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Σύνοψη 

Τα ενσωματωμένα συστήματα έχουν γνωρίσει μεγάλη ανάπτυξη τα τελευταία χρόνια. Η 

χρήση πολυπύρηνων επεξεργαστών, μέσα σε αυτά τα συστήματα, έχουν πραγματικά ενισχύσει την 

απόδοσή τους. Ωστόσο, η χρήση πολυπύρηνων επεξεργαστών δεν είναι πάντα απλή και μπορεί να 

δημιουργήσει δυσκολίες. Για να μπορέσουμε να παρατηρήσουμε και να βελτιστοποιήσουμε τα 

συστήματα, και πιο συγκεκριμένα τα Συστήματα σε Τσιπ ( System on Chip), χρησιμοποιούμε 

Performance Monitors. 

Ο κύριος στόχος της πτυχιακής μου εργασίας είναι να υλοποιήσουμε εφαρμογές για 

ποιότητα υπηρεσιών (Quality of Service) πάνω σε πολυπύρηνους επεξεργαστές σε Συστήματα σε 

Τσιπ. Σε κάποιες περιπτώσεις προσπαθούμε να πετύχουμε παραλληλισμό. Με την χρήση του 

Performance Monitoring Unit που παρέχεται , καταγράφουμε επιθυμητά συμβάντα ώστε να τα 

επεξεργαστούμε. Ο τελικός στόχος  είναι να χρησιμοποιήσουμε αυτές τις πληροφορίες προς την 

διαχείριση πόρων. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Λέξεις Κλειδιά: Συστήματα σε Τσιπ, Μονάδα Παρακολούθησης Απόδοσης, ARM Cortex-A9, 

Ποιότητα Υπηρεσιών, Sobel, TEA, Black Scholes   



5 Σύνοψη 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key Words: System on Chips, Performance Monitoring Unit, ARM Cortex-A9, Quality of Service, 

Sobel, TEA, Black Scholes. 



Department of Informatics Engineering 
Design and Implementation Mechanisms for Quality of Service over System on Chips 

6 

 

6 TEI of Crete 
 

Table of Contents 

 
Acknowledgements .............................................................................................................................. 3 

Σύνοψη ................................................................................................................................................. 4 

Table of Contents ................................................................................................................................. 6 

List of Figures ....................................................................................................................................... 9 

List of Charts ....................................................................................................................................... 10 

List of Tables ....................................................................................................................................... 11 

Abstract .............................................................................................................................................. 13 

1. Introduction .................................................................................................................................... 14 

1.1 Reasons for Conducting the Thesis .......................................................................................... 14 

1.2 Related Work ............................................................................................................................ 15 

1.2 Aims and Objectives of Thesis .................................................................................................. 15 

1.3 Chapter Summary ..................................................................................................................... 15 

2. The Performance Monitoring Unit ................................................................................................. 17 

2.1 The ARM Performance Monitoring Unit ................................................................................ 17 

2.2 The Performance Monitoring Unit Counters ........................................................................... 18 

2.3 The Performance Monitoring Unit Events ............................................................................... 18 

2. 4The Performance Monitoring Unit Behavior on Overflow ....................................................... 19 

2. 5The Performance Monitoring Accuracy ................................................................................... 19 

3. Applications/Benchmarks .............................................................................................................. 20 

3.1 Benchmarks in Embedded Computing ..................................................................................... 20 

3.2 Sobel Application ...................................................................................................................... 21 

3.3 TEA Application ........................................................................................................................ 21 

3.4 Black Scholes Application ......................................................................................................... 22 

4.  Hardware Implementation Description ........................................................................................ 23 

4.1 The Zynq-7000 AP SoC ............................................................................................................. 23 



7 Table of Contents 

 
4.2 The Processing System ............................................................................................................. 24 

4.2.1 The ARM Architecture ....................................................................................................... 24 

4.2.2 The ARM Coretex-A9 Processors ....................................................................................... 25 

4.2.3 The Cache Memory ........................................................................................................... 26 

4.2.3.1 The CPU Cache ................................................................................................................... 27 

4.2.3.2 The Level-One (L1) Cache ............................................................................................... 27 

4.2.3.3 The Instruction Cache (I-Cache) ..................................................................................... 28 

4.2.3.4 The Data Cache (D-Cache) .............................................................................................. 28 

4.2.3.4 The Level-Two (L2) Cache ............................................................................................... 29 

4.2.3.5 The Exclusive L2 Cache ................................................................................................... 29 

4.2.4 Cache Coherency ............................................................................................................... 29 

4.2.4.1 The Snoop Control Unit (SCU) ........................................................................................ 30 

4.2.5 The Memory Unit .............................................................................................................. 30 

4.2.5.1 The Memory Types ......................................................................................................... 31 

4.2.5.2 The DDR Memory ........................................................................................................... 31 

4.2.5.3 The DDR Controller......................................................................................................... 31 

4.2.6 The ARM Timers ................................................................................................................ 31 

4.2.6.1 The Private Timer ........................................................................................................... 32 

4.3 The Programmable Logic .......................................................................................................... 32 

4.3.1 The Advanced Microcontroller Bus Architecture (AMBA) ................................................ 32 

4.3.1.1 The Advanced Extensible Interface (AXI) ....................................................................... 33 

4.3.1.2 The AXI BRAM Controller ............................................................................................... 33 

4.3.1.3 The AXI GPIO .................................................................................................................. 33 

4.3.2 The Random Access Memory (RAM) ................................................................................. 33 

5. Software Implementation Description. .......................................................................................... 35 

5.1 Single Sobel and TEA Application ............................................................................................. 35 

5.2 Multiple Sobel and TEA Application ......................................................................................... 36 

5.2 Performance Monitoring Unit Application ............................................................................... 37 

6. Measurements-Results................................................................................................................... 39 

6.1Formulas .................................................................................................................................... 39 

6.2Sobel and TEA Applications ....................................................................................................... 40 

6.2.1Sobel and TEA Application Time ............................................................................................ 40 

6.2.2 Sobel and TEA Instruction Cache Miss Bandwidths .............................................................. 40 

6.2.3 Sobel and TEA Data Cache Miss Bandwidths ........................................................................ 41 

6.2.4 Sobel and TEA Data Cache Access Bandwidths ..................................................................... 43 



Department of Informatics Engineering 
Design and Implementation Mechanisms for Quality of Service over System on Chips 

8 

 

8 TEI of Crete 
 

6.2.5 Sobel and TEA Load/Store Instructions Bandwidths ............................................................. 44 

6.2.6 Sobel and TEA Cache Ratio .................................................................................................... 45 

6.3Black Scholes Application .......................................................................................................... 46 

7. Conclusions and Future Work ........................................................................................................ 50 

7.1 Future Work ............................................................................................................................. 50 

Bibliography ....................................................................................................................................... 52 

Appendix A ......................................................................................................................................... 53 

1.1 Additional Performance Monitoring Events ...................................................................... 53 

1.1.1 Implemented architectural events ............................................................................. 53 

1.1.2 Coretex-A9 Specific Events ......................................................................................... 54 

1.2 PMU Assembly Access Functions ....................................................................................... 55 

Appendix B ..................................................................................................................................... 59 

1.1 Additional Measurements .................................................................................................. 59 

1.1.1 Single Sobel and TEA Application ............................................................................... 59 

1.1.2 Multiple Sobel and TEA Application ........................................................................... 61 

Appendix C ..................................................................................................................................... 63 

1.1 Thesis Presentation ............................................................................................................ 63 

 

 

 

 

 



9 List of Figures 

 

List of Figures 

Figure 3-0-1: Sobel 3x3 Masks ............................................................................................................ 21 

Figure 3-0-2: Two Feistel rounds (one cycle) of TEA .......................................................................... 21 

Figure 4-0-1: The Zynq-7000 AP SoC Overview .................................................................................. 24 

Figure 4-0-2 The APU Block Diagram ................................................................................................. 26 

Figure 5-0-1: While Loop In TEA Application ...................................................................................... 35 

Figure 5-0-2: Image After Sobel Filter ................................................................................................ 36 

Figure 5-0-3: Original Image ............................................................................................................... 36 

Figure 5-0-4: Process of Multiple Sobel and TEA Applications .......................................................... 36 

Figure 5-0-5: Enabling Functions ........................................................................................................ 37 

Figure 5-0-6: Counting Functions ....................................................................................................... 37 

Figure 5-0-7: Disabling Functions ....................................................................................................... 38 

 

file:///C:/Users/effie/Desktop/final.docx%23_Toc427786538


Department of Informatics Engineering 
Design and Implementation Mechanisms for Quality of Service over System on Chips 

10 

 

10 TEI of Crete 
 

List of Charts 

Chart 1 : Sobel and TEA Application Times  ....................................................................................... 40 

Chart 2: The Instruction Cache Miss Bandwidths for the Sobel Application ..................................... 41 

Chart 3: The Instruction Cache Miss Bandwidths for the TEA Application ........................................ 41 

Chart 4: The Data Cache Miss Bandwidths for the Sobel Application ............................................... 42 

Chart 5: The Data Cache Miss Bandwidths for the TEA Application .................................................. 42 

Chart 6: The Data Cache Access Bandwidths for the Sobel Application ............................................ 43 

Chart 7: The Data Cache Access Bandwidths for the TEA Application ............................................... 43 

Chart 8: The Load/Store Instructions Bandwidths for the Sobel Application .................................... 44 

Chart 9: The Load/Store Instructions Bandwidth for the TEA Application ........................................ 45 

Chart 10: The Cache Ratio for the Sobel Application ......................................................................... 45 

Chart 11: The Cache Ratio for the TEA Application ............................................................................ 46 

Chart 12: The Data Cache Miss Bandwidth for all five of the Black Scholes Applications  ................ 47 

Chart 13: The Data Cache Access Bandwidth for all five of the Black Scholes Applications .............. 47 

Chart 14: The Load/Store Instructions Bandwidth for all five of the Black Scholes Applications ...... 48 

Chart 15: The Cache Ratio for all five of the Black Scholes Applications ........................................... 48 

Chart 16: The Times For the MC Test ................................................................................................. 49 

 

 

 

 

 

 

 

 

 

 

 



11 List of Tables 

 

List of Tables 

 

 

Table 1: Single Sobel With L1 Cache Disabled .................................................................................... 59 

Table 2: Single TEA With L1 Cache Disabled ...................................................................................... 59 

Table 3: Single Sobel with L2 Cache Disabled .................................................................................... 59 

Table 4: Single TEA With L2 Cache Disabled ...................................................................................... 60 

Table 5: Single Sobel With I cache Disabled ....................................................................................... 60 

Table 6: Single TEA With I Cache Disabled ......................................................................................... 60 

Table 7: Single Sobel With D Cache Disabled ..................................................................................... 60 

Table 8: Single TEA With D Cache Disabled ........................................................................................ 61 

Table 9: Multiple Sobel and TEA With L1 Cache Disabled.................................................................. 61 

Table 10: Multiple Sobel and TEA With D Cache Disabled ................................................................. 61 

Table 11: Multiple Sobel and TEA With I Cache Disabled .................................................................. 62 

Table 12: Multiple Sobel and TEA With L2 Cache Disabled................................................................ 62 

 

 

 

 

 

 

 

 

 

 

 

 



Department of Informatics Engineering 
Design and Implementation Mechanisms for Quality of Service over System on Chips 

12 

 

12 TEI of Crete 
 

 

 

 

 

 

 

 

 



13 Abstract 

 

Abstract 

 Embedded systems have seen great growth in recent years. The usage of multi-core 

processors, within these systems, has truly enhanced their performance. However, using multi-core 

processors is not always simple and it can create challenges. In order to observe and optimize the 

systems, and to be more exact the System on Chips (SoCs), we employ the Performance Monitors. 

The main focus of this thesis is to implement applications for quality of service (QoS) on 

multi-core SoCs. In some cases these applications try to reach parallelization. With the usage of the 

Performance Monitoring Unit provided, we capture desired events so as to examine them. The 

ultimate goal is to use this information towards resource management. 
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1. Introduction 

In this thesis we designed a system, on which various applications are implemented so as to 

monitor the system and its resources. The design involves a system with multi-core processors (two 

cores). Most of the applications are implemented in a way, to achieve simultaneous processor 

occupation. We then enable the hardware Performance Monitors so as to study events performed on 

the system and its resources. The software applications were written with the usage of the C 

programming language. 

Our architecture was built on the Zynq-7000 All Programmable SoC and designed with the 

Xilinx Vivado Design Suite. The applications were implemented and programmed with the Xilinx 

Software Development Kit (SDK). 

The Performance Monitoring Unit (PMU) is contained in the processors debug architecture. 

We use the system control coprocessor interface (CP15) in order to access it.  The PMU is enabled 

and captures certain events that we define, before the application starts and after the application has 

ended.  The results calculated are then compared in pursuance of drawing conclusion referring to the 

system and its resources. 

 

 

 

1.1 Reasons for Conducting the Thesis 

 Multi-core designs have become widespread and for this reason they are the object of 

extensive discussion and research. More importantly, research is done on the subject of energy 

consumption, resource utilization and overall system performance. 

 The main use of the Performance Monitoring Unit is to accurately monitor the performance 

of the system under certain circumstances and to provide the program developer with this 

information. This information constitutes a sort of guideline helping the developer improve the 

system with the appropriate changes. 

 Even though there is research on these multi-core embedded systems, not many researchers 

have explored the use of the Performance Monitoring Unit provided by the ARM Debugging 

architecture through the system control coprocessor interface (CP15). 

 By using the Zynq-7000 and exploring the resource utilization through the Cortex-A9 

processors we hope to better interpret how the processing system functions, with the ultimate aim to 

exploit the system to our full advantage. 
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1.2 Related Work 

 Upon energy consumption in [1] CASHIER, a Cache Energy Saving Technique for Quality 

of Service Systems, is presented. Here Cashier uses dynamic profiling to estimate the memory 

subsystem energy and execution time of any program under multiple last level cache (LLC) 

configurations. It then reconfigures LLC to an energy efficient configuration with a view to meet the 

deadline. It manages to balance the energy saving and performance loss by adapting itself thus 

supporting higher performance for a larger cache. Power consumption is addressed in [2], with the 

usage two different algorithms. The first algorithm dynamically balances the task load for multiple 

cores so as to optimize energy during execution. The second algorithm, which is the Dynamic Core 

Scaling Algorithm, adjusts the number of active cores to reduce power leakage. Both these 

algorithms have proven to conserve up to 25 percent and 40 percent of the energy respectively. 

 A similar approach on Performance monitoring but with a different system (in this case 

NoCs instead of SoCs) is suggested in [3]. Hardware agents are deployed to monitor managers that 

can be dynamically configured and that can calculate statistics. This methodology that programs 

hardware units, addresses the real time monitoring to improve the quality of service and the resource 

management. The incorporation of the monitors in these designs confirms that they are of small 

prerequisite and are beneficial in dynamic resource management. 

 A more close appeal to what we study is recommended in [4]. An on-chip bus PMU is 

utilized, which accurately evaluates the system power consumption. This design is customized for 

different on-chip and off-chip memory devices and does not dependent on a specific CPU core. The 

memory devices that use energy state machines are described in XML. This PMU traces the internal 

behavior of the memory devices to give a estimate of power consumption. 

 

 

1.2 Aims and Objectives of Thesis 

In a summary, the aims of this thesis are the following: 

 Implementation of applications on the hardware design 

 Enablement  of the Performance Monitoring Unit 

 Measurements by the Performance Monitoring Unit on the effect the applications have on 

the system. 

 Study in the results obtained 

 

 

1.3 Chapter Summary 

Chapter 1: An introduction to the thesis 
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Chapter 2: An extensive description on the Performance Monitoring Unit 

 

Chapter 3: A presentation on the Applications/Benchmarks used 

 

Chapter 4: The description of the Hardware design in use 

 

Chapter 5: A display of the software implementation 

 

Chapter 6: A presentment of the results obtained  

 

Chapter 7: Conclusions drawn from the measurements and ideas towards future development 
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2. The Performance Monitoring Unit 

 The Performance Monitor Unit, or else known as the PMU, is found in all high end 

processors these days. [5] It provides the application developers the ability to measure predefined 

events and processor clocks related to specific operations, for instance cache misses and CPU stalls, 

in the interest of counting the efficiency of their application software. 

 The PMU is essentially hardware that has been built inside any give processor in order to 

measure its performance parameters. It has a tight integration with the CPU core, meaning that every 

CPU has its own Performance Monitor Unit. The PMU was originally designed by computer 

hardware engineers for the use of debugging CPUs that is why it is also known as Hardware 

Performance Counters (HPCs). 

 Since the Performance Monitor Unit has a hardware implementation, we can expect very 

limited overhead. It does not use any of the computational or storage resources that are needed for 

normal operations of the CPU thus providing low perturbation. The high resolution presented by the 

PMU enables the monitoring of detailed micro-architectural events that in any other case would not 

be monitored without hardware support. The most important advantage of the existence of 

Performance Monitor Units is that they are widespread. Mostly all of the dominant industrial 

processors have included them in their designs. 

 

2.1 The ARM Performance Monitoring Unit 

When writing optimized code, having knowledge of the processors behavior with branches 

can be more than useful. For that reason branch prediction is considered to be part of the hardware 

implementation. The performance monitor counters generate information regarding the number of 

branches that are correctly or incorrectly predicted and are used to profile and in most cases 

benchmark code [6]. 

The Performance Monitor Unit (PMU) is part of the ARM Debug architecture. Before the 

existence of the ARMv7 processors, the performance monitors were included but not part of its 

architecture. According to the ARMv7 [7], the system control coprocessor interface (CP15) is a 

mandatory interface for the Performance Monitor registers. Other possible interfaces for the 

Performance Monitor registers are a memory-mapped and an external debug interface, which both 

are optional. 

By using the CP15 interface, an operating system running on a processor can enable access 

to counters within the application software. Therefore the application is able to monitor itself. In 

many cases ARM recommends implementing application software access to the Performance 

Monitors when the operating system does not use the monitors. The CP15 supports the usage of 
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energy management and dynamic compilation techniques. In conclusion ARMv7 reserves the CP15 

registers strictly for ARM-recommended and implementation defined Performance Monitors. 

The Performance Monitors main form consists of a cycle counter that is able to count either 

every cycle or configured to count every 64
th
 cycle, a number of 32-bit wide event counters which are 

programmable and controls that are used to enable and reset counter, flag overflows and enable 

interrupts on an overflow.         

    

 

 

2.2 The Performance Monitoring Unit Counters 

The counters, a performance counter block contains, may be accessed through debug 

tools or through software that runs on the processor, by using the CP15 Performance Monitoring 

Unit registers. This feature is non-invasive and does not change the behavior of the processor. 

The Cortex-a9 Performance Monitoring Unit provides six event counters (PMU event counter 0 

to 5) to calculate statistics on the operations the processor performs and on the memory system 

[8]. Each on of the counters are able to count any of the 63 events available in the Cortex -a9 

processor. The results given by the counters are approximate and all of the counters are subject 

to any changes in clock frequency. The monitoring software can enable the cycle counter 

independently in comparison to the other event counters, and its only control over this counter is 

an access permission control for User mode. 

 

 

2.3 The Performance Monitoring Unit Events  

 The events that one may monitor can be divided into categories, the architectural/micro-

architectural events and the implementation-specific events. The events are identified with the usage 

of an event number assigned to each event.  

 The events that are used in this thesis are both architectural and specific. The architectural 

events we use are: Instruction cache miss (0x01), Data cache miss (0x03), Data cache access (0x04), 

Data read (0x06), Data writes (0x07) and Cycle count (0x11). The specific events we use are: 

Load/Store instructions (0x72) that counts the number of instructions being executed in the 

Load/Store unit, Processor stalled because of a write to memory (0x81) that counts the number of 

cycles when the processor is stalled, Processor stalled because of instruction side main TLB miss 

(0x82) that counts the number of stall cycles because of main TLB misses on requests issued by the 

instruction side and Processor stalled because of data side main TLB miss (0x83) that counts the 

number of stall cycles because of main TLB misses on request issued by the data side. The 

information generated by these specific events is approximate. 
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2. 4The Performance Monitoring Unit Behavior on Overflow 

The Performance Monitoring Unit counts events with the usage of 32-bit wrapping counters. 

When a counter overflows it will wrap. Upon this case an overflow status bit is set to the value 1. If 

the processor is configured to generate counter overflows, an interrupt request will be generated. 

Last but not least, on a Performance Monitor counter overflow the counter will proceed to counting 

events. 

 

 

 

2. 5The Performance Monitoring Accuracy 

The information generated by the Performance Monitors is approximately accurate. This 

reasonable degree of inaccuracy provided by the counters is acceptable although it is not defined by 

ARM. However ARM does recommend following guidelines such as: under normal operating 

conditions the counters must present accurate counts, in extraordinary situations an inaccuracy in 

counter value is respectable and in asynchronous exceptions, for instance interrupts, the counts may 

be inaccurate. 

The permitted inaccuracy does in some way limit the possible use of the Performance 

Monitoring Unit. Cases which contribute to the imprecise results of the Performance Monitor are 

pipelining, change in the security state and entry to and exit from the Debug state. An 

implementation that can somewhat limit counter imprecision to a certain extent is disabling the 

counters as soon as possible during the Debug state entry sequence. By any means, an 

implementation should document scenarios where inaccuracies are expected. 
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3. Applications/Benchmarks 

 This chapter is a reference to the types of Applications/Benchmarks that will be implemented 

and used, in this thesis, along with the Performance Monitoring Unit to monitor our system, its 

performance and its resource management. 

 

 

3.1 Benchmarks in Embedded Computing 

A Benchmark, in terms of computing, is the performance of running numerous standard tests 

and trials (computer programs, a set of programs and operations) against an object, so as to assess its 

relative performance [9]. They provide a method of comparing the performance on assorted 

subsystems across different chip or system architectures. “Benchmark” as a term is also used to 

describe elaborately designed benchmarking programs themselves. 

Benchmarking is mostly correlated with estimating the performance characteristics of 

computer hardware, but there are also situations in which the technique is applied to software. In 

these types of software Benchmarks may run against compilers or even database management 

systems. 

The main purpose for the development of these tests, were to compare different 

architectures, since with the passing of time the computer architectures have advanced and the 

comparison between the performances of various computer systems has become more difficult. 

Benchmarks are designed to simulate a type of workload on a component or a system. A 

synthetic workload is simulated by uniquely creating programs that impose the workload on the 

component. On the other hand, Benchmarks applications are used to run real-world performance on 

a system. 

Benchmarking is not always simple and it often involves different iterative rounds so as to 

reach predictable and useful conclusions [10]. Interpreting benchmarked data is also extremely 

difficult. Many benchmarks focus solely on the speed of computational performance while 

overlooking other important features such a quality of service. An example of unmeasured quality of 

service features includes security, availability, reliability, execution integrity, serviceability and 

scalability. 

Various types of Benchmarks exist. Such are: real program, component Benchmark or micro 

benchmark, kernel, synthetic Benchmark (which include the well known Whetstone and Dhrystone), 

I/O benchmarks, database benchmarks and parallel benchmarks. 
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3.2 Sobel Application 

 The Sobel filter, also known as the Sobel operator, is one of the most known methods that is 

used in image processing and for computer vision [11].  In particular it is an algorithm that detects 

edges and subsequently creates an image where the edges and transitions are emphasized. 

 The result given by this filter is a new binary image, where the pixels with the greatest value 

are now the edges of the original image.  Nonetheless, the dimensions of the image remain the same. 

After this process, thresholding follows which usually consists of maintaining a percentage of the 

edges that have a higher gradient. 

The Sobel technique emphasizes on areas with high spatial frequency. It is applied with the 

use of an operator that consists of two “edge masks”, so as to detect changes vertically and 

horizontally. These two masks are two 3x3 convolution kernels. The convolution between the two 

masks and the image is carried out throughout the edge detection.  By combining the two pictures 

that occur, the edges of the images object emerge [12]. 

 

 

 
Figure 3-0-1: Sobel 3x3 Masks 

 

 

3.3 TEA Application 

 The Tiny Encryption Algorithm is one of the fastest and most efficient block ciphers in 

existence. It was designed by David Wheeler and Roger 

Needham of the Cambridge Computer Laboratory. It 

operates on two 32-bit unsigned integers and uses a 128-bit 

key [13]. 

 The Feistel structure, in which the TEA algorithm is 

implemented, consists of 64 identical rounds that contain 

function bits for translocations, mod 2
8 

additions or 

subtractions and the exclusive-or (XOR) calculation. It has a 

simple key schedule by mixing all of the key material in the 

exact same way for each cycle.  

 Although TEA seems to be extremely resistant to 

differential cryptanalysis, and achieves comprehensive 

diffusion after just six rounds, it has a few “weak spots”. 

First and foremost, it suffers from equivalent keys. To be 

exact, each key is equivalent to three other keys, making the 

effective key size to be only 126 bits. This results in TEA 

Figure 3-0-2: Two Feistel rounds (one cycle) of TEA 
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being unfit as a cryptographic hash function. It is also receptive to a related-key attack. In this case, 

223 chosen plaintexts under a related-key pair are required, with a 232 time complexity. 

 

 

 

 

3.4 Black Scholes Application 

 The Black-Scholes –Merton model, widely known as the Black-Scholes model, is a 

mathematical model of a financial market that contains derivative investment instruments. It is a 

model of price variation over time of financial instruments, such as stocks, that can be used to 

determine the price of a European call option. The Black-Scholes model is one of the most important 

concepts in the field of modern financial theory. It was developed by Fisher Black, Robert Merton 

and Myron Scholes (hence its name) in 1973. Up to this day it is widely used and viewed as one of 

the best way to determine the fair price of options.       

The Black-Scholes workload computes the Black-Scholes formula for European and call 

options in terms of five parameters: the spot price of the underlying stock, the exercise price at 

which the transaction will be executed, the expiration period after which the option can be exercised, 

the risk-free rate of return and the volatility of returns of the underlying stock. 

Black-Scholes is part of the PARSEC Benchmark suit [14]. PARSEC contains thirteen 

applications, each of which are used for a specific area of interest.  Each application workload is 

parallelized in multiple ways in order to enable various benchmark studies. The Black-Scholes model 

is data-parallel and includes a list of routines such as: ASSET_PATH that simulates the behavior of 

an asset price over time, BINOMIAL that uses the binomial method for a European call, BSF that 

evaluates the Black-Scholes formula for a European call, FORWARD that use the forward difference 

method to value a European call option and MC that uses Monte Carlo valuation on a European call 
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4.  Hardware Implementation Description     

4.1 The Zynq-7000 AP SoC 

 In terms of hardware, for the implementation of this present thesis, our architecture was built 

based on the Zynq-7000 architecture [15]. The Zynq-7000 integrates a feature-rich dual-core ARM 

Cortex-A9 MPCore based processing system and Xilinx programmable logic in a single device. The 

ARM CPU is the heart of the processing system which also includes on-chip memory, external 

memory interfaces, and a rich set of I/O peripherals. The various hardware controllers as well as the 

processing system are I/O interconnected via high-bandwidth AMBA AXI interfaces. 

In the Processing System, the processors are the ones to boot first, thus allowing a software 

centric approach for the Programmable Logic system boot and the Programmable Logic 

configuration. The Programmable Logic can be configured as part of the booting process or it can be 

configured later at some point. It can also, in addition, be altogether reconfigured or used with 

partial and dynamic reconfiguration. The data used to configure the Programmable Logic is mostly 

referred to as a Bitstream. 

The Zynq-7000 AP SoC is composed of two major functional blocks: the Processing System 

(PS) and the Programmable Logic (PL). The Processing system consists of an Application Processor 

Unit (APU) that provides an extensive offering of high-performance features and standards-

compliant capabilities, memory interfaces, I/O peripherals (IOP) and interconnects. The 

Programmable Logic is derived from the Xilinx 7 series FPGA technology. 
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Figure 4-0-1: The Zynq-7000 AP SoC Overview 

 

4.2 The Processing System 

 

 

4.2.1 The ARM Architecture 

The ARM architecture endorses the implementation through a variety of performance 

points. The simplicity this architecture has to offer has led to small implementations, thus allowing 

these implementations to be used by devices with very low power consumption. Key attributes in the 

development of the ARM Architecture are the implementation size, the performance and the low 

power consumption. 

 The ARM architecture is a Reduced Instruction Set Computer (RISC) and it assimilates 

certain RISC architectural features such as : a large uniform register file, a load/store architecture 

where data-processing operations only operate on register contents not directly on memory contents, 

simple addressing modes with all the load/store addresses being determined from register contents 

and instruction fields only and uniformed and fixed-length instruction fields so as to simplify 

instruction decoding. 

 Additionally the ARM provides features such as: control over both the Arithmetic Logic Unit 

(ALU) and the shifter that is associated with instructions, auto-increment and auto-decrement 

addressing modes to optimize program loops, loading and storing multiple instructions in order to 

maximize the execution throughput and restrictive execution of almost all the instructions to 
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maximize the execution throughput. These characteristics incorporated in the RISC architecture 

contributes in the ARM processors having a good balance of high performance, small code size, low 

power consumption and small silicon area. 

 

 

 

4.2.2 The ARM Coretex-A9 Processors 

The dual-core Cortex-A9 configuration is implemented by the APU. Each one of the 

processors have their own SIMD media processing engines (NEON),memory management units 

(MMU), 32 KB level-one (L1) data caches and 32 KB level-one (L1) instruction caches, private 

timers and watchdog timers. These two Cortex-A9 processors provide two 64-bit AXI master 

interfaces  for independent data and instruction transactions, which can then be routed to the on-chip 

memory (OCM), the 512kb sharable level-two (L2) cache, the DDR memory  or through the 

processing systems interconnect to other slaves in the processing system (PS) or to the 

programmable logic (PL). The processors run time options acquiesce single processor configurations 

and asymmetrical (AMP) or symmetrical (SMP) multiprocessing configurations. 

 The Cortex-A9 processor enables fundamental hardware features for program debugging. 

With that been said, it also provides hardware counters to assemble information on specific 

operations of the processor and the memory system. Each processor is able to issue two instructions 

in only one cycle whilst executing them out of order. Other characteristics of the Cortex-A9 features 

amongst others is: a superscalar variable length pipeline with dynamic branch prediction, a full 

implementation of the ARM architecture v7-A instruction set, an execution of 32-bit ARM 

instructions, an execution of 16-bit and 32-bit Thumb instructions, an execution of 8-bit Java byte 

codes in Jazelle hardware state, security extensions and support for advanced power management 

with up to three power domains. 

 The ARM architecture provides 31 general-purpose 32-bit registers of which the 16 are 

visible at any given time. The registers that cannot be accessed are used to speed up the processing. 

These processors support byte (8 bits), word (32 bits), halfword (16 bits), doubleword (64 bits) 

which are data types in memory. Load and store instructions can transmit bytes, halfwords or words 

to and from the memory. The instruction set includes load and store operations the can transfer more 

than two words to and from the memory. By using these instructions, the software can load and store 

doublewords. 
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Figure 4-0-2 The APU Block Diagram 

4.2.3 The Cache Memory 

 In terms of computing, a Cache is a type of memory that stores data for future use where, 

when requested, the data is accessed faster. This data stored in the cache memory might be the 

equivalent of data stored somewhere else in the system or the results of a computation made earlier. 

Caches are comparatively small, thus achieving cost-effectiveness and efficient use of data. 

Nonetheless, due to the access patterns in typical computer applications, which exhibit the locality of 

reference, caches have proven to be very important and useful in many areas of computing. There 

are two types of access patterns exhibited, temporal locality and spacial locality. The temporal 

locality pattern refers to requested data that have already recently been requested, whereas the 

spacial locality pattern is associated with requests for data that have been physically stored near to 

data that have already been requested. 

A cache consists of a number of entries. Each entry has a piece of data, which is a copy of 

the data that is stored in some other storage unit. Apart from the data, it also has an entry tag that 

determines the identity of the data. When the cache client wants to access data that presumably 

exists in some memory unit, it first goes through the cache to check. If an entry matching the tag of 

the requested data is found, then that data is used instead. This event is referred to as Cache Hit. The 

event that occurs when that data cannot be found in the cache is referred to as Cache Miss. In this 

case the “uncached” data is acquired from the memory unit and copied to the cache for future access. 
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During a cache miss, the CPU usually ejects some other entry in order to make room for the 

previously “uncached” datum. The method used to select the data that will be ejected is known as 

the Replacement Policy. The Least Recently Used (LRU) is a popular replacement policy that 

replaces the least recently used entry. 

A cache memory is much faster than a main memory for various reasons. The use of rapid 

electric circuits, which leads to higher expenditures regarding costs, size and power requirements. 

Due to the fact that the memory is small, the increase in cost is relatively limited. A cache memory 

has fewer areas in comparison to a main memory, thus resulting in a shallower decoding tree which 

contributes in reduced access size. The cache memory is static in contrast to the main memory which 

is mostly dynamic. It is placed naturally and logically closer to the CPU as opposed to the main 

memory that results in the prevention of delays due to the shared communication channel (shared 

bus). 

In conclusion, reading data from a cache memory is faster than recomputing a result or 

reading data from a slower data store, thus, the more requests served from the cache, the faster the 

performance of the system. Central processing units (CPU) and Hard Disk Drives frequently use a 

cache. 

 

 

 

 

4.2.3.1 The CPU Cache 

A cache used by the Central Processing Unit (CPU) of a computer is a CPU Cache used to 

reduce the average time of accessing data from the main memory. When the processor wants to read 

from or write to a location in the main memory, it checks first whether a copy of that data exists in 

the cache. If the data does exist, the processor reads from or writes to the cache, making it much 

faster than reading from or writing to the main memory. 

 Most CPUs have at least three different caches which are the Instruction Cache, the Data 

Cache and the Translation Lookaside Buffer even though it is a part of the MMU and not directly 

related to the CPU caches. The Instruction cache is used to speed up executable instruction fetches. 

The Data cache is used to speed up data fetches and stores and the TLB is used to speed up virtual-

to-physical address translations for both executable instructions and data. The Data caches are 

organized as a hierarchy of more caches, the level one (L1) and the level two (L2). 

 

 

4.2.3.2 The Level-One (L1) Cache 

The level one (L1) Cache is the nearest level of cache to the CPU. It can be implemented in 

a Harvard arrangement or in a von Neumann arrangement. In the first case the Instruction Cache and 

the Data Cache are separate whereas in the second case all the cache items are unified. An 

implementation with a Harvard arrangement does not necessarily have to include hardware support 

for coherency amongst the Data and Instruction caches. 

 The two Cortex-A9 processors both have separate 32 KB Level-1 Instruction and Data 

caches. Each cache can independently be disabled by using the system control coprocessor. Both L1 

caches are 4-way set-associative with 32 byte cache line lengths and support parity. These caches 

support 4 KB, 64 KB, 1 MB, and 16 MB virtual memory page however neither of the two L1 caches 
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support the lock-down feature. In the case of a cache miss, the cache replacement policy is either 

pseudo round-robin or pseudo-random and a critical word first filling of the cache is performed. 

During implementation, the Level 1 Instruction and Data cache can independently be configured to 

the sizes of 16KB, 32KB, or 64KB. In order to reduce the power consumption, the number of full 

cache reads is reduced by exploiting the sequential nature of many cache operations. When a CPU 

reset occurs, the contents of both L1 caches are cleared to comply with security requirements. 

All the memory attributes are exported to the external memory systems. 

 

 

 

4.2.3.3 The Instruction Cache (I-Cache) 

 

 The Level 1 Instruction Cache (I-Cache) is responsible for administering an instruction 

stream towards the processors.  The Instruction cache interfaces precisely to the pre-fetch unit that 

consists of a two-level prediction mechanism. It is virtually indexed and physically tagged. The 

replacement policy for the I-cache is either pseudo round robin or pseudo random. 

 

 

 

 

 

4.2.3.4 The Data Cache (D-Cache) 

The Level 1 Data cache (D-Cache) is responsible for containing the data which the 

processor uses. The Data cache is physically indexed and physically tagged, as is the Instruction 

cache. It is non-block, meaning that the load/store instructions may proceed in hitting the cache 

while it is performing allocations from the external memory because of prior read or write misses. 

This type of cache supports four outstanding reads and four outstanding writes. The Data cache also 

supports two 32-byte line-fill buffers and one 32-byte eviction buffer, while the Cortex-A9 CPU has 

a store buffer featuring four 64-bit slots with data merging capability. The write-back and write-

allocate policy are only supported by the Data cache. The write-through and write-back/no write-

allocate policies are not implemented. The Level 1 Data cache supports exclusive operations, 

implying that the cache line is valid only in Level 1 or Level 2 cache and never in both 

simultaneously, with respect to the Level 2 cache. If the exclusive operation is disabled by default, 

the cache utilization will then increase and the power consumption will be reduced. The replacement 

policy for the D-cache is pseudo random. 
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4.2.3.4 The Level-Two (L2) Cache  

The Level 2 Cache (L2-cache) is an 8-way set associative cache with a size of 512 Kb used 

for dual Cortex-A9 processor cores. The L2 cache can either be tightly coupled to the core or 

implemented as memory mapped peripheral on the system bus. In the memory-mapped case, where 

cache control functions require an address parameter, for example, clean entry by address, the 

address must be inherently a physical address.  Level 2 caches that are more closely coupled to the 

core can use virtual or physical addresses. It is physically tagged and physically addressed and 

supports a fixed 32-byte line size. A parity check is offered for the Level 2 cache. To improve the 

latency, a critical –word-first-line-fill is supported. In the case of cache miss, the selection policy 

implemented is pseudo random with deterministic option. This cache supports write-though, write-

back, read allocate, write-allocate and read and write allocate.  

The L2 controller implements multiple 256-bit line buffers, two for each slave port, to 

improve cache efficiency. These buffers hold a line from the L2 cache in case of a cache hit. The L2 

cache controller also implements three 256-bit eviction buffers that hold the evicted lines from the 

L2 cache, in order for them to be written back to the main memory as well as three 256-bit store 

buffers to hold “bufferable” writes before their drainage to the main memory, or to the L2 cache. 

These buffers enable multiple writes to the same line so as to be merged. Another characteristic 

featured by the L2 cache controller is that it is able to forward exclusive requests from L1 to DDR, 

OCM, or the external memory. 

 

 

4.2.3.5 The Exclusive L2 Cache  

The Level 1 and Level 2 cache provide an exclusive mode. This mode has to be activated 

both in the processor and the current cache controller that is being occupied. When the L2 cache is 

used, the data cache of the processor and the L2 cache are exclusive. This means that at any time, a 

given address is cached in either the L2 data cache or the L1 data cache, but not in both.  This mode 

increases the usable space and the efficiency of the L2 cache that is connected to the processor. 

When the exclusive cache mode is activated the data cache line replacement policy is modified so 

that the victim line is always evicted to L2 memory, even if it is clean. 

 

 

4.2.4 Cache Coherency 

The system preserves multiple versions of a value of a memory location when a cache or a 

write buffer is used.  Assuming that Harvard caches are being used, both the Instruction and Data 

cache may contain a value of the memory location. Not all of these physical locations necessarily 

contain the value most recently written to the memory location. The real coherency issue is to secure 

that when a memory location is read, either by the Instruction cache or the Data cache, the value that 

is obtained, is at all times the value that was written to the location most recently. This can be 

difficult when there are multiple possible physical locations, such as main memory and at least one 

of a write buffer and one or more levels of cache. Some prospects of the memory system coherency, 

in the ARM architecture, are provided automatically by the system whereas other prospects are dealt 

with memory coherency rules. If a program breaks a memory coherency rule, the behavior that this 

program might cause is uncertain. 
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Address mapping and caches demand such a management in order to always ensure memory 

coherency. A cache and write buffer management require a sequence of: cleaning the data cache if it 

is a write-back cache, invalidating the data cache and the instruction cache, draining the write buffer, 

performing a pre-fetch flush on the instruction pipeline and flushing the branch prediction logic. 

 

 

 

4.2.4.1 The Snoop Control Unit (SCU) 

The two Cortex-A9 processors are organized with an MP configuration that contains a 

Snoop Control Unit (SCU). The SCU block connects the two processors to the memory system and 

incorporates data which manages the data coherency between the two processors and the Level 1 

and Level 2 caches. This block is responsible for managing the interconnect arbitration, 

communication, cache and system memory transfers, and cache coherence for the Cortex-A9 

processors. 

The SCU block communicates with each of the Cortex-A9 processors through a cache 

coherency bus and manages the coherency between the L1 and the L2 caches. The SCU supports 

MESI snooping which provides increased power efficiency and performance by avoiding 

unnecessary system accesses. It also is enabled to check if there is data in the Level 1 cache by using 

great speed so as not to interrupt the processors. The SCU is also able to copy clean data from one 

processors cache to another processors cache therefore eliminating the need to access the main 

memory to perform this task. Moreover it can move dirty data between the processors, so as to skip 

the shared state and avoid the latency that is associated with the write-back. 

 

 

 

4.2.5 The Memory Unit 

The memory unit is the most vital component of any given computer. The ideal structure of 

a computer, in order to serve its needs, would consist of just one memory that would be rapid and 

vast. But in fact, as the demands on memories increases, such a thing seems impossible. 

  Due to this, the memory is organized in levels, thus the memory hierarchy. The numbers of 

levels that constitute a memory are derived from the systems needs. Generally, the higher we climb 

the chain the higher the performance increases and so does the cost. This results in implementing 

memories of smaller capacity in order to maintain a balance amongst the cost and the performance. 

The memory closest to the processor has a very low latency, but is limited in size and expensive to 

implement. On the other hand, the further from the processor, the easier it is to implement lager 

blocks of memory. However, these blocks have an increased latency. 

The memory hierarchy of a computer system, starting low-level, consists of: processor 

registers and cache memories which are static memories, dynamic memories which constitute the 

main memory of a system, storage devices and optical storage disks. 

By combining these types of memories from different levels and by using mechanisms, 

where the data that is most recently used is stored in higher levels in the hierarchy, an impression of 

a faster memory is given.  
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4.2.5.1 The Memory Types 

For each memory region, the most significant memory attribute specifies the memory type. 

Therefore, three exclusive memory types exist: the normal memory type, the device memory type 

and the strongly-ordered memory type. Normal and device memory types have additional attributes. 

With the usage of the normal memory attribute, memory used for programs and data storage can be 

accessed. Memories that take advantage of the normal memory attributes are the programmed Flash 

ROM, the ROM, the SRAM, the DRAM and the DDR memory.  

 

 

4.2.5.2 The DDR Memory  

The Double Data Rate-Synchronous DRAM is a type of SDRAM. It is a class of memory 

integrated circuits which are used in computer systems. The DDR SDRAM interface makes higher 

transfer rates possible by more strict control of the timing of the electrical data and clock signals. 

The interface uses double pumping which transfers data on both the rising and falling edges of the 

clock signal in order to lower the clock frequency. By keeping the clock frequency at a low rate the 

signal integrity requirements on the circuit board are reduced and the memory is connected to the 

controller. Due to the double pumping the DDR SDRAM, with a certain clock frequency, it achieves 

nearly twice the bandwidth of a SDR SDRAM running at the same clock frequency. 

 

 

4.2.5.3 The DDR Controller  

The DDR Controller supports the DDR3, DDR3L, DDR2, and LPDDR-2. In our thesis, we 

use the DDR3 memory. The DRAM bus width averages from 16 bits to 32 bits and the burst length 

is 8. The rate of the controller is determined by the speed and the temperature grade of the device. It 

uses Data read strobe auto-calibration and enables a write data byte which is supported for each data 

beat. 

 

 

4.2.6 The ARM Timers 

In the ARM design, each one of the Cortex-A9 processors has their own Private 32-bit timer 

and Watchdog timer which are also 32-bit. A Global 64-bit timer also exists and is shared by both 

processors. Overall these times are always clocked at 1/2 of the CPU frequency. 

There is a 24-bit watchdog timer and two 16-bit triple timer/counters, which exist on a 

system level. Here the system watchdog timer is clocked at 1/4 or 1/6 of the CPU frequency. The 

two triple timers/counters are always clocked at 1/4 or 1/6 of the CPU frequency, and are used to 

count the widths of signal pulses from an MIO pin or from the Programmable Logic.  
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4.2.6.1 The Private Timer 

The Private timer is a decrementing 32-bit counter. The Timer Load Register contains the 

value copied to the counter. The counter decrements when the timer is enabled by using the timer 

enable bit. If a Cortex-A9 processor timer is in debug state, the counter only decrements when the 

Cortex-A9 processor returns to non debug state. When the counter reaches zero, the auto reload 

mode is enabled thus reloading the value in the Timer Load Register and then decrementing it from 

that value. . If auto reload mode is not enabled, the counter decrements down to zero and stops.  

The Private timer block features an 8-bit value to qualify the clock period. It is moreover 

characterized by a configurable single-shot or auto-reload mode and configurable starting value for 

the counter. 

 

 

4.3 The Programmable Logic 

The Programmable Logic (PL) contributes in an affluent architecture which provides the user 

with the capability to configure it. The PL consists of configurable logic blocks, look-up tables with 

a 6-input and a memory capability within these look-up tables. It contains its own clock management 

with high-speed buffers and it routes for low-skew clock distribution. The clock management also 

features frequency synthesis, phase shifting, low-jitter clock generation and jitter filtering. 

This Programmable logic is characterized by configurable Inputs and Output (I/Os). It has a 

High-performance Select-IO technology and high-frequency decoupling capacitors within the 

package so as to enhance the signal integrity. The configurable I/Os include digitally controlled 

impedance that can have 3 states for lowest power or the high-speed I/O operation. 

Moreover, cascadable adders are contained in the Programmable Logic. Register and shift 

register functionality is included as well as digital signal processing. 

 

 

4.3.1 The Advanced Microcontroller Bus Architecture (AMBA) 

The Advanced Microcontroller Bus Architecture (AMBA) is an open-standard and on-chip 

interconnect specification used to connect and manage functional blocks in system on chip designs 

(SoC designs). The AMBA expedites the development on multiprocessor designs by using several 

controllers and peripherals. It is not only useful in micro-controller devices but also in SoC parts that 

include application processors that are used in portable mobile devices such as smart phones. 

The first AMBA buses were Advanced System Bus (ASB) and Advanced Peripheral Bus 

(APB) introduced by ARM. The AMBA 2, the second version of the AMBA, has an added AMBA 

High-performance Bus (AHB) that is a single clock-edge protocol. ARM introduced the third 

generation, AMBA 3, including AXI to reach even higher performance interconnect and the 

Advanced Trace Bus (ATB) as part of the CoreSight on-chip debug and trace solution. The fourth 

version, AMBA 4, included the introduction of the AMBA 4 AXI4 which was then extended with 

AMBA 4 ACE. The fifth version AMBA 5 CHI (Coherent Hub Interface) specification was 

introduced with a re-designed high-speed transport layer and features designed to reduce congestion. 
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4.3.1.1 The Advanced Extensible Interface (AXI) 

The Advanced Extensible Interface (AXI Interface) is the third generation of the AMBA 

interface that was defined in the AMBA 3 specification. It features a high performance and a high 

clock frequency. The AXI Interface is characterized by a separate address and data phase, support 

for unaligned data transfers using byte strobes, burst based transactions with only start address 

issued,  issuing of multiple outstanding addresses with out of order responses and easy addition of 

register stages to provide timing closure. All of these features make the AXI Interface suitable of 

high speed sub-micrometer interconnect.  

In this design the AXI does not support fixed burst type for the AXI ports into the DDRI, 

however it does support byte, half-word and word sub-width commands. 

 

 

4.3.1.2 The AXI BRAM Controller 

The AXI BRAM Controller is a soft IP core. This core is designed as an AXI endpoint slave 

IP for integration with the AXI interconnect and system master devices so as to communicate to 

local BRAM. The core supports both single and burst transactions to the BRAM and is optimized for 

performance. 

 

 

4.3.1.3 The AXI GPIO 

The AXI GPIO implements a general purpose input and output interface to the AXI 

interface. It is a 32-bit soft IP core that is designed to interface with the AXI4-Lite interface. These 

interfaces are connected directly to the ports of the master interconnect and the slave interconnect, 

without any additional FIFO buffering, therefore, the performance is constrained by the ports of the 

master interconnect and the slave interconnect. As a consequence, these interfaces are used for 

general-purpose and are not intended to achieve high performance. 

The AXI GPIO features a standard AXI protocol, a 32-bit data bus width, a 12-bit master 

port ID width, a 6-bit slave port ID width, an 8 reads and 8 writes master port issuing capability and 

an 8 reads and 8 writes slave port acceptance capability. It supports configurable single or dual 

GPIO channels with a configurable channel width for GPIO pins ranging from 1bit to 32 bits. These 

GPIO bits can be dynamically programmed as an input or an output and each channel can be 

individually configured. The AXI GPIO subsidizes independent reset values for each bit in all of the 

registers and can generate optional interrupt requests. 

 

 

4.3.2 The Random Access Memory (RAM) 

The Random Access Memory (RAM) is a form of computer data storage. The RAM device 

allows data items to be read and written in approximately the same amount of time in which the data 

items were accessed. The time required to read and write data items may vary significantly 

depending on their physical locations on the recording medium, due to mechanical limitations such 

as media rotation speeds and arm movement delays. 
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 Nowadays, the RAM takes the form of integrated circuits. It is normally associated with 

volatile types of memory where stored information is lost if power is removed, although many 

efforts have been made to develop non-volatile RAM chips. Other types of non-volatile memory 

exist that allow random access for read operations, but either do not allow write operations or have 

limitations on them. These include most types of ROM and a type of flash memory called NOR-

Flash. 

The RAM used in the Zynq design is a dual port 36 KB RAM with port widths ranging up to 

72-bits wide. However, each block RAM can be divided into two completely independent dual 18 

Kb block RAMs. It is of programmable FIFO logic and has a built in optional error correction 

circuitry. 

Every Zynq-7000 AP SoC device has between 60 and 465 dual-port block RAMs, each 

storing 36 Kb. Each block RAM has two completely independent ports that share nothing but the 

stored data. Each memory access, whether read or write is controlled by the clock. All inputs, data, 

address, clock enables, and write enables are registered. The input address is always clocked, 

therefore retaining data until the next operation. An optional output data pipeline register allows 

higher clock rates at the cost of an extra cycle of latency. During a write operation, the data output 

can reflect either the previously stored data, the newly written data, or can remain unchanged. 

Each port can be configured as 32K ×1, 16K ×2, 8K ×4, 4K ×9 (or x8), 2K ×18 (or x16), 1K 

×36 (or 32), or 512 ×72 (or x64). The two ports can have different widths without any constraints. 

Each 64-bit-wide block RAM can generate, store, and utilize eight additional code bits and perform 

a single-bit error correction and double-bit error detection during the read process. This logic can 

also be used when writing to or reading from external 64- to 72-bit-wide memories. 
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5. Software Implementation Description. 

5.1 Single Sobel and TEA Application 

The main goal of these applications is to apply the Sobel filter to a digital image and then, 

by using the TEA algorithm, to encipher and decipher the processed image. 

The Zynq-7000 provides two processor cores. The TEA algorithm runs on the processor 

“cortexa9_1” and the Sobel algorithm runs on the processor “cortexa9_0”. The code for the Sobel 

filter is stored in and loaded from the DDR Memory (Double data rate synchronous dynamic 

random-access memory (DDR SDRAM)), and the TEA algorithm is stored in and loaded from 

RAM0 Memory (Random-access memory). 

In order for the two applications to be able to communicate we use a pointer (*start), 

disclosed to both applications, that is located in the AXI BRAM Controller (the address is 

0x40000000). This pointer acts as a flag and its inputs can either be 0 or 1. The TEA algorithm is the 

first to run but is stalled with a while loop, with the start pointer (flag) being its function argument. 

Unless the flag value remains the same, the application will never terminate. The purpose of this 

loop is to start the encryption and decryption after the image has been processed, namely after the 

Sobel application has terminated. 

 

 

 

 

 

 

 

Figure 5-0-1: While Loop In TEA Application 

 

The Sobel application then follows. The digital image that we use here is a two-dimensional 

array with a size of 30x29 that we insert into a structure whose type is “image”. The pointer 

“dstPoint” points to the array where the processed image is stored and will be used to insert the 

image into the DDR memory. For the image to be accessible to both applications the “dstPoint” 

pointer is stored in the DDR Memory (the address is 0x00200000). By using the instruction : 

*(dstPoint +(iter*2000) + count_sobel)= x->data[i][j] ;  we store the processed pixels in the memory. 

Proceeding to the main function, the image that we wish to process is stored in a structure 

whose type is “im”. After the array has been filled, the Sobel function then takes place. When the 

function ends the result we receive is our processed image. The value of the pointer “*start” then 

changes. Since our image has been processed and the state of our flag has changed, we can then 

while (*start) { 
  //waiting 
 } 
 
 *start =1; 



Department of Informatics Engineering 
Design and Implementation Mechanisms for Quality of Service over System on Chips 

36 

 

36 TEI of Crete 
 

proceed to the TEA algorithm. 

 

                      Figure 5-0-2: Image After Sobel Filter 

Figure 5-0-3: Original Image 

 

The TEA algorithm is executed as follows. We insert into the one dimensional array in[] the 

870 processed pixels of our image in order to apply the TEA mask. The array in_trans[2] is the input 

to the encryption algorithm. We enter the processed pixels stored in the DDR Memory in pairs 

because the algorithm can support up to 2 elements. Using the instruction:  xtea_encipher ( in_trans, 

out, key); we call the TEA encryption function. We then enter the results of the TEA mask, that 

works for two elements at a time, into the variables v0 and v1. After the encryption process is 

completed we insert, as an input, the enciphered pixels into the array in_trans[] in order to decrypt 

them. With the execution of the instructions: xtea_decipher (in_trans, out, key); the TEA decryption 

algorithm begins. 

 

 

5.2 Multiple Sobel and TEA Application 

The main purpose of running the Sobel and TEA applications multiple times is to study the 

effects on both processor cores by occupying them simultaneously.  

To calculate the estimated time each application takes to finish we used the functions that 

activate the Xilinx hardware timer (SCU Timer).  More specifically to start the timer we execute the 

instruction: XscuTimer_Start(&Timer); and to stop it with the instruction: 

XScuTimer_Stop(&Timer);. The next stage was to extract the counted value with the instruction: 

Cnt=XScuTimer_GetCounterValue(&Timer);. The timer counts in reverse, so, as to calculate the real 

time an application takes to complete itself, we need to subtract the counters value with the timers 

initial load value.       

The measurements that were taken showed that the TEA application took a significantly 

longer time to finish than the Sobel application. To achieve simultaneous occupation on the two 

processor cores the Sobel applications runs three times and the TEA application two times. The same 

process as before is implemented with the only difference of a “for” loop in both applications to 

achieve repetition. 

 

 

 

sobel1 sobel2 sobel3 

 

 tea1 tea2 

Figure 5-0-4: Process of Multiple Sobel and TEA Applications 
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5.2 Performance Monitoring Unit Application 

The main purpose of this application (source code) is to count certain events using the PMU 

event counters. The files v7_pmu.S and v7_pmu.h, used in our thesis, were originally provided by 

Arm but modified so as to be GCC friendly. The assembly code file access the unit by using the 

CP15 interface. The application is implemented in three main parts: enabling, counting and 

disabling. 

At first we enable the Performance Monitoring Unit. On other processors (for example 

ARM11) the counters start immediately, but on the ARM Cortex-a9 each one of the six event 

counters need to be individually enabled. The parameters for this function are the numbers 0 to 5 

(each number for the corresponding event counter). We also enable the cycle counter register. After 

the enabling we reset the programmable counters and the cycle counter register to its original value. 

 

 

 

 

 

 

  

Figure 5-0-5: Enabling Functions 

 

In order to be able to conduct the measurements we have to configure the event counters for 

the specific events. The function used is the void pmn_config(), that sets the event for the 

programmable counter to record. The attributes of this function are both the counter which is 

programmed and the event code. Before the main function, of each application, runs, we read the 

value of the counters. We also read the value of the cycle counter register. The value returned is 

assigned to a position in an integer table. The same procedure is repeated after the main function of 

each application has run. Basically, we want the measure the impact this function (that is part of the 

applications we have described previously) has on the system. 

 

 

 

 

 

 

 

 

Figure 5-0-6: Counting Functions 

 

 

After we have read the values of the counters, set to record certain events, we disable both 

the cycle counter register and the Performance Monitoring Unit with the functions void 

disable_ccnt(void) and void disable_pmu(void) correspondingly. The values after each event is 

void enable_pmu(void); 

 

void enable_ccnt(void); 

 

void enable_pmn(unsigned int 

counter); 

 

 

void pmn_config(unsigned int counter, 

unsigned int event); 

 

unsigned int read_ccnt(void); 

 

unsigned int read_pmn(unsigned int 

counter); 
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counted are stored in a table. The subtraction between the result of the counter before and after the 

main application function is the actual and final value of the event. 

 

 

 

 

 

 

Figure 5-0-7: Disabling Functions 

 

 

This source code is inserted into the Sobel, TEA and Black Scholes applications. 

Specifically, in the Sobel application, the Performance Monitoring Unit calculates the results of the 

events before and after the function sobel(im,r) . In the TEA application, the PMU calculates the 

results before and after the ecryption and decryption. Finally, in the Black Scholes application, the 

results calculated by the PMU are before and after each of the five main functions it contains (Asset 

path, Binomial, BSF, Forward and MC). 

 

 

void disable_pmu(void); 

 

void disable_ccnt(void); 
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6. Measurements-Results 

The Performance Monitoring Unit was applied to applications in order to study the effects 

they have on a processing system. The applications used are Sobel, Tea and Black Scholes.  In the 

case of Sobel combined with Tea, measurements were taken when they run once and then again 

when they run multiple times. Each application is studied with the usage of cache and without it. 

The bandwidths presented below are compared to the overall cycle counts. 

As we have previously mentioned, to achieve simultaneous occupation on the two processor 

cores the Sobel applications runs three times and the TEA application two times. In reference to the 

TEA applications, we can observe that the PMU gives us no results for the first application. This is 

because the PMU cannot be used by both processors simultaneously. 

The number of cycles counted by the PMU for the completion of the first Sobel is almost the 

same as when we run the Sobel application by itself. The cycle count for the following Sobel 

applications is slightly elevated. This is due to the fact that both processors work simultaneously and 

there is a certain strain of the processing system. . The cycle count for the TEA application is almost 

the same as when it runs on its own. This is logical since the total of the Sobel applications have 

terminated before the last TEA application ends; therefore there is no particular strain on the system. 

The cycles, of the following measurements, are calculated based on the Cortex-A9 CPU 

Clock Frequency, which is 666 MHz. 

 

 

 

6.1Formulas 

 

 The Cycle Counter Register (ccnt) provided by the PMU counts the same thing as the event 

Cycle Count (0x11).  The equation linking these two is: cycle count/64=ccnt. 

 The ScuTimer used is clocked at ½ of the CPUs frequency 

 The Cortex-A9 CPU Clock Frequency is 666 MHz. 

 The events Data read (0x06) and Data writes (0x07) added together equal the event 

Load/Store Instructions (0x72). 

 The cache ratio is the Data cache misses (0x03) divided by the Data cache access (0x04). 

  



Department of Informatics Engineering 
Design and Implementation Mechanisms for Quality of Service over System on Chips 

40 

 

40 TEI of Crete 
 

 

6.2Sobel and TEA Applications 

 

 

6.2.1Sobel and TEA Application Time 

 As we have previously mentioned, we can see that the TEA application takes more time to 

complete than Sobel. There is also a severe difference between the time each application needs to 

terminate with and without the use of caches (Chart 1). The values of the cycle count for Sobel and 

TEA with cache are less than the cycle count without caches. The explanation to this difference is 

that with the use of a cache, data can be read from it rather than reading data from a slower data 

source, thus making the system perform faster.  The difference between the Sobel application with 

and without cache is 1032619 cycles whilst for the Tea application 2022721 cycles. 

 

 

Chart 1 : Sobel and TEA Application Times 
1
 

 

 

 

6.2.2 Sobel and TEA Instruction Cache Miss Bandwidths 

 The Instruction Cache Miss (0x01) for the single Sobel and TEA application has the same 

value with and without the use of the cache memories. As the applications proceed to run the values 

decrease. In the multiple versions of the Sobel applications the value is always zero. 

                                                           
1
 The cycles are calculated based on the Cortex-A9 CPU Clock Frequency, which is 666 MHz. 
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Chart 2: The Instruction Cache Miss Bandwidths for the Sobel Application
2
 

 

Chart 3: The Instruction Cache Miss Bandwidths for the TEA Application 

 

6.2.3 Sobel and TEA Data Cache Miss Bandwidths 

 The single Sobel and TEA applications manifest no result when they run without the use of 

the cache memory. This is normal since no cache is used. The Data Cache Misses for the multiple 

versions of the Sobel and TEA applications with and without the use of cache are always zero. 

                                                           
2
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is 

666 MHz. 
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Chart 4: The Data Cache Miss Bandwidths for the Sobel Application
3 

 

 

 

Chart 5: The Data Cache Miss Bandwidths for the TEA Application 

 

 

                                                           
3
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is 

666 MHz. 
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6.2.4 Sobel and TEA Data Cache Access Bandwidths 

 The Data Cache Access for both the Sobel and TEA applications that employ the cache 

memory maintains similar values and has minor variations. However there seems to be a data cache 

access when the cache is disabled. This could be because, the Performance Monitoring Unit counts 

any attempt to access data.  

 

 

 
Chart 6: The Data Cache Access Bandwidths for the Sobel Application

4
 

 

 

 

Chart 7: The Data Cache Access Bandwidths for the TEA Application 
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 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is 

666 MHz. 
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6.2.5 Sobel and TEA Load/Store Instructions Bandwidths 

 The event Load/Store Instructions (0x72) which is the overall memory access is in the same 

range in both cases with or without the usage of the cache memory in the single Sobel application. 

The same scenario applies to the single TEA application. In the cases of the multiple Sobel and TEA 

applications with and without the utilization of the cache, the values are similar and have small 

variations. 

 

 
Chart 8: The Load/Store Instructions Bandwidths for the Sobel Application

5
 

 

 

                                                           
5
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is 

666 MHz. 
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Chart 9: The Load/Store Instructions Bandwidth for the TEA Application
6
 

 

 

6.2.6 Sobel and TEA Cache Ratio  

 The Cache Ratio for the Sobel and TEA applications (either single or multiple) without 

cache is always zero. This circumstance is normal since there is no cache utilization. On the other 

hand, when the cache is wielded the cache ratio values gradually decrease. 

 

 
Chart 10: The Cache Ratio for the Sobel Application 
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 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is 

666 MHz. 
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Chart 11: The Cache Ratio for the TEA Application
7
 

 

 

6.3Black Scholes Application 

Studies were made on the Black Scholes benchmark by using all five of its applications and 

testing the impact these applications have on the processing system with the use of caches and 

without them. Generally, the conclusions made are similar to those made concerning the Sobel and 

TEA applications. All the cycle counts are significantly greater without the use of cache as opposed 

to with cache, which is expected since in this case we have to access a slower data source. The value 

of the event Data cache miss without cache for all five of the tests is always zero. The event Data 

cache access without cache always has a value.  

 The apparently big cycle count regarding the Mc Test is due to its vast number of sample. 

Additional tests were done based on the number of samples. As the samples increases, so does the 

cycle count, which is quite obvious since the more the samples, the more the processes made by the 

system. 

 The cycles, of the following measurements, are calculated based on the Cortex-A9 CPU 

Clock Frequency, which is 666 MHz. 

 

 

 

 

 

 

                                                           
7
 The cycles are calculated based on the Cortex-A9 CPU Clock Frequency, which is 666 MHz. 
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Chart 12: The Data Cache Miss Bandwidth for all five of the Black Scholes Applications 

8
 

 

 

Chart 13: The Data Cache Access Bandwidth for all five of the Black Scholes Applications 

 

                                                           
8
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is 

666 MHz. 
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Chart 14: The Load/Store Instructions Bandwidth for all five of the Black Scholes Applications
9
 

 

 

Chart 15: The Cache Ratio for all five of the Black Scholes Applications 

 

 

 

                                                           
9
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is 

666 MHz. 
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Chart 166: The Times For the MC Test
10

 

 

 

 

                                                           
10

 The cycles are calculated based on the Cortex-A9 CPU Clock Frequency, which is 666 MHz. 

1,73E-01 

1,16E-01 1,10E-01 1,10E-01 1,14E-01 

1,81E-01 

1,51E-01 1,47E-01 1,46E-01 1,47E-01 

0,00E+00 

2,00E-02 

4,00E-02 

6,00E-02 

8,00E-02 

1,00E-01 

1,20E-01 

1,40E-01 

1,60E-01 

1,80E-01 

2,00E-01 

10 100 1000 10000 100000 

C
yc

le
s 

Simulations 

MC TEST Times 

Time with Cache 

Time without Cache 



Department of Informatics Engineering 
Design and Implementation Mechanisms for Quality of Service over System on Chips 

50 

 

50 TEI of Crete 
 

7. Conclusions and Future Work 

 After studying many of the trials that we carried out, we can now make certain observations 

about the use of Performance Monitoring Units in applications.  

 When an application has disabled its cache, the access to data is done through slower and 

inflexible data sources thus delaying the system in its whole. On the other hand, high Cycle Count 

Rate can be due to the fact that both processors are working simultaneously. When the processors 

are required to work at the same time, a certain strain is applied to the system causing more 

processes to use the same resources at the same time, thus increasing the Cycle Count. 

 We are now able to understand and comprehend the consumption in our systems resources 

through the use of the Performance Monitoring Unit, therefore we can use this information to our 

advantage and guide the processors to perform quality of service. 

 

7.1 Future Work 

 The Performance Monitoring Unit has given us an idea as to how the system functions and 

handles its resources. 

 We intend to focus on developing a system that will provide real-time quality of service. By 

using the Performance Monitoring Unit, the one core will run various applications and the other core 

will act as a monitor. 

 This can be expanded on to Linux Operating Systems, where this monitor will temporarily 

pause processes that have a high resource occupation in order to let other applications run.  
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 Appendix A 

 

1.1 Additional Performance Monitoring Events 

1.1.1 Implemented architectural events 

 

Number    Event 

0x00  Software increment 

0x01  Instruction cache miss 

0x02  Instruction micro TLB miss 

0x03  Data cache miss 

0x04  Data cache access 

0x05  Data micro TLB miss 

0x06  Data read 

0x07  Data writes 

0x09  Exception taken 

0x0A  Exception return 

0x0B  Write context ID 

0x0C  Software change of the PC 

0x0D  Immediate branch 

0x0F  Unaligned load or store 

0x10  Branch mispredicted or not predicted 

0x11  Cycle count 

0x12  Predictable branches 
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1.1.2 Coretex-A9 Specific Events 

 

 

 

Event    Description   Value 

0x40 Java bytecode execute Approximate 

0x41 Software Java bytecode executed Approximate 

0x42 Jazelle backward branches executed Approximate 

0x50 Coherent linefill miss Precise 

0x51 Coherent linefill hit Precise 

0x60 Instruction cache dependent stall cycles Approximate 

0x61 Data cache dependent stall cycles Approximate 

0x62 Main TLB miss stall cycles Approximate 

0x63 STREX passed Precise 

0x64 STREX failed Precise 

0x65 Data eviction Precise 

0x66 Issue does not dispatch any instruction Precise 

0x67 Issue is empty Precise 

0x68 Instructions coming out of the core renaming stage Approximate 

0x69 Number of data linefills Precise 

0x6A Number of prefetcher linefills Precise 

0x6B Number of hits in prefetched cache lines Precise 

0x6E Predictable function returns Approximate 

0x70 Main execution unit instructions Approximate 

0x71 Second execution unit instructions Approximate 

0x72 Load/Store Instructions Approximate 

0x73 Floating-point instructions Approximate 

0x74 NEON instructions Approximate 

0x80 Processor stalls because of PLDs Approximate 

0x81 Processor stalled because of a write to memory Approximate 

0x82 Processor stalled because of instruction side main 

TLB miss 

Approximate 

0x83 Processor stalled because of data side main TLB 

miss 

Approximate 

0x84 Processor stalled because of instruction micro TLB 

miss 

Approximate 

0x85 Processor stalled because of data micro TLB miss Approximate 

0x86 Processor stalled because of DMB Approximate 

0x8A Integer clock enabled Approximate 

0x8B Data engine clock enabled Approximate 

0x8C NEON SIMD clock enabled Approximate 

0x8D Instruction TLB allocation Approximate 

0x8E Data TLB allocation Approximate 

0x90 ISB instructions Precise 

0x91 DSB instructions Precise 
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0x92 DMB instructions Approximate 

0x93 External interrupts Approximate 

0xA0 PLE cache line request completed Precise 

0xA1 PLE cache line request skipped Precise 

0xA2 PLE FIFO flush Precise 

0xA3 PLE request completed Precise 

0xA4 PLE FIFO overflow Precise 

0xA5 PLE request programmed Precise 

 

11
 

 

1.2 PMU Assembly Access Functions 

 unsigned int getPMN(void); 

 

getPMN: 

  MRC     p15, 0, r0, c9, c12, 0 /* Read PMNC Register  */ 

  MOV     r0, r0, LSR #11        /* Shift N field down to bit 0 */ 

  AND     r0, r0, #0x1F          /* Mask to leave just the 5 N bits     */ 

  BX      lr 

 

 void pmn_config(unsigned int counter, unsigned int event); 

 

 pmn_config: 

  AND     r0, r0, #0x1F          /* Mask to leave only bits 4:0 */ 

  MCR     p15, 0, r0, c9, c12, 5 /* Write PMNXSEL Register      */ 

  MCR     p15, 0, r1, c9, c13, 1 /* Write EVTSELx Register      */ 

  BX      lr 
 

 

 void ccnt_divider(int divider); 

 

 

 ccnt_divider: 

   MRC     p15, 0, r1, c9, c12, 0  /* Read PMNC  */ 

 

   CMP     r0, #0x0                /* IF (r0 == 0)       */ 

   BICEQ   r1, r1, #0x08           /* THEN: Clear the D bit (disables the divisor)       */ 

  ORRNE   r1, r1, #0x08           /* ELSE: Set the D bit (enables the divisor)  */ 

 

   MCR     p15, 0, r1, c9, c12, 0  /* Write PMNC */ 

   BX      lr 

  

                                                           
11

 For more information regarding the Cortex-A9 Performance Monitoring Events please refer to the 
Cortex-A9 Technical Reference Manual Revision: r4p1. 
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 void enable_pmu(void); 

 

enable_pmu: 

  MRC     p15, 0, r0, c9, c12, 0  /* Read PMNC  */ 

  ORR     r0, r0, #0x01           /* Set E bit  */ 

  MCR     p15, 0, r0, c9, c12, 0  /* Write PMNC */ 

  BX      lr 

 

 void disable_pmu(void); 

 

disable_pmu: 

  MRC     p15, 0, r0, c9, c12, 0  /* Read PMNC  */ 

  BIC     r0, r0, #0x01           /* Clear E bit        */ 

  MCR     p15, 0, r0, c9, c12, 0  /* Write PMNC */ 

  BX      lr 

  

 

 void enable_ccnt(void); 

 

enable_ccnt: 

  MOV     r0, #0x80000000         /* Set C bit  */ 

  MCR     p15, 0, r0, c9, c12, 1  /* Write CNTENS Register      */ 

  BX      lr 

 

 void disable_ccnt(void); 

 

disable_ccnt: 

  MOV     r0, #0x80000000         /* Clear C bit        */ 

  MCR     p15, 0, r0, c9, c12, 2  /* Write CNTENC Register      */ 

  BX      lr 

 

 void enable_pmn(unsigned int counter); 

 

enable_pmn: 

  MOV     r1, #0x1                /* Use arg (r0) to set which counter to disable       */ 

  MOV     r1, r1, LSL r0 

 

  MCR     p15, 0, r1, c9, c12, 1  /* Write CNTENS Register      */ 

  BX      lr 

 

 void disable_pmn(unsigned int counter); 

 

disable_pmn: 

  MOV     r1, #0x1                /* Use arg (r0) to set which counter to disable       */ 

  MOV     r1, r1, LSL r0 
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  MCR     p15, 0, r1, c9, c12, 1  /* Write CNTENS Register      */ 

  BX      lr 

 

 

 unsigned int read_ccnt(void); 

 

read_ccnt: 

  MRC     p15, 0, r0, c9, c13, 0 /* Read CCNT Register  */ 

  BX      lr 

 

 unsigned int read_pmn(unsigned int counter); 

 

read_pmn: 

  AND     r0, r0, #0x1F          /* Mask to leave only bits 4:0 */ 

  MCR     p15, 0, r0, c9, c12, 5 /* Write PMNXSEL Register      */ 

  MRC     p15, 0, r0, c9, c13, 2 /* Read current PMNx Register  */ 

  BX      lr 

   

 

 unsigned int read_flags(void); 

 

read_flags: 

  MRC     p15, 0, r0, c9, c12, 3 /* Read FLAG Register  */ 

  BX      lr 

 

 void write_flags(unsigned int flags); 

 

write_flags: 

  MCR     p15, 0, r0, c9, c12, 3 /* Write FLAG Register */ 

  BX      lr 

 

 void enable_ccnt_irq(void); 

 

enable_ccnt_irq: 

  MOV     r0, #0x80000000 

  MCR     p15, 0, r0, c9, c14, 1  /* Write INTENS Register      */ 

  BX      lr 

 

 

 void disable_ccnt_irq(void); 

disable_ccnt_irq: 

  MOV     r0, #0x80000000 
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  MCR     p15, 0, r0, c9, c14, 2   /* Write INTENC Register     */ 

  BX      lr 

 

 void disable_pmn_irq(unsigned int counter); 

 

disable_pmn_irq: 

  MOV     r1, #0x1                /* Use arg (r0) to set which counter to disable       */ 

  MOV     r0, r1, LSL r0 

  MCR     p15, 0, r0, c9, c14, 2  /* Write INTENC Register      */ 

  BX      lr 

 

 

 void reset_pmn(void); 

 

reset_pmn: 

  MRC     p15, 0, r0, c9, c12, 0  /* Read PMNC  */ 

  ORR     r0, r0, #0x02           /* Set P bit (Event Counter Reset)    */ 

  MCR     p15, 0, r0, c9, c12, 0  /* Write PMNC */ 

  BX      lr 

 

 void reset_ccnt(void); 

 

reset_ccnt: 

  MRC     p15, 0, r0, c9, c12, 0  /* Read PMNC  */ 

  ORR     r0, r0, #0x04           /* Set C bit (Event Counter Reset)    */ 

  MCR     p15, 0, r0, c9, c12, 0  /* Write PMNC */ 

  BX      lr 

 

 

 void pmu_software_increment(unsigned int counter); 

 

pmu_software_increment: 

  MOV     r1, #0x01 

  MOV                   r1, r1, LSL r0 

  MCR     p15, 0, r1, c9, c12, 4 /* Write SWINCR Register       */ 

  BX      lr 
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1.1 Additional Measurements 

1.1.1 Single Sobel and TEA Application 

 

EVENT   L1 Disabled L1 Disabled DEC 

0x01 Instruction cache miss 0 0 

0x03 Data cache miss 0 0 

0x04 Data cache access 236C6 145094 

0x11 Cycle count 2C52C4 2904772 

0x72 Load/Store Instructions 274D7 160983 
Table 1: Single Sobel With L1 Cache Disabled 

 

EVENT   L1 Disabled L1 Disabled DEC 

0x01 Instruction cache miss 0 0 

0x03 Data cache miss 0 0 

0x04 Data cache access 7D94E 514382 

0x11 Cycle count 9D1FC8 10297288 

0x72 Load/Store Instructions C7B0C 817932 
Table 2: Single TEA With L1 Cache Disabled 

 

EVENT   L2 Disabled L2 Disabled DEC 

0x01 Instruction cache miss 80 128 

0x03 Data cache miss BC 188 

0x04 Data cache access 2850F 165135 

0x11 Cycle count 7F8A3 522403 

0x72 Load/Store Instructions 2749C 160924 
Table 3: Single Sobel with L2 Cache Disabled 

 

12 

 

                                                           
12

 The measurements are featured in Hexadecimal and Decimal format 
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Table 4: Single TEA With L2 Cache Disabled 

 

EVENT   I CACHE Disabled I CACHE Disabled DEC 

0x01 Instruction cache miss 0 0 

0x03 Data cache miss 
BD 

189 

0x04 Data cache access 282BC 164540 

0x11 Cycle count 3B18D5 3872981 

0x72 Load/Store Instructions 26FEF 159727 
Table 5: Single Sobel With I cache Disabled 

 

EVENT   I CACHE Disabled I CACHE Disabled DEC 

0x01 Instruction cache miss 0 0 

0x03 Data cache miss 
C3 

195 

0x04 Data cache access E069A 919194 

0x11 Cycle count 36ADB9 3583417 

0x72 Load/Store Instructions C6BA4 813988 
Table 6: Single TEA With I Cache Disabled 

 

Table 7: Single Sobel With D Cache Disabled 

 

EVENT   L2 Disabled L2 Disabled DEC 

0x01 Instruction cache miss 80 128 

0x03 Data cache miss BC 188 

0x04 Data cache access 2850F 165135 

0x11 Cycle count 7F8A3 522403 

0x72 Load/Store Instructions 2749C 160924 

EVENT   D CACHE Disabled D CACHE Disabled DEC 

0x01 Instruction cache miss 83 131 

0x03 Data cache miss 0 0 

0x04 Data cache access 236D1 145105 

0x11 Cycle count 64A6BA 6596282 

0x72 Load/Store Instructions 274D8 160984 



61 Appendix A 

 

EVENT   D CACHE Disabled D CACHE Disabled DEC 

0x01 Instruction cache miss 3E 62 

0x03 Data cache miss 0 0 

0x04 Data cache access 7D951 514385 

0x11 Cycle count 8DF389 9302921 

0x72 Load/Store Instructions C7B13 817939 
Table 8: Single TEA With D Cache Disabled 

 

1.1.2 Multiple Sobel and TEA Application 

 

 

Table 9: Multiple Sobel and TEA With L1 Cache Disabled
13

 

 

Table 10: Multiple Sobel and TEA With D Cache Disabled 

                                                           
13

 The measurements are featured in Hexadecimal format 

EVENT Sobel 1 EVENT Sobel 2 EVENT Sobel 3

0x01 Instruction cache miss 0 0x01 Instruction cache miss 0 0x01 Instruction cache miss 0

0x03 Data cache miss 0 0x03 Data cache miss 0 0x03 Data cache miss 0

0x04 Data cache access 236CD 0x04 Data cache access 236C5 0x04 Data cache access 236CD

0x11 Cycle count 2C18BD 0x11 Cycle count 2C1939 0x11 Cycle count 2CECA0

0x72 Load/Store Instructions 274E6 0x72 Load/Store Instructions 274D2 0x72 Load/Store Instructions 27529

EVENT TEA 1 EVENT TEA 2

0x01 Instruction cache miss FF 0x01 Instruction cache miss 0

0x03 Data cache miss FF 0x03 Data cache miss 0

0x04 Data cache access FF 0x04 Data cache access 7D9B6

0x11 Cycle count FF 0x11 Cycle count 9D7D44

0x72 Load/Store Instructions FF 0x72 Load/Store Instructions C7B7F

EVENT Sobel 1 EVENT Sobel 2 EVENT Sobel 3

0x01 Instruction cache miss 7F 0x01 Instruction cache miss 4 0x01 Instruction cache miss 0

0x03 Data cache miss 0 0x03 Data cache miss 0 0x03 Data cache miss 0

0x04 Data cache access 236CE 0x04 Data cache access 236E7 0x04 Data cache access 236D8

0x11 Cycle count 64079C 0x11 Cycle count 6415CE 0x11 Cycle count 646AED

0x72 Load/Store Instructions 274DF 0x72 Load/Store Instructions 274F1 0x72 Load/Store Instructions 2753A

EVENT TEA 1 EVENT TEA 2

0x01 Instruction cache miss FF 0x01 Instruction cache miss 0

0x03 Data cache miss FF 0x03 Data cache miss 0

0x04 Data cache access FF 0x04 Data cache access 7D940

0x11 Cycle count FF 0x11 Cycle count 8E2CDB

0x72 Load/Store Instructions FF 0x72 Load/Store Instructions C7AE6
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 Table 11: Multiple Sobel and TEA With I Cache Disabled 

 

 

 

 

 Table 12: Multiple Sobel and TEA With L2 Cache Disabled 

 

 

 

  

 

 

 

Sobel 1 EVENT Sobel 2 EVENT Sobel 3

0 0x01 Instruction cache miss 0 0x01 Instruction cache miss 0

BB 0x03 Data cache miss 99 0x03 Data cache miss 9D

282B3 0x04 Data cache access 282C5 0x04 Data cache access 282BA

3BF510 0x11 Cycle count 3CF258 0x11 Cycle count 3F8051

26FE3 0x72 Load/Store Instructions 26FB7 0x72 Load/Store Instructions 26FC8

EVENT TEA 1 EVENT TEA 2

0x01 Instruction cache miss FF 0x01 Instruction cache miss 0

0x03 Data cache miss FF 0x03 Data cache miss 0

0x04 Data cache access FF 0x04 Data cache access D650E

0x11 Cycle count FF 0x11 Cycle count 36ACBE

0x72 Load/Store Instructions FF 0x72 Load/Store Instructions C6B81

EVENT Sobel 1 EVENT Sobel 2 EVENT Sobel 3

0x01 Instruction cache miss 77 0x01 Instruction cache miss 4 0x01 Instruction cache miss 0

0x03 Data cache miss 4F 0x03 Data cache miss 99 0x03 Data cache miss 9B

0x04 Data cache access 2826A 0x04 Data cache access 285A3 0x04 Data cache access 28597

0x11 Cycle count 7F395 0x11 Cycle count 80C6E 0x11 Cycle count 83260

0x72 Load/Store Instructions 2747E 0x72 Load/Store Instructions 2747E 0x72 Load/Store Instructions 274B5

EVENT TEA 1 EVENT TEA 2

0x01 Instruction cache miss FF 0x01 Instruction cache miss 0

0x03 Data cache miss FF 0x03 Data cache miss 0

0x04 Data cache access FF 0x04 Data cache access E60B7

0x11 Cycle count FF 0x11 Cycle count 17B90E

0x72 Load/Store Instructions FF 0x72 Load/Store Instructions C7AE3
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Appendix C 

1.1 Thesis Presentation 

 

Design and Implementation 
Mechanisms for quality of service 
over Embedded systems on chips

Efstathia Matthaiou
AM 2930

Supervising Professor
George Kornaros

Technological Education Institute of Crete
School of Engineering 
Department of Informatics Engineering

 

Overview

• Introduction

• Hardware Implementation Description

• Performance Monitoring Unit

• Applications/Benchmarks

• Software Implementation Description

• Measurements-Results

• Conclusions and Future Work 
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Aims and Objectives

• Implementation of applications on the 
hardware design

• Enablement  of the Performance Monitoring 
Unit

• Measurements by the Performance 
Monitoring Unit

• Study on the results obtained

 

Hardware Implementation Description

• The implementation is carried out on the Zynq-7000 based 
on the Xilinx all programmable SoC (AP SoC) architecture

• Processing System(PS)
– Dual-core ARM Cortex-A9 Processor
– The Level-One (L1) Cache
– The Level-Two (L2) Cache 
– The DDR Memory 
– ARM Private Timer

• Programmable Logic(PL)
– AXI BRAM
– AXI GPIO
– Block Memory Generator
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Hardware Design

 

Performance Monitoring Unit

• Hardware that has been built inside any given 
processor in order to measure its performance 
parameters

 The Performance Monitor Unit (PMU) is part of the ARM 
Debug architecture
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Performance Monitoring Unit 
Counters

• Six event counters (PMU event counter 0 to 5) 

• Each one of the counters are able to count any 
of the 63 events available in the Cortex-a9 
processor

  

Performance Monitoring Unit Events

• Architectural Events
– Instruction cache miss (0x01)
– Data cache miss (0x03)
– Data cache access (0x04)
– Data read (0x06)
– Data writes (0x07)
– Cycle count (0x11)

• Specific  Events
– Load/Store instructions (0x72)

 Counts the number of instructions being executed in the Load/Store unit
– Processor stalled because of a write to memory (0x81)

 Counts the number of cycles when the processor is stalled
– Processor stalled because of instruction side main TLB miss (0x82)

 Counts the number of stall cycles because of main TLB misses on requests issued by the 
instruction side

– Processor stalled because of data side main TLB miss (0x83) 
 Counts the number of stall cycles because of main TLB misses on request issued by the 

data side

 



67 Appendix A 

 

Application/Benchmarks

• Sobel
– Image Processing

• TEA
– Encryption
– Decryption

• Black Scholes
– European and call options formula

 Asset Path
 Binomial
 BSF
 Forward
 MC

 

Single Sobel and TEA Application

Core 1

Processed 
image

encryption

decryption

Core 0 

Sobel

Processed 
image

image

*start

AXI BRAM CTRL

*start=0x40000000

while (*start){

}

*dstPoint=0x00200000

DDR

 



Department of Informatics Engineering 
Design and Implementation Mechanisms for Quality of Service over System on Chips 

68 

 

68 TEI of Crete 
 

Multiple Sobel and TEA Application

1st Sobel 2nd Sobel 3rd Sobel

1st TEA 2nd TEA

  

Performance Monitoring Unit 
Application

• Enablement
– Enablement of the six event 

counter
– Enablement of the cycle counter 

register
– Reset of the event counter and 

ccnt to their original value

• Count
– Configuration of the event counter 

for the specific events
– Reading the event counters and 

ccnt before the main function
– Reading the event counters and 

ccnt after the main function

• Disablement
– Disablement of the cycle counter 

register
– Disablement of the event counters

•void enable_pmu(void);
•void enable_ccnt(void);
•void enable_pmn(unsigned int counter);

•void pmn_config(unsigned int counter, 
unsigned int event);
•unsigned int read_ccnt(void);
•unsigned int read_pmn(unsigned int
counter);

•void disable_pmu(void);
•void disable_ccnt(void);
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Formulas

• The Cycle Counter Register (ccnt) provided by the PMU 
counts the same thing as the event Cycle Count (0x11).  
The equation linking these two is: cycle count/64=ccnt.

• The ScuTimer used is clocked at ½ of the CPUs 
frequency

• The Cortex-A9 CPU Clock Frequency is 666 Hz.

• The events Data read (0x06) and Data writes (0x07) 
added together equal the event Load/Store 
Instructions (0x72).

• The cache ratio is the Data cache misses (0x03) divided 
by the Data cache access (0x04).

  

Sobel and TEA Application Time
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*The application times are the result of the “Cycle 
count” with a CPU Frequency at 666 Hz
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Sobel and TEA Data Cache Miss 
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Sobel and TEA Data Cache Access 
Bandwidth
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Sobel and TEA Load/Store Instructions 
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Sobel and TEA Cache Ratio 
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Black Scholes Load/Store Instructions 
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Conclusions

• We are now able to understand and 
comprehend the consumption in our systems 
resources through the use of the Performance 
Monitoring Unit , therefore we could guide 
the processors to perform Quality of service.

  

Future Work

• We intend to focus on developing a system that 
will provide real-time quality of service. By using 
the Performance Monitoring Unit, the one core 
will run various applications and the other core 
will act as a monitor

• This can be expanded on to Linux Operating 
Systems, where this monitor will temporarily 
pause processes that have a high resource 
occupation in order to let other applications run

  



75 Appendix A 

 

Thank you! 
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