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Abstract

As the modern world processes larger amounts of data and demand increases for
massive amounts of memory, the need of efficient memory management also becomes
critical. The aim of this study is to develop and implement a memory management
unit (MMU) utilising the AXI interface protocol in order to create an ip module
capable of obeying the basic rules of memory management through address transla-
tion. The MMU module will be implemented on a ZedBoard� development platform
using the Xilinx Zynq®-7000 All Programmable SoC. At the end of this study we
ended up with an versatile MMU module that conforms with the AXI4 interface
protocol that can translate given addresses from the Zynq®-7000 core and can per-
form memory writes to the translated addresses. The IP is fully designed, from the
top up, with versatility in mind, enabling it to be used in a variety of situations as
well as an educational tool for future student engineers.
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Chapter 1

Introduction

1.1 Memmory Managment Units

A memory management unit (MMU), sometimes called paged memory manage-
ment unit (PMMU), is a computer hardware unit having all memory references
passed through itself, primarily performing the translation of virtual memory ad-
dresses to physical addresses. It is usually implemented as part of the central pro-
cessing unit (CPU), but it also can be in the form of a separate integrated circuit.
An MMU effectively performs virtual memory management, handling at the same
time memory protection, cache control, bus arbitration and, in simpler computer
architectures (especially 8-bit systems), bank switching.
Modern MMUs typically divide the virtual address space (the range of addresses
used by the processor) into pages, each having a size which is a power of 2, usually
a few kilobytes, but they may be much larger. The bottom bits of the address (the
offset within a page) are left unchanged. The upper address bits are the virtual page
numbers.

Figure 1.1: Compute System with MMU
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1.2 Overview of FPGAs

Field Programmable Gate Arrays (FPGAs) are used for rapid prototyping of
digital circuits. The design and test of digital systems are very time-efficient and
cost-efficient with FPGAs. They are composed of programmable digital blocks and
programmable interconnect. Figure 1.1 shows a typical architecture of an FPGA.
Programmable Logic Blocks (PLBs) represent the programmable digital block. A
cluster of PLBs is called a Configurable Logic Block (CLB). Switch Blocks (SB) rep-
resent the programmable interconnect. PLBs may be connected directly to a switch
block (like the one in Figure 1-1) or to interconnect. PLBs can implement small
digital circuits and programmable interconnect can connect the small digital blocks
to constitute a complex digital system. If there are enough PLBs and interconnect
resources, most digital circuits can be implemented on FPGAs.

Figure 1.2: Generic FPGA Architecture

Since the switches in switch blocks consume more area and have a larger capac-
itance than wires in Application Specific Integrated Circuits (ASIC), FPGAs are
typically 10 times larger and 3 times slower than ASICs. The higher capacitance
also results higher power consumption even at equal speed. To make FPGAs suit-
able for more applications, their speed and power consumption should be improved.
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Figure 1.3: Switch block pins with different switch flexibility.

In switch blocks, the number of possible connections between one pin to other
pins is called the flexibility of the pin. For example, in Figure 1-2, the switch flexi-
bility of South W is 1, the flexibility of West 1 and South 1 is 2, the flexibility of
North 1 is 3, and the flexibility of East 1 is 4. The pins that are not connected to
anywhere have a flexibility of 0. Switch flexibility of 3 or 4 is suggested to be very
optimum if all pins have the same flexibility.

1.3 Purpose

The purpose of this Thesis is to implement a MMU for use in Zynq-7000 SoC
designs. The main reason for implementing this type of MMU is to be able to per-
form memory address translations without intervention from the processor.
There are some specific features that should be supported by the MMU. It must be
connected to a AXI4 Master port of the Zynq PS and it must be able to write to
multiple AXI4 Slave ports. It must also be able to be configured through its Slave
port by the Zynq PS.
When implemented its functions must be tested and verified.

Chapter 1 George Timbakianakis 3



Chapter 2

Tools

2.1 Hardware

ZedBoard�

ZedBoard� is a complete development kit for designers interested in exploring
designs using the Xilinx Zynq®-7000 All Programmable SoC. The board contains
all the necessary interfaces and supporting functions to enable a wide range of appli-
cations. The expandability features of the board make it ideal for rapid prototyping
and proof-of-concept development.

Figure 2.1: ZedBoard�
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2.2 Software

Vivado®

The Vivado® Design Suite delivers a SoC-strength, IP-centric and system-
centric, next generation development environment that has been built from the
ground up to address the productivity bottlenecks in system-level integration and
implementation. The Vivado Design suite is a Generation Ahead in overall produc-
tivity, ease-of-use, and system level integration capabilities.

Figure 2.2: Vivado Logo

SDK

The Software Development Kit (SDK) is the Xilinx Integrated Design Envi-
ronment for creating embedded applications on any of Xilinx’ award winning mi-
croprocessors for Zynq®-7000 All Programmable SoCs, and the industry-leading
MicroBlaze�. The SDK is the first application IDE to deliver true homogenous and
heterogeneous multi-processor design and debug.

AMBA AXI Interface

AXI is part of ARM AMBA, a family of micro controller buses first introduced
in 1996. The first version of AXI was first included in AMBA 3.0, released in 2003.
AMBA 4.0, released in 2010, includes the second major version of AXI, AXI4. There
are three types of AXI4 interfaces:

� AXI4: For high-performance memory-mapped requirements.

� AXI4-Lite: For simple, low-throughput memory-mapped communication.

� AXI4-Stream: For high-speed streaming data.

In this MMU implementation, AXI4-Lite will be the interface of choice due to the
fact that high throughput is not needed as well as the burst function is unnecessary.

Chapter 2 George Timbakianakis 5
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2.3 Used Languages

In this Thesis programming languages were used to describe the hardware com-
ponents as well as providing testing algorithms.

2.3.1 VHDL

VHDL (VHSIC Hardware Description Language) is a hardware description lan-
guage used in electronic design automation to describe digital and mixed-signal
systems such as field-programmable gate arrays and integrated circuits. VHDL can
also be used as a general purpose parallel programming language.
in this project VHDL is used to describe the hardware components of the design tat
will, later, be synthesized and implemented.

2.3.2 TCL

Tcl (originally from Tool Command Language, but conventionally spelled ”Tcl”
rather than ”TCL”; pronounced as ”tickle” or ”tee-see-ell”) is a scripting language
created by John Ousterhout. Originally ”born out of frustration”, according to the
author, with programmers devising their own languages intended to be embedded
into applications, Tcl gained acceptance on its own.
It is commonly used for rapid prototyping, scripted applications, GUIs and testing.
Tcl is used on embedded systems platforms, both in its full form and in several other
small-footprint versions.
In this project TCL is used for scripting purposes.

6 Chapter 2 George Timbakianakis



Chapter 3

Implementation

This chapter describes how the MMU IP was implemented. It contains infor-
mation about the structure of the IP and the implemented code. It also describes
how the AXI4 Lite interfaces are implemented and how the finished module was
incorporated in a final design. Explanations of the two FSM:s that provides the
functionality of the MMU IP are included. A description of a test transaction is
provided.

3.1 RAM

At the heart of the MMU is a rather simple design. As a lookup table, there is a
16 bit Random Access Memory design and all the routing and manipulating of the
address is done with simple logic.

Figure 3.1: Abstract MMU Design

The RAM in this design is 16 bit(65536 cell) and is used to store the physical
part of the translated addresses. To access the cell containing the physical part, the
virtual part must be entered as the ram address.

7
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Listing 3.1: RAM VHDL Code

5 entity ram is

6 port (

7 clock : in std_logic;

8 we : in std_logic;

9 address : in std_logic_vector(15 downto 0);

10 datain : in std_logic_vector(15 downto 0);

11 dataout : out std_logic_vector(15 downto 0)

12 );

13 end entity ram;

14

15 architecture RTL of ram is

16

17 type ram_type is array (0 to (2**address’length)-1) of

std_logic_vector(datain’range);

18 signal ram : ram_type;

19 signal read_address : std_logic_vector(address’range);

20

21 begin

22 RamProc: process(clock) is

23

24 begin

25 if rising_edge(clock) then

26 if we = ’1’ then

27 ram(to_integer(unsigned(address))) <= datain;

28 end if;

29 read_address <= address;

30 end if;

31 end process RamProc;

32

33 dataout <= ram(to_integer(unsigned(read_address)));

34

35 end architecture RTL;

8 Chapter 3 George Timbakianakis
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In order to save data at a specified address you have to enable the we signal and
then enter the address you want to store and the data for storing.

Figure 3.2: Ram Store Procedure

In order to read from a address you only have to specify the address signal and
the dataout signal will become equal to the stored data.

Figure 3.3: Ram Read Procedure

The code for the RAM is written in a versatile way that makes changes easy.
For example we can change the width by changing the address length on the line 9.

3.2 MMU Top Level

In order to manage the routing and handling of the address a top level is needed.
In the top level, user logic must be added to ”break” the virt(31 downto 0) signal

Chapter 3 George Timbakianakis 9
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into two (15 downto 0) signals. The first 16 bits are ported to the phys(15 downto
0) signal, at line 36 and the last 16 bits are ported to the address(15 downto 0) port
of the ram component.

Listing 3.2: RAMs Port Map in Top Level

29 begin

30 ram1: ram port map (

31 clock => clock,

32 we => we,

33 address => virt(31 downto 16),

34 datain => datain,

35 dataout => phys(31 downto 16)

36 );

37 phys(15 downto 0) <= virt(15 downto 0);

38

This enables to pair the translated part, sourced from the RAM, with the non-
translated part of the Virtual address.

3.3 AXI Interface

In order to include the MMU in a working design we must ”encapsulate” is with
an AXI4 interface in order to be able to connect it with other IP blocks that imple-
ment the same protocol.
The MMU IP will have 2 AXI4 interfaces. One AXI4 Lite Slave port will be utilised
as the IPs input from the PS and one AXI4 Lite Master port used from the IP to
write on a target(BRAM, DDR e.t.c.)

Figure 3.4: AXI4 Interface Design

10 Chapter 3 George Timbakianakis
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3.3.1 Slave AXI Interface

The Slave interface will have 4 Input Registers where input data will be entered.
Each register will serve a specific purpose.

Register Address Use Size

0 0x43C00000 Targeted/Translated Address 16 bit/32 bit
1 0x43C00004 Write Enable/Association Address 1 bit/16 bit
2 0x43C00008 AXI4 Lite Transaction Initialisation 1 bit
3 0x43C0000C Data 32 bit

Table 3.1: MMU Slave Registers

·Register 0
This is a 32 bit register that will have dual purpose. In translation mode it
will act as the Virtual Address input. In store mode its first 16 bits will be
used as the RAM target address.

·Register 1
This 32 bit register utilises only 17 bits. Bit 16 is used to control the mode
of the MMU. If it is ’true’ we are in Store mode. If it is ’false’ we are in
Translation Mode. The last 16 bits are used only when we are in Store Mode,
ie when the 16th bit of Register 1 is ’1’. The data that will be stored in the
RAM address specified by Register 0, will be input through this Register.

·Register 2
Register 2 is a control register that initialises the AXI transaction when en-
abled. When we enable it (i.e. 0x43C00000 = ’1’) the MMU writes the data
we input on the specified target using the translated address.

·Register 3
This is the data input Register. It is a 32 bit Register used as an input for the
data we want to store.

Below you can see the port mapping of the MMU module, inside the Slave port
and how we assign each Register to the MMUs input.

Listing 3.3: Port Map of MMU in Slave Port

263 mmu_0 : mmu

264 port map(

265 virt => slv_reg0,

266 phys => s_out_port0,

267 clock => S_AXI_ACLK,

268 we => slv_reg1(16),

269 datain=> slv_reg1(15 downto 0)

270 );

271

272 s_txn_init <=slv_reg2(0);

273 s_out_port1 <=slv_reg3;

Chapter 3 George Timbakianakis 11
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The Slave interface will also have 2 OUT ports(s out port0 and s out port1) used
for communication between the Slave and Master port, within the IP. These ports
will be used to transfer the translated address(line 266) and data(line 273) to the
Master port in order for the Master port to perform the AXI write. To initialize the
AXI Write on the Master there is a s txn init out port that is controlled, as marked
before, from Register 2(line 272).

3.3.2 Master AXI Interface

The master interface will be implemented to enable the IP to complete AXI
Writes to other AXI Slave ports in order to store data to specified targets.
The address, which at this point is already translated by the MMU in the Slave port,
and data are input from the m in port0 and m in port1(line 14 and 15) to the Master
interface and ported through 2 signals(line 440 and 441) to the M AXI AWADDR
and M AXI WDATA OUT ports(line 114 and 115).
This essentially tells the Master port where to store the data that it got.

Listing 3.4: Master Port Routing Routine

14 m_in_port0 : in std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);

15 m_in_port1 : in std_logic_vector(C_M_AXI_ADDR_WIDTH-1 downto 0);

.

.

114 M_AXI_AWADDR <= mmu_transfer0;

115 M_AXI_WDATA <= mmu_transfer1;

.

.

440 mmu_transfer0 <= m_in_port0;

441 mmu_transfer1 <= m_in_port1;

12 Chapter 3 George Timbakianakis
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3.3.3 Complete IP

After we finish writing and editing the code for the AXI4 Interfaces, with the
use of Vivados Create and Package IP tool, we package everything into one IP that
can be used in the Block Design environment as a IP Block.

Figure 3.5: Packaged MMU IP Block

The tool automatically produces an IP with the appropriate ports that can be
later added to a block diagram in Vivados IP Integrator.
The IP, besides the AXI Ports, has various other ports. The most important ports
are the Clock ports(axi aclk), that provide clock timing to the ports and the reset
ports(sxi aresetn) that provide reset signaling for the AXI Ports. All the other ports
are rendered useless for our purpose.

Chapter 3 George Timbakianakis 13
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3.3.4 IP Modes

By completing this IP we get an MMU IP with 2 AXI4 Ports. This MMU has
2 modes. The Translation Mode where it translation of an address will occur, ac-
cording to the translation table that is configured in the Store mode.
The modes are user swappable and can be controlled through Register 1.

Store Mode

Store mode enables us to append a Physical Part to a Virtual Part of an address
in order for it to be translated at a later time.
The whole process starts by giving an almost arbitrary 16 bit address, that will
serve as the Virtual Part, to Register 0. Then another 16 bit address must be given
at Register 1. This will be the 16 bits that the Virtual Address will be translated
to. At the same time we have to enable Bit 16 of Register 1 so that the MMU will
be put in Store Mode and store the translation in its RAM.

Figure 3.6: Store Mode FSM

In the event that we need to perform another Store, Bit 16 of Register 1 must
be set to ’0’ and the process must start from the beginning. If this routine is not
followed, overwrite issues may occur.

Translation Mode

Translation Mode is the ”Normal” mode of the MMU in which it accepts a Vir-
tual Address and Data, storing the Data on the Translated Address.
It all starts by giving the Virtual Address on Register 0. After that, the Data for
storing must be given on Register 3. Then simply enable the AXI Transaction signal
on Register 2 and the MMU will translate the address and store the Data on the
translated address.

14 Chapter 3 George Timbakianakis
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Figure 3.7: Translation Mode FSM

In order to perform another translation, the AXI Transaction signal on Register
2 must be set to ”0” again, to avoid overwriting existing data.

Chapter 3 George Timbakianakis 15
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3.4 Design

The main focus of the Design is enable us to test multiple scenarios. For example
we want to have multiple targets, where we could write, so that we can test the
MMUs ability to translate and write on multiple targets as well as in different bases
within the same target.
In order to implement the design we use Vivados IP intergrator and we create a
new Block Design. Within this Block design we will add our IP Blocks and connect
them appropriately

3.4.1 PS

The Processing System 7 core is the software interface around the Zynq-7000
platform processing system. The Zynq-7000 family consists of an SoC style inte-
grated PS and a PL unit, providing an extensible and flexible SoC solution on a
single die. The Processing System 7 core acts as a logic connection between the PS
and the PL while assisting you to integrate customized and embedded IP cores with
the processing system using the Vivado® IP integrator.

Figure 3.8: Zynq Processing System

The Processing System 7 wrapper instantiates the processing system section of
the Zynq®-7000 All Programmable SoC for the programmable logic and external
board logic. The wrapper includes unaltered connectivity and, for some signals,
some logic functions. For a description of the architecture of the processing system,
see the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

16 Chapter 3 George Timbakianakis
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3.4.2 Targets

As mentioned before, we need to have multiple targets in order to test various
scenarios. For this Design we chose to use 2 Memory Blocks(one 128k and one 8k)
and the DDR Memory of the Zedboard.
The Memory Blocks will be Dual Port ones to make us able to access them both
from the PS and the MMU.

Figure 3.9: Targets

The MMU IP will access the Block Memory through its AXI4 Master Port. It
will also access the DDR but this time through the Zynq PS HP0 AXI4 Port.
The Zynq® PS will also access the Block Memory through its AXI4 GP0 Port in
order to confirm the correct function of the MMU IP.
In our design we will use an AXI BRAM Controller to enable us to access the Block
Memory through an AXI4 Port. The DDR does not need such a controlled due to
the fact that the PS has an integrated DDR Controller

Figure 3.10: AXI BRAM Controller

Chapter 3 George Timbakianakis 17
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3.4.3 AXI Interconnects

The AXI Interconnect core can be added to a Vivado® IP integrator block de-
sign in the Vivado Design Suite. The Interconnect IP core represents a hierarchical
design block that become configured and connected during our system design ses-
sion.
It allows any mixture of AXI master and slave devices to be connected to it, which
can vary from one another in terms of data width, clock domain and AXI sub-
protocol (AXI4, AXI3, or AXI4 Lite). When the interface characteristics of any
connected master or slave device differ from those of the crossbar switch inside the
interconnect, the appropriate infrastructure cores are automatically inferred and
connected within the interconnect to perform the necessary conversions.

Figure 3.11: Interconnect

In this design we use the AXI Interconnects in order for the MMU and the PS
to access all three Targets through one Master port.
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3.4.4 Complete Design

Merging it all together we end up with the following design.

Figure 3.12: Complete Design

Vivado automatically configured the connection with the DDR.
After everything is set we let Vivado generate the Bitstream that will later be down-
loaded on the Zedboard so that we can test the MMU.
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Chapter 4

Testing

After each stage of implementation, testing is required to ensure the proper func-
tion of each component of the IP.

4.1 Ram Testing

After we write the HDL code for the RAM we have to ensure that it actually
works. The constraints we have is that it needs to be 16 bit wide with 16 bits of
data per cell.

4.1.1 TestBench

Listing 4.1: RAM Test Bench

44 stimulus: process

45 begin

46 we <=’1’;

47 wait for 10 ns;

48 address <="0000000000000000";

49 datain <="0000000000000000";

50 wait for 10 ns;

51 address <="0000000000000001";

52 datain <="0000000000000001";

53 wait for 10 ns;

54 address <="1111111111111110";

55 datain <="1111111111111110";

56 wait for 10 ns;

57 address <="1111111011111110";

58 datain <="1111111011111110";

59 wait for 10 ns;

60 address <="1111111111111100";

61 datain <="1111111111111100";

62 wait for 10 ns;

63 --disable writing on ram and read from previously filled cells

64 we <=’0’;
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65 wait for 10 ns;

66 address<="0000000000000000";

67 wait for 10 ns;

68 address<="0000000000000001";

69 wait for 10 ns;

70 address<="1111111111111110";

71 wait for 10 ns;

72 address<="1111111111111100";

73 wait for 10 ns;

74 --read from not filled cell for testing

75 address<="1101110111101100";

76 wait for 10 ns;

77 stop_the_clock <= true;

78 wait;

79 end process;

At line 31-35 we declare the component for testing and its port map. At 41-43
we initialise our signals and at 46-62 we fill random cells with random data.
The 64th line is used to disable RAM writing and after that we read from the pre-
viously written addresses to ensure correct function. At line 75 we read from a
non-filled cell for testing reasons.

4.1.2 Results

After performing a Behavioural Simulation the waveforms, produced, showed
that our writing attempts were successful.
It takes 1 clock cycle to complete one Write on the RAM.

Figure 4.1: RAM Write Simulation

After 60 ns we disable writing and try to read from the cells we previously write
on. As the waveforms suggest we have successfully read from the addresses and got
valid data back.
Finally we tried to read from a address we did not write on and, as expected, got
back invalid data(unsigned).
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Figure 4.2: RAM Read Simulation

To ensure that we could not write on the ram while the WE signal is enabled,
we simulated such situation and as expected we could not write when WE=0.

Figure 4.3: RAM Write Fail
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4.2 Top Level Testing

After we have successfully tested the RAM module we move on writing a VHDL
test bench for the top level of the MMU, which takes care of the bit routing.
The objective is to create a module that can accept a 32 bit address and either store
and append the first 16 bits with 16 other bits, or translate it based on the stored
translation.

4.2.1 TestBench

Our testbench will be very similar with our previous one in terms of testing.

Listing 4.2: Top Level Simulation Code

37 stimulus: process

38 begin

39

40 -- Put initialisation code here

41 virt <="00000000000000000000000000000000";

42 datain <="0000000000000000";

43 we <=’0’;

44 -- Put test bench stimulus code here

45 --enable writing on mmu ram and fill some cells with random data

46 we <=’1’;

47 wait for 10 ns;

48 virt <="00000000000000000000000000000000";

49 datain <="1111111111111111";

50 wait for 10 ns;

51 virt <="00000000000000010000000000000000";

52 datain <="1111111111111110";

53 wait for 10 ns;

54 virt <="11111111111111100000000000000000";

55 datain <="0000000000000001";

56 wait for 10 ns;

57 virt <="11111110111111100000000000000000";

58 datain <="0000000100000001";

59 wait for 10 ns;

60 virt <="11111111111111000000000000000000";

61 datain <="0000000000000011";

62 wait for 10 ns;

63 --disable writing on ram and read from previously filled cells

64 we <=’0’;

65 virt <="00011111111111000001111111111100";

66 wait for 10 ns;

67 virt <="00000000000000000000000000000000";

68 wait for 10 ns;

69 virt <="00000000000000010000000000000001";

70 wait for 10 ns;

71 virt <="11111111111111101111111111111110";

72 wait for 10 ns;
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73 virt <="11111111111111001111111111111100";

74 wait for 10 ns;

75 --read from not filled cell for testing

76 virt <="11011101111011001101110111101100";

77 wait for 10 ns;

78 stop_the_clock <= true;

79 wait;

80 end process;

At line 46 ”we” is set to ’1’ so that we can access and write on the RAM. After
that we store the virtual part of the address and append it to the physical part. For
the virtual part, the first 16 bits of ”virt” are used and for the physical part the
”datain” is used.
Next we try to translate some addresses by giving a address on ”virt”. The first
16 bits are the ones that will be translated and the last 16 will remain unchanged,
therefore can be random for the purpose of this test.

4.2.2 Results

As we can see from the waveforms our writes were completed successfully.

Figure 4.4: Top Level Storing

Next, we need to ensure the correct address translation, by entering a 32 bit
address using a stored translation and expecting the module to change its first 16
bits with the ones we stored.

Figure 4.5: Top Level Translating
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The waveform indicates that our addresses are translated accordingly. No prob-
lems were identified and the clock cycles it took to perform the actions needed are
satisfactory.

4.3 IP Testing

After ensuring that the MMU works as defined and used Vivados Create and
package IP tool to create our Master and Slave AXI4 Lite ports(as described in
3.3) we use Xilinxs Integrated Logic Analyser(ILA) to debug and monitor the AXI4
transactions.
The testing took place on the fully developed design described in 3.4.4.
During these tests, data was stored in the DDR-memory using the XMD environ-
ment.

Figure 4.6: Synthesized Design with ILA core

First we have to choose which signals need to be monitored. We will choose
them based on the importance hey have on the transaction. The target is to ”see”
the AXI transaction and validate that it is taking place as specified by the AMBA
AXI4 protocol.
We also have to ensure that the Storing and Translation are taking place. We can
do this by monitoring the AWADDR and WDATA signals.
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In total, to have a complete picture of the transactions held place through our
MMU IP we have to monitor the following signals.

Name Description

Write Address Channel

AWVALID Write address valid. This signal indicates that the
master signaling valid write address and control
information.

AWREADY Write address ready. This signal indicates that the
slave is ready to accept an address and associated
control signals.

AWADDR Write address (issued by master, acceped by Slave)
Write Data Channel

WDATA Master Interface Write Data Channel ports. Write
data (issued by master)

WVALID Write valid. This signal indicates that valid write
data and strobes are available.

WREADY Write ready. This signal indicates that the slave
can accept the write data.

Write Response Channel

BREADY Response ready. This signal indicates that the
master can accept a write response.

BVALID Write response valid. This signal indicates that
the channel is signaling a valid write response

Inner IP Communications

m in port0 This port on the Master interface is used to pass
the Translated Address from the MMU, through
the Slave Port to the Master Port.

m in port1 This port on the Master interface is used to pass
the Data for storing from Register 3 of the Slave
Port to the Master Port, to be later forwarded to
the target.

Table 4.1: MMU AXI Signals

We choose these signals to ensure that the MMU is producing correct transla-
tions, to verify inter-IP communication and to prove the validity of the AXI4 Lite
transaction.
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4.3.1 Testing Methodology

In order to test the IP we will use the Vivado Hardware Manager and its De-
bug interface capture the values of the aforementioned signals. After we choose the
signals for debugging we will set the data depth of the ILA to 1024 samples, which
will be enough to monitor a couple of transactions in order to test the design.
After that we have to download the implemented bitstream on the FPGA and ini-
tialize it. When this is done we have to set a trigger. This trigger serves as a starting
point for the ILA core to monitor. The AWVALID is perfect for this role as it is
enabled at the start of an AXI4 Lite transaction.

Testing Scripts

For our ease, a couple of .tcl files are composed to initialise the MMU(see ap-
pendix). The test.tcl file stores 4 translations on the RAM of the MMU, described
below.

Target Virtual Base Address Physical Base Address

DDR 0x11110000 0x00000000
8k BRAM 0x22220000 0x43000000
128K BRAM 0x33330000 0xC0000000
128K BRAM 0x44440000 0xC0010000

Table 4.2: Testing Translations

After the translations are stored, four discrete data words are stored on each
target. That is when the ILA core starts monitoring the signals. After the test.tcl
has run successfully we can study the waveforms produced.

Target Address Data

DDR 0x1111000C 0xAAAAAAAA
8k BRAM 0x2222001C 0xBBBBBBBB
128K BRAM 0x33330008 0xCCCCCCCC
128K BRAM 0x44440004 0xDDDDDDDD

Table 4.3: Testing Stored Data Addresses

As we can see the AXI4 Lite Transaction handshake has been completed and
the inter-IP communication is as expected. On the write address channel we can
see the translated address. On the write data channel the data is shown as well as
the validity of the write. On the write response channel we see the BVALID signal
signalling a successful response. All went as planed and our IP is translating the
address as we programmed it to do as well as obeying the AXI4 Lite communication
protocol.
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Figure 4.7: ILA Monitoring of Writes A

This figure provides an insight on what happens when we complete an write
through the MMU. In figure 4.7 we see the two first writes. As soon as the address
is translated an transfered to the Master port, the AWVALID signal becomes high.
After the awready signals becomes high too, indicating that the slave is ready to
accept an address and associated control signals, the Data are sent. THe wredy
signal indicates that the slave can accept the write data. WVALID signals high
when the AXI write is successful.

Figure 4.8: ILA Monitoring of Writes B

The m in port 0 and 1 ports indicates that the inner-IP communication is sound.
The slv reg0 port shows the Virtual Address making us sure that the correct Address
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is being translated. Timing issues are not present and the translation consumes
minimum clock cycles. Since our clock frequency is 100Mhz the clock period is 10
ns and a full AXI4 Lite Write takes 120 ns, 12 clock cycles are consumed per write.
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Chapter 5

Conclusions

This chapter describes the conclusion of this THesis, future works that can be
made on the MMU IP and thoughts about how to implement new features.
The main conclusion that can be made from this thesis is that a successfully working
MMU IP for use in Zynq 7000 SoCs integrated with AXI4 could be implemented.
Implemented functions works as expected and the used hardware presented in 2.1 is
acceptable. The implementation should not need much adjustments in the future,
but more features can of course be added. The speed of the translation is satisfying
although it can be improved. The source code of the IP is open so it could easily
be integrated as a lab example for academic courses on Computer Architecture to
enable students to experiment on hardware design.

5.1 Future Work

A true dual port RAM could be implemented in the future to enable multiple
translations at the same time. This will also, in theory, enable different applications
to share data without the need of CPU intense computing.
In addition clocking improvements can be made so that the MMU IP is more efficient
and less time consuming.
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Appendix A

Abbreviations

AMBA . . . . Advanced Micro-controller Bus Architecture

AXI . . . . . . Advanced eXtensible Interface

BRAM . . . . Block Random Access Memory

CLB . . . . . . Configurable Logic Block

CPU . . . . . . Central Processing Unit

DDR . . . . . Dual Data Rate

DPRAM . . Dual Port Random Access Memory

FPGA . . . . Field Programmable Gate Array

FSM . . . . . Finite State Machine

GP . . . . . . . General Purpose

HDL . . . . . . Hardware Description Language

HP . . . . . . . High Performance

IDE . . . . . . Integrated Development Environment

ILA . . . . . . Integrated Logic Analyser

IP . . . . . . . . Intellectual Property

MMU . . . . . Memory Management Unit

PA . . . . . . . Physical Address

PL . . . . . . . Programmable Logic

PLB . . . . . . Programmable Logic Blocks

PS . . . . . . . Processing System

RAM . . . . . Random Access Memory

SB . . . . . . . Switch Blocks

SDK . . . . . Software Development Kit

SOC . . . . . . System On Chip

TCL . . . . . . Tool Command Language

TXN . . . . . Transaction
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V A . . . . . . . Virtual Address

V HDL . . . . VHSIC Hardware Description Language

WE . . . . . . . Write Enable

XMD . . . . . Xilinx Microprocessor Debug
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Appendix B

.tcl Scripts

B.1 test.tcl

1 #store 1st Translation

2 mwr [expr 0x43C00000] [expr 0x11110000]

3 mwr [expr 0x43C00004] [expr 0x11110000]

4 mwr [expr 0x43C00004] [expr 0x00000000]

5 #store 2nd Translation

6 mwr [expr 0x43C00000] [expr 0x22220000]

7 mwr [expr 0x43C00004] [expr 0x111143C0]

8 mwr [expr 0x43C00004] [expr 0x00000000]

9 #store 3rd Translation

10 mwr [expr 0x43C00000] [expr 0x33330000]

11 mwr [expr 0x43C00004] [expr 0x1111C000]

12 mwr [expr 0x43C00004] [expr 0x00000000]

13 #store 4th Translation

14 mwr [expr 0x43C00000] [expr 0x44440000]

15 mwr [expr 0x43C00004] [expr 0x1111C001]

16 mwr [expr 0x43C00004] [expr 0x00000000]

17 #Store Random Data On 1st Target Using Virtual Base Address

18 mwr [expr 0x43C00000] [expr 0x1111000C]

19 mwr [expr 0x43C0000c] [expr 0xAAAAAAAA]

20 mwr [expr 0x43C00008] [expr 0x11111111]

21 mwr [expr 0x43C00008] [expr 0x00000000]

22 #Store Random Data On 2nd Target Using Virtual Base Address

23 mwr [expr 0x43C00000] [expr 0x2222001C]

24 mwr [expr 0x43C0000c] [expr 0xBBBBBBBB]

25 mwr [expr 0x43C00008] [expr 0x11111111]

26 mwr [expr 0x43C00008] [expr 0x00000000]

27 #Store Random Data On 3rd Target Using Virtual Base Address

28 mwr [expr 0x43C00000] [expr 0x33330008]

29 mwr [expr 0x43C0000c] [expr 0xCCCCCCCC]

30 mwr [expr 0x43C00008] [expr 0x11111111]

31 mwr [expr 0x43C00008] [expr 0x00000000]

32 #Store Random Data On 4th Target Using Virtual Base Address

33 mwr [expr 0x43C00000] [expr 0x44440004]

34 mwr [expr 0x43C0000c] [expr 0xDDDDDDDD]

35 mwr [expr 0x43C00008] [expr 0x11111111]
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36 mwr [expr 0x43C00008] [expr 0x00000000]

B.2 call.tcl

1 puts "Give Address"

2 set addr [gets stdin]

3

4 puts "Give Data"

5 set data [gets stdin]

6

7 # Set address reg

8 mwr [expr 0x43C00000] $addr

9 # Set data reg

10 mwr [expr 0x43C0000c] $data

11

12 mwr [expr 0x43C00008] [expr 0x11111111]

13 mwr [expr 0x43C00008] [expr 0x00000000]

B.3 store.tcl

1 puts "Give Virtual Address"

2 set va [gets stdin]

3

4 puts "Give Translation Address"

5 set pa [gets stdin]

6

7 mwr [expr 0x43C00000] $va

8 mwr [expr 0x43C00004] $pa

9 mwr [expr 0x43C00004] [expr 0x00000000]
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