TEI of CRETE Fachhochschule Diisseldorf

Department of Applied Informatics and University of Applied Sciences
Multimedia

Thesis

“LXeSLAOUOGC KAL VAOTTO(NGN ULAC YEVIKNC ATTOUAKPVOUEVNG EAEYKTIKNG SLETAPNC
yia SDK-poumotika cvotnuata”

Author: Minardou Aikaterini
2261

Date: 10/04/2013

Professors: Prof. Dr. rer. nat. Gundula Dorries,

Prof. Dr. Eng. Andreas Vlissidis

A big “Thank you” to those
who believed in me and kept
me going

Abstract

The purpose of this project was to create a control interface for a specific robot, which with some
modification can apply and control other robots as well. The robot that was used for this project was an
Arexx RP6 equipped with the RP6v2 M256 Wi-Fi expansion module in order to expand the module
capabilities to connect with a WI-FI network. Since smartphones and tablets are becoming a part of
people’s daily life and the expansion of their abilities/use is a constant research subject, developing the
control interface as a smart device application was the smart thing to do.

The thesis is divided into two parts, which encompass the programming of the robot and the
development of the smartphone application. The robot’s microcontrollers (Main Boards ATMEGA32 and
the WI-FI module ATMEGAZ2560) are programmable in C language. The main objective was to enable
the robot to listen to every command that was sent via the network, received by the WLAN module and
sent to the control interface messages like “Obstacle ahead”, “Left(/Right) Bumper was hit” and the
values from the light sensors. The controlling interface was developed for Android Devices in Java
Android and provides a user interface for interacting with the robot. The Control Interface is quite
versatile and with a few modifications other robots, like the humanoid robot NAO or the helicopter
AR.Drone, can be programmed and controlled by it.

Abstract (EAAnvika)

O oxomdg avtng g epyaciog Ntav va dnpovpyndetl éva mepiPdiiov eréyyov yio éva cUYKEKPUEVO
POUTIOT, TO OTOI0 UE WEPKEG OAAAYEC Lmopel va ypnolpuonomBel vy Tov EAeyyo GAA®Y POUTOTIKOV
ovotnudtov. To poundT Tov YpNCILoTOONKE Yo TV epyacio avth eva Arexx RP6 somhicpévo e pio
RP6v2 M256 Wi-Fi povada enéktoonc, TpokeEVOUY Vo, ETEKTEIVEL TIG SUVOTOTNTEG TN LOVASOC Kot VoL
umopet vo. cuvdebel ue eva diktvo pecm WIFL Agdopévou ot ta £€vmva tiépmva (Smartphones) kot ot
tablets cvokevéc, £xouvv yivel péEPog TG KOONUEPIVOTNTAG HOG KOt 1) GUVEXNG TPOOTAOEIN ENEKTACTG TOV
SUVATOTATOV Kol TNG XPNOMG TOLG €xel yivel éva Poaocikd Oéuo €pgvvog, to va avomtuybel avto To0
ePPAALOV EAEYYOV Y10 10l TETOL GLGKEVT NTOV 1) KaAOTEPN Suvatdv kivion. H mruylokn yopileton o
ovo pépn, ta omoia TEPILOUPAVOLY TOV TPOYPOUUATIGHO TOV POUTOT KOl TNV avamtvén tng Smart
GLGKELT|G.

Ot Microcontrollers tov pounédt (Bacikng povadag ATMEGAS32 kot tov WI-FI module ATMEGA2560)
apoypoppatitovioar oe C yAdooa mpoypappatiopod. O kOplog 6TodY0¢ NTOV Vo Uropel o poundt va
akovoel kbbe evIoA MOV €0TAAN UEG® TOL SIKTVLOL, 1 omoin eANEON amd T povada WLAN kot vo
«OmaVTAE GTNV GLOKELT He punvopate omeg «Epnddie Mrpootd» , «XtumnOnke o Apiotepog/Agéng
AleOnTmpacy, TI¢ TIRES TOVG actnTpeg P®TOG KABMS Kol EVIUEPDCELS Y10, TO VITOAOITO TG UTOTAPING.

H gpappoyn avantdydnke yioo Android cuokevég og Java yYAdoG0 TPOYPOUUATIGHOD KOl TOUPEYEL GTOV
xpNotn éva TepPdrlov epyaciog yio TV emkovevia pe o poundt. H epoapproyn eival apketd svEAKTN
KoL pe pepikég oAAayéc umopel va, ypnoomomOei kot yio GAla poundt énwg to avdpoioég NAO pourdt
1 70 AR Drone ta omoia pTopovv vo TpoypOoUIOTIGTOVV Kot Vo eAeyyBobv amd auTi).

Table of Contents

AADSIIACT ... E bbb bbbt b e ii
ADSTFACT (EAATIVIKGR) -tttk b bbbt b bbbt bttt iii
INEFOTUCTION ...t bbb bbb bbbttt 1
Chapter 1: THE RODOTcviiiieieies bbbttt sb b 3
1.1 General fOr the RODOT.........c.oiiiiiiiiii bbbt 3
1.2 RODO’S COMPONEIESviveeiriiiieee sttt sre e nr e nr e nr e nr e nreere e nenre e nre e 4
1.3 RODOTLOAUE ... bbbttt bbbttt b bbb e 5
1.4 Base RODOt PrOGIaMMINGcoviiiiiiieieieeie sttt ettt ste et sba e e besneesrestaeneesteenaesresre s 6
1.4.1 Master/Slave Communication ProtOCON............ccoiiiiiiiiiiiciees e 6
1.4.2 12C SIAVE PrOGIAM ...ttt es s en et en s en et es e en e eneeean 6
1.4.3 Compile the SOUICE COUE..... oottt 6
1.4.4Upload the HEX FIle. ..ottt st sbe et sre s 10
Chapter 2: The WIFI EXPanSion MOUUIEcooiiiiiiiiisie et 11
2.1 General Tor the WIFT MOUUIE..........coiiiieiee e 11
2.2 WIFI MOdule’s COMPONEILSc.vvireiieerrerieesresreeeesresieesre e sne s sne e sne s snesseesnesneeneennesesnnesnes 12
2.3 WIFT CONTIGUIALIONviviiiieiiiisie sttt bbbttt b e 13
2.4 WIF] MOdUIE ProgramiMiNgccooeeeereiieieeeeie e eees et sseeseesteeeeseeeseestesseeseesaeaneeseesseeneesnens 14
2.4. 1 INCIUTE TIDFAIIES ...ttt bbb 14
2.4.2 WIFT CONIOl FUNCLION ...ttt 14
2.4.3 MAIN FUNCHION ..ottt ettt e ettt sb et 16

2.5 CoMPIlE the SOUICE COUE........cueiiiitiieiteiee et 16

2.6 ConNeCtion and UPIOAAcceeiuiiieiiciiiie ettt st sae et e te e e e sbesreenaenne s 17
Chapter 3: THe ANArOIG ADD ..c.eceeeeieieieee ettt bbbt bbb b n e enes 19
TR AN o To 101 g [T AN o o] [To%: 14 o] o SRS 19
3.2 Few words about Java ANGIOIdcoeiveiiiiiniieiee e 20
3.2.2 DeVEIOPMENT TOOIS ...t 20

TG I 0 1] o o SRS 21
XML SOUICE COUE. ...ttt bbb ettt b e b n e 21

3.4 TCP SOCKEt ProgrammiNgcccoiiiiiieiecieie sttt ste et ste st sra et este e steste e besaeenaestaeeesreenes 23
3.5 CONNECE TAD ...ttt 26
3.6 IMAIN ACHIVILY 1o.veeiiiece ettt sttt s b e et e et e s te et e s beesbesbeete e besaeeneesteaneesreares 28
3.6.1 Different IMeSSAgES SCENAIIOScvereieiiiiiriiniest ettt sb b b ens 32
LMIEALIONS ..ttt bbb bbbt bbbt bbbt b et b b 34
CONCIUSTON ...ttt bbbt bt s bRt b bt bbbt et bbbttt b et 35
DISCUSSTON ...ttt b bbb bbbt b b b st h bbbt bt b et e e bt b bt b et b n e 36
RETEIEICES ...t bbb bbbt b bbb bbb ettt 38
BIDIOGIAPNY ...ttt 39

T 0TI B 1T o PSSRSO 2

Figure 2: RP6 Robot Source: http://goo.gl/TrUQXoi i 3
Figure 3: RP6 Robot, Source: http://go0.gl/aVILCccoeiiiice e 4
Figure 4: RP6 RODOE LOAGETc.viiieiiicie ettt sttt sttt sbeesa e besna et e s taeaesreenaeneenne s 5
FIQUIE 52 STALUS DXttt bbbt b ettt 5
Figure 6: Screenshot from mMakefile (1)......cvoiviiiiieieiice e sre s 7
Figure 7: Screenshot from makefile (3)......coiiiiiiiie s 7
Figure 8: CygWin SCrEENSNOT (1) ... c.veuieiiiiiiieiieiiere e 8
Figure 9: CygWIn SCrEENSNOL (2).......eceiiiiii it ste ettt st sre e e be s e e teste e e e sreenaeseenres 9
Figure 10: CygWin SCreENSNOT (3).....c.eeiiiiieriiiieie et 9
T O T o [0 A= 1=t T) SRS 10
Figure 12:M256 WIFI Expansion Module Source: http://goo.gl/o6g5hccooeriieiiiiiiiiiiiees 11
Figure 13: Network representation; Source: RP6 M256 WIFI Module manualcccccoovnininenienns 12
Figure 14: WIFI Configuration Dialog..........cccciviiiiiiiciiiecie sttt sttt s sne e 13
Figure 15: RPEIM256 LIDIAIIES.c.vciiiiiiieieeiteiee sttt 14
Figure 16: INCOMING HINEooiiiicic ettt e et et s e et e s beeseestesteebesreeneenre e 14
FIgure L7:WIF] CONLIOl STALE.........ciiiiiciiieecc ettt sttt st e be e e srestaesbesbeeneesre e 15
Figure 18:Main FUNCHION'S TOOPouviiiiiiiiiiiiiieit ettt 16
Figure 19:WIFI Remote- MaKeTile........cciiiiiiiece ettt e 17
FIQUIE 20: WIFT LOBAET ...ttt bbbttt n e 18
T U Y o o] Lo L1 o] TSSO 19
Figure 22: Eclipse Package EXPIOTEEccvoiiiiie ittt sttt s see e 21
Figure 23: CONNECE DIAIOQveuveuieiieiiiiisieie ettt bbbt nn e 22
Figure 24: Screenshot from main_activity. Xml file.........cccccooiiiiiii e 23
Figure 25: Screenshot of the manifeSt.Xml File ..o 23
Figure 26: Connect t0 SErVEr FUNCLIONco.oiiiie ettt sttt st s re e 24
Figure 27: Threads run () FUNCLIONooiiiiic ettt s ee e 24
Figure 28: Reading/WIitiNg COUEcviiiiiiiieieeeee ettt 25
Figure 29: Try...CatCh BIOCK.......c..ooiiici ettt sttt be e ee e 25
Figure 30: DIiSCONNECT FrOM SEIVEToiuiiiiiiiiiiieieieee sttt bbbttt 25
Figure 31: Connect Tab (1) - SOUICE COUEc.ooveieiiiiiiiiite et 26
Figure 32: Connect Tab (2) - IP& POrt CONIOLccociviiiiiiiice e s 26
Figure 33: Connect Tab (3) - accurate IP fUNCLION..........coooiiiiiieceee e 26
Figure 34: CONNECE TAD (4) ..oviiece ettt sttt re et e be e esbestaebesbeeneesre e 27
Figure 35: ConNect Task = ASYNCTASKcciiiiiieiiieiiis st 28
Figure 36: onCreate method - CONrol PANEL............coviiiiiiiiiieee e 28
FIgUre 37: HaNAIEr IMEBSSAGEScuveiueeieeteeiie ettt ettt ettt e ettt steere e te st et e steaneeseeeneeseeaneeneenee e 29
Figure 38: SEleCtion @ MENU TTEBIMc.uiiiiii ittt nb e 30
T UL eI o T [I I =1 o o OSSR 30
Figure 40: After the user diSCONNECTEA.ooiiiiii et 31
Figure 41: After DISCONNECT IS PrESSEAccveiviiriiiieieiieiesie sttt n e 31
Figure 42: LOW Batlery MESSAQEeoeiieieieieeeieeie sttt sttt sttt ste et e e e ste e e seeereetesreeneenee e 32
Figure 43: ODSEACIE UEIECTEAo.viieeiieiesiiite sttt b e 32
FIgUre 44: BUMPET HItooie ettt sttt ettt et e ste e saeereetesreeneenee e 33

Vi

file:///C:/Users/Kate/Dropbox/FH/Thesis/Thesis.docx%23_Toc353326378
file:///C:/Users/Kate/Dropbox/FH/Thesis/Thesis.docx%23_Toc353326387
file:///C:/Users/Kate/Dropbox/FH/Thesis/Thesis.docx%23_Toc353326391
file:///C:/Users/Kate/Dropbox/FH/Thesis/Thesis.docx%23_Toc353326395
file:///C:/Users/Kate/Dropbox/FH/Thesis/Thesis.docx%23_Toc353326412

Figure 45: Wrong 1P O POt NUMDELcvoiiiiiie e sttt e et sreeneenne e

Figure 46: Suggestion

vii

Introduction

The purpose of this project was to create a control interface for the Arexx RP6 robot, which with some
modifications it can be applied and controlled other robots of the same class as well. The base robot
doesn’t support WIFI connectivity; it is on the other hand possible to control it via a TV Remote control
since it can receive IR codes. In order to expand its capabilities an expansion module is attached to the
main board, the RP6v2 M256 Wi-Fi module. With a second microcontroller ATMEGA 2560 and a
separate 802.11 b/g WLAN module is possible to connect to a WIFI network, receive and transmit
commands via the WLAN module while the microcontroller, connected via 1°C bus to the main robot
and/or other expansion modules, act as a master (from the master/slave communication protocol) and
control the slaves (other components.).

The robot’s microcontrollers are programmable in C language and the manufacturer (Arexx and Conrad
Electronics) provide a big library of functions, for the main robot and the expansion modules, and a
software called RobotLoader, a Java platform application that allows the user to upload programs on the
microcontroller, either via the PC USB Interface (mainly for the main board) or upload it wiresly. In
company with the previous components examples are provided for the better understanding of the
functions. One of them is a WIFI Remote example that controls the robot by sending commands through
the WIFI terminal of the RobotLoader.

Since smartphones and tablets are becoming a part of people’s daily life and the expansion of their
abilities/uses is a constant research subject, developing the control interface as a smart device application
is the best approach.

The thesis is divided into two parts, which encompass the programming of the robot and the
development of the smartphone application. The main objective was to program the robot to listen to
every command that was sent via the network, received by the WLAN module and reply to the control
interface messages as “Obstacle ahead”, “Left(/Right) Bumper was hit”, information about the light
density in the area from the light sensors and constantly updates for the battery level.

The controlling interface was developed for Android Devices in Java Android and provides a user
interface for interacting with the robot. According to the received messages the application has to be
capable to inform the user for every one of them. The Control Interface is quite versatile and with a few
modifications other robots, like the humanoid robot NAO or the helicopter AR.Drone, can be
programmed and controlled by it.

The WLAN module of the RP6’s expansion module is configures to have an IP and a communication
Port. In order to receive commands from another device (in this case the Android application) the device
has to be programmed as a TCP Socket. The Transmission Control Protocol (TCP) is one of the two
original core protocols of the Internet protocol suite (IP), and is so ubiquitous that the entire suite is often
called TCP/IP. TCP provides reliable, ordered, error-checked delivery of a stream of octets between
programs running on computers connected to an intranet or the public Internet. 'A socket is one end-

! Source:

http://en.wikipedia.org/wiki/Transmission_Control_Protocol

point of a two-way communication link between two programs running on the network. Socket classes are
used to represent the connection between a client program and a server program.2

Figure 1: Design

2 Source:

http://docs.oracle.com/javase/tutorial/networking/sockets/

Chapter 1: The Robot

1.1 General for the Robot

The robot that was used in this project is an Arexx RP6 Robot, which was created by Arexx in
collaboration with Conrad Electronics. It is a low cost autonomous robot, equipped with an ATMEGA32-
8 bit RISC (Reduced instruction set computing) Microcontroller. Programmable in C language, it is
accompanied with function libraries, a very extensive manual and lots of example programs, which give
the opportunity to the user to better understand the capabilities of the Robot.

Using the I°C (Inter-Integrated Circuit) Bus and master-slave communication protocol-based programs,
expansion modules can either control the Robot or be controlled by it.? It is powered by 6 1.5Volt
batteries, stored under the main board, which if are NiHM can be charged via the charger connector.

Figure 2: RP6 Robot Source:

® More information on Chapters 1.3 and 2.4

http://goo.gl/TruQX

1.2 Robot’s Components

As it can be seen in the following figure the Robot offers a big variety of components. More Sensors can
be added either by soldering them in the main board or by soldering them on the expansion module
(experimental board)”.

[Motor Current Sensors |
[MOSFET H-Bridges |
| ATMEGA32 Microcontroller|

Charging Connector]

On/Off Switch

[Expansion Connectors]

Status LEDs m— = o "
[IR Communication , o " SR —| 5V Voltage Regulator

IR Sensors '\

\
L

New Gearing
System

High resolution

Light Sensors > - Encoders
Start / Stop Button

PC Communication Port]

Figure 3: RP6 Robot, Source: http://goo.gl/dVJLc

Since the purpose of the project is controlling the robot, the robot has to be programmed to send back
feedback regarding its condition; for example the user must be notified if an obstacle was detected or if a
bumper was hit. The sensors that are going to be used are:

Light Sensors

Bumper Sensors

IR(InfRared) Sensors

Commands to request the Battery Level

* ¥ ¥ *

* Expansion Board: more info http://www.arexx.com/rp6/html/en/acc.htm

http://goo.gl/dVJLc

1.3 RobotLoader

For uploading the program to the robot the manufacturer provides us with Software called Robot Loader
Version 2.4.° The software is developed in Java programming language and it “has been developed to
allow easy access and program upload to the robot’s microcontroller and all its expansion boards"®.
Connect the Robot with the PC via the PC communicator port. When the suite recognizes and displays the
robot as a possible connection and we have spotted the USB port that is connected to the connection van
be established by pressing the Connect button.

RobotLoader

jdev/ttyUSBO

Figure 4: RP6 Robot Loader

When the connection is established a “success” message is
displayed in the Status box:

Figure 5: Status box

® Can be downloaded http://www.arexx.com/rp6/html/en/software.htm
® Source: http://goo.gl/kP7Pe

Since the connection is established we can move on with the program upload.

1.4 Base Robot Programming

Not forgetting the fact that the base robot doesn’t have the components to support a wireless
communication, the base robot has to be programmed after considering the 1°C communication protocol
and program it as a slave to respond to the received commands from the master. Such kind of program is
offered by the manufacturer.

1.4.1 Master/Slave Communication Protocol

Master/Slave Communication Protocol is a model for a protocol which allows one device (master) to
control one or more devices (slaves).” I°C is a protocol that synchronizes the data flow whenever there is a
change in the bus. Every slave is associated with a byte sequence. The master sends a byte before the
command to all the slaves and only the slave with the same byte sequence receives and translates the data.
The other slaves just cancel the communication waiting for another group of data to come. Finally the
master issues a stop condition to terminate the communication.®

1.4.2 I2C Slave Program

The main idea of this program is: a master device controls the functionality of the robot and sends
commands to the slave via the 1°C Bus port. For example the master transmits the Command “Move
fwd”’; the slave receives the message and acts accordingly. Naturally those tasks can be interrupted if for

example, an obstacle is detected ahead or a bumper was hit. Furthermore “information” functions are
running as well in the same loop, sending the master information that was gathered by the Light Sensor.

1.4.3 Compile the Source Code

The ATMEGAS32 Microcontroller that the RP6 has embedded reads only hexadecimal type of files. The
programs are written in C using Programmer’s Notepad ° or Kate Editor'®.Using Cygwin' (or the

” Source: http://goo.gl/kP7Pe

® Embedded C Programming the Microchip Pic von Richard H. Barnett,Larry D. O'Cull,Sarah A. Cox
® Website : http://goo.gl/Gwjw

19 \Website : http://goo.gl/KIUYD

1 Website : http://goo.gl/MX63

Terminal if using Linux) we compile and generate the .hex file that the microcontroller reads with the
make command.

Using the make command the compiler generates the files that are instructed in the makefile. One of
them is the hexadecimal file that we need to upload to the Microcontroller. In the official documentation,
it is suggested to use an already created makefile for the developing of a new program. The creation of a
makefile is too complicated, but using one that is already made and by simply applying some small
changes, that we will see next, makes it easier.

According to the name that the .c format makefile has, only one thing has to be changed?; the Target:

TARGET = RPG&Base I2CSlave

Figure 6: Screenshot from makefile (1)

The Target has to be changed to the same name as our .c file, for example if our file is called
RP6Base_12CSlave the Target point changes to TARGET = RP6Base_I2CSlave. No Spaces and no
extension .c are required, since this command: >RC = 3(TARGET).c follows.

This part must not change as well:

SRC += Z(RP&_LIE_PATH)/RPGbase/RP&RobotBaseLib.c
SRC += $(RP&_LIB PATH)/RP&common/RPGuart.c

Figure 7: Screenshot from makefile (3)

These lines provide the path for the RP6 Libraries.

After all the steps that are mentioned above are completed, we can open Cygwin (or Linux Terminal)
and run the make all command:

12 Only and if necessary!

-

E /RPEExamples_20120725¢/RP6Examples_20120725¢/RP6_M256_WIFI_EXAMPLES/RP... L= |] i

Tes_20120725F /RP6_M256_WIFI_EXAMPLES/R

25 f /RPE_M2 WIFI_EXAMPLES

WIFI_EXAMPLES

Figure 8: Cygwin Screenshot (1)

Cygwin will inform the user that the compile has finished. If an error occurs during the process, it will
point out the line number, the compiling stopped and what is the error.

N
E /RP6Examples_20120725f/RP6Examples_20120725f/RP6_M236_WIFI_EXAMPLES/RP... | = | B |

D -MP -MF .

XAMPLES

M mm

Figure 9: Cygwin Screenshot (2)

The files that where created can be viewed with the Is command.

Figure 10: Cygwin Screenshot (3)

The hexadecimal can be located in the results.

1.4.4 Upload the HEX file

Going back to the Robot Loader, in the “Add/Select Hexfile” box we can locate the produced .hex file
then select it and press the upload button under the “Upload to Target ” box.

RP6Baze_|2CSlave.hex

Figure 11: Add/Select Box

When the upload finishes the messages in the status box will change to: “Task Completed successfully .
After that the Robot base can be controlled via any master device we connect to it.

10

Chapter 2: The WIFI Expansion Module

2.1 General for the WIFI Module

Figure 12:M256 WIFI Expansion Module Source:

The RP6v2 M256 WIFI Expansion Module gives the ability to the users to associate a RP6 robot to a
Wireless computer network. Through this expansion module, Robot’s remote control scenario and
information exchange with another device, will be possible.

11

http://goo.gl/o6q5h

A

5 LAN
Internete- ok &

4 A »

')

Figure 13: Network representation; Source: RP6 M256 WIFI Module manual

2.2 WIFI Module’s Components

Equipped with an ATMEGA2560 Microcontroller, 256 KB flash ROM and 8KB SRAM qgives to users
the opportunity to construct more complex programs. The WLAN functions are managed by the Roving
Networks RN-171 microchip, an energy efficient 802.11b/g WLAN module with built in processor. It
also manages the TCP/IP stack and the AES/WAP2 encryption, something that relieves the AVR
processor and makes the control for the user simpler. After power on, the module can connect
automatically to the network. For storing bigger amount of data, the module provides a microSD card
slot, ideal for data logging, mission data or eventually storage of static data that will be retrieved via
WLAN. The I°C bus will be used, to connect the module with the main robot and supply it with power.
For program upload®®, the USB PC interface can be used or alternatively the WLAN module can be used
for the upload, relieving the user from using cables. **

3 More info Chapter 2.4
14 Most of the information were collected from: RP6 M256 WIFI Module manual

12

2.3 WIFI Configuration

As it was mentioned previously, the WLAN module connects to the WIFI network automatically,
moments after power on. In order for the connection to take place the WLAN module has to be
configured, and that is possible only by using the USB serial interface. “The settings are stored in the
WLAN module and remain there after the module has been switched off”™

RobotLoader - WIFI COHFIG

Figure 14: WIFI Configuration Dialog

password

Important Fields:

o SSID: Service Set Identifier or in
other words the name of a wireless
network

) The robot IP has to be static (and
that has to be configure in the router
specifications)

. Set the robot’s IP address

. Set a communication Port

o Netmask, Gateway and DNS
Server have to be set according the
routers configuration

o Security Mode: WPA 1 & 2 and
WEP are supported but WPA is preferred
for security reasons.

. WPA Passphrase: the WLAN’s

By pressing the Configure WIFI Module! button the information is stored and a wireless connection

can established.

By opening the Discover WIFI connections the robot can be located and added to the connection list.

15 RP6 M256 WIFI Module Manual

13

2.4 WIFI Module Programming

2.4.1 Included libraries

The RP6M256Lib.h had to be included so that the functions that give access to the M256 module
components could be used. The RP612CmasterTWI.h was added due to the fact that it grants access to
functions that initialize the TWI (Two Wire Interface of the 1°C Bus communication protocol). The
RP6M256_12CMasterLib.h allows the program to control the Robot nearly the same as it was with
RP6Lib.

#include "RPeM256L1ib.h" S/ M256 Lib

#include "RPEI2CmasterTWI.h" Jf I2C Master Lib

// Include the “RP& Control M256 I2C Master library™.
// This allows I2C control of the Robot base in a nearly identical API as
// on the Robot Base.

Figure 15: RP6M256 Libraries

2.4.2 WiFi Control Function

This function allows the remote control of the robot according the received commands from the WLAN
module. The function that checks if an input is received is the following:

uintd t getInputline WIFI(wodid)

=i
if(getBufferLength_WIFI())
return parseline_WIFI{readChar_WIFI{));
return 8;
h

Figure 16: Incoming line

14

The control that has the biggest priority is the message that certifies the connection between the User
Interface and the Robot. After that the WLAN state of the RP6 M256 is enabled and the communication
can start.

switch{wifiControl.state)

1

case IDLE:

if(getInputline_WIFI()})

1

{ if(stromp{receiveBuffer_WIFI,"here")}==2)
1

writeString P_WIFI("Hella User™):

wifiControl.state = WIFI_ACTIVE;

break;

}
break;
case WIFI_ACTIVE:

if(getInputline_WIFI(})

{
if(strcomp(receiveBuffer WIFI,"fwd")==8)
i
wifiControl.speed_left = speedl;
wifiControl.speed_right = speedr;
writeString P_WIFI("FWD!"};
wifiControl.dir = FWD;
¥
glse if(strcmp{receiveBuffer_WIFI,"bwd")==8)
1
wifiControl.speed_left = speedl;
wifiControl.speed_right = speedr;
writeString P_WIFI("BWD!"};
wifiControl.dir = BWD;
}
else if(strcmp(receiveBuffer_WIFI,"left")==8)
1
if(speedl/2 »= 38)
i
wifiControl.speed_left = speedl f 23
wifiControl.speed_right = speedr f 2;
h
glse if(speedl » 18)
1
wifiControl.speed_left = 38;
wifiControl.speed_right = 38;

Figure 17:WIFI Control State

As a default parameter we use the option of return the WLAN state back to IDLE to save energy, mainly
because that means that the connection is lost.

15

default:
i wifiControl.state = IDLE;
break;

2.4.3 Main Function

In the main function the robot initializes the connection ports and after that it starts running the main
loop. It runs the same commands continuously:

Informs the user interface about the battery while(true)
level ,
. writeIntegerLength_WIFI(adcBat,DEC,4);
(writelntegerLength_WIFI(adcBat,DEC.4)) mSleep(660);
Waits for 600 milliseconds (mSleep(600)) warnForObs();
Search for obstacles (warnForObs()) mSleep(66Q);
Waits for 600 milliseconds (mSleep(600)) msleep(600);
Adding delay (in 1ms) so the previous light_?etegtiun{h
. mSleep(G88);
commands have the time to complete task_T2CTHIO);
(taSk_CkeCkl NT()) mSleep(GEE);
Waits for 600 milliseconds (mSleep(600)) behaviourController();
Runs the light detection function ;
. . return @;
(light_detection())

It needs to be called frequently the task I2CTWI

frequently otherwise the 12C Bus request functions don't work (task_I2CTWI())
Waits for 600 milliseconds (mSleep(600))

And run the behavior Controller function. (behaviourController())

2.5 Compile the Source Code

Following the same procedure as before®®, we locate the file where the source code is stored, change if
needed the Target name in the makefile and run the command in Cygwin or Linux Terminal make all.

16 Chapter 1.4.3

16

ITE. O
ITE. pnproj

/WIFI_REMOTE

Figure 19:WIFI Remote- Makefile

And the hexadecimal file is produced.

2.6 Connection and Upload

When the WLAN module connects to the network it transmits UDP packets every few seconds; opening
the Discover WIFI Devices (Options-> Discover WIFI Devices) we can see that the robot is in that list.
Click on the Add button and the information of the robot is added to the Select Port box in the second tab
of the RobotLoader (v2), the WIFI Loader. Pressing the Connect button under the Select Port a
communication is established between the RobotLoader and the Robot. Under the Status box there is a
status bar, it is the RSSI (Received Signal Strength Indicator) status bar. It indicates the signal strength
that was currently received in dBm.

“dBm (s dBm (sometimes dBmW) is an abbreviation for the power ratio in decibels (dB) of the
measured power referenced to one milliwatt (mW). It is used in radio, microwave and fiber optic
networks as a convenient measure of absolute power because of its capability to express both very large
and very small values in a short form. Compare dBW, which is referenced to one watt (1000
mW)ometimes dBmW) is an abbreviation for the power ratio in decibels (dB) of the measured power
referenced to one milliwatt (mW). It is used in radio, microwave and fiber optic networks as a convenient
measure of absolute power because of its capability to express both very large and very small values in a
short form. Compare dBW, which is referenced to one watt (1000 mWw). "’

YSource:

17

http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Milliwatt
http://en.wikipedia.org/wiki/Power_(physics)
http://en.wikipedia.org/wiki/DBW
http://en.wikipedia.org/wiki/DBm

192.168.10.171:2000

WIFI_REMOTE.hex

Figure 20: WIFI Loader

With the new version of the RobotLoader the upload of the program is possible via the WLAN
connection. By pressing the upload button (if everything works fine) the message in the status box will
change to “Task completed...”

18

Chapter 3: The Android App

3.1 About the Application

What will be created is an Application that gives to the user the needed interface to control the robot.
The objects that are needed are:

e Buttons to send the direction commands to the robot
o A help dialog that gives the user information on how to use the application
e And last but not least a connection dialog, through which a TCP connection will be established

between the Android device and the robot.

The development of the application will be a combination of XML and Java programming. Follows a
picture of how the application looks like at the final stage of the development.

u Robot Controler Connect Help

Close Application

J

Battery

& 06:10 =&

Figure 21: Application

19

3.2 Few words about Java Android

“Android is an operating system based on Linux with a Java programming interface. The Android
Software Development Kit (Android SDK) provides all necessary tools to develop Android applications.
This includes a compiler, debugger and a device emulator, as well as its own virtual machine to run
Android programs.

Android allows background processing, provides a rich user interface library, supports 2-D and 3-D
graphics using the OpenGL libraries, access to the file system and provides an embedded SQLite
database.

Android applications consist of different components and can re-use components of other applications.
This leads to the concept of a task in Android; an application can re-use other Android components to
archive a task. For example you can trigger from your application another application which has it
registered with the Android system to handle photos. In this other application you select a photo and
return to your application to use the selected photo. "*®

3.2.2 Development Tools

Android SDK

“The Android Software Development Kit (SDK) contains the necessary tools to create, compile and
package Android application. Most of these tools are command line based. The Android SDK also
provides an Android device emulator, so that Android applications can be tested without a real Android
phone. You can create Android virtual devices (AVD) via the Android SDK, which run in this emulator.
The Android SDK contains the Android debug bridge (adb) tool which allows connecting to an virtual or
real Android device. "**

Android Development Tools

“Google provides the Android Development Tools (ADT) to develop Android applications with Eclipse.
ADT is a set of components (plug-ins) which extend the Eclipse IDE with Android development
capabilities. ADT contains all required functionalities to create, compile, debug and deploy Android
applications from the Eclipse IDE. ADT also allows creating and starting AVDs.

18 Source: http://goo.gl/9mCsC
9 Source : http://goo.gl/9mCsC

20

tabs on the bottom of the editor.

{% Package Explorer 7 —

The Android Development Tools (ADT) provides specialized editors for resources files, e.g. layout files.
These editors allow switching between the XML representation of the file and a richer user interface via

E=3

- [J] TepClientjava

s Gﬁ gen [Generated Java Files)

. =i Android 4.2

- =, Android Dependencies
G@ assets

. &= bin

- &= libs

=

4 =% res

= anim

4 [~ drawable

™ down.png
™ info.png
™ |eft.png
M right.png
™ up.png

- [= drawable-hdpi
- [= drawable-Idpi

+ = drawable-mdpi
- = drawable-xhdpi

= layout
| connectxml

o main_activit}r.xmlé
=~ menu

| menuxml
= wvalues

) strings.ml

) stylesxml

- = values-v1l
- = values-v14

il

AndroidManifest.cml

M ic_launcher-web.png

|| proguard-project.bed
project.properties
1= TCPtest
. =4 TriangleArea

Figure 22: Eclipse Package Explorer

5 20

vDE

s

m

% Source : http://goo.gl/9mCsC

2! Source: http://goo.gl/ZRiA

3.3 Design

XML Source Code

The application has two parts, the XML part that is the design
(buttons, button’s position, button’s id etc.) and the Java part,
which includes functions and classes triggered from the
previously created XML components.

As it can be spotted in Figure 22 in the res directory the design
XML files are stored. For buttons ImageButton were used. For
XML to retrieve the image that wanted to apply, the image had
to be saved under the drawable folder, as a .png (Portable
Network Graphics) format.

Under the values directory values of strings are stored; for
example the string “Connect” that want to appear in the menu
bar etc. or the values of the background color. They can be
retrieved either by XML source code or Java source code.

In the menu directory and more specific in the menu.xml file,
the menu items are defined. “Instead of building a menu in your
activity's code, you should define a menu and all its items in an
XML menu resource. You can then inflate the menu resource
(load it as a Menu object) in your activity or fragment.” **

For the Connect dialog two EditText objects were used to act as
an input method for the IP and the communication port. Also
there are two buttons; the Connect and the Close. %

22 The functions that are running with the onClick Command are described in Chapter 3.5

21

Connect with the Robot

1P| 192.168.2.102 | Port:| 2000 |

e e

Figure 23: Connect Dialog

By adding the Close button, is given has the ability to close the window without connecting to the robot.

In the main_activity.xml file the visual structure of the user interface is defined. The color of the
background, the layout of the interface (Linear/Grid/Relative), the buttons and their positions are
determined in the layout file.

Every component has to have values; most important one is the ID. The id of the component is
described by the command: android:id="@+id/id_of the element".

Also the background, the style and size are determined the same way. As can be seen the values are
changing due to the type of the component. A button cannot have the same values as a Text View.

In Figure 24 a small example of the main_activity.xml source code is given.

22

m ConnectTab.java (m TepClient.java (.g RPE& Manifest (.g *main_activityxml &3 13 connect.xml 1”1 =0
=

1= <Relativelayout xmlns:android="http://schemas.android.com/apk/res/android” -
wmlns:tools="http://schemas.android. com/tools"™ N
android:layout_width="match_parent”
android:layout_height="match parent™
android:background="@color/back™
android:clickable="trus"
tools:context=".Maindctivity"” >

m

<ImageButton
android:id="@+1id/down™
style="android:attr/buttonStylesmal L™
android:layout_width="wrap_content”
android: layout_height="wrap_content™
android:layout_alignLeft="@+id/up"
android:layout_alignParentBottom="true"
android:layout_marginBottom="2Idp"
android:background="@color/back™
android:clickable="true"”
android:src="@drawable/down" />

<ImageButton
android:id="@+id/ right”
style="?android:attr/buttonstylesmall™
android:layout_width="wrap_content”
android:layout_height="wrap_content™
android:layout_above="{g+1id/down"
android:layout_alignParentRight="true”
android:layout_marginRight="44dp"
android:background="@color/back”
android:clickable="true"”
android:src="gdrawable/right" />

<TextView
android:id="g+id/move text"”
android:layout width="wrap_content”
android:layout_height="158dp"
android:layout_alignParentTop="true"”
android:layout_alignRight="g+id/right"”
android: layout_marginTop="45dp"
android:clickable="false"

4
Graphical Layout | |5 main_activity.xml‘

Figure 24: Screenshot from main_activity.xml file

3.4 TCP Socket Programming

To establish a connection between the robot and the Android device, a TCP Socket has to be
programmed to run as a Thread in the Android application. In order for the application to grant access to
the WIFI module of the device, a uses-permission has to be added in the manifest file.

36 <uses-permission android:name="android.permission. INTERNET" />
37e <uses-permission android:name="android.permission.ACCESS NETWORK _STATE™ >
38 </uses-permissionz

Figure 25: Screenshot of the manifest.xml file

For the Socket to run as a Thread, the TcpClient class has to extend the Thread class:

16 public class TepClient extends Thread {

23

The reason for implementing the Thread is so that the main activity will be able to run more than two
different instances at the same time, each one for specific purposes.”

To establish the connection the server’s IP and communication Port have to be known

private void connectToServer() throws I0Exception{

if (socket == null || !socket.isConnected()){
ConnectTab.msgToMain("", Control Panel.WAIT);
socket = new Socket();
socket.connect(new InetSocketAddress{conlp,conPort), 4808);
LAif
} fmethod

Figure 26: Connect to Server Function

With the command socket.connect (new InetSocketAddress (conlp, conPort), 4000); a request for
connection is send to the server where IP = conlP and Port = conPort, with a TIMEOUT set at 4000
milliseconds, just to avoid wrapping the application into an infinite loop waiting for the accept message
from the server.

Since the request of the client may fail, it is advised to “catch” the error which occurred.

public void run(){
try{

connectToServer();
mRun = socket.isConnected();
outBuffer = "";
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(soccket.getOutputStream())), true);
in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
if (socket.isConnected()){

outBuffer = "here"; //to enable the wifi
out.println(outBuffer);
out.flush();

outBuffer "y

}catch (UnknownHostException e) {

ConnectTab.msgToMain("", Control_Panel.UNKNOWN_HOST);
}catch(IOException e){

Log.e("I0Exception”,"Connect to Server”™, e);
}catch(Exception e){

Log.e("Exception Error”,"Connect to Server”, e);

y
Figure 27: Threads run () function

If errors don’t occur the program continues by creating a reading and a writing buffer to receive and
transmit messages from and to the server. The application must be open to receive or transmit messages
all the time while the connection is still active. The process can as well through some errors so it has to be
surrounded by a try... catch block.

2 Source: http://goo.gl/sajLo

24

P

if(in.ready()){

receivedMsg = in.readLine();

Log.1("Msg from Server™, receilvedMsg);

Control Panel.reMsg = receivedMsg;

ConnectTab.msgToMain{"", Control Panel.MESSAGE RECEIVED);
Hf(outBuffer != ""){

out.println{outBuffer);

out.flush();

outBuffer = "";

Figure 28: Reading/Writing Code

When a message is received, the class sends another message to the handler in the main class, informing
him about the received message. The received message runs through control commands and based on the
content of the message, the handler displays different kind of messages.

tcatch (InterruptedException e) {

Log.e("Interrupted Exception”,"Receive/Transmit
}catch (IOExcepticn e) {

Log.e("I0Exception™,"Receive/Transmit"”, e);
b /ity

I H

¥/ fmethod

Figure 29: Try...Catch Block

In the Menu tab there is the Menu Item Disconnect, which when pressed the client disconnects from the
server. So this function has to be developed in the TcpClient class:

mRun = false;|
new Thread(new Runnable() {
@override
public woid run() {
try {
socket.close();
} catch (IOException e) {
}__." __." tr ::."
Y run

y)-runi);

Y/ method

Figure 30: Disconnect From Server

25

3.5 Connect Tab

The Connect Tab class is called from the Control Panel class when the Menu Item Connect is pressed. It
creates a dialog box that sets as a layout the connect.xml layout. After creating all the components of the
dialog box the command connect.show() is needed so that the user can see it. It also creates a TcpClient()
instance which will run only if the Connect button is pressed.

client = new TcpClient();

connect = new Dialog(context);
cannect.setContentView(R. layout. connect);
connect.setTitle("Connect with the Robot™);
createButtons(context);

connect.show();

Figure 31: Connect Tab (1) - Source Code

When either one of the buttons is pressed, control commands are running checking the state of the
socket. The possible states are a) equal to null or not and b) connected or not to a server. When the
Connect button is pressed it proceeds to connect with the server/robot only after making sure that the IP
and the Port number are correct (accuratelp() and accuratePort() methods).

if(accuratelp(ipadd) && accuratePort(conPort)){

client.setConIp(ipaAdd);

client.setConPort{conPort);

Log.i("before”,5tring.valueldf(client.mRun));

new connectTask().execute("");

f/the function after that is not returning here it keeps running!!!
telse {

msgToMain("" , Control_Panel.MESSAGE_ERROR_ADDRESS);

Figure 32: Connect Tab (2) - IP& Port control

The function below returns true if the IP has the correct format for a typical IPv4 address.

private boolean accurateIp(String ip) {
String regularExpression = "(\Vud+) OV) OV OO0 OO OV (Od+)
if (ip.matches(regularExpression)) {
return true;

¥

return false;

Figure 33: Connect Tab (3) - accurate IP function

26

And this is the output:

Connect with the Robot

1P:[192.168.2.102 | Port:[2000 |

comea | [e |

Figure 34: Connect Tab (4)

When the Connect button is pressed and the IP and Port number are correct it will call and execute the
connectTask () method. This method extends the Asynchronous Task class. “The AsyncTask enables
proper and easy use of the Ul thread. This class allows performing background operations and
publishing results on the Ul thread without having to manipulate threads and/or handlers. AsyncTask is
designed to be a helper class around Thread and Handler and does not constitute a generic threading
framework.” **

24 Source: http://goo.gl/Kz3Qh

27

public class connectTask extends AsyncTask<String, String, TepClient> {

@override
protected TcpClient doInBackground({String... params) {

Iy Auto-generated method stub

Log.i("before in the execute task",5tring.valuwelf({client.mRun)};
client.run();|

return null;

Figure 35: Connect Task - AsyncTask

3.6 Main Activity

In the Main Activity, or how it’s called in this project Control Panel, the main user interface is built
using Java programming language. By starting the application the onCreate method is called. “It is where
the normal static set up is done: create views; bind data to lists, etc. This method also provides a Bundle,
containing the activity's previously frozen state, if there was one. "%

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.main_activity);
moveText = (TextView)findViewById(R.id.move text);
receiveText = (TextView)findviewById(R.id.receive text);
up = (ImageView) findViewById(R.id.up);
down = (ImageView) findViewById(R.id.down);
left = (ImageView) findviewById(R.id.left);
right = (ImageView) findViewById(R.id.right);
up.setoOnClickListener(this);
down.setOnClickListener(this);
left‘setOHCIickListener(this)ﬂ
right.setOnClickListener(this);
batterylLevel = (ProgressBar) findvViewById(R.id.battery);

Figure 36: onCreate method - Control Panel

Before the handler is set, it has to be sure how many messages it will handle and for each and every one
of those messages, to answer to the question: what is it for?
For that reason the messages are set as integers at the begging of the class

% Source : http://goo.gl/jfdL

28

protected
protected
protected
protected
protected
protected
protected
protected
protected

protected

2

Using a “switch () ...case ...:
commands will be executed.

static

static

static

static

static

static

static

static

static

static

final

final

final

final

final

final

final

final

final

final

int

int

int

int

int

int

int

int

int

int

MESSAGE ERROR_ADDRESS = @;
MESSAGE_RECEIVED = 13
CON_NOT_ESTABLISHED = 2;
CON_ESTABLISHED = 3;
CON_NOT BUT CLOSE = 4;
WAIT = 5;

CLOSE = &3]

CON_LOST = 7;
UNKNOWN_HOST = 8;

BATTERY = 9,

Figure 37: Handler Messages

statement the correct message can be chosen and the

case CON NOT_ESTABLISHED:
ConnectTab.connect.hide();
createErDialog(" \t\thENVE

break;
case CON_ESTABLISHED:

Connecticn Not Establishedin™ +
"VEvEZEVEPLlease open Connecticn Tab and try again);

ConnectTab.connect.hide();
createDialog("\EANEVENE

"\th\t\t\tYou can control your Roboter™);
connecticnMenu. setEnabled(false);

disconnectMenu.setEnabled(true);

break;

case CON NOT BUT CLOSE:
ConnectTab.connect.dismiss();

tab = null;

Connection Established'.n™ +

respective

Toast.mokeText({context, "You didn't connect™, Toast.LENGTH SHORT).show();

break;
case hWAIT:

progressBar = new ProgressDialog(context);

progressBar.setCancelable(true);

progressBar.setMessage("Wait for cnnnektiun aom T
progressBar.setProgressStyle(ProgressDialog.STYLE SPINNER) ;
progressBar.show();

break;

The creation of the Options Menu was based on a similar scenario. Every time one of the menu items is
selected it had to start or end an action but not without taking under consideration some concepts. For
example, the user cannot connect again to a server/robot, so when the connection is established the
Connect menu item should be disable, or before connecting a user cannot disconnect. An act like that

could cause the application to crash.

29

public boolean onOptionsItemSelected(Menultem item) {
switch (item.getItemId()) {
case R.id.menu_connect:
receiveText.setText (CLEAR);
msgDisplay(CLEAR);
tab = new ConnectTab(context);
F= true;
break;
case R.id.menu_help:
Builder builder = new AlertDialog.Builder(this};
builder.setMessage(R.string.help_text);
builder.setTitle("Informaticn™);
builder.setCancelable(false);
builder.setPositiveButton(R.string.ok, new dialogOkClick());
AlertDialog dialog = builder.create();
dialog.show();
break;
case R.id.menu disconnect:
if (tab.client.socket != null) {
tab.client.disconnectSocket();
tab.client.socket.equals(null);
ConnectTab.connect.dismiss();
tab = null;
F = false;
¥
Toast.makeText (context, "You disconnected from the robot/server™, Toast.LENGTH SHORT).show();
msgDisplay(“You disconnected from the robot/server™);
receiveText.setText("You disconnected from the robot/server™);
disconnectMenu. setEnabled(false);
connectionMenu. setEnabled(true);
break;
case R.id.menu_close:
this.finish();
}

Figure 38: Selection a menu item

Choosing the Help menu item, creates a dialog,

giving instructions for the application formation

From the menu press Connect. A Connect Dialog will pop-
up. Insert the robots IP address and communication Port.
In case the attempt to connect fails a message will appear.
Since you are connected you can receive messages and
send commands to the connected robot, plus the Connect
Menu will be disabled to avoid the application to crash.If
you want to disconnect from the robot press from the
menu Disconnect.

OK

Figure 39: Help Dialog

By pressing the Disconnect menu item the method disconnectSocket() is called and the user terminates
the communication between the client and the server. The application informs the user that he is now
disconnected and pressing the moving buttons won’t call an action.

30

n Robot Controler Connect Help

You disconnected from the robot/ You disconnected from the robot/
server server
Battery
- i » |]
You disconnected from the robot/server o £ . &

Figure 40: After the user disconnected

The notification dialog which informs the user that he has to connect for the buttons to work is
displayed.

Information

Connect First

Figure 41: After Disconnect is pressed

31

3.6.1 Different Messages Scenarios

u Robot Controler Help Disconnect =
Battery LOW!!!! Moving Backward
Battery
(
-
4 (P

‘ »

v

Figure 42: Low Battery message

n Robot Controler Help Disconnect

Moving Foward

Battery

Becarefull obstacles ahead
)

Figure 43: Obstacle detected

32

u Robot Controler Help Disconnect

Hello User! Moving Foward

N

Battery

Bumper was Hit |
S A——

Figure 44: Bumper Hit

Information

Couldn't connect with host
Wrong Ip or Port

Figure 45: Wrong IP or Port number

33

Limitations

For the project to be completed the parts of the robot had to be ordered. Unfortunately the RP6v2 M256
WIFI expansion module’s microcontroller Bootloader that was delivered wasn’t updated to the firmware
version 1.4 that was needed, but had the 1.2 version loaded instead. The Bootloader is a small program
that loads the operating system into the computer’s memory when the system is booted and also starts the
operating system.” The 1.2 version supports WIFI communication but cannot communicate with the
RobotLoader v.2 that we needed in order to configure the module.

As it was suggested by the support group of Arexx (the company that produces them), the bootloader
could be updated via an ISP programmer and the use of Atmel Studio?’. They provided me with the
Bootloader v1.4 and an instruction manual that was followed in detail.

Even though the update was successful the problems continued. . The communication between PC-
Robot (and Application-Robot) was established, the WIFI uploads were successful, but the robot wasn’t
listening to commands that were inserted to the WIFI terminal (fifth tab of the RobotLoader). Since | had
limited time to fix the problem I tried my best but | failed. It was suggested the module to return to the
manufacturer and be updated properly to the latest version (Bootloader).

26 Source:
2T Source:

34

http://www.webopedia.com/TERM/B/boot_loader.html
http://www.atmel.com/microsite/atmel_studio6/

Conclusion

As it was stated in the Introduction this thesis has two parts, the programming of the robot and the
developing of the Android application.

The robot’s manufacturer provides good function libraries and a big selection of examples written in C
programming language, which I took under consideration in order to create my own source code. Even in
theory the program seems to work and it is logically correct, the WIFI module’s problem didn’t make it
possible to test it in real action.

Developing the application in Java Android didn’t come easy as well. Android developing is a big
chapter in the world of developing and it certainly has a lot of choices. The biggest challenge for this
project was to predict all the possible states. Without having a robot to connect to, the testing was
happening with a server application, which cannot always give us the correct responds. In case the
application would be tested with another robot few modification and addition are needed. Even if the
robot will be programed to act like the RP6 that we used, it will probably have additional parts that it
would best to put in use. In that case the application has to be modified to meet the user’s demands.

35

Discussion

Ideas on how the project can evolve:

e Try to build a WLAN module using an Arduino board and an XBee wireless communication
module. Arduinos are programmable in C language if the correct bootloader is uploaded to them.
Using the Arduino board as the master device and the XBee as the WLAN module for
communicating via a WIFI network, a similar module can be build.

e The Android Application was built to be versatile and adjust to control other robots like the
humanoid robot NAO or AR Drone. In the application can be added a choice of robots. Instead of
programming the other robot to act upon the same commands, the developer can program a
second different controlling scenario and the user can choose at the beginning which one he
wants.

. Robot Controler

Figure 46: Suggestion

36

e Buying some more RP6 expansion modules (like robotic arm), using a soldering iron adding
more sensors on the main board (or the experimental board) and expand the abilities of the robot
and the Android Control Device. (Something that would need the M256 module repaired first).

37

References

e Lars Voggela Android Tutorials: http://www.vogella.com/articles/Android/article.htm!
e Arexx RP6 Official Website: hitp://www.arexx.com/rp6/html/en/index.htm

e Android for Developers: hitp://developer.android.com/develop/index.html

e Android API References: hitp://developer.android.com/reference/packages.html
e Cygwin official website: http://www.cygwin.com/

e Think Android: hitp://goo.g!/pL730

e Socket Programming Tutorial: http://goo.0l/SRGHE

e YouTube Educational Channel

e Tutorials by Jakob Jenkov: http://goo.gl/HNETX

e Edu mobile Tutorials: http://www.edumobile.org/android/

e O’Reilly Open Feedback Publishig System: http://ofps.oreilly.com

e Oracle Java tutorial : http://docs.oracle.com/javase/tutorial/index.html (Milan, 2009)
e Google web sites: https://sites.google.com/site/microcontrollerprogrammingc/

e Wikipedia: http://en.wikipedia.org/wiki/DBm

e TCP Protocol : http://en.wikipedia.org/wiki/Transmission_Control_Protocol

° Socket: http://docs.oracle.com/javase/tutorial/networking/sockets/

e Atmel Studio: http://www.atmel.com/microsite/atmel studio6/

e Webopedia: http://www.webopedia.com/TERM/B/boot_loader.html

38

http://www.vogella.com/articles/Android/article.html
http://www.arexx.com/rp6/html/en/index.htm
http://developer.android.com/develop/index.html
http://developer.android.com/reference/packages.html
http://www.cygwin.com/
http://goo.gl/pL73O
http://goo.gl/SRGbE
http://goo.gl/HNEfX
http://www.edumobile.org/android/
http://ofps.oreilly.com/
https://sites.google.com/site/microcontrollerprogrammingc/
http://en.wikipedia.org/wiki/DBm
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://docs.oracle.com/javase/tutorial/networking/sockets/
http://www.atmel.com/microsite/atmel_studio6/
http://www.webopedia.com/TERM/B/boot_loader.html

Bibliography

Embedded C Programming the Microchip Pic [Book Section] / auth. Richard H. Barnett Larry D.
O'Cull,Sarah A. Cox // Embedded C Programming the Microchip Pic / book auth. Richard H. Barnett
Larry D. O'Cull,Sarah A. Cox. - NY : Clifton Park : Thomson/Delmar Learning,, 2004..

Lerning Java, 3rd Edition [Book Section] / auth. Patrick Niemeyer Jonathan Knudsen // Lerning Java,
3rd Edition / book auth. Patrick Niemeyer Jonathan Knudsen. - [s.l.] : O'Reilly, 2005.

PIC Microcontrollers Programming in C [Book Section] / auth. Milan Verle // PIC Microcontrollers
Programming in C / book auth. Milan Verle. - [s.I.] : mikroElektronika, 2009.

RP6v2 Control M256 WIFI [Book Section] / auth. Engineering Arexx // Instruction Manual / book
auth. Engineering Arexx. - [s.l.] : Arexx, 2012.

39

