
Technological Educational Institute of Crete

School of Engineering

Department of Informatics Engineering

GRADUATE THESIS

Design and Implementation Mechanisms for

Quality of Service over Embedded System on

Chips

Matthaiou Eustathia Supervising Professor:

Α.Μ. 2930 Kornaros George

July 2015– Herakleion

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

2

2 TEI of Crete

3 Acknowledgements

Acknowledgements

First of all I would like to express my gratitude to my supervising professor Mr. G. Kornaros

for the trust and patience he showed me. I would also like to thank him for giving me the

opportunity to work in this specific field in computer science and for his guidance and valuable help

he provided me with throughout this process.

 I would also like to thank my family and friends for supporting and bearing with me the

whole time. Without their ethical support it would have been much harder for me to finish this

thesis.

 Moreover, I would like to dedicate this thesis to my father who has supported me and has

always had my wellbeing in his mind. He has always told me that there is nothing I can’t do and

thanks to that I have managed to accomplish my goals.

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

4

4 TEI of Crete

Σύνοψη

Τα ενσωματωμένα συστήματα έχουν γνωρίσει μεγάλη ανάπτυξη τα τελευταία χρόνια. Η

χρήση πολυπύρηνων επεξεργαστών, μέσα σε αυτά τα συστήματα, έχουν πραγματικά ενισχύσει την

απόδοσή τους. Ωστόσο, η χρήση πολυπύρηνων επεξεργαστών δεν είναι πάντα απλή και μπορεί να

δημιουργήσει δυσκολίες. Για να μπορέσουμε να παρατηρήσουμε και να βελτιστοποιήσουμε τα

συστήματα, και πιο συγκεκριμένα τα Συστήματα σε Τσιπ (System on Chip), χρησιμοποιούμε

Performance Monitors.

Ο κύριος στόχος της πτυχιακής μου εργασίας είναι να υλοποιήσουμε εφαρμογές για

ποιότητα υπηρεσιών (Quality of Service) πάνω σε πολυπύρηνους επεξεργαστές σε Συστήματα σε

Τσιπ. Σε κάποιες περιπτώσεις προσπαθούμε να πετύχουμε παραλληλισμό. Με την χρήση του

Performance Monitoring Unit που παρέχεται , καταγράφουμε επιθυμητά συμβάντα ώστε να τα

επεξεργαστούμε. Ο τελικός στόχος είναι να χρησιμοποιήσουμε αυτές τις πληροφορίες προς την

διαχείριση πόρων.

Λέξεις Κλειδιά: Συστήματα σε Τσιπ, Μονάδα Παρακολούθησης Απόδοσης, ARM Cortex-A9,

Ποιότητα Υπηρεσιών, Sobel, TEA, Black Scholes

5 Σύνοψη

Key Words: System on Chips, Performance Monitoring Unit, ARM Cortex-A9, Quality of Service,

Sobel, TEA, Black Scholes.

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

6

6 TEI of Crete

Table of Contents

Acknowledgements .. 3

Σύνοψη ... 4

Table of Contents ... 6

List of Figures ... 9

List of Charts ... 10

List of Tables ... 11

Abstract .. 13

1. Introduction .. 14

1.1 Reasons for Conducting the Thesis .. 14

1.2 Related Work .. 15

1.2 Aims and Objectives of Thesis .. 15

1.3 Chapter Summary ... 15

2. The Performance Monitoring Unit ... 17

2.1 The ARM Performance Monitoring Unit .. 17

2.2 The Performance Monitoring Unit Counters ... 18

2.3 The Performance Monitoring Unit Events ... 18

2. 4The Performance Monitoring Unit Behavior on Overflow ... 19

2. 5The Performance Monitoring Accuracy ... 19

3. Applications/Benchmarks .. 20

3.1 Benchmarks in Embedded Computing ... 20

3.2 Sobel Application .. 21

3.3 TEA Application .. 21

3.4 Black Scholes Application ... 22

4. Hardware Implementation Description .. 23

4.1 The Zynq-7000 AP SoC ... 23

7 Table of Contents

4.2 The Processing System ... 24

4.2.1 The ARM Architecture ... 24

4.2.2 The ARM Coretex-A9 Processors ... 25

4.2.3 The Cache Memory ... 26

4.2.3.1 The CPU Cache ... 27

4.2.3.2 The Level-One (L1) Cache ... 27

4.2.3.3 The Instruction Cache (I-Cache) ... 28

4.2.3.4 The Data Cache (D-Cache) .. 28

4.2.3.4 The Level-Two (L2) Cache ... 29

4.2.3.5 The Exclusive L2 Cache ... 29

4.2.4 Cache Coherency ... 29

4.2.4.1 The Snoop Control Unit (SCU) .. 30

4.2.5 The Memory Unit .. 30

4.2.5.1 The Memory Types ... 31

4.2.5.2 The DDR Memory ... 31

4.2.5.3 The DDR Controller... 31

4.2.6 The ARM Timers .. 31

4.2.6.1 The Private Timer ... 32

4.3 The Programmable Logic .. 32

4.3.1 The Advanced Microcontroller Bus Architecture (AMBA) .. 32

4.3.1.1 The Advanced Extensible Interface (AXI) ... 33

4.3.1.2 The AXI BRAM Controller ... 33

4.3.1.3 The AXI GPIO .. 33

4.3.2 The Random Access Memory (RAM) ... 33

5. Software Implementation Description. .. 35

5.1 Single Sobel and TEA Application ... 35

5.2 Multiple Sobel and TEA Application ... 36

5.2 Performance Monitoring Unit Application ... 37

6. Measurements-Results... 39

6.1Formulas .. 39

6.2Sobel and TEA Applications ... 40

6.2.1Sobel and TEA Application Time .. 40

6.2.2 Sobel and TEA Instruction Cache Miss Bandwidths .. 40

6.2.3 Sobel and TEA Data Cache Miss Bandwidths .. 41

6.2.4 Sobel and TEA Data Cache Access Bandwidths ... 43

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

8

8 TEI of Crete

6.2.5 Sobel and TEA Load/Store Instructions Bandwidths ... 44

6.2.6 Sobel and TEA Cache Ratio .. 45

6.3Black Scholes Application .. 46

7. Conclusions and Future Work .. 50

7.1 Future Work ... 50

Bibliography ... 52

Appendix A ... 53

1.1 Additional Performance Monitoring Events .. 53

1.1.1 Implemented architectural events ... 53

1.1.2 Coretex-A9 Specific Events ... 54

1.2 PMU Assembly Access Functions ... 55

Appendix B ... 59

1.1 Additional Measurements .. 59

1.1.1 Single Sobel and TEA Application ... 59

1.1.2 Multiple Sobel and TEA Application ... 61

Appendix C ... 63

1.1 Thesis Presentation .. 63

9 List of Figures

List of Figures

Figure 3-0-1: Sobel 3x3 Masks .. 21

Figure 3-0-2: Two Feistel rounds (one cycle) of TEA .. 21

Figure 4-0-1: The Zynq-7000 AP SoC Overview .. 24

Figure 4-0-2 The APU Block Diagram ... 26

Figure 5-0-1: While Loop In TEA Application .. 35

Figure 5-0-2: Image After Sobel Filter .. 36

Figure 5-0-3: Original Image ... 36

Figure 5-0-4: Process of Multiple Sobel and TEA Applications .. 36

Figure 5-0-5: Enabling Functions .. 37

Figure 5-0-6: Counting Functions ... 37

Figure 5-0-7: Disabling Functions ... 38

file:///C:/Users/effie/Desktop/final.docx%23_Toc427786538

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

10

10 TEI of Crete

List of Charts

Chart 1 : Sobel and TEA Application Times ... 40

Chart 2: The Instruction Cache Miss Bandwidths for the Sobel Application 41

Chart 3: The Instruction Cache Miss Bandwidths for the TEA Application .. 41

Chart 4: The Data Cache Miss Bandwidths for the Sobel Application ... 42

Chart 5: The Data Cache Miss Bandwidths for the TEA Application .. 42

Chart 6: The Data Cache Access Bandwidths for the Sobel Application .. 43

Chart 7: The Data Cache Access Bandwidths for the TEA Application ... 43

Chart 8: The Load/Store Instructions Bandwidths for the Sobel Application 44

Chart 9: The Load/Store Instructions Bandwidth for the TEA Application .. 45

Chart 10: The Cache Ratio for the Sobel Application ... 45

Chart 11: The Cache Ratio for the TEA Application .. 46

Chart 12: The Data Cache Miss Bandwidth for all five of the Black Scholes Applications 47

Chart 13: The Data Cache Access Bandwidth for all five of the Black Scholes Applications 47

Chart 14: The Load/Store Instructions Bandwidth for all five of the Black Scholes Applications 48

Chart 15: The Cache Ratio for all five of the Black Scholes Applications ... 48

Chart 16: The Times For the MC Test ... 49

11 List of Tables

List of Tables

Table 1: Single Sobel With L1 Cache Disabled .. 59

Table 2: Single TEA With L1 Cache Disabled .. 59

Table 3: Single Sobel with L2 Cache Disabled .. 59

Table 4: Single TEA With L2 Cache Disabled .. 60

Table 5: Single Sobel With I cache Disabled ... 60

Table 6: Single TEA With I Cache Disabled ... 60

Table 7: Single Sobel With D Cache Disabled ... 60

Table 8: Single TEA With D Cache Disabled .. 61

Table 9: Multiple Sobel and TEA With L1 Cache Disabled.. 61

Table 10: Multiple Sobel and TEA With D Cache Disabled ... 61

Table 11: Multiple Sobel and TEA With I Cache Disabled .. 62

Table 12: Multiple Sobel and TEA With L2 Cache Disabled.. 62

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

12

12 TEI of Crete

13 Abstract

Abstract

 Embedded systems have seen great growth in recent years. The usage of multi-core

processors, within these systems, has truly enhanced their performance. However, using multi-core

processors is not always simple and it can create challenges. In order to observe and optimize the

systems, and to be more exact the System on Chips (SoCs), we employ the Performance Monitors.

The main focus of this thesis is to implement applications for quality of service (QoS) on

multi-core SoCs. In some cases these applications try to reach parallelization. With the usage of the

Performance Monitoring Unit provided, we capture desired events so as to examine them. The

ultimate goal is to use this information towards resource management.

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

14

14 TEI of Crete

1. Introduction

In this thesis we designed a system, on which various applications are implemented so as to

monitor the system and its resources. The design involves a system with multi-core processors (two

cores). Most of the applications are implemented in a way, to achieve simultaneous processor

occupation. We then enable the hardware Performance Monitors so as to study events performed on

the system and its resources. The software applications were written with the usage of the C

programming language.

Our architecture was built on the Zynq-7000 All Programmable SoC and designed with the

Xilinx Vivado Design Suite. The applications were implemented and programmed with the Xilinx

Software Development Kit (SDK).

The Performance Monitoring Unit (PMU) is contained in the processors debug architecture.

We use the system control coprocessor interface (CP15) in order to access it. The PMU is enabled

and captures certain events that we define, before the application starts and after the application has

ended. The results calculated are then compared in pursuance of drawing conclusion referring to the

system and its resources.

1.1 Reasons for Conducting the Thesis

 Multi-core designs have become widespread and for this reason they are the object of

extensive discussion and research. More importantly, research is done on the subject of energy

consumption, resource utilization and overall system performance.

 The main use of the Performance Monitoring Unit is to accurately monitor the performance

of the system under certain circumstances and to provide the program developer with this

information. This information constitutes a sort of guideline helping the developer improve the

system with the appropriate changes.

 Even though there is research on these multi-core embedded systems, not many researchers

have explored the use of the Performance Monitoring Unit provided by the ARM Debugging

architecture through the system control coprocessor interface (CP15).

 By using the Zynq-7000 and exploring the resource utilization through the Cortex-A9

processors we hope to better interpret how the processing system functions, with the ultimate aim to

exploit the system to our full advantage.

15 1. Introduction

1.2 Related Work

 Upon energy consumption in [1] CASHIER, a Cache Energy Saving Technique for Quality

of Service Systems, is presented. Here Cashier uses dynamic profiling to estimate the memory

subsystem energy and execution time of any program under multiple last level cache (LLC)

configurations. It then reconfigures LLC to an energy efficient configuration with a view to meet the

deadline. It manages to balance the energy saving and performance loss by adapting itself thus

supporting higher performance for a larger cache. Power consumption is addressed in [2], with the

usage two different algorithms. The first algorithm dynamically balances the task load for multiple

cores so as to optimize energy during execution. The second algorithm, which is the Dynamic Core

Scaling Algorithm, adjusts the number of active cores to reduce power leakage. Both these

algorithms have proven to conserve up to 25 percent and 40 percent of the energy respectively.

 A similar approach on Performance monitoring but with a different system (in this case

NoCs instead of SoCs) is suggested in [3]. Hardware agents are deployed to monitor managers that

can be dynamically configured and that can calculate statistics. This methodology that programs

hardware units, addresses the real time monitoring to improve the quality of service and the resource

management. The incorporation of the monitors in these designs confirms that they are of small

prerequisite and are beneficial in dynamic resource management.

 A more close appeal to what we study is recommended in [4]. An on-chip bus PMU is

utilized, which accurately evaluates the system power consumption. This design is customized for

different on-chip and off-chip memory devices and does not dependent on a specific CPU core. The

memory devices that use energy state machines are described in XML. This PMU traces the internal

behavior of the memory devices to give a estimate of power consumption.

1.2 Aims and Objectives of Thesis

In a summary, the aims of this thesis are the following:

 Implementation of applications on the hardware design

 Enablement of the Performance Monitoring Unit

 Measurements by the Performance Monitoring Unit on the effect the applications have on

the system.

 Study in the results obtained

1.3 Chapter Summary

Chapter 1: An introduction to the thesis

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

16

16 TEI of Crete

Chapter 2: An extensive description on the Performance Monitoring Unit

Chapter 3: A presentation on the Applications/Benchmarks used

Chapter 4: The description of the Hardware design in use

Chapter 5: A display of the software implementation

Chapter 6: A presentment of the results obtained

Chapter 7: Conclusions drawn from the measurements and ideas towards future development

17 2. The Performance Monitoring Unit

2. The Performance Monitoring Unit

 The Performance Monitor Unit, or else known as the PMU, is found in all high end

processors these days. [5] It provides the application developers the ability to measure predefined

events and processor clocks related to specific operations, for instance cache misses and CPU stalls,

in the interest of counting the efficiency of their application software.

 The PMU is essentially hardware that has been built inside any give processor in order to

measure its performance parameters. It has a tight integration with the CPU core, meaning that every

CPU has its own Performance Monitor Unit. The PMU was originally designed by computer

hardware engineers for the use of debugging CPUs that is why it is also known as Hardware

Performance Counters (HPCs).

 Since the Performance Monitor Unit has a hardware implementation, we can expect very

limited overhead. It does not use any of the computational or storage resources that are needed for

normal operations of the CPU thus providing low perturbation. The high resolution presented by the

PMU enables the monitoring of detailed micro-architectural events that in any other case would not

be monitored without hardware support. The most important advantage of the existence of

Performance Monitor Units is that they are widespread. Mostly all of the dominant industrial

processors have included them in their designs.

2.1 The ARM Performance Monitoring Unit

When writing optimized code, having knowledge of the processors behavior with branches

can be more than useful. For that reason branch prediction is considered to be part of the hardware

implementation. The performance monitor counters generate information regarding the number of

branches that are correctly or incorrectly predicted and are used to profile and in most cases

benchmark code [6].

The Performance Monitor Unit (PMU) is part of the ARM Debug architecture. Before the

existence of the ARMv7 processors, the performance monitors were included but not part of its

architecture. According to the ARMv7 [7], the system control coprocessor interface (CP15) is a

mandatory interface for the Performance Monitor registers. Other possible interfaces for the

Performance Monitor registers are a memory-mapped and an external debug interface, which both

are optional.

By using the CP15 interface, an operating system running on a processor can enable access

to counters within the application software. Therefore the application is able to monitor itself. In

many cases ARM recommends implementing application software access to the Performance

Monitors when the operating system does not use the monitors. The CP15 supports the usage of

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

18

18 TEI of Crete

energy management and dynamic compilation techniques. In conclusion ARMv7 reserves the CP15

registers strictly for ARM-recommended and implementation defined Performance Monitors.

The Performance Monitors main form consists of a cycle counter that is able to count either

every cycle or configured to count every 64
th
 cycle, a number of 32-bit wide event counters which are

programmable and controls that are used to enable and reset counter, flag overflows and enable

interrupts on an overflow.

2.2 The Performance Monitoring Unit Counters

The counters, a performance counter block contains, may be accessed through debug

tools or through software that runs on the processor, by using the CP15 Performance Monitoring

Unit registers. This feature is non-invasive and does not change the behavior of the processor.

The Cortex-a9 Performance Monitoring Unit provides six event counters (PMU event counter 0

to 5) to calculate statistics on the operations the processor performs and on the memory system

[8]. Each on of the counters are able to count any of the 63 events available in the Cortex -a9

processor. The results given by the counters are approximate and all of the counters are subject

to any changes in clock frequency. The monitoring software can enable the cycle counter

independently in comparison to the other event counters, and its only control over this counter is

an access permission control for User mode.

2.3 The Performance Monitoring Unit Events

 The events that one may monitor can be divided into categories, the architectural/micro-

architectural events and the implementation-specific events. The events are identified with the usage

of an event number assigned to each event.

 The events that are used in this thesis are both architectural and specific. The architectural

events we use are: Instruction cache miss (0x01), Data cache miss (0x03), Data cache access (0x04),

Data read (0x06), Data writes (0x07) and Cycle count (0x11). The specific events we use are:

Load/Store instructions (0x72) that counts the number of instructions being executed in the

Load/Store unit, Processor stalled because of a write to memory (0x81) that counts the number of

cycles when the processor is stalled, Processor stalled because of instruction side main TLB miss

(0x82) that counts the number of stall cycles because of main TLB misses on requests issued by the

instruction side and Processor stalled because of data side main TLB miss (0x83) that counts the

number of stall cycles because of main TLB misses on request issued by the data side. The

information generated by these specific events is approximate.

19 2. The Performance Monitoring Unit

2. 4The Performance Monitoring Unit Behavior on Overflow

The Performance Monitoring Unit counts events with the usage of 32-bit wrapping counters.

When a counter overflows it will wrap. Upon this case an overflow status bit is set to the value 1. If

the processor is configured to generate counter overflows, an interrupt request will be generated.

Last but not least, on a Performance Monitor counter overflow the counter will proceed to counting

events.

2. 5The Performance Monitoring Accuracy

The information generated by the Performance Monitors is approximately accurate. This

reasonable degree of inaccuracy provided by the counters is acceptable although it is not defined by

ARM. However ARM does recommend following guidelines such as: under normal operating

conditions the counters must present accurate counts, in extraordinary situations an inaccuracy in

counter value is respectable and in asynchronous exceptions, for instance interrupts, the counts may

be inaccurate.

The permitted inaccuracy does in some way limit the possible use of the Performance

Monitoring Unit. Cases which contribute to the imprecise results of the Performance Monitor are

pipelining, change in the security state and entry to and exit from the Debug state. An

implementation that can somewhat limit counter imprecision to a certain extent is disabling the

counters as soon as possible during the Debug state entry sequence. By any means, an

implementation should document scenarios where inaccuracies are expected.

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

20

20 TEI of Crete

3. Applications/Benchmarks

 This chapter is a reference to the types of Applications/Benchmarks that will be implemented

and used, in this thesis, along with the Performance Monitoring Unit to monitor our system, its

performance and its resource management.

3.1 Benchmarks in Embedded Computing

A Benchmark, in terms of computing, is the performance of running numerous standard tests

and trials (computer programs, a set of programs and operations) against an object, so as to assess its

relative performance [9]. They provide a method of comparing the performance on assorted

subsystems across different chip or system architectures. “Benchmark” as a term is also used to

describe elaborately designed benchmarking programs themselves.

Benchmarking is mostly correlated with estimating the performance characteristics of

computer hardware, but there are also situations in which the technique is applied to software. In

these types of software Benchmarks may run against compilers or even database management

systems.

The main purpose for the development of these tests, were to compare different

architectures, since with the passing of time the computer architectures have advanced and the

comparison between the performances of various computer systems has become more difficult.

Benchmarks are designed to simulate a type of workload on a component or a system. A

synthetic workload is simulated by uniquely creating programs that impose the workload on the

component. On the other hand, Benchmarks applications are used to run real-world performance on

a system.

Benchmarking is not always simple and it often involves different iterative rounds so as to

reach predictable and useful conclusions [10]. Interpreting benchmarked data is also extremely

difficult. Many benchmarks focus solely on the speed of computational performance while

overlooking other important features such a quality of service. An example of unmeasured quality of

service features includes security, availability, reliability, execution integrity, serviceability and

scalability.

Various types of Benchmarks exist. Such are: real program, component Benchmark or micro

benchmark, kernel, synthetic Benchmark (which include the well known Whetstone and Dhrystone),

I/O benchmarks, database benchmarks and parallel benchmarks.

21 3. Applications/Benchmarks

3.2 Sobel Application

 The Sobel filter, also known as the Sobel operator, is one of the most known methods that is

used in image processing and for computer vision [11]. In particular it is an algorithm that detects

edges and subsequently creates an image where the edges and transitions are emphasized.

 The result given by this filter is a new binary image, where the pixels with the greatest value

are now the edges of the original image. Nonetheless, the dimensions of the image remain the same.

After this process, thresholding follows which usually consists of maintaining a percentage of the

edges that have a higher gradient.

The Sobel technique emphasizes on areas with high spatial frequency. It is applied with the

use of an operator that consists of two “edge masks”, so as to detect changes vertically and

horizontally. These two masks are two 3x3 convolution kernels. The convolution between the two

masks and the image is carried out throughout the edge detection. By combining the two pictures

that occur, the edges of the images object emerge [12].

Figure 3-0-1: Sobel 3x3 Masks

3.3 TEA Application

 The Tiny Encryption Algorithm is one of the fastest and most efficient block ciphers in

existence. It was designed by David Wheeler and Roger

Needham of the Cambridge Computer Laboratory. It

operates on two 32-bit unsigned integers and uses a 128-bit

key [13].

 The Feistel structure, in which the TEA algorithm is

implemented, consists of 64 identical rounds that contain

function bits for translocations, mod 2
8

additions or

subtractions and the exclusive-or (XOR) calculation. It has a

simple key schedule by mixing all of the key material in the

exact same way for each cycle.

 Although TEA seems to be extremely resistant to

differential cryptanalysis, and achieves comprehensive

diffusion after just six rounds, it has a few “weak spots”.

First and foremost, it suffers from equivalent keys. To be

exact, each key is equivalent to three other keys, making the

effective key size to be only 126 bits. This results in TEA

Figure 3-0-2: Two Feistel rounds (one cycle) of TEA

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

22

22 TEI of Crete

being unfit as a cryptographic hash function. It is also receptive to a related-key attack. In this case,

223 chosen plaintexts under a related-key pair are required, with a 232 time complexity.

3.4 Black Scholes Application

 The Black-Scholes –Merton model, widely known as the Black-Scholes model, is a

mathematical model of a financial market that contains derivative investment instruments. It is a

model of price variation over time of financial instruments, such as stocks, that can be used to

determine the price of a European call option. The Black-Scholes model is one of the most important

concepts in the field of modern financial theory. It was developed by Fisher Black, Robert Merton

and Myron Scholes (hence its name) in 1973. Up to this day it is widely used and viewed as one of

the best way to determine the fair price of options.

The Black-Scholes workload computes the Black-Scholes formula for European and call

options in terms of five parameters: the spot price of the underlying stock, the exercise price at

which the transaction will be executed, the expiration period after which the option can be exercised,

the risk-free rate of return and the volatility of returns of the underlying stock.

Black-Scholes is part of the PARSEC Benchmark suit [14]. PARSEC contains thirteen

applications, each of which are used for a specific area of interest. Each application workload is

parallelized in multiple ways in order to enable various benchmark studies. The Black-Scholes model

is data-parallel and includes a list of routines such as: ASSET_PATH that simulates the behavior of

an asset price over time, BINOMIAL that uses the binomial method for a European call, BSF that

evaluates the Black-Scholes formula for a European call, FORWARD that use the forward difference

method to value a European call option and MC that uses Monte Carlo valuation on a European call

23 4. Hardware Implementation Description

4. Hardware Implementation Description

4.1 The Zynq-7000 AP SoC

 In terms of hardware, for the implementation of this present thesis, our architecture was built

based on the Zynq-7000 architecture [15]. The Zynq-7000 integrates a feature-rich dual-core ARM

Cortex-A9 MPCore based processing system and Xilinx programmable logic in a single device. The

ARM CPU is the heart of the processing system which also includes on-chip memory, external

memory interfaces, and a rich set of I/O peripherals. The various hardware controllers as well as the

processing system are I/O interconnected via high-bandwidth AMBA AXI interfaces.

In the Processing System, the processors are the ones to boot first, thus allowing a software

centric approach for the Programmable Logic system boot and the Programmable Logic

configuration. The Programmable Logic can be configured as part of the booting process or it can be

configured later at some point. It can also, in addition, be altogether reconfigured or used with

partial and dynamic reconfiguration. The data used to configure the Programmable Logic is mostly

referred to as a Bitstream.

The Zynq-7000 AP SoC is composed of two major functional blocks: the Processing System

(PS) and the Programmable Logic (PL). The Processing system consists of an Application Processor

Unit (APU) that provides an extensive offering of high-performance features and standards-

compliant capabilities, memory interfaces, I/O peripherals (IOP) and interconnects. The

Programmable Logic is derived from the Xilinx 7 series FPGA technology.

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

24

24 TEI of Crete

Figure 4-0-1: The Zynq-7000 AP SoC Overview

4.2 The Processing System

4.2.1 The ARM Architecture

The ARM architecture endorses the implementation through a variety of performance

points. The simplicity this architecture has to offer has led to small implementations, thus allowing

these implementations to be used by devices with very low power consumption. Key attributes in the

development of the ARM Architecture are the implementation size, the performance and the low

power consumption.

 The ARM architecture is a Reduced Instruction Set Computer (RISC) and it assimilates

certain RISC architectural features such as : a large uniform register file, a load/store architecture

where data-processing operations only operate on register contents not directly on memory contents,

simple addressing modes with all the load/store addresses being determined from register contents

and instruction fields only and uniformed and fixed-length instruction fields so as to simplify

instruction decoding.

 Additionally the ARM provides features such as: control over both the Arithmetic Logic Unit

(ALU) and the shifter that is associated with instructions, auto-increment and auto-decrement

addressing modes to optimize program loops, loading and storing multiple instructions in order to

maximize the execution throughput and restrictive execution of almost all the instructions to

25 4. Hardware Implementation Description

maximize the execution throughput. These characteristics incorporated in the RISC architecture

contributes in the ARM processors having a good balance of high performance, small code size, low

power consumption and small silicon area.

4.2.2 The ARM Coretex-A9 Processors

The dual-core Cortex-A9 configuration is implemented by the APU. Each one of the

processors have their own SIMD media processing engines (NEON),memory management units

(MMU), 32 KB level-one (L1) data caches and 32 KB level-one (L1) instruction caches, private

timers and watchdog timers. These two Cortex-A9 processors provide two 64-bit AXI master

interfaces for independent data and instruction transactions, which can then be routed to the on-chip

memory (OCM), the 512kb sharable level-two (L2) cache, the DDR memory or through the

processing systems interconnect to other slaves in the processing system (PS) or to the

programmable logic (PL). The processors run time options acquiesce single processor configurations

and asymmetrical (AMP) or symmetrical (SMP) multiprocessing configurations.

 The Cortex-A9 processor enables fundamental hardware features for program debugging.

With that been said, it also provides hardware counters to assemble information on specific

operations of the processor and the memory system. Each processor is able to issue two instructions

in only one cycle whilst executing them out of order. Other characteristics of the Cortex-A9 features

amongst others is: a superscalar variable length pipeline with dynamic branch prediction, a full

implementation of the ARM architecture v7-A instruction set, an execution of 32-bit ARM

instructions, an execution of 16-bit and 32-bit Thumb instructions, an execution of 8-bit Java byte

codes in Jazelle hardware state, security extensions and support for advanced power management

with up to three power domains.

 The ARM architecture provides 31 general-purpose 32-bit registers of which the 16 are

visible at any given time. The registers that cannot be accessed are used to speed up the processing.

These processors support byte (8 bits), word (32 bits), halfword (16 bits), doubleword (64 bits)

which are data types in memory. Load and store instructions can transmit bytes, halfwords or words

to and from the memory. The instruction set includes load and store operations the can transfer more

than two words to and from the memory. By using these instructions, the software can load and store

doublewords.

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

26

26 TEI of Crete

Figure 4-0-2 The APU Block Diagram

4.2.3 The Cache Memory

 In terms of computing, a Cache is a type of memory that stores data for future use where,

when requested, the data is accessed faster. This data stored in the cache memory might be the

equivalent of data stored somewhere else in the system or the results of a computation made earlier.

Caches are comparatively small, thus achieving cost-effectiveness and efficient use of data.

Nonetheless, due to the access patterns in typical computer applications, which exhibit the locality of

reference, caches have proven to be very important and useful in many areas of computing. There

are two types of access patterns exhibited, temporal locality and spacial locality. The temporal

locality pattern refers to requested data that have already recently been requested, whereas the

spacial locality pattern is associated with requests for data that have been physically stored near to

data that have already been requested.

A cache consists of a number of entries. Each entry has a piece of data, which is a copy of

the data that is stored in some other storage unit. Apart from the data, it also has an entry tag that

determines the identity of the data. When the cache client wants to access data that presumably

exists in some memory unit, it first goes through the cache to check. If an entry matching the tag of

the requested data is found, then that data is used instead. This event is referred to as Cache Hit. The

event that occurs when that data cannot be found in the cache is referred to as Cache Miss. In this

case the “uncached” data is acquired from the memory unit and copied to the cache for future access.

 Generic Interrupt

Controller

 C-A9 CPU

D cache I cache

 C-A9 CPU

D cache I cache

Snoop Control Unit

L2 Cache & L2 Controller

Memory

Interface

(DDR)

27 4. Hardware Implementation Description

During a cache miss, the CPU usually ejects some other entry in order to make room for the

previously “uncached” datum. The method used to select the data that will be ejected is known as

the Replacement Policy. The Least Recently Used (LRU) is a popular replacement policy that

replaces the least recently used entry.

A cache memory is much faster than a main memory for various reasons. The use of rapid

electric circuits, which leads to higher expenditures regarding costs, size and power requirements.

Due to the fact that the memory is small, the increase in cost is relatively limited. A cache memory

has fewer areas in comparison to a main memory, thus resulting in a shallower decoding tree which

contributes in reduced access size. The cache memory is static in contrast to the main memory which

is mostly dynamic. It is placed naturally and logically closer to the CPU as opposed to the main

memory that results in the prevention of delays due to the shared communication channel (shared

bus).

In conclusion, reading data from a cache memory is faster than recomputing a result or

reading data from a slower data store, thus, the more requests served from the cache, the faster the

performance of the system. Central processing units (CPU) and Hard Disk Drives frequently use a

cache.

4.2.3.1 The CPU Cache

A cache used by the Central Processing Unit (CPU) of a computer is a CPU Cache used to

reduce the average time of accessing data from the main memory. When the processor wants to read

from or write to a location in the main memory, it checks first whether a copy of that data exists in

the cache. If the data does exist, the processor reads from or writes to the cache, making it much

faster than reading from or writing to the main memory.

 Most CPUs have at least three different caches which are the Instruction Cache, the Data

Cache and the Translation Lookaside Buffer even though it is a part of the MMU and not directly

related to the CPU caches. The Instruction cache is used to speed up executable instruction fetches.

The Data cache is used to speed up data fetches and stores and the TLB is used to speed up virtual-

to-physical address translations for both executable instructions and data. The Data caches are

organized as a hierarchy of more caches, the level one (L1) and the level two (L2).

4.2.3.2 The Level-One (L1) Cache

The level one (L1) Cache is the nearest level of cache to the CPU. It can be implemented in

a Harvard arrangement or in a von Neumann arrangement. In the first case the Instruction Cache and

the Data Cache are separate whereas in the second case all the cache items are unified. An

implementation with a Harvard arrangement does not necessarily have to include hardware support

for coherency amongst the Data and Instruction caches.

 The two Cortex-A9 processors both have separate 32 KB Level-1 Instruction and Data

caches. Each cache can independently be disabled by using the system control coprocessor. Both L1

caches are 4-way set-associative with 32 byte cache line lengths and support parity. These caches

support 4 KB, 64 KB, 1 MB, and 16 MB virtual memory page however neither of the two L1 caches

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

28

28 TEI of Crete

support the lock-down feature. In the case of a cache miss, the cache replacement policy is either

pseudo round-robin or pseudo-random and a critical word first filling of the cache is performed.

During implementation, the Level 1 Instruction and Data cache can independently be configured to

the sizes of 16KB, 32KB, or 64KB. In order to reduce the power consumption, the number of full

cache reads is reduced by exploiting the sequential nature of many cache operations. When a CPU

reset occurs, the contents of both L1 caches are cleared to comply with security requirements.

All the memory attributes are exported to the external memory systems.

4.2.3.3 The Instruction Cache (I-Cache)

 The Level 1 Instruction Cache (I-Cache) is responsible for administering an instruction

stream towards the processors. The Instruction cache interfaces precisely to the pre-fetch unit that

consists of a two-level prediction mechanism. It is virtually indexed and physically tagged. The

replacement policy for the I-cache is either pseudo round robin or pseudo random.

4.2.3.4 The Data Cache (D-Cache)

The Level 1 Data cache (D-Cache) is responsible for containing the data which the

processor uses. The Data cache is physically indexed and physically tagged, as is the Instruction

cache. It is non-block, meaning that the load/store instructions may proceed in hitting the cache

while it is performing allocations from the external memory because of prior read or write misses.

This type of cache supports four outstanding reads and four outstanding writes. The Data cache also

supports two 32-byte line-fill buffers and one 32-byte eviction buffer, while the Cortex-A9 CPU has

a store buffer featuring four 64-bit slots with data merging capability. The write-back and write-

allocate policy are only supported by the Data cache. The write-through and write-back/no write-

allocate policies are not implemented. The Level 1 Data cache supports exclusive operations,

implying that the cache line is valid only in Level 1 or Level 2 cache and never in both

simultaneously, with respect to the Level 2 cache. If the exclusive operation is disabled by default,

the cache utilization will then increase and the power consumption will be reduced. The replacement

policy for the D-cache is pseudo random.

29 4. Hardware Implementation Description

4.2.3.4 The Level-Two (L2) Cache

The Level 2 Cache (L2-cache) is an 8-way set associative cache with a size of 512 Kb used

for dual Cortex-A9 processor cores. The L2 cache can either be tightly coupled to the core or

implemented as memory mapped peripheral on the system bus. In the memory-mapped case, where

cache control functions require an address parameter, for example, clean entry by address, the

address must be inherently a physical address. Level 2 caches that are more closely coupled to the

core can use virtual or physical addresses. It is physically tagged and physically addressed and

supports a fixed 32-byte line size. A parity check is offered for the Level 2 cache. To improve the

latency, a critical –word-first-line-fill is supported. In the case of cache miss, the selection policy

implemented is pseudo random with deterministic option. This cache supports write-though, write-

back, read allocate, write-allocate and read and write allocate.

The L2 controller implements multiple 256-bit line buffers, two for each slave port, to

improve cache efficiency. These buffers hold a line from the L2 cache in case of a cache hit. The L2

cache controller also implements three 256-bit eviction buffers that hold the evicted lines from the

L2 cache, in order for them to be written back to the main memory as well as three 256-bit store

buffers to hold “bufferable” writes before their drainage to the main memory, or to the L2 cache.

These buffers enable multiple writes to the same line so as to be merged. Another characteristic

featured by the L2 cache controller is that it is able to forward exclusive requests from L1 to DDR,

OCM, or the external memory.

4.2.3.5 The Exclusive L2 Cache

The Level 1 and Level 2 cache provide an exclusive mode. This mode has to be activated

both in the processor and the current cache controller that is being occupied. When the L2 cache is

used, the data cache of the processor and the L2 cache are exclusive. This means that at any time, a

given address is cached in either the L2 data cache or the L1 data cache, but not in both. This mode

increases the usable space and the efficiency of the L2 cache that is connected to the processor.

When the exclusive cache mode is activated the data cache line replacement policy is modified so

that the victim line is always evicted to L2 memory, even if it is clean.

4.2.4 Cache Coherency

The system preserves multiple versions of a value of a memory location when a cache or a

write buffer is used. Assuming that Harvard caches are being used, both the Instruction and Data

cache may contain a value of the memory location. Not all of these physical locations necessarily

contain the value most recently written to the memory location. The real coherency issue is to secure

that when a memory location is read, either by the Instruction cache or the Data cache, the value that

is obtained, is at all times the value that was written to the location most recently. This can be

difficult when there are multiple possible physical locations, such as main memory and at least one

of a write buffer and one or more levels of cache. Some prospects of the memory system coherency,

in the ARM architecture, are provided automatically by the system whereas other prospects are dealt

with memory coherency rules. If a program breaks a memory coherency rule, the behavior that this

program might cause is uncertain.

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

30

30 TEI of Crete

Address mapping and caches demand such a management in order to always ensure memory

coherency. A cache and write buffer management require a sequence of: cleaning the data cache if it

is a write-back cache, invalidating the data cache and the instruction cache, draining the write buffer,

performing a pre-fetch flush on the instruction pipeline and flushing the branch prediction logic.

4.2.4.1 The Snoop Control Unit (SCU)

The two Cortex-A9 processors are organized with an MP configuration that contains a

Snoop Control Unit (SCU). The SCU block connects the two processors to the memory system and

incorporates data which manages the data coherency between the two processors and the Level 1

and Level 2 caches. This block is responsible for managing the interconnect arbitration,

communication, cache and system memory transfers, and cache coherence for the Cortex-A9

processors.

The SCU block communicates with each of the Cortex-A9 processors through a cache

coherency bus and manages the coherency between the L1 and the L2 caches. The SCU supports

MESI snooping which provides increased power efficiency and performance by avoiding

unnecessary system accesses. It also is enabled to check if there is data in the Level 1 cache by using

great speed so as not to interrupt the processors. The SCU is also able to copy clean data from one

processors cache to another processors cache therefore eliminating the need to access the main

memory to perform this task. Moreover it can move dirty data between the processors, so as to skip

the shared state and avoid the latency that is associated with the write-back.

4.2.5 The Memory Unit

The memory unit is the most vital component of any given computer. The ideal structure of

a computer, in order to serve its needs, would consist of just one memory that would be rapid and

vast. But in fact, as the demands on memories increases, such a thing seems impossible.

 Due to this, the memory is organized in levels, thus the memory hierarchy. The numbers of

levels that constitute a memory are derived from the systems needs. Generally, the higher we climb

the chain the higher the performance increases and so does the cost. This results in implementing

memories of smaller capacity in order to maintain a balance amongst the cost and the performance.

The memory closest to the processor has a very low latency, but is limited in size and expensive to

implement. On the other hand, the further from the processor, the easier it is to implement lager

blocks of memory. However, these blocks have an increased latency.

The memory hierarchy of a computer system, starting low-level, consists of: processor

registers and cache memories which are static memories, dynamic memories which constitute the

main memory of a system, storage devices and optical storage disks.

By combining these types of memories from different levels and by using mechanisms,

where the data that is most recently used is stored in higher levels in the hierarchy, an impression of

a faster memory is given.

31 4. Hardware Implementation Description

4.2.5.1 The Memory Types

For each memory region, the most significant memory attribute specifies the memory type.

Therefore, three exclusive memory types exist: the normal memory type, the device memory type

and the strongly-ordered memory type. Normal and device memory types have additional attributes.

With the usage of the normal memory attribute, memory used for programs and data storage can be

accessed. Memories that take advantage of the normal memory attributes are the programmed Flash

ROM, the ROM, the SRAM, the DRAM and the DDR memory.

4.2.5.2 The DDR Memory

The Double Data Rate-Synchronous DRAM is a type of SDRAM. It is a class of memory

integrated circuits which are used in computer systems. The DDR SDRAM interface makes higher

transfer rates possible by more strict control of the timing of the electrical data and clock signals.

The interface uses double pumping which transfers data on both the rising and falling edges of the

clock signal in order to lower the clock frequency. By keeping the clock frequency at a low rate the

signal integrity requirements on the circuit board are reduced and the memory is connected to the

controller. Due to the double pumping the DDR SDRAM, with a certain clock frequency, it achieves

nearly twice the bandwidth of a SDR SDRAM running at the same clock frequency.

4.2.5.3 The DDR Controller

The DDR Controller supports the DDR3, DDR3L, DDR2, and LPDDR-2. In our thesis, we

use the DDR3 memory. The DRAM bus width averages from 16 bits to 32 bits and the burst length

is 8. The rate of the controller is determined by the speed and the temperature grade of the device. It

uses Data read strobe auto-calibration and enables a write data byte which is supported for each data

beat.

4.2.6 The ARM Timers

In the ARM design, each one of the Cortex-A9 processors has their own Private 32-bit timer

and Watchdog timer which are also 32-bit. A Global 64-bit timer also exists and is shared by both

processors. Overall these times are always clocked at 1/2 of the CPU frequency.

There is a 24-bit watchdog timer and two 16-bit triple timer/counters, which exist on a

system level. Here the system watchdog timer is clocked at 1/4 or 1/6 of the CPU frequency. The

two triple timers/counters are always clocked at 1/4 or 1/6 of the CPU frequency, and are used to

count the widths of signal pulses from an MIO pin or from the Programmable Logic.

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

32

32 TEI of Crete

4.2.6.1 The Private Timer

The Private timer is a decrementing 32-bit counter. The Timer Load Register contains the

value copied to the counter. The counter decrements when the timer is enabled by using the timer

enable bit. If a Cortex-A9 processor timer is in debug state, the counter only decrements when the

Cortex-A9 processor returns to non debug state. When the counter reaches zero, the auto reload

mode is enabled thus reloading the value in the Timer Load Register and then decrementing it from

that value. . If auto reload mode is not enabled, the counter decrements down to zero and stops.

The Private timer block features an 8-bit value to qualify the clock period. It is moreover

characterized by a configurable single-shot or auto-reload mode and configurable starting value for

the counter.

4.3 The Programmable Logic

The Programmable Logic (PL) contributes in an affluent architecture which provides the user

with the capability to configure it. The PL consists of configurable logic blocks, look-up tables with

a 6-input and a memory capability within these look-up tables. It contains its own clock management

with high-speed buffers and it routes for low-skew clock distribution. The clock management also

features frequency synthesis, phase shifting, low-jitter clock generation and jitter filtering.

This Programmable logic is characterized by configurable Inputs and Output (I/Os). It has a

High-performance Select-IO technology and high-frequency decoupling capacitors within the

package so as to enhance the signal integrity. The configurable I/Os include digitally controlled

impedance that can have 3 states for lowest power or the high-speed I/O operation.

Moreover, cascadable adders are contained in the Programmable Logic. Register and shift

register functionality is included as well as digital signal processing.

4.3.1 The Advanced Microcontroller Bus Architecture (AMBA)

The Advanced Microcontroller Bus Architecture (AMBA) is an open-standard and on-chip

interconnect specification used to connect and manage functional blocks in system on chip designs

(SoC designs). The AMBA expedites the development on multiprocessor designs by using several

controllers and peripherals. It is not only useful in micro-controller devices but also in SoC parts that

include application processors that are used in portable mobile devices such as smart phones.

The first AMBA buses were Advanced System Bus (ASB) and Advanced Peripheral Bus

(APB) introduced by ARM. The AMBA 2, the second version of the AMBA, has an added AMBA

High-performance Bus (AHB) that is a single clock-edge protocol. ARM introduced the third

generation, AMBA 3, including AXI to reach even higher performance interconnect and the

Advanced Trace Bus (ATB) as part of the CoreSight on-chip debug and trace solution. The fourth

version, AMBA 4, included the introduction of the AMBA 4 AXI4 which was then extended with

AMBA 4 ACE. The fifth version AMBA 5 CHI (Coherent Hub Interface) specification was

introduced with a re-designed high-speed transport layer and features designed to reduce congestion.

33 4. Hardware Implementation Description

4.3.1.1 The Advanced Extensible Interface (AXI)

The Advanced Extensible Interface (AXI Interface) is the third generation of the AMBA

interface that was defined in the AMBA 3 specification. It features a high performance and a high

clock frequency. The AXI Interface is characterized by a separate address and data phase, support

for unaligned data transfers using byte strobes, burst based transactions with only start address

issued, issuing of multiple outstanding addresses with out of order responses and easy addition of

register stages to provide timing closure. All of these features make the AXI Interface suitable of

high speed sub-micrometer interconnect.

In this design the AXI does not support fixed burst type for the AXI ports into the DDRI,

however it does support byte, half-word and word sub-width commands.

4.3.1.2 The AXI BRAM Controller

The AXI BRAM Controller is a soft IP core. This core is designed as an AXI endpoint slave

IP for integration with the AXI interconnect and system master devices so as to communicate to

local BRAM. The core supports both single and burst transactions to the BRAM and is optimized for

performance.

4.3.1.3 The AXI GPIO

The AXI GPIO implements a general purpose input and output interface to the AXI

interface. It is a 32-bit soft IP core that is designed to interface with the AXI4-Lite interface. These

interfaces are connected directly to the ports of the master interconnect and the slave interconnect,

without any additional FIFO buffering, therefore, the performance is constrained by the ports of the

master interconnect and the slave interconnect. As a consequence, these interfaces are used for

general-purpose and are not intended to achieve high performance.

The AXI GPIO features a standard AXI protocol, a 32-bit data bus width, a 12-bit master

port ID width, a 6-bit slave port ID width, an 8 reads and 8 writes master port issuing capability and

an 8 reads and 8 writes slave port acceptance capability. It supports configurable single or dual

GPIO channels with a configurable channel width for GPIO pins ranging from 1bit to 32 bits. These

GPIO bits can be dynamically programmed as an input or an output and each channel can be

individually configured. The AXI GPIO subsidizes independent reset values for each bit in all of the

registers and can generate optional interrupt requests.

4.3.2 The Random Access Memory (RAM)

The Random Access Memory (RAM) is a form of computer data storage. The RAM device

allows data items to be read and written in approximately the same amount of time in which the data

items were accessed. The time required to read and write data items may vary significantly

depending on their physical locations on the recording medium, due to mechanical limitations such

as media rotation speeds and arm movement delays.

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

34

34 TEI of Crete

 Nowadays, the RAM takes the form of integrated circuits. It is normally associated with

volatile types of memory where stored information is lost if power is removed, although many

efforts have been made to develop non-volatile RAM chips. Other types of non-volatile memory

exist that allow random access for read operations, but either do not allow write operations or have

limitations on them. These include most types of ROM and a type of flash memory called NOR-

Flash.

The RAM used in the Zynq design is a dual port 36 KB RAM with port widths ranging up to

72-bits wide. However, each block RAM can be divided into two completely independent dual 18

Kb block RAMs. It is of programmable FIFO logic and has a built in optional error correction

circuitry.

Every Zynq-7000 AP SoC device has between 60 and 465 dual-port block RAMs, each

storing 36 Kb. Each block RAM has two completely independent ports that share nothing but the

stored data. Each memory access, whether read or write is controlled by the clock. All inputs, data,

address, clock enables, and write enables are registered. The input address is always clocked,

therefore retaining data until the next operation. An optional output data pipeline register allows

higher clock rates at the cost of an extra cycle of latency. During a write operation, the data output

can reflect either the previously stored data, the newly written data, or can remain unchanged.

Each port can be configured as 32K ×1, 16K ×2, 8K ×4, 4K ×9 (or x8), 2K ×18 (or x16), 1K

×36 (or 32), or 512 ×72 (or x64). The two ports can have different widths without any constraints.

Each 64-bit-wide block RAM can generate, store, and utilize eight additional code bits and perform

a single-bit error correction and double-bit error detection during the read process. This logic can

also be used when writing to or reading from external 64- to 72-bit-wide memories.

35 5. Software Implementation Description.

5. Software Implementation Description.

5.1 Single Sobel and TEA Application

The main goal of these applications is to apply the Sobel filter to a digital image and then,

by using the TEA algorithm, to encipher and decipher the processed image.

The Zynq-7000 provides two processor cores. The TEA algorithm runs on the processor

“cortexa9_1” and the Sobel algorithm runs on the processor “cortexa9_0”. The code for the Sobel

filter is stored in and loaded from the DDR Memory (Double data rate synchronous dynamic

random-access memory (DDR SDRAM)), and the TEA algorithm is stored in and loaded from

RAM0 Memory (Random-access memory).

In order for the two applications to be able to communicate we use a pointer (*start),

disclosed to both applications, that is located in the AXI BRAM Controller (the address is

0x40000000). This pointer acts as a flag and its inputs can either be 0 or 1. The TEA algorithm is the

first to run but is stalled with a while loop, with the start pointer (flag) being its function argument.

Unless the flag value remains the same, the application will never terminate. The purpose of this

loop is to start the encryption and decryption after the image has been processed, namely after the

Sobel application has terminated.

Figure 5-0-1: While Loop In TEA Application

The Sobel application then follows. The digital image that we use here is a two-dimensional

array with a size of 30x29 that we insert into a structure whose type is “image”. The pointer

“dstPoint” points to the array where the processed image is stored and will be used to insert the

image into the DDR memory. For the image to be accessible to both applications the “dstPoint”

pointer is stored in the DDR Memory (the address is 0x00200000). By using the instruction :

*(dstPoint +(iter*2000) + count_sobel)= x->data[i][j] ; we store the processed pixels in the memory.

Proceeding to the main function, the image that we wish to process is stored in a structure

whose type is “im”. After the array has been filled, the Sobel function then takes place. When the

function ends the result we receive is our processed image. The value of the pointer “*start” then

changes. Since our image has been processed and the state of our flag has changed, we can then

while (*start) {
 //waiting
 }

 *start =1;

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

36

36 TEI of Crete

proceed to the TEA algorithm.

 Figure 5-0-2: Image After Sobel Filter

Figure 5-0-3: Original Image

The TEA algorithm is executed as follows. We insert into the one dimensional array in[] the

870 processed pixels of our image in order to apply the TEA mask. The array in_trans[2] is the input

to the encryption algorithm. We enter the processed pixels stored in the DDR Memory in pairs

because the algorithm can support up to 2 elements. Using the instruction: xtea_encipher (in_trans,

out, key); we call the TEA encryption function. We then enter the results of the TEA mask, that

works for two elements at a time, into the variables v0 and v1. After the encryption process is

completed we insert, as an input, the enciphered pixels into the array in_trans[] in order to decrypt

them. With the execution of the instructions: xtea_decipher (in_trans, out, key); the TEA decryption

algorithm begins.

5.2 Multiple Sobel and TEA Application

The main purpose of running the Sobel and TEA applications multiple times is to study the

effects on both processor cores by occupying them simultaneously.

To calculate the estimated time each application takes to finish we used the functions that

activate the Xilinx hardware timer (SCU Timer). More specifically to start the timer we execute the

instruction: XscuTimer_Start(&Timer); and to stop it with the instruction:

XScuTimer_Stop(&Timer);. The next stage was to extract the counted value with the instruction:

Cnt=XScuTimer_GetCounterValue(&Timer);. The timer counts in reverse, so, as to calculate the real

time an application takes to complete itself, we need to subtract the counters value with the timers

initial load value.

The measurements that were taken showed that the TEA application took a significantly

longer time to finish than the Sobel application. To achieve simultaneous occupation on the two

processor cores the Sobel applications runs three times and the TEA application two times. The same

process as before is implemented with the only difference of a “for” loop in both applications to

achieve repetition.

sobel1 sobel2 sobel3

 tea1 tea2

Figure 5-0-4: Process of Multiple Sobel and TEA Applications

37 5. Software Implementation Description.

5.2 Performance Monitoring Unit Application

The main purpose of this application (source code) is to count certain events using the PMU

event counters. The files v7_pmu.S and v7_pmu.h, used in our thesis, were originally provided by

Arm but modified so as to be GCC friendly. The assembly code file access the unit by using the

CP15 interface. The application is implemented in three main parts: enabling, counting and

disabling.

At first we enable the Performance Monitoring Unit. On other processors (for example

ARM11) the counters start immediately, but on the ARM Cortex-a9 each one of the six event

counters need to be individually enabled. The parameters for this function are the numbers 0 to 5

(each number for the corresponding event counter). We also enable the cycle counter register. After

the enabling we reset the programmable counters and the cycle counter register to its original value.

Figure 5-0-5: Enabling Functions

In order to be able to conduct the measurements we have to configure the event counters for

the specific events. The function used is the void pmn_config(), that sets the event for the

programmable counter to record. The attributes of this function are both the counter which is

programmed and the event code. Before the main function, of each application, runs, we read the

value of the counters. We also read the value of the cycle counter register. The value returned is

assigned to a position in an integer table. The same procedure is repeated after the main function of

each application has run. Basically, we want the measure the impact this function (that is part of the

applications we have described previously) has on the system.

Figure 5-0-6: Counting Functions

After we have read the values of the counters, set to record certain events, we disable both

the cycle counter register and the Performance Monitoring Unit with the functions void

disable_ccnt(void) and void disable_pmu(void) correspondingly. The values after each event is

void enable_pmu(void);

void enable_ccnt(void);

void enable_pmn(unsigned int

counter);

void pmn_config(unsigned int counter,

unsigned int event);

unsigned int read_ccnt(void);

unsigned int read_pmn(unsigned int

counter);

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

38

38 TEI of Crete

counted are stored in a table. The subtraction between the result of the counter before and after the

main application function is the actual and final value of the event.

Figure 5-0-7: Disabling Functions

This source code is inserted into the Sobel, TEA and Black Scholes applications.

Specifically, in the Sobel application, the Performance Monitoring Unit calculates the results of the

events before and after the function sobel(im,r) . In the TEA application, the PMU calculates the

results before and after the ecryption and decryption. Finally, in the Black Scholes application, the

results calculated by the PMU are before and after each of the five main functions it contains (Asset

path, Binomial, BSF, Forward and MC).

void disable_pmu(void);

void disable_ccnt(void);

39 6. Measurements-Results

6. Measurements-Results

The Performance Monitoring Unit was applied to applications in order to study the effects

they have on a processing system. The applications used are Sobel, Tea and Black Scholes. In the

case of Sobel combined with Tea, measurements were taken when they run once and then again

when they run multiple times. Each application is studied with the usage of cache and without it.

The bandwidths presented below are compared to the overall cycle counts.

As we have previously mentioned, to achieve simultaneous occupation on the two processor

cores the Sobel applications runs three times and the TEA application two times. In reference to the

TEA applications, we can observe that the PMU gives us no results for the first application. This is

because the PMU cannot be used by both processors simultaneously.

The number of cycles counted by the PMU for the completion of the first Sobel is almost the

same as when we run the Sobel application by itself. The cycle count for the following Sobel

applications is slightly elevated. This is due to the fact that both processors work simultaneously and

there is a certain strain of the processing system. . The cycle count for the TEA application is almost

the same as when it runs on its own. This is logical since the total of the Sobel applications have

terminated before the last TEA application ends; therefore there is no particular strain on the system.

The cycles, of the following measurements, are calculated based on the Cortex-A9 CPU

Clock Frequency, which is 666 MHz.

6.1Formulas

 The Cycle Counter Register (ccnt) provided by the PMU counts the same thing as the event

Cycle Count (0x11). The equation linking these two is: cycle count/64=ccnt.

 The ScuTimer used is clocked at ½ of the CPUs frequency

 The Cortex-A9 CPU Clock Frequency is 666 MHz.

 The events Data read (0x06) and Data writes (0x07) added together equal the event

Load/Store Instructions (0x72).

 The cache ratio is the Data cache misses (0x03) divided by the Data cache access (0x04).

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

40

40 TEI of Crete

6.2Sobel and TEA Applications

6.2.1Sobel and TEA Application Time

 As we have previously mentioned, we can see that the TEA application takes more time to

complete than Sobel. There is also a severe difference between the time each application needs to

terminate with and without the use of caches (Chart 1). The values of the cycle count for Sobel and

TEA with cache are less than the cycle count without caches. The explanation to this difference is

that with the use of a cache, data can be read from it rather than reading data from a slower data

source, thus making the system perform faster. The difference between the Sobel application with

and without cache is 1032619 cycles whilst for the Tea application 2022721 cycles.

Chart 1 : Sobel and TEA Application Times
1

6.2.2 Sobel and TEA Instruction Cache Miss Bandwidths

 The Instruction Cache Miss (0x01) for the single Sobel and TEA application has the same

value with and without the use of the cache memories. As the applications proceed to run the values

decrease. In the multiple versions of the Sobel applications the value is always zero.

1
 The cycles are calculated based on the Cortex-A9 CPU Clock Frequency, which is 666 MHz.

522645
1555264

8311635

10334356

0

2000000

4000000

6000000

8000000

10000000

12000000

SOBEL TEA

cy
cl

e
s

applications

Application Times

CACHE

NO CACHE

41 6. Measurements-Results

Chart 2: The Instruction Cache Miss Bandwidths for the Sobel Application
2

Chart 3: The Instruction Cache Miss Bandwidths for the TEA Application

6.2.3 Sobel and TEA Data Cache Miss Bandwidths

 The single Sobel and TEA applications manifest no result when they run without the use of

the cache memory. This is normal since no cache is used. The Data Cache Misses for the multiple

versions of the Sobel and TEA applications with and without the use of cache are always zero.

2
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is

666 MHz.

2,39E-04 2,35E-04

7,55E-06 0,00E+00

2,39E-04

0,00E+00

5,00E-05

1,00E-04

1,50E-04

2,00E-04

2,50E-04

3,00E-04

SINGLE MULTIPLE 1 MULTIPLE 2 MULTIPLE 3

In
st

ru
ct

io
n

 C
ac

h
e

 M
is

se
s/

C
yc

le
s

Application

Sobel Instruction Cache Miss BW

SOBEL CACHE

SOBEL WITHOUT CACHE

3,54E-05

0,00E+00

5,32E-06

0,00E+00
0,00E+00

5,00E-06

1,00E-05

1,50E-05

2,00E-05

2,50E-05

3,00E-05

3,50E-05

4,00E-05

SINGLE MULTIPLE 2

In
st

ru
ct

io
n

 C
ac

h
e

 M
is

se
s/

C
yc

le
s

Applications

TEA Instruction Cache Miss BW

TEA CACHE

TEA WITHOUT CACHE

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

42

42 TEI of Crete

Chart 4: The Data Cache Miss Bandwidths for the Sobel Application
3

Chart 5: The Data Cache Miss Bandwidths for the TEA Application

3
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is

666 MHz.

3,58E-04 3,60E-04
2,92E-04 2,91E-04

0,00E+00 0,00E+00 0,00E+00 0,00E+00
0,00E+00

5,00E-05

1,00E-04

1,50E-04

2,00E-04

2,50E-04

3,00E-04

3,50E-04

4,00E-04

SINGLE MULTIPLE 1 MULTIPLE 2 MULTIPLE 3

D
at

a
C

ac
h

e
 M

is
se

s/
C

yc
le

s

Applications

Sobel Data Cache Miss BW

SOBEL CACHE

SOBEL WITHOUT CACHE

1,25E-04

0,00E+00 0,00E+00 0,00E+00
0,00E+00

2,00E-05

4,00E-05

6,00E-05

8,00E-05

1,00E-04

1,20E-04

1,40E-04

SINGLE MULTIPLE 2

D
at

a
C

ac
h

e
 M

is
se

s/
C

yc
le

s

Applications

TEA Data Cache Miss BW

TEA CACHE

TEA WITHOUT CACHE

43 6. Measurements-Results

6.2.4 Sobel and TEA Data Cache Access Bandwidths

 The Data Cache Access for both the Sobel and TEA applications that employ the cache

memory maintains similar values and has minor variations. However there seems to be a data cache

access when the cache is disabled. This could be because, the Performance Monitoring Unit counts

any attempt to access data.

Chart 6: The Data Cache Access Bandwidths for the Sobel Application

4

Chart 7: The Data Cache Access Bandwidths for the TEA Application

4
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is

666 MHz.

3,16E-01 3,16E-01 3,12E-01 3,07E-01
2,78E-01

1,76E-02 1,74E-02 1,76E-02
0,00E+00

5,00E-02

1,00E-01

1,50E-01

2,00E-01

2,50E-01

3,00E-01

3,50E-01

SINGLE MULTIPLE 1 MULTIPLE 2 MULTIPLE 3

D
at

a
C

ac
h

e
 A

cc
e

ss
e

s/
C

yc
le

s

Applications

Sobel Data Cache Access BW

SOBEL CACHE

SOBEL WITHOUT CACHE

6,26E-01 6,27E-01

4,98E-02 4,97E-02

0,00E+00

1,00E-01

2,00E-01

3,00E-01

4,00E-01

5,00E-01

6,00E-01

7,00E-01

SINGLE MULTIPLE 2

D
at

a
C

ac
h

e
 A

cc
e

ss
e

s
/C

yc
le

s

Applications

TEA Data Cache Access BW

TEA CACHE

TEA WITHOUT CACHE

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

44

44 TEI of Crete

6.2.5 Sobel and TEA Load/Store Instructions Bandwidths

 The event Load/Store Instructions (0x72) which is the overall memory access is in the same

range in both cases with or without the usage of the cache memory in the single Sobel application.

The same scenario applies to the single TEA application. In the cases of the multiple Sobel and TEA

applications with and without the utilization of the cache, the values are similar and have small

variations.

Chart 8: The Load/Store Instructions Bandwidths for the Sobel Application

5

5
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is

666 MHz.

3,08E-01 3,08E-01 3,04E-01 2,99E-01

3,08E-01

1,95E-02 1,93E-02 1,95E-02
0,00E+00

5,00E-02

1,00E-01

1,50E-01

2,00E-01

2,50E-01

3,00E-01

3,50E-01

SINGLE MULTIPLE 1 MULTIPLE 2 MULTIPLE 3

Lo
ad

-S
to

re
 In

st
ru

ct
io

n
s/

C
yc

le
s

Applications

Sobel Load/Store Instructions BW

SOBEL CACHE

SOBEL WITHOUT CACHE

45 6. Measurements-Results

Chart 9: The Load/Store Instructions Bandwidth for the TEA Application
6

6.2.6 Sobel and TEA Cache Ratio

 The Cache Ratio for the Sobel and TEA applications (either single or multiple) without

cache is always zero. This circumstance is normal since there is no cache utilization. On the other

hand, when the cache is wielded the cache ratio values gradually decrease.

Chart 10: The Cache Ratio for the Sobel Application

6
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is

666 MHz.

5,26E-01 5,26E-01

7,91E-02 7,90E-02
0,00E+00

1,00E-01

2,00E-01

3,00E-01

4,00E-01

5,00E-01

6,00E-01

SINGLE MULTIPLE 2

Lo
ad

-S
to

re
 In

st
ru

ct
io

n
s/

C
yc

le
s

Applications

TEA Load/Store Instructions BW

TEA CACHE

TEA WITHOUT CACHE

1,13E-03 1,14E-03
9,37E-04 9,49E-04

0,00E+00

2,00E-04

4,00E-04

6,00E-04

8,00E-04

1,00E-03

1,20E-03

SINGLE MULTIPLE
1

MULTIPLE
2

MULTIPLE
3

D
at

a
C

ac
h

e
 M

is
se

s/
D

at
a

C
ac

h
e

 A
cc

e
ss

Applications

Sobel Cache Ratio

SOBEL CACHE

SOBEL WITHOUT CACHE

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

46

46 TEI of Crete

Chart 11: The Cache Ratio for the TEA Application
7

6.3Black Scholes Application

Studies were made on the Black Scholes benchmark by using all five of its applications and

testing the impact these applications have on the processing system with the use of caches and

without them. Generally, the conclusions made are similar to those made concerning the Sobel and

TEA applications. All the cycle counts are significantly greater without the use of cache as opposed

to with cache, which is expected since in this case we have to access a slower data source. The value

of the event Data cache miss without cache for all five of the tests is always zero. The event Data

cache access without cache always has a value.

 The apparently big cycle count regarding the Mc Test is due to its vast number of sample.

Additional tests were done based on the number of samples. As the samples increases, so does the

cycle count, which is quite obvious since the more the samples, the more the processes made by the

system.

 The cycles, of the following measurements, are calculated based on the Cortex-A9 CPU

Clock Frequency, which is 666 MHz.

7
 The cycles are calculated based on the Cortex-A9 CPU Clock Frequency, which is 666 MHz.

1,99E-04

0,00E+00
0,00E+00

5,00E-05

1,00E-04

1,50E-04

2,00E-04

2,50E-04

SINGLE MULTIPLE 2

D
at

a
C

ac
h

e
 M

is
se

s/
D

at
a

C
ac

h
e

A

cc
e

ss
e

s

Applications

TEA Cache Ratio

TEA CACHE

TEA WITHOUT CACHE

47 6. Measurements-Results

Chart 12: The Data Cache Miss Bandwidth for all five of the Black Scholes Applications

8

Chart 13: The Data Cache Access Bandwidth for all five of the Black Scholes Applications

8
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is

666 MHz.

9,81E-06 1,09E-05 3,78E-06 1,85E-05

9,95E-04

0,00E+00 0,00E+00 0,00E+00 0,00E+00
0,00E+00

0,00E+00

2,00E-04

4,00E-04

6,00E-04

8,00E-04

1,00E-03

1,20E-03

ASSET PATH BINOMIAL BSF FORWARD MC

D
at

a
C

ac
h

e
 M

is
se

s/
C

yc
le

s

Black Scholes Tests

Black Scholes Data Cache Miss BW

With Cache

Without Cache

1,53E-02

7,02E-02

1,41E-02 2,37E-02

1,04E-01

4,77E-03 1,72E-02 4,85E-03 6,24E-03 3,46E-04
0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

ASSET PATH BINOMIAL BSF FORWARD MC

D
at

a
C

ac
h

e
 A

cc
e

ss
e

s/
C

yc
le

s

Black Scholes Tests

Black Scholes Data Cache Access BW

With Cache

Without Cache

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

48

48 TEI of Crete

Chart 14: The Load/Store Instructions Bandwidth for all five of the Black Scholes Applications
9

Chart 15: The Cache Ratio for all five of the Black Scholes Applications

9
 The cycles for both charts depicted are calculated based on the Cortex-A9 CPU Clock Frequency, which is

666 MHz.

1,50E-02

6,58E-02

1,40E-02

2,35E-02

8,36E-02

4,94E-03

1,96E-02

4,88E-03 6,48E-03 3,95E-04
0,00E+00

1,00E-02

2,00E-02

3,00E-02

4,00E-02

5,00E-02

6,00E-02

7,00E-02

8,00E-02

9,00E-02

ASSET PATH BINOMIAL BSF FORWARD MC

Lo
ad

-S
to

re
 In

st
ru

ct
io

n
s/

C
yc

le
s

Black Scholes Tests

Black Scholes Load/Store Instructions BW

With Cache

Without Cache

1,04E+00

1,21E+00

1,01E+00

1,03E+00

1,67E+00

1,03E+00

1,01E+00

1,01E+00

1,01E+00

1,15E+00

0,00E+00

2,00E-01

4,00E-01

6,00E-01

8,00E-01

1,00E+00

1,20E+00

1,40E+00

1,60E+00

1,80E+00

ASSET PATH BINOMIAL BSF FORWARD MC

C
ac

h
e

 M
is

se
s/

C
ac

h
e

 A
cc

e
ss

e
s

Black Scholes Tests

Black Scholes Cache Ratio

With Cache

Without Cache

49 6. Measurements-Results

Chart 166: The Times For the MC Test
10

10

 The cycles are calculated based on the Cortex-A9 CPU Clock Frequency, which is 666 MHz.

1,73E-01

1,16E-01 1,10E-01 1,10E-01 1,14E-01

1,81E-01

1,51E-01 1,47E-01 1,46E-01 1,47E-01

0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

1,40E-01

1,60E-01

1,80E-01

2,00E-01

10 100 1000 10000 100000

C
yc

le
s

Simulations

MC TEST Times

Time with Cache

Time without Cache

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

50

50 TEI of Crete

7. Conclusions and Future Work

 After studying many of the trials that we carried out, we can now make certain observations

about the use of Performance Monitoring Units in applications.

 When an application has disabled its cache, the access to data is done through slower and

inflexible data sources thus delaying the system in its whole. On the other hand, high Cycle Count

Rate can be due to the fact that both processors are working simultaneously. When the processors

are required to work at the same time, a certain strain is applied to the system causing more

processes to use the same resources at the same time, thus increasing the Cycle Count.

 We are now able to understand and comprehend the consumption in our systems resources

through the use of the Performance Monitoring Unit, therefore we can use this information to our

advantage and guide the processors to perform quality of service.

7.1 Future Work

 The Performance Monitoring Unit has given us an idea as to how the system functions and

handles its resources.

 We intend to focus on developing a system that will provide real-time quality of service. By

using the Performance Monitoring Unit, the one core will run various applications and the other core

will act as a monitor.

 This can be expanded on to Linux Operating Systems, where this monitor will temporarily

pause processes that have a high resource occupation in order to let other applications run.

51 7. Conclusions and Future Work

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

52

52 TEI of Crete

Bibliography

[1] "CASHIER: A Cache Energy Saving Technique for QoS Systems".

[2] "Energy Efficient Scheduling of Real-Time".

[3] Dionisios Pnevmatikatos George Kornaros, "Real-Time Monitoring of Multicore SoCs Through

Specialized Hardware Agents on NoC Network Interfaces".

[4] Younghyun Kim, Sangyoung Park and Naehyuck Chang Youngjin Cho, "SystemLevel Power

Estimation using an OnChip".

[5] Anup Buchke, Dr. Yann-Hang Lee Aman Singh, "A Study of Performance Monitoring Unit, Perf

and Perf-Events Subsystem".

[6] ARM Architecture Reference Manual.

[7] ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition.

[8] Cortex-A9 Technical Reference Manual.

[9] Steven Gerding, "The Extreme Benchmark Suite: Measuring High- Performance Embedded

Systems".

[10] Kevin Castor, "Hardware Testing and Benchmarking Methodology".

[11] Irwin Sobel, "History and Definition of the Sobel Operator".

[12] Matthew D. Russell. Tinyness, "An Overview of TEA and Related Ciphers. Draft".

[13] Matthew D. Russell, "Tinyness: An Overview of TEA and Related Ciphers".

[14] http://parsec.cs.princeton.edu/overview.htm.

[15] Zynq-7000 AP SoC Technical Reference Manual.

53 Appendix A

 Appendix A

1.1 Additional Performance Monitoring Events

1.1.1 Implemented architectural events

Number Event

0x00 Software increment

0x01 Instruction cache miss

0x02 Instruction micro TLB miss

0x03 Data cache miss

0x04 Data cache access

0x05 Data micro TLB miss

0x06 Data read

0x07 Data writes

0x09 Exception taken

0x0A Exception return

0x0B Write context ID

0x0C Software change of the PC

0x0D Immediate branch

0x0F Unaligned load or store

0x10 Branch mispredicted or not predicted

0x11 Cycle count

0x12 Predictable branches

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

54

54 TEI of Crete

1.1.2 Coretex-A9 Specific Events

Event Description Value

0x40 Java bytecode execute Approximate

0x41 Software Java bytecode executed Approximate

0x42 Jazelle backward branches executed Approximate

0x50 Coherent linefill miss Precise

0x51 Coherent linefill hit Precise

0x60 Instruction cache dependent stall cycles Approximate

0x61 Data cache dependent stall cycles Approximate

0x62 Main TLB miss stall cycles Approximate

0x63 STREX passed Precise

0x64 STREX failed Precise

0x65 Data eviction Precise

0x66 Issue does not dispatch any instruction Precise

0x67 Issue is empty Precise

0x68 Instructions coming out of the core renaming stage Approximate

0x69 Number of data linefills Precise

0x6A Number of prefetcher linefills Precise

0x6B Number of hits in prefetched cache lines Precise

0x6E Predictable function returns Approximate

0x70 Main execution unit instructions Approximate

0x71 Second execution unit instructions Approximate

0x72 Load/Store Instructions Approximate

0x73 Floating-point instructions Approximate

0x74 NEON instructions Approximate

0x80 Processor stalls because of PLDs Approximate

0x81 Processor stalled because of a write to memory Approximate

0x82 Processor stalled because of instruction side main

TLB miss

Approximate

0x83 Processor stalled because of data side main TLB

miss

Approximate

0x84 Processor stalled because of instruction micro TLB

miss

Approximate

0x85 Processor stalled because of data micro TLB miss Approximate

0x86 Processor stalled because of DMB Approximate

0x8A Integer clock enabled Approximate

0x8B Data engine clock enabled Approximate

0x8C NEON SIMD clock enabled Approximate

0x8D Instruction TLB allocation Approximate

0x8E Data TLB allocation Approximate

0x90 ISB instructions Precise

0x91 DSB instructions Precise

55 Appendix A

0x92 DMB instructions Approximate

0x93 External interrupts Approximate

0xA0 PLE cache line request completed Precise

0xA1 PLE cache line request skipped Precise

0xA2 PLE FIFO flush Precise

0xA3 PLE request completed Precise

0xA4 PLE FIFO overflow Precise

0xA5 PLE request programmed Precise

11

1.2 PMU Assembly Access Functions

 unsigned int getPMN(void);

getPMN:

 MRC p15, 0, r0, c9, c12, 0 /* Read PMNC Register */

 MOV r0, r0, LSR #11 /* Shift N field down to bit 0 */

 AND r0, r0, #0x1F /* Mask to leave just the 5 N bits */

 BX lr

 void pmn_config(unsigned int counter, unsigned int event);

 pmn_config:

 AND r0, r0, #0x1F /* Mask to leave only bits 4:0 */

 MCR p15, 0, r0, c9, c12, 5 /* Write PMNXSEL Register */

 MCR p15, 0, r1, c9, c13, 1 /* Write EVTSELx Register */

 BX lr

 void ccnt_divider(int divider);

 ccnt_divider:

 MRC p15, 0, r1, c9, c12, 0 /* Read PMNC */

 CMP r0, #0x0 /* IF (r0 == 0) */

 BICEQ r1, r1, #0x08 /* THEN: Clear the D bit (disables the divisor) */

 ORRNE r1, r1, #0x08 /* ELSE: Set the D bit (enables the divisor) */

 MCR p15, 0, r1, c9, c12, 0 /* Write PMNC */

 BX lr

11

 For more information regarding the Cortex-A9 Performance Monitoring Events please refer to the
Cortex-A9 Technical Reference Manual Revision: r4p1.

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

56

56 TEI of Crete

 void enable_pmu(void);

enable_pmu:

 MRC p15, 0, r0, c9, c12, 0 /* Read PMNC */

 ORR r0, r0, #0x01 /* Set E bit */

 MCR p15, 0, r0, c9, c12, 0 /* Write PMNC */

 BX lr

 void disable_pmu(void);

disable_pmu:

 MRC p15, 0, r0, c9, c12, 0 /* Read PMNC */

 BIC r0, r0, #0x01 /* Clear E bit */

 MCR p15, 0, r0, c9, c12, 0 /* Write PMNC */

 BX lr

 void enable_ccnt(void);

enable_ccnt:

 MOV r0, #0x80000000 /* Set C bit */

 MCR p15, 0, r0, c9, c12, 1 /* Write CNTENS Register */

 BX lr

 void disable_ccnt(void);

disable_ccnt:

 MOV r0, #0x80000000 /* Clear C bit */

 MCR p15, 0, r0, c9, c12, 2 /* Write CNTENC Register */

 BX lr

 void enable_pmn(unsigned int counter);

enable_pmn:

 MOV r1, #0x1 /* Use arg (r0) to set which counter to disable */

 MOV r1, r1, LSL r0

 MCR p15, 0, r1, c9, c12, 1 /* Write CNTENS Register */

 BX lr

 void disable_pmn(unsigned int counter);

disable_pmn:

 MOV r1, #0x1 /* Use arg (r0) to set which counter to disable */

 MOV r1, r1, LSL r0

57 Appendix A

 MCR p15, 0, r1, c9, c12, 1 /* Write CNTENS Register */

 BX lr

 unsigned int read_ccnt(void);

read_ccnt:

 MRC p15, 0, r0, c9, c13, 0 /* Read CCNT Register */

 BX lr

 unsigned int read_pmn(unsigned int counter);

read_pmn:

 AND r0, r0, #0x1F /* Mask to leave only bits 4:0 */

 MCR p15, 0, r0, c9, c12, 5 /* Write PMNXSEL Register */

 MRC p15, 0, r0, c9, c13, 2 /* Read current PMNx Register */

 BX lr

 unsigned int read_flags(void);

read_flags:

 MRC p15, 0, r0, c9, c12, 3 /* Read FLAG Register */

 BX lr

 void write_flags(unsigned int flags);

write_flags:

 MCR p15, 0, r0, c9, c12, 3 /* Write FLAG Register */

 BX lr

 void enable_ccnt_irq(void);

enable_ccnt_irq:

 MOV r0, #0x80000000

 MCR p15, 0, r0, c9, c14, 1 /* Write INTENS Register */

 BX lr

 void disable_ccnt_irq(void);

disable_ccnt_irq:

 MOV r0, #0x80000000

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

58

58 TEI of Crete

 MCR p15, 0, r0, c9, c14, 2 /* Write INTENC Register */

 BX lr

 void disable_pmn_irq(unsigned int counter);

disable_pmn_irq:

 MOV r1, #0x1 /* Use arg (r0) to set which counter to disable */

 MOV r0, r1, LSL r0

 MCR p15, 0, r0, c9, c14, 2 /* Write INTENC Register */

 BX lr

 void reset_pmn(void);

reset_pmn:

 MRC p15, 0, r0, c9, c12, 0 /* Read PMNC */

 ORR r0, r0, #0x02 /* Set P bit (Event Counter Reset) */

 MCR p15, 0, r0, c9, c12, 0 /* Write PMNC */

 BX lr

 void reset_ccnt(void);

reset_ccnt:

 MRC p15, 0, r0, c9, c12, 0 /* Read PMNC */

 ORR r0, r0, #0x04 /* Set C bit (Event Counter Reset) */

 MCR p15, 0, r0, c9, c12, 0 /* Write PMNC */

 BX lr

 void pmu_software_increment(unsigned int counter);

pmu_software_increment:

 MOV r1, #0x01

 MOV r1, r1, LSL r0

 MCR p15, 0, r1, c9, c12, 4 /* Write SWINCR Register */

 BX lr

59 Appendix A

Appendix B

1.1 Additional Measurements

1.1.1 Single Sobel and TEA Application

EVENT L1 Disabled L1 Disabled DEC

0x01 Instruction cache miss 0 0

0x03 Data cache miss 0 0

0x04 Data cache access 236C6 145094

0x11 Cycle count 2C52C4 2904772

0x72 Load/Store Instructions 274D7 160983
Table 1: Single Sobel With L1 Cache Disabled

EVENT L1 Disabled L1 Disabled DEC

0x01 Instruction cache miss 0 0

0x03 Data cache miss 0 0

0x04 Data cache access 7D94E 514382

0x11 Cycle count 9D1FC8 10297288

0x72 Load/Store Instructions C7B0C 817932
Table 2: Single TEA With L1 Cache Disabled

EVENT L2 Disabled L2 Disabled DEC

0x01 Instruction cache miss 80 128

0x03 Data cache miss BC 188

0x04 Data cache access 2850F 165135

0x11 Cycle count 7F8A3 522403

0x72 Load/Store Instructions 2749C 160924
Table 3: Single Sobel with L2 Cache Disabled

12

12

 The measurements are featured in Hexadecimal and Decimal format

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

60

60 TEI of Crete

Table 4: Single TEA With L2 Cache Disabled

EVENT I CACHE Disabled I CACHE Disabled DEC

0x01 Instruction cache miss 0 0

0x03 Data cache miss
BD

189

0x04 Data cache access 282BC 164540

0x11 Cycle count 3B18D5 3872981

0x72 Load/Store Instructions 26FEF 159727
Table 5: Single Sobel With I cache Disabled

EVENT I CACHE Disabled I CACHE Disabled DEC

0x01 Instruction cache miss 0 0

0x03 Data cache miss
C3

195

0x04 Data cache access E069A 919194

0x11 Cycle count 36ADB9 3583417

0x72 Load/Store Instructions C6BA4 813988
Table 6: Single TEA With I Cache Disabled

Table 7: Single Sobel With D Cache Disabled

EVENT L2 Disabled L2 Disabled DEC

0x01 Instruction cache miss 80 128

0x03 Data cache miss BC 188

0x04 Data cache access 2850F 165135

0x11 Cycle count 7F8A3 522403

0x72 Load/Store Instructions 2749C 160924

EVENT D CACHE Disabled D CACHE Disabled DEC

0x01 Instruction cache miss 83 131

0x03 Data cache miss 0 0

0x04 Data cache access 236D1 145105

0x11 Cycle count 64A6BA 6596282

0x72 Load/Store Instructions 274D8 160984

61 Appendix A

EVENT D CACHE Disabled D CACHE Disabled DEC

0x01 Instruction cache miss 3E 62

0x03 Data cache miss 0 0

0x04 Data cache access 7D951 514385

0x11 Cycle count 8DF389 9302921

0x72 Load/Store Instructions C7B13 817939
Table 8: Single TEA With D Cache Disabled

1.1.2 Multiple Sobel and TEA Application

Table 9: Multiple Sobel and TEA With L1 Cache Disabled
13

Table 10: Multiple Sobel and TEA With D Cache Disabled

13

 The measurements are featured in Hexadecimal format

EVENT Sobel 1 EVENT Sobel 2 EVENT Sobel 3

0x01 Instruction cache miss 0 0x01 Instruction cache miss 0 0x01 Instruction cache miss 0

0x03 Data cache miss 0 0x03 Data cache miss 0 0x03 Data cache miss 0

0x04 Data cache access 236CD 0x04 Data cache access 236C5 0x04 Data cache access 236CD

0x11 Cycle count 2C18BD 0x11 Cycle count 2C1939 0x11 Cycle count 2CECA0

0x72 Load/Store Instructions 274E6 0x72 Load/Store Instructions 274D2 0x72 Load/Store Instructions 27529

EVENT TEA 1 EVENT TEA 2

0x01 Instruction cache miss FF 0x01 Instruction cache miss 0

0x03 Data cache miss FF 0x03 Data cache miss 0

0x04 Data cache access FF 0x04 Data cache access 7D9B6

0x11 Cycle count FF 0x11 Cycle count 9D7D44

0x72 Load/Store Instructions FF 0x72 Load/Store Instructions C7B7F

EVENT Sobel 1 EVENT Sobel 2 EVENT Sobel 3

0x01 Instruction cache miss 7F 0x01 Instruction cache miss 4 0x01 Instruction cache miss 0

0x03 Data cache miss 0 0x03 Data cache miss 0 0x03 Data cache miss 0

0x04 Data cache access 236CE 0x04 Data cache access 236E7 0x04 Data cache access 236D8

0x11 Cycle count 64079C 0x11 Cycle count 6415CE 0x11 Cycle count 646AED

0x72 Load/Store Instructions 274DF 0x72 Load/Store Instructions 274F1 0x72 Load/Store Instructions 2753A

EVENT TEA 1 EVENT TEA 2

0x01 Instruction cache miss FF 0x01 Instruction cache miss 0

0x03 Data cache miss FF 0x03 Data cache miss 0

0x04 Data cache access FF 0x04 Data cache access 7D940

0x11 Cycle count FF 0x11 Cycle count 8E2CDB

0x72 Load/Store Instructions FF 0x72 Load/Store Instructions C7AE6

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

62

62 TEI of Crete

 Table 11: Multiple Sobel and TEA With I Cache Disabled

 Table 12: Multiple Sobel and TEA With L2 Cache Disabled

Sobel 1 EVENT Sobel 2 EVENT Sobel 3

0 0x01 Instruction cache miss 0 0x01 Instruction cache miss 0

BB 0x03 Data cache miss 99 0x03 Data cache miss 9D

282B3 0x04 Data cache access 282C5 0x04 Data cache access 282BA

3BF510 0x11 Cycle count 3CF258 0x11 Cycle count 3F8051

26FE3 0x72 Load/Store Instructions 26FB7 0x72 Load/Store Instructions 26FC8

EVENT TEA 1 EVENT TEA 2

0x01 Instruction cache miss FF 0x01 Instruction cache miss 0

0x03 Data cache miss FF 0x03 Data cache miss 0

0x04 Data cache access FF 0x04 Data cache access D650E

0x11 Cycle count FF 0x11 Cycle count 36ACBE

0x72 Load/Store Instructions FF 0x72 Load/Store Instructions C6B81

EVENT Sobel 1 EVENT Sobel 2 EVENT Sobel 3

0x01 Instruction cache miss 77 0x01 Instruction cache miss 4 0x01 Instruction cache miss 0

0x03 Data cache miss 4F 0x03 Data cache miss 99 0x03 Data cache miss 9B

0x04 Data cache access 2826A 0x04 Data cache access 285A3 0x04 Data cache access 28597

0x11 Cycle count 7F395 0x11 Cycle count 80C6E 0x11 Cycle count 83260

0x72 Load/Store Instructions 2747E 0x72 Load/Store Instructions 2747E 0x72 Load/Store Instructions 274B5

EVENT TEA 1 EVENT TEA 2

0x01 Instruction cache miss FF 0x01 Instruction cache miss 0

0x03 Data cache miss FF 0x03 Data cache miss 0

0x04 Data cache access FF 0x04 Data cache access E60B7

0x11 Cycle count FF 0x11 Cycle count 17B90E

0x72 Load/Store Instructions FF 0x72 Load/Store Instructions C7AE3

63 Appendix A

Appendix C

1.1 Thesis Presentation

Design and Implementation
Mechanisms for quality of service
over Embedded systems on chips

Efstathia Matthaiou
AM 2930

Supervising Professor
George Kornaros

Technological Education Institute of Crete
School of Engineering
Department of Informatics Engineering

Overview

• Introduction

• Hardware Implementation Description

• Performance Monitoring Unit

• Applications/Benchmarks

• Software Implementation Description

• Measurements-Results

• Conclusions and Future Work

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

64

64 TEI of Crete

Aims and Objectives

• Implementation of applications on the
hardware design

• Enablement of the Performance Monitoring
Unit

• Measurements by the Performance
Monitoring Unit

• Study on the results obtained

Hardware Implementation Description

• The implementation is carried out on the Zynq-7000 based
on the Xilinx all programmable SoC (AP SoC) architecture

• Processing System(PS)
– Dual-core ARM Cortex-A9 Processor
– The Level-One (L1) Cache
– The Level-Two (L2) Cache
– The DDR Memory
– ARM Private Timer

• Programmable Logic(PL)
– AXI BRAM
– AXI GPIO
– Block Memory Generator

65 Appendix A

Hardware Design

Performance Monitoring Unit

• Hardware that has been built inside any given
processor in order to measure its performance
parameters

 The Performance Monitor Unit (PMU) is part of the ARM
Debug architecture

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

66

66 TEI of Crete

Performance Monitoring Unit
Counters

• Six event counters (PMU event counter 0 to 5)

• Each one of the counters are able to count any
of the 63 events available in the Cortex-a9
processor

Performance Monitoring Unit Events

• Architectural Events
– Instruction cache miss (0x01)
– Data cache miss (0x03)
– Data cache access (0x04)
– Data read (0x06)
– Data writes (0x07)
– Cycle count (0x11)

• Specific Events
– Load/Store instructions (0x72)

 Counts the number of instructions being executed in the Load/Store unit
– Processor stalled because of a write to memory (0x81)

 Counts the number of cycles when the processor is stalled
– Processor stalled because of instruction side main TLB miss (0x82)

 Counts the number of stall cycles because of main TLB misses on requests issued by the
instruction side

– Processor stalled because of data side main TLB miss (0x83)
 Counts the number of stall cycles because of main TLB misses on request issued by the

data side

67 Appendix A

Application/Benchmarks

• Sobel
– Image Processing

• TEA
– Encryption
– Decryption

• Black Scholes
– European and call options formula

 Asset Path
 Binomial
 BSF
 Forward
 MC

Single Sobel and TEA Application

Core 1

Processed
image

encryption

decryption

Core 0

Sobel

Processed
image

image

*start

AXI BRAM CTRL

*start=0x40000000

while (*start){

}

*dstPoint=0x00200000

DDR

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

68

68 TEI of Crete

Multiple Sobel and TEA Application

1st Sobel 2nd Sobel 3rd Sobel

1st TEA 2nd TEA

Performance Monitoring Unit
Application

• Enablement
– Enablement of the six event

counter
– Enablement of the cycle counter

register
– Reset of the event counter and

ccnt to their original value

• Count
– Configuration of the event counter

for the specific events
– Reading the event counters and

ccnt before the main function
– Reading the event counters and

ccnt after the main function

• Disablement
– Disablement of the cycle counter

register
– Disablement of the event counters

•void enable_pmu(void);
•void enable_ccnt(void);
•void enable_pmn(unsigned int counter);

•void pmn_config(unsigned int counter,
unsigned int event);
•unsigned int read_ccnt(void);
•unsigned int read_pmn(unsigned int
counter);

•void disable_pmu(void);
•void disable_ccnt(void);

69 Appendix A

Formulas

• The Cycle Counter Register (ccnt) provided by the PMU
counts the same thing as the event Cycle Count (0x11).
The equation linking these two is: cycle count/64=ccnt.

• The ScuTimer used is clocked at ½ of the CPUs
frequency

• The Cortex-A9 CPU Clock Frequency is 666 Hz.

• The events Data read (0x06) and Data writes (0x07)
added together equal the event Load/Store
Instructions (0x72).

• The cache ratio is the Data cache misses (0x03) divided
by the Data cache access (0x04).

Sobel and TEA Application Time

522645

1555264

8311635

10334356

0

2000000

4000000

6000000

8000000

10000000

12000000

SOBEL TEA

cy
cl

es

applications

Application Times

CACHE

NO CACHE

*The application times are the result of the “Cycle
count” with a CPU Frequency at 666 Hz

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

70

70 TEI of Crete

Sobel and TEA Instruction Cache Miss
Bandwidth

2.39E-04 2.35E-04

7.55E-06 0.00E+00

2.39E-04

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

SINGLE MULTIPLE 1 MULTIPLE 2 MULTIPLE 3

In
st

ru
ct

io
n

 C
ac

h
e

M
is

se
s/

C
yc

le
s

Application

Sobel Instruction Cache Miss BW

SOBEL CACHE

SOBEL WITHOUT CACHE

3.54E-05

0.00E+00

5.32E-06

0.00E+00
0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

4.00E-05

SINGLE MULTIPLE 2

In
st

ru
ct

io
n

 C
ac

h
e

M
is

se
s/

C
yc

le
s

Applications

TEA Instruction Cache Miss BW

TEA CACHE

TEA WITHOUT CACHE

Sobel and TEA Data Cache Miss
Bandwidth

3.58E-04 3.60E-04
2.92E-04 2.91E-04

0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

3.50E-04

4.00E-04

SINGLE MULTIPLE 1 MULTIPLE 2 MULTIPLE 3

D
at

a
C

ac
h

e
M

is
se

s/
C

yc
le

s

Applications

Sobel Data Cache Miss BW

SOBEL CACHE

SOBEL WITHOUT CACHE

1.25E-04

0.00E+000.00E+00 0.00E+00
0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

SINGLE MULTIPLE 2

D
at

a
C

ac
h

e
M

is
se

s/
C

yc
le

s

Applications

TEA Data Cache Miss BW

TEA CACHE

TEA WITHOUT CACHE

71 Appendix A

Sobel and TEA Data Cache Access
Bandwidth

3.16E-01 3.16E-01 3.12E-01 3.07E-012.78E-01

1.76E-02 1.74E-02 1.76E-02
0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

3.50E-01

SINGLE MULTIPLE 1 MULTIPLE 2 MULTIPLE 3

D
at

a
C

ac
h

e
A

cc
es

se
s/

C
yc

le
s

Applications

Sobel Data Cache Access BW

SOBEL CACHE

SOBEL WITHOUT CACHE

6.26E-01 6.27E-01

4.98E-02 4.97E-02

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

SINGLE MULTIPLE 2

D
at

a
C

ac
h

e
A

cc
es

se
s

/C
yc

le
s

Applications

TEA Data Cache Access BW

TEA CACHE

TEA WITHOUT CACHE

Sobel and TEA Load/Store Instructions
Bandwidth

3.08E-01 3.08E-01 3.04E-01 2.99E-01

3.08E-01

1.95E-02 1.93E-02 1.95E-02
0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

3.50E-01

SINGLE MULTIPLE 1 MULTIPLE 2 MULTIPLE 3

Lo
ad

-S
to

re
 In

st
ru

ct
io

n
s/

C
yc

le
s

Applications

Sobel Load/Store Instructions BW

SOBEL CACHE

SOBEL WITHOUT CACHE

5.26E-01 5.26E-01

7.91E-02 7.90E-02
0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

SINGLE MULTIPLE 2

Lo
ad

-S
to

re
 In

st
ru

ct
io

n
s/

C
yc

le
s

Applications

TEA Load/Store Instructions BW

TEA CACHE

TEA WITHOUT CACHE

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

72

72 TEI of Crete

Sobel and TEA Cache Ratio

1.13E-03 1.14E-03
9.37E-04 9.49E-04

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

SINGLE MULTIPLE 1 MULTIPLE 2 MULTIPLE 3

D
at

a
C

ac
h

e
M

is
se

s/
D

at
a

C
ac

h
e

A
cc

es
s

Applications

Sobel Cache Ratio

SOBEL CACHE

SOBEL WITHOUT CACHE

1.99E-04

0.00E+00
0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

SINGLE MULTIPLE 2

D
at

a
C

ac
h

e
M

is
se

s/
D

at
a

C
ac

h
e

A
cc

es
se

s

Applications

TEA Cache Ratio

TEA CACHE

TEA WITHOUT CACHE

Black Scholes Data Cache Miss and
Access Bandwidth

9.81E-06 1.09E-05 3.78E-06 1.85E-05

9.95E-04

0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.00E+00

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

ASSET PATH BINOMIAL BSF FORWARD MC

D
at

a
C

ac
h

e
M

is
se

s/
C

yc
le

s

Black Scholes Tests

Black Scholes Data Cache Miss BW

With Cache

Without Cache

1.53E-02

7.02E-02

1.41E-02 2.37E-02

1.04E-01

4.77E-03 1.72E-02 4.85E-03 6.24E-03 3.46E-04
0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

ASSET PATH BINOMIAL BSF FORWARD MC

D
at

a
C

ac
h

e
A

cc
es

se
s/

C
yc

le
s

Black Scholes Tests

Black Scholes Data Cache Access BW

With Cache

Without Cache

73 Appendix A

Black Scholes Load/Store Instructions

Bandwidth and Cache Ratio

1.50E-02

6.58E-02

1.40E-02

2.35E-02

8.36E-02

4.94E-03

1.96E-02

4.88E-03 6.48E-03 3.95E-04
0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

8.00E-02

9.00E-02

ASSET PATH BINOMIAL BSF FORWARD MC

Lo
a

d
-S

to
re

 In
st

ru
ct

io
n

s/
C

yc
le

s

Black Scholes Tests

Black Scholes Load/Store Instructions BW

With Cache

Without Cache

1.04E+00

1.21E+00

1.01E+00

1.03E+00

1.67E+00

1.03E+00

1.01E+00

1.01E+00

1.01E+00

1.15E+00

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

1.80E+00

ASSET PATH BINOMIAL BSF FORWARD MC

C
ac

h
e

M
is

se
s/

C
ac

h
e

A
cc

es
se

s

Black Scholes Tests

Black Scholes Cache Ratio

With Cache

Without Cache

Black Scholes MC Application Time

1.73E-01

1.16E-01 1.10E-01 1.10E-01 1.14E-01

1.81E-01

1.51E-01 1.47E-01 1.46E-01 1.47E-01

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

1.40E-01

1.60E-01

1.80E-01

2.00E-01

10 100 1000 10000 100000

C
yc

le
s

Simulations

MC TEST Times

Time with Cache

Time without Cache

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

74

74 TEI of Crete

Conclusions

• We are now able to understand and
comprehend the consumption in our systems
resources through the use of the Performance
Monitoring Unit , therefore we could guide
the processors to perform Quality of service.

Future Work

• We intend to focus on developing a system that
will provide real-time quality of service. By using
the Performance Monitoring Unit, the one core
will run various applications and the other core
will act as a monitor

• This can be expanded on to Linux Operating
Systems, where this monitor will temporarily
pause processes that have a high resource
occupation in order to let other applications run

75 Appendix A

Thank you!

Department of Informatics Engineering
Design and Implementation Mechanisms for Quality of Service over System on Chips

76

76 TEI of Crete

