, clearly illustrated by 
the Laplace thinking: "If we conceive of an intelligence which at a given instant comprehends of all the 
relations of the entities of this universe, it could state the respect positions, motions, and general effects of 
all these entities at any time in the past or future". In the end of the XIX century, Poincaré studied the 
dynamical response of the three-body problem. Poincaré tries to analyze the stability of the universe, 
studying a complicated problem compared with the two-body problem, usually employed in that time. 
Figure 1 presents some orbits of the third body, showing complex responses (Stewart, 1991). 

 
Figure 1 - Orbits related to the three body problem 
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The analysis of Poincaré includes the chance in contrast of the strict determinism of Laplace: "Even 
if the case that the natural laws had no longer secret for us, ... it may happen that small differences in 
initial conditions produce very great ones in the final phenomena". 

Although Poincaré has an absolutely clear vision with respect to chaos (as it is understood 
nowadays), only in 1963, when Lorenz developed studies about meteorology, the idea of chance related to 
dynamical systems is taken again. Lorenz studied the classical problem of Rayleigh-Benard for fluid 
convection, which contemplates two parallel plates, separated by a fluid, where the upper plate has a 
lower temperature when compared with the lower plate. The Lorenz's analysis shows that small variations 
on initial conditions may cause great changes in the system response, being identified as the start of the 
modern study of chaos. This phenomenon represents sensitive dependence on initial conditions, being a 
characteristic feature of chaos. Colloquially, it became famous as the butterfly effect, which means that if 
a butterfly flaps its wings in China, then it may cause a hurricane in Brazil. Figure 2 shows different 
response patterns related to the Lorenz's problem (Van Dyke, 1982). 

  

 
Figure 2 - Natural Convection 

 
In 1898 Jacques Hadamard published an influential study of the chaotic motion of a free particle 

gliding frictionlessly on a surface of constant negative curvature. In the system studied, "Hadamard's 
billiards," Hadamard was able to show that all trajectories are unstable in that all particle trajectories 
diverge exponentially from one another, with a positive Lyapunov exponent. 

Despite initial insights in the first half of the twentieth century, chaos theory became formalized as 
such only after mid-century, when it first became evident for some scientists that linear theory, the 
prevailing system theory at that time, simply could not explain the observed behaviour of certain 
experiments like that of the logistic map. What had been beforehand excluded as measure imprecision and 
simple "noise" was considered by chaos theories as a full component of the studied systems. 

Much of the earlier theory was developed almost entirely by mathematicians, under the name of 
argotic theory. Later studies, also on the topic of nonlinear differential equations, were carried out by 
G.D. Birkhoff, A. N. Kolmogorov, M.L. Cartwright and J.E. Littlewood and Stephen Smale. Except for 
Smale, these studies were all directly inspired by physics: the three-body problem in the case of Birkhoff, 
turbulence and astronomical problems in the case of Kolmogorov, and radio engineering in the case of 
Cartwright and Littlewood. 

Studies of the critical point beyond which a system creates turbulence was important for Chaos 
theory, analyzed for example by the Soviet physicist Lev Landau who developed the Landau-Hopf theory 
of turbulence. David Ruelle and Floris Takens later predicted, against Landau, that fluid turbulence could 
develop through a strange attractor, a main concept of chaos theory. 

An early pioneer of the theory was Edward Lorenz whose interest in chaos came about accidentally 
through his work on weather prediction in 1961. Lorenz was using a simple digital computer, a Royal 
McBee LGP-30, to run his weather simulation. He wanted to see a sequence of data again and to save 
time he started the simulation in the middle of its course. He was able to do this by entering a printout of 
the data corresponding to conditions in the middle of his simulation which he had calculated last time. 
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To his surprise the weather that the machine began to predict was completely different from the 
weather calculated before. Lorenz tracked this down to the computer printout. The computer worked with 
6-digit precision, but the printout rounded variables off to a 3-digit number, so a value like 0.506127 was 
printed as 0.506. This difference is tiny and the consensus at the time would have been that it should have 
had practically no effect. However Lorenz had discovered that small changes in initial conditions 
produced large changes in the long-term outcome. Lorenz's discovery, which gave its name to Lorenz 
attractors, proved that meteorology could not reasonably predict weather beyond a weekly period (at 
most). 

 
Figure 3 - Mandelbrot set 

 
The year before, Benoît Mandelbrot found recurring patterns at every scale in data on cotton prices. 

Beforehand, he had studied information theory and concluded noise was patterned like a Cantor set: on 
any scale the proportion of noise-containing periods to error-free periods was a constant – thus errors 
were inevitable and must be planned for by incorporating redundancy. Mandelbrot described both the 
"Noah effect" (in which sudden discontinuous changes can occur, e.g., in a stock's prices after bad news, 
thus challenging normal distribution theory in statistics, aka Bell Curve) and the "Joseph effect" (in which 
persistence of a value can occur for a while, yet suddenly change afterwards). In 1967, he published 
"How long is the coast of Britain? Statistical self-similarity and fractional dimension," showing that a 
coastline's length varies with the scale of the measuring instrument, resembles itself at all scales, and is 
infinite in length for an infinitesimally small measuring device. Arguing that a ball of twine appears to be 
a point when viewed from far away (0-dimensional), a ball when viewed from fairly near (3-
dimensional), or a curved strand (1-dimensional), he argued that the dimensions of an object are relative 
to the observer and may be fractional. An object whose irregularity is constant over different scales ("self-
similarity") is a fractal (for example, the Koch curve or "snowflake", which is infinitely long yet encloses 
a finite space and has fractal dimension equal to circa 1.2619, the Menger sponge and the Sierpiński 
gasket). In 1975 Mandelbrot published The Fractal Geometry of Nature, which became a classic of chaos 
theory. Biological systems such as the branching of the circulatory and bronchial systems proved to fit a 
fractal model. 

Chaos was observed by a number of experimenters before it was recognized; e.g., in 1927 by van 
der Poland in 1958 by R.L. Ives. However, as a graduate student in Chihiro Hayashi's laboratory at Kyoto 
University, Yoshisuke Ueda was experimenting with analog computers (that is, vacuume tubes) and 
noticed, on Nov. 27, 1961, what he called "randomly trasitional phenomena". Yet his advisor did not 
agree with his conclusions at the time, and did not allow him to report his findings until 1970.  
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In December 1977 the New York Academy of Sciences organized the first symposium on Chaos, 
attended by David Ruelle, Robert May, James A. Yorke (coiner of the term "chaos" as used in 
mathematics), Robert Shaw (a physicist, part of the Eudemons group with J. Doyne Farmer and Norman 
Packard who tried to find a mathematical method to beat roulette, and then created with them the 
Dynamical Systems Collective in Santa Cruz, California), and the meteorologist Edward Lorenz. 

The following year, Mitchell Feigenbaum published the noted article "Quantitative Universality for 
a Class of Nonlinear Transformations", where he described logistic maps. Feigenbaum had applied fractal 
geometry to the study of natural forms such as coastlines. Feigenbaum notably discovered the universality 
in chaos, permitting an application of chaos theory to many different phenomena. 

In 1979, Albert J. Libchaber, during a symposium organized in Aspen by Pierre Hohenberg, 
presented his experimental observation of the bifurcation cascade that leads to chaos and turbulence in 
convective Rayleigh–Benard systems. He was awarded the Wolf Prize in Physics in 1986 along with 
Mitchell J. Feigenbaum "for his brilliant experimental demonstration of the transition to turbulence and 
chaos in dynamical systems". 

Then in 1986 the New York Academy of Sciences co-organized with the National Institute of 
Mental Health and the Office of Naval Research the first important conference on Chaos in biology and 
medicine. There, Bernardo Huberman presented a mathematical model of the eye tracking disorder 
among schizophrenics. This led to a renewed of physiology in the 1980s through the application of chaos 
theory, for example in the study of pathological cardiac cycles. 

In 1987, Per Bak, Chao Tang and Kurt Wiesenfeld published a paper in Physical Review Letters 
describing for the first time self-organized criticality (SOC), considered to be one of the mechanisms by 
which complexity arises in nature. Alongside largely lab-based approaches such as the Bak–Tang–
Wiesenfeld sandpile, many other investigations have centered around large-scale natural or social systems 
that are known (or suspected) to display scale-invariant behaviour. Although these approaches were not 
always welcomed (at least initially) by specialists in the subjects examined, SOC has nevertheless become 
established as a strong candidate for explaining a number of natural phenomena, including: earthquakes 
(which, long before SOC was discovered, were known as a source of scale-invariant behaviour such as 
the Gutenberg–Richter law describing the statistical distribution of earthquake sizes, and the Omori law 
describing the frequency of aftershocks); solar flares; fluctuations in economic systems such as financial 
markets (references to SOC are common in econophysics); landscape formation; forest fires; landslides; 
epidemics; and biological evolution (where SOC has been invoked, for example, as the dynamical 
mechanism behind the theory of "punctuated equilibria" put forward by Niles Eldredge and Stephen Jay 
Gould). Worryingly, given the implications of a scale-free distribution of event sizes, some researchers 
have suggested that another phenomenon that should be considered an example of SOC is the occurrence 
of wars. These "applied" investigations of SOC have included both attempts at modelling (either 
developing new models or adapting existing ones to the specifics of a given natural system), and 
extensive data analysis to determine the existence and/or characteristics of natural scaling laws. 

 

 
Figure 4 - The Bak–Tang–Wiesenfeld sandpile model is the first discovered example of a dynamical system 
displaying self-organized criticality and is named after Per Bak, Chao Tang and Kurt Wiesenfeld. The model 
is a cellular automaton. At each site on the lattice there is a value that corresponds to the slope of the pile. 
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This slope builds up as grains of sand are randomly placed onto the pile, until the slope exceeds a specific 
threshold value at which time that site collapses transferring sand into the adjacent sites, increasing their 
slope. 
 

The same year, James Gleick published Chaos: Making a New Science, which became a best-seller 
and introduced general principles of chaos theory as well as its history to the broad public. At first the 
domains of work of a few, isolated individuals, chaos theory progressively emerged as a transdisciplinary 
and institutional discipline, mainly under the name of nonlinear systems analysis. Alluding to Thomas 
Kuhn's concept of a paradigm shift exposed in The Structure of Scientific Revolutions (1962), many 
"chaologists" (as some self-nominated themselves) claimed that this new theory was an example of such 
as shift, a thesis upheld by J. Gleick. 

The availability of cheaper, more powerful computers broadens the applicability of chaos theory. 
Currently, chaos theory continues to be a very active area of research, involving many different 
disciplines (mathematics, topology, physics, population biology, biology, meteorology, astrophysics, 
information theory, etc.). 

1.2 Random and chaotic data 
When a non-linear deterministic system is attended by external fluctuations, its trajectories present 

serious and permanent distortions. Furthermore, the noise is amplified due to the inherent non-linearity 
and reveals totally new dynamical properties. Statistical tests attempting to separate noise from the 
deterministic skeleton or inversely isolate the deterministic part risk failure. Things become worse when 
the deterministic component is a non-linear feedback system. In presence of interactions between 
nonlinear deterministic components and noise, the resulting nonlinear series can display dynamics that 
traditional tests for nonlinearity are sometimes not able to capture.  

It can be difficult to tell from data whether a physical or other observed process is random or 
chaotic, because in practice no time series consists of pure 'signal.' There will always be some form of 
corrupting noise, even if it is present as round-off or truncation error. Thus any real time series, even if 
mostly deterministic, will contain some randomness. 

All methods for distinguishing deterministic and stochastic processes rely on the fact that a 
deterministic system always evolves in the same way from a given starting point. Thus, given a time 
series to test for determinism, one can: 

• pick a test state; 
• search the time series for a similar or 'nearby' state; and 
• compare their respective time evolutions. 
• Define the error as the difference between the time evolution of the 'test' state and the time 

evolution of the nearby state. A deterministic system will have an error that either remains 
small (stable, regular solution) or increases exponentially with time (chaos). A stochastic 
system will have a randomly distributed error. 

When we try to define the position of a point in a space with some type of coordinate system there 
will always be an error in our measurements. If that error is x then around the point we are measuring 
there will be a sphere (in case of 3-dimensinal space), with r=x and centre that point, within infinite points 
would exist. So we cannot really say that we defined a point but we can say that we measured an area 
with a factor of accuracy, within which that point will exist. That sphere is called error ball 

If the system is stable starting from Initial conditions within the error ball the deviations of the 
orbits will decay as the system evolves. Thus the error ball will shrink. It can be shown that the 
eigenvectors at that point are contracting and that the direction of contraction is along the eigenvectors.  

If the system is unstable the error balls will expand leading orbits to infinity. Again the direction of 
the expansion would be along the eigenvectors. 
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In the case of chaotic orbits the error ball will shrink into the one direction and expand to the other. 
So distance between 2 initial conditions will keep growing without orbits going to infinity. This is due to 
the folding of state space. 

 Essentially all measures of determinism taken from time series rely upon finding the closest states 
to a given 'test' state (i.e., correlation dimension, Lyapunov exponents, etc.). To define the state of a 
system one typically relies on phase space embedding methods. Typically one chooses an embedding 
dimension, and investigates the propagation of the error between two nearby states. If the error looks 
random, one increases the dimension. If you can increase the dimension to obtain a deterministic looking 
error, then you are done. Though it may sound simple it is not really. One complication is that as the 
dimension increases the search for a nearby state requires a lot more computation time and a lot of data 
(the amount of data required increases exponentially with embedding dimension) to find a suitably close 
candidate. If the embedding dimension (number of measures per state) is chosen too small (less than the 
'true' value) deterministic data can appear to be random but in theory there is no problem choosing the 
dimension too large – the method will work. 

1.3 Applications 
Chaos theory is applied in many scientific disciplines: mathematics, biology, computer science, 

economics, engineering, finance, philosophy, physics, politics, population dynamics, psychology, and 
robotics. . In this context, Briggs & Peat (2000) say that "chaos reveals that, we need to use all 
uncertainties of life instead of resist to them". 

Chaotic behavior has been observed in the laboratory in a variety of systems including electrical 
circuits, lasers, oscillating chemical reactions, fluid dynamics, and mechanical and magneto-mechanical 
devices. Observations of chaotic behavior in nature include the dynamics of satellites in the solar system, 
the time evolution of the magnetic field of celestial bodies, population growth in ecology, the dynamics of 
the action potentials in neurons, and molecular vibrations. There is some controversy over the existence 
of chaotic dynamics in plate tectonics and in economics.  

One of the most successful applications of chaos theory has been in ecology, where dynamical 
systems such as the Ricker model have been used to show how population growth under density 
dependence can lead to chaotic dynamics. 

Chaos theory is also currently being applied to medical studies of epilepsy, specifically to the 
prediction of seemingly random seizures by observing initial conditions. 

A related field of physics called quantum chaos theory investigates the relationship between chaos 
and quantum mechanics. Recently, another field, called relativistic chaos, has emerged to describe 
systems that follow the laws of general relativity. 

Although chaotic planetary motion had not been observed, experimentalists had encountered 
turbulence in fluid motion and nonperiodic oscillation in radio circuits without the benefit of a theory to 
explain what they were seeing. 
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Figure 5 - Brief History of dynamical systems theory 
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Chapter 2 - Dynamical systems 
 

2.1 Basic Definitions 
A dynamical system is a part of the world which can be seen as a self-contained entity with some 

temporal behaviour. In mathematics it is a concept where a fixed rule describes the time dependence of a 
point in a geometrical space. In nonlinear dynamics, speaking about a dynamical system usually means to 
speak about an abstract mathematical system which is a model for such an entity. Mathematically, a 
dynamical system is defined by its state and by its dynamics. A pendulum is an example for a dynamical 
system.  

A state of the system is A number or a vector (i.e., a list of numbers usually variables) defining the 
state of the dynamical system uniquely. An initial condition is a state from which an orbit starts in the 
state space.  

Dynamics or Equations of motion is the causal relation between the present state and the next 
state. It is a deterministic rule which tells us what happens in the next time step. In the case of a 
continuous time, the time step is infinitesimally small. Thus, the equation of motion is a differential 
equation or a system of differential equations where x is the state and t is the time variable: ���� = �(�) 

 
In the case of a discrete time, the time steps are nonzero and the dynamics is a map with the discrete time 
n: ���� = ����� 

 
The dynamics is linear if the causal relation between the present state and the next state is linear. 

Otherwise it is nonlinear. 
Orbit  is a solution of the equation of motion. In the case of continuous time, it is a curve in phase 

space. In the case of a discrete system, it is an ordered set of points in the phase space.  
The mapping of the whole state space of a continuous dynamical system onto itself for a given time 

step t is called vector field. If t is an infinitesimal time step dt, the flow is just given by the right side of 
the equation of motion. In general, the flow for a finite time step is not known analytically because this 
would be equivalent to have a solution of the equation of motion. Given an Initial condition somewhere 
the orbit will follow the flow. 

On this basis, a dynamical system may be understood as a transformation f that is imposed to a 
vector field x. The space of dependent variables, x, called state space or phase space, may have different 
topologies. Topology is the science that studies continuous transformations and furnishes the tools to 
understand global aspects related to dynamical systems. Essentially, it is possible to define geometrical 
properties of objects under transformations (Singer & Thorpe, 1967). 
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Figure 6 - The frontier where chaos rises. It is a unique characteristic of non-linear systems. 
 

2.2 Equilibrium points or fixed points: 
An equilibrium point (or fixed point) is a special point of the state space where the system may stay 

stationary, which means that the solution does not vary with time. Therefore, if x�
∗  is an equilibrium point 

of the system, hence �x�
∗ � = 0 .  

Fixed points are coming in four flavors geometrically:  
• Points: Stationary solutions.  
• Limit cycles: Periodic solutions (of period - n from 0 to infinity).  
• Quasiperiodic orbits: Periodic solutions with at least two incommensurable frequencies 

(the ratio of the frequencies is an irrational number – Torus state space).  
• Chaotic orbits: Bound non-periodic solutions.  

The first three types can also occur in linear dynamics. The fourth type appears only in nonlinear 
systems. Its possibility was first anticipated by Henri Poincaré. In the seventies, this irregular behaviour 
was termed deterministic chaos. A fixed point can be either stable or unstable. Changing a parameter of 
the system can change the stability of a fixed point. This is accompanied by a change of the number of 
fixed points called bifurcation. Chaotic solutions are the more interesting because they lead to attractors 
that . can have great detail and complexity. 

Chaotic behaviour can only arise in a continuous dynamical system if it has three or more 
dimensions. However, no such restriction applies to discrete systems, which can exhibit chaotic behaviour 
in two or even one dimensional systems. (Poincaré-Bendixson) 

Simple systems can also produce chaos without relying on differential equations. An example is the 
logistic map, which is a difference equation (recurrence relation) that describes population growth over 
time. Another example is the Ricker model of population dynamics. 
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Other examples are the Lorenz system which is generated by a system of three differential 
equations with a total of seven terms on the right hand side, five of which are linear terms and two of 
which are quadratic (and therefore nonlinear). Another well-known chaotic system is generated by the 
Rossler equations with seven terms on the right hand side, only one of which is (quadratic) nonlinear. 
Sprott found a three dimensional system with just five terms on the right hand side, and with just one 
quadratic nonlinearity, which exhibits chaos for certain parameter values. Zhang and Heidel showed that, 
at least for dissipative and conservative quadratic systems, three dimensional quadratic systems with only 
three or four terms on the right hand side cannot exhibit chaotic behaviour. The reason is, simply put, that 
solutions to such systems are asymptotic to a two dimensional surface and therefore solutions are well 
behaved. 

Even the evolution of simple discrete systems, such as cellular automata, can heavily depend on 
initial conditions. Stephen Wolfram has investigated a cellular automaton with this property, termed by 
him rule 30. 

Sharkovskii's theorem is the basis of the Li and Yorke  (1975) proof that any one-dimensional 
system which exhibits a regular cycle of period three will also display regular cycles of every other length 
as well as completely chaotic orbits. 

Systems that experience chaotic behaviour under certain conditions have some common properties: 
Sensitive dependence on Initial conditions.  This means that little perturbation on initial condition 

will lead to completely different orbits in the state space as the system evolves  
There will be some kind of periodicity 
The orbits remain bounded to certain geometry 

 
Figure 7 - Error balls and orbits evolving in time 

 
Classical dynamics does not generalize over initial condition, whose value for each case is 

assigned “from outside.” Modern dynamics generalizes over initial conditions by making it a 
theoretical variable internal to the state-space representation. This broadened theoretical framework 
enables scientists to introduce new concepts for dynamical processes with various initial conditions. 
Chaos and attractors are such novel concepts.  

By internalizing initial conditions instead of receiving them “from outside,” dynamical theory 
attains a higher level of generality. Its scope expands from individual processes to processes with all 
possible initial conditions. 
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2.3 Stretching and Folding 
Sensitivity on the initial conditions leads to chaos only if the trajectories are bound. That is that the 

system cannot go to infinity. With linear dynamics, there is either sensitivity on the initial conditions or 
bound trajectories, but not both. With nonlinearity, both can exist. The figure shows why this is possible. 
The phase space of the system is stretching and folding, thus the distance between 2 Initial conditions that 
were close after infinite steps goes to infinity. Yet the phase space remains bounded. Stretching and 
folding are responsible for deterministic chaos And folding occurs only in nonlinear systems.  

 
Figure 8 - Continuus seperation of nearby initial conditions due to the stretching and folding mechanism 

 
Chaos may be geometrically understood considering some characteristics related to dynamical 

system transformations. On this basis, let a unitary square Q, subject to f such that one direction is 
contracted while the other is expanded. This transformation is considered to be the positive part of a more 
general transformation. Analogously, it is possible to think in the reverse transformation (the negative part 
of transformation), where contraction and expansion of Q is taken in a different way. 
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Figure 9 - Smalle's Horseshoe, a famous example of this kind of transformation named after S. Smale 

 
Because of the form of the transformed square and also as a tribute to the mathematician Steve 

Smale, this kind of transformation became known as the Smale horseshoe. A dynamical system subjected 
to this kind of transformation has some special characteristics. This transformation implies that, to a 
general point of Q, p, it is possible to associate a neighbor, e, which may be too small, where it can be 
chosen another point ��. It does not matter the size of the neighbor e, there is a number of iterations 
imposed by f such as p and �� are separated by a finite distance. Therefore, the system presents a sensitive 
dependence on initial condition, as shown in Figure 8 (Wiggins, 1990; Strogatz, 1994). This property 
characterizes the chaotic behavior of a dynamical system. This sensitive dependence represents the 
butterfly effect described in Lorenz's work. 

2.4 Local linearization 
In nonlinear dynamics, the main questions are: What is the qualitative behaviour of the system? 

Which and how many non-wandering sets (i.e. a fixed point, a limit cycle, a quasi-periodic or chaotic 
orbit) occur? Which of them are stable? How does the number of non-wandering sets change while 
changing a parameter of the system (called control parameter)? 

The basic approach to such situations is to locally observe the systems state space at the fixed 
points to see local behaviour and then try to extend that conclusions to the whole state space. 

Linearization makes it possible to use tools for studying linear systems to analyze the behavior of a 
nonlinear function near a given point. The linearization of a function is the first order term of its Taylor 
expansion around the point of interest. 

Here we are not trying to solve the equations to find the exact orbit(that might be impossible) but 
we are trying to estimate the qualitative character of the orbit by looking at the fixed points. 

The Jacobean matrix is the matrix of all first-order partial derivatives of a vector- or scalar-valued 
function with respect to another vector. The Jacobean of a function describes the orientation of a tangent 
plane to the function at a given point. Likewise, the Jacobean can also be thought of as describing the 
amount of "stretching" that a transformation imposes. The importance of the Jacobean lies in the fact that 
it represents the best linear approximation to a differentiable function near a given point. In this sense, the 
Jacobean is the derivative of a multivariate function. For a function of n variables, n > 1, the derivative of 
a numerical function must be matrix-valued, or a partial derivative. 

In stability analysis, one can use the eigenvalues of the Jacobean matrix evaluated at an equilibrium 
point to determine the nature of that equilibrium. If any of the eigenvalues are positive, the equilibrium is 
unstable. if they are all negative the equilibrium is stable; and if the values are of mixed signs, the 
equilibrium is possibly a saddle point. Any complex eigenvalues will appear in complex conjugate pairs 
and indicate a spiral. 
In general the procedure is: 

• Finding the fixed points 
• Local linearization using the Jacobean (or slope in case of 1D) 
• Obtaining Eigenvectors and Eigenvalues (n for n-dimensional systems) 
• Evaluate eigenvalues to estimate local stability (contracting or expanding Behaviour) 
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• Estimate the Character of the Vector field based on the character around those points. 
This procedure is similar for flows and maps.The evaluation of eigenvalues leads to conclusion about the 
behavior around the fixed point: 

• For real and negative � contracting behavior 
• For real and pos � expanding behavior 
• For real, one pos one ne (n=2) � contracting and expanding behavior or saddle (chaotic) 
• For pure complex Conjugate  �  Sinusoidal behaviour  (closed orbits)  
• For complex conjugate with ne real part � decaying sinusoidal behaviour (Spiral orbits for 

n>2) 
• For complex conjugate with positive real part � increasing sinusoidal behaviour (Spiral 

orbits for n>2) 
The frequency of the oscillation depends on the Imaginary part. In the case of complex eigenvalues the 
eigenvectors will rotate in addition (Spiral motion).The behaviour can be visualized in some cases and 
enables us to make general conclusions easier. In 3 dimensions for example, two stable manifolds form a 
surface with the same properties as an 1-dimensional stable manifold. 
 

 
Figure 10 - Classification of fixed points based on their behavior for 2-dimensional systems 
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Figure 11 – Types of fixed points placed in the parameter space for 3-dimensional systems 

 
 

 
Figure 12 - Different types of behavior and their common used names 
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Figure 13 - Relations with stability and bifurcation theory 

 
The notion spiral and node are inspired by the flow near the fixed point. A pair of conjugated 

complex eigenvalues lead to a spiral, whereas a node is causes by two real eigenvalues of the same sign. 
Real eigenvalues of different sign lead to a saddle. In general, a saddle is a fixed point where at least one 
eigenvalue has a positive real part but also at least one eigenvalue has a negative real part. Near a saddle, 
an orbit is usually attracted at first but repelled later on. There are points in the phase space which 
approach the fixed point for � → ∞.They form the stable manifold. The Eigenspace for the eigenvalues 
with negative real part is tangential to the stable manifold. The unstable manifold are built by all points 
approaching the fixed point for � → ∞. 

Calculating the roots of a polynomial analytically is impossible if its order is greater than five, and 
tedious if the order is greater than two. For time-continuous system, the question on stability can be 
answered without explicitly calculating the eigenvalues, thanks to the theorem of Routh and Hurwitz. 
This theorem says that the real parts of all roots of a polynomial are negative if and only if certain 
conditions are fulfilled which can be easily calculated. This theorem is useful even in the case of a two-
dimensional phase space where the characteristic polynomial is quadratic: Both eigenvalues have negative 
real part if and only if the determinant 	�(
�) is positive and the trace of 	�(
�) is negative. 

The extension of these conclusions to the whole vector field is based around the following two 
concepts: 

• The vector fields are smooth (same set of equations everywhere) 
• The moment the Differential Equations are defined, there is a unique vector for each point 

of the field leading to the conclusion that vectors do not interfere one another (only  at 
equilibrium points) and ultimately that Initial Conditions  that are close have similar 
behaviour. 
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Figure 14 - Different approaches for analysis, the state space representation is the most common used to 
extract the behavior of the system starting from different initial conditions.  
 
 

 
Figure 15 - Construction of the flow diagram, starting from the local behavior around the equilibria the 
generalization to the whole field is easier 
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2.5 Poincare section 
In many cases representation and mathematical analysis of flows of higher dimensions is difficult. 

Poincare invented a technique to transform a continuous map into a discrete one by using the Poincare 
section. This creates a map that has 1 dimension less and also can be analysed easier by using discrete 
time techniques and represented. 

 
Figure 16 - A poincare section placed on a taurus state space system. This helps reducing the dimensions of 
the system by one and also discretizes it. 

 
 �� = ���� → ���� = �(��) 
  
It can be proved that the qualitative behaviour of the two maps is the same so Poincare map 

represents the system fully.  
Poincare section mathematically is a plane of 1 dimension less than the state space of the given 

system. in general, it is considered as a surface that transversely intersects a given orbit. For systems 
subjected to periodic forcing, Poincaré section may be represented by a surface that corresponds to a 
specific phase of the driving force. On this basis, one has a stroboscopically sample of the system 
response (Figure 9). 

 
Figure 17 - The Poincare section is placed with certain rules and must cover almost all orbits. when the orbit 
crosses the section, it leaves a dot that can be treated as a point on a discrete map.  
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It is placed based on specific rules defined 

point. If it is placed correctly no qualitative 
 

Figure 18 - The iterations create sequences
 
If the Poincaré section is carefully chosen no information is lost concerning the qualitative 

behaviour of the dynamics. Poincaré maps are invertible maps because one gets 
the orbit backwards. In the Poincaré map, l
either stable or unstable. Changing a parameter of the system can change the stability of a Equilibrium 
point. This is accompanied by a change of the 
map, limit cycles become fixed points

In the Poincare map we can see the period
etc. then by watching the mapping of different initial conditions  as the system evolves we can conclud
the fixed point is stable or not.  

After this is done we can 
studying the Poincare map of the

this is done by using local linearization as described but 
and with some modifications applied 
fixed point for 1-dimensinal maps and
order maps. 
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It is placed based on specific rules defined by Poincare in order to intersect with the orbit of a fi
it is placed correctly no qualitative behaviour is lost and the map represents the system correctly.

 
sequences of points (discrete jumps) 

If the Poincaré section is carefully chosen no information is lost concerning the qualitative 
behaviour of the dynamics. Poincaré maps are invertible maps because one gets u
the orbit backwards. In the Poincaré map, limit cycles become fixed points. A non

. Changing a parameter of the system can change the stability of a Equilibrium 
point. This is accompanied by a change of the number of attractors due to a bifurcation. In 
map, limit cycles become fixed points 

In the Poincare map we can see the period-1 orbit as a fixed point, period-
etc. then by watching the mapping of different initial conditions  as the system evolves we can conclud

After this is done we can make conclusions about the qualitative behavior of the system by 
the original system. 

local linearization as described but  using the Poincare map as the state space 
with some modifications applied to discrete maps. The convergence is determined

maps and by the Jacobean at the fixed point for 2
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intersect with the orbit of a fixed 
is lost and the map represents the system correctly. 

If the Poincaré section is carefully chosen no information is lost concerning the qualitative 
un from un+1 by following 

imit cycles become fixed points. A non-wandering set can be 
. Changing a parameter of the system can change the stability of a Equilibrium 

of attractors due to a bifurcation. In the Poincaré 

-2 orbit as a set of points 
etc. then by watching the mapping of different initial conditions  as the system evolves we can conclude if 

make conclusions about the qualitative behavior of the system by 

are map as the state space 
is determined by the slope at the 

for 2-dimensional and higher 
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Chapter 3 - Stability

3.1 Stability 
Stability theory addresses the stability of solutions of differential equations and of trajectories of 

dynamical systems under small per
Various criteria have been developed to pr

circumstances, the question may be reduced to a well
A more general method involves Lyapunov functions.
There are two types of stability: 

• Lyapunov stability
neighbourhood.  

• Asymptotic stability
converges to the fixed point asymptotically. 

The mathematical definition would be:
Suppose a system: 

The equilibrium point � � 0 would be
• Stable:  

If for each � � 0 
This implies that starting from a neighborhood of the equilibrium point (x=0) that i
enclosed  within a ball of radius δ δ

defined which will always be contained in a ball of radius V.
• Asymptoticaly stable

If it is stable and δ
This implies that a radius δ
then asymptotycally the state will converge to the equillibrium point.

This characterizes the fixed points as 
Asymptotically stable fixed points are also called 
states approaching the attractor in the long time limit.

Figure 19 - Orbits converting to the fixed point asymptotically, approaching from both sides
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Stability  & Bifurcations 

addresses the stability of solutions of differential equations and of trajectories of 
dynamical systems under small perturbations of initial condition. 

Various criteria have been developed to prove stability or instability of an orbit. Under favorable 
circumstances, the question may be reduced to a well-studied problem involving eigenvalues of matrices. 
A more general method involves Lyapunov functions. 

 
stability : Every orbit starting in a neighbourhood of the fixed point remains in a 

Asymptotic stability : In addition to the Lyapunov stability, every orbit in a neighbourhood 
converges to the fixed point asymptotically.  

finition would be: 

� � ���� 
would be 

 exists 	 � 	��� � 0 such that ‖��0�‖ � 	 for ‖�
This implies that starting from a neighborhood of the equilibrium point (x=0) that i

within a ball of radius δ, then for all t (time) in the future, a function δ

defined which will always be contained in a ball of radius V. 
Asymptoticaly stable:  
If it is stable and δ can be chosen such that ||��0�|| � 	  for lim�→�

This implies that a radius δ can be defined such that if the Initial condition is in that radius, 
then asymptotycally the state will converge to the equillibrium point.

This characterizes the fixed points as marginally stable, asymptotical
Asymptotically stable fixed points are also called attractors. The basin of attraction 
states approaching the attractor in the long time limit. V is called Lyapunov function.

 

 
Orbits converting to the fixed point asymptotically, approaching from both sides
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addresses the stability of solutions of differential equations and of trajectories of 

ove stability or instability of an orbit. Under favorable 
studied problem involving eigenvalues of matrices. 

Every orbit starting in a neighbourhood of the fixed point remains in a 

In addition to the Lyapunov stability, every orbit in a neighbourhood 

‖����‖ � �	∀	� 	 0 
This implies that starting from a neighborhood of the equilibrium point (x=0) that is 

δ, then for all t (time) in the future, a function δ(V) can be 

�
���� � 0 

δ can be defined such that if the Initial condition is in that radius, 
then asymptotycally the state will converge to the equillibrium point. 

asymptotically stable or unstable. 
basin of attraction is the set of all initial 
yapunov function. 

Orbits converting to the fixed point asymptotically, approaching from both sides 
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Figure 20 - orbits converting and approaching from one side to a stable fixed point
 
 

Figure 21 - Orbit divertin g from the unstable fixed point
 

3.1.1 Lyapunov function
Lyapunov functions are functions which can be used to prove the stability of a certain fixed point in 

a dynamical system or autonomous differential equation
inspired by considering the total energy of the system
make conclusions about the qualitative behavior of the system.
but lyapunov showed that we don’t need 
with the following properties, then the Eq. point will be stable .

Department of Applied Informatics & Multimedia 

 
orbits converting and approaching from one side to a stable fixed point 

 
g from the unstable fixed point 

Lyapunov function 
are functions which can be used to prove the stability of a certain fixed point in 

a dynamical system or autonomous differential equation without actually solving the equations
considering the total energy of the system. looking at its equation and its derivative we can 

make conclusions about the qualitative behavior of the system. The total energy is 
but lyapunov showed that we don’t need the total energy function but if instead we can define a function 
with the following properties, then the Eq. point will be stable . 
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are functions which can be used to prove the stability of a certain fixed point in 
without actually solving the equations. This is 

looking at its equation and its derivative we can 
The total energy is unknown in most cases 

the total energy function but if instead we can define a function 
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• V is always positive 
• ��  always negative or zero 

 
The definition would be: 
Let � = 0 be an Eq.Point. Let V be a continuesly differenciable function on a neighborhood D of � = 0 
such that: 
 ��0� = 0	���	���� > 0	��		�0�	��� 

 �� ��� ≤ 0	��		 
 
Then the Equilibrium Point is Stable if �� ��� < 0	and asymptotically stable if �� ��� = 0. 
In general V(x) is defined as: 
 

���� = ���� = ���������

�

�	�

�

�	�

 

 
We chose P as a symmetric matrix and if it is chosen properly (all eigenvalues positive), then V is 

always positive. Then for the derivative �� (�) we can use the matrix –P.   

Pendulum Example 
The above can be shown in the pendulum system which exhibits both stable (simple pendulum) and 

asymptotically stable behavior for different values of the parameter. For this system we know the total 
energy function and we can compare it to the calculated Lyapunov function. 

 
The equations of this system are: 
 ��� = �
 
 ��
 = −

�� �����	(−
�� �
) 

 
Where �� is the position parameter and �
 is the velocity parameter. The part inside the brackets is 

the friction part. If R is 0, there is no friction so the system will be stable. If R greater than 0, it will be 
asymptotically stable. This can be extracted from the total energy function expressed as a sum of the 
potential and the kinetic energy: ���� = � �� sin��	 ��� +

1

2
�




��

�
 

 

• If R=0 then E will be constant, so 
�

��
= 0 (stable) 

• If R>0 , then 
�

��
< 0 (asymptotically stable) 

 
In case of the simple pendulum the Lyapunof function can be written as: 
 ���� =

�� (1 − cos ��) +
1

2
�
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We can see that V(x) will always be positive so it satisfies the first condition and the derivative 
would be: 

 �� ��� =
��

��
	��

��
= � ��

���

��

���

� ���(��, �
)�
(��, �
)
� =  �

�
����� �
! " �


−
�

�
�����

# = 0  

 
So V satisfies both conditions. It can be seen that both functions V and E have the same properties 

and lead to the same conclusions about the behavior of the system, so either of them can be used. 

 
Figure 22 - Pendulum in different phases. the system will be attracted to a stable behavior 
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3.2 Bifurcations 
Α change of the qualitative behaviour of the system is called bifurcation. In mathematics it is the 

study of changes in the qualitative or topological structure of a given system. Crossing the boundary of 
stability only indicates a bifurcation point and the type of the bifurcating solutions. But it doesn't tell  how 
and how many new solutions bifurcate or disappear in a bifurcation point. Also an attractor becoming 
unstable does not mean exactly that it disappears. It may be still there but unstable and coexisting with the 
new attractors. 

A bifurcation occurs when a small smooth change to the parameter values (the bifurcation 
parameters) of a system causes a sudden 'qualitative' or topological change in its behavior. Bifurcations 
occur in both continuous systems and discrete systems. 

Bifurcation phenomenon is closed related to chaos and usually its analysis is developed considering 
local and global bifurcations. Local bifurcations are developed in a small region of phase space, usually, 
near to an equilibrium point. On the other hand, global bifurcation is non-local. There are many different 
forms of bifurcations depending on the dynamical systems characteristics. The formation of Smale 
horseshoe is a common type of global bifurcation. Local bifurcation of a dynamical system may be 
analyzed from its normal form, �� = ���; $�	, � ∈ 	ℝ�, $ ∈ ℝ�, where µ represents system parameters or 
bifurcation parameters. 

An abstract mathematical definition could be: 
A fixed point (�, $) 	= 	 (0, 0) of a one-parameter family of one-dimensional vector fields is said to 
undergo a bifurcation at $	 = 	0 if the flow for µ near zero and x  near zero is not qualitatively the same 
as the flow near �	 = 	0 at $	 = 	0. 

3.2.1 Bifurcation Diagrams 
Bifurcation diagrams represent the stroboscopically sampled variable values under the slow quasi-

static increase of some system parameter (Thompsom & Stewart, 1986). These diagrams allow a global 
analysis of the parameter changes in the system response (Machado et al., 2004). Figure 12 shows some 
typical bifurcation diagrams obtained from the logistic map. In this particular system, the route to chaos is 
represented by period doubling cascades. Enlargement of regions of bifurcation diagrams shows the 
process of bifurcation until the accumulation point is reached. After that, the system presents a chaotic 
response. Besides, it is important to notice that there are periodic windows inside chaotic regions. 



Department of Applied Informatics & Multimedia 
 

Page - 28   

  
Figure 23 - Bifurcations diagrams of the logistic Map. This is a period doubling cascade way to chaos. Notice 
the periodic windows inside the regions of chaos. this is a classic characteristic of chaos , periodicity emerging 
from nowhere and disapearing again 
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Subregions within the bifurcation diagram look remarkably similar to each other and to the diagram 
as a whole. This self-similarity was shown to repeat itself at ever finer resolutions. Such behavior is 
characteristic of geometric entities called fractals and is quite common in iterated mappings. Interestingly 
enough, the distance between successive bifurcation points %� shrinks geometrically in such a fashion that 
the ratio of the intervals δ, approaches a constant value as n approaches infinity. 

 & =
%� − %���%��� − %�

 

 
This constant, called Feigenbaum' s constant, crops up repeatedly in self-similar figures and has an 

approximate value of :  
4.669201609102990671853203820466201617258185577475768632745651343004134330211314

7371386897440239480138171659848551898151344086271420279325223124429888908908599449354
6323671341153248171421994745564436582379320200956105833057545861765222207038541064674
9494284981453391726200568755665952339875603825637225 

Feigenbaum's constant can be used to predict when chaos will arise in such systems before it ever 
occurs. Not only does Feigenbaum’s constant reappear in other figures, but so do many other 
characteristics of the bifurcation diagram. In fact, remarkably similar diagrams can be generated from any 
smooth, one-dimensional, non-monotonic function when mapped on to itself. A circle, ellipse, sine, or 
any other function with a local maximum will produce a bifurcation diagram with period-doublings 
whose ratios approach "δ". Together with a second constant "α", the scaling factor "δ" demonstrates 
universality previously unknown in mathematics: metrical universality. The behaviour of the quadratic 
map is typical for many dynamical systems.  

The constant α reflects the scaling of the dependent variable, where smaller replicas of the system 
response successively appear with each bifurcation.  

 ' = lim
�→�

������
 

 
Where �� is the value of the nearest cycle element to 0 in the 2� cycle. The value of α 

asymptotically converges to 2.5029, and this value allows prediction of the size of the system response 
with each bifurcation. 

In general bifurcations can be classified based on the mechanisms that create them 
• Local Bifurcations due to an attractor losing stability and one or more different attractors 

may become stable 
• Global bifurcations due to manifolds interplay (multiple attractors) 
• Bifurcations due to non-smoothness  

3.2.2 Local Bifurcations 
A local bifurcation occurs when a parameter change causes the stability of an equilibrium (or fixed 

point) to change. By looking at the eigenvalues at the local linearization we can define an area on the 
complex plane within witch if the eigenvalues are located, the attractor is stable. In the time-continuous 
case, this stability area is the half-plane left of the imaginary axis, whereas in the time-discrete case it is 
the unit circle around the origin  
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Figure 24 - boundaries of stability in the complex plane defined by the eigenvalues in d
systems 

 
Two things can happen: 

• Eigenvalues becoming positive for flows
• Eigenvalues becoming greater than the unit circle for maps

doubling, slope becomes > +1 saddle node for 1D maps)
So the attractor will become unstable if the eigenvalues cross the imaginary axis for 

systems or if the eigenvalues go out of the unit circle for discrete systems.
eigenvalues and the direction they cross the boundaries different types of bif
see the generic forms of those types of bifurcations.

The phase space variable is 
direction of motion in the one-dimensional phase space is shown by arrows. Sta
are drawn as red solid (dotted) lines. 
the number of control parameters for which fine tuning is necessary to get such a bifurcation

Figure 
A saddle-node bifurcation

saddle-node bifurcations where a stable fixed point annihilates with an unstable one (a saddle in more 
than one dimension). A combination of a minimum and a maximum lead to the phenomeno
where in a certain interval of the control parameter, two stable attractors exist with an unstable one in
between. When the interval of bistability is left the attractor disappears in a saddle
the system suddenly jumps to another attractor.

Department of Applied Informatics & Multimedia 

boundaries of stability in the complex plane defined by the eigenvalues in d

Eigenvalues becoming positive for flows 
s becoming greater than the unit circle for maps (slope becomes < 

doubling, slope becomes > +1 saddle node for 1D maps) 
become unstable if the eigenvalues cross the imaginary axis for 

systems or if the eigenvalues go out of the unit circle for discrete systems.Depending on The type of 
eigenvalues and the direction they cross the boundaries different types of bifurcations occur.
see the generic forms of those types of bifurcations. 

The phase space variable is u. The control parameter is µ.The bifurcation point is at 
dimensional phase space is shown by arrows. Stable (unstable) fixed points 

are drawn as red solid (dotted) lines. The normal forms are shown in blue.The term 
the number of control parameters for which fine tuning is necessary to get such a bifurcation

 
Figure 25 - The generic case of a saddle-node bifurcation 

node bifurcation. The minima and maxima of µ as a function of the curve length denote 
node bifurcations where a stable fixed point annihilates with an unstable one (a saddle in more 

than one dimension). A combination of a minimum and a maximum lead to the phenomeno
where in a certain interval of the control parameter, two stable attractors exist with an unstable one in
between. When the interval of bistability is left the attractor disappears in a saddle

s to another attractor. 
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boundaries of stability in the complex plane defined by the eigenvalues in discrete and continuous 

(slope becomes < -1 period 

become unstable if the eigenvalues cross the imaginary axis for continuous 
Depending on The type of 
urcations occur. Bellow we 

.The bifurcation point is at  � 	0. The 
ble (unstable) fixed points 

he term codimension counts 
the number of control parameters for which fine tuning is necessary to get such a bifurcation 

 
µ as a function of the curve length denote 

node bifurcations where a stable fixed point annihilates with an unstable one (a saddle in more 
than one dimension). A combination of a minimum and a maximum lead to the phenomenon of bistability 
where in a certain interval of the control parameter, two stable attractors exist with an unstable one in-
between. When the interval of bistability is left the attractor disappears in a saddle-node bifurcation, and 
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Figure 
The transcritical bifurcation occurs when in the combined space of phase space and 

controlparameter space two different manifolds of fixed points
fixed points exchange there stability property. That is, the unstable fixed point becomes stable and vice 
versa. Note, that beyond the bifurcation point the number of fixed points has not changed contrary to 
saddle-node bifurcation where two fixed points appear or disappear. A transcritical bifurcation is not a 
generic bifurcation in a phase space with more than one dimension because it is unlikely that two lines 
cross each other in a space with more than two dim

Figure 
Pitchfork bifurcations are possible in dynamical systems with an 

That is, an equation of motion that remains unchanged if one chan
(or at least for one). An example is the undriven pendulum. Usually, such a system has a symmetric fixed 
point (or limit cycle). Pitchfork bifurcations are the generic bifurcations when such a symmetric solution 
changes its stability. The bifurcating solution does not have the full symmetry of the equation of motion. 
This phenomenon is called broken symmetry
isolation because the broken symmetry applied onto such 
same symmetry is broken. All such solutions build a family. Therefore, always 
broken symmetry bifurcate at once in a pitchfork bifurcation. Both are either stable (supercritical 
pitchfork bifurcation) or unstable (subcritical pitchfork bifurcation)

The bifurcation diagrams of a Hopf and a period doubling bifurcation are similar to the diagram of 
a pitchfork bifurcation. That is, the bifurcating periodic or quasiperiodic solution is either
(supercritical bifurcation) or unstable (subcritical bifurcation). Again, a broken symmetry is responsible 
for this similarity. Here, it is the invariance of the dynamical system against translations in time.
 

Department of Applied Informatics & Multimedia 

 
Figure 26 - the generic case of a transcritical bifurcation 

The transcritical bifurcation occurs when in the combined space of phase space and 
controlparameter space two different manifolds of fixed points cross each other. At the crossing point the 
fixed points exchange there stability property. That is, the unstable fixed point becomes stable and vice 
versa. Note, that beyond the bifurcation point the number of fixed points has not changed contrary to 

node bifurcation where two fixed points appear or disappear. A transcritical bifurcation is not a 
generic bifurcation in a phase space with more than one dimension because it is unlikely that two lines 
cross each other in a space with more than two dimensions. 

 

Figure 27 - The generic case of a pitchfork bifurcation 
Pitchfork bifurcations are possible in dynamical systems with an inversion 

That is, an equation of motion that remains unchanged if one changes the sign of all phase space variables 
(or at least for one). An example is the undriven pendulum. Usually, such a system has a symmetric fixed 
point (or limit cycle). Pitchfork bifurcations are the generic bifurcations when such a symmetric solution 

anges its stability. The bifurcating solution does not have the full symmetry of the equation of motion. 
broken symmetry. A solution with a broken symmetry does not occur in 

isolation because the broken symmetry applied onto such a solution generates a new solution where the 
same symmetry is broken. All such solutions build a family. Therefore, always 
broken symmetry bifurcate at once in a pitchfork bifurcation. Both are either stable (supercritical 

k bifurcation) or unstable (subcritical pitchfork bifurcation) 
The bifurcation diagrams of a Hopf and a period doubling bifurcation are similar to the diagram of 

a pitchfork bifurcation. That is, the bifurcating periodic or quasiperiodic solution is either
(supercritical bifurcation) or unstable (subcritical bifurcation). Again, a broken symmetry is responsible 
for this similarity. Here, it is the invariance of the dynamical system against translations in time.
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The transcritical bifurcation occurs when in the combined space of phase space and 

cross each other. At the crossing point the 
fixed points exchange there stability property. That is, the unstable fixed point becomes stable and vice 
versa. Note, that beyond the bifurcation point the number of fixed points has not changed contrary to 

node bifurcation where two fixed points appear or disappear. A transcritical bifurcation is not a 
generic bifurcation in a phase space with more than one dimension because it is unlikely that two lines 

inversion or reflection symmetry. 
ges the sign of all phase space variables 

(or at least for one). An example is the undriven pendulum. Usually, such a system has a symmetric fixed 
point (or limit cycle). Pitchfork bifurcations are the generic bifurcations when such a symmetric solution 

anges its stability. The bifurcating solution does not have the full symmetry of the equation of motion. 
. A solution with a broken symmetry does not occur in 

a solution generates a new solution where the 
same symmetry is broken. All such solutions build a family. Therefore, always two fixed points with a 
broken symmetry bifurcate at once in a pitchfork bifurcation. Both are either stable (supercritical 

The bifurcation diagrams of a Hopf and a period doubling bifurcation are similar to the diagram of 
a pitchfork bifurcation. That is, the bifurcating periodic or quasiperiodic solution is either stable 
(supercritical bifurcation) or unstable (subcritical bifurcation). Again, a broken symmetry is responsible 
for this similarity. Here, it is the invariance of the dynamical system against translations in time. 
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Examples 

Saddle node bifurcation  
We are considering the next map due to its simplicity to study the saddle node bifurcation. 
The equation is: 
 ���� = � − ��


 
 
The location of the fixed points can be found by setting ���� = ��. The equation becomes: 
 ��

∗ = � − ���
∗�
 

 
The roots would be the positions. The roots are: 
 ��,


∗ = −
1 ± √1 + 4�

2
 

 

To find the stability of the fixed points again we look at the slop (derivative) at each point. At � = −
�

�
 

there is only one fixed point ��
∗ =

�



 with slope 

�����

���

= −2�� = 1, so it is stable. Two new fixed points 

begin to exist beyond the parameter value of � = −
�

�
, One stable and one unstable with opposite slopes. 

This is called a saddle-node bifurcation or tangent bifurcation. It happens on the logistic map also when 
the periodic windows come into existence.  

 
Figure 28 - The axes are placed so that the bifurcating point is at the center, two new fixed points are born, 
one stable and one unstable 

Transcritical bifurcation 
This bifurcation can be studied in the logistic map and it happens when µ=1. The 2 fixed points ��

∗ = 0	,�

∗ = 1 −

�

�
, exchange stability at µ=1.This can be seen by looking the slopes: 

 ��	��
∗ = 0	 ⇒ ��������

= $	���	��	�

∗ = 1 −

1$ 	→ ��������
= 2 − $ 

 
These points are existing all through but exchange stability at µ=1 

Pitchfork bifurcation 
Another type of bifurcation can be demonstrated on the following map. The equation is: 
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 ���� = �1 + $��� − ��
� 

 
The fixed points would be located where ���� = ��. So we can find them by solving: 
 ��

∗ = �1 − $���
∗ − ���

∗�� 
 
There are 3 fixed points: 
 ��

∗ = 0	, �

∗ = *$, ��

∗ = −	*$ 
 
We can check their stability by looking the slop. The slope in general would be: 
 ��������

= �1 − $� − 3��

 

 
And by replacing each fixed point into the equation of slope we can conclude that ��

∗ will be stable for for 
−2 < $ < 0. At µ=0 the slope at that point becomes greater than 1 and ��

∗ becomes unstable, then 2 new 
points are born because �


∗ and ��
∗ become real. And we can see from the slope that both are stable for 

0 < $ < 1. 
This looks like a period doubling bifurcation but here x�

∗ became unstable when the slope became greater 
than one instead less than -1 and 2 stable period-1 orbits became stable, not 1 period-2 orbit. 

 
Figure 29 - One fixed point loses stability and two stable fixed points are born 
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3.2.3 Global Bifurcations
Global bifurcations occur when 'larger' invariant sets, such as periodic orbits, collide with 

equilibria. This causes changes in the topology of the trajectories in the phase space which cannot be 
confined to a small neighborhood
extend out to an arbitrarily large distance (hence 'global').

in cases of multiple attractors local linearization is not enough
kind of tracking of the manifolds outside th

For unstable manifolds we can keep track of an initial condition starting on the manifold inside the 
local linearization area and watch it as the system evolves. The iterations will fall onto the manif

For stable manifolds we can’t do that directly because the initial conditions will converge. But we 
can do it backwards if the map is invertible.

Three particular things might happen caused by interplay of stable and unstable manifolds 
• Boundary crisis (stable attractor crosses basin of attraction)
• Interior crisis (chaotic attractor crosses basin  of attraction)
• Fractal basin boundary (manifolds cross)

The attractor loses stability after a boundary crisis, becomes bigger after interior crisis or a fra
nature is embedded to its geometry if manifold cross.
in natural systems. 

By studying the behaviour of fixed points and their manifolds we can make some conclusions
• Attractors lie on unstable manifo
• Stable manifolds form the basin boundary (repelling behaviour)
• Manifolds cannot intersect themselves (physically impossible)
• Manifolds can cross each other and one crossing means infinite 

Applying these backwards we can say that if there are 2 attractors there should be a saddle fixed point one 
on each side of its unstable manifold. So saddles are the cornerstone of complicated dynamics.

Most bifurcations in natural systems can be analyzed by studing simpler 
systems using the following techniques.

Centre manifold theorem: 
Conclusions about dynamics and stability of a n

system with dimensions exactly the number of eigenvalues with 0 real par
these eigenvalues is called centre manifold.

Figure 
It helps to reduce the dimensionality of the phase space. The centre manifold theorem says, the 

dynamics can be projected onto the centre manifold without losing any significant aspect of the dynamics. 
Thus, the dynamics near a bifurcation can be described by an effective dynamics in a less

Department of Applied Informatics & Multimedia 

Bifurcations 
Global bifurcations occur when 'larger' invariant sets, such as periodic orbits, collide with 

equilibria. This causes changes in the topology of the trajectories in the phase space which cannot be 
neighborhood, as is the case with local bifurcations. In fact, the changes in topology 

extend out to an arbitrarily large distance (hence 'global'). 
in cases of multiple attractors local linearization is not enough. To study these bifurcations  some 

kind of tracking of the manifolds outside the local linearization must be done.  There are 2 ways
For unstable manifolds we can keep track of an initial condition starting on the manifold inside the 

local linearization area and watch it as the system evolves. The iterations will fall onto the manif
For stable manifolds we can’t do that directly because the initial conditions will converge. But we 

can do it backwards if the map is invertible. 
particular things might happen caused by interplay of stable and unstable manifolds 

is (stable attractor crosses basin of attraction) 
Interior crisis (chaotic attractor crosses basin  of attraction) 
Fractal basin boundary (manifolds cross) 

attractor loses stability after a boundary crisis, becomes bigger after interior crisis or a fra
nature is embedded to its geometry if manifold cross. The later  is the way of chaos to create information

By studying the behaviour of fixed points and their manifolds we can make some conclusions
Attractors lie on unstable manifolds (attracting behaviour) 
Stable manifolds form the basin boundary (repelling behaviour) 
Manifolds cannot intersect themselves (physically impossible) 
Manifolds can cross each other and one crossing means infinite crossings

wards we can say that if there are 2 attractors there should be a saddle fixed point one 
on each side of its unstable manifold. So saddles are the cornerstone of complicated dynamics.

Most bifurcations in natural systems can be analyzed by studing simpler less
techniques. 

Conclusions about dynamics and stability of a n-dimensional system can be made by studying a 
system with dimensions exactly the number of eigenvalues with 0 real part . the space associated with 
these eigenvalues is called centre manifold. 

 
Figure 30 - Stable manifold represented with green 

It helps to reduce the dimensionality of the phase space. The centre manifold theorem says, the 
s can be projected onto the centre manifold without losing any significant aspect of the dynamics. 

Thus, the dynamics near a bifurcation can be described by an effective dynamics in a less
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Global bifurcations occur when 'larger' invariant sets, such as periodic orbits, collide with 
equilibria. This causes changes in the topology of the trajectories in the phase space which cannot be 

l bifurcations. In fact, the changes in topology 

To study these bifurcations  some 
e local linearization must be done.  There are 2 ways: 

For unstable manifolds we can keep track of an initial condition starting on the manifold inside the 
local linearization area and watch it as the system evolves. The iterations will fall onto the manifold. 

For stable manifolds we can’t do that directly because the initial conditions will converge. But we 

particular things might happen caused by interplay of stable and unstable manifolds : 

attractor loses stability after a boundary crisis, becomes bigger after interior crisis or a fractal 
The later  is the way of chaos to create information 

By studying the behaviour of fixed points and their manifolds we can make some conclusions 

crossings afterwards. 
wards we can say that if there are 2 attractors there should be a saddle fixed point one 

on each side of its unstable manifold. So saddles are the cornerstone of complicated dynamics. 
less-dimensional discrete 

dimensional system can be made by studying a 
t . the space associated with 

It helps to reduce the dimensionality of the phase space. The centre manifold theorem says, the 
s can be projected onto the centre manifold without losing any significant aspect of the dynamics. 

Thus, the dynamics near a bifurcation can be described by an effective dynamics in a less-dimensional 
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subspace. Hopf-bifurcations need a two-dimensional phase space. This is exactly the minimum dimension 
for limit cycles in continuous dynamical systems and for quasiperiodic orbits in discrete dynamical 
systems. Period-doubling bifurcations need only a one-dimensional phase space.  

Transformation to normal form: 
The dynamics projected onto the centre manifold can by transformed to so-called normal forms by a 
nonlinear transformation of the phase space variables. The method of normal forms provides a way of 
finding a coordinate system in which the dynamical system takes the “simplest” form. Three important 
characteristics should become apparent. 

• The method is local in the sense that the coordinate transformations are generated in a 
neighborhood of a known solution. The known solution will be a fixed point. However, when we 
develop the theory for maps, the results will have immediate applications to periodic orbits of 
vector fields by considering the associated Poincare map. 

• In general, the coordinate transformations will be nonlinear functions of the dependent variables. 
However, the important point is that the secoordinate transformations are found by solving a 
sequence of linear problems. 

• The structure of the normal form is determined entirely by the nature of the linear part of the 
vector field 

Centre manifold example 
Suppose a system with equations: 
 �� = ��
 + �+ − �+
 +� = −+ + ,�
 + �
+ 
 
There is one equilibrium point located at (0,0). the jacobean of this system would be 

 - = �3��
 + + − +
 � − 2�+
2,� + 2�+ −1 + �
� 

 
and at (0,0) it becomes: 
 -	��	�0,0� = 	 �0 0

0 −1
� 

 
So the eigenvalues are: 
 %� = 0	���	%
 = −1 
 
The eigenvectors are: 
 	./ − %01.�1 = .01 	������23334	 
 �1 0

0 0
� ��+� = �0

0
� 	�56	%�	 

 
So the associated eigenvector is � = 0, which is the vertical axis and 
 �1 0

0 −1
� ��+� = �0

0
� 	�56	%
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So the associated eigenvector is + = 0, which is the horizontal axis.  

We can see that the eigenvector associated with %
 is stable but we cannot conclude about the eigenvector 
associated with %�. 

To find the center manifold we set + = ℎ����56	|�|	����� and separate the eigenvalues : 
 �� = /� + �8�, ℎ���9		 +� = :ℎ(�) + �8�, ℎ���9 
 
But also +� = ��� ℎ��� =

�ℎ�� ���� = ℎ� ��� /� + �8�, ℎ���9! 
 
So these can be written as: 
 

ℎ� ��� /� + �8�, ℎ���9! − :ℎ(�) − �8�, ℎ���9 = 0 
 
And this can be expressed as some function : 
 ;8ℎ���9 = 0 

 
The above is the equation of the center manifold for small oscillations. If we look at the original equations 
ℎ(�) could be any function but it will be approximated by the series 
ℎ��� ≈ 	ℎ
�
 + ℎ���+. . +	<��ℎ=6	56�=6	�=6��. Higher order terms can be ignored for small 
oscillations, so: 

ℎ��� = ℎ
�
	���	ℎ� ��� = 2ℎ
�	 
If we replace in N we get: 
 

2ℎ
�.��� + ℎ
�� − ℎ


��1 + ℎ
�
 − ,�
 + ℎ
�� = 0 

 

We need only the lowest term to be zero so ℎ
�
 − ,�
 = 0	 ⇒	ℎ
 = ,, so h will be:  
 

ℎ��� = ,�
 + <��ℎ=6	56�=6	�=6�� = ,�
		�56	�����	|�| 
 
In the whole process Higher order terms are ignored because we talk about small oscillations. By 
replacing to the original equation we get: 
 �� = ��� + ,�� + <��ℎ=6	56�=6	�=6�� ≈ �� + ,��� 

 
So the system will be stable as long as � + , > 0. So even if linearization failed we were able to 

pinpoint the behavior. 
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3.2.4 Non smooth maps 
The systems described above are everywhere differentiable. Bifurcations may also occur in systems 

governed by two different sets of equations (not everywhere differentiable) When a fixed point crosses 
the boundary, the eigenvalues take a discrete jump. These bifurcations are called border collision 
bifurcations. 

These systems are called nonsmooth. for example there is a large number of systems with some 
kind of switch interaction. 

 
Figure 31 - A simple switch system. every system that contains a switch is considered nonlinear. 

 
These sytems have to be discretized in order to be studied by a Poincare section.  they are 

represented as: 
 �� = >�����	, ��	� ∈ 	 ���
���	, ��	� ∈ 	 �


? 
 
These bifurcations can be studied by using local linearization before and after collision and some 

coordinate transformations to obtain the piecewise linearized map which is an easy way to see how a 
fixed point changes by crossing the border (primary partitioning). 

Three things may happen: 
• Stable fixed point remains stable 
• A pair or more fixed points is born 
• A stable fixed point becomes unstable 

These bifurcations look similar to those of smooth systems but here the cause is different. 
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3.3 Applications 

The lorenz equation 
The most famous attractor is undoubtedly the Lorenz attractor, a three dimensional object whose 

body plan resembles a butterfly or a mask. The Lorenz attractor, named for its discoverer Edward N. 
Lorenz, arose from a mathematical model of the atmosphere. 

Imagine a rectangular slice of air heated from below and cooled from above by edges kept at 
constant temperatures. This is our atmosphere in its simplest description. The bottom is heated by the 
earth and the top is cooled by the void of outer space. Within this slice, warm air rises and cool air sinks. 
In the model as in the atmosphere, convection cells develop, transferring heat from bottom to top. 

The equations of the system are : �� = @�� − +� +� = −�A + 6� − + A� = �+ − ,A 
The state of the atmosphere in this model can be completely described by three time-evolving 

variables 
• x the convective flow 
• y the horizontal temperature distribution 
• z the vertical temperature distribution 

with three parameters describing the character of the model itself 
• σ  the ratio of viscosity to thermal conductivity 
• r  the temperature difference between the top and bottom of the slice 
• b the width to height ratio of the slice 

To study the system we must find the equilibrium points where we have good understanding of the 

behavior. For this example we set , = −
�

�
	���	@ = −10	���	�=�	6	B�6+. There are 3 equillibrium 

points: / = �0, 0, 0�, : = C*,�6 − 1�, 	*,�6 − 1�, 	6 − 1D , E = C−*,�6 − 1�,	− *,�6 − 1�, 	6 − 1D 

We can see that if r<1 the Eq.Point becomes imaginary, but the position must be real number so the 
Eq.Points B and C do not exist until  r reaches 1. A exist all the time. 

To understand more we have to look at the stability of A,B and C. So we obtain the the jacobean 
metrics which is the local linearization at each point. In general the metrics would be: 

 

- = F −@
−A + 6+ 						 @

−1� 						 0
−�
−,G 

 
At A=(0,0,0) this becomes:  

 

-	��	(0,0,0) = F−106
0

						10
−1

0

						 0
0

−8/3
G 

 

There are 3 associated eigenvalues: %� = −
�

�
	 , %
 = −

���√������



, %� = −

���√������



  

 
So %�will always be stable but %
 and %�depend on r. for r=1 %
	is at 0 and %� is at -11 so both are 

stable but  %
	is on the border of stability and instability. For r>1 it will cross the boundary so the 
Eq.Point will become unstable but it will still exist because the eigenvalues are real. 
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Figure 32 - At r = 1 the eigenvalue crosses the stability boundary and the fixed point becomes unstable 

 
So at r=1 A became unstable and B,C came to existance. A became unstable in the direction of the 

eigenvalue that crossed the boundary. To understand how this expansion evolves we must check the 
stability of the B and C to see if they are attracting or repeling fixed points. Becase they are symmetric we 
can check one of them and apply the conclusions to the other too. By Apllying the above procidure we 
can see that the eigenvalues will be :  %� = 6=��	���	�=����B=	, %
, %� = H5���=�	H5�I
���=�	J��ℎ	�=����B=	6=��	��6� 

From these we can conclude that the points B and C will be stable because they are attracting due 
to the negative real parts, with a spiral behavior due to the complex eigenvalues. The spirals are trapped  
in a complex plane defined by the real and imaginary part of complex eigenvalues. 

This is a clear example (and one of the first ones) of the difference between linear and non-linear 
dynamics. In the first case if a stable Eq. point lose stability the system collapses. In the non-linear case 
the system jumps from a stable behavior to another stable behavior. In the lorenz example this can be seen 
as the A point becomes unstable and 2 new Eq. points are born and stable.  

 
Figure 33 - The famous lorenz attractor. The butterfly effect was named due to the similarity of this attractor 
to butterfly wings 
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Figure 34 - Different perspectives of the Lorenz attractor at different stages of evolution 

 
Increasing r further the parameter will cause mixing in the orbits. This is the famus lorenz attractor 

(x,z) phase portrait for several asymptotic dynamics. (a)  strange attractor;  
(b), (c), (d) and (e) asymptotic fixed point dynamics via chaotic transient; (f) fixed point 

 

Logistic Map 
The simple logistic equation is a formula for approximating the evolution of an animal population 

over time. Many animal species are fertile only for a brief period during the year and the young are born 
in a particular season. For this reason, the system might be better described by a discrete difference 
equation than a continuous differential equation, obtained by placing a poincare section in the original 
flow. Since not every existing animal will reproduce (a portion of them are male after all), not every 
female will be fertile, not every conception will be successful, and not every pregnancy will be 
successfully carried to term; the population increase will be some fraction of the present population. 

The equation is: ���� = $��(1 − ��) 
 
where "µ" is the growth rate or fecundity 
In this example the period doubling bifurcation mechanism is demonstrated. 
The position of the fixed points would be where  ���� = �� , so we can locate them by solving: 
 ��

∗ = $��
∗(1 − ��

∗) 
 

The fixed points are at 0 and 1 −
�

�
. 

For different values of µ we get sequences of points that will either converge or diverge to these 
points. Because this map can be visualized it is easier to look at the plot 



Department of Applied Informatics & Multimedia 
 

Page - 41   

 
Figure 35 - Relation of the current with the next state. Fixed points are located on the 45 decree line at the 
point where it intersepts with the graph of the map 

. 
The fixed points of the map lie on the 45 decree line because that’s where  ���� = ��. The height 

of the curve depends on the value of µ. So we can see that changing µ will move the fixed point on the 
curve. 

Here it also easy to see the convergence of different orbits by taking steps between the curve and 
the 45 decree line. It is clear from the plot that the condition of convergence is the slope of the map at that 
point to be less than 1. So we can check the stability of the equilibrium point by looking at the derivative 
at that point. 

The derivative in general would be: 
 ��������

= $ − 2$2�� 

 

• For the fixed point at 0 the slope is 
�����

���

= $. It only depends in µ, so it will be stable for 

0 < $ < 1, and the orbits will converge here. 

• For the fixed point at $ −
�

�
 the slope is 

�����

���

= 2 − μ	. This point will be stable for 

1 < $ < 3 and orbits will start converge here . 
 

So period 1 is stable for 0 < $ < 3, but after 3 both points will become unstable so period-1 will 
become unstable. 

For values greater than 3, the obrits start to converge to 2 new points. This implies a period 
doubling bifurcation. We can find the location of the new fixed points by setting ���
 = ��, and check if 
period-2 is stable.  ���� = $��(1 − ��) 

 ���
 = $����(1 − ����) 
 
If we replace we get: ���
 = $8$���1 − ���9 C1 − 8$���1 − ���9D 

 
And the positions of the fixed points will be the solutions of this equation: 
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 ��
∗ = $8$��

∗�1 − ��
∗�9 C1 − 8$��

∗�1 − ��
∗�9D 

This is 4th order polynomial equation but we already know 2 roots which are the previews fixed 
points because the fixed points of period 1 are also fixed points of period 2, there are still there but 
unstable. If we take out the 2 roots then the polynomial becomes 2nd order and can be solved easier. So 
the above equation becomes: 

 ���
 = ��(1 − $ + $��)(1 + $ − $�� − $
�� + $
��

) 

 
And the 2 new roots are: 
 

��,

∗ =

1 + $ ± *$
 − 2$ − 3

2$  

 
These are the locations of the fixed points of period-2 orbit and we can see that they exist only for 

µ > 3. Now we can check the stability of period-2 orbit by checking the slope of at the 2 new fixed points. 

 
Figure 36 - the orbit setles into two new fixed points as the parameter is increased 

 
We don’t need to check the slope at each point separately, we can just look at the product of the 2 

slopes to see if period-2 is stable. This is easier than doing it separately for all points. It can be written as 
 ���� =

���� ���� 	������23334 ������ = ��8����9����� 
 
Where f is ���
 and g is ����. From that we can see that period-2 will be stable. 
Again by looking at the plot for ��	���	���
 we can see that easier. For values greater than 3 the 

curve bends and the intersections with the 45 decree line are doubling. More and more bends occur as we 
keep increasing µ.  
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Figure 37 - Plot of the current state with the second iterate 

 
 
This is called a period doubling cascade that ultimately leads to chaos and the mechanism for that is 

the period doubling bifurcations. In this example period doubling bifurcations happen due to the change 
of the parameter causing the slope become negative and destabilize the fixed point. But at that point 2 
new fixed points are born, both stable and with slope 1. 

 
Figure 38 - Orbits for different parameter values and initial values. the height of the curve depends on µ, 
initial conditions are the starting points from the horizontal axis. 

 

Henon map 
The map was introduced by Michel Hénon as a simplified model of the Poincaré section of the 

Lorenz model. For the canonical map, an initial point of the plane will either approach a set of points 
known as the Hénon strange attractor, or diverge to infinity. The Hénon attractor is a fractal, smooth in 
one direction and a Cantor set in another. It is one of the most studied examples of dynamical systems that 
exhibit chaotic behavior.   



Department of Applied Informatics & Multimedia

 

Figure 39 - the graph produced by placing a poincare section to the lorenz attractor. 
object 

 
The equations are: 
 

 

 

The fixed points can be found where 

equations: 

 

 
If we set B = 0.4 and let A vary the equations become:
 

 

 
There are 2 fixed points at the positions: 
 

 

 
Their existence depends on A so we can see that they do not exist

check their stability by looking at the eigenvalues obtained by the jacobian (instead of sl
case for 1D). To make calculations easier we can ckeck the stability at A = 0. So in general the jacobian 
would be: 

 
And the eigenvalues would be:
 

 
By replacing ��,�∗  we can find the associated eigenvalues at those points:

Department of Applied Informatics & Multimedia 

 
the graph produced by placing a poincare section to the lorenz attractor. 

��	� � � � ��� � ��� 

��	� � �� 

The fixed points can be found where ���	� � ��
��	� � ��� , so their location would be the solutions of the 

�∗ � �� ��∗�� � ��∗ 

�∗ � �∗ 

set B = 0.4 and let A vary the equations become: 
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!�,� � ��∗ �"��∗�� � 0.4 

we can find the associated eigenvalues at those points: 
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the graph produced by placing a poincare section to the lorenz attractor. The result is afractal 

, so their location would be the solutions of the 

�0.09. after that we can 
check their stability by looking at the eigenvalues obtained by the jacobian (instead of slope that was the 

o make calculations easier we can ckeck the stability at A = 0. So in general the jacobian 



Department of Applied Informatics & Multimedia 
 

Page - 45   

 �56	 ���
∗+�
∗� = �0

0
� , → %�,
	 = ±√0.4 

 �56	 ��

∗+

∗� = �−0.6

−0.6
� , → %�,
	 = 0.6 ± √0.76 

 

In the first case the eigenvalues are inside the unit circle so ���
∗+�
∗� is stable. In the case of ��


∗+

∗� , one 

eigenvalue is inside and one outside of the unit cirlce, so this is unstable. 
This is the the equivelant saddle node bifurcation in 2D systems. Here two new fixed points are 

born, one stable and another unstable when A reaches -0.09 from the negative side. By increasing A 
further the eigenvalues of the stable fixed point  will move towords -1 and finally become unstable.  

To check the stability of the period 2 orbit we check the second itterate of the map: 
 ���
 = / − ����


 + 0.4+��� 
 +��
 = +��� 
 ����
 = / − ����


 + 0.4+���+��
 = +���
� → ����
 = / − �/ − ��


 + :+��
 + 0.4��+��
 = / − ��

 + :+�

� 
 
This is a 4th order polyonimal but we allready have the 2 roots as previous fixed points. And if we 

calculate we can see that there are 2 new fixed points which are stable. 
As a conclusion we can see that when eigen values are become exactly one, appoaching from the 

positive side, a saddle node bifurcation occurs and 2 new fixed points one stable and onother unstable are 
born. If they become 1 from the negative side the 2 fixed points will come closer and  when  they collide 
and dissapear. In both cases eigenvalues after  +1 do not exist but they can become less than -1. 

Rossler map 
Some of the Rössler attractor's elegance is due to two of its equations being linear; setting z = 0, 

allows examination of the behavior on the x,y plane Type	equation	here. 
The stability in the x,y plane can then be found by calculating the eigenvalues of the Jacobian C0 −1

1 � D, which are: 

%�,
 = � ±
√�
 − 4

2
 

 
From this, we can see that when 0	 < 	�	 < 	2, the eigenvalues are complex and both have a 

positive real component, making the origin unstable with an outwards spiral on the x,y plane. Now 
consider the z plane behavior within the context of this range for a. So long as x is smaller than c, the c 
term will keep the orbit close to the x,y plane. As the orbit approaches x greater than c, the z-values begin 
to climb. As z climbs, though, the − z in the equation for ��	/	�� stops the growth in x. 
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Figure 40 - The rossler attractor in 3D 
 
In order to find the fixed points, the three Rössler equations are set to zero and the (x,y,z) 

coordinates of each fixed point were determined by solving the resulting equations. This yields the 
general equations of each of the fixed point coordinates: � =

H ± √H
 − 4�,
2

 

+ = − XH ± √H
 − 4�,
2� Y 

A =
H ± √H
 − 4�,

2�  

This in turn can be used to show the actual fixed points for a given set of parameter values XH + √H
 − 4�,
2

,
−H − √H
 − 4�,

2� ,
H + √H
 − 4�,

2� Y 

XH − √H
 − 4�,
2

,
−H + √H
 − 4�,

2� ,
H − √H
 − 4�,

2� Y 

 
One of these fixed points resides in the center of the attractor loop and the other lies comparatively 

removed from the attractor. 
The stability of each of these fixed points can be analyzed by determining their respective 

eigenvalues and eigenvectors. Beginning with the Jacobian: 
 

Z0 −1 −1
1 � 0A 0 � − H[ 

 
The eigenvalues can be determined by solving the following cubic: 
 

−%� + %
�' + � − H� + %��H − �� − 1 − A� + � − H + �A = 0 
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For the centrally located fixed point, Rössler’s original parameter values of � = 0.2, , =
0.2, ���	H = 5.7 yield eigenvalues of %� = 0.097 + 0.995�, %
 = 0.097 − 0.995�, %� = −5.687 

The magnitude of a negative eigenvalue characterizes the level of attraction along the 
corresponding eigenvector. Similarly the magnitude of a positive eigenvalue characterizes the level of 
repulsion along the corresponding eigenvector. The eigenvectors corresponding to these eigenvalues are: 

 

B� = Z 0.707
−0.072 + 0.703�
0.004 + 0.0007�[ , B� = Z 0.707

−0.072 − 0.703�
0.004 − 0.0007�[ , B� = Z 0.168

−0.028

0.985

[ 

 
These eigenvectors have several interesting implications. First, the two eigenvalue/eigenvector 

pairs (v1 and v2) are responsible for the steady outward slide that occurs in the main disk of the attractor. 
The last eigenvalue/eigenvector pair is attracting along an axis that runs through the center of the 
manifold and accounts for the z motion that occurs within the attractor.  
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Chapter 4 - Fractals

4.1 Introduction 
The mathematics behind fractals began to take shape in the 17th century when a mathematician and 

philosopher Gottfried Leibniz considered recur
thinking that only the straight line was self

It was not until 1872 that a function appeared whose graph would today be considered fractal, when 
Karl Weierstrass gave an example 
continuous but nowhere differentiable. In 1904, Helge von Koch, dissatisfied with Weierstrass's abstract 
and analytic definition, gave a more geometric definition of a similar function, whic
Koch curve. Wacław Sierpiński constructed his triangle in 1915 and, one year later, his carpet. The idea 
of self-similar curves was taken further by Paul Pierre Lévy, who, in his 1938 paper 
Curves and Surfaces Consisting 
curve. Georg Cantor also gave examples of subsets of the real line with unusual properties
sets are also now recognized as fractals.

Figure 41 - different fractal objects. koch triangle, koch flake and koch line. all based on the same reapeative 
procedure 

 
Iterated functions in the complex plane were investigated in the late 19th and early 20th centuries 

by Henri Poincaré, Felix Klein, Pierre Fat
graphics, however, they lacked the means to visualize the beauty of many of the objects that they had 
discovered. 

In the 1960s, Benoît Mandelbrot started investigating self
the Coast of Britain? Statistical Self
Lewis Fry Richardson. Finally, in 1975 Mandelbrot coined the word "fractal" to denote an object whose 
Hausdorff–Besicovitch dimension i
mathematical definition with striking computer
popular imagination; many of them were based on recursion, leading to the popular meaning of 
"fractal". 
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Fractals 

The mathematics behind fractals began to take shape in the 17th century when a mathematician and 
philosopher Gottfried Leibniz considered recursive self-similarity (although he made the mistake of 
thinking that only the straight line was self-similar in this sense). 

It was not until 1872 that a function appeared whose graph would today be considered fractal, when 
Karl Weierstrass gave an example of a function with the non-intuitive property of being everywhere 
continuous but nowhere differentiable. In 1904, Helge von Koch, dissatisfied with Weierstrass's abstract 
and analytic definition, gave a more geometric definition of a similar function, whic

ński constructed his triangle in 1915 and, one year later, his carpet. The idea 
similar curves was taken further by Paul Pierre Lévy, who, in his 1938 paper 

Curves and Surfaces Consisting of Parts Similar to the Whole described a new fractal curve, the Lévy C 
curve. Georg Cantor also gave examples of subsets of the real line with unusual properties
sets are also now recognized as fractals. 

different fractal objects. koch triangle, koch flake and koch line. all based on the same reapeative 

Iterated functions in the complex plane were investigated in the late 19th and early 20th centuries 
by Henri Poincaré, Felix Klein, Pierre Fatou and Gaston Julia. Without the aid of modern computer 
graphics, however, they lacked the means to visualize the beauty of many of the objects that they had 

In the 1960s, Benoît Mandelbrot started investigating self-similarity in papers such a
the Coast of Britain? Statistical Self-Similarity and Fractional Dimension, which built on earlier work by 
Lewis Fry Richardson. Finally, in 1975 Mandelbrot coined the word "fractal" to denote an object whose 

Besicovitch dimension is greater than its topological dimension. He illustrated this 
mathematical definition with striking computer-constructed visualizations. These images captured the 
popular imagination; many of them were based on recursion, leading to the popular meaning of 
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The mathematics behind fractals began to take shape in the 17th century when a mathematician and 
similarity (although he made the mistake of 

It was not until 1872 that a function appeared whose graph would today be considered fractal, when 
intuitive property of being everywhere 

continuous but nowhere differentiable. In 1904, Helge von Koch, dissatisfied with Weierstrass's abstract 
and analytic definition, gave a more geometric definition of a similar function, which is now called the 

ński constructed his triangle in 1915 and, one year later, his carpet. The idea 
similar curves was taken further by Paul Pierre Lévy, who, in his 1938 paper Plane or Space 

described a new fractal curve, the Lévy C 
curve. Georg Cantor also gave examples of subsets of the real line with unusual properties—these Cantor 

 
different fractal objects. koch triangle, koch flake and koch line. all based on the same reapeative 

Iterated functions in the complex plane were investigated in the late 19th and early 20th centuries 
ou and Gaston Julia. Without the aid of modern computer 

graphics, however, they lacked the means to visualize the beauty of many of the objects that they had 

similarity in papers such as How Long Is 
, which built on earlier work by 

Lewis Fry Richardson. Finally, in 1975 Mandelbrot coined the word "fractal" to denote an object whose 
s greater than its topological dimension. He illustrated this 

constructed visualizations. These images captured the 
popular imagination; many of them were based on recursion, leading to the popular meaning of the term 
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Figure 42 - The problem of measuring the coast line of england as introduced by B. Mandelbrot 
 
If one tries to measure it there will be errors  due to curves that define lines smaller than the scale 

of measurement. if we keep decreasing the scale the error will be smaller but always there will be more 
curves appearing. Each time we decrease the measure unit the length becomes bigger. As scale � 0 the 
length � Infinity. This defines an object with infinite length enclosing a finite area of the space (the sea 
in this case). Other example is the kock curve and kock flake 

In general fractals have to do with geometry. And geometry deals with objects and with spaces. A 
n-dimensional object can be placed into a n-dimensional or greater space. Normal objects that we imagine 
and study like a triangle are idealized objects and cannot be found anywhere in nature. The spaces 
containing these shapes are also idealized (the distance between two points is defined as a line). 

In the beginning of 20th century other spaces where introduced. Einstein used a curved space to 
describe the gravitational field in his general theory of relativity. But objects remained idealized. 

Fractal geometry was developed to study objects and spaces that are not idealized and often is 
called geometry of nature because it deals with high complexity objects.  

The difference between idealized and natural curves is that for idealized curves we assume that as 
we look closer and closer at smaller sections of the curve the more it resembles a straight line so the 
derivative can be calculated if we plot. But for natural lines that assumption is  not true, they are 
continuous non differentiable objects. 

The concepts of idealized objects will not help our understanding of these objects. A way to do that 
is by studying the dimension of an object or in other words how it “fills” space. 
A fractal often has the following features:  

• It has a fine structure at arbitrarily small scales. 
• It is too irregular to be easily described in traditional Euclidean geometric language. 
• It is self-similar (at least approximately or stochastically). 
• It has a Hausdorff dimension which is greater than its topological dimension (although this 

requirement is not met by space-filling curves such as the Hilbert curve).  
• It has a simple and recursive definition. 
• Natural objects are fractals 
• The concept of infinite surfices enclosing finite volumes 

The character of the space also matters  because it shows how the objects behave in relation with 
the space they are embeded in. 

Four common techniques for generating fractals are: 
• Escape-time fractals – (also known as "orbits" fractals) These are defined by a formula or 

recurrence relation at each point in a space (such as the complex plane). Examples of this 
type are the Mandelbrot set, Julia set, the Burning Ship fractal, the Nova fractal and the 
Lyapunov fractal. The 2d vector fields that are generated by one or two iterations of 
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escape-time formulae also give rise to a fractal form when points (or pixel data) are passed 
through this field repeatedly. 

• Iterated function systems – These have a fixed geometric replacement rule. Cantor set, 
Sierpinski carpet, Sierpinski gasket, Peano curve, Koch snowflake, Harter-Heighway 
dragon curve, T-Square, Menger sponge, are some examples of such fractals. 

• Random fractals – Generated by stochastic rather than deterministic processes, for 
example, trajectories of the Brownian motion, Lévy flight, fractal landscapes and the 
Brownian tree. The latter yields so-called mass- or dendritic fractals, for example, 
diffusion-limited aggregation or reaction-limited aggregation clusters. 

• Strange attractors – Generated by iteration of a map or the solution of a system of initial-
value differential equations that exhibit chaos. 

Fractals can also be classified according to their self-similarity. There are three types of self-
similarity found in fractals: 

• Exact self-similarity – This is the strongest type of self-similarity; the fractal appears 
identical at different scales. Fractals defined by iterated function systems often display 
exact self-similarity. For example, the Sierpinski triangle and Koch snowflake exhibit exact 
self-similarity. 

• Quasi-self-similarity – This is a looser form of self-similarity; the fractal appears 
approximately (but not exactly) identical at different scales. Quasi-self-similar fractals 
contain small copies of the entire fractal in distorted and degenerate forms. Fractals defined 
by recurrence relations are usually quasi-self-similar. The Mandelbrot set is quasi-self-
similar, as the satellites are approximations of the entire set, but not exact copies. 

• Statistical self-similarity – This is the weakest type of self-similarity; the fractal has 
numerical or statistical measures which are preserved across scales. Most reasonable 
definitions of fractal trivially imply some form of statistical self-similarity. (Fractal 
dimension itself is a numerical measure which is preserved across scales.) Random fractals 
are examples of fractals which are statistically self-similar. The coastline of Britain is 
another example; one cannot expect to find microscopic Britains (even distorted ones) by 
looking at a small section of the coast with a magnifying glass. 

Possessing self-similarity is not the sole criterion for an object to be termed a fractal. Examples of 
self-similar objects that are not fractals include the logarithmic spiral and straight lines, which do contain 
copies of themselves at increasingly small scales. These do not qualify, since they have the same fractal 
dimension as topological dimension. 

 

4.2 Fractal dimension 
Normally and based on common sense we think dimension as an integer. in general in order to 

measure something you also need fractions of integers. Also a distinguish should be made between space 
dimension and object dimension. Dimension of an object and dimesion of an ambedding space are two 
different things. The dimension of the embeding space is the decrees of freedom. 
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Figure 43 - The up-down, right-left and in-out movements represent 3 decrees of freedom or a 3-dimensional 
space. 

 
So for an 1 dimensional space there is 1 decree of freedom, for a 2 dimensional space 2 decrees, for 

a 3 dimensional space 3 decrees etc…Because the decrees are integers, the dimension of spaces have an 
integer value. But that is not always true for objects.Because an object is embeded into a space its 
dimension must be unnderstood by terms of “filling” the space. 

This object is embedded in a 2d space. To understant how it fills the space we divide the space into 
smaller boxes and count the boxes it fills(integer). If we further divide these boxes the object covers more 
boxes. 

   
Figure 44 - dimension can obtained by placing objects on a grid and applying box-counting 

                         
If N is the number of boxes it covers and x the length of the box side then the relation is: 
 ;��� = \1�]
 �56	�	�^
�6= 

 
We can apply the same procidure to a triangle. The boxes that are half covered are counted as 1.  
 ;���� =

1

2
\ 1��

]


 

 
For the triangle this number will not be equal to half of the one calculated for the square, it will be 

a little bigger because some squares are half but counted as 1. But as we divide the boxes further to 
infinity these numbers converge. 
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 _5	 1

2
;��� < ;����	�������+	,
�	��	�� → 0, ;���� 	→ 	1

2
;��� 

 
Same for a cicle : 
 ;��
� =

4̀
\1

3
]


 

 
And  

!

�
;��� < ;��
�	�������+	,
�	��	�
 → 0,			;��
� 	→ 		!

�
;��� 

 
Notice that N(x) remains independent as we become more accurate and for the above cases the 

number converges to 2.  
In general  ;��� = a \1�]
 	��	� → 0 

 
This function converges to a number that is an integer equal to the dimension of the space for 

idealized objects.   
Further analyzing this, we can extract 2 because we know these are 2-dimensional objects. We 

assume infinate accuracy so we have 
 ;��� = a \1�]
 	,=H5�=�	2 =

ln ;���
ln

1� −
ln a
ln

1� 

 
The second part becomes 0 ��	� → 0 so 
 � =

ln ;���
ln

1�  

 
  this gives the dimension of any object. This can be applied to natural objects too. 
So the consept of dimension is at what number the relationship converges as x�0. 
 But in natural objects the number will always converge to an non integer number. This is called 

fractional dimension, so fractals are objects with fractional dimension. For n-dimensional spaces this 
number will converge to a number between n-1 and n if the object is a fractal. Only  idealized objects take 
exactly the dimension of the space. for wxample the dimension of a cube in a 3-dimensional space 
converges to 3 as x�0.  

This number shows the differences or an natural object compared to an idealized. In other words it 
shows how curved, bended,twisted etc the object is. Usually these differences are ignored for simplicity 
but in nonlinear systems we can not affort this simplification because there is sensitive dependense on 
initial conditions and orbits that are not idealized but have all kinds of twists and bends. 
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4.3 Mandelbrot sets and julia sets 
The first connection between fractals and differential equations was made by Benoit mandelbrot 

who studied and popularized the mandelbrot set. The Mandelbrot set is a particular mathematical set of 
points, whose boundary generates a distinctive and easily recognisable two-dimensional fractal shape. 
The set is closely related to the Julia set (which generates similarly complex shapes) 

 
Figure 45 - The famous Mandelbrot Set, an object of infinite Complexity embedded into it 

 
Notice that  2-dimensional map becomes easier to use if we use complex numbers using the two 

part as dimensions of one point. 
So the system  ���� = �(��) 
 +��� = �(+�) 
becomes:  
 A��� = �(A�) 
 
In a simple system the equation might be : 
 A��� = A�


 + E	 
 
Where c the parameter 
So knowing c and starting from	A�  we get A���. this shows that the behavior of the system depends 

only on c. For some values of C the iterations go to infinity while for some others they remain bounded. C 
is also a complex number so it can represented easily as a point in the complex plane. we can take a set of 
points within which all itterations remain bounded. If we try to visualize that we get a fractal object called 
mandelbrot set. 

For each of these points there is a region in the state space that if Initial conditions are in the orbit 
remains bounded. If we try to visualize that we also get a fractal object called julia set. Essentially the 
julia set is the basin of attraction and it can be constructed for every value of the parameter.so every point 
in the mandelbrot set corresponds to a different julia set . mandelbrot set has infinite points so it is an 
infinate complicated object. Obtaining the dimension of this object can be done but is a bit complicated. 
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Figure 46 - Each point in the mandelbrot set reveals a corespoding Julia set 

 

 
Figure 47 - Example of a julia set extracted from the mandelbrot set. It is also a fractal object of infinite 
complexity 
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4.4 Cantor sets and Sierpinsky sets 

Cantor set 
The Cantor set was introduced by German mathematician Georg Cantor in 1883. It is a set of points 

lying on a single line segment that has a number of remarkable properties like fractal dimension. This 
object was created using a repeating procedure so we can say that there are also some procidures that can 
create fractals. Through consideration of it, Cantor and others helped lay the foundations of modern 
general topology, although Cantor himself defined the set in a general, abstract way and mentioned the 
ternary construction in passing, as an example of a more general idea of a perfect set that is nowhere 
dense. The procedure to create a cantor set is the following. 

• Take a line between 0 and 1 
• Divide it into 3 equal parts 
• Remove the middle part 

If we apply the same to the lines tha are created after infinite steps we fet a set op points called 
cantor set. We can check if this object is a fractal by looking in its dimension: 

 
Figure 48 - The procidure of creating a cantor set. The first five itterates are illustrated 

 
To make things easier initially we set the scale length to x=1/3. The scale will be reefered as box  

due to the name box counting.So initially we need 3 boxes  
After first itteration we need 2 boxes so: 	 =

ln 2

ln 3
 

 
Which is a fractional number. For the second iterration the box length will be  1/9, so we need 4 

boxes. Again: 	 =
ln 2

ln 3
 

 
As we change scaling further we notice that the dimension doesn’t change. So at the last step where 

there will be points the dimension will also be  
"� 


"� �
. So we can conclude that this is indeed a fractal object 

due to its fractional dimension.  

Sierpinski set 
Sierpinski set is also a fractal object named after the Polish mathematician Wacław Sierpiński who 

described it in 1915.With the same logic similar procidures like the one used to create cantor sets can be 
applied also to n-dimensional objects. In case of 2 dimensions it can be applied to a square. 

• Take a square with side lenght  1 
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• Divide it into 9 equal squares 
• Remove the middle part 

If we apply the same to the squares that are created after infinite steps we get a set of points called 
Sierpinsky set. We can check if this object is a fractal also by looking in its dimension: 

                                        
Figure 49 - The Sierpinski's set, created by applying the same procidure used to create cantor sets. Here 
applied to squares and triangles. 
 

Again here the length x is chosen to be 1/3 in the first step so we need 8 boxes. 
 	 =

ln 8

ln 3
 

 
which is a fractional number between 1 and 2. For the 2nd step x=1/9 so we need 64 boxes 

 	 =
ln 64

ln 9
=

ln 8

ln 3
 

 
Here also the dimension is invariable and fractional as we take steps to infinity. So the sierpinsky 

set is also a fractal object due to it’s fractal dimension.There are similar procidure for 3 dimensional 
objects like the sierpinsky triangle and sierpinsky cube. So there are simple procidures that allow us to 
create fractals in any dimensional space. 
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Figure 50- Sierpinski Pyramid 

 

 
Figure 51 - Sierpiski cube 
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Chapter 5 - Statistic Analysis of chaotic attractors 

5.1 Introduction 
Chaotic attractors are non periodic bounded orbits in the state space. so the frequncy cannot be used 

to characterize that kind of orbits. other kind of measures of characterizing a strange attractors have been 
studied over the last years, the main and most commonly used are the density of the orbit, the dimension 
of the attractor  and the lyapunov exponents. All of these methods are based on statistical analysis 
techniques.  

5.2 Density 
Based omt the fact that chaotic orbits cover large part of the state space (ergotic orbits) a statistical 

analysis of the dension of the orbit can be made to characterize the orbit. 
This is done by dividing the state space into squares or bins and see where the points fall after some 

itterates. Some bins will be more populated than others. So the orbit will be more dense for the 
corresponding values of the parameter. this is related to the probability of finding the state in each box. 
Using a computer is easy to count the number of points. 

So the density function is defined as: 
 

�	�

�

=
�
�,=6	5�	���=6��=�	��	�ℎ=	,5��5���	�
�,=6	5�	���=6���5��  

 
 

 
Figure 52 - The density function for the logistic map 
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So even in a chaotic orbit the average value is determined by the density.  The same can be applied 
and to n-dimensional maps. This density function will be different for different initial conditions but 
ultimately as itterations go to infinity it converges to a certain function which will have the property that 
if you itterate the map again will result to the same density function. This function is called invarient 
density function. 

 
Figure 53 - Density functions for different initial conditions 

 
In some classes of systems (piecewise Linear systems – markov maps) we can obtain the density 

function mathematically using a Birkhoff’s ergotic theorem. 
This  theorem is proved by bierhoff that says that in ergodic system (systems with large part of 

state space covered) the 2 densities are the same. Starting from any initial condition and giving the system 
finite time to evolve the orbit will vissit every box (time average = ensemble average). 

So given an initial condition a function will start mapping to another function and so on. Then we 
can define an operator (frobenius – Perron) by which these functions change. If we apply this operator to 
the invariant density function it will give the same function. So the invariant density is the fixed point of 
that operator. 

 /����� → ����(�) and invariant density ����� is the fixed point of A 
This operator can be calculated if we think in terms of slope. As we take itterations the density 

function maps to another density function and so on. So the density in a box will increase or decrease 
depending on the slope (or the jacobian) of the density function. We can write for an 1-dimensional 
system for example: 

 
Figure 54 - If the graph has curves, density function has to be written as a summation 
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������� =
������+�� ,				��	�� 

 
But if the we have a curve we must write it as a summation. 
 �����+, + + 	+� = ⋯ + ⋯ + ⋯ 
This is operator is defined for each box seperately  and is a function, strarting from any initial 

condition and watching how density function evolves under the application of the operator we can see that 
it converges to the invariant density function operator. 

Markov map example 
In this example the density function can be calculated mathematically. The equations of this map 

are: ���� = �� +
1

3
				, �56	0 ≤ �� ≤

2

3
 

���� = 3 − 3��		, �56 2

3
≤ �� ≤ 1 

 
Figure 55 - The Markov Map 

 
This system will experience chaotic behavior if there is expotensial divergence of nearby orbits 

(expansion). That depends on the slope (since this is an 1-D map). 
For the first section the slope is < 1 so there will be no expansion but for the second section there is 

expansion since the slope there is >1. This means that there can be no periodic orbit since the product of 
those 2 slopes will allways be > 1. so if a bounded orbit exists it must be a chaotic orbit (ergodic) and the 
density theorem can be applied to find the invariant density. The density for each part will be: 

 b����c� =
b�(E)

3
 

 b����:� =
b�(/)

1
+

b�(E)

3
 

 b����E� =
b�(:)

1
+

b�(E)

3
 

 
Here we have on the left side the next itterate expressed as a product of the probenius operator and 

a density function. 
This can be expressed in metrics form as (assuming same density everywhere  because we are 

looking for the invariant density): 
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 d����
∗ �/�����
∗ �:�����
∗ (E)

e = fgg
gh0
1

0

									0						
0

1

				
�

�
	�

�
�

�ijj
jk d��

∗�/���
∗�:���
∗(E)

e 
 

In order to obtain the density function d����
∗ �/�����
∗ �:�����
∗ (E)

e�
��	,=	=^
��	�5 d��
∗�/���
∗�:���
∗(E)

e. This is true for the  

 
eigenvector with eigenvalue 1.Then the equations can be written as: �∗�E� = 3�∗(/) �∗�:� = 2�∗(/) 
And in addition for normalization 
 

1

3
8�∗�/� + �∗�:� + �∗�E�9 = 1 

 
Which results to : �∗�/� =

1

2
 

 �∗�:� = 1 
 �∗�E� =

3

2
 

So the density function will be: 
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5.3 Fractal Dimension 
Another way to characterise an attractor is to obtain its dimension. There are many specific 

definitions of fractal dimension. The most important theoretical fractal dimensions are the Rényi 
dimension, the Hausdorff dimension and packing dimension. Practically, there are 2 ways widely used to 
obtain the fractal dimension, due to their ease of implementation: 

• Box counting 
• Correlation dimension 

Box counting can be applied easily on 2 d systems but in 3d systems correlation dimension is easier 
to use. The main difference is that correlation dimension also takes into acount the density of the orbit.  

In the box counting method the number of boxes covering the point set is a power law function of 
the box size: 

 	 =
ln ;
ln

1� =
log
 ;
log


1�  

 
Where N is the number of self-similar structures of linear size E needed to cover the whole 

structure. 
Then corelation dimension is 
 E�6� =

lℎ=	�
�,=6	5�	���6�	��	�ℎ=	56,��	�ℎ��	�ℎ=�6	������H=	��	�=��	�ℎ��	6lℎ=	�5���	�
�,=6	5�	���6�	��	�ℎ=	56,�� = 

 

=
#����6��m�, m
� ∶ m�, m
 	∈ 	 _�	, |m� − m
| < 6�

#����6��m�, m
� ∶ m�, m
 	∈ 	 _�	�  

 
This converges to a value very close to the fractal dimension and that diviation is due to density 

taken into acount. Also it can easily be done by a computer. 
As we change a parameter an orbit may become more chaotic. This diviation can be measured by 

watching how correlation dimension changes. 
The 2 dimensions will become equal if the density is the same everywhere on the orbit. 

5.4 Lyapunov exponent 
A quantitative measure of the sensitive dependence on the initial conditions is the Lyapunov 

exponent. It is the rate of divergence (or convergence) of two trajectories starting in the same 
neighbourhood. The number of  Lyapunov exponents in a system is equal to the dimension of the phase 
space, one for each eigenvector (in linear systems eigenvalues are the same everywhere, thus we can 
predict accurately with the Newtonian model). These exponents have been used as the most useful 
dynamical diagnostic tool for chaotic system analysis and can also be used for the calculation of other 
invariant quantities as the attractor dimension. The signs of these exponents provide a qualitative picture 
of the system's dynamics. The existence of positive Lyapunov exponents defines directions of local 
instabilities in the system dynamics and any system containing at least one positive exponent presents 
chaotic behavior. A response with more than one positive exponent is called as hyperchaos (Savi & 
Pacheco, 2002; Franca & Savi, 2003; Machado et al., 2003). 

Lyapunov exponents are important because they determine the prediction horizon. Qualitative 
predictions are impossible for a time interval beyond this horizon. It is given by ln

#

$���

, where ε is the 

error of the measurement of the initial state. Lyapunov exponent can be obtained in similar ways for 
continuous and discrete systems. This works if we have already obtained the equations of the system, not 
in experimental situations. But if we apply rescaling it might work. 
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Figure 56 - Two nearby orbits will diverge expotensialy in chaotic systems
 
Consider two points in a space, X

using some equation or system of equations. These orbits can be thought of as parametric functions of a 
variable that is something like time. If we use one of the orbits a reference orbit, then the se
between the two orbits will also be a function of time. Because sensitive dependence can arise only in 
some portions of a system (like the logistic equation), this separation is also a function of the location of 
the initial value and has the form
points, ∆x(X0, t) diminishes asymptotically with time. If a system is unstable, like pins balanced on their 
points, then the orbits diverge exponentially for a while, but eventually
the function ∆x(X0, t) will behave erratically. It is thus useful to study the mean exponential rate of 
divergence of two initially close orbits

The determination of Lyapunov exponents of dynamical system with an explicit
model, which can be linearized, is well
the other hand, the determination of these exponents from time series is quite more complex. In essence, 
there are two different classes of algorithms: Trajectories, real space or direct method (Wolf 
Rosenstein et al., 1993; Kantz, 1994); and perturbation, tangent space or Jacobian matrix method (Sano & 
Sawada, 1985; Eckmann et al., 1986; Brown 

In order to understand the idea related to the determination of Lyapunov exponents consider a 
sphere of states that is transformed by the system dynamics in a 
related to the expanding and contractin
the divergence of two nearby orbits is done considering the relation between the initial 
D-ellipsoid (Figure 10). This variation may be expressed by: 
a reference basis. The parameter l is called as Lyapunov exponent and when it is negative or vanishes, 
trajectories do not diverge. On the other hand, when the exponent is positive, indicates that trajectories 
diverges, characterizing chaos. 

  

Figure 57 - The error ball decomposes to an ellipsoid, renormalization has to be made to estimate the 
lyapunov exponents 
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Two nearby orbits will diverge expotensialy in chaotic systems 

a space, X0  and X0 + ∆x0, each of which will generate an orbit in that space 
using some equation or system of equations. These orbits can be thought of as parametric functions of a 
variable that is something like time. If we use one of the orbits a reference orbit, then the se
between the two orbits will also be a function of time. Because sensitive dependence can arise only in 
some portions of a system (like the logistic equation), this separation is also a function of the location of 
the initial value and has the form ∆x(X0, t). In a system with attracting fixed points or attracting periodic 

t) diminishes asymptotically with time. If a system is unstable, like pins balanced on their 
points, then the orbits diverge exponentially for a while, but eventually settle down. For chaotic points, 

t) will behave erratically. It is thus useful to study the mean exponential rate of 
divergence of two initially close orbits. 

The determination of Lyapunov exponents of dynamical system with an explicit
model, which can be linearized, is well-established from the algorithm proposed by Wolf 
the other hand, the determination of these exponents from time series is quite more complex. In essence, 

es of algorithms: Trajectories, real space or direct method (Wolf 
, 1993; Kantz, 1994); and perturbation, tangent space or Jacobian matrix method (Sano & 

, 1986; Brown et al., 1991; Briggs, 1990; Kruel et al.
In order to understand the idea related to the determination of Lyapunov exponents consider a 

sphere of states that is transformed by the system dynamics in a D-ellipsoid. Lyapunov exponents are 
related to the expanding and contracting nature of different directions in phase space. The evaluation of 
the divergence of two nearby orbits is done considering the relation between the initial 

ellipsoid (Figure 10). This variation may be expressed by: d(t) = d0 b
lt, where d

a reference basis. The parameter l is called as Lyapunov exponent and when it is negative or vanishes, 
trajectories do not diverge. On the other hand, when the exponent is positive, indicates that trajectories 

The error ball decomposes to an ellipsoid, renormalization has to be made to estimate the 
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, each of which will generate an orbit in that space 
using some equation or system of equations. These orbits can be thought of as parametric functions of a 
variable that is something like time. If we use one of the orbits a reference orbit, then the separation 
between the two orbits will also be a function of time. Because sensitive dependence can arise only in 
some portions of a system (like the logistic equation), this separation is also a function of the location of 

t). In a system with attracting fixed points or attracting periodic 
t) diminishes asymptotically with time. If a system is unstable, like pins balanced on their 

settle down. For chaotic points, 
t) will behave erratically. It is thus useful to study the mean exponential rate of 

The determination of Lyapunov exponents of dynamical system with an explicitly mathematical 
established from the algorithm proposed by Wolf et al. (1985). On 

the other hand, the determination of these exponents from time series is quite more complex. In essence, 
es of algorithms: Trajectories, real space or direct method (Wolf et al., 1985; 

, 1993; Kantz, 1994); and perturbation, tangent space or Jacobian matrix method (Sano & 
et al., 1993). 

In order to understand the idea related to the determination of Lyapunov exponents consider a D-
ellipsoid. Lyapunov exponents are 

g nature of different directions in phase space. The evaluation of 
the divergence of two nearby orbits is done considering the relation between the initial D-sphere and the 

d is the diameter and b is 
a reference basis. The parameter l is called as Lyapunov exponent and when it is negative or vanishes, 
trajectories do not diverge. On the other hand, when the exponent is positive, indicates that trajectories 

 
The error ball decomposes to an ellipsoid, renormalization has to be made to estimate the 
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In chaotic situations, there is a local exponential divergence of nearby orbits so proper algorithms 

are necessary  in order to evaluate Lyapunov exponents (Wolf 1985, Parker & Chua 1989). These 
algorithms evaluate the average of this divergence considered in different points of the trajectory. Hence, 
when the distance d(t) becomes large, it is defined a new d0(t) in order to evaluate the divergence, as 
follows: 

� =
1

�� − �� 	� log�	(
�����

��
������	

�

���

)		 
The attractor dimension may be evaluated from the Lyapunov spectrum considering the Kaplan-

Yorke conjecture (Kaplan & Yorke, 1983).	 
For % < 0, the orbit attracts to a stable fixed point or stable periodic orbit. Negative lyapunov 

exponents are characteristics of dissipative or non-comservative systems. Such systems exhibit 
asymptotic stability. The more negative the exponent, the greater the stability. Fixed points with % = −∞ 
are called superstable fixed points. For instance in the criticall dambed oscillator when the system heads 
towards its equilibrium point as quickly as posible. 

For % = 0, the orbit is a neutral fixed point or an eventually fixed point. A lyapunov exponent  
equal to 0 indicates that the system is in some sort of steady state mode.a physiscal system with this 
exponent is conservative. Such systems exhibit lyapunov stability. For example in the case of two 
identical simple harmonic oscillators with different amplitutes, because the frequency is indepentant of 
the amplitude, a poincare section of the two oscillators would be a pair of concentric circles. The orbit in 
this situation would maintain a constant seperation. 

For  % > 0, the orbit is unstable and chaotic. Nearby points no matter how close will diverge to any 
orbitary seperation. All neighborhoods in the phase space will eventually be visited (ergotic System). 
These points are unstable. For discrete system the poincare section will look like television snow. This 
does not exclude a pattern or an organization behind the chaos. For a continuous system the phase space 
would be a tangled sea of wavy lines like spaggeti. A physical example can be found in the Brownian 
motion. Although the system is deterministic, there is no order to the orbit that ensues.  

 
Figure 58 - Lyapunov Exponents used to estimate behavior 

 

Example 
Consider two orbits, a reference orbit and a test orbit, separated at time �� by a small phase space 

distance ��. We will use the test orbit as a means of calculating the value of the maximum Lyapunov 
exponent. Under evolution of the equations of motion, the two orbits may (or may not) separate. If the 
motion is chaotic, the orbits will, by definition, separate at an exponential rate. The maximum Lyapunov 
exponent λ is a measure of this rate of separation: 
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% = lim
�→�

1� − ��
ln

������
 

 
In practice, we cannot afford the luxury of infinitely long integrations, so we instead calculate the 

instantaneous maximum Lyapunov exponent.  
 %(�) =

1� − ��
ln

������
 

 
Another practical problem is that, for chaotic orbits, the distance between reference and test 

particles ����, quickly saturates. Hence we must periodically renormalize the orbit separation. We will 
leave the reference orbit alone and rescale the test orbit whenever the separation d(t) has passed beyond a 
threshold value D. It is important that D be set small enough that it is still in the linear regime (i.e., the 
regime in which the linearized equations of motion are an accurate description). We define a rescaling 
parameter: 
 '� =

���������� 
 
Where ��is the time at which �(�) ≥ 	. Then we can write: 
 %� =

1�� − ��
�� ����

=
1�� − ��

ln �� 

 
Where %� = %(��)	���	�� = �(��). 
 
At this point, the test orbit is then rescaled. The rescaling of the test particle orbit is performed on the test 
- reference phase space distance vector. Whenever the distance �(�) becomes greater than or equal to the 

threshold D, we scale the test particle distance from the reference particle by the factor  
�

%�

 maintaining the 

current relative orientation between the two particles in phase space. The reference and test particle phase 
space vectors are 

�no =

p
qqr

�+AB�B�B&s
ttu

��'

	���			6o =

p
qqr

�+AB�B�B&s
ttu

����

 

 
We define vnno = wno − xnno. Then the adjustment to the test particle phase space coordinates at time �� is 6(nno ← �(nnno +

b(nnno'�
 

Similarly, for successive threshold crossings and subsequent rescalings, we have: %
 =
1�
 − ��

�� �
'���
=

1�
 − ��
���'�'
� 

%� =
1�� − ��

�� ��'�'
��
=

1�
 − ��
���'�'
'�� 

… … 
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The multiplicative factors '�'
'� can derived from the summation and we can conlude that the lyapunov 
exponent is: 

%� =
1�� − ��

� ln ��

�

�	�

 

 
As long as the rescalings take place in the linear regime, this construction is valid. Notice that, in a computer, only 
the accumulating sum of the natural log of the αi need be stored. In addition, the time intervals need not be evenly 
spaced 

 
  



Department of Applied Informatics & Multimedia 
 

Page - 67   

Chapter6 

Analysis of Chaotic Time Series 

6.1 Introduction 
In general, a dynamical system is analyzed from its mathematical model. An alternative approach 

to deal with the dynamical system response is based on the analysis of data derived from an experiment 
where not all state variables can be identified. But it might be possible to get a conclusion about the 
qualitative behavior of the system by analyzing a time series of one variable. Therefore a dynamical 
system may be analyzed either by a mathematical model or by a measured time series. The basic idea of 
the time series analysis is that a signal contains information about unobserved state variables, which can 
be used to predict the present state (Kantz & Schreiber, 1997, Franca & Savi, 2001). 

A dynamical system may be analyzed either in time or in frequency domain. Spectrum techniques 
or Fourier transform establish a relationship between these two domains. 

The Analysis is based around the idea of extracting mean square value and average value of that 
time series x(t). These values remain stable even in chaotic orbits so they can be used to characterize them 
and also to calculate other usable measures.  This leads to accurate conclusions about the qualitative 
behavior of the system in situations where the system has too many state variables to keep track of all of 
them. This is also very common in natural systems. 

These values are: 
• Mean square : 

     y�

 = 	lim�→�

�

�
z �
������

)
 

• Average value: 

     $� = 	 lim�→�
�

�
z �������

)
 

6.2 Probability density function  
An easy way to extract these values is to obtain the probability density function. An estimation is 

made considering the possibility for the value of the waveform to be in a defined area. 
Supposing  the orbit spends l� time in the range � → {�so the probabiity of finding �(�) in the 

range � → � + {� is lim�→�
��
�

  (�65,�� < ���� < � + {��) 
so the probability density function will be : 
 ���� = 	 lim

*�→�

�65,�� < ���� < � + {��{�  

 
and using that we can find also the probability of finding the state between  ��	, �
 
 ���� = � ����	����

��

 

 
so the average can be calculated as 
 $� = 	� �	������

��
	�� 



Department of Applied Informatics & Multimedia 
 

Page - 68   

and mean square value can be calculated as 
 y�


 = 	� �
	������

��
	�� 

 

6.3 Auto corelation function 
Another way to obtain these values is the auto corelation function, which shows how present state 

is corelated to its past and future. The auto correlation function is defined as: 
 ��(τ) = lim

												+→�

1| � ������� − }���+

,
				 

 
It is an even function so ���−}� = 	���}� and ���0� > |���}�|	∀	}  and we can see that y�


 = ��(0)  and  $� = 	*���∞� 
 

6.4 Frequency characteristics (Power Contained between two 
frequencies) 

The frequency characteristics of the time series are very imporrtant in many practical cases like 
electrical engineering. Then it makes more sense to talk about the power spectrum and  the average and 
square values can be extracted from the power spectrum which can be calculated easy via fourier 
transform 

In these cases when we talk about the frequency we refer to the power contained between 2 
frequencies f and  f+∆f, because the wave form might be a composition of 2 or more frequences. The 
power will be: y�


��, {�� = 	 lim
�→�

1l � �
��, �, {�����

�
 

 
The power spectrum can be obtained by reducing ∆f to 0: 
 ~���� = lim

*'→�

y�

(�, {�){� 	 

 
This is a good way to visualize the power spectrum but usually we obtain it by the fourier 

transform: 
 ���� = 	 z ����=�
!'����

��
 and ~���� = |�
���| 

 
Often we can obtain the power spectrum from Sin transform too which can be applied only to even 

functions but since chaotic orbits are statistically even it works 
So we can extract these values from the power spectrum as : 
 $� = �z ~�������

�	     and  y�

 = z ~�

�
�

����� 
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The power spectrum is also can also be extracted from the  auto corelation function via 
Convolution which in some cases is easier since the correlation function is the inverse fourier of the 
power spectrum.  z |�
���|	=�
!'��� = z �����(�)=�
!'���

��
�� = ���� ∗ ����			(H5�B5�
��5�)

��
��

= z ������� − }�����
��

 
 

This means that if you have the inverse transform for power spectrum you get the correlation 
function 

 

6.5 Multiple time Series 
In some cases we have many time series of finite length and we need to make conclusions for the 

behavior for infinite time. If we  consider the probenius operator these time series will converge and 
based on this we can study the time series and make conclusions for infinite time under some conditions. 

 
Figure 59 - Multiple time series used to make conclusions about qualitative behavior 

 
This is based on density function.We divide the y axis into boxes of length � + {� so we can count 

the nember of points M falling into each box (this is done by a computer  easilly). If n is the number of 
time series the probability of finding a point of the time series in the range � + {� would be: 

 �65,�� < ���� < � + {�� =
��  

 
This can be defined for different t. if the probability funcion does not change over time then it is a 

stationary time series. If not, it is non-stationary. 
If there is an attractor the time series will be non-stationary before  the attractor and stationary 

after. But stationary time series can occur for different types of attractors (quasiperiodic, chaotic, etc..). so 
if the time series is stationary with non-periodic elements then it must be ergotic. Which implies that 
single time series over long time will become equal to multile time series over short time. It also  implies 
a torus type state space, topological mixing and and quasiperiodic and chaotic orbits.  

Many systems ralay on these principles  
 

6.6 Delay coordinate embeding (State space reconstruction) 
The state space reconstruction establishes that a scalar time series, s(t), may be used to construct a 

vector time series that is topological equivalent to the original dynamics. The state space reconstruction 
needs to form a coordinate system to capture the structure of orbits in state space. The method of delay 
coordinates can be done using lagged variables, �(� + �), where t is the time delay. Then, considering an 
experimental signal, �(�), where �	 = 	 �� 	+ 	(� − 1)		� with n = 1, 2, 3,…, N, it is possible to use a 
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collection of time delays to create a vector in a De-dimensional space, u(t), which represents the 
reconstructed dynamics of the system. 
��� = �����, ��� + }�, … , ��� + �	� − 1�}��� 

 
The method of delays was first proposed by Ruelle and Packard and then by Takens and Sauer. Its 

use has become popular for dynamical reconstruction, and the choice of the delay parameters, t - time 
delay, and De - embedding dimension, is an important task related to this procedure. Among many 
possibilities to define the delay parameters (Franca & Savi, 2001) one could mention the average mutual 
information method to determine time delay (Fraser, 1989) and the method of false nearest neighbors to 
estimate embedding dimension (Kennel., 1992). 

There are cases where the system has too many state variables to observe and we cannot keep track 
of all of them. Although it is possible to make a representative model of the system by having acces only 
to a few variables.  

The logic is that if the model behaves as the actual system then we can predict accurately the 
behavior so  the model is representative even if it has come throuth only 1 variable. 

The procidure used to obtain the model is called delay coordinate embbeding. A 1-dimensional 
time series  becomes 2-dimensional by inserting a delay �(� − })  

 
Figure 60 - Concentrations in fluids can be monitored by one time series. Very useful in Chemistry 

      
Figure 61 - Plot of the time series with the delayed one. If it is not smooth (i.e. a circle) or if there are 
intersections, more delays have to be inserted. 
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By plotting ��� − }�	���		�(�) we can now distinguish in a way where the next state will be and 
we can see if there is a closed loop in the system (Periodicity). This is indipentant from τ because the 
topological character of the orbit remains the same (it becomes rounder for bigger τ). We usually set t y 
experimenting.  

Looking at the delay plot we can now predict by applying simple analogies if every point is unique. 
(there is not a crossing in the orbit). If there is an intersection the dimension has  to be increased further in 
order to predict accuratelly. This is done with the same logic by inserting another delay �(� − 2}). Now 
the system is 3-dimensional and the intersection should be eliminated, If not we can repeat until we can 
predict accurately. 

The system model created this way will be representative if for each point in the initial orbit there 
is a point in the representative orbit. Taken’s theorem proves that this will be true as long as for the n-
dimensional system that we are trying to represent , 2n+1 dimensions are chosen. This guarantees that 
each point will map to a unique point. 

6.7 Chaos Control 
Chaos control is an important task related to natural rhythms. This control is associated with many 

regulatory mechanisms that control the dynamics of living systems. 
The mechanisms of chaos control were understood by the pioneer work of Ott (1990) which 

propose the well-know OGY approach (a tribute to the authors Ott-Grebogi-Yorke). Essentially, chaos 
control is based on the richness of responses of chaotic behavior. A chaotic attractor has a dense set of 
unstable periodic orbits (UPOs) and the system often visits the neighborhood of each one of them. 
Besides, chaotic response has sensitive dependence on initial condition, which implies that the system's 
evolution may be altered by small perturbations. Therefore, chaos control may be understood as the use of 
tiny perturbations for the stabilization of an UPO embedded in a chaotic attractor, which makes this kind 
of behavior to be desirable in a variety of applications, since one of these UPO can provide better 
performance than others in a particular situation. 

The control of chaos can be thought as a two-stage process. The first stage is composed by the 
identification of UPOs and is named as "learning stage" (Gunaratne, 1989). After the UPOs identification, 
one can proceed to the next stage of the control process that is the desired orbit stabilization, which can be 
done by different forms (Pereira-Pinto, 2004). The OGY approach considers a discrete system with a map 
form,	���� = �(��, �)  where p is a control accessible parameter. This is equivalent to a parameter 
dependent map associated with a general surface, usually a Poincaré section. Let 	�'�� = �(�', 0) denote 
the unstable fixed point on this section corresponding to an orbit in the chaotic attractor that one wants to 
stabilize. The control idea is to monitor the system dynamics until the neighborhood of this point is 
reached. After that, a proper small change in the parameter p causes the next state ���� to fall into the 
stable direction of the fixed point. This procedure may be understood as a stabilization of a sphere over a 
saddle, as it is schematically shown in Figure below. 
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Figure 62 - The OGY control method represented schematically. 

  
In order to find the proper variation in the control parameter, p, it is considered a linearized version 

of the dynamical system near the equilibrium point. 
 &���� ≈ /&�� + J&�� 

 
where, ��� = 	 �� − �' ,			��� = �� − ��,				��8�' , ��9	���	J = ��/����, ��� 
 

The OGY method can be employed even in situations where a mathematical model is not available 
(Pereira-Pinto, 2005). Under this situation, all parameters can be extracted from time series analysis. The 
Jacobian A and the sensitivity vector w can be estimated from time series using a least-square fit method 
as described in Auerbach et al. (1987) and Otani & Jones (1997). 
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Chapter 7 – System Representation 

7.1 Introduction 
It has been said that whereas linearity is a specification of a field of activity, nonlinearity is a 

nonspecification and  its field is unbounded. In nature, nonlinearity is the rule rather than the exception, 
while linearity is a simplification adopted for analysis. Most practical systems used for control are 
essentially nonlinear, and in many applications, particular in the area of chaos, it is the nonlinear rather 
than the linear characteristics that are most used. Signals found in the physical world are also far from 
conforming to linear models. Indeed, the complex structure of dynamic systems makes it almost 
impossible to use linear models to represent them accurately. Nonlinear models are designed to provide a 
better mathematical way to characterize the inherent nonlinearity in real dynamic systems, although we 
may not be able to take all their physical properties into account. We will focus on other nonlinear 
techniques than modeling, which may provide more useful perspectives. 
For most real-world practical applications, there are advantages to using nonlinear models to characterize 
the nonlinear relationships. Mathematical models may be expressed in the form of difference or 
differential equations. Depending on the given engineering problem and the circumstances, one 
mathematical model may be better suited than another.  

In general, nonlinear representations can be classified into three types: (1) system input-output 
representation, (2) state-space representation, and (3) model-free representation. The first type considers 
the input-output behavior of a system without considering any internal variations. The second type 
focuses on both internal and external performance of the system, and the last type focuses on the 
representation of nonlinear systems that cannot be handled by the other two approaches. 

7.2 Input-Output System Representation 
Nonlinear system representation means the characterization of nonlinear systems using nonlinear 
mathematical models. In fact, nonlinear models may be considered as a tool for explaining the nonlinear 
behavior patterns in terms of a set of easily understood elements. The input-output representation 
approach for describing a given nonlinear system is: 
 +��� = �(
) 
 
where y(t) refers to the system output, u(t) refers to the system input, the independent variable t is time, 
and the f denotes a mathematical relationship describing the nonlinear behavior: the system yields the 
output y(t) when the system has a input u(t). 

Generally, the nonlinear mapping  f  is very complicated, and there is no single technique suitable 
for the analysis of all nonlinear behaviors. In order to appreciate the complexity associated with nonlinear 
systems, it is best first to review the relative simplicity associated with linear systems. The main reason is 
that dynamic system analysis relies heavily on linear models, due to their comprehensiveness and the 
availability of well-developed linear system theories. 
A system  is called a linear system if it satisfies 
 ���
� + ,

� = ���
�� + ,��

� 
 
Note two important features. One is that the sum of inputs results in the sum of the responses to the 
individual inputs, and the other is that a multiple of an input results in the same multiple of the 
corresponding output. An electric circuit containing a capacitor and a resistor is a common example used 
for explication. 
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A dynamic system is called anticipatory or noncausal if its outputs depend on the past, present, 
and future values of its inputs. A system is called nonanticipatory or causal if its outputs depend only on 
the past and present values of its inputs. We say that a system is time-invariant if its properties are 
invariant to a shift of time. 

7.3 Nonlinear Differential Algebraic Representaion 
The specification of the modeling problem for a linear system is simplified by the fact that it is 

easy to parametrize the response via a defined coordinate system. This fact enables us to reduce the 
problem of constructing a standard model from an input-output relation to a linear-algebra expression. In 
the nonlinear case, there is no such global coordinate system. Usually we have to be cautious in defining 
what we mean by the problem data. We cannot simply assume the system response to be as simple as an 
infinite sequence of functions or an impulse function. 

The first step in constructing a nonlinear model is the development of a differential representation 
for describing the system input-output behavior. Clearly, there are a number of ways in writing 
differential equations that describe the behavior of different dynamic systems. There is no single one of 
them which is preferable in all circumstances. In general, the result depends on the familiarity of the 
investigator with a particular method to determine the form of the differential equations. One particularly 
convenient method of characterizing the behavior of a nonlinear system is by  
 +� = �.+���, 
���, �1, (1) 
 
where u(t) is the system input, y(t) is the system output, and f is an arbitrary nonlinear function.  
There are several reasons for the importance of this differential algebraic form of the system equations. 
Apart from the notational simplicity, one can deal with all systems by means of a compact notation 
instead of having to write a system of simultaneous differential equations. Also, this representation is the 
one that most modern literature in the theory of differential equations makes use of. 

It is natural to represent the output in terms of the input as a series expansion 
 +��� = ℎ���� + � ℎ���, ���
�������

�

�
+ � � ℎ
��, ��, �
�
��
�
������
���

��

�
+ ⋯

�

�
							(2) 

 
where the real-valued function of n variables ℎ����, �
, ���, , �	 = 	0, 1, 2, …	  is equal to zero if any �� < 	0, 
that is to say, the system is causal. Obviously the system is not linear, and it is a time-invariant system if 
ℎ�(��, �
, … 	��) 	= 	ℎ(

� (�� − �
−, … − ��) . Formally the above expansion is a generalization of the linear-
variation-of-constants formula. Clearly, this type of modeling problem for nonlinear systems may be 
expressed as follows: 
Given a sequence of input-output pairs, find a canonical model whose input-output behavior generates the 
series of impulse functions ℎ� , �	 = 	0, 1, 2, …	 

The modeling process is rather straightforward if there are no further hypotheses on the analytic 
behavior of f in equation (1) and there is a suitable definition of the canonical model. In general the 
problem is unsolvable, but the following theorem provides conditions under which the expansion exists 
and is unique: 

If the nonlinear relationship f in Equation (1) is an analytic vector field and the equation has a 
solution on [0, l] with +�0� = ℎ�(0), then the input-output behavior of the equation has a unique 
representation expressed by the series expansion (2) on [0, l]. 

Now it is quite clear that the condition of analyticity of the defining vector field is essential. The 
reason is clear: analyticity forces a certain type of rigidity upon the system, namely, the system behavior 
is determined by its response in an arbitrarily small open set. Fortunately, it is a property possessed by all 
systems defined by sets of algebraic equations. 
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7.4 State Space Representation 
A state-space representation is usually used for describing physical systems. If the state of a 

system is known, then any output or quantity of interest with respect to certain performance indices can 
be achieved. To determine the state of a system as a function of time, we need a set of equations to relate 
the inputs state of the system. One approach for obtaining that set of equations is to consider each state 
variable as an output, to be determined via an ��--order differential or difference equation. Using the 
state-space approach, we will be able to write n first-order differential or difference equations for the n 
state variables of the system. In general they will be coupled equations, that is, they will have to be solved 
simultaneously. For nonlinear systems, these first-order equations will be nonlinear ones. One advantage 
of the state-space representation is that once the first-order equations are solved, complete knowledge of 
the system behavior is obtained. All outputs are algebraic functions of the state variables. No further 
solution of a differential or difference equation is needed.The input-output behavior of a nonlinear system 
can be characterized by first-order differential or difference equations: 
 ����� = �.����, 
���1 
 +��� = �.����, 
���1 
Or �(a + 1) = �.��a�, 
�a�1 
 +�a� = �.��a�, 
�a�1 
 
where x n are the internal states of the system, u m are the inputs, y q are the outputs and f : n+m 
n, g : n q. While the inputs and outputs of a system are generally the tangible physical data, it is 
the state variables that assume the dominant role in this formulation. It is possible that quantities that are 
not of interest will lead to an unnecessarily complicated problem. 

A major difficulty in dealing with nonlinear equations is that the existence and the uniqueness of 
solutions, even in a local sense, cannot be taken for granted. As a matter of fact, there does not exist any 
general methodology to determine the nonlinear relations f and g. Instead, various simplified nonlinear 
models are widely used in practical engineering applications. The so-called bilinear model is among 
these.  
Now let us look at the discrete-time nonlinear model . It is assumed that the initial state is x(0) = 0, and 
that f(0, 0) = 0 and g(0, 0) = 0. Then the functions f(x, u) and g(x, u) can be represented using a Taylor 
series about x = u = 0 of order sufficient to permit calculating the polynomial input-output representation 
to the degree desired: 

��a + 1� = � �����(a)
�(a)

.

�,�	�

 

 

+�a� = � ~����(a)
�(a)

.

�,�	�

 

where x(i) = x x x (i factors) and Fij , Gij are the standard Kronecker products. Just as in the continuous 
time case, the crucial requirement is that the kernels through order N corresponding to Eq. (48) should be 
identical to the kernels through order N corresponding to Eq. (47). 

7.5 Nonlinear representation by using neural networks 
Conventional model-based theoretical methods have dominated nonlinear-representation research 

over the last few decades. These methods depend on a mathematical characterization of the monitored 
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system. The main disadvantage of such approaches is that they are very sensitive to the selection of model 
type, modeling errors, parameter variations, and measurement noise. The success of model-based 
representation approaches is heavily dependent upon the quality of the models as well. For most practical 
nonlinear physical systems, it is often very difficult, if not impossible, to describe them by sufficiently 
simplified analytical models. In view of these, there is great interest in developing a robust and less 
model-dependent methodology for representing a complex nonlinear dynamic system. To avoid the 
difficulties experienced in the classical nonlinear system modeling, neural-network-based nonlinear 
system modeling methods appeared to be an appealing alternative. The rationale behind this approach lies 
in the fact that a multilayer neural network with an appropriate nonlinear activation function can 
approximate any nonlinear relationship. 

In using neural networks for nonlinear system modeling, their nonlinear functional approximation 
capability can be enhanced by using higher-order architectures. The distinctive aspects of this network are 
that the parameters of the hidden layer, such as the weights and the thresholds, are selected randomly and 
independently in advance. The parameters of the output layer are learned using simple quadratic 
optimization, whereas under conventional approaches all parameters need to be learned using complicated 
nonquadratic optimization. 

Many types of neural networks have been developed for tackling different problems, but two 
types have received the most attention in recent years:  

• multilayer feedforward neural networks and  
• recurrent networks.  
Multilayer feedforward networks have proved extremely successful in pattern recognition problems, 

and recurrent networks for dynamical system modeling and time-series forecasting.A multilayer network 
is a network of neurons organized in the form of layers. A typical form of a multilayer network is one, in 
which an input layer of source nodes projects onto the hidden layer composed of hidden neurons. The 
output of the hidden neurons then projects onto an output layer. In general, one hidden layer is adequate 
to handle most engineering problems. The nonlinear activation function of the hidden neurons, which is 
generally sigmoidal, is chosen to intervene between the external input and the network output. For hidden 
neurons to be useful in modeling nonlinear systems, they must be sufficiently numerous. Though there 
has been much research on determining the optimal number of hidden neurons, there is no straightforward 
rule for doing so. When the number of hidden neurons reaches a certain threshold, the overall 
performance will not be significantly affected by small further increases. In this respect, the design 
criterion is rather loose.The source nodes of the network supply corresponding elements of the activation 
pattern (input vector),which constitute the input signals applied to the neurons in the hidden layer. The set 
of output signals of the neurons in the output layer of the network constitutes the overall response of the 
network to the activation pattern supplied by the source nodes at the input layer. 

A neural network is said to be fully connected when every node in each layer of the network is 
connected toevery other node  in the adjacent forward layer. We say that the network is partially 
connected if some of the links are missing. Evidently, fully connected networks are relatively complex, 
but they are usually capable of much better functional approximation. A form of partially connected 
multilayer network of particular interest is the locally connected network. In practice, the specialized 
structure built into the design of a connected network reflects prior information about the characteristics 
of the activation pattern being classified. 

Network training and adjustment 
As multilayer feedforward neural networks have become generally recognized as a suitable 

architecture for representing unknown nonlinearities in dynamic systems, numerous algorithms for 
training the networks on the basis of observable input-output information have been developed by many 
researchers. In the next example, a training algorithm for neural networks called the cumulant-based 
weight-decoupled extended Kalman filter  is described. Third-order cumulants are employed to define 
output errors for the network training. By this means, Gaussian disturbances or non-Gaussian noises with 
symmetric probability density function among the output signals can be rejected in the cumulant domain. 
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Thus we can obtain clean neural network output information for nonlinear mapping implementation. The 
weight-decoupled extended Kalman filter training algorithm is applied because it provides faster 
convergence (learning rate) then other training algorithms. This feature is very important for neural-
network-based analysis of nonlinear dynamic systems. 
The summary of the notation used in the network learning algorithm: 

• The index i refers to different layers in the network, where 1 ≤ 	� ≤ 	�, and M is the total number 
of layers (including the hidden and output layers) in the network. 

• *The index j refers to different neurons in the ��-  layer, where 1 ≤ 	I	 ≤ ��, and �� is the neuron 
number of the ��- layer. 

• The index s refers to different neurons in the (�	 − 	1)�- layer, where 1	 ≤ �	 ≤ ���� 	+ 	1. 
• The index v refers to different neurons in the output layer, where 1	 ≤ B	 ≤ �/. 
• The iteration index k refers to the a�- training pattern (example) presented to the network. 
• The symbol J��

� �a� denotes the synaptic weight connecting the output of neurons in the (�	 −	1)�- layer to the input of neuron j in the ��- layer at iteration k. 
• The learning-rate parameter of the weight J��

� �a� at iteration k with respect to the B�- output error 

is denoted by ���
� �a� 

• The symbol =0(a) refers to the error signal between the target output and the actual output at the 
output of neuron v in the output layer at iteration k. 

• The symbol ℎ��
� �a� denotes the derivative of the output error =0(a)  at iteration k with respect to 

the weight J��
� �a − 1� at itteration a	 − 	1. 

• The symbol ���
� �a�  denotes the variance of the estimated weight J��

� �a�at iteration k. 
• The symbol �0(a)  refers to the central adjustment parameters for the output of neuron v in the 

output layer at iteration k. 
• Suppose the network output is corrupted by a Gaussian noise {�0	(a)} at iteration k. Then the 

symbol 60(a) denotes the variance of {�0	(a)}. 
• The symbol +(a) refers to the target output of the network, ;(J(a	 − 	1), 
(a)) refers to the 

actual output of the network, its weight matrix is J(a	 − 	1) at iteration a − 1, and the network 
input at iteration k is 
(a). 

The training mechanism can be described by the following: 

J��
� �a� = J��

� �a − 1� + � ���0
� �a�	ℎ��0

� �a��


0	�

=0(a) 

 ���
� �a� = ���

� �a − 1��0(a) 
 

���
� �a� = �1 − � ���0

� �a�	 ℎ��0
� �a�!


�


0	�

����
� �a − 1� 

 �0�a� =
160�a� + ∑ ∑ ∑ [ℎ��0

� �a�]
���
� �a − 1���	���

�	�
��

�	�
/
�	�

 

 =0�a� = �E
�� +�a� − ;8m�a − 1�, 
�a�9!�

 

 

ℎ��
� �a� =

�=0�a��J��
� �a − 1� 
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where E
�� denotes the third-order cumulant operation 
 E
��.�1 = ��[�] − 3��[�]�
[�] + 2(��.�1)� 
With ��.�1 = �.��a���a + ����a + ��1 ≈

1�����a���a + ���(a + �)

11

 

 �
.�1 = �[��a���a + ��] ≈
1�����a���a + ��

11

 

 ��.�1 = �[�(a)] ≈
1�����a�

11

 

 
A number of network initialization procedures have been developed for general feedforward 

networks. These algorithms are based on linear-algebraic methods to determine the optimal initial 
weights. With the optimal initial weights, the initial network error is much smaller, thus speeding up the 
overall training procedure. Here, a conventional randomized-weight initialization procedure is presented: 

• Weights are initialized as random numbers with normal distribution, typically in the range of 
±0.1. 

• We initialize the matrices ��(a): {���
� �a�} and �(a): {60	(a)} as ��(0) 	= 	100.00	���	�(0) 	= 	0, 

where I refers tothe unit matrix. 
Thereafter, the cumulant-based weight-decoupled extended Kalman filter algorithm can be applied to 
train the neural network on which the nonlinear representation is based.  

A recurrent neural network differs from a multilayer feedforward neural network in that it has at 
least one feedback loop, which represents the dynamical characteristics of the network. For example, a 
recurrent network may consist of a single layer of neurons with each neuron feeding its output signals 
back to the inputs of all the other neurons. In this structure, there are no self-feedback loops in the 
network. Selffeedback refers to a situation where the output of a neuron is fed back to its own input. The 
feedback connections originate from the hidden neurons as well as the output neurons. The presence of 
feedback loops has a profound influence on the learning capability of the network and on its dynamical 
performance. Moreover, the feedback loops involve the use of special branches composed of unit-delay 
elements, which result in nonlinear dynamical behavior by virtue of the nonlinear nature of the neurons. 
Nonlinear dynamics plays a key role in the storage function of a recurrent network.  

The Hopfield network is a typical recurrent network that is well known for its capability of 
storing information in a dynamically stable configuration. It was Hopfield's paper  in 1982, elaborating 
the remarkable physical capacity for storing information in a dynamically stable network, that sparked off 
the research on neural networks on the eighties. One of the most fascinating findings of his paper is the 
realization of the associative memory properties. This has now become immensely useful for pattern 
recognition. 

Physically, the Hopfield network operates in an unsupervised fashion. Thus, it may be used as a 
content addressable memory or as a computer for solving optimization problems of a combinatorial kind. 
The classical traveling-salesman problem is a typical example. Koch applied Hopfield networks to the 
problem of vision. There has been other work on depth computation and on reconstructing and smoothing 
images.  

In tackling a combinatorial optimization problem we are facing a discrete system that has an 
extremely large but finite number of possible solutions. The task is to find one of the optimal solutions 
through minimizing a cost function, which provides a measure of system performance. The Hopfield 
network requires time to converge to an equilibrium condition. The time required depends on the problem 
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size and the possible stability problem. Hence it is never used online unless special-purpose hardware is 
available for its implementation. 

The operational procedure for the Hopfield network may be summarized as follows: 
• Storage (Learning). Let ��, �
 … �1 denote a known set of N-dimensional memories. Construct the 

network by using the outer-product rule to compute the synaptic weights of the network as 

J�� = �1; � ��.���,� , �56	I ≠ �		1

�	�

0, �56	I = �	 ?	 
Where J�� is the synaptic weight from neuron i to neuron j. The elements of the vector �� = ±1. Once 
they are determined, the synaptic weights are kept fixed. 
 

• Initialization. Let X denote an unknown N-dimensional input vector presented to the network. 
The algorithm is initialized by setting 

���� + 1� = ��� Z�J����(�)

.

�	�

[ 

Repeat until the state vector s remains unchanged. 
 

• Outputting. Let �' denote the fixed point (stable state) computed at the end of step 3. The 
resulting output vector y of the network is 
 + = �' 

 
It is clear that a neural network is a massively parallel-distributed network that has a natural 

capacity for storing experimental knowledge and making it available for use. 
The primary characteristics of knowledge representation are twofold: what information is actually 

made explicit, and how the information is physically encoded. In real-world applications of intelligent 
machines, neural networks represent a special and versatile class of modeling techniques that are 
significantly different from conventional mathematical models. Neural networks also offer a convenient 
and reliable approach for the modeling of highly nonlinear multiinput-multioutput systems. 
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Παραρτηµα Α 

Solution of linear diferential equations 
we want to solve differential equation of the form �� = /�											�1� 
with an initial condition ��at time �� 
Theorem: if we can find any two linearly independent solutions (one is a constant multiple of  
the other). � = �����, + = +����		���		� = �
���, + = +
���															�2� 
then the general solution of the system of equations (1) starting from any given initial condition is � = H������ + H
�
���																					 + = H�+���� + H
+
���																�3� 
where the constants H� and H
 are given by the initial condition. 
Notice that in (1), A operates on the vector x to give the vextor �� . Generally the derived vector is 

different from the source vector, both in magnitude and direction. 
Eigenvector: special directions in the state space such that if the vector x is in that direction, the 

resultant vector ��  also lies along the same direction. It only gets stretched or squeezed. 
Eigenvalue: the factor by which any eigenvector expands or contracts when it is operated on by the 

matrix A. 
When the matrix A operates on the vector x and if x happens to be an eigenvector, then we can 

write /� = %� 
where λ is the eigenvalue. This yields �/ − %0�� = 0 
where I is the identity matrix of the same dimension as A. this condition would be satisfied if the 

determinant |/ − %0| = 0 
thus ��/�� /�
/
� /



� − �% 0
0 %�� = 0 �/�� − %��/

 − %� − c�
c
� = 0 %
 − �c�� + c

�% + �c��c

 − c�
c
�� = 0 

this is called the characteristic equation, whose roots are the eigenvalues. Τhus, for a 2x2 matrix 
one gets a quatradic equation - which in general yields 2 eigenvalues. 

 
finding eigenvectors: by the definition of eigenvector /� = %�� 
 �/ − %�0�� = 0 
 �/�� − %� c�
c
� c

 − %�

� ��+� = 0 

 
this leads to the 2 equations  �/�� − %��� + c�
+ = 0								(4) 
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 c
�� + �/

 − %��+ = 0														 
 
these two equations always turn out to be identical. 
 

Summary 
 
Eigenvalues are obtained by solving the equation |/ − %0| = 0 
 
and the eigenvectors are obtained, for each real eigenvalue from the equation �/ − %0�� = 0 
 

Using eigenvectors to solve Differential Equations 
 
The definition of eigenvector tells us that if an initial condition is located on an eigenvector, then 

the ��  vector remains along the same eigenvector and therefoore the whole solution also remains along the 
eigenvector. 

The equation (4) may yield 3 different types of results 
1. eigenvalues real and distinct 
2. eigenvalues complex conjugate 
3. eigenvalue real anf equal 
 
Let %� and %
 be eigenvalues, B� and B
 be eigenvectors. If we place an initial condition on B� then �� = /B� = %�B� 
Dynamics is constrained along the eigendirection. This is like an 1D differential equation �� = %�	 
whose solution is ���� = =$��� 
therefore the solution of the differential equation �� = %�B�	along the eigendirection is  ����� = =$��B� 
Similarly, for any initial condition placed along B
we have another solution �
��� = =$��B
 
therefore the general solution can be constructed as  ���� = =$��B� + =$��B
														�5�	 
 

Example 
Let the system Equations be given by �� = ���+� � = �−4 −3

2 3
� ��+�											(6) 

 
the matrix A has eigenvalues %� = 2	���	%
 = −3. For %�, the eigenvector is given by2� = −+. 

To chose any point on the eigenvector, set � = 1.This gives + = −2. Thus B� = � 1
−2

� 
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For this initial condition the solution is ����� = =
� � 1
−2

� 
 
similarly for %
 = −3 the eigenvector is � = −3+. To choose a point on this eigenvector take � = 3. This gives+ = −1. Thus the second eigenvector becomes B
 = � 3

−1
� 

and the solution along the eigenvector becomes �
��� = =��� � 3
−1

� 
Hence the general solution of the system of differentail equation is ���� = H�=
� � 1

−2
� + H
=��� � 3

−1
� 

where the constants H� and H
 are to be determined by the initial condition. 
 
For example, if the initial condition is �1,1���	� = 0 , then this equation gives H� � 1

−2
� + H
 � 3

−1
� = �1

1
� 

 

solving, we get H� = −
�

�
=
�	���	H
 =

�

�
. Thus the solution of the differential equation with this 

initial condition is ���� = −
4

5
=
� � 1

−2
� +

3

5
=��� � 3

−1
� 

 
or, in terms of the individual coordinates ���� = −

4

5
=
� +

9

5
=���, +��� =

8

5
=
� −

3

5
=��� 

 

Eigenvalues complex conjugate 
 
Complex eigenvalues always occur as complex conjugate pairs. Ιf  % = @ + Im is an eigenvalue 

then %̅ = @ − Im is also an eigenvalue. let B be an eigenvector coresponding to the eigenvalue	% = @ +Im. This is a complex-valued vector. It iseasy to chech that B̅, the conjugate of the vector B, is associated 
with the eigenvalue (@ − Im). 

Though complex-valued eigenvectors cannot represent any specific direction in the real-valued 
state space, their physical significanse derives from the fact that the eigenvector equation /B = %B holds. 

This allow us to obtain a solution as ����� = =$�B									(7) 
Here the left hand side is a real-valued function and the right hand side is a complex-valued, 

expressible in the form (� + I�) which is a linear combination of the functions P and Q. 
therefore the real part and the imaginary part must individually be solutions of the differentail 

equation. This allows us to write two real-valued solutions from which the general solution can be 
constructed. 

-- 
Let us illustrate this with the system of equations �� = @� − m+											(8) +� = m� + @+																		 
 
for which the eigenvalues are @ ± Im. For % = @ + Im the eigenvector equation is 
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�−Im −mm −Im� �B�B

� = �−ImB� −mB
mB� −ImB


� = �0
0
� 

Τhus the eigenvector direction is given by B� = IB
. To choose a specific eigenvector, we take B� = 1, so that B = .I, 11� is an eigenvector. 
Thus a complex-valued solution is ���� = 	 =23��45� �I

1
� = =3��cos m� + I sin m�� �I

1
� = 

 

= =3� �I cos m� − sinm�
cos m� + I sinm�� = =3� �C−sin m�

cosm� D + I Ccos m�
sin m�D�						(9) 

 
which is a linear combination of the real part and the imaginary part. Hence the two linearly 

indepentant real-valued solutions are =3� C−sinm�
cos m� D 	���	=3� Ccos m�

sin m�D 

 
therefore the general solution is ���� = H�=3� C−sinm�

cos m� D + H
=3� Ccos m�
sin m�D									(10) 

 
The other eigenvalue supplies no new information, as it is the complex conjugate of the first one. 
 
As a final check, one can differentiate �(�) and +(�) from (10) to obtain back (8), which would 

imply that (10) is a really solution for (8). 
The case of imaginary roots is a special case of this solution where @ = 0. Thus the solutions for 

imaginary eigenvalues % = ±Im are ���� = −H� sin m� + H
 cosm�														 +��� = H� cos m� + H
 sin m�								(11) 
 
Here also, the values of H� and H
 have to be obtained from the initial condition. 
 
Τo illustrate, let an initial condition be (1,0), Substitutung this value of x at � = 0	in (11) we get H� = 0	���	H
 = 1. Thus the trajectory is given by ���� = cos m� 	���	+��� = sinm� 
Thus each state variable follows a sinusoidal variation, while +��� lags behind ���� by 

!



. 

 

Eigenvalues are real and equal 
 
We have only one real-valued eigenvector B associated with the eigenvalue λ. So we have only one 

solution ����� = =$�B 
 
In this case the rule is to look for a second solution of the form �
��� = =$� �/� + /
�:� + :
��											(12) 

 
so that the general solution is 
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���� = H�=$� �B�B

� + H
=$� �/� + /
�:� + :
��														(13) 

 

Example 
 
Let �� = 3� − 4+																	 +� = � − +									(14) 
 
Here both the eigenvalues are equal to 1. For this eigenvalue the eigenvector equation is � = 2+, so 

that an eigenvector B = .2,11�. Thus one nontrivial solutions is  ��(�) = =�B 
 
we now seek another solution os the form (12) with % = 1 substituting this into (14) we get �/� + /
� + /
�=� = 3�/� + /
��=� − 4�:� + :
��=� �:� + :
� + :
�=� = �/� + /
��=� − �:� + :
��=� 
 
this reduces to  �2/� − /
 − 4:�� + �2/
 − 4:
�� = 0 �/� − 2:� − :
� + �/
 − 2:
�� = 0 
 
Since these equations must hold independent of t, each term in the above equations must be zero. 
Hence �2/� − /
 − 4:�� = 0, �/� − 2:� − :
� = 0 �2/
 − 4:
� = 0, �/
 − 2:
� = 0 
 
solving these, we have /� − 2:� = 1, /
 = 2	, and :
 = 1. since we can take any values of /� and :� satisfying these equations, we take /� = 1 and :� = 0. This gives another linearly independent 

solution of (14) as �
��� = =� �1 + 2�� � 
hence the general solution of (14) is ���� = H�=� �2

1
� + H
=� "�1 + 2�� �# 
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Example  

 

 
KCL gives: � = �6 + �7 =


� + H �
�� 			56			 �
�� =
�H −


�E 

KVL gives: � = � ���� + 
		56	 ���� =
�� −


� 

In matrix form: 

�
��� � = �−
1�E 1H

−
1� 0

� �
� � + F0
1�G� 

The second order equation can be obtained in terms of u or i . Differentiating the first equation, �

��
 =
1E ���� −

1�E �
�� =
1�E �� − 
� −

1�E �
�� 		56,
�

��
 +

1�E �
�� +
1�E 
 =

1�E � 

We first take the homogenius part: 

��, �
 = −
1

2�E ±
1

2
� 1�
E
 −

4�E 

The critical value of the resistance is given by 

1�
E
 =
4�E 	56, �8� = � �

2E 

The undamped (� = 0) natural frequency of oscillation m� =
1√�E 

Now we mould the equation in the form 
� + 2�m�
� + m�

 = 0 

Which demands that 

2�m� =
1�E 		56, � =

1

2� ��E 

Notice that in this case we have to define ζ as 
6��

6
. 

Now let us look at it from the point of view of the homogenious first order equations �� = /�: 

�
��� � = �−
1�E 1E

−
1� 0

� �
� � 
To calculate the eigenvalues, |/ − %0| = 0. 
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�−
1�E 1E

−
1� 0

� − �% 0
0 %� = 0		56, �−

1�E − % 1E
−

1� −%� = 0 

This gives %
 +
1�E % +

1�E = 0 

Which is the same equation as derived in the 2nd order case. Therefore the eigenvalues are the same 
as the roots of the characteristic equation. 

%�, %
 = −
1

2�E ±
1

2
� 1�
E
 −

4�E 

In terms of ζ and m� the eigenvalues are: %�, %
 = −�m� ± m�*�
 − 1 
The eigenvalues will be real for � > 1 and complex conjugate for  � < 1. 
 
Now let L=1H, C=1F and R=0.25Ω, for which the eigenvalues are real : %� = −0.268	���	%
 =

−3.732. Substituting the parameter values we have �� = /� as  

�
��� � = �−
1�E 1E

−
1� 0

� �
� � = �−4 1
−1 0

� �
� � 
First take  %� = −0.268	and calculate its corresponding eigenvector. �−4 + 0.268 1

−1 0.268
� �
� � = �0

0
� 

The two lines give 
−3.732
 + � = 0	��� − 
 + 0.268� = 0 

These are identical equations, giving the eigenvector 
 = 0.268�. Similarly, for the other 
eigenvalue %
 = −3.732 we get the eigendirection 
 = 3.732�. 

Now, we select specific (arbitary) eigenvectors along the eigendirections. Choose � = 1/	���	
 =
0.268� as the first eigenvector and 
 = 1�	���	� = 0.268/ along the second. 

 

 
 
The solution is straightforward obtained as 
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�
� � = H�=��.
9�� �0.268
1

� + H
=��.:�
� � 1
0.268

� 
 H����	H
 are to be obtained from the initial conditions. 
 
Now take � = 1<, E = 1�	���	� = 1� for which the eigenvalues are complex conjugate: %�,
 = −

1

2
± I √3

2
 

Substituting the parameter values we have �� = /� as 

�
��� � = �−
1�E 1E

−
1� 0

� �
� � = �−1 1
−1 0

� �
� � 
First take  %�,
 = −

�



± I √�



 and calculate its corresponding eigenvector. 

fgg
gh−1 +

1

2
− I √3

2
1

−1
1

2
− I	 √3

2 ijj
jk �
� � = �0

0
� 

 


