
TECHNOLOGICAL EDUCATION INSTITUTE OF CRETE

Thesis of postgraduate student Fasoulakis Pantelis

Title of Master Thesis
DEVELOPMENT OF PLATFORM WITH USE OF WSN (WIRELESS SENSOR NETWORKS)

TECHNOLOGY FOR COLLECTING AND PROCESSING ENVIRONMENTAL

SURVEILANCE OF SPACE AND DIRECT AWARENESS UNDER EXTREME CONDITIONS

PANTELIS M. FASOULAKIS

TECHNOLOGICAL EDUCATION INSTITUTE OF CRETE

SCHOOL OF ENGINEERING
DEPARTMENT OF INFORMATICS ENGINEERING

POSTGRADUATE PROGRAM OF STUDIES

 «INFORMATICS & MULTIMEDIA»

Thesis of postgraduate student Fasoulakis Pantelis

MARCH

Master Thesis
DEVELOPMENT OF PLATFORM WITH USE OF WSN (WIRELESS SENSOR NETWORKS)

TECHNOLOGY FOR COLLECTING AND PROCESSING ENVIRONMENTAL

SURVEILANCE OF SPACE AND DIRECT AWARENESS UNDER EXTREME CONDITIONS

PANTELIS M. FASOULAKIS

TECHNOLOGICAL EDUCATION INSTITUTE OF CRETE

ENGINEERING

STUDIES

Page 1

MARCH 2015

DEVELOPMENT OF PLATFORM WITH USE OF WSN (WIRELESS SENSOR NETWORKS)

TECHNOLOGY FOR COLLECTING AND PROCESSING ENVIRONMENTAL DATA,

SURVEILANCE OF SPACE AND DIRECT AWARENESS UNDER EXTREME CONDITIONS

Thesis of postgraduate student Fasoulakis Pantelis Page 2

Supervisor: Associate Professor Vlisidis Andreas

Examiners: Associate Prof. Vlisidis Andreas

 Assistant Prof. Panagiotakis Spiros

 Assistant Prof. Stratakis Dimitris

Presentation Date: 12/03/2015

Thesis of postgraduate student Fasoulakis Pantelis Page 3

Acknowledgements

First of all I would like to thank Prof. Andreas Vlisidis, for the opportunity given to

me to deal with a very interesting thesis under his supervision. Also, I want to thank

the collaborator of the MTMD Lab, Michalis Fragiadakis for his assistance in relation

to internet technologies used in the implementation of the diploma thesis.

Thesis of postgraduate student Fasoulakis Pantelis Page 4

Abstract

Wireless sensor networks are recognized as one of the most important technologies of

this century and can represent a real and workable solution for surveillance of space

i.e. precision agriculture, road safety, military applications, forest fire detection,

medical applications, smart building applications, e.t.c.

In this article we will present the general theory behind the sensors and sensor

networks, some word for TinyOS – the operating system of a WSN and will analyze

the communication protocol of our WSN, XMesh which we used in this work , based

largely on standards 802.15.4 and Zigbee. Also, we refer some basic features of the

hardware which we used in our application such as Micaz module, MTS400 sensor

board and Mib520 programming interface board.

Finally, in chapter 7 we present the our WSN Application which is the creation of a

network which will consist of small sensor nodes, providing for the surveillance of a

space (i.e. the prediction and detection of fire) in real time. The sensors will take and

will offer measurements of various environmental parameters, such as temperature,

humidity, etc. at regular intervals. Then the data will be forwarded by the network to a

central station and will be stored in a central database. The user using a Web

application, which we are called to implement, will have access to current and older

data.

Thesis of postgraduate student Fasoulakis Pantelis Page 5

Table of Contents

Acknowledgements .. 3

Abstract .. 4

Chapter 1 .. 8

INTRODUCTION - MOTIVATION .. 8

Chapter 2 .. 10

Wireless Sensor Networks ... 10

Introduction ... 10

Differentiation in relation to traditional networks ... 11

Applications ... 12

WSN Architecture .. 13

Nodes Architecture .. 15

Design Specifications ... 17

Operating Mechanisms ... 19

Communication Models in WSNs .. 20

Chapter 3 .. 21

TinyOS: An Operating System for WSN ... 21

Introduction ... 21

The programming language NesC ... 22

Introduction ... 22

Components and Interfaces .. 23

The structure of TinyOS ... 25

The Contiki Operating System ... 27

Hardware - Low-power operation ... 27

Networking .. 28

Simulation .. 28

Programming model .. 28

Features ... 29

Chapter 4 .. 30

Standard 802.15.4 and Zigbee ... 30

Introduction ... 30

Structure of Network and types of Nodes ... 30

Thesis of postgraduate student Fasoulakis Pantelis Page 6

Architecture of 802.15.4 standard .. 31

The physical layer .. 32

The MAC Layer ... 33

Zigbee .. 35

Network Layer ... 35

Application Layer ... 36

Packet Routing in Zigbee Mesh Networks ... 37

Chapter 5 .. 39

XMesh Communication protocol ... 39

Introduction ... 39

XMesh features and advantages ... 39

TrueMesh ... 39

Multiple transmission types .. 40

Quality of Service (QoS) ... 40

Energy States ... 40

Health Diagnostics ... 41

Time Synchronization .. 41

Over the Air Programming .. 41

Watch Dog ... 41

Power Management .. 41

XMesh HP .. 42

XMesh LP ... 42

XMesh ELP ... 42

Formation of a multi-hop network .. 43

Link Estimation .. 43

Parent Selection .. 44

Route Update Messages (RUM) .. 44

Sending and receiving Packets .. 45

Messages Structure ... 45

XMesh Messaging API.. 46

Health Packets ... 47

Chapter 6 .. 48

The Hardware ... 48

Thesis of postgraduate student Fasoulakis Pantelis Page 7

Introduction ... 48

Micaz Module .. 48

MTS400/MTS420 Sensor Board... 50

Humidity and Temperature Sensor ... 51

MIB520 Programming Board ... 54

Chapter 7 .. 56

The Application ... 56

Introduction ... 56

Programming of Sensors - Wireless Sensor Network .. 57

Database .. 60

Web Application .. 61

Web Services ... 64

Conclusions .. 68

Chapter 8 .. 69

Related Works .. 69

Bibliography ... 71

Appendix: ... 74

WEB INTERFACE ... 74

Contact Database with Web Application: ... 74

Web Alerts Values: .. 75

Graphic Display: ... 69

Interaction user of web site and web developer with email: ... 73

Display Mesh Network .. 74

Thesis of postgraduate student Fasoulakis Pantelis Page 8

Chapter 1

INTRODUCTION - MOTIVATION

Wireless sensor networks have already started many years to be used for a wide

range of applications including usually functions such as detection of events (event -

driven) or periodic measurements shots (time - driven). Some of the scientific and

industrial fields where it is appropriate to use WSN are:

• Environmental control and recording biodiversity

• Home automation

• Precision agriculture

• Pharmaceutical and Healthcare

• Telematics

• Industrial automation

• Robotics

In the category of environmental control falls the application to design and based on
this to program the hardware in the following chapters.

The application is intended for registration of environmental conditions in woodland

for two purposes. The first is the collection data for the scientific study of the
microclimate of the area. Microclimate is the climate condition of a relatively limited
area (a few square meters to thousands of acres) which different from those that
surround it. The microclimate conditions depend on many factors in the most basic
humidity and temperature. The microclimate in woodlands plays leading role in the
development of flora and fauna which in turn interact with it.

The second objective is the risk of fire detection and early warning measures.

Experience has shown that the critical time for the spread of a fire are the first 15
minutes.

It follows that the design of WSN based on two main axes. Periodically taking

measurements and storing in the database and identify events that need immediate
treatment. In the first case the delay sending data is not critical, so the network may
use practices to increase the life time in weight of immediacy. The second is obvious
that the objective is send the data at all costs.

Structure of Work

The second chapter is a general introduction to WSN, where describes the features,

requirements and the various mechanisms used for their satisfaction. It becomes

Thesis of postgraduate student Fasoulakis Pantelis Page 9

reference to the architecture of the units and in several protocols and routing
algorithms that determine the network architecture.

The fourth chapter summarizes the standards 802.15.4 and Zigbee, defining a

specific protocol stack for WSN and their use is widespread. It becomes reference to
many items of standards that used by the hardware and software of the application.

In the third chapter we deal with the software, and more specifically with the

operating system for embedded TinyOS systems, and in the fifth chapter with the
XMesh software that implements the protocol stack of network.

The hardware of the Crossbow-Memsic company (wireless nodes, sensors) that we

used to implement the present application, is presented in Chapter 6.

The seventh chapter presents the design and the planning of our application using all

previous tools and simulates the operation of network of 5 nodes in order to draw
conclusions.

In the last chapter we refer some interesting works which provide smart solutions to

support wireless sensor network environmental monitoring applications.

Thesis of postgraduate student Fasoulakis Pantelis Page 10

Chapter 2

Wireless Sensor Networks

Introduction

In recent years, the desire for connectivity has caused exponential growth in the
use of wireless communications, which combined with the progress in the
mechanisms of transmission (RF systems), evolution in low-power circuits (VLSI)
and embedded systems led to the implementation of its small size, energy-
autonomous, self organized nodes (smart sensors), low power and cost, able to
observe and measure changes in natural environmental phenomena. At the same time,
these nodes are able of wireless communication and transfer of data to a central node
via the available integrated radio transceiver. Thus, we have the Wireless Sensor
Networks or WSN consisting of a large number of such nodes, fitted to the
observation area. These nodes have the ability to sense (sensing), trigger (actuation),
and processing of data collected by the microprocessor which have within them, and
they can spend most of their life time in idle state and are automatically activated
when an event occurs.

Wireless sensor networks are relatively a new technology that seems to be used
more and more in the future because of potential that have to collect and process data.
The fact is that the standards and security protocols used in the wired and other
networks do not match in wireless sensor networks, mainly due to the strictly limited
resources that are available.

During the collection of data from the nodes of the network plays a key role in the
energy consumption of each node, which determines the lifetime of the network. To
increase the lifetime of a wireless sensor network, various techniques have been
developed which are designed to minimize energy consumption at the nodes. Such
techniques is the packet data aggregation in order to reduce the overall load on the
network, and the use of routing protocols taking into consideration the reduction of
total energy consumption in a network. [2]

The basic properties of WSN are summarized in the following points:

•Provide reliable control and take precedence over the corresponding
conventional sensor systems

•Have ability to self-organization

•Provide limited-range communication and multi-hop routing (multiple jumps)

•Have a high sampling frequency and high resolution due to the potential of
measuring by many nodes

•Dense placement of nodes and collaborative effort

•Enable remote control, as it does not require the physical presence of the user for
their operation

Thesis of postgraduate student Fasoulakis Pantelis Page 11

•Frequently changing topology due to attenuation of the signal and failure of
nodes

•Provide greater fault tolerance because of their dense layout

•Limitations in energy, transmit power, memory and computational capability

Differentiation in relation to traditional networks

Wireless sensor networks differ from traditional ad-hoc networks and can not be
applied to these methods and protocols that have been developed for conventional
networks. Although all WSN are networks consisting essentially of tiny computers,
differ from common networks for the following reasons:

• They present significant limitations in computing power, energy, storage and
bandwidth. In traditional wireless networks, the functions of routing and
management of mobility of nodes are carried out to optimize the quality of
service (QoS) and efficiency of bandwidth. The energy consumption goes into
the background, as the energy source can be replaced or recharged at any time.
Instead, the nodes forming the WSN networks are designed to operate without
the presence of the user, so functions such as routing and energy consumption
play a vital role in network design.

• The WSN are closer at the distributed systems despite the typical networks,
where users are connected to a node (or a set of nodes) and require a service
from another node. The nodes of the WSN work together to produce results,
exchanging information with each other, while the user is rarely interested in
the results of individual nodes. Consequently, the network provides no
connection between different sections but information services to users.

• Usually, the nodes of a WSN are static after placing, with the exception of a
small number of potential moving nodes.

• The nodes are prone to failures, mainly on hardware level and this causes the
change of topology most often in relation to common networks.

• In the WSN, the nodes are many more and send data with much more low
rates, which for the purposes of such networks is sufficient (typical 250 Kbps)

Thesis of postgraduate student Fasoulakis Pantelis Page 12

Applications

Nowadays there is a lot of movement around the applications of wireless sensor
networks, because of the benefits they provide and the characteristics that make them
suitable for use in all and most areas where conventional networks cannot meet. Some
of these applications are: [2]

• Environmental applications

There are various applications associated with the environment and the type of
used sensor is differentiated in accordance on the application. There are sensors
for applications meteorological research, for study of pollution, rainfall sensors,
water level sensors and for measuring physical parameters such as temperature,
atmospheric pressure, humidity and others. Still, there are types of sensors to
observe and record the animal kingdom and the movement of birds during periods
of migration. Another application relates to the recording of critical parameters
and environmental conditions that affect the earth's climate. Finally, an important
environmental application is the fire detection, particularly for countries that have
a significant problem with the fires as the Greece. Due to the fact that the WSN
nodes can span to a wide range and cover large areas that are inaccessible for
humans but also for the means it uses to fire fighting, make ideal for prevention
and immediate notification of the competent authorities.

• Smart buildings and facilities management

The aim of using WSN in buildings and facilities is to reduce waste energy by
controlling the conditions inside buildings as regards humidity, ventilation and air
conditioning. Measurements are performed by covering room, controlling the flow
of air, temperature and other physical parameters. This is achieved not only saving
energy but also improves the standard of living. It is also possible to control the
mechanical pressure levels in seismically active zones, verifying if the building is
safe or is on the verge of collapse.
Another important application of WSN is the installation of sensors on bridges for
the measurement of vibrations caused by the movement of vehicles either by an
earthquake, in order to promote the safety of the drivers. Also, the installation in
large buildings and facilities for monitoring any unwanted instances in some
space, i.e. non-authorized intrusion to a place but even incorporation of sensors
deep inside on machines where the wired sensors would not be installed. This
enables the easy machine monitoring and preventative maintenance.

Thesis of postgraduate student Fasoulakis Pantelis Page 13

• Medical applications

The use of wireless sensor enables remote, home monitoring in cases of chronic
diseases or elderly. Devices can be moved or even worn could record important
functions of the patient in case necessary to notify the relatives, the doctor or the
hospital. The idea of integrating wireless biomedical sensors in the human body is
quite promising, although there are many additional difficulties such as system
security, reliability, minimize maintenance, reducing consumption and the
exploitation of human energy (heat) to provide power to the sensors.

• Industrial applications

In industries, the control of systems and applications throughout their function
plays an important role for supervising but also for the safety of personnel
working in them. The environment in which the processes are carried out can be
dangerous for the health of the personnel, due to the high temperatures or due to
toxicity from the existence of harmful gases or may not even be accessible to
humans. In such cases it is necessary to use wireless sensors and the main services
they provide is the automation of processes, such as maintenance of machines
through making information on their situation and take immediate decisions in
cases of errors. Remote control service provided by WSN coupled with the
existence of electronic programs, providing full management and control of
demanding applications. One such example of industrial application are oil
refineries, where wireless sensors measure the temperature at all stages of the
processing of oil and when the allowed limit is exceeded, especially alarms inform
the experts.

WSN Architecture

Wireless sensor networks can consist of a large number of individual nodes, from

a few hundred to thousands, placed in a relatively closely spaced in the region of
interest for measuring a particular phenomenon. These nodes, which are small in size
and low consumption, can communicate with each other at relatively small distances
(10 to 70 meters). They consist of individual sections of sensors and data processing
and their main goal is to work together to exchange information about the data
collected and the parameters for the network status.

Another feature of WSN is that once placed nodes, forming their own network via
algorithms and protocols that run. Also, these protocols are taking advantage of the
dense arrangement of nodes in order to convey a message, through the procedure of
jumps (hops). This communication through multiple jumps is called multihop
communication and thus lower energy consumption is achieved. Also, communication
through multihop contributes to better coverage of the region and to address the
problem of signal attenuation due to long distance.

In addition, each node incorporates a processor which enables it instead sends the
data directly to a designated node that is responsible for processing, using the same

Thesis of postgraduate student Fasoulakis Pantelis Page 14

first processor for performing simple defined calculations and then sends only the
necessary and partially processed data. [2]

 Figure 2-1: Typical form of sensor networks

A structure of a WSN is consisted of 2 types of nodes:

• The data Source, which perceives, processes and communicates wirelessly,
while interacting with the physical environment in which it is located,
collecting measurements of physical parameters. So each node of the network
is a source.

• The data Router, which transfers the data from a nearby node to another or to
the base station node which is become the processing and analysis of
collected data from different nodes.

The base station is usually referred to as node-collector (sink node), in the sense

that in this land the results of other nodes. There are three options for the location of
the node-collector which differentiates partially his function. It may be a node like the
others in the network, but can also be a unit offline. In this case, the collector node
can be a laptop, which interacts with the network to exploit the data. In the third case,
the collector node is an intermediate node between the sensor network and a larger
network such as the Internet and called getaway. Usually the base station is more
remote from the rest of the network and has greater energy reserves than other nodes,
usually connected to a laptop.

The stack of network levels of a wireless sensor network consists of the same
levels that are defined in the OSI model but without the session layer and adding three
more at the entire stack. These three levels, arrange the proper cooperation of nodes
between them and the sharing of resources. These are as follow:

•Power management level which manages how a node uses its energy reserves

•Mobility level monitors the existence of neighbors in the network at any time, to
verify if there are connections available to forward the messages to the base station.

Thesis of postgraduate student Fasoulakis Pantelis Page 15

• Task management level, manages the workload and determines which nodes
are active. For example, the nodes that have more energy take a more active role in
the network. The tasks are simple computational processes, characteristic of the
operating system of a WSN.

Figure 2-2 : The stack of protocols in to a WSN

Nodes Architecture

The basic building blocks of each wireless node are the processing unit, the

sensing unit and the power unit. [2]

Figure 2-3 : The Architecture of a wireless node

Thesis of postgraduate student Fasoulakis Pantelis Page 16

� Processing unit

The processing unit is the central element of a wireless node and contains the
processor and a relatively small storage space. For applications of sensor
networks, the role of the processor selected to play a microcontroller, which meets
the requirements of low energy consumption, connectivity with large number of
peripherals, the requirements in operating voltage and low cost. In addition, a part
of the microcontroller can be put in sleep mode and another to operate, resulting in
reduced consumption, while characterized by fast wake time. The microcontroller
manages the collaboration with other sensors, does the communication with the
transmission system and performs defined simple calculations (the tasks). Also,
performs basic calculations, signal processing and correlations processes of data
taken from different sensors for the creation and delivery of a single packet, which
implies a reduction of the transmitted information and therefore reduce energy
consumption. Other possible processes are data compression and processes on
network security. The role of memory undertakes to play mainly flash memories
with typical value 128Kbytes.

� Sensing unit

The sensing unit includes sensors and converters analog signals to digital - ADCs.

Its main function is to sense or measure the physical parameters of the

phenomena. The physical parameters could be the pressure, temperature, humidity

and others. The analog voltage generated on the sensor and a physical quantity is

converted into a digital signal by the ADC and is transferred to the processing unit

for further analysis. The characteristics and requirements for sensors comply with

the requirements for the rest of the system, such as low power consumption, small

size and the potential of autonomous operation and adaptability according to the

environment. The meaning of sense refers to terms such as the exposure time

which is the time that the sensor observes a phenomenon, the calibration that are

the values to use as reference and the sensing coverage.

� Transceiver unit

This unit connects nodes with the rest of the network and consumes more power

than other units. The transmission medium is varied and includes radio frequency

signals (RF), optical signals by laser and infrared. The communication using laser

consumes less energy but requires line of sight between transmitter and receiver,

communication via infrared signals has limited capacity to transmit, thus, the

prevalent use for communication in sensor networks is radio signals, which

require the use of antenna. The aim of the transceiver is to convert a sequence of

bytes or frames sent by the microcontroller to radio waves and vice versa. The

transceiver characterized by four operating states:

Thesis of postgraduate student Fasoulakis Pantelis Page 17

o Transmit State

In this situation, the transmitting section of the transceiver is active and the

antenna emits radio wave

o Receive State

In this state, it is activated the receiver and receives data packets

o Idle State

In this situation, while the transceiver is ready to receive data, in practice it

does not take anything. In the idle phase, many parts of the receiving circuit is

active while others may be inactive

o Sleep State

In sleep state, the most important parts of the transceiver are inactive. There

are transceivers that have multiple sleep states, which differ in the percentage

of the circuit remains inactive, for recovery times and for startup energy

� Power unit

Energy consumption is one of the most important parameters in the design of

wireless nodes. The power supply unit usually includes a couple of common AA

batteries, rechargeable or not. The highest consumption is caused from the

wireless communication system and occurs during the transmission of data, while

the collection and the local processing of data causes lower consumption in

relation to the transmission. For example, the transmission of a 1Kbyte within

100m spends much energy as spent for the execution 3 to 100 million instructions

per second. Also, there is research to produce energy from the sun, heat and

vibration.

Finally, from figure 2-3 we see that there are other parts that we have not

mentioned, because they are not important components of a wireless node but are

used depending on the application. These are the Location Finding System, which can

be a unit GPS, the Power Generator, for example, solar cells and the Mobilizer.

Design Specifications

 The design of a WSN is affected by many factors, such as:

� Lifetime

Thesis of postgraduate student Fasoulakis Pantelis Page 18

A wireless sensor node, called as mote, is equipped only with a limited battery
energy capacity. In some applications, however, the battery replacement is
practically impossible (when a area is inaccessible), while the network should be
operated at least for a predetermined time or as much as possible. The lifetime of a
node therefore, seems to be closely related to the battery life and the life of the
network is depended on the strength of the mote. As supplement of energy, can be
used limited power sources (such as solar cells).Although these are not strong
enough to ensure continuous operation, however, can provide an important help.
For these reasons, conservation and energy management are among the most
important factors in network design. The definition of the lifetime of the network
is depended on the application. An option is defined as the elapsed time until left
without any action, the first node. Other cases are up to the network is divided into
two or more parts, or when is viewed for the first time area not covered by a node
at least.

� Quality of Service

The concept of quality of service (QoS) in WSN networks differs significantly
from conventional networks. In WSN networks do not play a dominant role in the
high transmission rate and speed, but the reliable transfer of data. This transfer
should be done without having to retransmit the message so consumes less energy.
The traditional requirements for quality of service, such as delay or limit
minimum bandwidth do not play an important role when applications are designed
to be tolerant to the delay or when the bandwidth is small, as in the case of WSNs.

� Fault Tolerance

An important indicator of performance of a sensors system is the tolerance to
errors. Some nodes may be closed or disabled due to lack of energy, due to
interference from an external cause or even to suffer some physical harm, which
will likely lead to a permanent breakdown in communication. This failure of
individual sensors should not affect the functionality of the network as a whole.
Here lies the reliability of a WSN with the tolerance to errors, which is an
important indicator of the performance of a sensors system. Tolerances on errors
in a WSN network depend on the respective application. If for example, the
environment in which they are placed has low levels of interference, then
automatically the tolerances are small. Therefore, a network of WSN is cost-
effective and reliable, when the nodes that are developed in such a way as to
achieve multiple coverage in the region from more nodes than those who normally
would be required.

� Scalability

Depending on the application, vary the number of nodes involved in the formation
of the network. There should be appropriate mechanisms to provide for the
addition of new nodes and the expansion of the network, without impairing its

Thesis of postgraduate student Fasoulakis Pantelis Page 19

operation, while the already applied protocols should be adapted to the new size of
the network.

� Cost

Basic unit of a WSN network, as already mentioned, is the sensor node. So is an
essential condition for the prevalence of such networks, the complexity and cost of
mote should be kept at low levels. The costs include network management. In
addition to the ability to edit data, it must have the ability to self-organize and
self-preservation, without human intervention. The network will be presented
flexible and should change or select his various functional parameters. At the
same time, it need to detect errors either to nodes or in communication and
replaces the dysfunctional nodes. It should also be able to interact with the
external maintenance mechanisms to ensure his extended operation at a necessary
level of quality.

� Hardware Constraints

The limitations are posed by the hardware of the wireless nodes are related firstly
with the size of these. At the same time, it should all the building blocks that make
up it to work efficiently and in accordance with the requirements, so the node
satisfies the requirements of the application that is running and the network, i.e.
the low consumption, low cost, autonomy and easy adaptation to the environment.

Operating Mechanisms

To meet the mentioned specifications, it was necessary to find new mechanisms
of network communication, such as new protocols and architectures that support
them. These mechanisms are:

� Multihop communication

Direct communication between two nodes in WSNs can be unprofitable for some
reason, such as for example when the two nodes are in a long distance so and
require enough energy to communicate. This problem is treated with a mechanism
that is called communication through multiple jumps, when conveying a data
packet from one node to another, intermediate nodes are used to promote the
package so that each node to spend minimal energy for transmission. The jumps
that makes the packet from a node to another are called hops, hence the term
multihop.

� Self-Configuration

A network of sensors should have the ability to form most of his functional
parameters autonomously and independently of any external intervention. For

Thesis of postgraduate student Fasoulakis Pantelis Page 20

example, sensor nodes must be able to determine their location based on the
location of other sensors in the network. At the same time, the network will be
replacing those nodes are offline due to a lack of energy or other damaged.

� Data Aggregation

In some cases, data are obtained from neighbor sensors, express the same
information, so it makes no sense to be transmitted to the base station for
processing them. These data can be aggregated and processed locally in some
node, through the algorithm that is applied and then are transmitted to the base.
This process has the effect of reducing the amount of redundant data to transmit,
and to improve the energy efficiency of the network.

� Data Centric

Conventional networks focus on data transmission between devices, each one
characterized by a unique network address. This mode is called address centric. In
WSN instead can apply a data - centric mode, since due to the large number of
nodes, sensors for measurements of the same phenomenon can be grouped on the
basis of this feature to have a common network address.

Communication Models in WSNs

The simplest forwarding model is the unicast model which includes switching a
packet from connection to connection along the network, from the sender to the
unique recipient (point-to-point network). However, there are other forwarding
models such as multicast and broadcast model. In the broadcast transmission the
packet is copied and the copies are sent to all nodes on the network or to a designated
number of nodes, when the network consists of thousands of nodes. The transmission
of the packet which is copied is done with a special code in the address field. In the
multicast transmission, a copy of the package is sent to all the members of a specified
set of nodes, not necessarily adjacent. The multicast is usually harder to achieve,
while both this and the broadcast routing algorithms are more complicated in
comparison with the unicast, which is the majority of Internet communications. [2]

Figure 2-4 : Communication models in WSNs

Thesis of postgraduate student Fasoulakis Pantelis

Chapter 3

TinyOS: An Operating System for WSN

Introduction

To TinyOS developed and evolved from the University of Berkley and is open
source software. This is an operating system, small in size and economical energy in
the management of sensors. Provides a set of software building blocks from which the
developer can choose the appropriate components. The size of these files is the order
of 200 bytes so the size of the overall program remains minimal. The operating
system that manages both the hardware and the wireless network is performing the
measurements of the sensors getting routing and controlling energy consumption
decisions.

Due to the limitations imposed by the nature of the sensors, a new programming
language developed, the NesC
and the reuse of TinyOS for
TinyOS implements a
(component-based). In addition to optimize the
performance model based on events (event
and related resources are released at the end of their use. Furthermore, TinyOS is
optimized for memory usage and offers
consumption. In addition, it provides interfaces between the individual sections that
make it up and belonging to adjacent layers of
this architecture is shown in the next

Figure 3-1: Layers Diagram of TinyOS Architecture

The adaptation of the TinyOS on different
the easy and the removable
also facilitate the development of wireless networks.

Thesis of postgraduate student Fasoulakis Pantelis

: An Operating System for WSN

To TinyOS developed and evolved from the University of Berkley and is open
source software. This is an operating system, small in size and economical energy in
the management of sensors. Provides a set of software building blocks from which the
developer can choose the appropriate components. The size of these files is the order
of 200 bytes so the size of the overall program remains minimal. The operating

m that manages both the hardware and the wireless network is performing the
the sensors getting routing and controlling energy consumption

Due to the limitations imposed by the nature of the sensors, a new programming
NesC, which implements the structural design requirements

TinyOS for tiny sensors. For the implementation of the re
TinyOS implements a architecture distribution into individual components

addition to optimize the power management
performance model based on events (event-based) where events are leading programs
and related resources are released at the end of their use. Furthermore, TinyOS is
optimized for memory usage and offers high efficiency in terms of energy
consumption. In addition, it provides interfaces between the individual sections that

up and belonging to adjacent layers of his architecture. Such diagram layers of
this architecture is shown in the next image. [2]

1: Layers Diagram of TinyOS Architecture

The adaptation of the TinyOS on different types of platforms is easy because of
and the removable hardware-level stratum in core. This stratification

also facilitate the development of wireless networks. Due to its efficient design, great

 Page 21

To TinyOS developed and evolved from the University of Berkley and is open
source software. This is an operating system, small in size and economical energy in
the management of sensors. Provides a set of software building blocks from which the
developer can choose the appropriate components. The size of these files is the order
of 200 bytes so the size of the overall program remains minimal. The operating

m that manages both the hardware and the wireless network is performing the
the sensors getting routing and controlling energy consumption

Due to the limitations imposed by the nature of the sensors, a new programming
design requirements

For the implementation of the reuse, the
into individual components

power management, it uses a
based) where events are leading programs

and related resources are released at the end of their use. Furthermore, TinyOS is
high efficiency in terms of energy

consumption. In addition, it provides interfaces between the individual sections that
diagram layers of

atforms is easy because of
. This stratification shall

Due to its efficient design, great

Thesis of postgraduate student Fasoulakis Pantelis Page 22

community support and open source, the TinyOS became the most widespread
operating system for WSNs.

The programming language NesC

Introduction

The first wireless embedded sensor systems were running on personal computers
and used mainly Linux programs. When the development of these networks passed by
microprocessors in microcontrollers, Linux had ceased to be the appropriate choice.
The applications of systems of that era were deployed mainly in standard C language
or directly in assembly language. However, this programming language is difficult to
analyze and also can easily come out of control when the complexity of the
application grows. In complicated systems, the problem may deal with object-oriented
programming, which makes easier the separation of complex programs to independent
easy composed parts. But the object oriented programming requires dynamic memory
allocation and tends to require more programming resources, something which it
considers unsuitable for embedded systems. The language NesC (network embedded
systems C), which was developed by researchers at the UC Berkeley University,
represents a promising field for application designers. It is properly designed for
embedded systems networks and supports a programming model that integrates with
environmental reactivity, concurrency, and communication capability.

Applications of sensor units (motes) are deeply linked to the material and each
unit runs an application every time. So there are a number of unique challenges that
the holistic system’s design of NesC must address:

• Driving from the interaction with the environment: In contrast with the
traditional systems, the motes used in collecting data and monitoring the local
environment, rather than for general calculations. This particularity leads to
two observations: the first is that the motes is basically driven by events
(event driven), in response to environmental changes (arrival of a message,
retrieve data from sensors) rather than driven by interactive or batch
processing. The second observation is that the 'arrival ' of an event or process
of data is coincidental activities, thus requiring an approach for concurrency
management that deals with any errors (bugs) as conditions of competition.

• Limited Resources: These units (motes) have very limited resources,
because of the particular needs for small size, low cost and low energy
consumption. These restrictions are not expected to vanish, as the benefits
from the expectation of Moore's law will continually leads to decrease in size
and cost despite an increase in capacity in the same size.

• Reliability: Although it is expected that these units can suffer from damages
due to hardware errors, there is a strong need for applications which can run

Thesis of postgraduate student Fasoulakis Pantelis Page 23

for a long time. For example, the environmental monitoring applications must
be able to collect data without human intervention, for months at a time. An
important goal is to reduce errors during execution (run-time errors), as there
is no effective mechanism of recovery errors except the automatic restart of
system.

• Small requirements for real-time functions: Although there are some
operations that are time critical, such as management of wireless
communication or monitoring of power of sensors, in general there are no
great requirements for real time functions. Indeed, experience has shown that
time constraints can be satisfied having absolute control of the application
and the operating system and at the same time reducing the usage
(utilization). One of the few critical in terms of time functions in sensor
networks is the wireless communication. However, given the basic
unreliability of radio link will not necessarily need to meet tough
requirements in this area.

The NesC language is an extension of C and expected has similar syntax, however

provides three important elements that it is differentiated significantly:

• The NesC language defines a component model that supports systems driven
by events. This model provides bidirectional interfaces to simplify the flow of
events and allows efficient and lightweight implementation without virtual
functions and dynamic elements.

• At the same time provides a simple but specific concurrency model in
combination with extended analysis during compilation: the compiler of
NesC identifies most cases of competition data (data race) during compile
time. This combination allows the creation of modern applications that
require limited resources.

• Finally, the language NesC provides a unique balance between program
analysis, to improve reliability and reduce code, and the ability to create
complete applications.

Because the language NesC has proven to be effective in case of application

development for wireless sensor networks used as the programming language for the
operating system TinyOS. Investigations are underway to develop the standard of
TinyOS and for other programming languages but so far NesC is the only language
that can be used to develop programs in TinyOS.

Components and Interfaces

The NesC is a language based on components. The NesC components use a purely
local namespace. This means that in addition to declaring the function that
implements a component must also declare functions calling from another component.
The names that a component uses to call these functions have strictly local scope: the

Thesis of postgraduate student Fasoulakis Pantelis Page 24

name to which it refers is not necessarily the same as that in which the operation is
implemented. When a component (A) indicates that calls a function (B), introduces
substantially the AB name as a global namespace. A different component (C), which
calls the function B, inserts CB as a global namespace. Even though the A and C are
referred in function B, can refer to completely different implementations.

Each component has a specification, a block of code that declares the functions
that provides (implements) and functions that use (calls). In practice, the components
very rarely declare their individual functions in their specification. Instead, the NesC
has interfaces, which are collections of related functions. The reference standards are
almost always in proportion to the interfaces. These interfaces are unique access
points to the component and are interactive. An interface, generally, represents a
service (such as sending a message), and is identified by a type of interface (interface
type).

The linking of services and users together is called wiring, because the code is
divided into components, so that special operating units are wiring, for running an
application. A component can only refer to variables from its own local namespace
and cannot be named variables in another component. However, it can be stated that
uses a function that is defined by another component or that provides a function that
another component can call.

The interfaces in NesC are, as we said, bidirectional. An interface represents a set
of functions, called commands, that the provider of an interface must implement, as
well as a set of functions, called events, which the user of an interface must
implement. In order to call a component, the commands in an interface, must
implement events for this interface. A unique component can use and provide more
than one interface and multiple instances from the same interface. For example, the
Timer interface provides start and stop commands and the fired event.

In the following figure, the provided interfaces are those that are shown over from
the TimerM component, while the ones that are used, are below from it. The ' arrows '
pointing downwards, illustrate the commands, while those pointing upwards depict
the events. Although the same interaction between the timer and the client could be
accomplished via two separate interfaces (one for the start and stop commands and
one for the event fired, grouping these commands and events to the same interface
makes defining clearer and helps to avoid errors during interconnection of the
components together. The functions are performed in two phases, so that can be easily
modeled by placing requested commands and response events in the same interface.
[2]

Thesis of postgraduate student Fasoulakis Pantelis Page 25

Figure 3-2: Graphical representation of the component TimerM

This separation in the definitions of the types of interfaces by using them in the
components promotes the definition of standard interfaces, making the components
more flexible and reusable. It is worth to note that a component may provide and use
the same type of interface or provide the same interface more than once. In these
cases, the component must give each instance of the interface (the interface instance)
a separate name by using the characteristic word 'as', as shown in the figure 2.2 for the
Clk. Finally, an important but critical issue is that two-way interfaces can support very
easily the hardware interrupts. On the contrary, the interfaces based on unilateral
calls’ procedures dictate the hardware polling or using two separate interfaces for
hardware functions and their respective interrupts.

The structure of TinyOS

In order to meet the required levels of parallelism (concurrency control levels), the
TinyOS uses a structural model that is based on situations instead of threads.
Converting the individual sections of processes (components) to ‘state machines’,
creates the potentiality of efficient use of CPU and memory. So instead are devoted
multiple stacks for each current process, can to share a single execution context
between state machines.

Each component now uses events and commands to pass quickly from situation to
situation. Typically, these transitions are instantaneous, requiring very little
computing power. Thus, each component temporarily binds the processor for as long
as these changes of statements last. If, of course, that requires more computing power,
then a used process, which is scheduled by the scheduler and run without being
interrupted by other processes (only the largest priority events) until its completion.
The process that is followed in the scheduling of tasks is FIFO (First in First Out).
The structure of TinyOS is shown in the following figure: [2]

Thesis of postgraduate student Fasoulakis Pantelis Page 26

Figure 3-3: the structure of TinyOS

These components satisfy the requirement for sufficiently structured software
architecture. Each component, as shown in the picture, consists of four parts:

• a Command Handler

• an Event Handler

• an amount of memory (Frames)

• a set of possible processes (Tasks)

The memory is used for saving the internal state of the component, while the
processes as well as commands and event handlers are executed based on the contents
of this memory box. In addition, each component indicates the commands that it uses
and the events it generates. In this way, are created levels of layers of components, so
that these higher levels each time using commands, call functions provided by the
lower levels components and the latter to generate events to the first. Thus, it is
introduced the concept of bi-directional interface which defines the commands and
events that is used by the interaction of the components each other.

The commands are requests to lower level components. Each one of these returns
to the component that is called information around his state. This information is taken
by the command handler and is placed in the component's memory and then promotes
a process in the stack of processes to run. The confirmation that the involved
operation in each specific command completed with the creation an event from the
lower-level component.

The event handlers react to events that are generated by lower-level components
or when these are directly connected with the hardware, on interrupts. Also, as in
commands, the contents of frame memory are modified and are created processes.
Thus, the events can call commands, create new events and processes and terminate
processes, and cannot be created by commands and interrupted by processes. The
lower level events, of course, are created by hardware interrupts.

Processes perform the basic operations and intensive calculations. Run until their
completion and can be stopped only by events. Also, are scheduled by the appropriate

Thesis of postgraduate student Fasoulakis Pantelis Page 27

scheduler with FIFO manner (serial), so theses must be short. However, it can be used
a scheduler based on priority instead of FIFO, in order to reduce the overall delay
execution of processes.

The Contiki Operating System

At this point it’s worth to refer a few words about another lightweight and flexible
operating system for tiny networked sensors, the Contiki. It is an open source
operating system for networked, memory-constrained systems with a particular focus
on low-power wireless Internet of Things devices. Examples of where Contiki is used
include street lighting systems; sound monitoring for smart cities, radiation
monitoring systems, and alarm systems. Contiki was created by Adam Dunkels in
2002 and has been further developed by a world-wide team of developers from Atmel,
Cisco, Oxford University and many others. The name Contiki comes from Thor
Heyerdahl's famous Kon-Tiki raft. Despite providing multitasking and a built-in
TCP/IP stack, Contiki only needs about 10 kilobytes of RAM and 30 kilobytes of
ROM. A full system, complete with a graphical user interface, needs about 30
kilobytes of RAM [36] .

Hardware - Low-power operation

Contiki is designed to run on classes of hardware devices that are severely

constrained in terms of memory, power, processing power, and communication

bandwidth. A typical Contiki system has memory on the order of kilobytes, a power

budget on the order of milliwatts, processing speed measured in megahertz, and

communication bandwidth on the order of hundreds of kilobits/second. This class of

systems includes both various types of embedded systems as well as a number of old

8-bit computers.

Many Contiki systems are severely power-constrained. Battery operated wireless

sensors may need to provide years of unattended operation and with little means to

recharge or replace its batteries. Contiki provides a set of mechanisms for reducing

the power consumption of the system on which it runs. The default mechanism for

attaining low-power operation of the radio is called ContikiMAC. With ContikiMAC,

nodes can be running in low-power mode and still be able to receive and relay radio

messages [36] .

Thesis of postgraduate student Fasoulakis Pantelis Page 28

Networking

Contiki provides three network mechanisms: the uIP TCP/IP stack, which

provides IPv4 networking, the uIPv6 stack, which provides IPv6 networking, and the

Rime stack, which is a set of custom lightweight networking protocols designed

specifically for low-power wireless networks. The IPv6 stack was contributed by

Cisco and was, at the time of release, the smallest IPv6 stack to receive the IPv6

Ready certification. The IPv6 stack also contains the RPL routing protocol for low-

power lossy IPv6 networks and the 6LoWPAN header compression and adaptation

layer for IEEE 802.15.4 links.

The Rime stack is an alternative network stack that is intended to be used when

the overhead of the IPv4 or IPv6 stacks is prohibitive. The Rime stack provides a set

of communication primitives for low-power wireless systems. The default primitives

are single-hop unicast, single-hop broadcast, multi-hop unicast, network flooding, and

address-free data collection. The primitives can be used on their own or combined to

form more complex protocols and mechanisms [36] .

Simulation

The Contiki system includes a network simulator called Cooja which simulates

networks of Contiki nodes. The nodes may belong to either of three classes: emulated

nodes, where the entire hardware of each node is emulated, Cooja nodes, where the

Contiki code for the node is compiled for and executed on the simulation host, or Java

nodes, where the behavior of the node must be reimplemented as a Java class. A

single Cooja simulation may contain a mixture of nodes from any of the three classes.

Emulated nodes can also be used to include non-Contiki nodes in a simulated network

[36] .

Programming model

To run efficiently on memory-constrained systems, the Contiki programming

model is based on protothreads.[11][12] A protothread is a memory-efficient

programming abstraction that shares features of both multi-threading and event-driven

programming to attain a low memory overhead of each protothread. The kernel

invokes the protothread of a process in response to an internal or external event.

Examples of internal events are timers that fire or messages being posted from other

processes. Examples of external events are sensors that trigger or incoming packets

from a radio neighbor.

Thesis of postgraduate student Fasoulakis Pantelis Page 29

Protothreads are cooperatively scheduled. This means that a Contiki process must

always explicitly yield control back to the kernel at regular intervals. Contiki

processes may use a special protothread construct to block waiting for events while

yielding control to the kernel between each event invocation [36] .

Features

Contiki supports per-process optional preemptive multi-threading, inter-process

communication using message passing through events, as well as an optional GUI
subsystem with either direct graphic support for locally connected terminals or
networked virtual display with VNC or over Telnet [36] .

A full installation of Contiki includes the following features:

• Multitasking kernel

• Optional per-application pre-emptive multithreading

• Protothreads

• TCP/IP networking, including IPv6

• Windowing system and GUI

• Networked remote display using Virtual Network Computing

• A web browser (claimed to be the world's smallest)

• Personal web server

• Simple telnet client

• Screensaver

Thesis of postgraduate student Fasoulakis Pantelis Page 30

Chapter 4

Standard 802.15.4 and Zigbee

Introduction

The hardware and the communication protocol which we used in this work, based

largely on standards 802.15.4 and Zigbee. For this reason and because it constitutes an
important development in the field of WSN, it is worth mentioning in detail to them.

The 802.15.4 standard defines specifications for the physical layer and MAC
layer, low rate transmission for wireless networks (LR-WPAN) formed from
stationary or moving devices supplied by batteries, or some other limited energy
source. The design of the template focuses primarily on minimization of energy
consumption of devices, in reliable data transmission and easy network installation,
based on simple and flexible protocols.

On the other hand, the ZigBee Alliance provides the highest levels of the Protocol
(from the network layer to the application level) for data used within the network, for
security services and solutions in wireless home networks and control of buildings.

Compatible with standard, devices can operate in three frequency bands specified
by this. In the area of 868 to 868.6 MHz, with only one channel and data rates up to
20 kbps, 905 - 928 MHz area, separated into 10 channels and data rates up to 40 kbps
and finally separated into 16 channels of 5 MHz in 2.4 - 2.4855 MHz band, where
transmission rates are achieved up to 250 kbps. Although that in the last two bands are
available more than one channel, the MAC protocol of the standard uses one each
time as we will see later. Although initially the LR-WPANs (Low Rate Wireless
Personal Area Network) formed from nearby links up to 75 m, there is the possibility
of increasing the scope of communication at the expense of data rate. In many
applications, such a compromise is not only desirable but necessary. [38]

Structure of Network and types of Nodes

In standard are defined two types of nodes concerning the MAC layer:

• Full Function Device (FFD)

• Reduced Function Device (RFD)

Thesis of postgraduate student Fasoulakis Pantelis Page 31

A FFD node can operate in three ways: as a central coordinator of a PAN network,
as a local coordinator in any area of the network and as a simple device. The network
formed by FFD nodes that have potential to communicate with any node within their
range, from RFD nodes that communicate only with the nearest FFD node and a
central coordinator FFD node usually connected to a computer or another network.
The FFD nodes are the backbone of the network while RFD is intended only simple
operations. The devices can be used to formation three types of topology as it shown
below (star, mesh, cluster - tree, Figure 4.1) [2].

Figure 4-1: Topologies of 802.15.4 standard

Architecture of 802.15.4 standard

The architecture of 802.15.4 is defined through a set of separate layers, as in OSI
model. Each level is responsible for a part of the template functions and provides
services at the highest levels. So the architecture of a device is consisted of the
physical layer, which includes the RF transceiver along with some low-level control
mechanisms and the MAC level, which provides access to the physical channel for all
types of transmission .

Thesis of postgraduate student Fasoulakis Pantelis Page 32

Figure 4-2: The architecture of a LR-WPAN device

The physical layer

The standard defines the allowable transmission technique for

physical level DSSS technique, with BPSK modulation or O -QPSK. The physical
level is carrying out the following tasks:

• Receiver Energy Detection, ED

It is an estimate of the received signal strength in the range of the channel, without
recognition or decoding. The measurement result is stored as 8-bit integer and
used by other network levels.

• Link Quality Indicator, LQI

After receiving a package the physical level calculates a quality assessment. The
estimation can be done with the help of ED price, is also stored as an 8-bit integer
and is available to upper levels.

• Clear Channel Assessment , CCA

It can be achieved in three ways. The first is by checking the ED price. If a certain
threshold has been exceeded, the channel is considered occupied. The second is to
detect carrier (Carrier Sense). The channel is occupied only if detected signal with
modulation that is defined by the standard. The third way is a combination of two
previous.

Thesis of postgraduate student Fasoulakis Pantelis Page 33

 Finally, the physical layer is responsible for the final definition of the channel
frequency and obviously for the sending and receiving of packets to / from physical
media.

The structure of the physical layer packet

The header SHR consists of the preamble signal that serves to synchronize and
from the SFD section, that specifies the end of SHR and the beginning of the rest of
the package. PHR header is always 8 bits and contains information about the length of
the frame. Last follows the data section of the physical layer packet (PHY Payload),
which includes the MAC layer frame and is variable length, as it is shown below.

Figure 4-3: Structure of the Physical layer packet

The MAC Layer

The MAC layer uses a Multi Access Protocol with Carrier Detection and Collision

Avoidance or CSMA -CA (Carrier Sense Multiple Access with Collision Avoidance),
through which is selected the time that will emit a device or to put in waiting to
receive a packet. The protocol provides synchronization using beacon frames and time
slots (slotted CSMA), so that a unit coordinator can communicate with many simple
devices to avoid large percentage of the collisions, and the unnecessary consumption
of energy as the devices are turned off at selected sockets. The slotted CSMA - CA is
ideal for star topologies where communication is a master with many slaves. For peer
networks where communication occurs between router devices, more appropriate is
the unslotted version of the protocol, such as mesh networks. It follows a short
description of this version.

Thesis of postgraduate student Fasoulakis Pantelis Page 34

Unslotted CSMA – CA (figure 4-4)

The algorithm of the Protocol provides for the detection of the channel before

transmitting. If it is idle it starts to broadcast. As broadcast does not detect the
channel, but sends the entire frame, which can be damaging to the recipient due to
interference there. If the channel is busy, the sender shall defer the transmission until
the channel to become idle and then begins to transmit. If a collision occurs, the
clashed devices expect a random time (backoff), using the regression algorithm of
Ethernet and retries later[2].

NB: number backoff periods that the transmission has postponed,
BE: exponent of regression algorithm, macMaxBackoffs: maximum allowable value of NB

macMinBE: initial value of BE, macMaxBE: maximum value of BE

Figure4-4: The flowchart of unslotted CSMA-CA algorithm

MAC Frame Structure

The MAC frame of 802.15.4 standard consists of MHR header and the MAC data

segment. The information contained in MHR relate to addressing, frame type (i.e. the
type of data contained in the payload) and the count of the package.

Thesis of postgraduate student Fasoulakis Pantelis Page 35

Figure 4-5: MAC frame structure

Zigbee

Although many times it is created the impression that the standard 802.15.4 and
Zigbee are identical, this perception is incorrect. The standard Zigbee has emerged
from the cooperation of many companies and essentially is an extension of the
802.15.4 protocol stack, as it implements the network and application levels, based on
the services they provide the physical and MAC level of 802.15.4. The key features of
Zigbee is a low data transmission rate, support up to 254 devices in a star topology
(and theoretically infinite in mesh topology) and fast rewind devices from SLEEP
mode.

The Zigbee protocol stack is based on the OSI model. A detailed description of
this is shown in figure 4-6. The first two layers are defined of 802.15.4 standard while
the other layers of the Zigbee protocol.

Network Layer

The network layer bridges the two standards, ensures correct operation of the

MAC layer and simultaneously provides the appropriate services to the application
layer through NLDE - SAP and NLME – SAP units. The NLME unit undertakes to
create appropriate packets based on the received data from the upper level and decides
on their proper routing. Also, the NLME unit provides a variety of services including
installation of the new network, the recognition of neighboring devices, the search and
record of routes, addressing newcomer devices and the selection of packet routing
mechanism.[2]

Thesis of postgraduate student Fasoulakis Pantelis Page 36

Figure 4-6: Zigbee protocol stack

Application Layer

This is the higher and more complex level that is defined of the standard.

It consists of the Application Objects, the Zigbee Device Object and the Application
Support Sub layer.

• The Application Objects are essentially applications running in a Zigbee
device and are subject to one of the many profiles that are defined by the
model, as are the profiles of Bluetooth.

• The Zigbee Device Object provides the interface to Application Objects that
are used to identify other devices and services that they provide. The ZDO
determines the role of a device on the network. The ZDO is also an
Application Object that is implemented first in each device.

Thesis of postgraduate student Fasoulakis Pantelis Page 37

• The Application Support Sub layer provides the service for the exchange of
data between two or more Application Objects.

Packet Routing in Zigbee Mesh Networks

The routing algorithm in Zigbee mesh networks based on the central idea of the
algorithm AODV (Ad-Hoc on Demand Distance Vector), where each router
participates in the frame relay from a specific source to a destination, creates a new
record for the route in a routing table that is stored in memory. The minimum
elements that can contain this entry are the distance to the destination (usually
measured in hops or jumps – transmission costs) and the address of the next router on
the way to its final destination. The paths are formed upon request, using a process to
search a path in which the device – source transmits a Request packet (route request)
(figure 4-7.a) and the device – destination sends back a Response packet (route reply)
(picture 4-7. b).

Figure 4-7: (a) the device A sends a routing request to destination B to all the

neighbors. (b) the request finally arrives in B which sends the response. Along the

path are created new records in routing tables that define the new path.

Just the data of all the routing tables of intermediate nodes are renewed, the route
is ready for use (figure 4-8). Depending on the existing hardware and the operating
conditions, there are many variations of the basic AODV algorithm that aimed at
reduction of RAM which the routing tables occupy, but also to reduce network traffic
caused by the process of formation of paths.

Thesis of postgraduate student Fasoulakis Pantelis Page 38

Figure 4-8: Using the path that is listed in the routing tables.

Thesis of postgraduate student Fasoulakis Pantelis Page 39

Chapter 5

XMesh Communication protocol

Introduction

The XMesh is a network protocol that was designed by the Crossbow Company

for multi-hop, ad-hoc and mesh WSNs. It is basically a software library which uses
the TinyOS operating system that runs on MICA2, MICAz, MICA2DOT and IRIS
nodes of the same company. The aim is the communication between the nodes, even
if one is not within the communication range of each other, which is achieved with the
technique of multi-hopping, namely message forwarding to intermediate nodes –
stations, until they reach their final destination. A large part of the Protocol is based
on ZigBee and 802.15.4 standards. [11]

The units that make up a multi-hop mesh network are four types:

• Endpoints: These are nodes that are located in the edges of the network. They
send only their own data and not forward packets that may arrive from
neighboring nodes.

• Routers: These create their own messages and simultaneously operate as
intermediaries, promoting packages that take from neighboring nodes.

• Gateways: These collect data from the network and provide the interface with
the central station of the network. They are essentially the gateway through
which network parameters are configured and supervised their operation.

• System Software: It provides the network protocol that allows the self-
organization and self-regulation of the network.

XMesh features and advantages

The XMesh has several options and features, some of which are:

TrueMesh

TrueMesh technology refers to the ability of nodes to make dynamic search of

new routes for the delivery of packages, especially when parts of the network going
down either due to interference, either because the case where one node has exhausted
his energy or just lie about the specific time in sleep mode. The nodes are scattered

Thesis of postgraduate student Fasoulakis Pantelis Page 40

across the network, recognize each other, and create a tree of paths based on the
strength of the signals they receive.

Multiple transmission types

The XMesh provides three ways of communication between nodes:

• Upstream: Deliver packets from one node to the central station.

• Downstream: Delivery packets from the main station to one or more nodes.

• Single-Hop: Deliver packets only to neighboring nodes.

Quality of Service (QoS)

It provides two options regarding the reliability of communication:

• Best Effort: In this case it becomes the best effort packet delivery locally.

The node that is waiting for acknowledgment from the neighbor and if not
received it again tries (Link Level Acknowledgement).

• Guaranteed delivery: For each a message sent upstream or downstream, an
ACK signal is always sent back to the node that sent the original message
(End to End Acknowledgement).

Energy States

A node can be set to three different energy modes:

o High Power (HP)
o Low Power (LP)
o Extended Low Power (ELP)

 For energy management strategy of XMesh nodes will refer in more detail below.

Thesis of postgraduate student Fasoulakis Pantelis Page 41

Health Diagnostics

There is the possibility of the nodes to send periodic information about their

status. The information concerns data such as network traffic, the battery voltage, the
parent node and the node's neighbors and the power of the signal that they send (RSSI
indicator).

Time Synchronization

In LP mode network synchronization is supported on the basis of a general time
constant (± 1ms). This way syncs not only messages, but also measurements of the
sensors.

Over the Air Programming

Possibility of reprogramming nodes remotely through messages sent downstream
from the main station. It works only for nodes in HP status.

Watch Dog

The XMesh has the WDTM.nc component which enables a node to make a

watchdog reset in case it loses 5 RUM. The watchdog timer activation increases the
current in SLEEP mode in 15mA.

Power Management

As mentioned in the chapter on the TinyOS the power management of processor is
done directly by the operating system. The programmer does not have direct access to
commands that alter energy mode of the microcontroller. Instead the TinyOS itself,
through a series of checks that are performed by the scheduler and the module
HPLPowerManagement decides when to put the processor into SLEEP mode or
IDLE, and what peripherals will stay active, depending on the options that have the
model of the processor. Since the issue of CPU consumption is solved, the onus falls
on the energy management of the RF transceiver, via the communication protocol.
The XMesh as designed based on TinyOS, follows a similar energy management
strategy. The developer is asked to choose among three types of operation that have
already been implemented by the manufacturers.

Thesis of postgraduate student Fasoulakis Pantelis Page 42

XMesh HP

In this mode, the transceiver is permanently active. The consumption ranges from
15 to 30 mA, depending on the model. The node is capable of receiving and sending
packets at any time and acts as router. RouteUpdate and Health packets sent at high
rates per 36 '', in result to reduction of the network-forming time and the entry of a
new node at this.

XMesh LP

The communication of nodes can be done in two ways, with synchronization or

asynchronously. In the second way the process of node’s communication with regard
to receiving messages based on the preamble sampling technique, while regarding the
sending, used the mechanism of CSMA– CA of 802.15.4 Protocol. The default for the
wake-up sequence is 125 ms, which means that the node awakes to hear, 8 times per
second. The waiting time T after it sends the wake-up sequence is 15 ms. The total
duration of the preamble signal is:

Preamble = wake-up sequence + T = 140 ms

The RouteUpdate packets are sent much more infrequently than in the HP status

and network bandwidth is lower. This has resulted in that the network has been
formed later, but this is not great for networks that are going to work for very long
without a lot of changes in their composition and layout. The basic consumption is 80
µΑ, while for a network 50 nodes with sending of packets per 3 minutes, the average
is estimated at 400 µΑ.

XMesh ELP

Appropriate only for nodes located at the edges of the network (endpoints). The

operating procedure that is followed is as follows: After the opening of a node, it
remains ON until it normally enters at the network. After it finds the neighboring
nodes, stores their addresses, select one as a parent based on signal strength and then
immediately puts the transceiver in a state of SLEEP. When the node wakes up to
transmit measurements will first try to send to the parent who had initially chosen. If
it fails it will try with another nearby node that had been saved. In this situation the
nodes spends minimal amounts of energy and theoretically can operate for years.
However, one major drawback is that the designers have not predicted the existence
of a preamble signal, resulting in a node in ELP can communicate with just nodes in
HP mode and not with those who have set to LP. [11]

Thesis of postgraduate student Fasoulakis Pantelis Page 43

Figure 5-1: XMesh Performance Summary Table

Formation of a multi-hop network

For the formation of the network, two parallel processes run, Link Estimation and
Parent Selection.

Link Estimation

A node which listen the channel picks up information about network traffic in his

neighborhood. This information is used to create a table that lists the addresses of
neighbors (neighborhood table). At the same time controls how well hears a neighbor
watching the values of a variable in the header of the packets. This variable contains
every time a different serial number (sequence number). Based on these values,
assessment takes place through an algorithm EWMA (Exponentially Weighted
Moving Average). In particular the sequence numbers that taken is known how many
packets were normal received and how not (missed). Then the calculation of
assessment of receipt (RE) is done by applying the EWMA algorithm in percentage of
received packets, so and shows that:

Received_percentage = 255*received/(received+missed)

RE = (1-a)*RE + a*Received_percentage

Where a is the EWMA factor with values from 0 to 1, while 255 is used for
normalization so that the RE to ranges in [0, 255]. The size of the neighborhood table
is 16 for nodes in the network and 40 for the node of the central station. If anyone
finds more than 16 neighboring nodes, then will delete them with the lowest quality of
emission from the table.

Thesis of postgraduate student Fasoulakis Pantelis Page 44

Parent Selection

After the node detects the neighbors and forms the neighbor table, selects through

this, one parent based on the minimal cost of communication. A node may be a
candidate parent if fills in the following conditions:

• It has already entered into the network

• It there was not child (child node) of the node for the three last RUI (Route
Update Intervals), so as to avoid cycles in the network formation

• It is not in a ELP state

Route Update Messages (RUM)

The final stage of the formation of the network is achieved by periodically
broadcast by all nodes, messages that contain information about available routes on
the network. These messages are called Route Update Messages (RUM) and the time
that elapses between two successive emissions Route Update Interval (RUI). The
value of RUI and the structure of RUMs are common to all nodes in the network. (For
characteristic values RUI see figure 4-1)

The information carried by the RUM is:

• Parent ID: If the node has not yet joined the mesh, this field is 0XFFFF.

• Cost: It tells other motes in the neighborhood how much it will cost to send a

message upstream to the base station.

• Hop count: The number of hops to send a message to the base station.

This information is determined by variables such as:

• RE: see above.

• SE (send estimation): When a node transmits a RUM, incorporates in it and
the price, RE. The nodes receiving the message based on the RE, calculate the
SE.

• LC (Link Cost): Link Cost to a specific neighbor. Once SE and RE are
known, the LC is computed as:

LC = (1<<18) / (SE*RE)

• NC (Neighbor Cost): Cost of sending a package to a neighbor.

• OC: Cost of sending a packet from the node to the central station. It is the
main criterion for the selection of the parent and is computed as:

Thesis of postgraduate student Fasoulakis Pantelis Page 45

OC = LC + NC

Sending and receiving Packets

Messages Structure

XMesh messages are an extension of the messages found in a TinyOS application.

The difference is due to an extra header, which adds the XMesh immediately after the
basic header of TinyOS. In figures 5-2 and 5-3 show the structure of a message in
general and in detail, respectively.

Figure 5-2: XMesh Message Structure

Figure 5-3: XMesh Packet Structure

Thesis of postgraduate student Fasoulakis Pantelis Page 46

In the header of the TinyOS, includes very basic information about the identity of
the message, which is the destination (addr), the message type and the group to which
the message belongs. Message type gets specific values and from them the recipient
understands what type of message will be received. Some of the types of messages are
the AM_HEALTH, for packets with information about the status of the node, the
AM_DATA2BASE, which means that the message is directed towards the base
station without waiting for ACK or AM_UPSTREAM_ACK signal, i.e. ACK
message from node towards the base. The group is a value that identifies the network.
If a node receives a message with group different from the known value (0x7D), will
ignore it, believing that sent from other network. End, the value length indicates how
many bytes are still remaining excluding two of the CRC.

In the header of the XMesh are contained the address of the node that first created
the message (originaddr) and the address of the node who sent it last (sourceaddr). So
the recipient knows who's promoted not only the message, but also who created it
originally. Seqno value enables to the recipient to know if messages come with the
correct order while the socket is a value that characterizes the network.

Next follows the section that contains the data whose size can be up to 34 bytes
and at the end of the message are the two bytes with the value of the CRC. The
maximum total size of packet is 55 bytes. Larger packets cause a great increase in the
use of SRAM.

XMesh Messaging API

As mentioned in the beginning of the chapter in the XMesh Messages can be

transmitted UPSTREAM (from node to basis) or DOWNSTREAM (from the base
station to the node). The DOWNSTREAM path is always the same as the previous
UPSTREAM and to achieve DOWNSTREAM communication with a node, it should
have sent at least one message to the base. Messages can be sent with two options
QoS (Quality of Service).

• Link Level Acknowledgement: It concerns the communicating between two
adjacent nodes. The sender sends the message again if he do not receive ACK
signal from the neighboring receiver. But the acknowledgement is only local.
So for a multi-hop message is not guaranteed its arrival at the final destination.
Using the LLA option it saves energy and is useful for applications that do not
require 100% delivery of data.

• End to End Acknowledgement: In this case apart from the local ACK, is sent
and another of the final recipient of multi-hop message. Unlike before, if the
End to End Ack is not reached, the choice about whether the message will
send is not automatic but is left to the user. Apparently the guaranteed
transmission has paid an increase in energy consumption and bandwidth.

The XMesh provides a set of interfaces that the user can connect to the
components of TinyOS, through the process of wiring, so that calling their commands
in the application. We only refer them: the MhopSend Interface, Receive and

Thesis of postgraduate student Fasoulakis Pantelis Page 47

ReceiveAck Interface, Intercept and Snoop Interface, PromisciousSniff Interface and
RouteControl Interface.

Health Packets

There are two types of packets: the statistics health and neighbor health. The first

include statistical data about the packets which the node sends (number sent packets,
number forwarded packets, number resent packets etc) as well as the battery voltage
that feeds it. The neighbor health contains information for the "neighborhood" of the
node. Each neighbor health packet can contain up to five id adjacent nodes together
with data concerning the connection’s quality with these (LQI) and the distance from
the central station (hop count). The send health packets becomes periodically with
period defined by the user. The send statistics health packets alternates with the
sending neighbor health packets. If the node has more than five neighbors sent two
consecutive neighbor packets, as shown in the picture below.

Figure 5-4: Send packet sequence Health

Thesis of postgraduate student Fasoulakis Pantelis Page 48

Chapter 6

The Hardware

Introduction

The hardware that is used for our application as we see in the next chapter, was

designed and manufactured by Crossbow company and composed of four wireless
nodes type Micaz, board-type sensors MTS400 and a programming board type
MIB520. In this section is given a brief description of the structure, function and
capabilities of these components.

Micaz Module

The micaz is one of the latest generations of wireless sensors that were first

developed at Berkeley University in California and is produced by the Crossbow
company (now Crossbow have bought by Memsic Company). Micaz consists of
microcontroller Atmega128L of Atmel, is compatible with IEEE 802.15.4 protocol,
transmitting in the frequency band of 2.4GHz and is suitable for low-power wireless
networks. The Micaz has some new features that take full advantage of the
functionality of the family of wireless networking products MICA of the Crossbow.
[12] These include:

• RF transceiver that is compatible with the IEEE 802.15.4/ZigBee protocol.

• Global emission zone 2.4-2.483GHz.

• Technology DSSS - Direct Sequence Spread radio Spectrum which is resistant
to RF interference and provides data security.

• 250 kbps data rate.

• TinyOS 1.1.7 operating system and later versions, including the software of
Crossbow for creating mesh network.

• Plug and play functionality for all the sensor boards of Crossbow, data
acquisition boards, gateways and software.

Thesis of postgraduate student Fasoulakis Pantelis Page 49

Figure 6-1: MICAz module top view

In the figure below, is graphically presented inside the micaz, where it is shown
the microcontroller, the RF transceiver, the flash logger and 51-pin socket that
supports analog inputs, digital inputs/outputs, interfaces I2C, UART and SPI which
make it easy to connect with other peripherals. The sensors that can accommodate are
barometric pressure, temperature and humidity, light, dual-axis accelerometer and
other boards of Crossbow.

Figure 6-2: The Micaz Hardware Architecture

Thesis of postgraduate student Fasoulakis Pantelis Page 50

Some of the applications in which the micaz is suitable for use are:

• Environmental applications (measuring temperature, humidity, pressure).

• Monitoring facilities inside buildings.

• Security applications in buildings and bridges by measuring vibrations.

• Applications in vehicular traffic (telemetry).

The following table summarizes the main features of the central units of the motes

of the Crossbow (mica2, micaz and iris).

Figure 6-3: The main features of micaz, mica2 and iris.

MTS400/MTS420 Sensor Board

The MTS400 offers five basic environmental sensors with an additional GPS

module option (MTS420). The features offered on these boards allow for a wide
variety of applications ranging from a simple wireless weather station to a full
network of environmental monitoring nodes. Applicable industries include
agriculture, industrial, forestry, HVAC and more. These environmental sensor boards
utilize the latest generation of low-power digital integrated sensors which provide
extended shelf life.

The GPS module offered on the MTS420 (figure 6-4) may be used for positional
identification of Motes deployed in inaccessible environments and for location
tracking of cargo, vehicles, vessels, and wildlife. [13]

Thesis of postgraduate student Fasoulakis Pantelis Page 51

Figure 6-4: Photo of MTS420CC. The MTS400 does not have the GPS module

Humidity and Temperature Sensor

The humidity and temperature sensors are located both on the same integrated
circuit SHT11 of Sensirion company , that is supplied with voltage from 2.4 to 3.6 V,
has internal A/D Converter 14-bit, for the conversion of the measured analog signals
to digital and TWI (2-Wire Interface), for communication with the microcontroller (it
is shown in figure below).

Figure 6-5 : Typical application circuit, including pull up resistor

RP and decoupling of VDD and GND by a capacitor.

Thesis of postgraduate student Fasoulakis Pantelis Page 52

Figure 6-6: Summary of the Sensirion SHT11’s Specifications

With the connection of the supply voltage the sensors are ready for use in 11ms.
The control of their operation is done with a command set (figure 6-5) that the
controller sends via TWI.

Figure 6-7: SHT1x list of commands

After a temperature or humidity measurement command, the controller must wait
until its completion. For 14-bit measurement, the maximum time that is needed is 320
ms. The completion of the measurement is signaled by the transition of the pin DATA
to low state. The measurement is not necessary to read it immediately as it is stored in
a register of the circuit. In the following figure is graphically presented the reception
and emission procedures of measurements on the controller.

Thesis of postgraduate student Fasoulakis Pantelis Page 53

Figure 6-8: reception and emission procedures of measurements on the controller.

For the humidity sensor the relationship between output of ADC and actual value

of measurement shows a non-linearity as illustrated below.

Figure 6-9: Conversion from SORH to relative humidity

Using the formula:

�������� =	−4.0 + 0.405 ∗	���� − 	2.8 ∗ 	10
��
∗ 	����

�
	 ,

Where ����	 the output value of the ADC, we get a more accurate
approximation of actual humidity.

Thesis of postgraduate student Fasoulakis Pantelis Page 54

Unlike the humidity sensor, the temperature sensor is linear and the only
conversion that the value of output of the ADC takes, is given by the formula:

� = 	−38.4 + 0.0098 ∗ ��� ,

Where 	��� the output of the ADC.

Finally as regards energy consumption values are given in table below.

Figure 6-10: Energy consumption SHT11

MIB520 Programming Board

The MIB520 provides the possibility to ISP (In System Programming)

programming Micaz motes, via the ATmega16L processor that has, as well as the
possibility of serial communication with PC (host PC) for data transfer on the network
leading to the central hub station.

Figure 6-11: Photo of top view of an MIB520CB.

Thesis of postgraduate student Fasoulakis Pantelis Page 55

Linking MIB520 Board with computer where is installed TinyOS and MoteWorks
software of Crossbow, done via USB. With installing special drivers, the USB port is
working like two virtual serial COM ports. By first, it performs the programming, and
through the second, performs data exchange between host PC and the rest of the
network.

Thesis of postgraduate student Fasoulakis Pantelis Page 56

Chapter 7

The Application

Introduction

The aim of the application is to implement a mesh network for surveillance of

space i.e. for a forest area, consisting of Micaz nodes and a central computer - host
PC, to periodically collect humidity-temperature measurements and their reliable
transmission and processing, firstly at local node level and finally to the central
station, where it can become the entry in the database for the study or assessment fire
risk. Furthermore it is given importance on as much as possible more energy saving of
nodes and bandwidth of network. The application is purely experimental as the
available hardware is limited, so we are going to implement a small-scale network.
Nevertheless, there may arise some useful conclusions, as the application can be
extended to a larger scale to cover an area as a forest with an increase in the number
of nodes. We consider the simple case where each node collects a couple of
measurements (humidity-temperature) at time T (3 minutes), and sends them to the
central station.

The available hardware is 4 Micaz nodes, 4 MTS400 Sensorboard, the MIB520
programming board and of course a central computer that has installed the necessary
software. Each one of the three nodes bears the MTS400 and collects actual
measurements (temperature-humidity), while one node is connected through MIB520
with host-PC and forms together the system of the central station. All nodes have the
potential to promote messages and depending on the distance between them can be
communicate directly with each other. So each node can send a message either
directly to the central station or to promote it at the base through another node. The
formed network is mesh type, since all nodes act as routers that transmit multi - hop
messages.

Thesis of postgraduate student Fasoulakis Pantelis Page 57

Figure 7-1: Our WSN Application

The nodes regularly collect the information such as temperature, humidity and
forward them to the server (host-PC) through base station. Server is responsible to
evaluate, process, and visualize the data coming from the base station. For this
purpose PostgreSQL database, Apache server and PHP language are used. First server
record data coming from base station to the PostgreSQL database, then it process the
data in the database depending on user requests, and last it displays the processed data
with the help of Apache Web server and PHP. User can examine the processed data
by means of a PC connected to the internet.

Programming of Sensors - Wireless Sensor Network

Initially as regards the programming of sensors and their function as individual

sections of the wireless sensor network used the following tools:

• MoteWorks

This tool was created by the Crossbow company (the production company of the
sensors we chose) and allows the development of applications with sensor nodes and
is especially optimized for networks that operate with low power consumption using
batteries. It is based on the open-source TinyOS operating system and offers reliable

Thesis of postgraduate student Fasoulakis Pantelis Page 58

ad-hoc mesh-type network, over-the-air programming capabilities and development
tools for software applications.

• MoteView

This tool also created by Crossbow and is designed to offer the user simplicity as
regards implementation and monitoring wireless sensors network. We used this
specifically for sensors programming, which is done by using MoteConfig which we
describe below [16].

• MoteConfig

Is a utility which is installed concurrently with the installation of MoteView. This
is a Windows-based GUI that is used for programming the sensors. It provides a
means for setting up and installing implemented XMesh / TinyOS applications up to
sensors. Also, with its installation, XMesh applications are available for each sensor
board and platform that is constructed from the Crossbow [15].

• XServe

The XServe serves as a gateway between wireless mesh networks and applications
that interact with it. At its base, the XServe provides services for routing data to and
from the grid network with higher level services for data processing. The XServe can
be "joined" with wireless sensor networks using XMesh protocol via a base station
which runs the XMeshBase offered by the Crossbow [14].

• Cygwin

The Cygwin is a collection of tools of POSIX (Portable Operating System
Interface for UNIX) made so as to work in the Microsoft Windows operating system.
The software is distributed free of charge and operates as a simulator for the execution
and operation of programs that is made to work with UNIX commands such as
Xserve. The commands run on the command line. The use of these tools was
necessary for the installation and use of the Xserve as the communication of sensors
and a computer system is done through this [17].

Starting the implementation of the system, the first thing that had to deal with was

the programming of sensors. As we explained in Chapter 1, the sensors must take at
regular short intervals measurements concerning natural environmental phenomena.
Also, it should be arranged in a network, addressing all of the requirements that we
put, as for example in case of failure to maintain contact on the remaining nodes. Also
from the design phase, we chose the XMesh is our Web protocol (Chapter 5).

Sensors scheduling separated into two parts based on mesh networking protocol –

Xmesh, where the sensors are separated into two categories, sensor nodes and the base
sensor node. So, by making use of MoteView and MoteConfig in particular,
programmed the sensors that will constitute the sensors network with one of the pre-
compiled Micaz XMesh Applications of Crossbow and specifically the

Thesis of postgraduate student Fasoulakis Pantelis Page 59

XMTS400_xxx_ .exe, which corresponds to the sensor board we use i.e. MTS400.
Then, we programmed also the base node with a pre-compiled Micaz XMesh
Applications namely XMeshBase_xxx_.exe. It should be noted that there is the option
to install either the low power or high power application in sensors. In figure 5-1
(Chapter 5) we see basic parameters on the performance of Xmesh.

Since we were able to install and to program the sensors with these applications,
the sensors can now be self-organized to mesh- type network, take measurements,
forward them to the base node and maintain the state of the network and hence their
successful interface. But to start the networking of sensors and general the operation
of the sensors must start the XServe, which is described above.

As a first step, therefore, run applications using the MoteView, observing that the
sensors self-organized actually to a network, receiving measurements and react to
changes of network topology. What we then wanted to achieve is to commence the
XServe from our own system and to achieve the same successful operation that
succeed by making use of MoteView. Now we have placed four nodes in four
different room and access the data through a GUI interface provide by crossbow
MoteView. During this process the database will also be generated. Figure 7.2 shows
the screen shot of the output in MoteView.

Figure 7-2: Results showing through MoteView

Thesis of postgraduate student Fasoulakis Pantelis Page 60

Database

Using the MoteView we can only view the parameters in our base station. But the
data can’t be accessed from other computers located in different location. To do this
we have designed a web application through which the data can be accessed by other
computers over LAN or Internet. The data accessed by the nodes are stored in the
base station. The database used here is PostgreSQL. The database is accessed by our
application and displayed as per the request. We can process the data in remote
location as per our need and can monitor the WSN.

• PostgreSQL

PostgreSQL, often simply "Postgres", is an object-relational database
management system (ORDBMS) with an emphasis on extensibility and standards-
compliance. As a database server, its primary function is to store data, securely
and supporting best practices, and retrieve it later, as requested by other software
applications, be it those on the same computer or those running on another
computer across a network (including the Internet). It can handle workloads
ranging from small single-machine applications to large Internet-facing
applications with many concurrent users. Recent versions also provide replication
of the database itself for availability and scalability.

PostgreSQL implements the majority of the SQL:2011 standard, is ACID-
compliant and transactional (including most DDL statements) avoiding locking
issues using multiversion concurrency control (MVCC), provides immunity to
dirty reads and full serializability; handles complex SQL queries using many
indexing methods that are not available in other databases; has updateable views
and materialized views, triggers, foreign keys; supports functions and stored
procedures, and other expandability, and has a large number of extensions written
by third parties.

In addition to the possibility of working with the major proprietary and open
source databases, PostgreSQL supports migration from them, by its extensive
standard SQL support and available migration tools. And if proprietary extensions
had been used, by its extensibility that can emulate many through some built-in
and third-party open source compatibility extensions, such as for Oracle.

PostgreSQL is cross-platform and runs on many operating systems including
Linux, FreeBSD, Solaris, and Microsoft Windows. Mac OS X, starting with OS X
10.7 Lion, has the server as its standard default database in the server edition, and
PostgreSQL client tools in the desktop edition. The vast majority of Linux
distributions have it available in supplied packages [18].

As mentioned above for data management and storing them in the database used
the following tool:

Thesis of postgraduate student Fasoulakis Pantelis Page 61

• PgAdmin III

It is the most popular deployment and management tool for PostgreSQL, can
be used in many operating such as Linux, FreeBSD, OpenSUSE, Solaris, Mac
OSX and Windows platforms to manage PostgreSQL 7.3 and above running on
any platform. The PgAdmin III is designed to meet the needs of all users, by
performing simple SQL queries to developing complex databases. The graphical
interface of the tool supports all the features of PostgreSQL, supports all functions
and makes it easy to manage the database [19].

The database PostgreSQL is having a table called mts400_result which was the

table generated by the program. The table has fields like Result_time, nodeid, parent,
voltage, humidity, humidity temperature, pressure temperature, pressure, accel_x,
accel_y, hours, minutes, seconds, latitude degree, latitude minute longitude degree,
longitude minute. But in our application we have accessed the field result_time,
humidity, humidity temperature where the result_time have data type as date and
humidity, humidity_temp are int.

Web Application

The management of the system and the access to the information collected by the
network of users should be done via a web application. In order to have access in our
WSN, a user should have access to the Internet. The original idea is to be able to
monitor the wireless sensor network means a Web Site so that at any time we can
intervene either in the settings of the sensors or to see data from everywhere and
whenever we want. To achieve this we should combine the "Internet" programming
languages i.e. html, php, css, javascript – jQuery, xml. With the use of languages
above what we accomplished is to create a website through which we can see the
graphs from the sensors, the data the last about 24 hours, to download whenever we
want, the data which collect the nodes in excel format so that we can work out.

For the development of web application used the following tools:

• PHP

PHP is a server-side scripting language designed for web development but also is
used as a general-purpose programming language. As of January 2013, PHP was
installed on more than 240 million websites (39% of those sampled) and 2.1
million web servers. Originally created by Rasmus Lerdorf in 1994, the reference
implementation of PHP (powered by the Zend Engine) is now produced by The
PHP Group. While PHP originally stood for Personal Home Page, it now stands
for PHP: Hypertext Preprocessor, which is a recursive backronym.

Thesis of postgraduate student Fasoulakis Pantelis Page 62

PHP code can be simply mixed with HTML code, or it can be used in combination
with various templating engines and web frameworks. PHP code is usually
processed by a PHP interpreter, which is usually implemented as a web server's
native module or a Common Gateway Interface (CGI) executable. After the PHP
code is interpreted and executed, the web server sends resulting output to its
client, usually in form of a part of the generated web page – for example, PHP
code can generate a web page's HTML code, an image, or some other data. PHP
has also evolved to include a command-line interface (CLI) capability and can be
used in standalone graphical applications.
The canonical PHP interpreter, powered by the Zend Engine, is free software
released under the PHP License. PHP has been widely ported and can be deployed
on most web servers on almost every operating system and platform, free of
charge [20].

• HTML

HTML or HyperText Markup Language is the standard markup language used to
create Web pages. HTML is written in the form of HTML elements consisting of
tags enclosed in angle brackets (like <html>). HTML tags most commonly come
in pairs like <h1> and </h1>, although some tags represent empty elements and so
are unpaired, for example . The first tag in a pair is the start tag, and the
second tag is the end tag (they are also called opening tags and closing tags).
A Web browser can read HTML files and compose them into visible or audible
Web pages. The browser does not display the HTML tags, but uses them to
interpret the content of the page. HTML describes the structure of a Website
semantically along with cues for presentation, making it a markup language, rather
than a programming language.
HTML elements form the building blocks of all Websites. HTML allows images
and objects to be embedded and can be used to create interactive forms. It
provides a means to create structured documents by denoting structural semantics
for text such as headings, paragraphs, lists, links, quotes and other items. It can
embed scripts written in languages such as JavaScript which affect the behavior of
HTML Web pages [21].

• XML

Extensible Markup Language (XML) is a markup language that defines a set of
rules for encoding documents in a format which is both human-readable and
machine-readable. It is defined by the W3C's XML 1.0 Specification and by
several other related specifications, all of which are free open standards.
The design goals of XML emphasize simplicity, generality and usability across
the Internet. It is a textual data format with strong support via Unicode for
different human languages. Although the design of XML focuses on documents, it
is widely used for the representation of arbitrary data structures such as those used
in web services.

Thesis of postgraduate student Fasoulakis Pantelis Page 63

Several schema systems exist to aid in the definition of XML-based languages,
while many application programming interfaces (APIs) have been developed to
aid the processing of XML data [22].

• CSS

The CSS (Cascading Style Sheets-Cascading style sheets) is a computer language
that belongs to the category of style sheet language used to control the appearance
of a document written in a markup language. Used i.e. for controlling the
appearance of a document written in HTML and XHTML languages, i.e. to
control the appearance of a Web page and a site in General. The CSS is a
computer language designed to develop stylistically a website i.e. to form more
features, colors, align, and gives more features compared to html. For a beautiful
and well-designed website using CSS is a must [23].

• AJAX

Ajax (short for asynchronous JavaScript + XML) is a group of interrelated Web
development techniques used on the client-side to create asynchronous Web
applications. With Ajax, Web applications can send data to and retrieve from a
server asynchronously (in the background) without interfering with the display
and behavior of the existing page. Data can be retrieved using the
XMLHttpRequest object. Despite the name, the use of XML is not required, and
the requests do not need to be asynchronous.
Ajax is not a single technology, but a group of technologies. HTML and CSS can
be used in combination to mark up and style information. The DOM is accessed
with JavaScript to dynamically display – and allow the user to interact with – the
information presented. JavaScript and the XMLHttpRequest object provide a
method for exchanging data asynchronously between browser and server to avoid
full page reloads [24].

• JavaScript-JQuery

JavaScript (JS) is a dynamic computer programming language. It is most
commonly used as part of web browsers, whose implementations allow client-side
scripts to interact with the user, control the browser, communicate
asynchronously, and alter the document content that is displayed. It is also used in
server-side network programming with frameworks such as Node.js, game
development and the creation of desktop and mobile applications.
JavaScript is classified as a prototype-based scripting language with dynamic
typing and first-class functions. This mix of features makes it a multi-paradigm
language, supporting object-oriented, imperative, and functional programming
styles.

Thesis of postgraduate student Fasoulakis Pantelis Page 64

Despite some naming, syntactic, and standard library similarities, JavaScript and
Java are otherwise unrelated and have very different semantics. The syntax of
JavaScript is actually derived from C, while the semantics and design are
influenced by Self and Scheme programming languages.
JavaScript is also used in environments that aren't web-based, such as PDF
documents, site-specific browsers, and desktop widgets. Newer and faster
JavaScript virtual machines (VMs) and platforms built upon them have also
increased the popularity of JavaScript for server-side web applications. On the
client side, JavaScript has been traditionally implemented as an interpreted
language, but more recent browsers perform just-in-time compilation.
JavaScript has been standardized in the ECMAScript language specification [25].
JQuery is a cross-platform JavaScript library designed to simplify the client-side
scripting of HTML. Used by over 60% of the 10,000 most visited websites,
JQuery is the most popular JavaScript library in use today. JQuery is free, open
source software, licensed under the MIT License.
JQuery's syntax is designed to make it easier to navigate a document, select DOM
elements, create animations, handle events, and develop Ajax applications. JQuery
also provides capabilities for developers to create plug-ins on top of the JavaScript
library. This enables developers to create abstractions for low-level interaction and
animation, advanced effects and high-level, theme-able widgets. The modular
approach to the JQuery library allows the creation of powerful dynamic web pages
and web applications.
The set of JQuery core features—DOM element selections, traversal and
manipulation—enabled by its selector engine (named "Sizzle" from v1.3), created
a new "programming style", fusing algorithms and DOM data structures [26].

Web Services

The Web application is dynamically built, i.e. operations that we want and we

need change without needing some intervention in the code. To make contact with the
database essentially the application reads an XML, in which are stored all the
information we need to connect (Host, Database name, Username, Password).

On the home page shows one of the most important information in our system.
The current status of nodes values has as result to see directly if a Node is going to
run out of battery or if a room soon has trouble with the humidity or temperature.
These values are changed from the default values in the table of the administrator of
the web application.

Thesis of postgraduate student Fasoulakis Pantelis Page 65

Figure 7-3: Homepage of our website

Figure 7-4: Real Time Status - Web Alerts

Thesis of postgraduate student Fasoulakis Pantelis Page 66

In ‘‘WEB SERVICES/LIVE DATA’’ tab provides information and measurements
for each node separately from the measurements which have recorded the last 24
hours. These values are humidity, temperature, battery status and of course the date
and time of recording data.

Figure 7-5: Recorded Data in the last 24 hours for Node 2

In ‘‘WEB SERVICES/GRAPHICS’’ tab provides graphical representation of data
in recent 24 hours humidity, temperature and battery status of each node in common
graph with values- isolation feature. We have also the ability to save or print the
graph.

Thesis of postgraduate student Fasoulakis Pantelis Page 67

Figure 7-6: Graphical Representation of Data in the last 24 hours for Node 2

Finally, there is the possibility to save the data we want by selecting the format
initially either in xls or csv and then regulate for which period we want to store our
data. Once we make the appropriate settings press the DOWNLOAD button and it
starts downloading.

Figure 7-7: Reports

Thesis of postgraduate student Fasoulakis Pantelis Page 68

Conclusions

Initially, We construct a full Web application and software package which operate
independently and autonomously in relation to the programs provided by the
Crossbow (Memsic now) company. This package is structured in such a way that it is
easy to use and provides us with all the information that interest us immediately and
in particular information which the original program of Crossbow did not have the
ability to take or to process.

During the development of applications we concluded that there are several
technical problems on the connection of two applications between them because they
are based on different programming languages and environments. Also, we did the
programming of network nodes with preset programs of Crossbow (MoteView 2.0) on
Windows XP operating system because it was impossible to do on Windows 7.
However, we noticed that after the programming of nodes, using the MoteView 2.1
program on Windows 7 the sensors nodes self-organized actually to a network and
received normally measurements.

Finally, possible improvements of the platform would be the development of
software to monitor and interact the user via a mobile device or tablet that use android
operating system as well as the creating a new software for the nodes which will
consume less energy.

Thesis of postgraduate student Fasoulakis Pantelis Page 69

Chapter 8

Related Works

Environment monitoring is a natural candidate for applying wireless sensor
networks, since the physical variables that must to be monitored, e.g., temperature.
They are usually distributed over large regions. Environmental monitoring
applications can be broadly categorized into indoor and outdoor monitoring [28].

Indoor monitoring applications typically include buildings and offices monitoring.
These applications involve sensing temperature, light, humidity, and air quality. Other
important indoor applications may include fire and civil structures deformations
detection. Outdoor monitoring applications include chemical hazardous detection,
habitat monitoring, traffic monitoring, earthquake detection, volcano eruption,
flooding detection and weather forecasting. Sensor nodes also have found their
applicability in agriculture. Soil moisture and temperature monitoring is one of the
most important application of WSNs in agriculture. When monitoring the
environment, it is not sufficient to have only technological knowledge about WSN
and their protocols. It is also necessary the knowledge about the ecosystem.

Several projects, with real implementations, had focused on environmental sensor
networks; some of them are presented bellow.

GreatDuckIsland [29] was the first WSN implemented for habitat monitoring
purposes. College of Atlantic and Berkeley University conducts field research on
several remote islands. One of them, Great Duck Island (GDI) is located 15Km south
of Mount Desert Island, Main. Studying the usage pattern of the nesting burrows
when one or both parents alternate between incubation and feeding is the major
objective of this project. A single hop hierarchical network comprises 32 nodes in the
first phase and 120 in the last were set up at GDI. Berkeley Mica sensor nodes with
TinyOS installed were used to measure temperature, humidity and atmosphere
pressure and to detect the presence of the birds. Readings from sensor nodes are
periodically sampled and relayed from the local sink node to base station on the
island. The base station sends the data using a satellite link to a server connected to
the Internet.

Sonoma Dust [30] is a WSN, constituted by 120 Mica2dot nodes that were installed
on Sonoma County,California to monitor the redwood trees habitat conditions. Nodes
with TinyOS were programmed to measure the environmental conditions
(temperature, humidity and photo-synthetically active radiation) every 5 minutes and
forwarded them through a multi-hop mesh network to a local base station. The data is
sent from the base station to a computer located 70 Km away, through radio links. The
nodes were programmed to run at a very low duty cycle to save energy.

 A wireless sensor network was deployed to monitor eruptions at Tungurahua
volcano, located in central Ecuador [31]. This single hop network is constituted by
five sensor nodes where three of them are equipped with a specially constructed
microphone to monitor infrasonic signals originated by volcanic eruptions. The data
collected by the sensors are sent to a local sink and then relayed over radio links to a
computer located 9 Km away. Mica2 nodes with TinyOS were used.

Thesis of postgraduate student Fasoulakis Pantelis Page 70

Measurement the microclimate in potato crops is the main goal of Lofar agro project
[32]. The collected information will be used to improve the advice on how to combat
phytophtora within a crop, based on the circumstances within each individual field.
Phytophthora is a fungal disease in potatoes, their development and associated attack
of the crop depends strongly on the climatologically conditions within the field. A
total of 150 sensor nodes, similar to the Mica2 motes, were installed in a parcel for
crop monitoring. Nodes are manually localized and their location registered on a map.

Sensor nodes are equipped with sensors for registering the temperature and relative
humidity. In addition to the sensor nodes, the field is equipped with a weather station
to register the luminosity, air pressure, precipitation, wind strength, and direction. The
sensor nodes use TinyOS operating system. The data collected by the sensor nodes is
sent over a multi-hop routing protocol to the local sink node (field gateway) and
further transferred via Wi-Fi to Lofar gateway. The Lofar gateway is connected via
wire to the Internet and data is uploaded to a Lofar server and further distributed to a
couple of other servers.

In SECOAS project [33] a sensor network was deployed at Scroby sands off the
coast of Great Yarmouth and its purpose will be to monitor the impact of a newly
developed wind farm on coastal processes in the area. New sensor hardware, based on
MCU PIC 18F452 was developed in this project and a new operating system,
designated by kOS (kind-of operating system) was proposed to run on it. The sensor
nodes are equipped with sensors for registering the pressure, turbidity, temperature
and salinity. Sensor nodes, base stations on the sea and land stations, form the
hierarchical and single hop network. Nodes transmit their data to the sea base stations,
which will then transmit the data to the land station. Base stations are sensor nodes
equipped with additional functionalities, more power supplies and larger
communication range. The data accessed from the land station via Internet.

Foxhouse [34] get real time information about the habitat of foxes in a fox house. A
wireless sensor network in the Foxhouse case has 14 nodes organized in two clusters.
The network uses FFD nodes to relay data and RFD nodes for sensing. The sink node
is connected to a personal computer where data is stored. CiNet boards compliant
with IEEE 802.15.4 and based on ATmega 128L MCU are used on sensing nodes.
The sensing nodes are equipped with temperature, humidity and light sensors.

In Sensorscope project [35], two networks were deployed. The first network was
installed in Wannengrat to study environmental processes involving snow. The second
network was installed on a glacier in the canton Valais, Switzerland, to measure air
temperature, air humidity, surface temperature, wind direction and speed,
precipitation and solar radiation. Seven nodes were used in the first deployment and
sixteen nodes in the second. The similar solutions were used on both deployments. A
Shockfish TinyNode platform was chosen and it is composed by a Texas Instruments
MSP430 MCU and a Semtech XE1205 radio transceiver, operating in the 868 MHz
band. The sensing nodes and the sink node uses TinyOS operating system. A multi-
hop network is used to support communications between the sink node and the
sensing nodes. Sensing stations regularly transmit collected data (e.g., wind speed and
direction) to a sink, which, in turn, uses a gateway to relay the data to a server. GPRS,
Wi-Fi or Ethernet technologies can be used to connect the sink node to the data base
server, which can be installed remotely. Data is published on a real-time Google
Maps-based web interface and on Microsoft’s SensorMap website.

Thesis of postgraduate student Fasoulakis Pantelis Page 71

Bibliography

[1] Thesis : ‘‘ Supervision and management of crop area by using Wireless Sensor

Networks (WSN)’’ , Michalis Fragiadakis – George Vasilakis, Department of

Informatics Engineering – Technological Educational Institute of Crete, 2012

[2] Special Scientific Work - Wireless Sensor Networks : “Development GUI with

Matlab for taking measurements using the MTS400 / 420 board of the Crossbow”

Xartoumbekis Giorgos, University of Patra, Electronics Laboratoy, 2010

[3] Thesis: ‘‘ Control Connectivity of Wireless Sensors Network’’, Helen A.

Papageorgakopoulou, University of Patra, School of Engineering, Department of

Electrical and Computer Engineering, Systems and Control, 2009

[4] WSN: http://en.wikipedia.org/wiki/Wireless_sensor_network

[5] TinyOS - http://en.wikipedia.org/wiki/TinyOS

[6] IEEE standard 802.15.4-2003 - http://en.wikipedia.org/wiki/IEEE_802.15.4

[7] Zigbee specification – Zigbee Standards Organization – www.zigbee.org

[8] ∆ίκτυα Υπολογιστών – A.S Tanenbaum

[9] Protocols and Architectures for Wireless Sensor Networks – H. Karl, A. Willig

[10] http://en.wikipedia.org/wiki/Moving_average

[11] XMesh: XMesh_Users_Manual_7430-0108-01_C, Crossbow Technology

[12] Micaz – Mib520:

 MPR-MIB_Series_Users_Manual_7430-0021-08_A, Crossbow Technology

[13]MTS400/420:

MTS-MDA_Series_Users_Manual_7430-0020-05_A, Crossbow Technology

[14] XServe: XServe_Users_Manual_7430-0111-01_D, Crossbow Technology

[15] MoteConfig:

MoteConfig_Users_Manual_7430-0112-01_A, Crossbow Technology

[16] MoteView:

MoteView_Users_Manual_7430-0008-05_A, Crossbow Technology

[17] Cygwin: http://www.cygwin.com/

[18] PostgreSQL: http://en.wikipedia.org/wiki/PostgreSQL

Thesis of postgraduate student Fasoulakis Pantelis Page 72

[19] PgAdmin III:

http://en.wikipedia.org/wiki/PostgreSQL#Database_administration

[20] PHP: http://en.wikipedia.org/wiki/PHP

[21] HTML: http://en.wikipedia.org/wiki/HTML

[22] XML: http://en.wikipedia.org/wiki/XML

[23] CSS: http://en.wikipedia.org/wiki/Cascading_Style_Sheets

[24] AJAX: http://en.wikipedia.org/wiki/Ajax_%28programming%29

[25] JavaScript: http://en.wikipedia.org/wiki/JavaScript

[26] JQuery: http://en.wikipedia.org/wiki/JQuery

[27] MEMSIC:

 http://www.memsic.com/products/wireless-sensor-networks/development kits.html

[28] T. Arampatzis, J. Lygeros, and S. Manesis, “A survey of applications of wireless

sensors and wireless sensor networks,” in Proc. 13
th

 Mediterranean Conf. Control

Automation, Cyprus, Turkey, Jun. 2005, pp. 719-724.

[29] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. “An analysis of a large

scale habitat monitoring application,” In Proceedings of the Second ACM (SenSys),

Baltimore, November 2004.

[30] G. Tolle. J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. W. Hong, “A

Macroscope in the Redwoods,” In: Proceedings of the 3
rd

 ACM International

Conference on Embedded Networked Sensor Systems (SENSYS), ACM Press, San

Diego, CA, USA, pp. 51-63, November 2005.

[31] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J.

Lees, “Deploying a Wireless Sensor Network on an Active Volcano,” IEEE Internet

Computing, pp. 18-25, March/April, 2006.

[32] Lofar project, http://www.lofar.org/p/Agriculture.htm [July 2010].

[33] M. Britlon and L. Sacks, “The SECOAS project: Development of a self

organizing. Wireless sensor network for environmental monitoring”. 2
nd

International Work5hop on Sensor and Actor Network Protocols and Applications,

August 2004.

[34] I. Hakala, M. Tikkakoski, and I. Kivela , “Wireless sensor network in

environmental monitoring – case foxhouse,” in Proceedings of the Second

International Conference on Sensor Technologies and Applications (SENSORCOMM

2008), Cap Esterel, France, August 25-31 2008.

Thesis of postgraduate student Fasoulakis Pantelis Page 73

[35] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and M.

Parlange, “SensorScope: Out-of-the Box Environmental Monitoring,” Proceedings

of the 7
th

 international conference on Information processing in sensor networks, pp.

332-343, April 22-24, 2008.

[36] Contiki: http://en.wikipedia.org/wiki/Contiki

[37] Master Thesis: ‘‘Application of Wireless Sensor Networks for Environmental

Monitoring and Development of an Energy Efficient Cluster Based Routing ’’, Rohit

Vaish, Department of Electrical Engineering - National Institute of Technology

Rourkela 2008-2009

[38] ZigBee: http://en.wikipedia.org/wiki/ZigBee

Thesis of postgraduate student Fasoulakis Pantelis Page 74

Appendix:

WEB INTERFACE

Contact Database with Web Application:

To make the communication with the Database essentially the application reads an XML,
which is stored all the information we need to connect (Host, Database name, Username,
Password).

XML file:

<configuration>

<config>

<host> “host server” </host>

<dbname> “Database name” </dbname>

<user> “database user” </user>

<password> “database password” </password>

</config>

</configuration>

The PHP code to connect to the base is:

<?php

$dbh = pg_connect("host=$host dbname=$dbname user=$user

password=$password");

if (!$dbh) {

die("Error in connection: " . pg_last_error());

} ?>

In order to be able to read the above XML, we should perform the following php code:

<?php

$doc = new DOMDocument();

$doc->load('../xml/dbconfig.xml');

$configuration = $doc->getElementsByTagName("config");

foreach($configuration as $config)

{

$hosts = $config->getElementsByTagName("host");

$host = $hosts->item(0)->nodeValue;

$dbnames = $config->getElementsByTagName("dbname");

$dbname = $dbnames->item(0)->nodeValue;

$users = $config->getElementsByTagName("user");

Thesis of postgraduate student Fasoulakis Pantelis Page 75

$user = $users->item(0)->nodeValue;

$passwords = $config->getElementsByTagName("password");

$password = $passwords->item(0)->nodeValue;

}

?>

Web Alerts Values:

Default alerts values in our web site are presented below:

<!--For all nodes: Voltage Alarm: 2,6 volts -->
 <!--Node 2: Humidity Alarm 52% - Temperature Alarm 22°C -->
 <tr>
 <td>2</td>
 <td> < 52%</td>
 <td> > 22°C</td>
 <td> < 2.6 volts </td>
 </tr>

 <!--Node 4: Humidity Alarm 56% - Temperature Alarm 26°C -->
 <tr>
 <td>4</td>
 <td> < 56%</td>
 <td> > 26°C</td>
 <td> < 2.6 volts </td>
 </tr>

 <!--Node 6: Humidity Alarm 58% - Temperature Alarm 28°C -->
 <tr>
 <td>6</td>
 <td> < 58%</td>
 <td> > 28°C</td>
 <td> < 2.6 volts </td>
 </tr>

 <!--Node 3: Humidity Alarm 54% - Temperature Alarm 24°C -->
 <tr>
 <td>3</td>
 <td> < 54%</td>
 <td> > 24°C</td>
 <td> < 2.6 volts </td>
 </tr>

If we would like to change these values for all nodes, it is able to do into AlertsValues.xml

file, if we change the reference values of temperature, humidity and voltage:

Thesis of postgraduate student Fasoulakis Pantelis Page 69

<configuration>
 <config>
 <temp>22</temp> <!-- reference temperature -->
 <hum>52</hum> <!-- reference humidity -->
 <volt>2.6</volt> <!-- reference voltage -->
 </config>
</configuration>

In addition, we are able to change the values of each node (2, 3, 4, 6) separately into

WebAlerts.php file:

switch ($nod) {

 //temp1=22°C, hum1=52%
 case 2:
 $tempx= $temp1;
 $humx= $hum1;
 break;

 //temp=24°C,hum=54
 case 3:
 $tempx= $temp1+2;
 $humx= $hum1+2;
 break;

 //temp=26°C,hum=56
 case 4:
 $tempx= $temp1+4;
 $humx= $hum1+4;
 break;

 //temp=28°C,hum=58
 case 6:
 $tempx= $temp1+6;
 $humx= $hum1+6;
 break;

Graphic Display:

The graphic display of data per 24 hours is become from safemode.php file:

<?php

$select="to_char(result_time, 'HH24'),humid,humtemp,voltage";

$from="mts400_results";

$nodes=$nodexml;

$order="result_time";

Thesis of postgraduate student Fasoulakis Pantelis Page 70

$sql = "SELECT $select FROM $from WHERE $nodes order by $order DESC LIMIT 1";

$result = pg_query($dbh, $sql);

if (!$result) {

 die("Error in SQL query: " . pg_last_error());

}

while ($row = pg_fetch_array($result)){

$t=$row[0];

}

$sql = "SELECT $select FROM $from WHERE $nodes order by $order DESC";

$result = pg_query($dbh, $sql);

if (!$result) {

 die("Error in SQL query: " . pg_last_error());

}

$count=0;

$sum=0;

$cnt=0;

$j=0;

$sumvl=0;////////////

$sumtemp=0;////////////

while ($row = pg_fetch_array($result)){

 if ($t==$row[0]){

 $sum=$sum + (-2.0468+(0.0367*$row[1])+(-1.2955*0.000001*$row[1]*$row[1]));

 $sumtemp=$sumtemp +-39.7+0.01*$row[2];

 $sumvl=$sumvl + 1252.352/$row[3];//////////////

 $count=$count +1;///////////////////////////////

 }

 else if($t!=$row[0]){

 $j=$j+1;

 $echtime[$j]=$t;

 $echumtemp[$j]=number_format($sum/$count,2);///

 error_reporting(E_ERROR | E_PARSE);

 $echtemp[$j]=number_format($sumtemp/$count,2);///

 $echvl[$j]=number_format($sumvl/$count,2);////

 $cnt=$cnt+1;

 $t=$row[0];

 $sum=0;

 $count=0;

 $sumvl=0;//////

 $sumtemp=0;/////////

 if ($cnt==24)

 break;

 if ($echtime[$j]=='00')

Thesis of postgraduate student Fasoulakis Pantelis Page 71

 $echtime[$j]='24';

 }

}

 echo "<h3 id='node".$nod."'>Node ".$nod."</h3>
";

 $prg="container".$nod

 ?>

<script type="text/javascript">

var chart;

$(document).ready(function() {

chart = new Highcharts.Chart({

chart: {

 renderTo: '<?php echo $prg;?>',

 defaultSeriesType: 'line',

 marginRight: 130,

 marginBottom: 40

},

title: {

 text: 'Average Humidity(%)-Temperature(°C)-Voltage(V) for the last 24 hours',

 x: -20 //center

},

xAxis: {

 title: {

 text: 'Time(24 hour Format)'

 },

 categories: [

 <?php

 for ($i=24;$i>=1;$i=$i-1){

 echo $echtime[$i].",";

 }

 for ($i=24;$i>=1;$i=$i-1){

 $echtime[$i]='';

 }

 ?>

]

},

yAxis: {

 title: {

 text: '<?php echo $lefty; ?>'

 },

 plotLines: [{

 value: 0,

 width: 1,

 color: '#808080'

 }]

},

tooltip: {

 formatter: function() {

 return ''+ this.series.name +'
'+

Thesis of postgraduate student Fasoulakis Pantelis Page 72

 this.x +': '+ this.y;

 }

},

legend: {

 layout: 'vertical',

 align: 'right',

 verticalAlign: 'top',

 x: 10,

 y: 100,

 borderWidth: 0

},

series: [

{

 name: 'Humidity(%)',

 data: [

 <?php

 for ($i=24;$i>=1;$i=$i-1){

 echo $echumtemp[$i].",";

 }

 for ($i=24;$i>=1;$i=$i-1){

 $echumtemp[$i]='';

 }

 ?>

]

},{

 name: 'Temperature(°C)',

 data: [

 <?php

 for ($i=24;$i>=1;$i=$i-1){

 echo $echtemp[$i].",";

 }

 for ($i=24;$i>=1;$i=$i-1){

 $echtemp[$i]='';

 }

 ?>

]

},{

 name: 'Voltage(V)',

 data: [

 <?php

 for ($i=24;$i>=1;$i=$i-1){

 echo $echvl[$i].",";

 }

 ?>

]

}

Thesis of postgraduate student Fasoulakis Pantelis Page 73

]

});

}

);

</script>

<div id="<?php echo $prg;?>" style="width: 720px; height:350px; margin: 0 auto"></div>

Interaction user of web site and web developer with email:

A user can send us a message through email, as it is shown below:

This is achieved with Send_Mail.php file:

$ToEmail = 'pfasoul@gmail.com';

$EmailSubject = 'Site contact form';

$mailheader = "From: ".$_POST["validemail"]."\r\n";

$mailheader .= "Reply-To: ".$_POST["validemail"]."\r\n";

$MESSAGE_BODY = "Name: ".$_POST["fullname"]."\r\n\n";

$MESSAGE_BODY .= "Email: ".$_POST["validemail"]."\r\n\n";

$MESSAGE_BODY .= "Comment: ".nl2br($_POST["message"])."\r\n";

mail($ToEmail, $EmailSubject, $MESSAGE_BODY, $mailheader) or die ("Failure");

Thesis of postgraduate student Fasoulakis Pantelis Page 74

Display Mesh Network

In this image, it is illustrated a depiction of our database and it is shown how our mesh

network works. We observe that the node 3 sends his packets to base station through the node

4, but when we change his topology the node 3 sends packets to base through the node 2.

