

METHODOLOGY FOR WORKLOAD ANALYSIS AND SCHEDULING ON

HETEROGENEOUS EMBEDDED SYSTEMS

by

GAREFALAKIS EMMANOUIL

TECHNOLOGICAL EDUCATION INSTITUTE PIRAEUS

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF INFORMATICS ENGINEERING

SCHOOL OF APPLIED TECHNOLOGY

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2015

Approved by:

Supervisor

Dr KORNAROS GEORGIOS

Committee

Dr PAPADAKIS NIKOLAOS

Dr STRATAKIS DIMITRIOS

I

Acknowledgements

I especially want to thank my supervisor Kornaros G.

for his guidance and help that made this thesis possible.

II

To my wife Maria, for being supportive and encouraging.

To my son Giorgos, for the time I spent away from him.

Manos Garefalakis

III

Contents

Acknowledgements ... I

Contents ... III

List of Figures ... IV

List of Tables ... VI

Abstract ... 7

Chapter 1 - Introduction ... 8

Motivation – Thesis Objectives ... 8

Thesis Organization ... 10

Chapter 2 - Heterogeneous System Architecture (HSA) ... 11

Heterogeneous Systems ... 12

CPU – General Purpose GPU .. 12

Embedded Systems .. 13

OpenCL .. 15

HSA Intermediate Language (HSAIL) .. 16

Chapter 3 - Experimental Evaluation ... 19

Experimental setup .. 19

Target Platform .. 19

Benchmark Description ... 24

Evaluation metrics ... 27

Experimental Results ... 28

Measurements Graphs .. 28

Chapter 4 - Workload time prediction.. 51

Worst Case Execution Time .. 51

Regression analysis ... 52

Coefficient of determination .. 53

Modeling kernel for WCET ... 53

Chapter 5 - Kernels Concurrent Scheduling .. 69

Scheduling Simulation ... 70

Conclusions ... 72

Future Work .. 73

Bibliography .. 74

IV

List of Figures

Figure 2.1: A generic embedded system [41] .. 15

Figure 2. 2: NDRange, Work-Group, Work-Item [40] .. 18

Figure 2.3: Software Stack HSA Foundation [40] ... 18

Figure 3.1: Avnet ZedBoard - Zynq-7000 ... 19

Figure 3.2: Xilinx Zynq-7000 SoC Architecture [14, 17] .. 20

Figure 3.3: FPGA programmable logic [17] .. 22

Figure 3.4: MicroBlaze Architecture [20] .. 23

Figure 3.5: MicroBlaze Soft-Core Block Diagram [18] .. 23

Figure 3.6: Execution times required for solving the equation aX
3
+bX

2
+cX+d=0 with constants a,b,c,d

within the ranges -10<a<10 , -10<b<10 , -5<c<15 , -3<d<3 .. 29

Figure 3.7: Execution times for computing the SQRT of Unsigned Integer(Unsigned Integer range

within 0 - 4FEBB399) .. 30

Figure 3.8: Execution Times for the conversion of Degrees to Radians Degrees Range within 0
o
-500

o

.. 31

Figure 3.9: Execution Times for the computation of a stock price for a range of days within 10 – 365 32

Figure 3.10: Execution Times for creating a CRC code for a range of text size within 10-660 bytes ... 33

Figure 3. 11: Execution Times for finding 5 shortest paths in a Graph of adjacent Nodes within the

range of 5 - 50 .. 33

Figure 3. 12: Execution Times to find 5 – 50 shortest paths in a Graph of 50 adjacent Nodes 34

Figure 3. 13: Execution Times to execute the hash function for a range of bytes within 25- 9925 bytes

.. 34

Figure 3. 14: Execution Times for computing FFT & IFFT values for a range within 2 – 512............. 35

Figure 3. 15 : Execution Times for applying median filter on images with image size with 16 - 900

pixels .. 37

Figure 3. 16: Sample of Image Denoise Kernel tests ... 37

Figure 3. 17: Execution Times for applying Edge Detection on Images with image size within 16 – 196

pixels .. 38

Figure 3.18: Different aspect of the 3D Figure 3.12 with Region 1 and 2 ... 40

Figure 3.19: Different aspect of the 3D Figure 3.12 .. 40

Figure 3. 20: Execution Times for searching strings within 50-1000 chars in strings within 50-1000

chars (Caching Disabled) ... 40

Figure 3. 21: Different aspect of the 3D Figure 3.15 with Region 1 and 2 .. 41

Figure 3.22: Different aspect of the 3D Figure 3.15 .. 41

Figure 3.23 : Execution Times for K-means Clustering for Objects with Coordinates 2 Number of

Objects within 60-120 Number of Clusters 10 – 60 (Caching Enabled).. 43

Figure 3.24 : Different aspect of 3D Figure 3.23 ... 43

Figure 3. 25 : Different aspect of 3D Figure 23 ... 43

Figure 3. 26 : Execution Times for K-means Clustering, for Objects with Coordinates 2, Number of

Objects within 60-120, Number of Clusters 10 – 60 (Caching Disabled) ... 44

Figure 3. 27 : Different aspect of 3D Figure 3.26 .. 44

Figure 3. 28 : Different aspect of 3D Figure 3.26 .. 44

Figure 3. 29 : Execution Times for K-means Clustering for Objects with Coordinates 3 Number of

Objects within 60-120, Number of Clusters 10 – 60 (Caching Enabled)... 45

V

Figure 3. 30 : Different aspect of 3D Figure 3.29 .. 45

Figure 3. 31 : Different aspect of 3D Figure 3.29 .. 45

Figure 3. 32 : Execution Times for K-means Clustering for, Objects with Coordinates 3, Number of

Objects within 60-120,Number of Clusters 10 – 60 (Caching Disabled) .. 46

Figure 3. 33 : Different aspect of 3D Figure 3.32 .. 46

Figure 3. 34 : Different aspect of 3D Figure 3.32 .. 47

Figure 3. 35 : Execution Times for K-means Clustering for Objects with Coordinates 4, Number of

Objects within 60-120, Number of Clusters 10 – 60 (Caching Enabled)... 47

Figure 3. 36 : Different aspect of 3D Figure 3.35 .. 47

Figure 3. 37 : Different aspect of 3D Figure 3.35 .. 47

Figure 3. 38 : Execution Times for K-means Clustering for Objects with Coordinates 4, Number of

Objects within 60-120, Number of Clusters 10 – 60 (Caching Disabled) ... 48

Figure 3. 39 : Different aspect of 3D Figure 3.38 .. 48

Figure 3. 40 : Different aspect of 3D Figure 3.38 .. 48

Figure 3.41 : Execution Times for K-means Clustering for Objects with Coordinates 5, Number of

Objects within 60-120, Number of Clusters 10 – 60 (Caching Enabled)... 49

Figure 3.42 : Different aspect of 3D Figure 3.41 ... 49

Figure 3. 43 : Different aspect of 3D Figure 3.41 .. 49

Figure 3. 44 : Execution Times for K-means Clustering for Objects with Coordinates 5, Number of

Objects within 60-120, Number of Clusters 10 – 60 (Caching Disabled) ... 50

Figure 3.45 : Different aspect of 3D Figure 3.45 ... 50

Figure 3. 46 : Different aspect of 3D Figure 3.44 .. 50

Figure 4.1 : Execution times required for solving the equation aX
3
+bX

2
+cX+d=0 with constants

a,b,c,d within the ranges -10<a<10 , -10<b<10 , -5<c<15 , -3<d<3 ... 54

Figure 4.2 : Execution times for computing the SQRT of Unsigned Integer ... 54

Figure 4.3 : Execution Times for the conversion of Degrees to Radians Degrees Range within 55

Figure 4.4 : Execution Times for the computation of a stock price for a range of days within 10 – 365

.. 56

Figure 4.5 : Execution Times for creating a CRC code for a range of text size within 10-660 bytes 56

Figure 4.6 : Execution Times for finding 5 shortest paths in a Graph of adjacent Nodes within the

range of 5 - 50 .. 57

Figure 4.7 : Execution Times to find 5 – 50 shortest paths in a Graph of 50 adjacent Nodes 57

Figure 4.8: Execution Times to execute the hash function for a range of bytes within 25- 9925 bytes 58

Figure 4.9 : Execution Times for computing FFT & IFFT values for a range within 2 – 512.............. 59

Figure 4.10 : WCET for computing FFT values for a range within 2 – 512 (Caching Enabled) 59

Figure 4. 11 : WCET for computing FFT values for a range within 2 – 512 (Caching Disabled)........ 59

Figure 4. 12 : WCET for computing IFFT values for a range within 2 – 512 (Caching Disabled) 60

Figure 4.13 : Execution Times for applying median filter on images with image size with 16 - 900

pixels .. 61

Figure 4.14 : Execution Times for applying Edge Detection on Images with image size within 16 –

196 pixels ... 61

Figure 4. 15 : Execution Times for searching strings within 50-1000 chars in strings within 50-1000

chars (Caching Enabled) .. 62

Figure 4. 16 : Execution Times for searching strings within 50-1000 chars in strings within 50-1000

chars (Caching Disabled) ... 62

Figure 4. 17 : Execution Times for K-means Clustering for Objects with Coordinates 2 Number of

Objects within 60-120 Number of Clusters 10 – 60 (Caching Enabled).. 63

VI

Figure 4. 18 : Execution Times for K-means Clustering for Objects with Coordinates 2, Number of

Objects within 60-120, Number of Clusters 10 – 60(Caching Disabled) .. 64

Figure 4. 19 : Execution Times for K-means Clustering for, Objects with Coordinates 3,Number of

Objects within 60-120,Number of Clusters 10 – 60 (Caching Enabled).. 65

Figure 4. 20 : Execution Times for K-means Clustering for Objects with Coordinates 3, Number of

Objects within 60-120, Number of Clusters 10 – 60 (Caching Disabled) ... 65

Figure 4. 21: Execution Times for K-means Clustering for Objects with Coordinates 4, Number of

Objects within 60-120, Number of Clusters 10 – 60(Caching Enabled) ... 66

Figure 4. 22 : Execution Times for K-means Clustering for Objects with Coordinates 4,Number of

Objects within 60-120,Number of Clusters 10 – 60(Caching Disabled) ... 67

Figure 4. 23 : Execution Times for K-means Clustering for Objects with Coordinates 5, Number of

Objects within 60-120, Number of Clusters 10 – 60(Caching Enabled) ... 67

Figure 4. 24 : Execution Times for K-means Clustering for Objects with Coordinates 5 Number of

Objects within 60-120 Number of Clusters 10 – 60(Caching Disabled) ... 68

Figure 5. 1: Schedule for 7 tasks on 2 cpus.. 70

Figure 5. 2 : Schedule for 7 tasks on 4 cpus... 71

Figure 5. 3 : Schedule for 7 tasks on 2 cpus with power optimization .. 71

Figure 5. 4 : Schedule for 7 tasks on 4 cpus (With Power Optimization) .. 72

List of Tables

Table 2.1 : Common Design Requirements for Embedded Systems [41] ... 15

Table 3.1: Zynq I/O controllers .. 21

Table 3.2: MicroBlaze Processor v8.40.b Performance Levels (v14.4 XPS) .. 24

Table 3.3: List of Selected Kernels .. 27

Table 3.4: Sample Results of Cubic Solving Tests .. 28

Table 3.5 : Sample Result of Unsigned SQRT tests .. 29

Table 3.6 : Sample of Deg2Rad(x) Tests ... 30

Table 3.7 : Sample results of the BlackScoles Tests ... 31

Table 3.8 : Sample Results of the CRC32 tests ... 32

Table 3. 9: Sample Results of SHA-1 tests .. 34

Table 3. 10 : Samples of the FFT tests ... 36

Table 3. 11 : Sample of Image Edge Detection ... 38

Table 3. 12:Execution Times for searching strings within 50-1000 chars in strings within 50-1000

chars(Caching Enabled) ... 39

Table 5. 1 : Independent Task Simulation ... 70

Table 5. 2: Independent Tasks Simulation with power consumption optimization 71

7

Abstract

The shift towards multicore technologies is offering a great potential of computational power

for scientific and industrial applications. However, great challenges to software development

arise. Performance gains for data intensive and compute intensive applications can be

achieved by exploiting coarse-grained and fine-grained parallelism on all system levels and

improved scalability with respect to the increasing core counts as Butchy et al. state [4].

Reconfigurable hardware has received increasing attention in the past decade due to its

capability of being adaptable, short design time and low cost. Instead of using field-

programmable gate arrays (FPGAs) just as application specific integrated circuit (ASIC)

replacements, designers can combine reconfigurable hardware with general purpose

processors in a co-design system, providing a flexible and powerful means of implementing

computational applications [35].

In this work the first steps for the implementation of such a co-design system are provided.

The methodology that is proposed consists of:

a) selection of kernels or applications that will be modified and executed by the

processing elements

b) analysis and modeling of the kernels in order to perform execution time prediction

depended on data input

c) multiprocessors scheduling of independent tasks minimizing mean execution time

The final project leads to a many cores System on Chip (SoC) with the ability to execute data

intensive and compute intensive applications, taking into account optimal performance and

power consumption.

Keywords: FPGA, Kernels, Heterogeneous System Architecture, Workload Execution Time

prediction, Scheduling Multiprocessors

8

Chapter 1 - Introduction

In the last decades, the evolution of embedded systems progresses immensely. Embedded

systems have a very important role in the eras of technology and industry. This fact emerges

the great need of implementation of methods that assist and accelerate the design of embedded

systems and the evaluation of their performance from the first stages of design. It is also well

known that processing units, such as Graphics Processing Units (GPUs) and accelerators can

execute specialized processes faster than General Purpose Processors (CPUs). But the transfer

of the processing data from the hosts to the accelerators and the transfer back of computation

results to the hosts is a cost effective procedure in time and memory resources, especially in

embedded device with constrained resources.

This thesis is about the design of a methodology that aims to optimize performance of

constrained resources in an embedded device with heterogeneous architecture (HSA). The

main purpose is the optimal performance and reduced power consumption in heterogeneous

system architecture (HSA). The hardware platform that will be used contains an ARM Host

(CPU) and accelerators in which the performance of the system will be logged in order to

achieve the best implementation. The software used will be open source code derived from

various domains such as image processing (filter implementation, edge detection, etc.), digital

signal processing (k-means, fft, inverse fft, etc.) and models from the econometrics e.g. Black

Scholes Merton.

Finally the thesis closes with the implementation and simulation of a task scheduler based on

the partition approximation algorithm applied on many cores architecture.

Motivation – Thesis Objectives

The challenges regarding todays multicore technology and advancements that allow

integration of multiple accelerators in embedded systems was the motivation for this thesis.

The work of Zhong & He [25] with the idea that kernels are being executed from GP/GPU in

slices (small pieces) and scheduled in a smart way was the motivation of this thesis.

In the paper of Zhong & He [25] the implementation is performed using the CUDA

framework, which clearly obtained a high degree of acceptance within the high-performance

computing community; However, CUDA is a single vendor that works only with NVidia

hardware [2].

The main idea is such as kernels are executed on GP/GPUs they could also be executed on

specific accelerators, soft-cores with lower power consumption and lower cost which can be

9

included in a System on Chip in contrast to the GPUs that are expensive devices and have also

other constrains.

It could be achieved to run concurrent kernels on specific accelerators with different resources

and possibilities, using message passing technology or networks on chip. The kernels could be

preloaded on the accelerators and a program that manages the system to send input data and

get the results of the computations from each accelerator. The accelerators will be dedicated

and configured in an optimal way for specific tasks in the heterogeneous system.

In order to complete the whole project some stages must be completed. The first stage is to

find programs or kernels from different domains that can be executed from the accelerators.

The code should be modified in such a way to receive input data and send the results to a

system manager. This is the first objective of this thesis.

The system manager has to be able to schedule the kernels, independent or dependent tasks,

reducing mean finishing time of the workload [26]. For scheduling reasons it is important to

know the execution time of each kernel. The execution times of the kernels are dependent on

the input data set, which means that it is needed to model the execution times of each kernel

for a range of input data set. So, it is required to create a function which will include the

kernel models and returns the execution times for specific input data set. In order to create a

model for each kernel it is necessary to conduct tests with the kernels for a range of input data

set and log the execution times. This is the second objective of this thesis.

The last objective of this thesis but not last stage of the project is to implement a scheduling

algorithm for many cores in order to be executed from the system manager.

Finally, after the three first stages, the most important stage is to combine all work together,

something that is beyond the limits of this thesis and is part of the future work.

10

Thesis Organization

This thesis is organized as follows:

 In the section 2 titled “Heterogeneous System Architecture”, the basic concepts of

HSA and a hardware-aware on multicore processors and accelerators are presented.

 In the section 3 titled “Experimental Setup”, the list of selected kernels and the

procedure followed in order to perform the tests and logging of execution times of

each kernel is presented.

 In the section 4 titled “Workload time prediction”, the methodology followed in order

to model each kernel for predicting execution time dependent on different data inputs

is explained in details.

 In the Section 5 titled “Kernels Concurrent Scheduling”, a proposed algorithm for

multiprocessors scheduling and a simulation of the algorithm is described in order to

show the effectiveness of the algorithm.

 The thesis completes with a brief presentation of what was done in the conclusions and

closes with the future work. In the Future work the problems that researchers have to

tackle and the next steps that should be done are presented.

11

Chapter 2 - Heterogeneous System Architecture (HSA)

According to Su [1], heterogeneous system architecture represents a new era in computer

architecture. Its primary goal is that computer system designers must tightly integrate different

processing elements on a platform into one evolved central processor while providing a way to

software designers that does not require fundamentals changes. In other words heterogeneous

in computing refers to systems that use more than one kind of processors like CPUs, GPUs,

DSPs and other programmable accelerators tightly integrated into a single System on Chip

(SoC).

Kyriazis [3] in his technical report concludes that HSA is a unified computing framework. It

provides a single address space accessible to both CPU and GPU in order to avoid data

copying. It also provides user-space queuing for minimizing communication overhead and

finally provides preemptive context switching for better quality of service across all

computing elements in the system. In HSA CPUs and GPUs are unified into a single system

with common computing concepts and allows the developer to solve a greater variety of

complex problems more easily.

Brookwood [2] explains in a simple case paradigm how HSA works efficiently. For example a

platform like a smartphone, needs a CPU to run operating system tasks and various

applications (e.g. web browsing, video games), additionally there is a need of handling the

Graphics computations, which would increase the computational resources of the CPU that

would consequently increase the power consumption. Modern GPUs are specialized to handle

such computations more efficiently by accelerating the computations and by reducing the

power consumption. A smartphone must also handle Digital Signal Processing (DSPs) tasks in

real time, like converting the voice into binary stream and transmit it to the next cell phone

tower using different radio protocols and vice versa receive binary stream, reconstructing it to

voice that can be heard from the phone speaker. Additionally, users want to interact naturally

with their systems; they want their products to recognize faces, track eye movements, respond

to touches, voice and gestures. These tasks are accomplished more efficiently by

contemporary DSPs Chips than a general purpose CPU.

Each of these programming elements, CPUs, GPUs and DSPs are evolved separately the last

decades and designers assembled them in the systems they designed. Nowadays the increased

transistors budget permits them to place the CPU, the GPU and the DSP discrete elements

onto a single System on Chip (SoC). This physical integration enables the creation of smaller

12

devices, reduces the cost and saves power due to the on-chip communication, rather than

communications on a board.

Heterogeneous Systems

CPU – General Purpose GPU

According to Brookwood [2] the use of discrete GPUs to accelerate compute intensive

applications has gained popularity since it was first introduced by NVidia in the year 2006. A

great Number of supercomputers in the Top500 list rely on AMD and NVidia GPUs to deliver

breathtaking performance. A total of ninety (90) systems on the list are using accelerator

technology, up from seventy five (75) on November 2014. More than fifty (52) of these use

Nvidia chips, four (4) use ATI Radeon and there are now thirty five (35) systems with Intel

MIC technology, the Xeon Phi. Four (4) systems use a combination of Nvidia and Intel (Xeon

Phi) accelerators (http://top500.org/lists/2015/06/ last accessed 7/10/2015).

Additionally Brookwood highlights the big difference between discrete GPUs than integrated

GPUs SoC. Discrete GPUs have a raw performance advantage due to the fact that they contain

more floating point hardware and utilize dedicated high speed memory to store the parallel

programs and data. Despite the fact that with discrete GPUs there is the need of data transfer

between main memory and GPU dedicated memory using the PCIe bus whose bandwidth is

limited, the time and power consumption and the complicated programming model has a high

acceptance from the high performance community. On the contrary integrated GPUs possess

less raw floating point processors performance and can operate on data wherever it resides

within the system’s memory and there is no need to move data.

Varbanescu et al. [36] describes the General Purpose GPU programming models, as a

combination of coarse-grained and fine-grained parallelism. The host CPU sends the data-

parallel kernels as large collections of threads on the GPU. The GPUs are used for data

parallel workloads where thousands of threads can compute concurrently.

They also describe the programming models of NVidia CUDA, AMD Brook, PGI Fortran and

Pathscale ENZO and they conclude that almost all are very close to the architecture. All

models approach parallelization by identifying and offloading the kernels to be accelerated.

They differ only to the way the offload is performed. CUDA and Brook require from the users

to write code for this offload while PGI and ENZO work by inserting pragmas from available

sequential code. Furthermore, the models handle the massive parallelism in the kernels in

different ways. Data distribution is simplified but it is not optimized. Mapping and scheduling

13

are left to the hardware. Finally the effective use of the accelerator memory hierarchy should

be handled by the programmer.

Embedded Systems

By searching the literature we can find many definitions of what is an embedded system. Barr

[41] in his book defines that an “embedded system is a combination of computer hardware

and software, and perhaps additional mechanical or other parts, designed to perform a

specific function”. Kamal [42] in his book defines an embedded system as “ a system that has

embedded software and computer-hardware, which makes it a system dedicated for an

application(s) or specific part of an application or product or part of larger system” and also

lists a number of other definitions.

Sriram & Bhattacharyya [44] define that embedded systems are computers that are not first

and foremost computers. They appear in different systems like telecommunications,

automobiles, aircraft, electronics, toys, trains, security systems, weapons systems, printers,

routers, copiers, manufacturing systems, etc. Someone who is technically active person today

probably interacts regularly with more embedded systems than conventional computers. This

is a relatively recent phenomenon. It is not long time ago since automobiles depended on

finely tuned mechanical systems for the timing of ignition and its synchronization with other

actions. Also, many electronic devices, especially in telecommunications, were finely tuned

analog circuits.

Barr [41] highlights that in some cases, it would be possible even to build integrated chip (IC)

that does not contain a microprocessor/s and software. This is possible by replacing the

combination with a custom integrated circuit (IC) that performs the same functions in

hardware. But, flexibility is lost when a design is hard-coded in this way. It is easier and

cheaper to change the software than to redesign a piece of custom hardware.

History and Future of Embedded Systems

As it concerns the History and the Future of embedded systems Barr [41] says that the first

systems of that kind could not possibly have appeared before the year of 1971. It was the year

Intel introduced the world's first microprocessor. The chip 4004 was designed for use in a line

of business calculators produced by Busicom, a Japanese company. Intel proposed a general-

purpose chip that could be used throughout the entire line of calculators. Intel's idea was that

the software would give to each calculator its unique set of features.

14

Many of the electronic devices that surround us are embedded systems or include embedded

systems. Some examples are microwave ovens, TVs, HiFi System, fax machines, laser

printers, card readers, phones, cars and so on. It seems inevitable that the number of embedded

systems will continue to increase in high rates. Clearly, persons with the skills and desire to

design advanced or next generation embedded systems will be in great demand for the next

years [41].

Real-Time Systems

One category of embedded systems worth’s mentioning at this point is the real-time systems.

A real-time system is required to complete its work and serve its services on a timely basis. In

other words, real-time systems have strict timing requirements that they must meet. Examples

of real-time systems include digital control, signal processing, communicating systems, etc.

All these systems provide us with services that are related to high reliability and safety [45].

Real-time and embedded systems are gaining more and more importance in our society.

Recognizing the importance of these systems, the National Science Foundation has recently

established a research program dedicated to embedded systems. The European Union (EU),

European countries and Asian countries have also established many research programs in real-

time and embedded systems. Therefore, we can look forward to many important and exciting

results being developed in this area [45].

Variations on Embedded Systems

Unlike software designed for general-purpose computers, embedded software cannot usually

run on other embedded systems without significant modification, mainly because of the

incredible variety in the underlying hardware. The hardware in each embedded system is

tailored specifically to the application, in order to keep system costs low. The common

hardware in embedded systems is a processor or more than one, memories ROM and RAM

can in some cases, when there is no need of big amount of memory, be included on the same

chip or otherwise in external memory chips. Additionally there are inputs, connections to

sensors, buttons, etc. and outputs, connections to LEDs, LCD displays, etc. Figure 2.1 depicts

a general block diagram of an embedded system.

15

Figure 2.1: A generic embedded system [41]

The rest of embedded hardware is usually unique and they meet many competing design

criteria. Each system has different set of requirements, some or all of which can affect the

arrangements and tradeoffs made during the development of the product.

Barr [41] lists and analyses the list of possible constraints under which embedded hardware

designers work. Some constrains are the production cost, the processing power, the amount of

memory, the development cost, the Expected lifetime, the Number of units and the Reliability.

To these general requirements there are also detailed functional requirements of the system

itself. These are things that give the embedded system its unique identity.

The Table 2.1 illustrates the range of possible values for each of the previously mentioned

design requirements. These are only estimates and should not be taken too seriously. In some

cases the criteria are linked and are dependent with each other [41].

Criterion Low Medium High

Processor 4-bit or 8-bit 16-bit 32-bit or 64-bit

Memory < 16 KB 64 KB to 1 MB > 1 MB

Development cost < $100,000 $100,000 to $1,000,000 > $1,000,000

Production cost < $10 $10 to $1,000 > $1,000

Number of units < 100 100-10,000 > 10,000

Expected lifetime days, weeks, or months years Decades

Reliability may occasionally fail must work reliably must be fail-proof

Table 2.1 : Common Design Requirements for Embedded Systems [41]

OpenCL

The OpenCL (Open Computing Language) is an open standard for general purpose parallel

programming across CPUs, GPUs and other processors, giving to software-developers

portable and efficient access to the power of these heterogeneous processing platforms. It is a

framework for parallel programming and includes a language, API, libraries and a runtime

16

system to support software development. With OpenCL for example a programmer can code

general purpose programs that are executed on GPUs without the need to map their algorithms

onto a 3D graphics API such as DirectX or OpenGL.

Furthermore, the OpenCL offers a common API for program execution on systems composed

of different types of computational devices such as many-core CPUs, GPUs or other

accelerators [38]. It supports data-parallel and task-parallel programming models, it utilizes a

subset of ISO C99 with extensions for parallelism, it defines consistent numerical

requirements based on IEEE 754, it defines a configuration profile for handheld and

embedded devices, and it efficiently interoperates with OpenGL, OpenGL ES and other

graphics APIs.

The OpenCL programming interfaces assume heterogeneity between the host and all the

attached devices. Additionally, the programming interfaces include functions that [39]

 enumerate available target devices like CPUs, GPUs, and various accelerators

 manage the target devices context

 manage memory allocations

 perform host-devices memory transfers

 compile the OpenCL programs and kernel functions that the devices will execute

 launch kernels on the target devices

 query execution progress

 check for errors

With OpenCL kernel portability and accuracy across a variety of hardware is guaranteed, but

it is not guarantee that a particular kernel will achieve peak performance on different

processors architectures; the hardware’s features might make some programming strategies

more suitable for particular platforms than for others [39].

The strongest point of OpenCL is its portability by construction, due to the fact that using the

common platform model as a middleware. The OpenCL back-end targets one machine type

only and it is the responsibility of the vendors to provide the appropriate OpenCL drivers.

That’s why it is good motivation for all processor vendors to develop high-performing

OpenCL APIs for their platforms [36].

HSA Intermediate Language (HSAIL)

Kyriazis [3] in his technical review mentions that Heterogeneous System Architecture (HSA)

provides a unified view of the computing elements. The HSA allows a programmer to develop

applications that integrate CPUs (latency compute units - LCUs) with GPUs (throughput

17

compute units - TCUs) without any gaps and benefit from the best attributes of each

computing elements. The GPUs have passed in recent years from pure graphics accelerators to

general purpose parallel processors, supported by standard APIs and tools like DirectCompute

and OpenCL
TM

. Those APIs are a very good start, but many obstacles remain for the creation

of an environment that permits the GPU to be used with such an ease as the CPU for common

programming tasks. The HSA removes those obstacles, and allows the programmer to take the

advantages of the parallel processor in the GPU as a peer or co-processor to the traditional

multithreaded CPU.

On the one hand the LCU in a HSA environment is a generalization of a CPU that supports

apart from its native instruction set (ISA) and the HSA intermediate language (HSAIL)

instruction set. On the other hand the TCU is the generalization of a GPU that supports only

the HSA intermediate language (HSAIL) instruction set, which allows them to perform very

efficient parallel execution of tasks or threads.

The idea is that the compiler for a high-level language (e.g. OpenCL, C++ AMP, Java, etc.)

will generate HSAIL and the HSA driver, called finalizer, will generate the binary code using

just-in-time compilation. The idea of a pseudo-ISA has been used, long time ago, in many

previous portable software technologies like the Direct3D bytecode and the Java bytecode.

The HSAIL is low-leveled enough to uncover many details of the hardware and has been

carefully designed in such a way that the conversion from HSAIL to binary code is done very

quickly (“A Deep Dive on HSA”, http://www.anandtech.com/show/7677/amd-kaveri-review-

a8-7600-a10-7850k/6 last accessed 15/10/2015). The finalizer, the converter to binary code, is

typically lightweight and may be executed at install time, compile time, or program execution

time, all depends on the choices made by the platform implementation.

A question that arises is “Why Virtual ISA and Not the Real ISA?”. Rubin gives answers to this

question:

 ISA Gains performance

 Better time to market (because hardware is finished faster)

 Loses performance (cannot use every hardware trick)

 No legacy boat anchor

 Real ISA means one vendor or one chip family

 Hardware bugs can be fixed via software

 Code works on old and new machines

 Allows hardware innovation (under the table)

 Features not in HSAIL are not exposed, and are hard to access

18

(http://www.slideshare.net/hsafoundation/hsail-final-11junepptx last accessed 14/10/2015)

In Figure 2.2 we can see the parallel model that the HSAIL complies with.

Figure 2.2: NDRange, Work-Group, Work-Item [40]

In Figure 2.3 we can see the Software Task of HSA. The HSAIL is lower than OpenCL that’s

why it not another OpenCL but it extends the features of OpenCL.

Figure 2.3: Software Stack HSA Foundation [40]

19

Chapter 3 - Experimental Evaluation

Experimental setup

Target Platform

The Xilinx's Zynq-7000 SoC is divided into two sectors: the processing system and the

programmable logic. The processing system Figure 3.2 can be viewed as a microcontroller

featuring an ARM Cortex-A9 embedded processor. The programmable logic is equivalent to a

low-cost field programmable gate array (FPGA), which contains programmable hardware

Figure 3.3. A block diagram of the Zynq-7000 can be seen in Figure 3.2. Experiments for this

work were conducted on an Avnet ZedBoard [14], see Figure 3.1, a development board which

contains a Zynq-7000 [17].

Figure 3.1: Avnet ZedBoard - Zynq-7000

Zynq-7000 Processing System

In Figure 3.2 there is the block diagram of the Zynq-7000 processing system. The processing

system consists of the following discrete elements:

 an application processor unit (APU)

 memory controllers

 peripheral controllers

The APU is based on an ARM Cortex-A9 dual-core embedded processor. The fastest clock

speed is up to 1GHz. The default frequency clock speed of the ARM Cortex-A9 is 667 MHz.

For the experimental setup the ARM Cortex-A9 operated at its default frequency. Each

processing core features its own vector and floating point unit, a memory management unit

20

(MMU) and 64KB of Level 1 (L1) cache memory (32KB instruction, 32KB data). A memory

of 512KB of L2 cache is shared between the cores, along 256KB of on-chip SRAM. The APU

also includes an eight-channel Direct Memory Access (DMA) controller, system control

registers, a global interrupt controller and various timers. Outside the APU, the Zynq

processing system contains huge number of interconnects, interfaces and peripheral

controllers. An external memory interface allows both the processing system and the

programmable logic to be connected to external DDR memory. In the case of the ZedBoard,

512MB of DDR3 memory is available. Interfaces to NOR, NAND, and QSPI external ash

memory are included for nonvolatile storage options. Table 3.1 shows the peripheral

controllers available on the Board. External storage is available via USB ash drives, SD cards

or SPI-connected ash. Gigabit Ethernet provides high speed communication. Lower-speed

communication is available via USB, UART, CAN, SPI, and I2C. A GPIO module allows

control over LEDs, switches, and various I/O pins. These I/O modules are memory-mapped

and multiplexed so as to conserve pins when certain modules are unused. Multiple general-

purpose and high-performance interconnects allow interfacing of the processing system with

the programmable logic. An accelerator coherency port (ACP) provides direct access to L2

cache and on-chip memory for modules in the programmable logic. A cryptography block and

an analog to digital converter (ADC) are located within the programmable logic but are

available for the processing system's use [14, 17].

Figure 3.2: Xilinx Zynq-7000 SoC Architecture [14, 17]

21

I/O Type Number Available Example Use

SD flash 2 External storage

General Purpose I/O 1 LED, switch, etc.

Gigabit Ethernet 2 Network access, high-speed

communication

UART 2 Communication

CAN 2 Communication

USB 2 External memory, communication

SPI 2 External memory, low-speed

communication

I2C 2 External memory, low-speed

communication
Table 3.1: Zynq I/O controllers

Programmable Logic

Depending on the package chosen, Zynq's programmable logic is equivalent to either a low

cost (Xilinx Artix-7) or high-performance (Xilinx Kintex-7) field programmable gate array

(FPGA). An FPGA is a semiconductor device that has no predetermined function. Unlike an

application-specific integrated circuit (ASIC), whose operation is fixed during the

manufacturing process, an FPGA's function can be programmed repeatedly after

manufacturing. FPGAs are an ideal platform for prototyping potential designs or for

distributing a low volume of ICs. Typically, a function is implemented in hardware in order to

improve performance or power consumption over a similar software implementation. Because

an FPGA is a programmable hardware, a function can be duplicated many times with each

instance running in parallel, thus improving performance. While not commonly considered

low power devices, an FPGA implementation of a highly-parallel function may draw

considerably less power than the same operation implemented on a PC. Performance and

power are the conventional reasons for FPGA usage [17].

A generic means of creating combinational hardware is by using lookup tables (LUT). LUTs

simply store the appropriate output corresponding to each potential input of a function Flip-

ops (FF) are available at the outputs of LUTs as a storage element. LUTs and FF are grouped

into slices, and slices are combined into configurable logic blocks (CLB). A typical FPGA

architecture is shown in Figure 3.3. A sizable number of CLBs are included, along with block

RAM (BRAM) for use when a large amount of memory is required. Digital Signal Processing

(DSP) slices allow for faster processing of common arithmetic operations. I/O blocks (IOBs)

interface the design with external pins. These components connect via a programmable

interconnect. Connections may usually be made at the intersection of any two routing paths,

permitting cross-chip connections and communication. Each CLB is comprised of two slices,

22

for a total of four LUTs and eight FFs. LUTs can be configured as 6-input/1-output or 5-

input/2-output. BRAMs are dual-port and contain 36Kb of memory; each can be addressed as

a single unit or as two independent 18Kb BRAMs. DSP slices include a 25-bit pre-adder, 48-

bit adder and accumulator, 25x18 signed multiplier [15].

Figure 3.3: FPGA programmable logic [17]

MicroBlaze Soft-core Architecture

MicroBlaze is a 32-bit Harvard Reduced Instruction Set Computer (RISC) architecture

optimized for synthesis and implementation into Xilinx FPGAs with a separate 32-bit

instruction and data buses to execute programs and access data from both on-chip and external

memory at the same time. Figure 3.4 presents a simple MicroBlaze soft-core [20, 18]. It has

Harvard memory architecture and uses:

 two Local Memory Busses (LMB) for instruction and data memory

 two Block RAMs (BRAM)

 two peripherals connected via On-chip Peripheral Bus (OPB)

23

Figure 3.4: MicroBlaze Architecture [20]

Figure 3.5: MicroBlaze Soft-Core Block Diagram [18]

The MicroBlaze soft-core offer to the designer flexibility during the design process and allows

the designers to configure the microprocessor to meet the needs of their embedded systems

with adding custom instructions, Intellectual Proprieties (IPs), particular coprocessor, etc. To

increase the performance of the MicroBlaze, the designer can modify a number of features

through the setting parameters. The configured parameters may include Integer Multiplier

Units (mul), Barrel Shifter Units (BS), Integer Divider Units (ID), Floating Point Units (FPU),

Machine Status Register Units (MSRU) and Pattern Compare Unit (PCU) [20].

We used Xilinx Vivado 2014.4 for configuring the FPGA and to include a MicroBlaze soft-

core with an 8 KB cache memory (64KB is the maximum memory), 125 MHz (the maximum

frequency possible). For each application tested, it was used the exact same MicroBlaze

24

configuration and the resulting system was analyzed in execution time metric. In the work of

MHADHBI et al. [20] they used the metric of hardware area, which presents one of the metric

in the choice of embedded systems which requires an optimal area. However, in real-time

complex applications, both execution time, area and energy consumption determine the

efficiency and the high performance of the configured embedded system.

The over 70 user-configurable options of the MicroBlaze enables any processor use case from

a very small footprint state machine or microcontroller to a high performance compute-

intensive microprocessor-based system running Linux. MicroBlaze can operate in either 3-

stage pipeline mode to optimize size, or 5-stage pipeline mode to optimize speed delivering

faster DMIPs performance than any other FPGA-based soft-processing solution

(http://www.xilinx.com/tools/feature/csi/microblaze.htm). In Table 3.2 we can see the

performance levels of the MicroBlaze Processor.

Device Family Zynq-7000 SoC

Performance Optimized MicroBlaze with branch optimizations

(5-stage pipeline) 1.38 DMIPs/MHz
228DMIPs

Performance Optimized MicroBlaze

(5-stage pipeline) 1.30 DMIPs/MHz
259DMIPs

Area Optimized MicroBlaze

(3-state pipeline) 1.03 DMIPS/MHz
196DMIPs

Table 3.2: MicroBlaze Processor v8.40.b Performance Levels (v14.4 XPS)

Benchmark Description

In this thesis workload selection was made mostly from the MiBench suite [7], whose source

code is adapted to the ARM instruction set and is freely available to all researchers [8].

Additionally there were added some algorithms that are commonly used for benchmarking e.g.

K-means, BlackScholes, image processing, etc.

The MiBench Suite consists of six categories:

 Automotive and Industrial Control

 Network

 Security

 Computer Devices

 Office Automation

 Telecommunications

The fact that these different categories provide various program characteristics enables

researchers, in systems architecture, to examine the designs for a particular market segment.

http://www.xilinx.com/tools/feature/csi/microblaze.htm

25

Our main idea was to select one benchmark of each category and modify it to run on the

accelerator. In some cases, where the code was simple it was easy but in some other cases the

code was too complicated or too large to run on the accelerator and it was decided to search

for different available source code in the same domain.

Below we will describe the benchmark from each category that was used.

Automotive – basicmath

Automotive and Industrial Control category [8] aims to show the use of embedded processors

in embedded control systems. Typical applications are controllers in auto & moto industry,

engine performance monitors and sensor systems.

The basic math test performs simple mathematical computations that often don’t have

hardware support in embedded processors. In this paper the cases of cubic function solving,

integer square root and angle conversion from degrees to radians are used.

Network – Dijkstra

Network category [8] represents embedded processors in network devices like routers and

switches. The work done by these embedded processors consists of shortest path calculations,

tree, table lookups and data input/output.

The Dijkstra benchmark constructs a large graph in adjacency matrix representation and

calculates the shortest path between every pair of nodes using recursion of Dijkstra’s

algorithm. The Dijkstra’s algorithm is a well-known solution to the “shortest path” problem

and completes in O(n
2
) time.

Security – SHA-1

The security category in MiBench suite [8] includes several common algorithms for hashing

and data encryption/decryption.

The SHA-1 is the secure hash algorithm that produces a 160-bit (20-bytes) message digest for

a given input. It is often used in the exchange of encryption/decryption keys and for

generating digital signatures. Additionally it is used in the MD4 and MD5 hashing functions.

Consumer Devices

The category of consumer devices [8] focuses mainly on multimedia applications with the

representative algorithms being the jpeg encoding/decoding, the image color format

26

conversion, the image dithering color palette reduction, the MP3 encode/decode and finally

HTML typesetting.

Due to the complexity of the applications and the great amount of memory required any

adaptation was not applicable so it was decided to use a simpler code. For this category

representative source code for image processing was retrieved from the site of Burkardt [9].

Kernels about image denoise and image edge detection was used as workload.

Office Automation – StringSearch

The category of Office Automation [8] contains primarily text manipulation algorithms to

represent machinery, like printers, fax machines and word processors.

The StringSearch benchmark searches for given words in phrases using the case insensitive

comparison algorithm of Boyer Moore Horspool

(https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm

last accessed 15/10/2015).

Telecommunications – FFT/IFFT & CRC32

In this category benchmarks consist of encoding/decoding algorithms, frequency analysis and

a checksum algorithm [8].

In our case we used the FFT/IFFT and CRC32 encoding kernels.

The FFT/IFFT benchmark performs a Fast Fourier Transform and the Inverse transform on an

array of data. Fast Fourier transforms are used in digital signal processing to find contained

frequencies in a given input signal. The input data that we used in our workload is ramp.

The CRC32 kernel performs a 32-bit Cyclic Redundancy Check (CRC) on a file. CRC checks

are used to detect errors in data transmission.

In the workload selection we added some extra applications like Black & Scholes [9,10] and

K-means clustering algorithm [11,12].

Black–Scholes–Merton

The Black–Scholes or Black–Scholes–Merton model is a mathematical model of a financial

market containing certain derivative investment instruments. The model gives a theoretical

estimate of the price of European-style stock market options

(https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model last accessed 15/10/2015).

27

K-means clustering

The k-means clustering is a method of vector quantization that comes from the signal

processing. It is popular for cluster analysis in data mining. The K-means clustering targets to

partition n observations into k clusters in which each observation belongs to the cluster with

the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the data

into Voronoi cells. The problem is computationally difficult, considered NP-hard; however,

there are efficient heuristic algorithms that are used and converge quickly to a local optimum

(https://en.wikipedia.org/wiki/K-means_clustering last accessed 15/10/2015).

In the Table 3.3 we present the different kernels that were selected.

Cubic Solving

Unsigned Integer Square Root Computation

Degrees to Radians Conversion

BlackScholes Option price estimation

Dijsktra Shortest Path Algorithm

SHA-1

CRC32

FFT/IFFT

Image Denoise

Image Edge Detection

String Search

K-means Clustering

Table 3.3: List of Selected Kernels

Evaluation metrics

A hardware timer in the platform was used to measure execution cycles as a basis for

evaluating execution time depended on the problem size. In all measurements we get the

execution time in cycles. The duration of each cycle is 10 nsec which is 10
-8

 sec.

Another performance aspect is energy consumption. Sen and Wood [13] came to a conclusion

that it is possible to increase system performance by decreasing cache size for a given power

budget and they showed that workload reached performance improvements of 2-16%. In our

case it was revealed, from the measurements, that execution time in cycles was higher when

executing code without caching rather than with caching enabled. The model that could be

followed is in some accelerators to disable caching in order to reduce energy consumption.

https://en.wikipedia.org/wiki/Prototype
https://en.wikipedia.org/wiki/NP-hard

28

Experimental Results

In this section the results of the tests will be presented and explained. For each kernel there

were different inputs and the execution time in cycles is shown in the graphs. There are two

kinds of tests one with data cache enabled and one with data cache disabled.

Measurements Graphs

BasicMaths Cubic Solving

The Kernel Cubic test solves the third-degree polynomial equation, and serves to measure

performance in performing typical mathematical operations (addition, multiplication, basic

trigonometry).

The tests that were conducted for the computation of the third level equation

aX
3
+bX

2
+cX+d=0 for different values of the a, b, c, d constants. The ranges of the constants

are within the following limits -10<a<10, -10<b<10, -5<c<15, -3<d<3.

In this test we can see the results in execution time for cubic solving. As it can be seen in

Figure 3.6 there are two levels of execution time. The lower level is when there is only one

value as a result for the equation and the higher level is when there are three values that solve

the third level polynomial equation.

In the case of an enabled caching the results are 100000 cycles when there is only one solution

of the equation and 200000 cycles when there are three solution of the equation. In the other

case when the caching was disabled the execution time in cycles for one solution is 400000

cycles and when there are solutions around 550000 cycles.

A sample of the results table is in the following Table 3.4.

6,5 a1= -10 b1= 10 c1= -5 d1= 3 Cycles 125193 Solutions: 1 x[0]= 0,832

2 a1= -10 b1= 10 c1= -5 d1= 0,9 Cycles 125253 Solutions: 1 x[0]= 0,18

3 a1= -10 b1= 10 c1= -5 d1= -2,819 Cycles 122780 Solutions: 1 x[0]= -0,31

4 a1= -10 b1= 10 c1= -2,39 d1= 3 Cycles 125236 Solutions: 1 x[0]= 1,45

5 a1= -10 b1= 10 c1= -2,39 d1= 0,9 Cycles 183570 Solutions: 3 x[0]= 0,46 x[1]= 0,657 x[2]= 0,296

6 a1= -10 b1= 10 c1= -2,39 d1= -2,819 Cycles 124854 Solutions: 1 x[0]= -0,374

7 a1= -10 b1= 10 c1= 0,22 d1= 3 Cycles 124649 Solutions: 1 x[0]= 1,219

8 a1= -10 b1= 10 c1= 0,22 d1= 1 Cycles 124222 Solutions: 1 x[0]= 1,29

9 a1= -10 b1= 10 c1= 0,22 d1= -2,819 Cycles 124528 Solutions: 1 x[0]= -0,448

10 a1= -10 b1= 10 c1= 2,829 d1= 3 Cycles 124495 Solutions: 1 x[0]= 1,367

Table 3.4: Sample Results of Cubic Solving Tests

29

Figure 3.6: Execution times required for solving the equation aX3+bX2+cX+d=0 with constants a,b,c,d within the

ranges -10<a<10 , -10<b<10 , -5<c<15 , -3<d<3

Unsigned Integer Square Roots Computation

The Kernel Unsigned Integer SQRT [8] finds the square root of an unsigned integer with all

calculations being the base-two analogue of the square root algorithm. Bit-wise operations are

the prevailing type in this test case with absolutely no multiplications or divisions.

As we can see in the Figure 3.7 when the caching is enabled, execution time is around 2000

cycles, for a wide range of integers (0 - 4FEBB399). On the other hand when caching is

disabled the execution time is around 20000 cycles with the tendency to increment while the

integer increases.

The Table 3.5 is a sample of the results of the Kernel USQRT(x).

Integer Result Desc With Data Cache Cycles

0 sqrt(0) = 0 Total cycles 1777

5400 sqrt(5400) = 4815892 Total cycles 1867

10800 sqrt(10800) = 6810700 Total cycles 1894

16200 sqrt(16200) = 8341371 Total cycles 1930

21600 sqrt(21600) = 9631785 Total cycles 1876

27000 sqrt(27000) = 10768663 Total cycles 1867

32400 sqrt(32400) = 11796480 Total cycles 1813

37800 sqrt(37800) = 12741654 Total cycles 1867

Table 3.5 : Sample Result of Unsigned SQRT tests

0

200000

400000

600000

1

6
6

1
3

1

1
9

6

2
6

1

3
2

6

3
9

1

4
5

6

5
2

1

5
8

6

6
5

1

7
1

6

7
8

1

Ex
e

cu
ti

o
n

 t
im

e
 in

 C
yc

le
s

Number of Executions

Cubic Solving Evaluation
aX3+bX2+cX+d=0

-10<a<10 , -10<b<10 , -5<c<15 , -3<d<3

With Data Cache

No Data Cache

30

Figure 3.7: Execution times for computing the SQRT of Unsigned Integer(Unsigned Integer range within 0 -

4FEBB399)

Degrees to Radians Conversion

In this test the conversion of degrees to radians is applied. As we can see in Figure 3.8 the

execution time for conversion is around 2700 cycles when caching is enabled and 7800 cycles

when caching is disabled. The range of degrees converted was from 0
o

to

500

o
 degrees.

Normally the results of the conversion between 0
o

– 360
o
 degrees would be enough but for

testing reasons the tests conducted were within the range of 0
o
 – 500

o
 degrees in order to

verify that there is no difference.

 The Table 3.6 is a sample of the test performed for the Degrees to Radians Kernel.

0 degrees 0 radians Total cycles 437

0,5 degrees 0,8 radians Total cycles 2789

1 degrees 0,17 radians Total cycles 2789

1,5 degrees 0,26 radians Total cycles 2853

2 degrees 0,34 radians Total cycles 2789

2,5 degrees 0,43 radians Total cycles 2769

3 degrees 0,52 radians Total cycles 2853

3,5 degrees 0,61 radians Total cycles 2777

4 degrees 0,69 radians Total cycles 2789

4,5 degrees 0,78 radians Total cycles 2762

Table 3.6 : Sample of Deg2Rad(x) Tests

0
5000

10000
15000
20000
25000

0
1

4
0

9
4

0
0

2
8

1
8

8
0

0
4

2
2

8
2

0
0

5
6

3
7

6
0

0
7

0
4

7
0

0
0

8
4

5
6

4
0

0
9

8
6

5
8

0
0

4
2

0
9

2
A

A
9

4
4

5
E8

C
5

9
4

6
B

3
EE

0
9

4
9

0
9

4
FB

9
4

B
5

EB
1

6
9

4
D

B
4

1
3

1
9

Ex
e

cu
ti

o
n

 t
im

e
 in

 C
yc

le
s

Unsigned Ιnteger

Unsigned Integer SQRT

With Data Cache

No Data Cache

31

Figure 3.8: Execution Times for the conversion of Degrees to Radians Degrees Range within 0o-500o

Black & Scholes

In this application the price of an option is estimated for different number of days using the

Black Scholes algorithm. It can be seen in Figure 3.9 that as the number of days increases the

execution time accordingly increases too. It can also be observed that when caching is enabled

the execution time is lower than when caching is disabled.

In the Table 3.7 there is a sample of the tests performed with Black Scholes Application.

 No of Days Option Price

n= 10 Total cycles: 1078228 asset price x[10] 2,209

n= 20 Total cycles: 2114111 asset price x[20] 2,609

n= 30 Total cycles: 3277024 asset price x[30] 1,327

n= 40 Total cycles: 4296202 asset price x[40] 3,127

n= 50 Total cycles: 5480005 asset price x[50] 1,436

n= 60 Total cycles: 6515138 asset price x[60] 1,876

n= 70 Total cycles: 7553654 asset price x[70] 2,400

n= 80 Total cycles: 8620348 asset price x[80] 2,219

n= 90 Total cycles: 9787587 asset price x[90] 2,237

n= 100 Total cycles: 11004253 asset price x[100] 1,115
Table 3.7 : Sample results of the BlackScoles Tests

0

2000

4000

6000

8000

10000

0
3

6
7

2
1

0
8

1
4

4
1

8
0

2
1

6
2

5
2

2
8

8
3

2
4

3
6

0
3

9
6

4
3

2
4

6
8Ex

e
cu

ti
o

n
 T

im
e

 in
 C

yc
le

s

Degrees

Degrees to Radians Conversion

With Data Cache

No Data Cache

32

Figure 3.9: Execution Times for the computation of a stock price for a range of days within 10 – 365

CRC32

The 32-bit cyclic redundancy check (CRC) error-detecting code is performed in this kernel.

As it can be seen the execution time depends on the size of the data that the check value is

computed. As the data size increases, accordingly increases the execution time too. The

Caching also affects the execution time. When caching is enabled the computation is faster. In

Figure 3.10 the Data size ranges from 1 – 660 bytes.

In Table 3.8 there is a sample of the test performed for the CRC32 kernel.

 Data Size Cycles Check Value

Data Size 10 Total cycles: 791 DB63106E

Data Size 60 Total cycles: 3357 9F0875FE

Data Size 110 Total cycles: 5209 086BE43E

Data Size 160 Total cycles: 7521 D43CD9CC

Data Size 210 Total cycles: 9561 C304553C

Data Size 260 Total cycles: 11781 9DB4B794

Data Size 310 Total cycles: 13842 34D3D4AC

Data Size 360 Total cycles: 16037 10D92D68

Data Size 410 Total cycles: 18265 43D170C6

Data Size 460 Total cycles: 20206 202F21F8

Data Size 510 Total cycles: 22280 DBB45A49

Data Size 560 Total cycles: 24321 18B0D900

Data Size 610 Total cycles: 26354 772D238C

Data Size 660 Total cycles: 28257 EA7AB5B9

Table 3.8 : Sample Results of the CRC32 tests

0

20000000

40000000

60000000

80000000

100000000

120000000

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

Ex
ec

u
ti

o
n

 t
im

e
in

 C
yc

le
s

Number of Days

Black & Scholes

With Data Cache

No Data Cache

https://en.wikipedia.org/wiki/Error_detection_and_correction

33

Figure 3.10: Execution Times for creating a CRC code for a range of text size within 10-660 bytes

Dijsktra

As it was mentioned in the benchmark description, the Dijkstra benchmark constructs a large

graph in adjacency matrix representation and then calculates the shortest path between every

pair of nodes using recursion of the Dijsktra’s algorithm.

In Figure 3.11 the execution time in cycles is logged for different number of nodes in the

graph. The scope was to log the time needed to find 5 shortest paths while the number of

nodes increases. The result is that while the number of nodes increases the execution time in

cycles is growing in exponential rate.

In Figure 3.12 execution time in cycles was logged for 50 nodes in the graph while the

number of shortest paths increases by five (5). The number of shortest paths begins from 5 to

50. As we can observe in Figure 3.12 the time is the same for any number of shortest path,

this can be explained from the fact that the algorithm in order to find the path needs to search

the paths between all the nodes of the graph.

Figure 3. 11: Execution Times for finding 5 shortest paths in a Graph of adjacent Nodes within the range of 5 - 50

0

50000

100000

150000

200000

250000

300000

1
0

1
1

0

2
1

0

3
1

0

4
1

0

5
1

0

6
1

0

Ti
m

e
ex

ec
u

ti
o

n
 in

 C
yc

le
s

Data Size (Bytes)

CRC32

With Data Cache

No Data Cache

0

2000000

4000000

6000000

8000000

10000000

12000000

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Number of Nodes

Cycles finding 5 shortest Paths

No Data Cache

With Data Cache

34

Figure 3.12: Execution Times to find 5 – 50 shortest paths in a Graph of 50 adjacent Nodes

SHA-1

In Figure 3.13 the execution time in cycles was logged for the computation of the message

digest for different data size (25 - 9925 bytes) messages. The results show that the

computation time increases proportionally while the length of the message is increasing too.

The calculation rate is greater when cache is enabled in contrast when it is disabled.

Figure 3.13: Execution Times to execute the hash function for a range of bytes within 25- 9925 bytes

In Table 3.9 it is a sample of the tests performed.

Bytes 225 Total cycles: 55806 BA9867F3 25C30980 CF079B71 FA07AAFC 40825A56

Bytes 325 Total cycles: 88918 D19A42B5 80FA6E6F 0B6200CF 3A3ADDEC F5D170C7

Bytes 425 Total cycles: 109512 14BBADF2 3E4B62AD A9E9D5ED 081C16B7 38B3EEB9

Bytes 525 Total cycles: 142624 939DC1C8 C800E63F 53590F5C 6275E765 9DD3CB73

Bytes 625 Total cycles: 163218 D5DF091E 56E304DF 1555D728 6B694FE7 3FD93F8C

Bytes 725 Total cycles: 196330 E7250304 934CFACE 56CBE4E2 62E45BF1 CBECAE04

Bytes 825 Total cycles: 216924 4220EB0C F3D29879 4AC5A934 685BC243 647BF7D2

Bytes 925 Total cycles: 250036 7DAAE909 1D1970A9 3478C790 76A78506 BEDA10F8

Table 3.9: Sample Results of SHA-1 tests

0

2000000

4000000

6000000

8000000

10000000

12000000

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Number of Shortest Paths

50 Nodes

No Data Cache

With Data Cache

0

5000000

10000000

15000000

20000000

25000000

30000000

2
5

9
2

5

1
8

2
5

2
7

2
5

3
6

2
5

4
5

2
5

5
4

2
5

6
3

2
5

7
2

2
5

8
1

2
5

9
0

2
5

9
9

2
5

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Data Size (bytes)

SHA-1 computation

With Data Cache

No Data Cache

35

Digital Signal Processing

FFT & IFFT

Fast Fourier transforms are widely used for many applications in engineering, science, and

mathematics. Gilbert Strang (1994) described the fast Fourier transform as "the most

important numerical algorithm of our lifetime" and it was included in Top 10 Algorithms of

20th Century by the IEEE journal Computing in Science & Engineering

(https://en.wikipedia.org/wiki/Fast_Fourier_transform last accessed 15/10/2015). If we

perform a search on the Google for the words “FFT algorithms” the results will yield almost

330.000 web pages.

The Fast Fourier Transform (FFT) is an algorithm that computes the Discrete Fourier

Transform (DFT) of a sequence, or it’s inverse. The Fast Fourier Transform (FFT) is a faster

version of the Discrete Fourier Transform (DFT). The FFT utilizes some sophisticated

algorithms to do the same thing as the DFT, but very fast. The Fourier analysis is the

conversion of a signal from its original domain time or space, to the frequency domain and the

reverse conversion. This results to the reduction of computing complexity of the DFT from

O(n
2
) to O(n log n) where n is the data size.

The kernel code written in C language was retrieved from

https://github.com/prst/TM4C1294/blob/master/FFT.c (last accessed 15/10/2015) which was

tweaked to run on the MicroBlaze accelerator as a function. The tests performed were ramps

with an increasing number of samples. From the samples, the algorithm finds their FFT values

and the original sequence using the inverse FFT. In Figure 3.14 we can see the results of the

tests.

Figure 3.14: Execution Times for computing FFT & IFFT values for a range within 2 – 512

0

20000000

40000000

60000000

80000000

100000000

120000000

2

3
2

6
4

1
2

8

1
2

8

2
5

6

2
5

6

2
5

6

2
5

6

5
1

2

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Number of FFT Values

FFT & IFFT

FFT With Data Cache

IFFT With Data Cache

FFT No Data Cache

IFFT No Data Cache

https://en.wikipedia.org/wiki/Fast_Fourier_transform

36

In Table 3.10 it can be seen the execution times for computing the FFT values of an increasing

number of samples of the ramps that were created and the inverse process the creation of the

original sequence.

Nx = 2 NFFT = 2 Total cycles for FFT: 31186 Total cycles for IFFT: 33754

Nx = 7 NFFT = 8 Total cycles for FFT: 204701 Total cycles for IFFT: 246652

Nx = 12 NFFT = 16 Total cycles for FFT: 457306 Total cycles for IFFT: 564867

Nx = 17 NFFT = 32 Total cycles for FFT: 1008303 Total cycles for IFFT: 1266023

Nx = 22 NFFT = 32 Total cycles for FFT: 1014936 Total cycles for IFFT: 1278634

Nx = 27 NFFT = 32 Total cycles for FFT: 1019225 Total cycles for IFFT: 1271897

Nx = 32 NFFT = 32 Total cycles for FFT: 1024358 Total cycles for IFFT: 1261734

Nx = 37 NFFT = 64 Total cycles for FFT: 2265023 Total cycles for IFFT: 2815385

Nx = 42 NFFT = 64 Total cycles for FFT: 2279737 Total cycles for IFFT: 2815796

Table 3.10 : Samples of the FFT tests

Image Processing

Image Denoise

The Image Denoise is a kernel written in C Language by Burkart [9]. According to the

developer, the kernel uses the median filter to try to remove noise from an image. The gray

scale image is represented by using a two dimensions (2D) array of positive integers over

some range 0 to GMAX. The value 0 indicates black pixels, and GMAX white pixels.

Intermediate values represent pixels with shades of gray in a natural way. Accordingly, a color

image can be represented by using a set of three two dimensions (2D) arrays, which R, G, and

B stand for the intensity of the red, green and blue signals which form the color image. The

common maximum value could be assumed as the RGBMAX.

In our test cases ASCII PGM format were used due to the fact that they are convenient to pass

as inputs parameters in the function that was created. The noise ("salt and pepper") was

applied on images of different sizes. That is because a scattering of individual pixels have

been reset to the lowest or highest possible values in a random way. In a gray scale picture,

such noise looks like salt and pepper that was added to the picture.

Burkart [9] explains how the algorithm works, since an image is in a large degree smooth,

each pixel should actually be close enough to the values of pixels nearby, which is not true for

the salt and pepper pixels. So a way to make the noise go away is to replace each pixel by the

median value of itself and its neighbors. During the tests conducted, it was noticed that when

the filter was implemented more than once, the image was looking more and more to the

original image. The method used in this kernel is very simple in contrast to other more

37

sophisticated filters. The code used is available here

http://people.sc.fsu.edu/~jburkardt/c_src/image_denoise/image_denoise.html (last accessed

15/10/2015)

Figure 3.15 : Execution Times for applying median filter on images with image size with 16 - 900 pixels

In Table 3.16 can be seen a sample of the test applying median filter on differnet image size

pictures.

Number of rows = 4 Number of columns = 4 Maximum pixel intensity = 255 Cycles 12774

Number of rows = 5 Number of columns = 5 Maximum pixel intensity = 255 Cycles 20091

Number of rows = 6 Number of columns = 6 Maximum pixel intensity = 255 Cycles 28087

Number of rows = 7 Number of columns = 7 Maximum pixel intensity = 255 Cycles 45370

Number of rows = 8 Number of columns = 8 Maximum pixel intensity = 255 Cycles 49164

Number of rows = 9 Number of columns = 9 Maximum pixel intensity = 255 Cycles 66311

Number of rows = 10 Number of columns = 10 Maximum pixel intensity = 255 Cycles 73279

Number of rows = 11 Number of columns = 11 Maximum pixel intensity = 255 Cycles 87746

Number of rows = 12 Number of columns = 12 Maximum pixel intensity = 255 Cycles 102624

Number of rows = 13 Number of columns = 13 Maximum pixel intensity = 255 Cycles 122663

Number of rows = 14 Number of columns = 14 Maximum pixel intensity = 255 Cycles 139874

Number of rows = 15 Number of columns = 15 Maximum pixel intensity = 255 Cycles 156543

Number of rows = 20 Number of columns = 20 Maximum pixel intensity = 255 Cycles 276893

Number of rows = 25 Number of columns = 25 Maximum pixel intensity = 255 Cycles 489624

Number of rows = 30 Number of columns = 30 Maximum pixel intensity = 255 Cycles 602092

Figure 3.16: Sample of Image Denoise Kernel tests

Image Edge Detection

Burkart [9] is also the developer of the Image edge detection kernel. The kernel is written in C

language and detects the edges in an image. The algorithm applies the N.E.W.S. which is a

very simple edge detection scheme, which compares the North, East, West, and South

neighbors of a pixel in order to determine if the pixel lies along an edge. In the literature we

0

1000000

2000000

3000000

4000000

5000000

6000000

1
6

3
6

6
4

1
0

0

1
4

4

1
9

6

4
0

0

9
0

0

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Image Pixels

Image Denoise

With Data Cache

No Data Cache

38

can find many sophisticated edge detection algorithms, but this was very suitable for the tests

we needed to do. The C code was modified in order to be executed on the MicroBlaze

microprocessor as a function. The execution times of the kernel were logged for different

image size pictures. The results are depicted in Figure 3.17. The code of the kernel is available

here http://people.sc.fsu.edu/~jburkardt/c_src/image_edge/image_edge.html (last accessed

14/10/2015).

Figure 3.17: Execution Times for applying Edge Detection on Images with image size within 16 – 196 pixels

The Table 3.11 is a sample of the tests performed.

Rows= 4 Cols= 4 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 415639

Rows= 5 Cols= 5 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 415336

Rows= 6 Cols= 6 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 415303

Rows= 7 Cols= 7 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 415169

Rows= 8 Cols= 8 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 415089

Rows= 9 Cols= 9 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414938

Rows= 10 Cols= 10 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414927

Rows= 11 Cols= 11 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414762

Rows= 12 Cols= 12 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414604

Rows= 13 Cols= 13 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414463

Rows= 14 Cols= 14 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414320

Table 3.11 : Sample of Image Edge Detection

Search String

The Boyer–Moore–Horspool algorithm or Horspool's algorithm is an algorithm for finding

substrings in strings and was published by Nigel Horspool in 1980 [21]. It is a simplification

of the Boyer–Moore string search algorithm which is also related to the Knuth–Morris–Pratt

algorithm. The algorithm trades space for time in order to achieve a complexity of O(N) on

0

100000

200000

300000

400000

500000

600000

700000

1
6

2
5

3
6

4
9

6
4

8
1

1
0

0

1
2

1

1
4

4

1
6

9

1
9

6

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Image pixels

Image Edge Detection

With Data Cache

No Data Cache

39

random text rather than O(MN) in the worst case, where the length of the searching words is

M and the length of the search string is N

(https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm).

In our test cases we performed multiple tests of the string search algorithm. The searches were

different substrings sizes in a string whose size was increasing. This led to the results of

execution times in cycles that depended on two independent variables, the string size and the

substring size. The Figures 3.12 & 3.19 depict the 3D results of execution times depended on

the substring and the string size. In Figure 3.12 can be seen the results for the case of caching

enabled and in the Figure 3.19 are the results for caching disabled.

The red points in Figure 3.18 are values that are excluded from the model for predicting

execution times. Two regions of points are excluded. The first Region contains the execution

times that are produced from the algorithm and they reach the lower bounds of the model and

the second region contains the execution times where the string to be found is larger than the

string to be searched. These two regions are excluded due to the fact that we need the higher

bound of the model in order to predict the Worst Case Execution Time. The regions can be

seen in Figures 3.18 and 3.21.

The Figures 3.18 and 3.19 depict diferrent aspects of the 3D Figure 3.12.

Table 3.12:Execution Times for searching strings within 50-1000 chars in strings within 50-1000 chars(Caching

Enabled)

0
100

200
300

400
500

600
700

800

0
200

400
600

800

1000

0

1

2

3

4

5

x 10
4

Find String Data Size (String To be Found)

Search String Kernel

Data Caching Enabled

Search String Data Size (String To Search)

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

40

Figure 3.18: Different aspect of the 3D Figure 3.12 with Region 1 and 2

Figure 3.19: Different aspect of the 3D Figure 3.12

Figure 3.20: Execution Times for searching strings within 50-1000 chars in strings within 50-1000 chars (Caching

Disabled)

02004006008000 200 400 600 800 1000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

Search String Data Size (String To Search)

Search String Kernel

Data Caching Enabled

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

100 200 300 400 500 600
700 800 900 1000

0
200

400
600

800
1000

0

1

2

3

4

5

x 10
5

Find String Datasize (String to be found)

Search String Kernel

Data Caching Disabled

Search String DataSize (String to Search)

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

0 100 200 300 400 500 600 700 800

0

500

10000

1

2

3

4

5

x 10
4

Search String Data Size (String To Search)

Find String Data Size (String To be Found)

Search String Kernel

Data Caching Enabled

E
xe

cu
ti

on
 T

im
e

in
 C

yc
le

s

Region 1

Region 2

41

The Figures 3.21 and 3.22 depict different aspects of the 3 Dimensional Figure 3.20.

Figure 3. 21: Different aspect of the 3D Figure 3.15 with Region 1 and 2

Figure 3.22: Different aspect of the 3D Figure 3.15

100 200 300 400 500 600 700 800 900 1000

0
500
10000

1

2

3

4

5

x 10
5

S
ea

rch
 S

trin
g

 D
a

ta
S

ize (S
trin

g
 to

 S
ea

rch
)

Find String Datasize (String to be found)

Search String Kernel

Data Caching Disabled

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

200400600800100002004006008001000

0

1

2

3

4

5

x 10
5

Find String Datasize (String to be found)

Search String Kernel

Data Caching Disabled

Search String DataSize (String to Search)

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

Region 1

Region 2

42

K-means Clustering

The K-means clustering is a method of vector quantization which originates from signal

processing and is very popular for cluster analysis in data mining. The K-means clustering

algorithm is defined by Hartigan [55]. The aim of the K-means algorithm is to divide

M points with N dimensions into K clusters so that the within-cluster sum of squares

is minimized. It is not practical to require that the solution has minimal sum of

squares against all partitions, except when M, N are small and K equals to 2. The aim

of the algorithm is to find those solutions where no movement of a point from one

cluster to another will reduce the within-cluster sum of squares [54]. The problem is

computationally difficult, NP-hard, but there are efficient heuristic algorithms that are

commonly applied and meet quickly to a local optimum.

For the tests that were performed in this kernel modeling was the most difficult issue due to

the fact that there were three independent variables to search for the relationships among

them. The variables were the number of coordinates, the number of clusters and the number of

objects. In order to conduct the tests, the number of coordinates was held fixed and we logged

the execution times for a range of objects (60-120 objects) and a range of clusters (10-60

clusters). The procedure was repeated for a range of fixed coordinates (2-5 coordinates). The

test results are in the Figures 3.23 – 3.46 for the case of data cache enabled and for data cache

disabled.

43

Objects with Number of Coordinates 2 and Data Cache Enabled

Figure 3.23 : Execution Times for K-means Clustering for Objects with Coordinates 2 Number of Objects within 60-

120 Number of Clusters 10 – 60 (Caching Enabled)

Figures 3.24 and 3.25 are different aspects of 3 Dimensional Figure 3.23.

Figure 3.24 : Different aspect of 3D Figure 3.23

Figure 3. 25 : Different aspect of 3D Figure 23

10 20 30 40 50 60

60
80

100
120

2
4
6
8

10
12

x 10
6

Number of Clusters

K-means Clustering

Objects with 2 Coordinates

Cache Enabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

10 20 30 40 50 60

60
80
100
120

2

4

6

8

10

12

x 10
6

Number of Objects

Number of Clusters

K-means Clustering

Objects with 2 Coordinates

Cache Enabled

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

204060

60708090100110120

2

4

6

8

10

12

x 10
6

K-means Clustering

Objects with 2 Coordinates

Cache Enabled

Number of Objects

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

Number of Clusters

44

From the Figures we can conclude that as the Number of Objects and the Number of Clusters

increase then the execution time increases.

Objects with Number of Coordinates 2 and Data Cache Disabled

Figure 3. 26 : Execution Times for K-means Clustering, for Objects with Coordinates 2, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Disabled)

Figures 3.27 and 3.28 are different aspects of 3 Dimensional Figure 3.26.

Figure 3. 27 : Different aspect of 3D Figure 3.26

Figure 3. 28 : Different aspect of 3D Figure 3.26

10 20 30 40 50 60

60
80

100
120
0

5

10

x 10
7

Number of Clusters

K-means Clustering

Objects with 2 Coordinates

Data Cache Disabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

20406060708090100110120

0

2

4

6

8

10

x 10
7

Number of Clusters

K-means Clustering

Objects with 2 Coordinates

Data Cache Disabled

Number of Objects

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

10 20 30 40 50 60

60
80

100
120

0

2

4

6

8

10

x 10
7

K-means Clustering

Objects with 2 Coordinates

Data Cache Disabled

Number of Clusters

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

Number of Objects

45

Objects with Number of Coordinates 3 and Data Cache Enabled

Figure 3. 29 : Execution Times for K-means Clustering for Objects with Coordinates 3 Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Enabled)

Figures 3.30 and 3.31 are different aspects of 3 Dimensional Figure 3.29.

Figure 3. 30 : Different aspect of 3D Figure 3.29

Figure 3. 31 : Different aspect of 3D Figure 3.29

10 20 30 40 50 60

60
80

100
120
0

5

10

x 10
6

Number of Clusters

K-means Clustering

Objects with 3 Coordinates

Cache Enabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

10 20 30 40 50 60
6080100120

0

2

4

6

8

10

12

x 10
6

Number of Objects

Number of Clusters

K-means Clustering

Objects with 3 Coordinates

Cache Enabled

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

204060

60708090100110120

0

2

4

6

8

10

12

x 10
6

K-means Clustering

Objects with 3 Coordinates

Cache Enabled

Number of Objects

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

Number of Clusters

46

Objects with Number of Coordinates 3 and Data Cache Disabled

Figure 3. 32 : Execution Times for K-means Clustering for, Objects with Coordinates 3, Number of Objects within 60-

120,Number of Clusters 10 – 60 (Caching Disabled)

Figures 3.33 and 3.34 are different aspects of 3 Dimensional Figure 3.32

Figure 3. 33 : Different aspect of 3D Figure 3.32

10 20 30 40 50 60

60
80

100
120
0

5

10

x 10
7

Number of Clusters

K-means Clustering

Objects with 3 Coordinates

Data Cache Disabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

10 20 30 40 50 60

60

80

100

120

0

2

4

6

8

10

12

x 10
7

N
u

m
b

er o
f O

b
jects

K-means Clustering

Objects with 3 Coordinates

Data Cache Disabled

Number of Clusters

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

204060 60708090100110120

0

2

4

6

8

10

12

x 10
7

K-means Clustering

Objects with 3 Coordinates

Data Cache Disabled

Number of Objects

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

Number of Clusters

47

Figure 3. 34 : Different aspect of 3D Figure 3.32

Objects with Number of Coordinates 4 and Data Cache Enabled

Figure 3. 35 : Execution Times for K-means Clustering for Objects with Coordinates 4, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Enabled)

Figures 3.36 and 3.37 are different aspects of 3 Dimensional Figure 3.35

Figure 3. 36 : Different aspect of 3D Figure 3.35

Figure 3. 37 : Different aspect of 3D Figure 3.35

10 20 30 40 50 60

60
80

100
120

2
4
6
8

10
12
14

x 10
6

Number of Clusters

K-means Clustering

Objects with 4 Coordinates

Data Cache Enabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

204060
60708090100110120

2

4

6

8

10

12

14

x 10
6

N
u

m
b

er o
f C

lu
sters

K-means Clustering

Objects with 4 Coordinates

Data Cache Enabled

Number of Objects

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

10 20 30 40 50 60

60
80
100

120

2

4

6

8

10

12

14

x 10
6

K-means Clustering

Objects with 4 Coordinates

Data Cache Enabled

Number of Clusters

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

Number of Objects

48

Objects with Number of Coordinates 4 and Data Cache Disabled

Figure 3. 38 : Execution Times for K-means Clustering for Objects with Coordinates 4, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Disabled)

Figures 3.39 and 3.39 are different aspects of 3 Dimensional Figure 3.38.

.
Figure 3. 39 : Different aspect of 3D Figure 3.38

Figure 3. 40 : Different aspect of 3D Figure 3.38

10 20 30 40 50 60

60
80

100
120

2
4
6
8

10
12

x 10
7

Number of Clusters

K-means Clustering

Objects with 4 Coordinates

Data Cache Disabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

10 20 30 40 50 60 6080100120

2

4

6

8

10

12

x 10
7

Number of Objects

Number of Clusters

K-means Clustering

Objects with 4 Coordinates

Data Cache Disabled

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

204060 60708090100110120

2

4

6

8

10

12

x 10
7

Number of Objects

K-means Clustering

Objects with 4 Coordinates

Data Cache Disabled

Number of Clusters

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

49

Objects with Number of Coordinates 5 and Data Cache Enabled

Figure 3.41 : Execution Times for K-means Clustering for Objects with Coordinates 5, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Enabled)

Figures 3.42 and 3.43 are different aspects of 3 Dimensional Figure 3.41.

Figure 3.42 : Different aspect of 3D Figure 3.41

Figure 3. 43 : Different aspect of 3D Figure 3.41

10 20 30 40 50 60

60
80

100
120

5

10

15

x 10
6

Number of Clusters

K-means Clustering

Objects with 5 Coordinates

Data Cache Enabled

Number of Objects

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

102030405060

60
80
100
120

2

4

6

8

10

12

14

x 10
6

N
u

m
b

er o
f O

b
jects

K-means Clustering

Objects with 5 Coordinates

Data Cache Enabled

Number of Clusters

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

20
40

60

60708090100110120

2

4

6

8

10

12

14

x 10
6

K-means Clustering

Objects with 5 Coordinates

Data Cache Enabled

Number of Objects

Number of Clusters

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

50

Objects with Number of Coordinates 5 and Data Cache Disabled

Figure 3. 44 : Execution Times for K-means Clustering for Objects with Coordinates 5, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Disabled)

Figures 3.45 and 3.46 are different aspects of 3 Dimensional Figure 3.44.

Figure 3.45 : Different aspect of 3D Figure 3.45

Figure 3. 46 : Different aspect of 3D Figure 3.44

10 20 30 40 50 60

60
80

100
120

2
4
6
8

10
12
14

x 10
7

Number of Clusters

K-means Clustering

Objects with 5 Coordinates

Data Cache Disabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

20
40
60

60708090100110120

2

4

6

8

10

12

14

x 10
7

N
u

m
b

er o
f C

lu
sters

K-means Clustering

Objects with 5 Coordinates

Data Cache Disabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

10 20 30 40 50 60

6080100120

2

4

6

8

10

12

14

x 10
7

K-means Clustering

Objects with 5 Coordinates

Data Cache Disabled

Number of Clusters

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

Number of Objects

51

Chapter 4 - Workload time prediction

In this section the methodology that was followed in order to have a reliable estimation of

execution time of each kernel will be described. Each kernel requires data as input and returns

the computational results for each input data set. To estimate the execution time of each kernel

is a very important procedure, especially for real time embedded systems. Furthermore it is

also important to have tight upper bound on execution time for a variety of reasons.

It is essential to estimate execution time for each kernel, for scheduling reasons [23], for

efficient use of resources [24] or even for allowing an embedded system to identify anomalous

software behaviors in order to provide online reconfiguration and re-execution in run-time

[22].

Before continuing to the description of the methodology followed, important definitions will

be provided about the WCET (Worst Case Estimation Time), the Regression Analysis and the

Coefficient determination known as R-Square.

Worst Case Execution Time

According to Wikipedia (https://en.wikipedia.org/wiki/Worst-case_execution_time last

accessed 15/10/2015) the worst-case execution time (WCET) of a computational task is the

maximum length of time the task could take to execute on a particular hardware platform. It is

typically used in reliable real-time systems, where understanding the worst case timing

behavior of software is important for reliability or correct functional behavior.

Wilhelm et al. [46] in their work define that the determination of upper bounds on execution

times is commonly called Worst-Case Execution Times (WCETs) and that it is a necessary

step in the development and validation process for hard real-time systems. This problem is

hard if the processor’s architecture has components such as caches, pipelines, branch

prediction, and other speculative components. In their paper they describe different

approaches to this problem and surveys several available tools and research prototypes.

Hard real-time systems need to satisfy strict timing constraints, which stem from the systems

they control. For example, a computer system that controls the behavior of an engine in a

vehicle should respond to inputs within a specific amount of time. In general, upper bounds on

the execution times should comply with these constraints. Unfortunately, it is not possible in

general to obtain upper bounds on execution times for programs. Otherwise, someone could

solve the known “halting problem” [46].

52

While WCET is potentially applicable to real-time systems, in practice the assurance of

WCET is mainly used by real-time systems that are related to high reliability or safety. The

increasing use of software in automotive systems leads to the need of using WCET analysis of

software.

The Common methods used for Finding WCET are:

 End-to-end measurements of code for a subset of data inputs – test cases. This method

is often called dynamic timing analysis.

 Manual static program analysis techniques such as measurements of parts of the task

instructions for each function, loop, etc. and then combining them to give better

predictions.

But according to Wilhelm et al. [46] these methods don’t guarantee to give bounds on the

execution time and so are not safe for hard real-time systems.

The worst case execution time (WCET) analysis refers to the execution time of single thread,

task or process. However, on modern hardware with multi-core architecture, tasks in the

system will affect the WCET of a given task if they share cache memory and other hardware

features. Further, task scheduling events like blocking or interrupting should be considered in

WCET analysis if they can occur in a particular system. Therefore, it is important to consider

the framework in which WCET analysis is applied [46].

Regression analysis

According to the Wikipedia (https://en.wikipedia.org/wiki/Regression_analysis last accessed

15/10/2015) in statistics, regression analysis is a process, for estimating the relationships

between variables. It includes techniques for modeling and analyzing several variables, when

the aim is on the relationship among a dependent variable and one or more independent

variables. More specifically, regression analysis helps someone understand how the value of

the dependent variable changes when any one of the independent variables changes, while the

independent variables stay fixed.

Sykes [51] mentions that regression techniques have long been central to the field of economic

statistics. Increasingly, they have become important to lawyers and legal policy makers as

well, but we can see that are also used in the field of computer science.

A wide range of test cases are found in the literature that use regression analysis for modeling

in computer science, like the paper of Yang et al. “Estimation of Execution times on

53

Heterogeneous Supercomputer Architectures” [48] or the paper of Giusto et al. “Reliable

estimation of execution time of embedded software” [49] that are modeling execution times of

software on different architectures. In the work of Li & John “Run-time Modeling and

Estimation of Operating System Power Consumption” [50] are modeling the power

consumption of different Operating System tasks.

Coefficient of determination

In the Wikipedia (https://en.wikipedia.org/wiki/Coefficient_of_determination last accessed

15/10/2015) the definition Coefficient of determination in statistics is denoted R
2
 or r

2
. It is a

number that indicates how well data fit a statistical model like a line or a curve. It is used in

the context of statistical models that aim to the prediction of future outcomes or the testing of

hypotheses, based on related information. It provides a measure of how well observed

outcomes are replicated by the model, as the proportion of total variation of outcomes

explained by the model. The coefficient of determination ranges from 0 to 1. But In some

special cases R
2
 can yield negative values, cases that don’t concern this paper.

Modeling kernel for WCET

Since it is impractical to compute for every possible input data set a kernel’s actual execution

time was decided to resolve this problem by trying to identify each program’s worst-case input

data set or executing the kernels with a wide range of input data set. The execution times were

collected and processed in order to model each kernel for the WCET for a given data set.

Regression analysis was performed using MATLAB Curve Fitting Tool in order to create the

mathematical model for each kernel and finally a function was implemented in C language

that computes the estimated WCET of each kernel provided independent input data sets.

Next in this section, for each kernel the mathematical model created will be presented. For

each kernel and for the same input data set the results were collected for the cases of enabled

and disabled data caching.

The Figures presented in Chapter 3 will also be presented and commented in this section in

order to avoid changing of pages while reading this paper.

BasicMaths Cubic Solving

In this benchmark the execution time is depended on the number of the values that solve the

third degree polynomial and the execution time is between 400000-600000 cycles when

https://en.wikipedia.org/wiki/Coefficient_of_determination

54

caching is disabled and 120000-200000 cycles when caching is enabled. So the function

returns the maximum value of the data in order to get the estimated WCET. For testing

purposes the function that returns the execution time, for testing purposes, has the option to

return the minimum and average value of the data collected.

Figure 4.1 : Execution times required for solving the equation aX3+bX2+cX+d=0 with constants a,b,c,d within the

ranges -10<a<10 , -10<b<10 , -5<c<15 , -3<d<3

Unsigned Integer Square Roots Computation

In this benchmark the execution time is depended on the integer that the Square Root is

computed whose maximum value is around 210000 cycles when caching is disabled and

around 2000 cycles when caching is enabled. So the function returns the maximum value of

the data in order to get the estimated WCET. For testing purposes the function that returns the

execution time, has the option to return the minimum and average value of the data collected.

Figure 4.2 : Execution times for computing the SQRT of Unsigned Integer

Degrees to Radians Conversion

0

200000

400000

600000

1

6
6

1
3

1

1
9

6

2
6

1

3
2

6

3
9

1

4
5

6

5
2

1

5
8

6

6
5

1

7
1

6

7
8

1

Ex
e

cu
ti

o
n

 t
im

e
 in

 C
yc

le
s

Number of Executions

Cubic Solving Evaluation
aX3+bX2+cX+d=0

-10<a<10 , -10<b<10 , -5<c<15 , -3<d<3

With Data Cache

No Data Cache

0
5000

10000
15000
20000
25000

0
1

4
0

9
4

0
0

2
8

1
8

8
0

0
4

2
2

8
2

0
0

5
6

3
7

6
0

0
7

0
4

7
0

0
0

8
4

5
6

4
0

0
9

8
6

5
8

0
0

4
2

0
9

2
A

A
9

4
4

5
E8

C
5

9
4

6
B

3
EE

0
9

4
9

0
9

4
FB

9
4

B
5

EB
1

6
9

4
D

B
4

1
3

1
9

Ex
e

cu
ti

o
n

 t
im

e
 in

 C
yc

le
s

Unsigned Ιnteger

Unsigned Integer SQRT

With Data Cache

No Data Cache

55

In this benchmark the execution time is independent of the value that is Converted to Degrees.

As we can see in the graph the mean value is around 7800 cycles when caching is disabled and

around 2800 cycles when caching is enabled. So the function returns the maximum value of

the data in order to get the WCET. For testing purposes the function that returns the execution

time, has the option to return the minimum and average value of the data collected.

Figure 4.3 : Execution Times for the conversion of Degrees to Radians Degrees Range within

Black & Scholes

In this program it is observed that the execution times are depended on the Number of Days in

a linear way in both cases of data caching disabled and data caching enabled.

The mathematical model is polynomial of first degree f(x)=p1*x+p2.

In the case of Data Cache Enabled p1=1084e+05 and p2= -2e+04

In the case of Data Cache Disabled p1=3054e+05 and p2= -5821e+04

The value of the R-Square is expected to be between 0 – 1. In both cases it is R-Square=0,999,

which means that the model computed is very close to the real values collected.

0

2000

4000

6000

8000

10000

0
3

6
7

2
1

0
8

1
4

4
1

8
0

2
1

6
2

5
2

2
8

8
3

2
4

3
6

0
3

9
6

4
3

2
4

6
8Ex

e
cu

ti
o

n
 T

im
e

 in
 C

yc
le

s

Degrees

Degrees to Radians Conversion

With Data Cache

No Data Cache

56

Figure 4.4 : Execution Times for the computation of a stock price for a range of days within 10 – 365

CRC32

In this program it is observed that the execution times are depended on the Number of Bytes

that are used to compute the CRC32 in a linear way in both cases of data caching disabled and

data caching enabled.

The mathematical model is polynomial of first degree f(x)=p1*x+p2.

In the case of Data Cache Enabled p1=42,21 and p2= 702,1

In the case of Data Cache Disabled p1= 380 and p2= 278

The value of the R-Square is expected to be between 0 – 1. In both cases it is R-Square=1.

Which means that the model computed perfectly fits the data.

Figure 4.5 : Execution Times for creating a CRC code for a range of text size within 10-660 bytes

Dijsktra

0

20000000

40000000

60000000

80000000

100000000

120000000

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

Ex
ec

u
ti

o
n

 t
im

e
in

 C
yc

le
s

Number of Days

Black & Scholes

With Data Cache

No Data Cache

0

50000

100000

150000

200000

250000

300000

1
0

1
1

0

2
1

0

3
1

0

4
1

0

5
1

0

6
1

0

Ti
m

e
ex

ec
u

ti
o

n
 in

 C
yc

le
s

Data Size (Bytes)

CRC32

With Data Cache

No Data Cache

57

In this program the execution times are dependent on the number of nodes that are included in

the graph. As the number of Nodes increases we observe that the execution time increases in

an exponential way. The model for this case is a power of first degree f(x)=p1*X^p2.

In the case of Data Cache Enabled p1=281 and p2= 2,147 with R-Square=0,9877

In the case of Data Cache Disabled p1= 2620 and p2= 2,107 with R-Square=0,9991

The data were collected with constrain that 5 shortest paths should be returned.

Figure 4.6 : Execution Times for finding 5 shortest paths in a Graph of adjacent Nodes within the range of 5 - 50

In this case, it must be highlighted that the number of shortest paths that are returned from the

program does not affect the execution times. This can be seen from the following graph were

the execution time remains almost the same while the number of required shortest paths

increases and the number of nodes remains 50.

Figure 4.7 : Execution Times to find 5 – 50 shortest paths in a Graph of 50 adjacent Nodes

0

2000000

4000000

6000000

8000000

10000000

12000000

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Number of Nodes

Cycles finding 5 shortest Paths

No Data Cache

With Data Cache

0

2000000

4000000

6000000

8000000

10000000

12000000

5

1
5

2
5

3
5

4
5

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Number of Shortest Paths

50 Nodes

No Data Cache

With Data Cache

58

SHA-1

In this program it is observed that the execution times are depended on the Number of Bytes

that are used to compute the SHA-1 in a linear way in both cases of data caching disabled and

data caching enabled.

The mathematical model is polynomial of first degree f(x)=p1*x+p2.

In the case of Data Cache Enabled p1=276,4 and p2= -6018

In the case of Data Cache Disabled p1= 2792 and p2= -5,651e+04

The value of the R-Square is between 0 – 1 and in both cases R-Square=1. Which means that

the model computed perfectly fits the data.

Figure 4.8: Execution Times to execute the hash function for a range of bytes within 25- 9925 bytes

FFT & IFFT

In this kernel the execution time is dependent from the next higher power of two (2), called

NFFT complex number, which is greater than the Number of the signal samples. For example

if the number of signal samples (Nx) is 10 then the next higher power of two (2) is NFFT

complex number is 2
4
=16 . In the same way if the samples of the signal samples (Nx) are 30

then the NFFT complex number is 2
5
=32.

As it can be observed from the Figure 4.9 the model looks like a stairs line depended on the

NFFT. In order to convert this model to linear model the lower values of the data values were

excluded.

0

5000000

10000000

15000000

20000000

25000000

30000000

2
5

9
2

5

1
8

2
5

2
7

2
5

3
6

2
5

4
5

2
5

5
4

2
5

6
3

2
5

7
2

2
5

8
1

2
5

9
0

2
5

9
9

2
5

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Data Size (bytes)

SHA-1 computation

With Data Cache

No Data Cache

59

Figure 4.9 : Execution Times for computing FFT & IFFT values for a range within 2 – 512

The model from the regression analysis for this case is a power of first degree f(x)=p1*X^p2.

In the case FFT with Data Cache Enabled p1= 1.895e+04 and p2= 1,157 with R-

Square=0,9999

In the case FFT with Data Cache Disabled p1= 7.275e+04 and p2= 1,142 with R-Square=1

Figure 4.10 : WCET for computing FFT values for a range within 2 – 512

(Caching Enabled)

Figure 4. 11 : WCET for computing FFT values for a range within 2 – 512

(Caching Disabled)

As it concerns the regression analysis for this IFFT is also a power of first degree

f(x)=p1*X^p2.

0

20000000

40000000

60000000

80000000

100000000

120000000

2

3
2

6
4

1
2

8

1
2

8

2
5

6

2
5

6

2
5

6

2
5

6

5
1

2

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Number of FFT Values

FFT & IFFT

FFT With Data Cache

IFFT With Data Cache

FFT No Data Cache

IFFT No Data Cache

0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

2

2.5

x 10
7

NFFT

F
F

T
W

it
h
D

a
ta

C
a
c
h
e

0 50 100 150 200 250 300 350 400 450 500

0

1

2

3

4

5

6

7

8

9

x 10
7

NFFT

F
F

T
N

o
D

a
ta

C
a
c
h
e

60

In the case IFFT with Data Cache Enabled p1= 2.386e+04 and p2= 1,148 with R-Square=1

In the case IFFT with Data Cache Disabled p1= 2.386e+04and p2= 1,148 with R-Square=1

Figure 4. 12 : WCET for computing IFFT values for a range within 2 – 512

(Caching Disabled)

Image Processing – Image Denoise

In this kernel the execution time is dependent on the number of pixels of processed image.

While executing the tests to collect data we confronted some problems especially in the case

of caching disabled. This is the reason why it is observed in three cases that the execution

times are 0. The problems arise probably due to shortage of memory. On the contrary when

Data Cache was enabled the tests were executed normally and the results are presented in the

graph. Despite the problems, the model was created for further tests when the configuration

of the accelerator will change in the future work.

The model for this case is a power of first degree f(x)=p1*X^p2.

In the case of Data Cache Enabled p1= 928.4 and p2= 0,9574 with R-Square=0,9924

In the case of Data Cache Disabled p1= 5889 and p2= 1,044 with R-Square=0,9997

0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

2

2.5

3

x 10
7

NFFT

IF
F

T
N

o
D

a
ta

C
a
c
h
e

IFFTNoDataCache vs. NFFT

FFT_IFFTNoDataCahce

0

1000000

2000000

3000000

4000000

5000000

6000000

1
6

3
6

6
4

1
0

0

1
4

4

1
9

6

4
0

0

9
0

0

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Image Pixels

Image Denoise

With Data Cache

No Data Cache

61

Figure 4.13 : Execution Times for applying median filter on images with image size with 16 - 900 pixels

Image Processing – Image Edge Detection

In this kernel there were some problems due to memory shortage that didn’t allow a wide

range of input data set. This is the reason why the image pixels range varies between 16 pixels

to 196 pixels. Despite the problems, it was decided to show the results of the tests for

discussion and for further examination after reconfiguration of the hardware. Apart from the

above it must be highlighted that the processed images were squared images which means that

they had the same number of rows and columns. This is also a future work that has to be

examined after reconfiguration of the accelerator.

In the case of data cache enabled the model seems to be linear model a polynomial of first

degree f(x) = p1*x + p2.

With p1 = -5.992, p2 = 4.155e+05 and Goodness of fit: R-square: 0,993

In the case of data cache disabled the model seems to be linear model exponential of second

degree f(x) = a*exp(b*x) + c*exp(d*x).

With a = 4.137e+05, b = -0.001405, c = 8863, d = 0.01749 and Goodness of fit R-square=

0,9863.

But as it was mentioned at the beginning the range of input data set is too small to have a

reliable model.

Figure 4.14 : Execution Times for applying Edge Detection on Images with image size within 16 – 196 pixels

Search String

This kernel was more complicated than the previous kernels and programs. That is due to the

fact that there are two (2) independent variables. The execution times are dependent from

SearchString length and the FindString length. The FindString is the string looked for

(searched) in the SearchString.

0

100000

200000

300000

400000

500000

600000

700000

1
6

2
5

3
6

4
9

6
4

8
1

1
0

0

1
2

1

1
4

4

1
6

9

1
9

6

Ex
ec

u
ti

o
n

 T
im

e
in

 C
yc

le
s

Image pixels

Image Edge Detection

With Data Cache

No Data Cache

62

In this case in order to create a reliable lineal model with the Worst Case Estimation time the

lower values of the execution times were excluded and a polynomial of two variables of first

degree for each variable was created.

For the case of Data Cache enabled the model is f(x,y) = p00 + p10*x + p01*y

p00 = -412,1 , p10 = 48,74 , p01 = 9,772 and Goodness of fit R-square: 0.9896

Figure 4. 15 : Execution Times for searching strings within 50-1000 chars in strings within 50-1000 chars (Caching

Enabled)

For the case of Data Cache disabled the model is f(x,y) = p00 + p10*x + p01*y

p00 = 2746, p10 = 481,2 , p01 = 65,04 Goodness of fit R-square = 0,9999

Figure 4. 16 : Execution Times for searching strings within 50-1000 chars in strings within 50-1000 chars (Caching

Disabled)

K-means

This program was the most complicated of all. There are three (3) independent variables that

had to be included in the model. The program is a clustering method that aims to partition n

observations (Number of Objects 60-120) into k clusters (Number of Clusters 10-60) in which

0
100

200
300

400
500

600
700

800

0
200

400
600

800

1000

0

1

2

3

4

5

x 10
4

Find String Data Size (String To be Found)

Search String Kernel

Data Caching Enabled

Search String Data Size (String To Search)

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

100 200 300 400 500 600
700 800 900 1000

0
200

400
600

800
1000

0

1

2

3

4

5

x 10
5

Find String Datasize (String to be found)

Search String Kernel

Data Caching Disabled

Search String DataSize (String to Search)

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

63

each observation belongs to the cluster with the nearest mean. The objects have a number of

Coordinates more or equal to two (2). For this case it was decided to divide the problem into

sub problems. The tests were performed separately for different number of coordinates

(Coordinates: 2, 3, 4, 5).

Objects with Coordinates 2

Linear model Poly11:

 f(x,y) = p00 + p10*x + p01*y

Coefficients (with 95% confidence bounds):

 p00 = -4.706e+06 (-5.444e+06, -3.967e+06)

 p10 = 7.213e+04 (6.4e+04, 8.026e+04)

 p01 = 6.311e+04 (5.561e+04, 7.061e+04)

Goodness of fit:

 SSE: 1.204e+14

 R-square: 0.7922

 Adjusted R-square: 0.7895

 RMSE: 8.872e+05

Figure 4. 17 : Execution Times for K-means Clustering for Objects with Coordinates 2 Number of Objects within 60-

120 Number of Clusters 10 – 60 (Caching Enabled)

Linear model Poly11:

 f(x,y) = p00 + p10*x + p01*y

Coefficients (with 95% confidence bounds):

 p00 = -4.658e+07 (-5.367e+07, -3.948e+07)

 p10 = 6.71e+05 (5.929e+05, 7.492e+05)

 p01 = 6.231e+05 (5.51e+05, 6.952e+05)

Goodness of fit:

 SSE: 1.112e+16

10 20 30 40 50 60

60
80

100
120

2
4
6
8

10
12

x 10
6

Number of Clusters

K-means Clustering

Objects with 2 Coordinates

Cache Enabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

64

 R-square: 0.7911

 Adjusted R-square: 0.7884

 RMSE: 8.526e+06

Figure 4. 18 : Execution Times for K-means Clustering for Objects with Coordinates 2, Number of Objects within 60-

120, Number of Clusters 10 – 60(Caching Disabled)

Objects with Coordinates 3

Linear model Poly11:

 f(x,y) = p00 + p10*x + p01*y

Coefficients (with 95% confidence bounds):

 p00 = -5.592e+06 (-6.684e+06, -4.499e+06)

 p10 = 8.758e+04 (7.555e+04, 9.96e+04)

 p01 = 7.937e+04 (6.827e+04, 9.046e+04)

Goodness of fit:

 SSE: 2.635e+14

 R-square: 0.7266

 Adjusted R-square: 0.7231

 RMSE: 1.312e+06

10 20 30 40 50 60

60
80

100
120
0

5

10

x 10
7

Number of Clusters

K-means Clustering

Objects with 2 Coordinates

Data Cache Disabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

65

Figure 4. 19 : Execution Times for K-means Clustering for, Objects with Coordinates 3,Number of Objects within 60-

120,Number of Clusters 10 – 60 (Caching Enabled)

Linear model Poly11:

 f(x,y) = p00 + p10*x + p01*y

Coefficients (with 95% confidence bounds):

 p00 = -5.484e+07 (-6.511e+07, -4.457e+07)

 p10 = 8.089e+05 (6.959e+05, 9.22e+05)

 p01 = 7.71e+05 (6.667e+05, 8.753e+05)

Goodness of fit:

 SSE: 2.329e+16

 R-square: 0.7296

 Adjusted R-square: 0.7261

 RMSE: 1.234e+07

Figure 4. 20 : Execution Times for K-means Clustering for Objects with Coordinates 3, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Disabled)

Objects with Coordinates 4

10 20 30 40 50 60

60
80

100
120
0

5

10

x 10
6

Number of Clusters

K-means Clustering

Objects with 3 Coordinates

Cache Enabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

10 20 30 40 50 60

60
80

100
120
0

5

10

x 10
7

Number of Clusters

K-means Clustering

Objects with 3 Coordinates

Data Cache Disabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

66

Linear model Poly11:

 f(x,y) = p00 + p10*x + p01*y

Coefficients (with 95% confidence bounds):

 p00 = -5.113e+06 (-6.405e+06, -3.821e+06)

 p10 = 7.492e+04 (6.069e+04, 8.915e+04)

 p01 = 8.934e+04 (7.621e+04, 1.025e+05)

Goodness of fit:

 SSE: 3.689e+14

 R-square: 0.6538

 Adjusted R-square: 0.6493

 RMSE: 1.553e+06

Figure 4. 21: Execution Times for K-means Clustering for Objects with Coordinates 4, Number of Objects within 60-

120, Number of Clusters 10 – 60(Caching Enabled)

Linear model Poly11:

 f(x,y) = p00 + p10*x + p01*y

Coefficients (with 95% confidence bounds):

 p00 = -5.221e+07 (-6.434e+07, -4.009e+07)

 p10 = 6.958e+05 (5.623e+05, 8.293e+05)

 p01 = 8.837e+05 (7.605e+05, 1.007e+06)

Goodness of fit:

 SSE: 3.247e+16

 R-square: 0.6673

 Adjusted R-square: 0.663

 RMSE: 1.457e+07

10 20 30 40 50 60

60
80

100
120

2
4
6
8

10
12
14

x 10
6

Number of Clusters

K-means Clustering

Objects with 4 Coordinates

Data Cache Enabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

67

Figure 4. 22 : Execution Times for K-means Clustering for Objects with Coordinates 4,Number of Objects within 60-

120,Number of Clusters 10 – 60(Caching Disabled)

Objects with Coordinates 5

Linear model Poly11:

 f(x,y) = p00 + p10*x + p01*y

Coefficients (with 95% confidence bounds):

 p00 = -7.207e+06 (-8.568e+06, -5.845e+06)

 p10 = 1.037e+05 (8.87e+04, 1.187e+05)

 p01 = 1.084e+05 (9.46e+04, 1.223e+05)

Goodness of fit:

 SSE: 4.093e+14

 R-square: 0.7361

 Adjusted R-square: 0.7326

 RMSE: 1.636e+06

Figure 4. 23 : Execution Times for K-means Clustering for Objects with Coordinates 5, Number of Objects within 60-

120, Number of Clusters 10 – 60(Caching Enabled)

10 20 30 40 50 60

60
80

100
120

2
4
6
8

10
12

x 10
7

Number of Clusters

K-means Clustering

Objects with 4 Coordinates

Data Cache Disabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

10 20 30 40 50 60

60
80

100
120

5

10

15

x 10
6

Number of Clusters

K-means Clustering

Objects with 5 Coordinates

Data Cache Enabled

Number of Objects

E
x

ec
u

ti
o

n
 T

im
e

in
 C

y
cl

es

68

Linear model Poly11:

 f(x,y) = p00 + p10*x + p01*y

Coefficients (with 95% confidence bounds):

 p00 = -7.023e+07 (-8.299e+07, -5.748e+07)

 p10 = 9.584e+05 (8.18e+05, 1.099e+06)

 p01 = 1.048e+06 (9.186e+05, 1.178e+06)

Goodness of fit:

 SSE: 3.593e+16

 R-square: 0.7408

 Adjusted R-square: 0.7374

 RMSE: 1.532e+07

.

Figure 4. 24 : Execution Times for K-means Clustering for Objects with Coordinates 5 Number of Objects within 60-

120 Number of Clusters 10 – 60(Caching Disabled)

10 20 30 40 50 60

60
80

100
120

2
4
6
8

10
12
14

x 10
7

Number of Clusters

K-means Clustering

Objects with 5 Coordinates

Data Cache Disabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e
in

 C
y
cl

es

69

Chapter 5 - Kernels Concurrent Scheduling

According to Brucker [27], since mid-fifties scheduling problems concern computer scientists

as a tool to increase the performance of computer systems. Furthermore, scheduling problems

have been investigated and classified according to their computational complexity. The

scheduling problem nowadays has different views and a lot of research has been done in this

domain. The problems are classified between single machines scheduling problems, parallel

machines scheduling problems [32], for homogeneous and heterogeneous systems scheduling

problems [29, 30]. There are also papers that tackle independent tasks/jobs problems [26],

dependent tasks/jobs scheduling problems and due-date scheduling problems [27].

In most of the cases the scheduling problem is a Directed Acyclic Graph DAG problem whose

optimal solution is considered to be NP-Hard problem. Brucker [27] in his thesis, describes a

great number of scheduling algorithms found in the literature, like Sarkar, HLFET (Highest

Level First with Estimated Time) , ETF (Earliest Time First), ISH (Insertion Scheduling

Heuristic), FLB (Fast Load Balancing), DSC (Dominant Sequence Clustering), CASS-II, DCP

(Dynamic Critical Path), MCP (Modified Critical Path) and MD that as he mentions work on

homogeneous systems but are useful to be studied and also work on heterogeneous systems.

In our case we used the source code of Doss [53] which solves the multiprocessor scheduling

problem using a Partition Approximation algorithm [33, 52, 53]. Doss [52] describes the

partition scheduling problem as the problem that asks that a given set (S) of integer values that

represent process running times, to be subdivided into two subsets S' and S'' in a way that the

sum of all process running times in the first set (S') is equal to the sum of all process running

times in the second set (S''). In this way, the total sum of process running times in both subsets

is equivalent, or very close, to the half of the total cost of all process running times in the

original set (S). This is a NP-Complete problem and can be proven via a reduction from three

dimensional matching.

As it is well known NP-Complete problems do not have to date, any polynomial time

algorithm that can solve them. It is supposed that such problems don’t have a polynomial time

solution. However, approximation algorithms deal with many NP-Complete problems, a

reason why they have been developed. Approximation algorithms are algorithms which do not

solve the NP-Complete problem optimally in all cases but they trade accuracy for

performance. As Doss [53] highlights, not all NP-Complete problems can be approximated;

however, the partition scheduling problem has several. With this technique an approximation

for the partition scheduling problem can be generalized to approximate scheduling for many

https://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CEsQygQwBGoVChMImJaU3O_CyAIVyP5yCh3tjQ9x&url=https://parasol.tamu.edu/groups/amatogroup/research/scheduling/scheduling_algorithms/

70

processors machines where the number of processors is a power of two, like 2
1
, 2

2
, 2

3
, 2

4
, and

so on [34].

Scheduling Simulation

In order to perform the simulation we assume that our platform has two (2) preloaded

accelerators with the same configuration. This means that each accelerator can execute the

kernels in the same time and according to the models that have been constructed previously.

In Table 5.1 there is a list of seven (7) kernels that must be executed in parallel from the

platform with the two (2) accelerators. In Column 3 we can see the execution time of each

kernel, provided by the models. In Column 4 there is the input data set for each kernel finally,

we assume that all kernels are executed with Caching Enabled.

Task ID Kernel Name Execution Time Input Data Set Caching

T1
Unsigned

Integer SQRT
1899 Integer: 1000000 Yes

T2
Degrees to

Radians
2793 Degrees: 180

o
 Yes

T3 CRC32 21807 Data Size : 500 Yes

T4 Search String 5439
20 Find String Size

100 Search String Size
Yes

T5 Image Denoise 161933 Image Pixels: 225 Yes

T6 SHA-1 270382 Data Size : 1000 Yes

T7 Cubic Solving 154998 Yes
Table 5. 1 : Independent Task Simulation

The results of the Schedule are:

size [7] cpus [2]

 log2 [1]

 queue size [2]

cpu = [0]

len = [5] { 270382 21807 5439 2793 1899 }

 sum = [302320]

cpu = [1]

 len = [2] { 161933 154998 }

 sum = [316931]

Figure 5. 1: Schedule for 7 tasks on 2 cpus

Now if there were four (4) accelerators in the platform the results would be:

size [7] cpus [4]

 log2 [2]

 queue size [4]

cpu = [0]

 len = [1] { 270382 }

 sum = [270382]

T7

T5

T3

T1

T2

T4

T6

P1 P0

T7 T5
T3

T1

T2

T4
T6

P1 P0 P2 P3

71

cpu = [1]

 len = [4] { 21807 5439 2793 1899 }

 sum = [31938]

cpu = [2]

 len = [1] { 161933 }

 sum = [161933]

cpu = [3]

 len = [1] { 154998 }

 sum = [154998]
Figure 5. 2 : Schedule for 7 tasks on 4 cpus

Now as we can see the SHA-1 lasts for very long time comparing the other kernels execution

times. Since all tasks are independent and they start at the same time, the scheduler could

reduce power consumption of the platform by disabling the caching from some accelerators

and manage to finish all the kernels at the same time. In this case the Table 5.1 could change

to Table 5.2.

Task ID Kernel Name Execution Time Input Data Set Caching

T1
Unsigned

Integer SQRT
20413 Integer: 1000000 No

T2
Degrees to

Radians
7788 Degrees: 180

o
 No

T3 CRC32 21807 Data Size : 500 Yes

T4 Search String 5439
20 Find String Size

100 Search String Size
Yes

T5 Image Denoise 161933 Image Pixels: 225 Yes

T6 SHA-1 270382 Data Size : 1000 Yes

T7 Cubic Solving 154998 Yes
Table 5. 2: Independent Tasks Simulation with power consumption optimization

And the results would be for 2 accelerators:

size [7] cpus [2]

 log2 [1]

 queue size [2]

cpu = [0]

 len = [4] { 270382 21807 20413 7788 }

 sum = [320390]

cpu = [1]

 len = [3] { 161933 154998 5439 }

 sum = [322370]

Figure 5. 3 : Schedule for 7 tasks on 2 cpus with power optimization

The results for 4 accelerators:

size [7] cpus [4]

 log2 [2]

 queue size [4]

cpu = [0]

 len = [1] { 270382 }

 sum = [270382]

cpu = [1]

T6

T4

T7

T5

T3

T1

T2

P1 P0

T7 T5
T3

T1

T2
T4

T6

P1 P0 P2 P3

72

 len = [3] { 21807 20413 7788 }

 sum = [50008]

cpu = [2]

 len = [1] { 161933 }

 sum = [161933]

cpu = [3]

 len = [2] { 154998 5439 }

 sum = [160437]
Figure 5. 4 : Schedule for 7 tasks on 4 cpus (With Power Optimization)

As we can see from the results all kernels would finish after 270382 cycles which is the

highest execution time of SHA-1 kernel, but in the second case the power consumption would

be less.

Conclusions

The main objective of this thesis was to describe the steps followed to present a methodology

for retrieving the best performance in execution time and power consumption of independent

tasks executed by optimally configured processing element in an embedded heterogeneous

system.

The steps of the procedure / methodology are listed below.

1. Choosing kernels of different domains of embedded systems, like simple math

computations, digital signal processing, image processing, network, economics, etc.

Adapt the code in C to run on the Processing Elements, in our case the MicroBlaze

processor in the Zynq-7000 All programmable SoC FPGA platform of Xilinx.

2. Execution of the Kernels for different data inputs to log the execution time. In order to log

execution times for enabled and disabled caching tests were executed for each case. The

results showed that in all kernels the execution times were higher when caching was

disabled than when it was enabled according to the theory.

3. Regression analysis was performed using the execution times logged for each kernel for

modeling the execution time (dependent variable) and data input (independent variables).

To implement this process the Matlab Curve fitting tool was used.

4. All the models were included in a single function which returns the predicted execution

time for each kernel depended on different inputs.

73

5. Finally, a list of tasks is imported in a multiprocessor scheduler using Partition

Approximation, which would decide in what order the tasks will be executed from a

specified number of processing elements.

Future Work

This thesis is a part of a bigger project; at this point there is the need to test the

predicted/estimated WCET with the measured WCET of each kernel, like it is done in the

paper Li et al. [24]. The ratio between the measured and the predicted WCET will show how

close the predicted/estimated value is to the measured value and accordingly if it is needed to

improve the models created.

As it was also mentioned in section 5.4 the configuration of the accelerator should be changed

in order to achieve better results of the image processing kernel (edge detection).

Another important future work, as it was mentioned in the motivation section 1.1 is to

compact all this steps to work together by implementing to the system manager the scheduling

and the message passing ability to the accelerators, preload and configure them with the

specific tasks.

Finally the scheduler must be modified with the intelligence of taking into account the power

consumption reduction by choosing cache enabling/disabling of tasks.

74

Bibliography

[1] Su, L. T. (2013, February). Architecting the future through heterogeneous

computing. In Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2013 IEEE International (pp. 8-11). IEEE.

[2] Brookwood, N.(2013, October). Everything You Always Wanted to Know

About HAS. Available http://amd-dev.wpengine.netdna-

cdn.com/wordpress/media/2013/10/Everything_You_Always_Wanted_to_Kn

ow_About_HSA_Final2.pdf (last accessed 10/7/2015).

[3] Kyriazis, G. (2012). Heterogeneous system architecture: A technical review.

AMD Fusion Developer Summit.

[4] Buchty, R., Heuveline, V., Karl, W. and Weiss, J.P. (2012). A survey on

hardware-aware and heterogeneous computing on multicore processors and

accelerators. Concurrency and Computation: Practice and Experience, vol. 24,

no. 7, pages 663-675.

[5] Youenn Corre (2013). Automated Generation of Heterogeneous

Multiprocessor Architectures: Software and Hardware Aspects. Universite de

Bretagne Sud.

[6] Reagen, B., Adolf, R., Shao, Y. S., Wei, G. Y., & Brooks, D. (2014, October).

MachSuite: Benchmarks for accelerator design and customized architectures.

In Workload Characterization (IISWC), 2014 IEEE International Symposium

on (pp. 110-119). IEEE.

[7] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., &

Brown, R. B. (2001, December). MiBench: A free, commercially

representative embedded benchmark suite. In Workload Characterization,

2001. WWC-4. 2001 IEEE International Workshop on (pp. 3-14). IEEE.

[8] MiBench Benchmark Suite available at

http://wwweb.eecs.umich.edu/mibench/ (last accessed 17/7/2015)

[9] John Burkardt open source code

http://people.sc.fsu.edu/~jburkardt/c_src/c_src.html (last accesses 18/7/2015)

[10] MacBeth, J. D., & Merville, L. J. (1979). An Empirical Examination of the

Black‐Scholes Call Option Pricing Model. The Journal of Finance, 34(5),

1173-1186.

[11] MacQueen, J. B. (1967). Some methods for classication and analysis of

multivariate observations. Proceedings of the Fifth Symposium on Math,

Statistics, and Probability (pp. 281{297). Berkeley, CA: University of

California Press.

[12] Wei-keng Liao Kmeans software package available at

http://users.eecs.northwestern.edu/~wkliao/Kmeans/index.html (last accessed

19/7/2015)

[13] Sen, R., & Wood, D. A. Cache Power Budgeting for Performance.

[14] Xilinx Zynq®-7000 documentation. Available:

http://zedboard.org/sites/default/files/documentations/GS-AES-Z7EV-7Z020-

http://wwweb.eecs.umich.edu/mibench/
http://people.sc.fsu.edu/~jburkardt/c_src/c_src.html
http://users.eecs.northwestern.edu/~wkliao/Kmeans/index.html

75

G-V7.pdf (last accessed 2/8/2015)

[15] Xilinx (May, 2015). Zynq-7000 All Programmable SoC Overview DS190

(v1.8) Available:

http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-

Overview.pdf (last accessed 2/8/2015)

[16] Xilinx. (2014). Microblaze soft processor core. [Online]. Available:

http://www.xilinx.com/tools/microblaze.htm(last accessed 2/8/2015)

[17] Franklin, Z. R. (2014). Using High-level Synthesis to Predict and Preempt

Attacks on Industrial Control Systems (Doctoral dissertation, Virginia Tech).

[18] Xilinx. (2015). MicroBlaze Processor Reference Guide. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug9

84-vivado-microblaze-ref.pdf (last accessed 9/8/2015)

[19] Press, W. H. (2007). Numerical recipes 3rd edition: The art of scientific

computing. Cambridge university press.

[20] MHADHBI, I., Rejeb, N., OTHMEN, S. B., & SAOUD, S. B. (2014).

Performance Evaluation of FPGA Soft Cores Configurations Case of Xilinx

MicroBlaze.

[21] Horspool, R. N. (1980). Practical fast searching in strings. Software: Practice

and Experience, 10(6), 501-506.

[22] Christoforakis, I., Tomoutzoglou, O., Bakoyiannis, D., & Kornaros, G. (2014,

August). Runtime Adaptation of Embedded Tasks with A-Priori Known

Timing Behavior Utilizing On-Line Partner-Core Monitoring and Recovery. In

Embedded and Ubiquitous Computing (EUC), 2014 12th IEEE International

Conference on (pp. 1-8). IEEE.

[23] Andrei, A., Eles, P., Peng, Z., & Rosen, J. (2008, January). Predictable

implementation of real-time applications on multiprocessor systems-on-chip.

In VLSI Design, 2008. VLSID 2008. 21st International Conference on (pp.

103-110). IEEE.

[24] Li, Y. T. S., Malik, S., & Wolfe, A. (1999). Performance estimation of

embedded software with instruction cache modeling. ACM Transactions on

Design Automation of Electronic Systems (TODAES), 4(3), 257-279.

[25] Zhong, J., & He, B. (2014). Kernelet: High-throughput gpu kernel executions

with dynamic slicing and scheduling. Parallel and Distributed Systems, IEEE

Transactions on, 25(6), 1522-1532.

[26] Bruno, J., Coffman Jr, E. G., & Sethi, R. (1974). Scheduling independent tasks

to reduce mean finishing time. Communications of the ACM, 17(7), 382-387.

[27] Brucker, P., & Brucker, P. (2007). Scheduling algorithms (Vol. 3). Berlin:

Springer.

[28] Forti, A. (2006). DAG Scheduling for grid computing systems.

[29] Sakellariou, R., & Zhao, H. (2004, April). A hybrid heuristic for DAG

scheduling on heterogeneous systems. In Parallel and Distributed Processing

http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/tools/microblaze.htm

76

Symposium, 2004. Proceedings. 18th International (p. 111). IEEE.

[30] Hall, B. (2005). Slot Scheduling: General-Purpose Multiprocessor Scheduling

for Heterogeneous Workloads. Computer Science Department, University of

Texas at Austin.

[31] Lam, Y. M. (2012). Integrated task clustering, mapping and scheduling for

heterogeneous computing systems. Int J Comput Sci Inform Tech, 4(1), 275-

80.

[32] Webster, S., & Azizoglu, M. (2001). Dynamic programming algorithms for

scheduling parallel machines with family setup times. Computers &

Operations Research, 28(2), 127-137.

[33] Mertens, S. (2003). The Easiest Hard Problem: Number Partitioning. (Last

accessed 2/10/2015 from http://www.arxiv.org/pdf/cond-mat/0310317).

[34] Johnson, D. S. (1985). The NP-completeness column: an ongoing guide.

Journal of Algorithms, 6(3), 434-451.

[35] Wiangtong, T., Cheung, P. Y., & Luk, W. (2005). Hardware/software

codesign: a systematic approach targeting data-intensive applications. Signal

Processing Magazine, IEEE, 22(3), 14-22.

[36] Varbanescu, A. L., Hijma, P., Van Nieuwpoort, R., & Bal, H. (2011, May).

Towards an effective unified programming model for many-cores. In Parallel

and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011

IEEE International Symposium on (pp. 681-692). IEEE.

[37] Che, S., Li, J., Sheaffer, J. W., Skadron, K., & Lach, J. (2008, June).

Accelerating compute-intensive applications with GPUs and FPGAs. In

Application Specific Processors, 2008. SASP 2008. Symposium on (pp. 101-

107). IEEE.

[38] Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A parallel programming

standard for heterogeneous computing systems. Computing in science &

engineering, 12(1-3), 66-73.

[39] Khronos OpenCL Working Group. (2008). The opencl specification. version,

1(29), 8.

[40] Rogers, P. (2013). Heterogeneous system architecture overview. In Hot Chips

(Vol. 25).

[41] Barr, M. (1999). Programming embedded systems in C and C++. " O'Reilly

Media, Inc.".

[42] Kamal, R. (2008). Embedded systems 2E. Tata McGraw-Hill Education.

[43] Deschamps, J. P., Bioul, G. J., & Sutter, G. D. (2006). Synthesis of arithmetic

circuits: FPGA, ASIC and embedded systems. John Wiley & Sons.

[44] Sriram, S., & Bhattacharyya, S. S. (2009). Embedded multiprocessors:

Scheduling and synchronization. CRC press.

[45] Lee, I., Leung, J. Y., & Son, S. H. (Eds.). (2007). Handbook of real-time and

embedded systems. CRC Press.

77

[46] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,

... & Stenström, P. (2008). The worst-case execution-time problem—overview

of methods and survey of tools. ACM Transactions on Embedded Computing

Systems (TECS), 7(3), 36.

[47] Bavier, A. C., Montz, A. B., & Peterson, L. L. (1998, June). Predicting MPEG

execution times. In ACM SIGMETRICS Performance Evaluation Review (Vol.

26, No. 1, pp. 131-140). ACM.

[48] Yang, J., Ahmad, I., & Ghafoor, A. (1993, August). Estimation of execution

times on heterogeneous supercomputer architectures. In Parallel Processing,

1993. ICPP 1993. International Conference on (Vol. 1, pp. 219-226). IEEE.

[49] Giusto, P., Martin, G., & Harcourt, E. (2001, March). Reliable estimation of

execution time of embedded software. In Proceedings of the conference on

Design, automation and test in Europe (pp. 580-589). IEEE Press.

[50] Li, T., & John, L. K. (2003). Run-time modeling and estimation of operating

system power consumption. ACM SIGMETRICS Performance Evaluation

Review, 31(1), 160-171.

[51] Sykes, A. O. (1993). An introduction to regression analysis.

[52] Doss, R. G. (2011). Exploring Approximation Algorithms and Their Empirical

Analysis for Selected NP-Complete Problems (Doctoral dissertation,

Northcentral University).

[53] Doss, R. G. Last accessed 14/10/2015

http://www.codeproject.com/Articles/357645/Multiprocessor-Scheduling-

Using-Partition-Approxim

[54] Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means

clustering algorithm. Applied statistics, 100-108.

[55] Hartigan, J. A. (1975). Clustering algorithms. John Wiley & Sons, Inc..

