

FILE TYPE IDENTIFICATION – A COMPUTATIONAL INTELLIGENCE APPROACH TO

DIGITAL FORENSICS

by

KARAMPIDIS KONSTANTINOS

Electrical Engineer, Technological Educational Institute of Crete, 1994

A THESIS

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF INFORMATICS ENGINEERING

SCHOOL OF APPLIED TECHNOLOGY

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2015

Approved by:

Major Professor

Dr PAPADOURAKIS GEORGE

Copyright

KARAMPIDIS KONSTANTINOS

2015

This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/4.0/

http://creativecommons.org/licenses/by-nc-sa/4.0/

Abstract

The rapid growth and use of digital devices (e.g. computers, android tablets and smartphones),

made people vulnerable to cybercrimes. Dr. Debarati Halder and Dr. K. Jaishankar (2011) define

cybercrimes as: "Offences that are committed against individuals or groups of individuals with a

criminal motive to intentionally harm the reputation of the victim or cause physical or mental harm,

or loss, to the victim directly or indirectly, using modern telecommunication networks such as

Internet (Chat rooms, emails, notice boards and groups) and mobile phones (SMS/MMS)" [1]. For

instance, one major and loathsome crime is child pornography. A child predator may try to hide

evidence in a computer or any other digital device, by changing the file type. This could be easily

done by altering the file extension, file signature or both. A digital forensic examiner on the other

hand, uses forensic software to accurately identify the file types in order to determine which files

may contain potential evidence. Nevertheless, current type recognition mechanisms are vulnerable

to simple deceptions and even the most widely used commercial forensic software suites may not

predict correctly an intentionally altered file. For instance, if someone changes file extension from

.jpg to .doc, the forensic software will identify that the file type is changed. Nevertheless, if the

file signature is changed as well in order to be related to a .doc file, the forensic software detection

algorithm may show poor results. Another important field where file type identification must be

quick and accurate is spam e-mail. Every day massive amount of spam e-mails are received and

lot of time is spent to delete them. Unfortunately this is not the only disadvantage. Network

bandwidth is taken, e-mail servers are slowing down and eventually an unexperienced end user

may not be able to identify if the e-mail hides malicious content. These are only a few paradigms

of the possible damage caused by an unsuccessful file type recognition. This master’s thesis will

try to examine all possible practices of identifying a file type and propose a new method – in a

digital forensics perspective - to identify a file type with high accuracy.

v

Table of Contents

Copyright .. ii

Abstract .. iii

List of Figures ... vii

List of Tables ... ix

Acknowledgements ... x

Dedication .. xi

Preface... xii

Chapter 1 - Introduction to Digital Forensics ... 1

1.1 Forensic Process ... 2

1.1.1 Data Collection .. 3

1.1.2 Data examination ... 4

1.1.3 Data Analysis ... 5

1.1.4 Report ... 6

1.2 Forensic Tools ... 6

Chapter 2 - File Type Identification.. 9

2.1 File Format .. 9

2.2 Extension based method ... 10

2.3 Magic bytes method .. 12

2.4 Content based method ... 22

Chapter 3 - Computational Intelligence to Digital Forensics ... 26

3.1 Statement of the problem .. 26

3.2 Deliminations – Data Mining Software .. 26

3.3 The dataset .. 32

3.4 Feature extraction ... 33

3.5 Feature selection ... 35

3.5.1 Correlation based Feature Selection (CFS) .. 37

3.5.2 Best first as a search method .. 38

3.5.3 Genetic Algorithm as a search method .. 39

3.6 The Classifier – Multi Layer Perceptron (MLP) .. 41

vi

3.7 Cross Validation of the training data .. 43

Chapter 4 - Results .. 45

4.1 Results using Best First as search method .. 45

4.2 Results using Genetic Algorithm as search method ... 46

4.3 Comparison of the two search methods .. 47

4.4 Restatement of the problem .. 50

4.5 Results on the new testing datasets ... 51

4.6 Comparison of the proposed method to the literature ... 56

Chapter 5 - Conclusions & Future Work .. 58

5.1 Conclusions ... 58

5.2 Future Work .. 59

References ... 60

 Weka Implementation .. 65

vii

List of Figures

Figure 1.1: Digital Forensic Areas of Interest .. 1

Figure 1.2: Phases of the forensic process .. 2

Figure 1.3: BackBox Linux distribution ... 8

Figure 1.4: Computer Aided Investigative Environment (CAINE) Linux distribution 8

Figure 2.1: Unhide extension of known file types in Windows ... 10

Figure 2.2: The file to be renamed .. 11

Figure 2.3: The renamed file ... 11

Figure 2.4: Extension mismatch and correct identification on Autopsy forensic software 12

Figure 2.5: The file signature of a .doc file. The magic bytes are in the rectangular box 13

Figure 2.6: File signature of a png image ... 15

Figure 2.7: Altering the file signature through a hex editor ... 15

Figure 2.8: Extension mismatch ... 16

Figure 2.9: Autopsy can’t recognize the change ... 16

Figure 2.10: Autopsy can’t see an extension mismatch .. 17

Figure 2.11: TrID .. 17

Figure 2.12: Analyze It! .. 18

Figure 2.13: Analyze file header and content ... 18

Figure 2.14: Toolsley online identifier ... 19

Figure 2.15: DROID ... 20

Figure 2.16: Exiftool ... 20

Figure 2.17: Falstaff correct identification ... 21

Figure 2.18: Falstaff wrong identification .. 22

Figure 3.1: GIF format details and header .. 27

Figure 3.2: PNG file structure ... 28

Figure 3.3 JPEG format details ... 29

Figure 3.4: The file structure of a pdf file ... 31

Figure 3.5: Byte Frequency Distributions for two jpg images .. 34

Figure 3.6: Byte Frequency Distributions for two png images ... 34

Figure 3.7: Byte Frequency Distributions for two gif images .. 34

file:///C:/Users/userK/Desktop/MSc%20Thesis/FTI%20Karampidis%20Masters%20Thesis.docx%23_Toc433896994
file:///C:/Users/userK/Desktop/MSc%20Thesis/FTI%20Karampidis%20Masters%20Thesis.docx%23_Toc433896995
file:///C:/Users/userK/Desktop/MSc%20Thesis/FTI%20Karampidis%20Masters%20Thesis.docx%23_Toc433896996

viii

Figure 3.8: Feature selection flowchart – Best First ... 39

Figure 3.9: Feature selection flowchart – Genetic Algorithm .. 40

Figure 3.10: A multilayer perceptron with two hidden layers .. 41

Figure 3.11: Flowchart of the proposed method ... 44

Figure 4.1: Comparison of search methods TP Rate .. 48

Figure 4.2: Comparison of search methods – Precision ... 49

Figure 4.3: Comparison of search methods – Recall .. 49

Figure 4.4: Accuracy comparison of the proposed method in altered images 55

Figure A-1: Importing training set and preprocess in Weka ... 65

Figure A-2: Selecting parameters for the proposed method ... 65

Figure A-3: Another way of selecting attributes using k-fold cross validation 66

Figure A-4: Classifier results .. 67

Figure A-5: Classifier results in forged jpg images .. 68

Figure A-6: Classifier results in forged png images ... 69

Figure A-7: Classifier results in forged gif images ... 70

file:///C:/Users/userK/Desktop/MSc%20Thesis/FTI%20Karampidis%20Masters%20Thesis.docx%23_Toc433896998

ix

List of Tables

Table 2.1: A list of some widely used file types and their file signatures 14

Table 3.1: Signature of a JPEG image .. 28

Table 3.2: Options for the fourth byte in jpeg header ... 29

Table 3.3: The most common JPEG markers, https://en.wikipedia.org/wiki/JPEG 30

Table 3.4: Caltech 101 Dataset ... 32

Table 3.5: Our Dataset .. 33

Table 3.6: Parameters of the Genetic Algorithm .. 40

Table 3.7: Parameters of the multilayer perceptron ... 42

Table 4.1: Remaining features after selection with Best First search method and CFS 45

Table 4.2: Confusion matrix – Best First - CFS – Training time 500 epochs 45

Table 4.3: Confusion matrix – Best First - CFS – Training time 1000 epochs 46

Table 4.4: Remaining features after selection with GA as search method and CFS 46

Table 4.5: Confusion matrix – Genetic Algorithm - CFS – Training time 1000 epochs 46

Table 4.6: Detailed Accuracy for Best First ... 47

Table 4.7: Detailed Accuracy for Genetic Algorithm ... 47

Table 4.8: The new dataset ... 50

Table 4.9: Confusion matrix – Identifying forged jpg images .. 51

Table 4.10: “Misclassified’’ pdf instances (jpg actual type) .. 51

Table 4.11: Actual confusion matrix – jpeg images ... 52

Table 4.12: Detailed Accuracy By Class – Our proposed method (in forged jpg images) 52

Table 4.13: Confusion matrix – Identifying forged png images ... 52

Table 4.14: “Misclassified” pdf instances (png actual type) .. 53

Table 4.15: Actual confusion matrix – png images .. 53

Table 4.16: Confusion Matrix – Identifying forged gif images .. 54

Table 4.17: “Misclassified pdf” instances (gif actual type) .. 54

Table 4.18: Actual confusion matrix – gif images .. 54

Table 4.19: Final Confusion Matrix of the proposed method ... 55

Table 4.20: The proposed method compared to the literature .. 56

x

Acknowledgements

I would like to thank the faculty and administrative staff of the Department of Informatics

Engineering in Technological Institute of Heraklion, for their dedication and assistance during

the postgraduate program “Informatics and Multimedia” through past year. I would specifically

like to thank my thesis advisor, Dr. George Papadourakis for his valuable guidance and advices

and thesis committee members Dr. Spiros Panagiotakis and Dr. Athanasios Malamos for their

valuable input and assistance

xi

Dedication

This master’s thesis and the attendance of the postgraduate program would be inevitable if

i haven’t had the full support, understanding and inducement of my wife. Rightfully this thesis is

100% dedicated to her.

Thank you Argyro

xii

Preface

Digital Forensics is a relatively new field in Computer Science. Although most people

think that only a computer might be a cyber “weapon’ this is not true. All electronics devices may

hide possible evidence. One of the most important steps to Digital Forensics is the correct

identification of a file type. Many times suspects try to hide evidence by changing the file type. In

Chapter one, a small introduction to Digital Forensics is made and the standard forensic

procedures, tools and software used by forensic examiners are presented. In Chapter two we

present all possible methods of identifying a file, give examples by using well-known software

tools and refer to the literature for other scientific proposals. In Chapter three we propose a new

method of file type identification. Our method uses evolutionary algorithms such as Genetic

Algorithms for feature extraction and a multilayer perceptron for classification. In Chapter four

we present the results of this method and finally in Chapter 5 there are the conclusions of this

thesis along with thoughts of future work in the specific scientific area.

1

Chapter 1 - Introduction to Digital Forensics

Computers have had increasing roles in all aspects of human life. Especially when they

became small and cheap enough to be in everybody’s house, mainly from the early 80s.

Unfortunately they became also a convenient tool for criminal acts as well. This development has

led to the rise of digital forensics, the uncovering and examination of evidence located on all

electronics with digital storage, including computers, cell phones, and networks. Digital forensics

can be divided into four main areas of interest:

 Computer Forensics

 Network Forensics

 Mobile device Forensics

 Database Forensics

Figure 1.1: Digital Forensic Areas of Interest

2

 1.1 Forensic Process

 Due to the risk of losing potential evidence there is the need to respect a specific procedure

when trying to discover hidden evidence in electronic devices. According to National Institute of

Standards and Technology (NIST) [2], the forensic process has four major phases:

 Data Collection

 Examination

 Analysis

 Report

Figure 1.2: Phases of the forensic process

3

 1.1.1 Data Collection

Digital sources which may hide potential evidence are numerous due to the increasingly

use of technology for professional or amusement purposes. Potential evidence could be found on

desktop computers, laptops, servers or network storage devices. These systems have internal drives

such as hard disks (HDD) and ports like Universal Serial Bus (USB) to which external data storage

media and devices can be attached. These external media could be an external hard drive, a USB

flash drive, memory cards, optical discs etc. We must also take into consideration that evidence

may hide into RAM, clipboard or network connection (volatile data) and for this reason a system

shut down or reboot, may lead to their extinction. Furthermore, besides of computers or computer-

related devices, data may be in portable devices like cell phones or digital cameras. A forensic

investigator must have access to the crime scene, examine the area and identify all possible sources

of data although occasionally it is not possible to collect data from a primary data source e.g. the

past network activity of a device. This information may be in ISP’s log files and a certain court

order may needed in order to have access to these data. Moreover we must be very careful when

handling and examining devices due to strict law in privacy matters.

Every time a potential source is identified, it must be uniquely labeled, recorded, and

collected. It is essential to begin collecting data from volatile sources. As stated earlier volatile

data could be the content of the RAM or the network activity etc. There are a lot of live forensic

tools (open source or proprietary) which can retrieve these information. In general, the data

gathered could be information about running processes, loaded libraries, used resources, logged

on users, network connection status, open ports etc.

After capturing the volatile data, we can procced with the non-volatile ones. A copy of the

whole content of the device must be extracted. We must make clear that we just not only copy the

4

contents of a device as its metadata i.e. hashes and timestamps (modification, access, and creation

times) would be lost. Instead we must use forensic imaging tools or commands in order to maintain

these crucial information. Forensic imaging is done with special forensic tools. The forensic

investigator applies a write blocker (hardware or software) in order to avoid modification of the

data and takes a forensic image of the device while keeping the metadata and compressing the all

the empty blocks. For example two commands -which require only minimal resources to run- used

for this reason are dd or dcfldd (used mainly on Linux operating systems). For reasons of integrity

and authenticity, every time a raw image of the data is acquired its message digest is calculated

both for the original and forensically copied data, then by comparing the digests we make sure that

they are the same and not tampered.

It is essential to say that, the forensic examiner should make a master copy and a working

copy of the files. The examiner then, will work with the working copy without concerned of wrong

handlings or alteration.

 1.1.2 Data examination

After data has been collected, the next phase is to examine them. A raw image of a hard

drive has many gigabytes or terabytes of files. The task of identifying the files that contain

information of interest –potential evidence- is a difficult task. Furthermore, potential evidence may

contain unnecessary information that should be filtered. This is done by using forensic tools and

techniques in order to reduce the amount of data that has to be examined thoroughly. We apply

text and pattern searches to identify relevant data and try to determine the type of contents of each

data file. Knowledge of data file types is used to exclude files that are of no interest to the

5

investigation and to focus only to these that may have information to reveal. Windows registry is

another worth looking place for extracting evidence as it can reveal information about the system,

the users, and the software installed or accessed.

Besides the huge amount of data, a forensic investigator sometimes have to deal with

encrypted data as well. Users might encrypt individual files, folders, or partitions so that no other

can access their contents without the use of a decryption key. It is very easy to identify an encrypted

file, but it is very difficult to bypass the encryption without having the encryption key. For this

reason, the examiner must look carefully to find encryption tools that are installed in the device,

identify the encryption method and finally see if the encryption key is stored somewhere in the

raw image.

 1.1.3 Data Analysis

Afterwards the data examination, the subsequent step is to perform analysis of the

remaining extracted data. There are many tools available that analyze different types of data.

Forensic examiners must be aware of the value of using system times and file times. If the

examiner knows when an incident happened or when a file was created or modified, it can be

critical to forensic analysis. In other words the examiner is able then to reform a timeline of actions

taken place. In the case that multiple tools are used to evaluate the data, the analyst should fully

understand how each tool works and how it extracts and displays file metadata (file creation time

– MAC). As already said, write-blockers (hardware or software) must be used to prevent these

tools from altering the creation times. However, write-blockers cannot prevent the operating

system from caching the changes in memory. As a result of this the operating system might report

6

the cached creation times instead of the actual times. For all these reasons, the forensic examiner

should carefully choose a MAC viewing method and rely on special tools that can generate forensic

timelines based on event data, through a graphical interface for event visualization and analysis.

Forensic data analysis also involves data from other sources, such as the network traffic, network

monitoring or applications.

 1.1.4 Report

The final phase of the forensic process is reporting. The report is often written and

sometimes – when comes to a court room – verbal. The report contains all the information about

the examiner, date and time the data were collected, the tools and the methods were used to

evaluate the data and last the conclusions. The forensic examiner must be accurate when describing

an event, give a structured justification of the conclusions he/she came up to and leave no margin

of doubt. If an event has more than one possible explanations, each should be specified in detail in

the report. Finally the forensic examiner must be able to accurately justify his/hers scientific

findings, while being clear and comprehensible when presenting the facts to an unskilled audience

e.g. a court room.

 1.2 Forensic Tools

A lot of forensic tools have been created over the last years. There are small programs that

deal with specific forensic actions or whole forensic packages with which a forensic examiner can

work with and deal with the most difficult cases. In this paragraph we will present the most used

ones. First, we have to mention that there are Linux live distributions offering open source forensic

tools. The most major are:

7

 Kali Linux : a Debian-based distribution with a collection of security and forensics

tools [3].

 CAINE (Computer Aided INvestigative Environment) is an Ubuntu-based

GNU/Linux live distribution. It offers a complete forensic environment [4].

 DEFT (Digital Evidence & Forensic Toolkit) is a customised distribution of the

Ubuntu live Linux CD. It offers some of the best open-source applications

dedicated to incident response and computer forensics [5].

 BackBox is a Debian-based security distribution designed for penetration testing

and forensic investigations [6].

 NetSecL is a security-focused distribution and live DVD based on openSUSE [7].

 Parrot Security OS is a security oriented operating system designed for penetration

testing, computer forensics, cryptography, steganography etc. The distribution is

based on Debian [8].

Besides Linux distributions there are a lot (proprietary or open source) standalone forensic suites

that help a forensic examiner. The most known and used are:

 Encase by Guidance Software [9]

 Sleuth Kit - Autopsy [10].

 FTK Access Data [11].

 Oxygen Forensics [12].

Of course there are lot more of other forensic software, some of which will be referred and used

in the next chapter.

8

Figure 1.3: BackBox Linux distribution

Figure 1.4: Computer Aided Investigative Environment (CAINE) Linux distribution

9

Chapter 2 - File Type Identification

 2.1 File Format

 A file format is the blueprint of a file. It tells the processing device (e.g. a computer) how

data within a file are organized and specifies the way the information is encoded in a digital storage

medium. File formats may be either proprietary e.g .dwg for an Autocad file, free which

is not burdened by any copyrights, patents or other restrictions, or open which anyone can read

and study but it may be burdened by restrictions on use. One popular method used by many

operating systems, including Windows –which is the most popular operating system among

computer end users- is to determine the format of a file based on the end of its name, the letters

following the final period. This is known as the filename extension. For example, text documents

are identified by names that end with .doc (or .docx), and PNG images by .png. In the

original FAT filesystem, file names were limited to an eight-character identifier and a three-

character extension, known as an 8.3 filename (also called a short filename or SFN). Many formats

still use three-character extensions even though modern operating systems and applications no

longer have this constraint. Some file formats are designed for very particular types of data e.g.

doc or docx stands for document files, jpg declares a compressed picture etc., while png extension

relates to images using lossless data compression. Nevertheless, other file formats are intended for

storage of several different types of data: the flash video (flv, f4v) format can act as a container for

video and audio from Adobe Systems. There are thousands of file formats and the list is getting

bigger day by day. Since there is no standard list of extensions and given the fact that more than

one format can use the same extension, this could lead to confuse both the operating system and

end users. From a user's perspective this confusion might be just ignorance or could hide deceit.

https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/8.3_filename

10

This master’s thesis will endeavor to find out which methods of file type identification were

suggested by the scientific community and to propose a new technique of correctly identifying

hidden images.

 2.2 Extension based method

 This method is the simplest one but it is also the most easy to be spoofed. All files have an

extension (in Windows operating system) and this extension associates the file with the appropriate

software. For example .doc or docx extension stands for Microsoft’s Word, .pdf stands for Adobe’s

Reader etc. By default -for security reasons in Windows operating system- extensions are hidden

but this can easily change from control panel (figure 1).

Figure 2.1: Unhide extension of known file types in Windows

11

The problem is that anyone can change the extension of the file by a simple renaming and this

results to the change of the file type. For example let us consider an executable file e.g. exiftool.exe

(figure 2.2) and try to change its extension by renaming it to exiftool.docx (figure 2.3)

Figure 2.2: The file to be renamed

Figure 2.3: The renamed file

 As we can see it is very easy for someone to intentionally change the file’s extension and

try to fool forensic examiners, in order to hide possible evidence. On the other hand a forensic

examiner cannot rely on the information a file extension gives. This particular spoofing method is

very easy to be detected by forensic software such as Encase or Autopsy.

12

Figure 2.4: Extension mismatch and correct identification on Autopsy forensic software

 2.3 Magic bytes method

 The second method of file type identification is based on the magic bytes. These are some

predefined signatures and they can be found on file’s header. A file header is the first portion of a

computer file that contains metadata. Metadata may enclose information about the content, quality

and condition of the file. The file header also contains necessary information for the corresponding

application to recognize and understand the file. Magic bytes may also include some extra

information regarding the tool and the tool’s version that is used to produce the file.

13

Figure 2.5: The file signature of a .doc file. The magic bytes are in the rectangular box

 Gary Kessler [13] started in 2002 to record file signatures and right now this effort came

to a result of over 5000 known file types. Checking the magic bytes of a file is indeed much slower

method than just checking its extension since the file should be opened –usually in a standalone

or in build hex editor- and its magic bytes should be read and compared with the predefined ones.

Magic bytes method is adopted by many UNIX based operating systems and file type can be easily

found by typing in a terminal the ‘file’ command. However, this method of identifying a file type

has also weaknesses as the extension-based method:

 The magic bytes are not used in all file types.

 They only work on the binary files and are not an enforced or regulated aspect of the file

types.

 They vary in length for different file types and do not always give a very specific answer.

14

Table 2.1: A list of some widely used file types and their file signatures

File Type Signature

DOC D0 CF 11 E0 A1 B1 1A E1

FLV 46 4C 56 01

PDF 25 50 44 46

JFIF, JPE, JPEG, JPG FF D8 FF E0 xx xx 4A 46

49 46 00

MP3 audio file 49 44 33

PNG 89 50 4E 47 0D 0A 1A 0A

RAR (v5) compressed archive file 52 61 72 21 1A 07 01 00

MS Windows/DOS Executable File

(EXE)

4D 5A

GIF87a 47 49 46 38 37 61

GIF89a 47 49 46 38 39 61

 There are several thousands of file types for which magic bytes are defined and there are

multiple lists of magic bytes that are not completely consistent. Since there is not any standard for

what a file may contain, the creators of a new file type usually include something to uniquely

identify their file type. It is common that some programs or their developers may never put any

magic bytes at the beginning of the file header. This approach can be also deceived. Altering the

magic bytes of a file is a much harder way to defeat the true file type detection than the extension

renaming, but the result is the same, i.e. the file type is not accurately recognized. In figure 2.6

there is a png image opened in a hex editor and we can see the magic bytes in the red rectangular

box.

15

Figure 2.6: File signature of a png image

If we change the first bytes to FF D8 FF E8 xx xx 4A 46 49 46 00, the file from a png image will

change to a jpeg image.

Figure 2.7: Altering the file signature through a hex editor

If we only change the file signature and keep the correct extension, the forensic software will

highlight the file as a mismatch between extension and signature.

16

Figure 2.8: Extension mismatch

Subsequently if we change both extension and signature, Autopsy cannot recognize the deception.

Figure 2.9: Autopsy can’t recognize the change

17

Figure 2.10: Autopsy can’t see an extension mismatch

 Besides Autopsy and Encase which are specialized forensic software, there are a lot of open

source tools like TRiD [14], AnalyzeIt [15], ExifTool [16], Toolsley [17] (an online identifier) and

DROID [18]. We have created a document named holiday.doc and then changed both the file

extension and magic numbers to a jpeg image. If we check its file type with Trid the result is:

Figure 2.11: TrID

18

The result for the same file in AnalyzeIt is:

Figure 2.12: Analyze It!

In this software there is an option to check file type with a content based method and as we see the

program show that we have an image file, which is wrong.

Figure 2.13: Analyze file header and content

19

Toolsley also recognizes the file as a jpeg image:

Figure 2.14: Toolsley online identifier

 DROID (Digital Record Object Identification) is a software from the UK National

Archives, which relies on PRONOM, the National’s Archive Registry of file format information.

The test on the same file – holiday.jpg – showed:

20

Figure 2.15: DROID

The program tells us that the file has an extension of .jpg but the grey dot under IDS column shows

that it can’t identify which format the file is.

Exiftool shows that there is a jpeg format error, but it does recognizes the file as a jpeg image when

it’s not.

Figure 2.16: Exiftool

21

 In all above cases there is a wrong classification of the file or the software understands that

there is something wrong but it cannot determine the correct file format. If this file was potential

evidence it would be likely lost.

Only Falstaf [19], recognizes the file correctly but there are two disadvantages

 the probability is 97% (in this case but in other paradigms it does not work well)

 it is an online tool which is not convenient for a forensic examiner.

Figure 2.17: Falstaff correct identification

In order to test this tool again we tried another file which has been changed from png image to pdf

but the results were poor.

22

Figure 2.18: Falstaff wrong identification

We have to mention that this online tool uses machine learning techniques, multiple file features

and novel signatures computed from file format samples.

 2.4 Content based method

 The third method of file type detection is to deliberate the file contents and use statistical

modeling techniques. It is a new and promising research area and it is propably the only way to

determine the forged file types with good results. It can reveal the malicious file types that their

contents do not match with their claimed types. The contents of a file are a sequence of bytes and

a byte has 256 unique permutations (0~255). Thus, counting the occurrence of byte patterns that

is often referred as byte frequency distribution gives distinguishable patterns to identify file types.

23

There are many content-based file type identification schemes that use byte frequency distribution

to build the representative models for file type and use any statistical and data mining techniques

to identify file types.

 McDaniel and Heydari were the first who actually proposed a way for content-based file

type detection [20], [21]. They proposed three different algorithms for the content-based file type

detection: Byte frequency Analysis (BFA), Byte Frequency Cross-correlation (BFC), and File

Header/Trailer (FHT) analysis. These algorithms were used to produce a ‘’fingerprint’’ of each

file. Since every file type has a similar ‘’fingerprint’’ with another file of the same type, the

produced ‘’fingerprint’’ is compared to the known one and find the true file type. The accuracy

varied from 23% to 96% depending upon which algorithm was used.

 Li et al. [22] made a few changes on the McDaniel and Heydari's method, in order to

improve its accuracy. They stated that it is very difficult to produce one single descriptive model

that accurately represents all members of a single file type class. Instead they proposed to compute

a set of centroid models and use clustering to find a minimal set of centroids with good

performance while the use of more pattern data is necessary. This approach resulted to 82%

accuracy (one centroid), 89.5% accuracy (multi-centroid) and 93.8% accuracy (more exemplar

files).

 Dunham et al. [23] used neural networks to classify 10 different file types from a dataset of

760 files and achieved 91.3% accuracy. Karresand and Shahmehri [24] proposed a method based

on data fragments. In general they used Byte Frequency Distribution (BFD) and especially the

mean and standard deviation to model the file types. Like et al. [25] used the BFD along with a

Manhattan distance comparison to detect whether the examined file is executable or not. Moody

and Erbacher [26] used Statistical Analysis for Data type Identification (SADI) which included

24

average, distribution of averages, standard deviation, distribution of the standard deviations,

kurtosis and distribution of byte values. They used fragments of 200 files as a dataset of 8 known

file types, which resulted to a 74.2% accuracy.

 Calhoun and Coles [27] used also a statistical method and specifically Fisher’s linear

discriminant to a dataset of 100 fragments of 2 different file types and achieved an accuracy of

60.3 – 86% (depending which sequence of bytes was examined). Amirani et al. [28] used the

Principal Component Analysis (PCA) and unsupervised neural networks for the automatic feature

extraction. The classifier they used was a five layer perceptron (MLP), achieving an accuracy of

98.33% which was the best so far.

 Cao et al. [29] used Gram Frequency Distribution and vector space model with results of

90.34% accuracy. Ahmed et al. [30] proposed two very interesting methods. Primary they used the

cosine distance as a similarity metric when comparing the file content. Subsequent they

decomposed the identification procedure into two steps by taking the divide and conquer: in the

first step, the similar files in terms of byte pattern frequencies were grouped into several clusters.

In the next step, the cluster which contained different file types was fed to the neural network in

order for improved classification. They used 2000 files of 10 file types as a dataset and achieved

an accuracy of 90.19%. Ahmed et al. [31] also proposed two new techniques to reduce the

classification time. The first method is a feature selection technique and the K-nearest neighbor

(KNN) classifier was used. The second method is the content sampling technique, which uses a

small portion of a file to obtain its byte-frequency distribution.

 Amirani et al. [32] proposed an improved version of their first approach by using an SVM

classifier and finally succeeded to raise the accuracy of the method up to 99.16% for a whole file.

25

Finally, Evensen et al. [33] used an n-gram analysis with naïve Bayes classifier to a large dataset

of 60000 files (6 file types) with very good results of 99.51% topmost.

26

Chapter 3 - Computational Intelligence to Digital Forensics

 3.1 Statement of the problem

As mentioned in the previous two chapters the problem relies on the modification of file’s

signature and its extension. In this case forensic tools or other software cannot always identify

correctly the true file type, which would be crucial if these files were potential evidence in a court

room. We will propose a method using computational intelligence techniques which will:

 train a classifier to identify the correct file type

 reveal the correct type if the file is altered

 3.2 Deliminations – Data Mining Software

 It is necessary to say that due to thousands of known file types, this research is inevitable

to cover all file types comprehensively. It is also important to declare that we have focused only

in images and portable documents, due to their significance to Digital Forensics. More specific,

this thesis only included JPEG, PNG, GIF (not animated) and PDF files. Furthermore, we

examined only whole files and not fragments of files.

 Graphics Interchange Format (GIF) is a creation of CompuServe and is used to store

multiple bitmap images in a single file for exchange between platforms and systems. Due to

Lempel-Ziv-Welch (LZW) data compression, the format became very popular as LZW could

reduce the image size without degrading the visual quality.

27

Figure 3.1: GIF format details and header

 Portable Network Graphics (PNG) was designed to be the successor to GIF format, when

Compuserve announced that programs implementing GIF would require royalties because of

patent on LZW compression method used in GIF. The PNG datastream consists of a PNG signature

(first 8 bytes) followed by a sequence of chunks. There are 18 chunk types defined in the

International Standard, but the critical chunks which must be in every PNG file are: one IHDR

(image header), one or more IDAT (image data) and one IEND (image trailer). Each chunk consists

of three or four fields: Length, Chunk Type, Chunk Data and CRC. There are also variations of

png file format such as MNG (Multiple image Network Graphics) with support of animation as

animated GIF and APNG (Animated Portable Network Graphics) originally published by Mozilla

developers but widely used for thumbnails on Sony’s Playstation.

28

Figure 3.2: PNG file structure

 Joint Photographic Experts Group (JPEG) is the most common image format used by digital

cameras. It uses a loss compression method and typically a 10:1 compression with no particular

loss quality in the image is achieved. A jpeg file has a signature of:

Table 3.1: Signature of a JPEG image

FF D8 FF E1 xx xx 45 78 69 66 00

,where the fourth byte is indicative of the jpeg content. The options for the fourth byte are:

29

Table 3.2: Options for the fourth byte in jpeg header

DB Samsung D807 JPEG file

E0 Standard JPEG/JFIF file

E1 Standard JPEG/EXIF file

E2 Canon EOS-1D JPEG file

E3 Samsung D500 JPEG file

E8 Still Picture Interchange File Format (SPIFF)

The file details are:

Figure 3.3 JPEG format details

A JPEG image consists of a sequence of segments, each beginning with a marker, each of which

begins with a 0xFF byte followed by a byte indicating what kind of marker it is. The most common

used markers are:

http://www.faqs.org/faqs/jpeg-faq/part1/section-15.html
http://www.faqs.org/faqs/jpeg-faq/part1/section-15.html

30

Table 3.3: The most common JPEG markers, https://en.wikipedia.org/wiki/JPEG

Short
name

Bytes Payload Name and Comments

SOI
0xFF,
0xD8

None Start Of Image

SOF0
0xFF,
0xC0

Variable
size

Start Of Frame (Baseline DCT)
Indicates that this is a baseline DCT-based JPEG, and specifies the
width, height, number of components, and component subsampling

SOF2
0xFF,
0xC2

Variable
size

Start Of Frame (Progressive DCT)
Indicates that this is a progressive DCT-based JPEG, and specifies the
width, height, number of components, and component subsampling

DHT
0xFF,
0xC4

Variable
size

Define Huffman Table(s)

DQT
0xFF,
0xDB

Variable
size

Define Quantization Table(s)

DRI
0xFF,

0xDD
2 bytes

Define Restart Interval
Specifies the interval between RSTn markers, in macroblocks. This

marker is followed by two bytes indicating the fixed size so it can be
treated like any other variable size segment.

SOS
0xFF,
0xDA

Variable
size

Start Of Scan
Begins a top-to-bottom scan of the image. In baseline DCT JPEG
images, there is generally a single scan. Progressive DCT JPEG
images usually contain multiple scans. This marker specifies which

slice of data it will contain, and is immediately followed by entropy-
coded data.

RSTn
0xFF,
0xDn
n(n=0..7)

None

Restart
Inserted every r macroblocks, where r is the restart interval set by a
DRI marker. Not used if there was no DRI marker. The low 3 bits of

the marker code cycle in value from 0 to 7.

APPn
0xFF,

0xEn

Variable

size

Application-specific

For example, an Exif JPEG file uses an APP1 marker to store
metadata, laid out in a structure based closely on TIFF.

COM
0xFF,

0xFE

Variable

size
Comment

EOI
0xFF,
0xD9

None End Of Image

https://en.wikipedia.org/wiki/JPEG

31

 Finally, Portable Document Format (PDF) is a file format used to present documents in a

manner independent of application software, hardware and operating systems. Its file signature is

25 50 44 46 (hexadecimal) and the file structure is:

Header

Specifies the version number

of the used PDF specification

which the document uses

Body

 The objects that typically

include text streams, images,

other multimedia elements,

etc.

Xref table

The cross reference table,

which contains contains the

references to all the objects in

the document.

Trailer

Specifies how the application

reading the PDF document

should find the cross

reference table and other

special objects.

Figure 3.4: The file structure of a pdf file

We must bear in mind that all PDF readers must start reading a pdf file from its end.

Concerning the data mining software, Waikato Environment for Knowledge Analysis (Weka) [34]

was used as it offers excellent tools for data preprocessing, classification etc. It is an open source

32

software developed by the University of Waikato in New Zealand written in Java and the version

used in this master’s thesis was 3.6.

 3.3 The dataset

 Caltech 101 [35] was used as dataset. It is a dataset made by Caltech University and it is

available online for free download. It contains images from 101 categories and the total number of

images included in this dataset is 9.144. These images come in many subfolders and each subfolder

contains images with the same name as other ones. All these images are in jpeg format, so we had

to convert some of them to other formats such as gif and png. After this conversion for convenience

in identification, we renamed the images from image 0001 to image 9144. Then we divided the

dataset to training and test set.

Table 3.4: Caltech 101 Dataset

Caltech 101 Dataset

Type Total Image

Number

Training Set Testing Set

Number

of images

Image Number Number

of images

Image

Number

jpeg 1840 0001-1840 1288 0001–1288 552 1289-1840

png 1840 1841-3680 1288 1841–3128 552 3129-3680

gif 1839 3681-5519 1287 3681-4967 552 4968-5519

Total 5519 3863 1656

33

In addition to the Caltech dataset, we added 1840 pdf files which are undergraduate thesis

found online to the library of Technological Institute of Heraklion [36] under the search term: ‘a’

in many departments. All files are open access to the public and anyone can download them.

Therefore, the final dataset we used is as follows:

Table 3.5: Our Dataset

Dataset

 Total files Training Testing

jpeg 1840 1288 552

png 1840 1288 552

gif 1839 1287 552

pdf 1840 1288 552

Total 7359 5151 2208

 3.4 Feature extraction

We will use Byte Frequency Distribution (BFD) as feature extraction method. In order to

create the byte frequency distribution, we must count the number of occurrences of each byte value

for a single input file. We generate and use an array with elements from 0 to 255, and initialize all

values to zero. Each byte in the input file is then looped through. For each byte, the value is

extracted and the appropriate element of the array is incremented by one. For example, if the next

byte in the file contained the ASCII value 21, then array element 21 would be incremented by one.

Once the number of occurrences of each byte value is obtained, each element in the array is divided

34

 Figure 3.6: Byte Frequency Distributions for two png images

Figure 3.7: Byte Frequency Distributions for two gif images

by the number of occurrences of the most frequent byte value. This normalizes the array to

frequencies in the range of 0 to 1.

Figure 3.5: Byte Frequency Distributions for two jpg images

35

 It is obvious if we look carefully the above images that the BFD between the same file types

are about the same. The main problem is that the number of features extracted from this method is

256 which means we have 2256 subset of features, therefore we must use feature selection in order

to train our classifier correctly and decrease training time. A script was made to Matlab which

extracts BFD for both training and test set. This script creates a comma separated value (csv) file

which contains the 256 values of the file and also adds as 257th feature the instance’s actual class

(according to instance’s extension). It must be said that the script can extract BFD of any file type

and not only the four ones which this thesis will deal with.

 3.5 Feature selection

 Feature selection is the procedure of finding and selecting the minimum number of the most

informative relevant features, in order to capture the patterns on our data whilst having the best

results. It is a step prior to applying machine learning algorithms and while the size of data used

becomes larger, it turns out to be an important and essential step too. Feature selection works by

removing features that are not relevant or are redundant. The noteworthy benefits of performing

feature selection on our data are:

 Reduces Overfitting: Less redundant data means less opportunity to make decisions based

on noise.

 Improves Accuracy: Less misleading data means that model’s accuracy increases.

 Reduces Training Time: Less data means that machine learning algorithms run faster.

 Simplifies the Models: More simple models are easier to be deployed or analyzed by the

researchers.

36

 It is also important to state that feature selection is different from dimensionality reduction.

Although both methods try to reduce the number of attributes in the dataset, the dimensionality

reduction method works in a different way as the resulting features are transformations of the

original feature set, whereas feature selection methods include and exclude attributes already

present in the data without changing them. One widely used dimensionality reduction method is

Principal Component Analysis (PCA). Two are the main approaches for feature selection:

1. Filter Feature Selection Methods

2. Wrapper Feature Selection Methods

 Filter feature selection methods make use of statistical measures in order to evaluate how

relevant a feature is. This is done by obtaining the merit for each feature of the subset, the features

are then ranked by their score and either selected to be kept or removed from the dataset. It is a

pre-processing step and the subset of features selected is independent of the machine learning

algorithm. This approach is faster than the wrapper method but the criterion used to evaluate the

merit of a feature must be carefully chosen, otherwise this could lead to a machine learning model

with poor results. The method is independent from the classifier, we select features only once and

then we are able to use and evaluate different classifiers. The method is often univariate and

considers the feature independently which means that the possibility of feature dependencies

cannot be taken under consideration. A lot of techniques were proposed such as Correlation based

Feature Selection (CFS), Gain Ration (GR), Chi squared, Information gain etc.

 In wrapper methods the subsets of features are evaluated by the machine learning algorithm

itself. Every subset is given a score by the algorithm and evaluated comparing to other subsets.

The main advantage is that there is an interaction between feature subset search and also this

37

method takes into consideration possible feature dependencies. On the contrary it is obvious that

this method is computationally inefficient due to large computation time, especially when the

number of the extracted features is high. Furthermore the risk of overfitting is higher than the filter

selection methods.

 3.5.1 Correlation based Feature Selection (CFS)

 CFS [37] is a filter feature selection method which gives high scores to subsets that include

features that are highly correlated to the class attribute but have low correlation to each other. As

Hall said:

“Good feature subsets contain features highly correlated with (predictive of) the class, yet

uncorrelated with (not predictive of) each other.’’

The implementation of CFS in Weka, allows the user to decide which heuristic search strategy will

be applied. It is essential to report that CFS works well both for numerical and nomimal types of

data.

Let S be a feature subset consisting of k features. The merit of each subset is calculated as:

where:

 is the average value of all feature-classification correlations and

is the average value of all feature-feature correlations

38

Finally, the criterion for the CFS algorithm is:

In our case, CFS will be used as the evaluation method for subsets coming out from a search

method. Forward selection, backward elimination, and best first are a few search strategies among

others in Weka. In forward selection initially there are no features. Afterwards, features are added

to the subset until no higher evaluation of the subset is observed. Conversely in backward

elimination there is a full feature set and as long as the evaluation of the subset does not worsen,

one feature at a time is removed.

 3.5.2 Best first as a search method

In best first we can choose to start either with no features or all the features. In the first

case the search is like forward selection by adding single features, while in the second case the

search is like backward selection by deleting single features. In order to avoid exploring the whole

feature subset search space, a stopping criterion is obligatory. The search will stop if five sequential

fully expanded subsets have less merit (score) compared to the current best subset. The flowchart

of the method is shown in the next figure.

39

Figure 3.8: Feature selection flowchart – Best First

 3.5.3 Genetic Algorithm as a search method

The idea of using a genetic algorithm for feature extraction is not new [38], [39], [40].

Genetic Algorithms (GAs) are evolutionary algorithms inspired by Darwin’s evolution and natural

selection. It is an intelligent way to perform a ‘’random’’ search in order to solve optimization

problems. GAs comprise a subset of these evolution-based optimization techniques focusing on

the application of selection, mutation, and recombination to a population of competing problem

solutions. GAs are parallel iterative optimizers, and have been successfully applied to a broad

spectrum of optimization problems, including many pattern recognition and classification tasks.

In feature selection problems, each individual would represent a feature subset. Since the total

number of features extracted in our case is 256, each chromosome is represented by a feature vector

of dimension 256. If a bit’s value is zero (0) it means that the respective feature is not selected,

and if the bit’s value is one (1) means that the feature is selected.

40

The score of each candidate solution can be evaluated using a fitness function, with respect

to some criteria of interest. Weka uses Goldberg’s Genetic Algorithm [41]. In our case CFS will

be the fitness function, Roulette wheel selection is used to probabilistically select individuals and

Single-point crossover operator is used.

Table 3.6: Parameters of the Genetic Algorithm

Parameter Value

Population size 256

Number of generations 100

Crossover 0.8

Mutation probability 0.033

The flowchart then of the selected method is shown on the next figure:

Figure 3.9: Feature selection flowchart – Genetic Algorithm

 Figure 3.9: Feature selection flowchart – Genetic Algorithm

41

 3.6 The Classifier – Multi Layer Perceptron (MLP)

As a classifier, we will use a feed forward backpropagation multilayer perceptron (MLP).

A multilayer perceptron is used among others to classification or regression problems and typically

the topology of a MLP includes the input layer, the hidden layer (or layers) and the output layer.

A MLP with one hidden layer was used by Harris [42] in order to identify file types too.

Figure 3.10: A multilayer perceptron with two hidden layers

Each layer is fully connected with each other and each node in one layer connects with a certain

weight wij to every node in the following layer. When an input pattern is presented to the input

layer, the weighted sum of the input to the jth node in the hidden layer is given by:

,where:

xj is the jth input

wij is the weight (random value at first) and

θj is the bias of the neuron.

42

 The bias is a "pseudo input" to each neuron in the hidden layer and the output layer, and it

is used to surpass cases where the values of an input instance are zero. The neuron would ‘fire’ if

the output value of the activation function (sigmoid in our case) overcomes a threshold and this

value becomes an input to the neurons of the next layer connected to it. This is done until the

output of the network is calculated. The calculated output of the network is then compared to the

anticipated output, and an error signal is computed for each of the output nodes. This error is then

backpropagated to the neural network and it is used to adjust the weights in order to decrease the

error in every iteration until the neural network ideally derives the preferred output. In general, the

backpropagation algorithm looks to converge the minimum value of the error function, by using a

technique called the delta rule. This process is known as "training" and it is iteratively continued

until the training time (number of epochs) is reached or another stopping criterion (e.g. mean

square error) is met. In our case we will use a MLP in Weka with the following parameters:

Table 3.7: Parameters of the multilayer perceptron

Hidden layers 3

Learning rate 0.3

Momentum 0.2

Training time (epochs) 500

The number of nodes used in hidden layers are:

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠+𝑐𝑙𝑎𝑠𝑠𝑒𝑠

2
 =

44+4

2
 = 24

We have used a momentum in order to avoid local minimum and to accelerate the learning

process.

43

 3.7 Cross Validation of the training data

A dataset usually is divided into training and test set. A typical split for the dataset is 70%

for the training and 30% for the test set. This is called the holdout method. Although this is a fast

validation method, the main disadvantage is that if we have a small οr non-balanced dataset,

instances in training or test set may not be representative. This means that there might be none or

few instances related to a class, which will result to a less accurate classification model.

For this reason, we will perform repeated stratified cross validation. In particular, we will

use stratified 10 fold cross validation, which is found to be the best choice [43] to get an accurate

estimate. We divide the training set into ten parts (folds). For each fold i (i=1-10), the classifier is

trained by the instances that do not belong to fold i. Then the test fold i is applied and the error rate

or the classifier is computed. This is done for 10 times and the total classifier error is:

error =
∑ 𝑛𝑖𝑘

𝑖=1

𝑚

where: ni is the the number of examples in Fold i that were wrongly classified and

 m is the total number of instances.

 Finally, stratified means that every fold has the right fraction of each class value. In Weka

when we implement a k-fold cross validation, the algorithm which trains the classifier

(backpropagation in this case) runs once more (11th time) using 100% of the training data and this

finally results to a classification model. Then we can present unseen instances (i.e test sets) to the

model and predict their class.

Therefore the final flowchart of our proposed method is:

44

Figure 3.11: Flowchart of the proposed method

45

Chapter 4 - Results

 4.1 Results using Best First as search method

Weka was used for feature selection and classification. First we used Best First as feature

selection method. This resulted to 13 features out of 256 i.e 94.92% reduction. The most

informative features were:

Table 4.1: Remaining features after selection with Best First search method and CFS

1 2 3 9 33 48 49 51 65 67 128 133 224

Then the remaining features were used to train the classifier, a multilayer perceptron run the

backpropagation algorithm for 500 epochs and the resulted confusion matrix was:

Table 4.2: Confusion matrix – Best First - CFS – Training time 500 epochs

=== Confusion Matrix ===

a b c d classified as

552 0 0 0 a = .jpg

15 528 6 3 b = .pdf

5 3 538 6 c = .png

1 0 5 546 d = .gif

We then tried to examine the classifier’ behavior by increasing the number of epochs to 1000.

The confusion matrix was:

46

Table 4.3: Confusion matrix – Best First - CFS – Training time 1000 epochs

=== Confusion Matrix ===

a b c d classified as

552 0 0 0 a = .jpg

21 522 5 4 b = .pdf

5 3 539 5 c = .png

1 0 6 545 d = .gif

It is obvious, if we compare the two above confusion matrices that there is no improvement to

classification results. On the contrary, there was a small decrease to classification rates especially

to pdf files.

 4.2 Results using Genetic Algorithm as search method

 Afterwards the search method for the candidate subset, changed to a Genetic Algorithm.

This resulted to the selection of 44 features i.e. 82.81% reduction, which were:

Table 4.4: Remaining features after selection with GA as search method and CFS

1,2,3,4,5,6,8,10,11,13,14,15,17,20,21,24,26,33,37,38,41,46,48,49,54,65,69,79,81,105,109,113,

130,132,133,144,168,176,194,210,222,244,250,254

We then trained again the same classifier for 500 epochs and the results are:

Table 4.5: Confusion matrix – Genetic Algorithm - CFS – Training time 1000 epochs

=== Confusion Matrix ===

a b c d classified as

552 0 0 0 a = .jpg

2 547 2 1 b = .pdf

4 3 542 3 c = .png

0 0 8 544 d = .gif

47

Once more, if we increased the number of epochs to 1000 the results were not better. As

a matter of fact, we noticed the same results we had with 500 epochs as training time.

 4.3 Comparison of the two search methods

The detailed accuracy for the first search method (Best First) is:

Table 4.6: Detailed Accuracy for Best First

 Detailed Accuracy By Class

 TP Rate FP Rate Precision Recall F-

Measure

ROC

Area

Class

 1 0.013 0.963 1 0.981 1 .jpg

 0.957 0.002 0.994 0.957 0.975 0.993 .pdf

 0.975 0.007 0.980 0.975 0.977 0.993 .png

 0.989 0.005 0.984 0.989 0.986 0.997 .gif

Weighted

Avg.

0.98 0.007 0.980 0.980 0.98 0.996

The detailed accuracy for the second search method (GA) is:

Table 4.7: Detailed Accuracy for Genetic Algorithm

 Detailed Accuracy By Class

 TP Rate FP Rate Precision Recall F-

Measure

ROC

Area

Class

 1 0.004 0.989 1 0.995 1 .jpg

 0.991 0.002 0.995 0.991 0.993 0.998 .pdf

 0.982 0.006 0.982 0.982 0.982 0.998 .png

 0.986 0.002 0.993 0.986 0.989 1 .gif

Weighted

Avg.

0.990 0.003 0.990 0.990 0.990 0.999

48

Where:

 TP Rate: True Positives Rate (instances correctly classified as a given class)

 FP Rate: False Positives Rate (instances falsely classified as a given class)

 Precision: fraction of instances that are truly of a class divided by the total

instances classified as that class

 Recall: fraction of instances classified as a given class divided by the actual total

in that class (equivalent to TP rate)

 F-Measure: A combined measure for precision and recall calculated

 as: 2*
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

Comparing the two methods (concerning TP Rate, Precision, Recall):

Figure 4.1: Comparison of search methods TP Rate

49

Figure 4.2: Comparison of search methods – Precision

Figure 4.3: Comparison of search methods – Recall

50

 4.4 Restatement of the problem

Our method worked well and had very good results. However, will this proposed method

work evenly well - by digital forensics perspective - if someone alter image files (both extension

and signature) and transform them to pdf?

In order to examine this, we made a new dataset. This time the difference is that 30% -

approx. - of the 552 pdf files in test set i.e. 168 files, was in fact images intentionally changed

(extension & signature) to pdf files.

Table 4.8: The new dataset

Dataset

 Total files Training Testing

jpeg 1840 1288 552

png 1840 1288 552

gif 1839 1287 552

pdf 1840 1288 552

Total 7359 5151 2208

In order to identify easily these 168 altered ‘’pdf’’ files, we renamed them from

forged_XX_(1).pdf to forged_XX_(168).pdf, where XX is the actual image type e.g.

forged_jpg_(1).pdf means that the actual type of the file is a jpg image and forged_png_(1).pdf

means that the actual type of the file is a png image. Therefore, the classification model was

deployed for three times and every time the 168 forged ‘’pdf’’ files in the dataset were changed.

51

 4.5 Results on the new testing datasets

In all three cases a Genetic Algorithm was selected as a search method for the candidate

features (with CFS as a fitness function) and a multilayer perceptron was used as a classifier.

1. Altering jpg images to pdf files

The resulted confusion matrix is:

Table 4.9: Confusion matrix – Identifying forged jpg images

=== Confusion Matrix ===

a b c d classified as

552 0 0 0 a = .jpg

170 379 2 1 b = .pdf

4 3 542 3 c = .png

0 0 8 544 d = .gif

This time the accuracy for pdf files seemed to worsen. Recall that there are 168 pdf files

which their actual type is jpg image. By comparing the output predictions in weka and the testing

dataset we found that the misclassified files were in fact the altered jpg images.

Table 4.10: “Misclassified’’ pdf instances (jpg actual type)

Instance Number Instance Name Actual Type Predicted Type

1778-1945 forged_jpg_(1).pdf -

forged_jpg_(168).pdf

jpg jpg

From the above table we concluded that every file we transformed (from jpg to pdf) was

accurately predicted. Therefore, the actual confusion matrix in our case is:

52

Table 4.11: Actual confusion matrix – jpeg images

=== Confusion Matrix ===

a b c d classified as

552 0 0 0 a = .jpg

2 547 (379+168) 2 1 b = .pdf (with the forged images)

4 3 542 3 c = .png

0 0 8 544 d = .gif

The accuracy of predicting correctly the actual class of the altered files is 100%.

Table 4.12: Detailed Accuracy By Class – Our proposed method (in forged jpg images)

 Detailed Accuracy By Class

 TP Rate FP Rate Precision Recall F-

Measure

ROC

Area

Class

 1 0.004 0.989 1 0.995 1 .jpg

 0.991 0.002 0.995 0.991 0.993 0.998 .pdf

 0.982 0.006 0.982 0.982 0.982 0.998 .png

 0.986 0.002 0.993 0.986 0.989 1 .gif

Weighted

Avg.

0.990 0.003 0.990 0.990 0.990 0.999

2. Altering png images to pdf files

The resulted confusion matrix was:

Table 4.13: Confusion matrix – Identifying forged png images

=== Confusion Matrix ===

a b c d classified as

552 0 0 0 a = .jpg

3 385 162 2 b = .pdf

4 3 542 3 c = .png

0 0 8 544 d = .gif

53

By comparing the output predictions in Weka and the testing dataset we found that the

misclassified files were:

Table 4.14: “Misclassified” pdf instances (png actual type)

Instance Number Instance Name Actual Type Predicted Type

1778-1877 forged_png_(1).pdf -

forged_png_(100).pdf

png png

1879-1901 forged_png_(102).pdf -

forged_png_(124).pdf

png png

1903-1918 forged_png_(126).pdf -

forged_png_(141).pdf

png png

1920 forged_png_(143).pdf png png

1923-1929 forged_png_(146).pdf -

forged_png_(152).pdf

png png

1931-1945 forged_png_(154).pdf -

forged_png_(168).pdf

png png

From the above table we concluded that only 6 out of 168 png altered files were not

predicted correctly. This gives a 96.43% accuracy for png altered images. Thus, the final

confusion matrix is:

Table 4.15: Actual confusion matrix – png images

 === Confusion Matrix ===

a b c d classified as

552 0 0 0 a = .jpg

3 547 (385+162) 0 2 b = .pdf (with the forged images)

4 3 542 3 c = .png

0 0 8 544 d = .gif

54

3. Altering gif images to pdf files

The resulted confusion matrix was:

Table 4.16: Confusion Matrix – Identifying forged gif images

=== Confusion Matrix ===

a b c d classified as

552 0 0 0 a = .jpg

2 379 2 169 b = .pdf

4 3 542 3 c = .png

0 0 8 544 d = .gif

By comparing the output predictions in Weka and the testing dataset we found that the

misclassified files were:

Table 4.17: “Misclassified pdf” instances (gif actual type)

Instance Number Instance Name Actual Type Predicted Type

1778-1945 forged_gif_(1).pdf -

forged_gif_(168).pdf

gif gif

Again the accuracy of the model to the altered images is 100%. The actual confusion

matrix then is:

Table 4.18: Actual confusion matrix – gif images

=== Confusion Matrix ===

a b c d classified as

552 0 0 0 a = .jpg

2 547 (379+168) 2 1 b = .pdf

4 3 542 3 c = .png

0 0 8 544 d = .gif

55

Combining the above accuracy results for the altered images (jpg, gif & png) in the three

test datasets, we have:

Table 4.19: Final Confusion Matrix of the proposed method

=== Confusion Matrix of the forged files===

a b c d classified as

168 0 0 0 a = .jpg

0 0 0 0 b = .pdf

0 6 162 0 c = .png

0 0 0 168 d = .gif

Figure 4.4: Accuracy comparison of the proposed method in altered images

56

 4.6 Comparison of the proposed method to the literature

In this point it is wise to summarize in a table, the most promising methods proposed by

other researchers along with ours. This is already done in previous chapters but for reasons of

practice the following table is given.

Table 4.20: The proposed method compared to the literature

Researchers Year Proposed method File

Types

Number

of files

Accuracy

McDaniel and Heydari 2003 BFA, BFC, FHT

analysis

30 120 27.5, 45.83,

95.83

Li et al. 2005 Manhattan distance,

Mahalanobis distance,

Multi-centroid

8 (5) 800 82 (One-

Centroid) 89.5

(Multi-Centroid),

93.8 (Exempler

files)

Dunham et al. 2005 Neural Networks 10 760 91.3

Amirani et al. 2010 PCA + Neural networks

feature extraction.

MLP Classifier

6 720 98.33

Cao et al. 2010 Gram Frequency

Distribution, Vector

space model

4 1000 90.34 (2-gram +

256 grams as

type signature)

Ahmed et al. 2010 Cosine similarity, divide

and conquer, MLP

Classifier

10 2000 90.19

Ahmed et al. 2011 Feature Selection,

Content Sampling,

KNN

Classifier

10 5000 90.5 (40% of

features), 88.45

(20% of features)

Amirani et al. 2013 PCA + Neural Networks

feature extraction

SVM Classifier

6 1200 99.16 (Whole

files), 85.5

(1500 bytes

fragments), 82

(1000 bytes

fragments)

57

Evensen et al. 2014 n-gram analysis with

naïve Bayes classifier

6 60000 99.51 (Whole

files), 99.08

(8192 bytes

fragments 5

types), 98.34

(1024 bytes

fragments, 5

types)

Our method 2015 CFS+Genetic Algorithm

feature extraction, MLP

classifier

4 7359 98.96% (Whole

file)

98.81% (Digital

Forensics

perspective)

In addition to the above mentioned methods, others were suggested too but we included

only those ones which dealt with whole files, in order to make the comparison easier.

58

Chapter 5 - Conclusions & Future Work

 5.1 Conclusions

In this master thesis we tried to examine the problem of altering and identifying files by a

digital forensics viewpoint. In the beginning a small introduction to Digital Forensics was made,

in order to help the reader to fully understand the significance of file type identification. All

possible ways of altering a file were enumerated, along with the most widespread software for

correct forensic identification. We must take into consideration that there is no official standard

for file types and this made the problem even harder. File Type Identification turned out to be a

very demanding problem as a lot of parameters had to be examined in order to have optimal results.

For example, one major step prior to classification was feature extraction and feature selection.

Especially the right choice of an algorithm in order to remove irrelevant and redundant features,

was a critical step as Byte Frequency Distribution (BFD) -which used for feature extraction-

produced a large number of features. The idea of using a Genetic Algorithm along with CFS as its

fitness function worked well and reduced the number of features. The selected features then – after

10-fold cross validation of the data- were used to train a multilayer perceptron and the

classification results were very promising. Furthermore this method was tested as a forensic tool

and gave excellent results as well. Along with the proposed method, a literature review was made

[44] and presented and finally our proposed method of file type identification was compared to the

literature. The proposed method identifies four (4) types of files (jpeg, png, gif & pdf), which

happen to be the most common file types in anyone’s computer or other electronic device.

59

 5.2 Future Work

The results taken from this proposed method were very good and very promising. As

mentioned we tried and managed to identify types of whole files. It should be very interesting to

deploy our model in fragments of files and examine its behavior. During our research we had

strong evidence that the proposed model would work well too, although modifications and changes

have to be made to the model.

One other aspect of the problem is to try to identify more file types. Since our script which

extracts BFD can easily find the features of any file type and not the specific four file types, this

could be an extension to this research. Another possible future study is to examine if this model

works also well in stego-images. It should be very interesting to find out if a stego-image should

be recognized and furthermore -if we wanted to expand our research- to extract the hidden

‘information’’ from the stego-inage. Video triage and examination would be another domain of

expanding the proposed method. We could also make new classification models using different

classifiers and examine which one has better results.

The most promising area of future work is file fragments identification. If a classification

model is created and manages to identify accurately fragments of files, this – after expanding it to

identify as many file types as possible- might become an excellent tool to the hands of forensics

examiners in order to fight digital crime.

60

References

[1] D. Halder and K. Jaishankar, Cyber crime and the Victimization of Women: Laws, Rights,

and Regulations., Hershey, PA, USA: IGI Global, 2011.

[2] NIST, "http://csrc.nist.gov/," August 2006. [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf. [Accessed 26

October 2015].

[3] "Kali Linux," [Online]. Available: https://www.kali.org/. [Accessed 26 October 2015].

[4] "Caine," [Online]. Available: http://www.caine-live.net/. [Accessed 26 October 2015].

[5] "DEFT," DEFT Association, [Online]. Available: http://www.deftlinux.net/. [Accessed 26

October 2015].

[6] "Back Box Linux," [Online]. Available: https://www.backbox.org/. [Accessed 26 October

2015].

[7] "NetSEcL The Linux Networking," [Online]. Available: http://netsecl.com/. [Accessed 26

Ocober 2015].

[8] "Parrot Security OS," [Online]. Available: http://www.parrotsec.org/. [Accessed 26

October 2015].

[9] G. S. Inc., "Computer Forensic Software- Encase Forensic," Guidance Software Inc.,

[Online]. Available: https://www.guidancesoftware.com/products/Pages/encase-

forensic/overview.aspx. [Accessed 26 October 2015].

[10] "The Sleuth Kit (TSK) & Autopsy: Open Source Digital Forensic Tools," [Online].

Available: http://www.sleuthkit.org/autopsy/. [Accessed 26 October 2015].

[11] A. Group, "E-Discovery & Computer Forensics | AccessData," AccessData Group,

[Online]. Available: http://accessdata.com/. [Accessed 26 October 2015].

[12] O. Forensics, "Oxygen Forensic Suite," Oxygen Forensics, [Online]. Available:

http://www.oxygen-forensic.com/. [Accessed 26 October 2015].

[13] G. Kessler, "File Signatures," [Online]. Available:

http://www.garykessler.net/library/file_sigs.html.

61

[14] M. Pontello, "Marco Pontello's Home - Software - TrID," [Online]. Available:

http://mark0.net/soft-trid-e.html. [Accessed 27 October 2015].

[15] ShockingSoft, "Analyze It!! v2.0 by Shocker, ShockingSoft," [Online]. Available:

http://www.shockingsoft.com/AnalyzeIt.html. [Accessed 27 October 2015].

[16] P. Harvey, "Exiftool by Phil Harvey," [Online]. Available:

http://www.sno.phy.queensu.ca/~phil/exiftool/. [Accessed 27 October 2015].

[17] "File Identifier- Identify unknown files instantly," [Online]. Available:

https://www.toolsley.com/file.html. [Accessed 27 October 2015].

[18] "Download DROID: file format identification tool - The National Archives," The National

Archives, [Online]. Available: http://www.nationalarchives.gov.uk/information-

management/manage-information/preserving-digital-records/droid/. [Accessed 27

October 2015].

[19] S. Zevin, "Identifications : Create," [Online]. Available: http://ec2-54-148-254-76.us-west-

2.compute.amazonaws.com/falstaff/. [Accessed 27 October 2015].

[20] M. McDaniel, "Automatic File Type Detection Algorithm," Masters Thesis, James

Madison University, 2001.

[21] M. McDaniel and M. H. Heydari, "Content based file type detection algorithms," in

Proceedings of the 36th IEEE Annual Hawaii International Conference on System

Science (HICSS'03), 2003.

[22] W. Li, K. Wang, S. J. Stolfo and B. Herzog, "Fileprints: Identifying file types by n-gram

Analysis," in Proceedings of the 6th IEEE Systems, Man and Cybernetics

Information Assurance Workshop, West Point , New York, 2005.

[23] J. G. Dunham, M. T. Sun and J. Tseng, "Classifying File Type of Stream Ciphers in Depth

Using Neural Networks," in The 3rd ACS/IEEE International Conference on

Computer Systems and Applications, 2005.

[24] M. Karresand and N. Shahmehri, "File Type Identification of Data Fragments by Their

Binary Structure," in Proceedings of the IEEE Workshop on Information

Assurance, 2006.

[25] Z. Like and G. B. White, "An Approach to Detect Executable Content for Anomaly Based

Network Intrusion Detection," in IPDPS 2007, Long Beach, California, 2007.

62

[26] R. F. Erbacher and S. J. Moody, "Sadi-statistical analysis for data type identification," in

Systematic Approaches to Digital Forensic Engineering,2008. SADFE’08. Third

International Workshop on, 2008.

[27] W. Calhoun and D. Coles, "Predicting the types of file fragments," Journal Digital

Investigation: The International Journal of Digital Forensics & Incident , vol. 5,

pp. 14-20, 2008.

[28] M. C. Amirani, M. Toorani and A. Beheshti, "A new approach to content-based file type

detection," in Proceedings of the 13th IEEE Symposium on Computers and

Communications (ISCC'08), 2008.

[29] D. Cao, J. Luo, M. Yin and H. Yang, "Feature selection based file type identification

algorithm," in Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE

International Conference , 2010.

[30] I. Ahmed, K. Lhee, H. Shin and M. Hong, "Content-based file-type identification using

cosine similarity and a divide-and-conquer approach," IETE Technical Review, vol.

27, no. 6, pp. 465-477, 2010.

[31] I. Ahmed, K. Lhee, H.-J. Shin and M.-P. Hong, "Fast Content-Based File Type

Identification," in Advances in Digital Forensics VII, Orlando, FL, USA, Springer

Berlin Heidelberg, 2011, pp. 65-75.

[32] M. C. Amirani, M. Toorani and S. Mihandoost, "Feature-based type identification of file

fragments," Security and Communication Networks, vol. 6, no. 1, pp. 115-128,

2013.

[33] J. Evensen, S. Lindahl and M. Goodwin, "File-type Detection Using Naïve Bayes and n-

gram Analysis," in Norwegian Information Security Conference, NISK 2014,

Fredrikstad, 2014.

[34] U. o. Waikato, "Weka 3 - Data Mining with Open Source Machine Learning Software in

Java," University of Waikato, 2015. [Online]. Available:

http://www.cs.waikato.ac.nz/ml/weka/. [Accessed 29 October 2015].

[35] L. Fei-Fei, R. Fergus and P. Perona, "Learning generative visual models from few training

examples: an incremental Bayesian approach tested on 101 object categories," in

IEEE. CVPR 2004, Workshop on Generative-Model Based Vision, 2004.

[36] T. I. o. Crete, "E-Thesis," [Online]. Available: http://nefeli.lib.teicrete.gr/search/.

[Accessed 27 October 2015].

63

[37] M. A. Hall, "Correlation-based Feature Selection for Machine Learning," April 1999.

[Online]. Available: http://www.cs.waikato.ac.nz/~mhall/thesis.pdf. [Accessed 27

October 2015].

[38] H. Vafaie and K. De Jong, "Genetic algorithms as a tool for feature selection in machine

learning," in Fourth International Conference on Tools with Artificial Intelligence,

TAI '92, Arlington, VA, 1992.

[39] . Z. Li, Z. Jing, W. Fang, . L. Xia, A. Bin and Q. Junping, "A genetic algorithm based

wrapper feature selection method for classification of hyper spectral data using

support vector maching," Geographical Research, vol. 27, no. 3, pp. 493-501,

2008.

[40] L. Jourdan, C. Dhaenens and E.-G. Talbi, "A Genetic Algorithm for Feature Selection in

Data-Mining for Genetics," in MIC’2001 - 4th Metaheuristics International

Conference, Porto, 2001.

[41] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

Boston: Addison-Wesley Longman Publishing Co., Inc., 1989.

[42] R. M. Harris, "Using Artificial Neural Networks for Forensic File Type Identification,"

Purdue University, West Lafayette, Indiana, 2007.

[43] R. Kohavi, "A study of Cross-Validation and Bootstrap for Accuracy Estimation and

Model Selection," in Fourteenth International Joint Conference on Artificial

Intelligence, Quebec Canada , 1995.

[44] K. Karampidis, G. Papadourakis and I. Deligiannis, "File Type Identification - A Literature

Review," in 9th International Conference on New Horizons in Industry, Business

and Education, NHIBE 2015, Skiathos, 2015.

64

This page was intentionally left blank

65

Weka Implementation

Figure A-1: Importing training set and preprocess in Weka

Figure A-2: Selecting parameters for the proposed method

66

Figure A-3: Another way of selecting attributes using k-fold cross validation

67

Figure A-4: Classifier results

68

Figure A-5: Classifier results in forged jpg images

69

Figure A-6: Classifier results in forged png images

70

Figure A-7: Classifier results in forged gif images

