
 

 
 

TEI of CRETE 

Department of Applied Informatics and 

Multimedia 

  

 

 

 

 

 

Fachhochschule Düsseldorf 

University of Applied Sciences

 
 

Thesis 

 

“Σχεδιασμός και υλοποίηση μιας γενικής απομακρυσμένης ελεγκτικής διεπαφής 

για SDK-ρομποτικά συστήματα”  

 

 

Author: Minardou Aikaterini  

2261 

Date: 10/04/2013 

 

  

 

 

Professors: Prof. Dr. rer. nat.  Gundula Dörries, 

Prof. Dr. Eng. Andreas Vlissidis



 
i 

  

  

A big “Thank you” to those 

who believed in me and kept 

me going 



 
ii 

  

Abstract 
 

The purpose of this project was to create a control interface for a specific robot, which with some 

modification can apply and control other robots as well. The robot that was used for this project was an 

Arexx RP6 equipped with the RP6v2 M256 Wi-Fi expansion module in order to expand the module 

capabilities to connect with a WI-FI network. Since smartphones and tablets are becoming a part of 

people’s daily life and the expansion of their abilities/use is a constant research subject, developing the 

control interface as a smart device application was the smart thing to do.   

The thesis is divided into two parts, which encompass the programming of the robot and the 

development of the smartphone application. The robot’s microcontrollers (Main Boards ATMEGA32 and 

the WI-FI module ATMEGA2560) are programmable in C language. The main objective was to enable 

the robot to listen to every command that was sent via the network, received by the WLAN module and 

sent to the control interface messages like “Obstacle ahead”, “Left(/Right) Bumper was hit” and the 

values from the light sensors. The controlling interface was developed for Android Devices in Java 

Android and provides a user interface for interacting with the robot. The Control Interface is quite 

versatile and with a few modifications other robots, like the humanoid robot NAO or the helicopter 

AR.Drone, can be programmed and controlled by it. 

 

  



 
iii 

  

 

Abstract (Ελληνικά) 
 

Ο σκοπός αυτής της εργασίας ήταν να δημιουργηθεί ένα περιβάλλον ελέγχου για ένα συγκεκριμένο 

ρομπότ, το οποίο με μερικές αλλαγές μπορεί να χρησιμοποιηθεί για τον έλεγχο άλλων ρομποτικών 

συστημάτων. Το ρομπότ που χρησιμοποιήθηκε για την εργασία αυτή ενα Arexx RP6 εξοπλισμένο με μία 

RP6v2 M256 Wi-Fi μονάδα επέκτασης, προκειμένουν να επεκτείνει τις δυνατότητες της μονάδας και να 

μπορεί να συνδεθεί με ενα δίκτυο μεσω WIFI. Δεδομένου οτι τα έξυπνα τηλέφωνα (smartphones) και οι 

tablets συσκευές, έχουν γίνει μέρος της καθημερινότητας μας και η συνεχής προσπάθεια επέκτασης των 

δυνατοτήτων και της χρήσης τους εχει  γίνει ένα βασικό θέμα έρευνας, το να αναπτυχθεί αυτο το 

περιβάλλον ελέγχου για μια τέτοια συσκευή ήταν η καλύτερη δυνατόν κίνηση. Η πτυχιακή χωρίζεται σε 

δύο μέρη, τα οποία περιλαμβάνουν τον προγραμματισμό του ρομπότ και την ανάπτυξη της smart 

συσκεύης. 

Οι Μicrocontrollers του ρομπότ (βασικής μονάδας ATMEGA32 και του WI-FI module ATMEGA2560) 

προγραμματίζονται σε C γλώσσα προγραμματισμού. Ο κύριος στόχος ήταν να μπορεί το ρομπότ να 

ακούσει κάθε εντολή που εστάλη μέσω του δικτύου, η οποία ελήφθη από τη μονάδα WLAN και να 

«απαντάει» στην συσκεύη με μηνύματα όπως «Εμπόδια Μπροστά» , «Χτυπήθηκε ο Αριστερός/Δεξής 

Αισθητήρας», τις τιμές τους αισθητήρες φωτός καθώς και ενημερώσεις για το υπόλοιπο της μπαταρίας. 

Η εφαρμογή αναπτύχθηκε για Android συσκευές σε Java γλώσσα προγραμματισμού και παρέχει στον 

χρήστη ένα περιβάλλον εργασίας για την επικοινωνία με το ρομπότ. Η εφαρμογή είναι αρκετά ευέλικτη 

και με μερικές αλλαγές μπορεί να χρησιμοποιηθεί και για άλλα ρομπότ όπως το ανδροΐδές NAO ρομπότ 

ή το AR Drone τα οποία μπορούν να προγραμματιστούν και να ελεγχθούν από αυτή. 

 

 

 

 

 

 

 

 

 

 

 

 



 
iv 

  

 

 

 

 

 

 

 

 

 

 Table of Contents 
Abstract ...................................................................................................................................................... ii 

Abstract (Ελληνικά) .................................................................................................................................. iii 

Introduction ................................................................................................................................................ 1 

Chapter 1: The Robot ................................................................................................................................. 3 

1.1 General for the Robot ....................................................................................................................... 3 

1.2 Robot’s Components ........................................................................................................................ 4 

1.3 RobotLoader ..................................................................................................................................... 5 

1.4 Base Robot Programming ................................................................................................................ 6 

1.4.1 Master/Slave Communication Protocol ..................................................................................... 6 

1.4.2 I
2
C Slave Program ..................................................................................................................... 6 

1.4.3 Compile the Source Code .......................................................................................................... 6 

1.4.4 Upload the HEX file ................................................................................................................ 10 

Chapter 2: The WIFI Expansion Module ................................................................................................. 11 

2.1 General for the WIFI Module ......................................................................................................... 11 

2.2 WIFI Module’s Components .......................................................................................................... 12 

2.3 WIFI Configuration ........................................................................................................................ 13 

2.4 WIFI Module Programming ........................................................................................................... 14 

2.4.1 Included libraries ..................................................................................................................... 14 

2.4.2 WiFi Control Function ............................................................................................................ 14 

2.4.3 Main Function ......................................................................................................................... 16 



 
v 

  

2.5 Compile the Source Code ............................................................................................................... 16 

2.6 Connection and Upload .................................................................................................................. 17 

Chapter 3: The Android App .................................................................................................................... 19 

3.1 About the Application .................................................................................................................... 19 

3.2 Few words about Java Android ...................................................................................................... 20 

3.2.2 Development Tools ................................................................................................................. 20 

3.3 Design ............................................................................................................................................. 21 

XML Source Code............................................................................................................................ 21 

3.4 TCP Socket Programming .............................................................................................................. 23 

3.5 Connect Tab ................................................................................................................................... 26 

3.6 Main Activity ................................................................................................................................. 28 

3.6.1 Different Messages Scenarios ................................................................................................. 32 

Limitations ............................................................................................................................................... 34 

Conclusion ................................................................................................................................................ 35 

Discussion ................................................................................................................................................ 36 

References ................................................................................................................................................ 38 

Bibliography ............................................................................................................................................. 39 

 

 

  



 
vi 

  

Figure 1: Design ......................................................................................................................................... 2 

Figure 2: RP6 Robot Source: http://goo.gl/TruQX .................................................................................... 3 

Figure 3: RP6 Robot, Source: http://goo.gl/dVJLc .................................................................................... 4 

Figure 4: RP6 Robot Loader ...................................................................................................................... 5 

Figure 5: Status box .................................................................................................................................... 5 

Figure 6: Screenshot from makefile (1) ...................................................................................................... 7 

Figure 7: Screenshot from makefile (3) ...................................................................................................... 7 

Figure 8: Cygwin Screenshot (1) ................................................................................................................ 8 

Figure 9: Cygwin Screenshot (2) ................................................................................................................ 9 

Figure 10: Cygwin Screenshot (3) .............................................................................................................. 9 

Figure 11: Add/Select Box ....................................................................................................................... 10 

Figure 12:M256 WIFI Expansion Module Source: http://goo.gl/o6q5h .................................................. 11 

Figure 13: Network representation; Source: RP6 M256 WIFI Module manual ...................................... 12 

Figure 14: WIFI Configuration Dialog..................................................................................................... 13 

Figure 15: RP6M256 Libraries ................................................................................................................. 14 

Figure 16: Incoming line .......................................................................................................................... 14 

Figure 17:WIFI Control State ................................................................................................................... 15 

Figure 18:Main Function's loop ............................................................................................................... 16 

Figure 19:WIFI Remote- Makefile ........................................................................................................... 17 

Figure 20: WIFI Loader ........................................................................................................................... 18 

Figure 21: Application .............................................................................................................................. 19 

Figure 22: Eclipse Package Explorer ....................................................................................................... 21 

Figure 23: Connect Dialog ....................................................................................................................... 22 

Figure 24: Screenshot from main_activity.xml file .................................................................................. 23 

Figure 25: Screenshot of the manifest.xml file ........................................................................................ 23 

Figure 26: Connect to Server Function .................................................................................................... 24 

Figure 27: Threads run () function ........................................................................................................... 24 

Figure 28: Reading/Writing Code ............................................................................................................ 25 

Figure 29: Try...Catch Block .................................................................................................................... 25 

Figure 30: Disconnect From Server ......................................................................................................... 25 

Figure 31: Connect Tab (1) - Source Code .............................................................................................. 26 

Figure 32: Connect Tab (2) - IP& Port control ........................................................................................ 26 

Figure 33: Connect Tab (3) - accurate IP function ................................................................................... 26 

Figure 34: Connect Tab (4) ...................................................................................................................... 27 

Figure 35: Connect Task - AsyncTask ..................................................................................................... 28 

Figure 36: onCreate method - Control Panel ............................................................................................ 28 

Figure 37: Handler Messages ................................................................................................................... 29 

Figure 38: Selection a menu item ............................................................................................................. 30 

Figure 39: Help Dialog ............................................................................................................................. 30 

Figure 40: After the user disconnected ..................................................................................................... 31 

Figure 41: After Disconnect is pressed .................................................................................................... 31 

Figure 42: Low Battery message .............................................................................................................. 32 

Figure 43: Obstacle detected .................................................................................................................... 32 

Figure 44: Bumper Hit ............................................................................................................................. 33 

file:///C:/Users/Kate/Dropbox/FH/Thesis/Thesis.docx%23_Toc353326378
file:///C:/Users/Kate/Dropbox/FH/Thesis/Thesis.docx%23_Toc353326387
file:///C:/Users/Kate/Dropbox/FH/Thesis/Thesis.docx%23_Toc353326391
file:///C:/Users/Kate/Dropbox/FH/Thesis/Thesis.docx%23_Toc353326395
file:///C:/Users/Kate/Dropbox/FH/Thesis/Thesis.docx%23_Toc353326412


 
vii 

  

Figure 45: Wrong IP or Port number ........................................................................................................ 33 

Figure 46: Suggestion ............................................................................................................................... 36 

  



 
1 

  

Introduction 
 

 

The purpose of this project was to create a control interface for the Arexx RP6 robot, which with some 

modifications it can be applied and controlled other robots of the same class as well. The base robot 

doesn’t support WIFI connectivity; it is on the other hand possible to control it via a TV Remote control 

since it can receive IR codes. In order to expand its capabilities an expansion module is attached to the 

main board, the RP6v2 M256 Wi-Fi module. With a second microcontroller ATMEGA 2560 and a 

separate 802.11 b/g WLAN module is possible to connect to a WIFI network, receive and transmit 

commands via the WLAN module while the microcontroller, connected via I
2
C bus to the main robot 

and/or other expansion modules, act as a master (from the master/slave communication protocol) and 

control the slaves (other components.). 

The robot’s microcontrollers are programmable in C language and the manufacturer (Arexx and Conrad 

Electronics) provide a big library of functions, for the main robot and the expansion modules, and a 

software called RobotLoader, a Java platform application that allows the user to upload programs on the 

microcontroller, either via the PC USB Interface (mainly for the main board) or upload it wiresly. In 

company with the previous components examples are provided for the better understanding of the 

functions. One of them is a WIFI Remote example that controls the robot by sending commands through 

the WIFI terminal of the RobotLoader. 

 Since smartphones and tablets are becoming a part of people’s daily life and the expansion of their 

abilities/uses is a constant research subject, developing the control interface as a smart device application 

is the best approach.   

The thesis is divided into two parts, which encompass the programming of the robot and the 

development of the smartphone application. The main objective was to program the robot to listen to 

every command that was sent via the network, received by the WLAN module and reply to the control 

interface messages as “Obstacle ahead”, “Left(/Right) Bumper was hit”, information about the light 

density in the area from the light sensors and constantly updates for the battery level.  

 The controlling interface was developed for Android Devices in Java Android and provides a user 

interface for interacting with the robot. According to the received messages the application has to be 

capable to inform the user for every one of them. The Control Interface is quite versatile and with a few 

modifications other robots, like the humanoid robot NAO or the helicopter AR.Drone, can be 

programmed and controlled by it.  

The WLAN module of the RP6’s expansion module is configures to have an IP and a communication 

Port. In order to receive commands from another device (in this case the Android application) the device 

has to be programmed as a TCP Socket. The Transmission Control Protocol (TCP) is one of the two 

original core protocols of the Internet protocol suite (IP), and is so ubiquitous that the entire suite is often 

called TCP/IP. TCP provides reliable, ordered, error-checked delivery of a stream of octets between 

programs running on computers connected to an intranet or the public Internet. 
1
A socket is one end-

                                                      

1
 Source: http://en.wikipedia.org/wiki/Transmission_Control_Protocol 

http://en.wikipedia.org/wiki/Transmission_Control_Protocol


 
2 

  

point of a two-way communication link between two programs running on the network. Socket classes are 

used to represent the connection between a client program and a server program.2 

 

 

 

 

Figure 1: Design 

  

                                                      

2
 Source: http://docs.oracle.com/javase/tutorial/networking/sockets/ 

http://docs.oracle.com/javase/tutorial/networking/sockets/


 
3 

  

Chapter 1: The Robot 
 

1.1 General for the Robot 
 

The robot that was used in this project is an Arexx RP6 Robot, which was created by Arexx in 

collaboration with Conrad Electronics. It is a low cost autonomous robot, equipped with an ATMEGA32-

8 bit RISC (Reduced instruction set computing) Microcontroller. Programmable in C language, it is 

accompanied with function libraries, a very extensive manual and lots of example programs, which give 

the opportunity to the user to better understand the capabilities of the Robot.  

Using the I
2
C (Inter-Integrated Circuit) Bus and master-slave communication protocol-based programs, 

expansion modules can either control the Robot or be controlled by it.
3
 It is powered by 6 1.5Volt 

batteries, stored under the main board, which if are NiHM can be charged via the charger connector. 

 

 

 

Figure 2: RP6 Robot Source: http://goo.gl/TruQX 

 

                                                      

3
 More information on Chapters 1.3 and 2.4 

http://goo.gl/TruQX


 
4 

  

1.2 Robot’s Components 
 

As it can be seen in the following figure the Robot offers a big variety of components. More Sensors can 

be added either by soldering them in the main board or by soldering them on the expansion module 

(experimental board)
4
.  

 

 

Figure 3: RP6 Robot, Source: http://goo.gl/dVJLc 

 

Since the purpose of the project is controlling the robot, the robot has to be programmed to send back 

feedback regarding its condition; for example the user must be notified if an obstacle was detected or if a 

bumper was hit. The sensors that are going to be used are: 

 Light Sensors 

 Bumper Sensors 

 IR(InfRared) Sensors 

 Commands to request the Battery Level 

 

                                                      

4
 Expansion Board: more info http://www.arexx.com/rp6/html/en/acc.htm 

http://goo.gl/dVJLc


 
5 

  

1.3 RobotLoader 
 

For uploading the program to the robot the manufacturer provides us with Software called Robot Loader 

Version 2.4.
5
 The software is developed in Java programming language and it “has been developed to 

allow easy access and program upload to the robot’s microcontroller and all its expansion boards”
6
. 

Connect the Robot with the PC via the PC communicator port. When the suite recognizes and displays the 

robot as a possible connection and we have spotted the USB port that is connected to the connection van 

be established by pressing the Connect button. 

 

Figure 4: RP6 Robot Loader 

 When the connection is established a “success” message is 

displayed in the Status box:  

                                                      

5
 Can be downloaded http://www.arexx.com/rp6/html/en/software.htm 

6
 Source: http://goo.gl/kP7Pe 

Figure 5: Status box 



 
6 

  

Since the connection is established we can move on with the program upload.  

 

1.4 Base Robot Programming 
 

Not forgetting the fact that the base robot doesn’t have the components to support a wireless 

communication, the base robot has to be programmed after considering the I
2
C communication protocol 

and program it as a slave to respond to the received commands from the master. Such kind of program is 

offered by the manufacturer. 

 

1.4.1 Master/Slave Communication Protocol  

 

Master/Slave Communication Protocol is a model for a protocol which allows one device (master) to 

control one or more devices (slaves).
7
 I

2
C is a protocol that synchronizes the data flow whenever there is a 

change in the bus. Every slave is associated with a byte sequence. The master sends a byte before the 

command to all the slaves and only the slave with the same byte sequence receives and translates the data. 

The other slaves just cancel the communication waiting for another group of data to come. Finally the 

master issues a stop condition to terminate the communication.
8
 

  

1.4.2 I2C Slave Program 

 

The main idea of this program is: a master device controls the functionality of the robot and sends 

commands to the slave via the I
2
C Bus port. For example the master transmits the Command “Move 

fwd”; the slave receives the message and acts accordingly. Naturally those tasks can be interrupted if for 

example, an obstacle is detected ahead or a bumper was hit. Furthermore “information” functions are 

running as well in the same loop, sending the master information that was gathered by the Light Sensor. 

 

1.4.3 Compile the Source Code  

 

The ATMEGA32 Microcontroller that the RP6 has embedded reads only hexadecimal type of files. The 

programs are written in C using Programmer’s Notepad 
9
 or Kate Editor

10
.Using Cygwin

11
 (or the 

                                                      

7
 Source: http://goo.gl/kP7Pe 

8
 Embedded C Programming the Microchip Pic von Richard H. Barnett,Larry D. O'Cull,Sarah A. Cox 

9
 Website : http://goo.gl/GwjW 

10
 Website : http://goo.gl/KIUYD 

11
 Website : http://goo.gl/MX63 



 
7 

  

Terminal if using Linux) we compile and generate the .hex file that the microcontroller reads with the 

make command. 

Using the make command the compiler generates the files that are instructed in the makefile. One of 

them is the hexadecimal file that we need to upload to the Microcontroller. In the official documentation, 

it is suggested to use an already created makefile for the developing of a new program. The creation of a 

makefile is too complicated, but using one that is already made and by simply applying some small 

changes, that we will see next, makes it easier.  

According to the name that the .c format makefile has, only one thing has to be changed
12

; the Target:   

 

 
Figure 6: Screenshot from makefile (1) 

   

The Target has to be changed to the same name as our .c file, for example if our file is called 

RP6Base_I2CSlave the Target point changes to TARGET = RP6Base_I2CSlave. No Spaces and no 

extension .c are required, since this command:  follows.  

This part must not change as well:  

 

 

Figure 7: Screenshot from makefile (3) 

 

These lines provide the path for the RP6 Libraries. 

 

After all the steps that are mentioned above are completed, we can open Cygwin (or Linux Terminal) 

and run the make all command: 

 

                                                      

12
 Only and if necessary!  



 
8 

  

 

Figure 8: Cygwin Screenshot (1) 

 

Cygwin will inform the user that the compile has finished. If an error occurs during the process, it will 

point out the line number, the compiling stopped and what is the error. 

 



 
9 

  

 

Figure 9: Cygwin Screenshot (2) 

The files that where created can be viewed with the ls command.  

 

Figure 10: Cygwin Screenshot (3) 

The hexadecimal can be located in the results. 



 
10 

  

 

1.4.4 Upload the HEX file 

 

Going back to the Robot Loader, in the “Add/Select Hexfile” box we can  locate the produced .hex file 

then select it and press the upload button under the “Upload to Target” box. 

                

Figure 11: Add/Select Box 

                 

 

When the upload finishes the messages in the status box will change to: “Task Completed successfully”. 

After that the Robot base can be controlled via any master device we connect to it. 

 

 

 

 

 

 

 

 

 

 

 



 
11 

  

 

 

Chapter 2: The WIFI Expansion Module 
 

2.1 General for the WIFI Module 
 

 

Figure 12:M256 WIFI Expansion Module Source: http://goo.gl/o6q5h 

 

 

The RP6v2 M256 WIFI Expansion Module gives the ability to the users to associate a RP6 robot to a 
Wireless computer network. Through this expansion module, Robot’s remote control scenario and 
information exchange with another device, will be possible. 

http://goo.gl/o6q5h


 
12 

  

 
Figure 13: Network representation; Source: RP6 M256 WIFI Module manual 

 
 

2.2 WIFI Module’s Components 
 

Equipped with an ATMEGA2560 Microcontroller, 256 KB flash ROM and 8KB SRAM gives to users 

the opportunity to construct more complex programs. The WLAN functions are managed by the Roving 

Networks RN-171 microchip, an energy efficient 802.11b/g WLAN module with built in processor. It 

also manages the TCP/IP stack and the AES/WAP2 encryption, something that relieves the AVR 

processor and makes the control for the user simpler. After power on, the module can connect 

automatically to the network. For storing bigger amount of data, the module provides a microSD card 

slot, ideal for data logging, mission data or eventually storage of static data that will be retrieved via 

WLAN. The I
2
C bus will be used, to connect the module with the main robot and supply it with power. 

For program upload
13

, the USB PC interface can be used or alternatively the WLAN module can be used 

for the upload, relieving the user from using cables. 
14

  

 

 

 

                                                      

13
 More info Chapter 2.4 

14
 Most of the information were collected from: RP6 M256 WIFI Module manual 



 
13 

  

2.3 WIFI Configuration 
 

As it was mentioned previously, the WLAN module connects to the WIFI network automatically, 

moments after power on. In order for the connection to take place the WLAN module has to be 

configured, and that is possible only by using the USB serial interface. “The settings are stored in the 

WLAN module and remain there after the module has been switched off”
15

 

 

 

Important Fields: 

 SSID: Service Set Identifier or in 

other words the name of a wireless 

network 

 The robot IP has to be static (and 

that has to be configure in the router 

specifications) 

 Set the robot’s IP address 

 Set a communication Port 

 Netmask, Gateway and DNS 

Server have to be set according the 

routers configuration 

 Security Mode: WPA 1 & 2 and 

WEP are supported but WPA is preferred 

for security reasons. 

 WPA Passphrase: the WLAN’s 

password 

By pressing the Configure WIFI Module! button the information is stored and a wireless connection 

can established. 

By opening the Discover WIFI connections the robot can be located and added to the connection list. 

 

 

 

 

 

                                                      

15
 RP6 M256 WIFI Module Manual 

Figure 14: WIFI Configuration Dialog 



 
14 

  

2.4 WIFI Module Programming 
 

2.4.1 Included libraries 

 

The RP6M256Lib.h had to be included so that the functions that give access to the M256 module 

components could be used. The RP6I2CmasterTWI.h was added due to the fact that it grants access to 

functions that initialize the TWI (Two Wire Interface of the I
2
C Bus communication protocol). The 

RP6M256_I2CMasterLib.h allows the program to control the Robot nearly the same as it was with 

RP6Lib. 

. 

 

Figure 15: RP6M256 Libraries 

 

2.4.2 WiFi Control Function 

 

This function allows the remote control of the robot according the received commands from the WLAN 

module. The function that checks if an input is received is the following: 

 

 

Figure 16: Incoming line 

 



 
15 

  

The control that has the biggest priority is the message that certifies the connection between the User 

Interface and the Robot. After that the WLAN state of the RP6 M256 is enabled and the communication 

can start.  

 

Figure 17:WIFI Control State 

 

As a default parameter we use the option of return the WLAN state back to IDLE to save energy, mainly 

because that means that the connection is lost. 

 



 
16 

  

 

 

2.4.3 Main Function 

 

In the main function the robot initializes the connection ports and after that it starts running the main 

loop. It runs the same commands continuously:  

 Informs the user interface about the battery 

level 

(writeIntegerLength_WIFI(adcBat,DEC.4)) 

 Waits for 600 milliseconds (mSleep(600)) 

 Search for obstacles (warnForObs()) 

 Waits for 600 milliseconds (mSleep(600)) 

 Adding delay (in 1ms) so the previous 

commands have the time to complete 

(task_ckeckINT()) 

 Waits for 600 milliseconds (mSleep(600)) 

 Runs the light detection function 

(light_detection()) 

 Waits for 600 milliseconds (mSleep(600)) 

 It needs to be called frequently the  task_I2CTWI 

frequently otherwise the I2C Bus request functions don't work (task_I2CTWI()) 

 Waits for 600 milliseconds (mSleep(600)) 

 And run the behavior Controller function. (behaviourController()) 

 

 

2.5 Compile the Source Code       
 

Following the same procedure as before
16

, we locate the file where the source code is stored, change if 

needed the Target name in the makefile and run the command in Cygwin or Linux Terminal make all. 

 

                                                      

16
 Chapter 1.4.3 

Figure 18:Main Function's loop 



 
17 

  

 
Figure 19:WIFI Remote- Makefile 

 

And the hexadecimal file is produced.  

 

 

2.6 Connection and Upload 
 

 

When the WLAN module connects to the network it transmits UDP packets every few seconds; opening 

the Discover WIFI Devices (Options-> Discover WIFI Devices) we can see that the robot is in that list. 

Click on the Add button and the information of the robot is added to the Select Port box in the second tab 

of the RobotLoader (v2), the WIFI Loader. Pressing the Connect button under the Select Port a 

communication is established between the RobotLoader and the Robot. Under the Status box there is a 

status bar, it is the RSSI (Received Signal Strength Indicator) status bar. It indicates the signal strength 

that was currently received in dBm.  

“dBm (s dBm (sometimes dBmW) is an abbreviation for the power ratio in decibels (dB) of the 

measured power referenced to one milliwatt (mW). It is used in radio, microwave and fiber optic 

networks as a convenient measure of absolute power because of its capability to express both very large 

and very small values in a short form. Compare dBW, which is referenced to one watt (1000 

mW)ometimes dBmW) is an abbreviation for the power ratio in decibels (dB) of the measured power 

referenced to one milliwatt (mW). It is used in radio, microwave and fiber optic networks as a convenient 

measure of absolute power because of its capability to express both very large and very small values in a 

short form. Compare dBW, which is referenced to one watt (1000 mW).”
17

 

                                                      

17
Source:  http://en.wikipedia.org/wiki/DBm 

http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Milliwatt
http://en.wikipedia.org/wiki/Power_(physics)
http://en.wikipedia.org/wiki/DBW
http://en.wikipedia.org/wiki/DBm


 
18 

  

 

Figure 20: WIFI Loader 

 

With the new version of the RobotLoader the upload of the program is possible via the WLAN 

connection. By pressing the upload button (if everything works fine) the message in the status box will 

change to “Task completed…” 

 

 

 

 

 

 

 

 



 
19 

  

Chapter 3: The Android App 
 

3.1 About the Application 
 

What will be created is an Application that gives to the user the needed interface to control the robot. 

The objects that are needed are: 

 Buttons to send the direction commands to the robot  

 A help dialog that gives the user information on how to use the application 

 And last but not least a connection dialog, through which a TCP connection will be established 

between the Android device and the robot. 

The development of the application will be a combination of XML and Java programming. Follows a 

picture of how the application looks like at the final stage of the development. 

 

 

Figure 21: Application 

  

 



 
20 

  

3.2 Few words about Java Android  
 

“Android is an operating system based on Linux with a Java programming interface. The Android 

Software Development Kit (Android SDK) provides all necessary tools to develop Android applications. 

This includes a compiler, debugger and a device emulator, as well as its own virtual machine to run 

Android programs. 

Android allows background processing, provides a rich user interface library, supports 2-D and 3-D 

graphics using the OpenGL libraries, access to the file system and provides an embedded SQLite 

database. 

Android applications consist of different components and can re-use components of other applications. 

This leads to the concept of a task in Android; an application can re-use other Android components to 

archive a task. For example you can trigger from your application another application which has it 

registered with the Android system to handle photos. In this other application you select a photo and 

return to your application to use the selected photo.”
18

 

 

3.2.2 Development Tools 

 

Android SDK 

 

“The Android Software Development Kit (SDK) contains the necessary tools to create, compile and 

package Android application. Most of these tools are command line based. The Android SDK also 

provides an Android device emulator, so that Android applications can be tested without a real Android 

phone. You can create Android virtual devices (AVD) via the Android SDK, which run in this emulator. 

The Android SDK contains the Android debug bridge (adb) tool which allows connecting to an virtual or 

real Android device.”
19

 

 

Android Development Tools  

 

“Google provides the Android Development Tools (ADT) to develop Android applications with Eclipse. 

ADT is a set of components (plug-ins) which extend the Eclipse IDE with Android development 

capabilities. ADT contains all required functionalities to create, compile, debug and deploy Android 

applications from the Eclipse IDE. ADT also allows creating and starting AVDs.  

                                                      

18
 Source: http://goo.gl/9mCsC 

19
 Source : http://goo.gl/9mCsC 



 
21 

  

The Android Development Tools (ADT) provides specialized editors for resources files, e.g. layout files. 

These editors allow switching between the XML representation of the file and a richer user interface via 

tabs on the bottom of the editor.” 
20

 

 

3.3 Design 
 

XML Source Code 

 

The application has two parts, the XML part that is the design 

(buttons, button’s position, button’s id etc.) and the Java part, 

which includes functions and classes triggered from the 

previously created XML components. 

As it can be spotted in Figure 22 in the res directory the design 

XML files are stored. For buttons ImageButton were used. For 

XML to retrieve the image that wanted to apply, the image had 

to be saved under the drawable folder, as a .png (Portable 

Network Graphics) format.  

Under the values directory values of strings are stored; for 

example the string “Connect” that want to appear in the menu 

bar etc. or the values of the background color. They can be 

retrieved either by XML source code or Java source code. 

 In the menu directory and more specific in the menu.xml file, 

the menu items are defined. “Instead of building a menu in your 

activity's code, you should define a menu and all its items in an 

XML menu resource. You can then inflate the menu resource 

(load it as a Menu object) in your activity or fragment.” 
21

 

For the Connect dialog two EditText objects were used to act as 

an input method for the IP and the communication port. Also 

there are two buttons; the Connect and the Close. 
22

 

                                                      

20
 Source : http://goo.gl/9mCsC 

21
 Source: http://goo.gl/ZRiA 

22
 The functions that are running with the onClick Command are described in Chapter 3.5 

Figure 22: Eclipse Package Explorer 



 
22 

  

 

Figure 23: Connect Dialog 

By adding the Close button, is given has the ability to close the window without connecting to the robot. 

In the main_activity.xml file the visual structure of the user interface is defined. The color of the 

background, the layout of the interface (Linear/Grid/Relative), the buttons and their positions are 

determined in the layout file.  

Every component has to have values; most important one is the ID. The id of the component is 

described by the command: android:id="@+id/id_of_the_element". 

 Also the background, the style and size are determined the same way. As can be seen the values are 

changing due to the type of the component. A button cannot have the same values as a Text View. 

In Figure 24  a small example of the main_activity.xml source code is given. 



 
23 

  

 

Figure 24: Screenshot from main_activity.xml file 

 

3.4 TCP Socket Programming 
 

To establish a connection between the robot and the Android device, a TCP Socket has to be 

programmed to run as a Thread in the Android application. In order for the application to grant access to 

the WIFI module of the device, a uses-permission has to be added in the manifest file. 

 

Figure 25: Screenshot of the manifest.xml file 

For the Socket to run as a Thread, the TcpClient class has to extend the Thread class:  

 



 
24 

  

The reason for implementing the Thread is so that the main activity will be able to run more than two 

different instances at the same time, each one for specific purposes.
23

 

To establish the connection the server’s IP and communication Port have to be known 

.  

Figure 26: Connect to Server Function 

 

With the command socket.connect (new InetSocketAddress (conIp, conPort), 4000); a request for 

connection is send to the server where IP = conIP and Port = conPort, with a TIMEOUT set at 4000 

milliseconds, just to avoid wrapping the application into an infinite loop waiting for the accept message 

from the server. 

Since the request of the client may fail, it is advised to “catch” the error which occurred. 

 

Figure 27: Threads run () function 

If errors don’t occur the program continues by creating a reading and a writing buffer to receive and 

transmit messages from and to the server. The application must be open to receive or transmit messages 

all the time while the connection is still active. The process can as well through some errors so it has to be 

surrounded by a try... catch block. 

                                                      

23
 Source: http://goo.gl/sajLo 



 
25 

  

 

Figure 28: Reading/Writing Code 

When a message is received, the class sends another message to the handler in the main class, informing 

him about the received message. The received message runs through control commands and based on the 

content of the message, the handler displays different kind of messages. 

 

Figure 29: Try...Catch Block 

In the Menu tab there is the Menu Item Disconnect, which when pressed the client disconnects from the 

server. So this function has to be developed in the TcpClient class: 

 

Figure 30: Disconnect From Server 

 

 

 

 



 
26 

  

3.5 Connect Tab 
 

The Connect Tab class is called from the Control Panel class when the Menu Item Connect is pressed. It 

creates a dialog box that sets as a layout the connect.xml layout. After creating all the components of the 

dialog box the command connect.show() is needed so that the user can see it. It also creates a TcpClient() 

instance which will run only if the Connect button is pressed. 

 

Figure 31: Connect Tab (1) - Source Code 

When either one of the buttons is pressed, control commands are running checking the state of the 

socket. The possible states are a) equal to null or not and b) connected or not to a server. When the 

Connect button is pressed it proceeds to connect with the server/robot only after making sure that the IP 

and the Port number are correct (accurateIp() and accuratePort() methods).  

 

 

Figure 32: Connect Tab (2) - IP& Port control 

 

The function below returns true if the IP has the correct format for a typical IPv4 address. 

 

Figure 33: Connect Tab (3) - accurate IP function 



 
27 

  

And this is the output: 

 

Figure 34: Connect Tab (4) 

 

When the Connect button is pressed and the IP and Port number are correct it will call and execute the 

connectTask () method. This method extends the Asynchronous Task class. “The AsyncTask enables 

proper and easy use of the UI thread. This class allows performing background operations and 

publishing results on the UI thread without having to manipulate threads and/or handlers. AsyncTask is 

designed to be a helper class around Thread and Handler and does not constitute a generic threading 

framework.” 
24

 

                                                      

24
 Source: http://goo.gl/Kz3Qh 



 
28 

  

 

Figure 35: Connect Task - AsyncTask 

 

3.6 Main Activity 
 

In the Main Activity, or how it’s called in this project Control Panel, the main user interface is built 

using Java programming language. By starting the application the onCreate method is called. “It is where 

the normal static set up is done: create views; bind data to lists, etc. This method also provides a Bundle, 

containing the activity's previously frozen state, if there was one.”
25

    

 

Figure 36: onCreate method - Control Panel 

Before the handler is set, it has to be sure how many messages it will handle and for each and every one 

of those messages, to answer to the question: what is it for?  

For that reason the messages are set as integers at the begging of the class  

 

 

                                                      

25
 Source : http://goo.gl/jfdL 



 
29 

  

 
Figure 37: Handler Messages 

 

Using a “switch () …case …:” statement the correct message can be chosen and the respective 

commands will be executed.  

 

The creation of the Options Menu was based on a similar scenario. Every time one of the menu items is 

selected it had to start or end an action but not without taking under consideration some concepts. For 

example, the user cannot connect again to a server/robot, so when the connection is established the 

Connect menu item should be disable, or before connecting a user cannot disconnect. An act like that 

could cause the application to crash.  



 
30 

  

 

Figure 38: Selection a menu item 

 

Choosing the Help menu item, creates a dialog, 

giving instructions for the application 

 

 

 

 

 

 

 

 

 

 

By pressing the Disconnect menu item  the method disconnectSocket() is called and the user terminates 

the communication between the client and the server. The application informs the user that he is now 

disconnected and pressing the moving buttons won’t call an action. 

 

Figure 39: Help Dialog 



 
31 

  

 
Figure 40: After the user disconnected 

 

The notification dialog which informs the user that he has to connect for the buttons to work is 

displayed. 

 

Figure 41: After Disconnect is pressed 



 
32 

  

3.6.1 Different Messages Scenarios 

 

   

Figure 42: Low Battery message 

 

 

 
Figure 43: Obstacle detected 



 
33 

  

 
Figure 44: Bumper Hit 

 

 

Figure 45: Wrong IP or Port number 

 



 
34 

  

Limitations 
 

For the project to be completed the parts of the robot had to be ordered. Unfortunately the RP6v2 M256 

WIFI expansion module’s microcontroller Bootloader that was delivered wasn’t updated to the firmware 

version 1.4 that was needed, but had the 1.2 version loaded instead. The Bootloader is a small program 

that loads the operating system into the computer’s memory when the system is booted and also starts the 

operating system.
26

 The 1.2 version supports WIFI communication but cannot communicate with the 

RobotLoader v.2 that we needed in order to configure the module.  

As it was suggested by the support group of Arexx (the company that produces them), the bootloader 

could be updated via an ISP programmer and the use of Atmel Studio
27

. They provided me with the 

Bootloader v1.4 and an instruction manual that was followed in detail.  

Even though the update was successful the problems continued. . The communication between PC-

Robot (and Application-Robot) was established, the WIFI uploads were successful, but the robot wasn’t 

listening to commands that were inserted to the WIFI terminal (fifth tab of the RobotLoader). Since I had 

limited time to fix the problem I tried my best but I failed. It was suggested the module to return to the 

manufacturer and be updated properly to the latest version (Bootloader).  

 

 

  

                                                      

26
 Source: http://www.webopedia.com/TERM/B/boot_loader.html 

27
 Source: http://www.atmel.com/microsite/atmel_studio6/ 

http://www.webopedia.com/TERM/B/boot_loader.html
http://www.atmel.com/microsite/atmel_studio6/


 
35 

  

Conclusion 
 

 

 As it was stated in the Introduction this thesis has two parts, the programming of the robot and the 

developing of the Android application.  

The robot’s manufacturer provides good function libraries and a big selection of examples written in C 

programming language, which I took under consideration in order to create my own source code. Even in 

theory the program seems to work and it is logically correct, the WIFI module’s problem didn’t make it 

possible to test it in real action.   

Developing the application in Java Android didn’t come easy as well. Android developing is a big 

chapter in the world of developing and it certainly has a lot of choices. The biggest challenge for this 

project was to predict all the possible states. Without having a robot to connect to, the testing was 

happening with a server application, which cannot always give us the correct responds. In case the 

application would be tested with another robot few modification and addition are needed. Even if the 

robot will be programed to act like the RP6 that we used, it will probably have additional parts that it 

would best to put in use. In that case the application has to be modified to meet the user’s demands. 

  

  



 
36 

  

 

Discussion 
 

Ideas on how the project can evolve: 

 Try to build a WLAN module using an Arduino board and an XBee wireless communication 

module. Arduinos are programmable in C language if the correct bootloader is uploaded to them. 

Using the Arduino board as the master device and the XBee as the WLAN module for 

communicating via a WIFI network, a similar module can be build. 

 The Android Application was built to be versatile and adjust to control other robots like the 

humanoid robot NAO or AR Drone. In the application can be added a choice of robots. Instead of 

programming the other robot to act upon the same commands, the developer can program a 

second different controlling scenario and the user can choose at the beginning which one he 

wants. 

 

 

Figure 46: Suggestion 

 



 
37 

  

  Buying some more RP6 expansion modules (like robotic arm), using a soldering iron adding 

more sensors on the main board (or the experimental board) and expand the abilities of the robot 

and the Android Control Device. (Something that would need the M256 module repaired first).  



 
38 

  

References 
 

 Lars Voggela Android Tutorials: http://www.vogella.com/articles/Android/article.html 

 Arexx RP6 Official Website: http://www.arexx.com/rp6/html/en/index.htm 

 Android for Developers: http://developer.android.com/develop/index.html 

 Android API References: http://developer.android.com/reference/packages.html 

 Cygwin official website: http://www.cygwin.com/ 

 Think Android: http://goo.gl/pL73O 

 Socket Programming Tutorial:  http://goo.gl/SRGbE 

 YouTube Educational Channel 

 Tutorials by Jakob Jenkov: http://goo.gl/HNEfX 

 Edu mobile Tutorials: http://www.edumobile.org/android/ 

 O’Reilly Open Feedback Publishig System: http://ofps.oreilly.com 

 Oracle Java tutorial : http://docs.oracle.com/javase/tutorial/index.html (Milan, 2009) 

 Google web sites: https://sites.google.com/site/microcontrollerprogrammingc/ 

 Wikipedia:  http://en.wikipedia.org/wiki/DBm 

 TCP Protocol : http://en.wikipedia.org/wiki/Transmission_Control_Protocol 

 Socket:  http://docs.oracle.com/javase/tutorial/networking/sockets/ 

 Atmel Studio: http://www.atmel.com/microsite/atmel_studio6/ 

 Webopedia: http://www.webopedia.com/TERM/B/boot_loader.html 

 

  

http://www.vogella.com/articles/Android/article.html
http://www.arexx.com/rp6/html/en/index.htm
http://developer.android.com/develop/index.html
http://developer.android.com/reference/packages.html
http://www.cygwin.com/
http://goo.gl/pL73O
http://goo.gl/SRGbE
http://goo.gl/HNEfX
http://www.edumobile.org/android/
http://ofps.oreilly.com/
https://sites.google.com/site/microcontrollerprogrammingc/
http://en.wikipedia.org/wiki/DBm
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://docs.oracle.com/javase/tutorial/networking/sockets/
http://www.atmel.com/microsite/atmel_studio6/
http://www.webopedia.com/TERM/B/boot_loader.html


 
39 

  

 

Bibliography 
 

Embedded C Programming the Microchip Pic [Book Section] / auth. Richard H. Barnett Larry D. 

O'Cull,Sarah A. Cox // Embedded C Programming the Microchip Pic / book auth. Richard H. Barnett 

Larry D. O'Cull,Sarah A. Cox. - NY : Clifton Park : Thomson/Delmar Learning,, 2004.. 

Lerning Java, 3rd Edition [Book Section] / auth. Patrick Niemeyer Jonathan Knudsen // Lerning Java, 

3rd Edition / book auth. Patrick Niemeyer Jonathan Knudsen. - [s.l.] : O'Reilly, 2005. 

PIC Microcontrollers Programming in C [Book Section] / auth. Milan Verle // PIC Microcontrollers 

Programming in C / book auth. Milan Verle. - [s.l.] : mikroElektronika, 2009. 

RP6v2 Control M256 WIFI [Book Section] / auth. Engineering Arexx // Instruction Manual / book 

auth. Engineering Arexx. - [s.l.] : Arexx , 2012. 

 

 


