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Abstract 

The shift towards multicore technologies is offering a great potential of computational power 

for scientific and industrial applications. However, great challenges to software development 

arise. Performance gains for data intensive and compute intensive applications can be 

achieved by exploiting coarse-grained and fine-grained parallelism on all system levels and 

improved scalability with respect to the increasing core counts as Butchy et al. state [4]. 

Reconfigurable hardware has received increasing attention in the past decade due to its 

capability of being adaptable, short design time and low cost. Instead of using field-

programmable gate arrays (FPGAs) just as application specific integrated circuit (ASIC) 

replacements, designers can combine reconfigurable hardware with general purpose 

processors in a co-design system, providing a flexible and powerful means of implementing 

computational applications [35]. 

In this work the first steps for the implementation of such a co-design system are provided. 

The methodology that is proposed consists of: 

a) selection of kernels or applications that will be modified and executed by the 

processing elements 

b) analysis and modeling of the kernels in order to perform execution time prediction 

depended on data input 

c) multiprocessors scheduling of independent tasks minimizing mean execution time 

The final project leads to a many cores System on Chip (SoC) with the ability to execute data 

intensive and compute intensive applications, taking into account optimal performance and 

power consumption.  

 

 

 

Keywords: FPGA, Kernels, Heterogeneous System Architecture, Workload Execution Time 

prediction, Scheduling Multiprocessors 
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Chapter 1 -  Introduction 

In the last decades, the evolution of embedded systems progresses immensely. Embedded 

systems have a very important role in the eras of technology and industry. This fact emerges 

the great need of implementation of methods that assist and accelerate the design of embedded 

systems and the evaluation of their performance from the first stages of design. It is also well 

known that processing units, such as Graphics Processing Units (GPUs) and accelerators can 

execute specialized processes faster than General Purpose Processors (CPUs). But the transfer 

of the processing data from the hosts to the accelerators and the transfer back of computation 

results to the hosts is a cost effective procedure in time and memory resources, especially in 

embedded device with constrained resources.     

This thesis is about the design of a methodology that aims to optimize performance of 

constrained resources in an embedded device with heterogeneous architecture (HSA). The 

main purpose is the optimal performance and reduced power consumption in heterogeneous 

system architecture (HSA). The hardware platform that will be used contains an ARM Host 

(CPU) and accelerators in which the performance of the system will be logged in order to 

achieve the best implementation. The software used will be open source code derived from 

various domains such as image processing (filter implementation, edge detection, etc.), digital 

signal processing (k-means, fft, inverse fft, etc.) and models from the econometrics e.g. Black 

Scholes Merton.    

Finally the thesis closes with the implementation and simulation of a task scheduler based on 

the partition approximation algorithm applied on many cores architecture.   

Motivation – Thesis Objectives 

The challenges regarding todays multicore technology and advancements that allow 

integration of multiple accelerators in embedded systems was the motivation for this thesis. 

The work of Zhong & He [25] with the idea that kernels are being executed from GP/GPU in 

slices (small pieces) and scheduled in a smart way was the motivation of this thesis.  

In the paper of Zhong & He [25] the implementation is performed using the CUDA 

framework, which clearly obtained a high degree of acceptance within the high-performance 

computing community; However, CUDA is a single vendor that works only with NVidia 

hardware [2]. 

The main idea is such as kernels are executed on GP/GPUs they could also be executed on 

specific accelerators, soft-cores with lower power consumption and lower cost which can be 
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included in a System on Chip in contrast to the GPUs that are expensive devices and have also 

other constrains. 

It could be achieved to run concurrent kernels on specific accelerators with different resources 

and possibilities, using message passing technology or networks on chip. The kernels could be 

preloaded on the accelerators and a program that manages the system to send input data and 

get the results of the computations from each accelerator. The accelerators will be dedicated 

and configured in an optimal way for specific tasks in the heterogeneous system. 

In order to complete the whole project some stages must be completed. The first stage is to 

find programs or kernels from different domains that can be executed from the accelerators. 

The code should be modified in such a way to receive input data and send the results to a 

system manager. This is the first objective of this thesis. 

The system manager has to be able to schedule the kernels, independent or dependent tasks, 

reducing mean finishing time of the workload [26]. For scheduling reasons it is important to 

know the execution time of each kernel. The execution times of the kernels are dependent on 

the input data set, which means that it is needed to model the execution times of each kernel 

for a range of input data set. So, it is required to create a function which will include the 

kernel models and returns the execution times for specific input data set. In order to create a 

model for each kernel it is necessary to conduct tests with the kernels for a range of input data 

set and log the execution times. This is the second objective of this thesis. 

The last objective of this thesis but not last stage of the project is to implement a scheduling 

algorithm for many cores in order to be executed from the system manager. 

Finally, after the three first stages, the most important stage is to combine all work together, 

something that is beyond the limits of this thesis and is part of the future work. 
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Thesis Organization 

This thesis is organized as follows:  

 In the section 2 titled “Heterogeneous System Architecture”, the basic concepts of 

HSA and a hardware-aware on multicore processors and accelerators are presented.  

 In the section 3 titled “Experimental Setup”, the list of selected kernels and the 

procedure followed in order to perform the tests and logging of execution times of 

each kernel is presented.   

 In the section 4 titled “Workload time prediction”, the methodology followed in order 

to model each kernel for predicting execution time dependent on different data inputs 

is explained in details.  

 In the Section 5 titled “Kernels Concurrent Scheduling”, a proposed algorithm for 

multiprocessors scheduling and a simulation of the algorithm is described in order to 

show the effectiveness of the algorithm. 

 The thesis completes with a brief presentation of what was done in the conclusions and 

closes with the future work.  In the Future work the problems that researchers have to 

tackle and the next steps that should be done are presented.   
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Chapter 2 -  Heterogeneous System Architecture (HSA) 

According to Su [1], heterogeneous system architecture represents a new era in computer 

architecture. Its primary goal is that computer system designers must tightly integrate different 

processing elements on a platform into one evolved central processor while providing a way to 

software designers that does not require fundamentals changes.   In other words heterogeneous 

in computing refers to systems that use more than one kind of processors like CPUs, GPUs, 

DSPs and other programmable accelerators tightly integrated into a single System on Chip 

(SoC). 

Kyriazis [3] in his technical report concludes that HSA is a unified computing framework. It 

provides a single address space accessible to both CPU and GPU in order to avoid data 

copying. It also provides user-space queuing for minimizing communication overhead and 

finally provides preemptive context switching for better quality of service across all 

computing elements in the system. In HSA CPUs and GPUs are unified into a single system 

with common computing concepts and allows the developer to solve a greater variety of 

complex problems more easily. 

Brookwood [2] explains in a simple case paradigm how HSA works efficiently. For example a 

platform like a smartphone, needs a CPU to run operating system tasks and various 

applications (e.g. web browsing, video games), additionally there is a need of handling the 

Graphics computations, which would increase the computational resources of the CPU that 

would consequently increase the power consumption. Modern GPUs are specialized to handle 

such computations more efficiently by accelerating the computations and by reducing the 

power consumption. A smartphone must also handle Digital Signal Processing (DSPs) tasks in 

real time, like converting the voice into binary stream and transmit it to the next cell phone 

tower using different radio protocols and vice versa receive binary stream, reconstructing it to 

voice that can be heard from the phone speaker. Additionally, users want to interact naturally 

with their systems; they want their products to recognize faces, track eye movements, respond 

to touches, voice and gestures. These tasks are accomplished more efficiently by 

contemporary DSPs Chips than a general purpose CPU. 

Each of these programming elements, CPUs, GPUs and DSPs are evolved separately the last 

decades and designers assembled them in the systems they designed. Nowadays the increased 

transistors budget permits them to place the CPU, the GPU and the DSP discrete elements 

onto a single System on Chip (SoC). This physical integration enables the creation of smaller 
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devices, reduces the cost and saves power due to the on-chip communication, rather than 

communications on a board.     

Heterogeneous Systems  

CPU – General Purpose GPU 

According to Brookwood [2] the use of discrete GPUs to accelerate compute intensive 

applications has gained popularity since it was first introduced by NVidia in the year 2006. A 

great Number of supercomputers in the Top500 list rely on AMD and NVidia GPUs to deliver 

breathtaking performance. A total of ninety (90) systems on the list are using accelerator 

technology, up from seventy five (75) on November 2014. More than fifty (52) of these use 

Nvidia chips, four (4) use ATI Radeon and there are now thirty five (35) systems with Intel 

MIC technology, the Xeon Phi. Four (4) systems use a combination of Nvidia and Intel (Xeon 

Phi) accelerators (http://top500.org/lists/2015/06/ last accessed 7/10/2015).  

Additionally Brookwood highlights the big difference between discrete GPUs than integrated 

GPUs SoC. Discrete GPUs have a raw performance advantage due to the fact that they contain 

more floating point hardware and utilize dedicated high speed memory to store the parallel 

programs and data. Despite the fact that with discrete GPUs there is the need of data transfer 

between main memory and GPU dedicated memory using the PCIe bus whose bandwidth is 

limited, the time and power consumption and the complicated programming model has a high 

acceptance from the high performance community. On the contrary integrated GPUs possess 

less raw floating point processors performance and can operate on data wherever it resides 

within the system’s memory and there is no need to move data. 

Varbanescu et al. [36] describes the General Purpose GPU programming models, as a 

combination of coarse-grained and fine-grained parallelism. The host CPU sends the data-

parallel kernels as large collections of threads on the GPU. The GPUs are used for data 

parallel workloads where thousands of threads can compute concurrently.  

They also describe the programming models of NVidia CUDA, AMD Brook, PGI Fortran and 

Pathscale ENZO and they conclude that almost all are very close to the architecture. All 

models approach parallelization by identifying and offloading the kernels to be accelerated. 

They differ only to the way the offload is performed. CUDA and Brook require from the users 

to write code for this offload while PGI and ENZO work by inserting pragmas from available 

sequential code. Furthermore, the models handle the massive parallelism in the kernels in 

different ways. Data distribution is simplified but it is not optimized. Mapping and scheduling 
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are left to the hardware. Finally the effective use of the accelerator memory hierarchy should 

be handled by the programmer. 

Embedded Systems 

By searching the literature we can find many definitions of what is an embedded system. Barr 

[41] in his book defines that an “embedded system is a combination of computer hardware 

and software, and perhaps additional mechanical or other parts, designed to perform a 

specific function”. Kamal [42] in his book defines an embedded system as “ a system that has 

embedded software and computer-hardware, which makes it a system dedicated for an 

application(s) or specific part of an application or product or part of larger system” and also 

lists a number of other definitions. 

Sriram & Bhattacharyya [44] define that embedded systems are computers that are not first 

and foremost computers. They appear in different systems like telecommunications, 

automobiles, aircraft, electronics, toys, trains, security systems, weapons systems, printers, 

routers, copiers, manufacturing systems, etc. Someone who is technically active person today 

probably interacts regularly with more embedded systems than conventional computers. This 

is a relatively recent phenomenon. It is not long time ago since automobiles depended on 

finely tuned mechanical systems for the timing of ignition and its synchronization with other 

actions. Also, many electronic devices, especially in telecommunications, were finely tuned 

analog circuits. 

Barr [41] highlights that in some cases, it would be possible even to build integrated chip (IC) 

that does not contain a microprocessor/s and software. This is possible by replacing the 

combination with a custom integrated circuit (IC) that performs the same functions in 

hardware. But, flexibility is lost when a design is hard-coded in this way. It is easier and 

cheaper to change the software than to redesign a piece of custom hardware. 

History and Future of Embedded Systems 

As it concerns the History and the Future of embedded systems Barr [41] says that the first 

systems of that kind could not possibly have appeared before the year of 1971. It was the year 

Intel introduced the world's first microprocessor. The chip 4004 was designed for use in a line 

of business calculators produced by Busicom, a Japanese company. Intel proposed a general-

purpose chip that could be used throughout the entire line of calculators. Intel's idea was that 

the software would give to each calculator its unique set of features.  
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Many of the electronic devices that surround us are embedded systems or include embedded 

systems. Some examples are microwave ovens, TVs, HiFi System, fax machines, laser 

printers, card readers, phones, cars and so on. It seems inevitable that the number of embedded 

systems will continue to increase in high rates. Clearly, persons with the skills and desire to 

design advanced or next generation embedded systems will be in great demand for the next 

years [41]. 

Real-Time Systems  

One category of embedded systems worth’s mentioning at this point is the real-time systems. 

A real-time system is required to complete its work and serve its services on a timely basis. In 

other words, real-time systems have strict timing requirements that they must meet. Examples 

of real-time systems include digital control, signal processing, communicating systems, etc. 

All these systems provide us with services that are related to high reliability and safety [45]. 

Real-time and embedded systems are gaining more and more importance in our society. 

Recognizing the importance of these systems, the National Science Foundation has recently 

established a research program dedicated to embedded systems. The European Union (EU), 

European countries and Asian countries have also established many research programs in real-

time and embedded systems. Therefore, we can look forward to many important and exciting 

results being developed in this area [45]. 

Variations on Embedded Systems 

Unlike software designed for general-purpose computers, embedded software cannot usually 

run on other embedded systems without significant modification, mainly because of the 

incredible variety in the underlying hardware. The hardware in each embedded system is 

tailored specifically to the application, in order to keep system costs low. The common 

hardware in embedded systems is a processor or more than one, memories ROM and RAM 

can in some cases, when there is no need of big amount of memory, be included on the same 

chip or otherwise in external memory chips. Additionally there are inputs, connections to 

sensors, buttons, etc. and outputs, connections to LEDs, LCD displays, etc. Figure 2.1 depicts 

a general block diagram of an embedded system.     
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Figure 2.1: A generic embedded system [41] 

The rest of embedded hardware is usually unique and they meet many competing design 

criteria. Each system has different set of requirements, some or all of which can affect the 

arrangements and tradeoffs made during the development of the product.  

Barr [41] lists and analyses the list of possible constraints under which embedded hardware 

designers work. Some constrains are the production cost, the processing power, the amount of 

memory, the development cost, the Expected lifetime, the Number of units and the Reliability. 

To these general requirements there are also detailed functional requirements of the system 

itself. These are things that give the embedded system its unique identity. 

The Table 2.1 illustrates the range of possible values for each of the previously mentioned 

design requirements. These are only estimates and should not be taken too seriously. In some 

cases the criteria are linked and are dependent with each other [41]. 

Criterion  Low  Medium  High 

Processor  4-bit or 8-bit  16-bit  32-bit or 64-bit 

Memory  < 16 KB  64 KB to 1 MB  > 1 MB 

Development cost  < $100,000  $100,000 to $1,000,000  > $1,000,000 

Production cost  < $10  $10 to $1,000  > $1,000 

Number of units  < 100  100-10,000  > 10,000 

Expected lifetime  days, weeks, or months  years  Decades 

Reliability  may occasionally fail  must work reliably  must be fail-proof  

Table 2.1 : Common Design Requirements for Embedded Systems [41] 

OpenCL 

The OpenCL (Open Computing Language) is an open standard for general purpose parallel 

programming across CPUs, GPUs and other processors, giving to software-developers 

portable and efficient access to the power of these heterogeneous processing platforms. It is a 

framework for parallel programming and includes a language, API, libraries and a runtime 
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system to support software development. With OpenCL for example a programmer can code 

general purpose programs that are executed on GPUs without the need to map their algorithms 

onto a 3D graphics API such as DirectX or OpenGL. 

Furthermore, the OpenCL offers a common API for program execution on systems composed 

of different types of computational devices such as many-core CPUs, GPUs or other 

accelerators [38]. It supports data-parallel and task-parallel programming models, it utilizes a 

subset of ISO C99 with extensions for parallelism, it defines consistent numerical 

requirements based on IEEE 754, it defines a configuration profile for handheld and 

embedded devices, and it efficiently interoperates with OpenGL, OpenGL ES and other 

graphics APIs. 

The OpenCL programming interfaces assume heterogeneity between the host and all the 

attached devices. Additionally, the programming interfaces include functions that [39] 

 enumerate available target devices like CPUs, GPUs, and various accelerators 

 manage the target devices context 

 manage memory allocations 

 perform host-devices memory transfers 

 compile the OpenCL programs and kernel functions that the devices will execute 

 launch kernels on the target devices 

 query execution progress 

 check for errors 

With OpenCL kernel portability and accuracy across a variety of hardware is guaranteed, but 

it is not guarantee that a particular kernel will achieve peak performance on different 

processors architectures; the hardware’s features might make some programming strategies 

more suitable for particular platforms than for others [39]. 

The strongest point of OpenCL is its portability by construction, due to the fact that using the 

common platform model as a middleware. The OpenCL back-end targets one machine type 

only and it is the responsibility of the vendors to provide the appropriate OpenCL drivers. 

That’s why it is good motivation for all processor vendors to develop high-performing 

OpenCL APIs for their platforms [36].   

HSA Intermediate Language (HSAIL) 

Kyriazis [3] in his technical review mentions that Heterogeneous System Architecture (HSA) 

provides a unified view of the computing elements. The HSA allows a programmer to develop 

applications that integrate CPUs (latency compute units - LCUs) with GPUs (throughput 
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compute units - TCUs) without any gaps and benefit from the best attributes of each 

computing elements. The GPUs have passed in recent years from pure graphics accelerators to 

general purpose parallel processors, supported by standard APIs and tools like DirectCompute 

and OpenCL
TM

. Those APIs are a very good start, but many obstacles remain for the creation 

of an environment that permits the GPU to be used with such an ease as the CPU for common 

programming tasks. The HSA removes those obstacles, and allows the programmer to take the 

advantages of the parallel processor in the GPU as a peer or co-processor to the traditional 

multithreaded CPU. 

On the one hand the LCU in a HSA environment is a generalization of a CPU that supports 

apart from its native instruction set (ISA) and the HSA intermediate language (HSAIL) 

instruction set. On the other hand the TCU is the generalization of a GPU that supports only 

the HSA intermediate language (HSAIL) instruction set, which allows them to perform very 

efficient parallel execution of tasks or threads.   

The idea is that the compiler for a high-level language (e.g. OpenCL, C++ AMP, Java, etc.) 

will generate HSAIL and the HSA driver, called finalizer, will generate the binary code using 

just-in-time compilation. The idea of a pseudo-ISA has been used, long time ago, in many 

previous portable software technologies like the Direct3D bytecode and the Java bytecode. 

The HSAIL is low-leveled enough to uncover many details of the hardware and has been 

carefully designed in such a way that the conversion from HSAIL to binary code is done very 

quickly (“A Deep Dive on HSA”, http://www.anandtech.com/show/7677/amd-kaveri-review-

a8-7600-a10-7850k/6 last accessed 15/10/2015). The finalizer, the converter to binary code, is 

typically lightweight and may be executed at install time, compile time, or program execution 

time, all depends on the choices made by the platform implementation. 

A question that arises is “Why Virtual ISA and Not the Real ISA?”. Rubin gives answers to this 

question:  

 ISA Gains performance  

 Better time to market (because hardware is finished faster) 

 Loses performance (cannot use every hardware trick) 

 No legacy boat anchor  

 Real ISA means one vendor or one chip family 

 Hardware bugs can be fixed via software 

 Code works on old and new machines 

 Allows hardware innovation (under the table) 

 Features not in HSAIL are not exposed, and are hard to access 
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(http://www.slideshare.net/hsafoundation/hsail-final-11junepptx last accessed 14/10/2015) 

In Figure 2.2 we can see the parallel model that the HSAIL complies with. 

 

Figure 2.2: NDRange, Work-Group, Work-Item [40] 

In Figure 2.3 we can see the Software Task of HSA. The HSAIL is lower than OpenCL that’s 

why it not another OpenCL but it extends the features of OpenCL. 

 

Figure 2.3: Software Stack HSA Foundation [40] 
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Chapter 3 -  Experimental Evaluation 

Experimental setup 

Target Platform 

The Xilinx's Zynq-7000 SoC is divided into two sectors: the processing system and the 

programmable logic. The processing system Figure 3.2 can be viewed as a microcontroller 

featuring an ARM Cortex-A9 embedded processor. The programmable logic is equivalent to a 

low-cost field programmable gate array (FPGA), which contains programmable hardware 

Figure 3.3. A block diagram of the Zynq-7000 can be seen in Figure 3.2. Experiments for this 

work were conducted on an Avnet ZedBoard [14], see Figure 3.1, a development board which 

contains a Zynq-7000 [17]. 

 

 

Figure 3.1: Avnet ZedBoard - Zynq-7000 

Zynq-7000 Processing System 

In Figure 3.2 there is the block diagram of the Zynq-7000 processing system. The processing 

system consists of the following discrete elements: 

 an application processor unit (APU) 

 memory controllers  

 peripheral controllers  

The APU is based on an ARM Cortex-A9 dual-core embedded processor. The fastest clock 

speed is up to 1GHz. The default frequency clock speed of the ARM Cortex-A9 is 667 MHz. 

For the experimental setup the ARM Cortex-A9 operated at its default frequency. Each 

processing core features its own vector and floating point unit, a memory management unit 
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(MMU) and 64KB of Level 1 (L1) cache memory (32KB instruction, 32KB data). A memory 

of 512KB of L2 cache is shared between the cores, along 256KB of on-chip SRAM. The APU 

also includes an eight-channel Direct Memory Access (DMA) controller, system control 

registers, a global interrupt controller and various timers. Outside the APU, the Zynq 

processing system contains huge number of interconnects, interfaces and peripheral 

controllers. An external memory interface allows both the processing system and the 

programmable logic to be connected to external DDR memory. In the case of the ZedBoard, 

512MB of DDR3 memory is available. Interfaces to NOR, NAND, and QSPI external ash 

memory are included for nonvolatile storage options. Table 3.1 shows the peripheral 

controllers available on the Board. External storage is available via USB ash drives, SD cards 

or SPI-connected ash. Gigabit Ethernet provides high speed communication. Lower-speed 

communication is available via USB, UART, CAN, SPI, and I2C. A GPIO module allows 

control over LEDs, switches, and various I/O pins. These I/O modules are memory-mapped 

and multiplexed so as to conserve pins when certain modules are unused. Multiple general-

purpose and high-performance interconnects allow interfacing of the processing system with 

the programmable logic. An accelerator coherency port (ACP) provides direct access to L2 

cache and on-chip memory for modules in the programmable logic. A cryptography block and 

an analog to digital converter (ADC) are located within the programmable logic but are 

available for the processing system's use [14, 17]. 

 
Figure 3.2: Xilinx Zynq-7000 SoC Architecture [14, 17] 
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I/O Type Number Available Example Use 

SD flash 2 External storage 

General Purpose I/O 1 LED, switch, etc. 

Gigabit Ethernet 2 Network access, high-speed 

communication 

UART 2 Communication 

CAN 2 Communication 

USB 2 External memory, communication 

SPI 2 External memory, low-speed 

communication 

I2C 2 External memory, low-speed 

communication 
Table 3.1: Zynq I/O controllers 

Programmable Logic 

Depending on the package chosen, Zynq's programmable logic is equivalent to either a low 

cost (Xilinx Artix-7) or high-performance (Xilinx Kintex-7) field programmable gate array 

(FPGA). An FPGA is a semiconductor device that has no predetermined function. Unlike an 

application-specific integrated circuit (ASIC), whose operation is fixed during the 

manufacturing process, an FPGA's function can be programmed repeatedly after 

manufacturing. FPGAs are an ideal platform for prototyping potential designs or for 

distributing a low volume of ICs. Typically, a function is implemented in hardware in order to 

improve performance or power consumption over a similar software implementation. Because 

an FPGA is a programmable hardware, a function can be duplicated many times with each 

instance running in parallel, thus improving performance. While not commonly considered 

low power devices, an FPGA implementation of a highly-parallel function may draw 

considerably less power than the same operation implemented on a PC. Performance and 

power are the conventional reasons for FPGA usage [17]. 

A generic means of creating combinational hardware is by using lookup tables (LUT). LUTs 

simply store the appropriate output corresponding to each potential input of a function Flip-

ops (FF) are available at the outputs of LUTs as a storage element. LUTs and FF are grouped 

into slices, and slices are combined into configurable logic blocks (CLB). A typical FPGA 

architecture is shown in Figure 3.3. A sizable number of CLBs are included, along with block 

RAM (BRAM) for use when a large amount of memory is required. Digital Signal Processing 

(DSP) slices allow for faster processing of common arithmetic operations. I/O blocks (IOBs) 

interface the design with external pins. These components connect via a programmable 

interconnect. Connections may usually be made at the intersection of any two routing paths, 

permitting cross-chip connections and communication. Each CLB is comprised of two slices, 
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for a total of four LUTs and eight FFs. LUTs can be configured as 6-input/1-output or 5-

input/2-output. BRAMs are dual-port and contain 36Kb of memory; each can be addressed as 

a single unit or as two independent 18Kb BRAMs. DSP slices include a 25-bit pre-adder, 48-

bit adder and accumulator, 25x18 signed multiplier [15].  

 
Figure 3.3: FPGA programmable logic [17] 

MicroBlaze Soft-core Architecture 

MicroBlaze is a 32-bit Harvard Reduced Instruction Set Computer (RISC) architecture 

optimized for synthesis and implementation into Xilinx FPGAs with a separate 32-bit 

instruction and data buses to execute programs and access data from both on-chip and external 

memory at the same time. Figure 3.4 presents a simple MicroBlaze soft-core [20, 18]. It has 

Harvard memory architecture and uses: 

 two Local Memory Busses (LMB) for instruction and data memory 

 two Block RAMs (BRAM) 

 two peripherals connected via On-chip Peripheral Bus (OPB) 
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Figure 3.4: MicroBlaze Architecture [20] 

 

Figure 3.5: MicroBlaze Soft-Core Block Diagram [18] 

 

The MicroBlaze soft-core offer to the designer flexibility during the design process and allows 

the designers to configure the microprocessor to meet the needs of their embedded systems 

with adding custom instructions, Intellectual Proprieties (IPs), particular coprocessor, etc. To 

increase the performance of the MicroBlaze, the designer can modify a number of features 

through the setting parameters. The configured parameters may include Integer Multiplier 

Units (mul), Barrel Shifter Units (BS), Integer Divider Units (ID), Floating Point Units (FPU), 

Machine Status Register Units (MSRU) and Pattern Compare Unit (PCU) [20].  

We used Xilinx Vivado 2014.4 for configuring the FPGA and to include a MicroBlaze soft-

core with an 8 KB cache memory (64KB is the maximum memory), 125 MHz (the maximum 

frequency possible). For each application tested, it was used the exact same MicroBlaze 
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configuration and the resulting system was analyzed in execution time metric. In the work of 

MHADHBI et al. [20] they used the metric of hardware area, which presents one of the metric 

in the choice of embedded systems which requires an optimal area. However, in real-time 

complex applications, both execution time, area and energy consumption determine the 

efficiency and the high performance of the configured embedded system.  

The over 70 user-configurable options of the MicroBlaze enables any processor use case from 

a very small footprint state machine or microcontroller to a high performance compute-

intensive microprocessor-based system running Linux. MicroBlaze can operate in either 3-

stage pipeline mode to optimize size, or 5-stage pipeline mode to optimize speed delivering 

faster DMIPs performance than any other FPGA-based soft-processing solution 

(http://www.xilinx.com/tools/feature/csi/microblaze.htm). In Table 3.2 we can see the 

performance levels of the MicroBlaze Processor. 

Device Family Zynq-7000 SoC 

Performance Optimized MicroBlaze with branch optimizations  

(5-stage pipeline) 1.38 DMIPs/MHz 
228DMIPs 

Performance Optimized MicroBlaze  

(5-stage pipeline) 1.30 DMIPs/MHz 
259DMIPs 

Area Optimized MicroBlaze  

(3-state pipeline) 1.03 DMIPS/MHz 
196DMIPs 

Table 3.2: MicroBlaze Processor v8.40.b Performance Levels (v14.4 XPS) 

Benchmark Description 

In this thesis workload selection was made mostly from the MiBench suite [7], whose source 

code is adapted to the ARM instruction set and is freely available to all researchers [8]. 

Additionally there were added some algorithms that are commonly used for benchmarking e.g.  

K-means, BlackScholes, image processing, etc.   

The MiBench Suite consists of six categories:  

 Automotive and Industrial Control 

 Network 

 Security 

 Computer Devices 

 Office Automation 

 Telecommunications 

The fact that these different categories provide various program characteristics enables 

researchers, in systems architecture, to examine the designs for a particular market segment. 

http://www.xilinx.com/tools/feature/csi/microblaze.htm
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Our main idea was to select one benchmark of each category and modify it to run on the 

accelerator. In some cases, where the code was simple it was easy but in some other cases the 

code was too complicated or too large to run on the accelerator and it was decided to search 

for different available source code in the same domain.    

Below we will describe the benchmark from each category that was used. 

Automotive – basicmath 

Automotive and Industrial Control category [8] aims to show the use of embedded processors 

in embedded control systems. Typical applications are controllers in auto & moto industry, 

engine performance monitors and sensor systems.  

The basic math test performs simple mathematical computations that often don’t have 

hardware support in embedded processors. In this paper the cases of cubic function solving, 

integer square root and angle conversion from degrees to radians are used. 

Network – Dijkstra 

Network category [8] represents embedded processors in network devices like routers and 

switches. The work done by these embedded processors consists of shortest path calculations, 

tree, table lookups and data input/output. 

The Dijkstra benchmark constructs a large graph in adjacency matrix representation and 

calculates the shortest path between every pair of nodes using recursion of Dijkstra’s 

algorithm. The Dijkstra’s algorithm is a well-known solution to the “shortest path” problem 

and completes in O(n
2
) time. 

Security – SHA-1 

The security category in MiBench suite [8] includes several common algorithms for hashing 

and data encryption/decryption. 

The SHA-1 is the secure hash algorithm that produces a 160-bit (20-bytes) message digest for 

a given input. It is often used in the exchange of encryption/decryption keys and for 

generating digital signatures. Additionally it is used in the MD4 and MD5 hashing functions. 

Consumer Devices 

The category of consumer devices [8] focuses mainly on multimedia applications with the 

representative algorithms being the jpeg encoding/decoding, the image color format 
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conversion, the image dithering color palette reduction, the MP3 encode/decode and finally 

HTML typesetting.  

Due to the complexity of the applications and the great amount of memory required any 

adaptation was not applicable so it was decided to use a simpler code. For this category 

representative source code for image processing was retrieved from the site of Burkardt [9]. 

Kernels about image denoise and image edge detection was used as workload. 

Office Automation – StringSearch 

The category of Office Automation [8] contains primarily text manipulation algorithms to 

represent machinery, like printers, fax machines and word processors. 

The StringSearch benchmark searches for given words in phrases using the case insensitive 

comparison algorithm of Boyer Moore Horspool 

(https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm 

last accessed 15/10/2015). 

Telecommunications – FFT/IFFT & CRC32 

In this category benchmarks consist of encoding/decoding algorithms, frequency analysis and 

a checksum algorithm [8]. 

In our case we used the FFT/IFFT and CRC32 encoding kernels. 

The FFT/IFFT benchmark performs a Fast Fourier Transform and the Inverse transform on an 

array of data. Fast Fourier transforms are used in digital signal processing to find contained 

frequencies in a given input signal. The input data that we used in our workload is ramp. 

The CRC32 kernel performs a 32-bit Cyclic Redundancy Check (CRC) on a file. CRC checks 

are used to detect errors in data transmission. 

In the workload selection we added some extra applications like Black & Scholes [9,10] and 

K-means clustering algorithm [11,12]. 

Black–Scholes–Merton  

The Black–Scholes or Black–Scholes–Merton model is a mathematical model of a financial 

market containing certain derivative investment instruments. The model gives a theoretical 

estimate of the price of European-style stock market options 

(https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model last accessed 15/10/2015). 
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K-means clustering 

The k-means clustering is a method of vector quantization that comes from the signal 

processing. It is popular for cluster analysis in data mining. The K-means clustering targets to 

partition n observations into k clusters in which each observation belongs to the cluster with 

the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the data 

into Voronoi cells. The problem is computationally difficult, considered NP-hard; however, 

there are efficient heuristic algorithms that are used and converge quickly to a local optimum 

(https://en.wikipedia.org/wiki/K-means_clustering last accessed 15/10/2015).  

In the Table 3.3 we present the different kernels that were selected. 

Cubic Solving 

Unsigned Integer Square Root Computation 

Degrees to Radians Conversion 

BlackScholes Option price estimation 

Dijsktra Shortest Path Algorithm 

SHA-1 

CRC32 

FFT/IFFT 

Image Denoise 

Image Edge Detection 

String Search 

K-means Clustering 

Table 3.3: List of Selected Kernels 

Evaluation metrics 

A hardware timer in the platform was used to measure execution cycles as a basis for 

evaluating execution time depended on the problem size. In all measurements we get the 

execution time in cycles. The duration of each cycle is 10 nsec which is 10
-8

 sec.  

Another performance aspect is energy consumption. Sen and Wood [13] came to a conclusion 

that it is possible to increase system performance by decreasing cache size for a given power 

budget and they showed that workload reached performance improvements of 2-16%. In our 

case it was revealed, from the measurements, that execution time in cycles was higher when 

executing code without caching rather than with caching enabled. The model that could be 

followed is in some accelerators to disable caching in order to reduce energy consumption. 

https://en.wikipedia.org/wiki/Prototype
https://en.wikipedia.org/wiki/NP-hard
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Experimental Results 

In this section the results of the tests will be presented and explained. For each kernel there 

were different inputs and the execution time in cycles is shown in the graphs. There are two 

kinds of tests one with data cache enabled and one with data cache disabled. 

Measurements Graphs 

BasicMaths Cubic Solving   

The Kernel Cubic test solves the third-degree polynomial equation, and serves to measure 

performance in performing typical mathematical operations (addition, multiplication, basic 

trigonometry). 

The tests that were conducted for the computation of the third level equation 

aX
3
+bX

2
+cX+d=0 for different values of the a, b, c, d constants. The ranges of the constants 

are within the following limits -10<a<10, -10<b<10, -5<c<15, -3<d<3.   

In this test we can see the results in execution time for cubic solving. As it can be seen in 

Figure 3.6 there are two levels of execution time. The lower level is when there is only one 

value as a result for the equation and the higher level is when there are three values that solve 

the third level polynomial equation. 

In the case of an enabled caching the results are 100000 cycles when there is only one solution 

of the equation and 200000 cycles when there are three solution of the equation. In the other 

case when the caching was disabled the execution time in cycles for one solution is 400000 

cycles and when there are solutions around 550000 cycles. 

A sample of the results table is in the following Table 3.4. 

6,5 a1= -10 b1= 10 c1= -5 d1= 3 Cycles 125193 Solutions: 1 x[0]= 0,832 
    

2 a1= -10 b1= 10 c1= -5 d1= 0,9 Cycles 125253 Solutions: 1 x[0]= 0,18 
    

3 a1= -10 b1= 10 c1= -5 d1= -2,819 Cycles 122780 Solutions: 1 x[0]= -0,31 
    

4 a1= -10 b1= 10 c1= -2,39 d1= 3 Cycles 125236 Solutions: 1 x[0]= 1,45 
    

5 a1= -10 b1= 10 c1= -2,39 d1= 0,9 Cycles 183570 Solutions: 3 x[0]= 0,46 x[1]= 0,657 x[2]= 0,296 

6 a1= -10 b1= 10 c1= -2,39 d1= -2,819 Cycles 124854 Solutions: 1 x[0]= -0,374 
    

7 a1= -10 b1= 10 c1= 0,22 d1= 3 Cycles 124649 Solutions: 1 x[0]= 1,219 
    

8 a1= -10 b1= 10 c1= 0,22 d1= 1 Cycles 124222 Solutions: 1 x[0]= 1,29 
    

9 a1= -10 b1= 10 c1= 0,22 d1= -2,819 Cycles 124528 Solutions: 1 x[0]= -0,448 
    

10 a1= -10 b1= 10 c1= 2,829 d1= 3 Cycles 124495 Solutions: 1 x[0]= 1,367 
    

Table 3.4: Sample Results of Cubic Solving Tests 
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Figure 3.6: Execution times required for solving the equation  aX3+bX2+cX+d=0 with constants a,b,c,d within the 

ranges  -10<a<10 , -10<b<10 , -5<c<15 , -3<d<3 

Unsigned Integer Square Roots Computation  

The Kernel Unsigned Integer SQRT [8] finds the square root of an unsigned integer with all 

calculations being the base-two analogue of the square root algorithm. Bit-wise operations are 

the prevailing type in this test case with absolutely no multiplications or divisions.  

As we can see in the Figure 3.7 when the caching is enabled, execution time is around 2000 

cycles, for a wide range of integers (0 - 4FEBB399). On the other hand when caching is 

disabled the execution time is around 20000 cycles with the tendency to increment while the 

integer increases. 

The Table 3.5 is a sample of the results of the Kernel USQRT(x). 

Integer  Result Desc With Data Cache Cycles 

0 sqrt(  0) = 0 Total cycles 1777 

5400 sqrt(5400) = 4815892 Total cycles 1867 

10800 sqrt(10800) = 6810700 Total cycles 1894 

16200 sqrt(16200) = 8341371 Total cycles 1930 

21600 sqrt(21600) = 9631785 Total cycles 1876 

27000 sqrt(27000) = 10768663 Total cycles 1867 

32400 sqrt(32400) = 11796480 Total cycles 1813 

37800 sqrt(37800) = 12741654 Total cycles 1867 

Table 3.5 : Sample Result of Unsigned SQRT tests 
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Figure 3.7: Execution times for computing the SQRT of Unsigned Integer(Unsigned Integer range within 0 - 

4FEBB399) 

Degrees to Radians Conversion 

In this test the conversion of degrees to radians is applied. As we can see in Figure 3.8 the 

execution time for conversion is around 2700 cycles when caching is enabled and 7800 cycles 

when caching is disabled. The range of degrees converted was from 0
o 

to
 
500

o
 degrees. 

Normally the results of the conversion between 0
o 

– 360
o
 degrees would be enough but for 

testing reasons the tests conducted were within the range of 0
o
 – 500

o
 degrees in order to 

verify that there is no difference. 

 The Table 3.6 is a sample of the test performed for the Degrees to Radians Kernel.  

0 degrees 0 radians Total cycles 437 

0,5 degrees 0,8 radians Total cycles 2789 

1 degrees 0,17 radians Total cycles 2789 

1,5 degrees 0,26 radians Total cycles 2853 

2 degrees 0,34 radians Total cycles 2789 

2,5 degrees 0,43 radians Total cycles 2769 

3 degrees 0,52 radians Total cycles 2853 

3,5 degrees 0,61 radians Total cycles 2777 

4 degrees 0,69 radians Total cycles 2789 

4,5 degrees 0,78 radians Total cycles 2762 

Table 3.6 : Sample of Deg2Rad(x) Tests 
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Figure 3.8: Execution Times for the conversion of Degrees to Radians Degrees Range within 0o-500o 

 

Black & Scholes 

In this application the price of an option is estimated for different number of days using the 

Black Scholes algorithm. It can be seen in Figure 3.9 that as the number of days increases the 

execution time accordingly increases too. It can also be observed that when caching is enabled 

the execution time is lower than when caching is disabled.  

In the Table 3.7 there is a sample of the tests performed with Black Scholes Application. 

 No of Days     Option Price 

n= 10 Total cycles: 1078228 asset price x[10] 2,209 

n= 20 Total cycles: 2114111 asset price x[20] 2,609 

n= 30 Total cycles: 3277024 asset price x[30] 1,327 

n= 40 Total cycles: 4296202 asset price x[40] 3,127 

n= 50 Total cycles: 5480005 asset price x[50] 1,436 

n= 60 Total cycles: 6515138 asset price x[60] 1,876 

n= 70 Total cycles: 7553654 asset price x[70] 2,400 

n= 80 Total cycles: 8620348 asset price x[80] 2,219 

n= 90 Total cycles: 9787587 asset price x[90] 2,237 

n= 100 Total cycles: 11004253 asset price x[100] 1,115 
Table 3.7 :  Sample results of the BlackScoles Tests 
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Figure 3.9: Execution Times for the computation of a stock price for a range of days within 10 – 365 

CRC32 

 

The 32-bit cyclic redundancy check (CRC) error-detecting code is performed in this kernel. 

As it can be seen the execution time depends on the size of the data that the check value is 

computed. As the data size increases, accordingly increases the execution time too. The 

Caching also affects the execution time. When caching is enabled the computation is faster. In 

Figure 3.10 the Data size ranges from 1 – 660 bytes. 

In Table 3.8 there is a sample of the test performed for the CRC32 kernel. 

 Data Size  Cycles Check Value 

Data Size 10 Total cycles: 791 DB63106E 

Data Size 60 Total cycles: 3357 9F0875FE 

Data Size 110 Total cycles: 5209 086BE43E 

Data Size 160 Total cycles: 7521 D43CD9CC 

Data Size 210 Total cycles: 9561 C304553C 

Data Size 260 Total cycles: 11781 9DB4B794 

Data Size 310 Total cycles: 13842 34D3D4AC 

Data Size 360 Total cycles: 16037 10D92D68 

Data Size 410 Total cycles: 18265 43D170C6 

Data Size 460 Total cycles: 20206 202F21F8 

Data Size 510 Total cycles: 22280 DBB45A49 

Data Size 560 Total cycles: 24321 18B0D900 

Data Size 610 Total cycles: 26354 772D238C 

Data Size 660 Total cycles: 28257 EA7AB5B9 

Table 3.8 : Sample Results of the CRC32 tests 
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Figure 3.10: Execution Times for creating a CRC code for a range of text size within 10-660 bytes 

Dijsktra 

As it was mentioned in the benchmark description, the Dijkstra benchmark constructs a large 

graph in adjacency matrix representation and then calculates the shortest path between every 

pair of nodes using recursion of the Dijsktra’s algorithm. 

In Figure 3.11 the execution time in cycles is logged for different number of nodes in the 

graph. The scope was to log the time needed to find 5 shortest paths while the number of 

nodes increases. The result is that while the number of nodes increases the execution time in 

cycles is growing in exponential rate. 

In Figure 3.12 execution time in cycles was logged for 50 nodes in the graph while the 

number of shortest paths increases by five (5). The number of shortest paths begins from 5 to 

50. As we can observe in Figure 3.12 the time is the same for any number of shortest path, 

this can be explained from the fact that the algorithm in order to find the path needs to search 

the paths between all the nodes of the graph.     

 

Figure 3. 11: Execution Times for finding 5 shortest paths in a Graph of adjacent Nodes within the range of 5 - 50 
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Figure 3.12: Execution Times to find 5 – 50 shortest paths in a Graph of 50 adjacent Nodes 

SHA-1 

In Figure 3.13 the execution time in cycles was logged for the computation of the message 

digest for different data size (25 - 9925 bytes) messages. The results show that the 

computation time increases proportionally while the length of the message is increasing too. 

The calculation rate is greater when cache is enabled in contrast when it is disabled. 

 

Figure 3.13: Execution Times to execute the hash function for a range of bytes within 25- 9925 bytes 

In Table 3.9 it is a sample of the tests performed. 

Bytes 225 Total cycles: 55806 BA9867F3 25C30980 CF079B71 FA07AAFC 40825A56 

Bytes 325 Total cycles: 88918 D19A42B5 80FA6E6F 0B6200CF 3A3ADDEC F5D170C7 

Bytes 425 Total cycles: 109512 14BBADF2 3E4B62AD A9E9D5ED 081C16B7 38B3EEB9 

Bytes 525 Total cycles: 142624 939DC1C8 C800E63F 53590F5C 6275E765 9DD3CB73 

Bytes 625 Total cycles: 163218 D5DF091E 56E304DF 1555D728 6B694FE7 3FD93F8C 

Bytes 725 Total cycles: 196330 E7250304 934CFACE 56CBE4E2 62E45BF1 CBECAE04 

Bytes 825 Total cycles: 216924 4220EB0C F3D29879 4AC5A934 685BC243 647BF7D2 

Bytes 925 Total cycles: 250036 7DAAE909 1D1970A9 3478C790 76A78506 BEDA10F8 

Table 3.9: Sample Results of SHA-1 tests 
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Digital Signal Processing  

FFT & IFFT 

Fast Fourier transforms are widely used for many applications in engineering, science, and 

mathematics. Gilbert Strang (1994) described the fast Fourier transform as "the most 

important numerical algorithm of our lifetime" and it was included in Top 10 Algorithms of 

20th Century by the IEEE journal Computing in Science & Engineering 

(https://en.wikipedia.org/wiki/Fast_Fourier_transform last accessed 15/10/2015). If we 

perform a search on the Google for the words “FFT algorithms” the results will yield almost 

330.000 web pages. 

The Fast Fourier Transform (FFT) is an algorithm that computes the Discrete Fourier 

Transform (DFT) of a sequence, or it’s inverse. The Fast Fourier Transform (FFT) is a faster 

version of the Discrete Fourier Transform (DFT). The FFT utilizes some sophisticated 

algorithms to do the same thing as the DFT, but very fast.  The Fourier analysis is the 

conversion of a signal from its original domain time or space, to the frequency domain and the 

reverse conversion.  This results to the reduction of computing complexity of the DFT from 

O(n
2
) to O(n log n) where n is the data size. 

The kernel code written in C language was retrieved from 

https://github.com/prst/TM4C1294/blob/master/FFT.c (last accessed 15/10/2015) which was 

tweaked to run on the MicroBlaze accelerator as a function. The tests performed were ramps 

with an increasing number of samples. From the samples, the algorithm finds their FFT values 

and the original sequence using the inverse FFT. In Figure 3.14 we can see the results of the 

tests. 

 

Figure 3.14: Execution Times for computing FFT & IFFT values for a range within 2 – 512 
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In Table 3.10 it can be seen the execution times for computing the FFT values of an increasing 

number of samples of the ramps that were created and the inverse process the creation of the 

original sequence.  

Nx = 2 NFFT = 2 Total cycles for FFT: 31186 Total cycles for IFFT: 33754 

Nx = 7 NFFT = 8 Total cycles for FFT: 204701 Total cycles for IFFT: 246652 

Nx = 12 NFFT = 16 Total cycles for FFT: 457306 Total cycles for IFFT: 564867 

Nx = 17 NFFT = 32 Total cycles for FFT: 1008303 Total cycles for IFFT: 1266023 

Nx = 22 NFFT = 32 Total cycles for FFT: 1014936 Total cycles for IFFT: 1278634 

Nx = 27 NFFT = 32 Total cycles for FFT: 1019225 Total cycles for IFFT: 1271897 

Nx = 32 NFFT = 32 Total cycles for FFT: 1024358 Total cycles for IFFT: 1261734 

Nx = 37 NFFT = 64 Total cycles for FFT: 2265023 Total cycles for IFFT: 2815385 

Nx = 42 NFFT = 64 Total cycles for FFT: 2279737 Total cycles for IFFT: 2815796 

Table 3.10 : Samples of the FFT tests 

Image Processing 

Image Denoise 

The Image Denoise is a kernel written in C Language by Burkart [9]. According to the 

developer, the kernel uses the median filter to try to remove noise from an image. The gray 

scale image is represented by using a two dimensions (2D) array of positive integers over 

some range 0 to GMAX. The value 0 indicates black pixels, and GMAX white pixels. 

Intermediate values represent pixels with shades of gray in a natural way. Accordingly, a color 

image can be represented by using a set of three two dimensions (2D) arrays, which R, G, and 

B stand for the intensity of the red, green and blue signals which form the color image. The 

common maximum value could be assumed as the RGBMAX.  

In our test cases ASCII PGM format were used due to the fact that they are convenient to pass 

as inputs parameters in the function that was created. The noise ("salt and pepper") was 

applied on images of different sizes. That is because a scattering of individual pixels have 

been reset to the lowest or highest possible values in a random way. In a gray scale picture, 

such noise looks like salt and pepper that was added to the picture.  

Burkart [9] explains how the algorithm works, since an image is in a large degree smooth, 

each pixel should actually be close enough to the values of pixels nearby, which is not true for 

the salt and pepper pixels. So a way to make the noise go away is to replace each pixel by the 

median value of itself and its neighbors. During the tests conducted, it was noticed that when 

the filter was implemented more than once, the image was looking more and more to the 

original image.  The method used in this kernel is very simple in contrast to other more 
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sophisticated filters. The code used is available here 

http://people.sc.fsu.edu/~jburkardt/c_src/image_denoise/image_denoise.html (last accessed 

15/10/2015) 

 

Figure 3.15 : Execution Times for applying median filter on images with image size with 16 - 900 pixels 

In Table 3.16 can be seen a sample of the test applying median filter on differnet image size 

pictures. 

Number of rows = 4 Number of columns = 4 Maximum pixel intensity = 255 Cycles 12774 

Number of rows = 5 Number of columns = 5 Maximum pixel intensity = 255 Cycles 20091 

Number of rows = 6 Number of columns = 6 Maximum pixel intensity = 255 Cycles 28087 

Number of rows = 7 Number of columns = 7 Maximum pixel intensity = 255 Cycles 45370 

Number of rows = 8 Number of columns = 8 Maximum pixel intensity = 255 Cycles 49164 

Number of rows = 9 Number of columns = 9 Maximum pixel intensity = 255 Cycles 66311 

Number of rows = 10 Number of columns = 10 Maximum pixel intensity = 255 Cycles 73279 

Number of rows = 11 Number of columns = 11 Maximum pixel intensity = 255 Cycles 87746 

Number of rows = 12 Number of columns = 12 Maximum pixel intensity = 255 Cycles 102624 

Number of rows = 13 Number of columns = 13 Maximum pixel intensity = 255 Cycles 122663 

Number of rows = 14 Number of columns = 14 Maximum pixel intensity = 255 Cycles 139874 

Number of rows = 15 Number of columns = 15 Maximum pixel intensity = 255 Cycles 156543 

Number of rows = 20 Number of columns = 20 Maximum pixel intensity = 255 Cycles 276893 

Number of rows = 25 Number of columns = 25 Maximum pixel intensity = 255 Cycles 489624 

Number of rows = 30 Number of columns = 30 Maximum pixel intensity = 255 Cycles 602092 

Figure 3.16: Sample of Image Denoise Kernel tests 

Image Edge Detection 

Burkart [9] is also the developer of the Image edge detection kernel. The kernel is written in C 

language and detects the edges in an image. The algorithm applies the N.E.W.S. which is a 

very simple edge detection scheme, which compares the North, East, West, and South 

neighbors of a pixel in order to determine if the pixel lies along an edge. In the literature we 
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can find many sophisticated edge detection algorithms, but this was very suitable for the tests 

we needed to do. The C code was modified in order to be executed on the MicroBlaze 

microprocessor as a function. The execution times of the kernel were logged for different 

image size pictures. The results are depicted in Figure 3.17. The code of the kernel is available 

here http://people.sc.fsu.edu/~jburkardt/c_src/image_edge/image_edge.html (last accessed 

14/10/2015).  

 

Figure 3.17: Execution Times for applying Edge Detection on Images with image size within 16 – 196 pixels 

The Table 3.11 is a sample of the tests performed. 

 

Rows= 4 Cols= 4 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 415639 

Rows= 5 Cols= 5 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 415336 

Rows= 6 Cols= 6 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 415303 

Rows= 7 Cols= 7 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 415169 

Rows= 8 Cols= 8 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 415089 

Rows= 9 Cols= 9 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414938 

Rows= 10 Cols= 10 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414927 

Rows= 11 Cols= 11 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414762 

Rows= 12 Cols= 12 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414604 

Rows= 13 Cols= 13 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414463 

Rows= 14 Cols= 14 Maximum pixel intensity = 255 E_MAX = 245 THRESH = 49 Cycles= 414320 

Table 3.11 : Sample of Image Edge Detection 

Search String 

The Boyer–Moore–Horspool algorithm or Horspool's algorithm is an algorithm for finding 

substrings in strings and was published by Nigel Horspool in 1980 [21]. It is a simplification 

of the Boyer–Moore string search algorithm which is also related to the Knuth–Morris–Pratt 

algorithm. The algorithm trades space for time in order to achieve  a complexity of O(N) on 
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random text rather than O(MN) in the worst case, where the length of the searching words is 

M and the length of the search string is N 

(https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm). 

In our test cases we performed multiple tests of the string search algorithm. The searches were 

different substrings sizes in a string whose size was increasing. This led to the results of 

execution times in cycles that depended on two independent variables, the string size and the 

substring size. The Figures 3.12 & 3.19 depict the 3D results of execution times depended on 

the substring and the string size. In Figure 3.12 can be seen the results for the case of caching 

enabled and in the Figure 3.19 are the results for caching disabled. 

The red points in Figure 3.18 are values that are excluded from the model for predicting 

execution times. Two regions of points are excluded. The first Region contains the execution 

times that are produced from the algorithm and they reach the lower bounds of the model and 

the second region contains the execution times where the string to be found is larger than the 

string to be searched. These two regions are excluded due to the fact that we need the higher 

bound of the model in order to predict the Worst Case Execution Time. The regions can be 

seen in Figures 3.18 and 3.21. 

The Figures 3.18 and 3.19 depict diferrent aspects of the 3D Figure 3.12. 

 

 

Table 3.12:Execution Times for searching strings within 50-1000 chars in strings within 50-1000 chars(Caching 
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Figure 3.18: Different aspect of the 3D Figure 3.12 with Region 1 and 2 

 

Figure 3.19: Different aspect of the 3D Figure 3.12 

 

 

Figure 3.20: Execution Times for searching strings within 50-1000 chars in strings within 50-1000 chars (Caching 

Disabled) 
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The Figures 3.21 and 3.22 depict different aspects of the 3 Dimensional Figure 3.20. 

 

Figure 3. 21: Different aspect of the 3D Figure 3.15 with Region 1 and 2 

 

Figure 3.22: Different aspect of the 3D Figure 3.15 
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K-means Clustering 

The K-means clustering is a method of vector quantization which originates from signal 

processing and is very popular for cluster analysis in data mining. The  K-means  clustering  

algorithm  is  defined by  Hartigan [55].  The  aim  of  the  K-means  algorithm  is  to  divide  

M  points  with  N  dimensions  into  K  clusters  so  that  the  within-cluster  sum  of  squares  

is  minimized.  It  is  not  practical  to  require  that  the  solution  has  minimal  sum of  

squares  against  all  partitions,  except  when  M,  N  are  small  and  K equals to 2.  The aim 

of the algorithm is to find those solutions  where  no  movement  of  a  point  from  one  

cluster  to  another  will  reduce  the  within-cluster  sum  of  squares [54]. The problem is 

computationally difficult, NP-hard, but there are efficient heuristic algorithms that are 

commonly applied and meet quickly to a local optimum.  

For the tests that were performed in this kernel modeling was the most difficult issue due to 

the fact that there were three independent variables to search for the relationships among 

them. The variables were the number of coordinates, the number of clusters and the number of 

objects. In order to conduct the tests, the number of coordinates was held fixed and we logged 

the execution times for a range of objects (60-120 objects) and a range of clusters (10-60 

clusters). The procedure was repeated for a range of fixed coordinates (2-5 coordinates). The 

test results are in the Figures 3.23 – 3.46 for the case of data cache enabled and for data cache 

disabled. 
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Objects with Number of Coordinates 2 and Data Cache Enabled 

 

Figure 3.23 : Execution Times  for K-means Clustering for Objects with Coordinates 2 Number of Objects within 60-

120 Number of Clusters 10 – 60 (Caching Enabled) 

Figures 3.24 and 3.25 are different aspects of 3 Dimensional Figure 3.23. 

 
Figure 3.24 : Different aspect of 3D Figure 3.23 

 
Figure 3. 25 : Different aspect of 3D Figure 23 

10 20 30 40 50 60

60
80

100
120

2
4
6
8

10
12

x 10
6

Number of Clusters

K-means Clustering

Objects with 2 Coordinates

Cache Enabled

Number of Objects

E
x
ec

u
ti

o
n

 T
im

e 
in

 C
y
cl

es

10 20 30 40 50 60

60
80
100
120

2

4

6

8

10

12

x 10
6

Number of Objects

Number of Clusters

K-means Clustering

Objects with 2 Coordinates

Cache Enabled

E
x

ec
u

ti
o

n
 T

im
e 

in
 C

y
cl

es

204060

60708090100110120

2

4

6

8

10

12

x 10
6

K-means Clustering

Objects with 2 Coordinates

Cache Enabled

Number of Objects

E
x

ec
u

ti
o

n
 T

im
e 

in
 C

y
cl

es

Number of Clusters



44 

 

From the Figures we can conclude that as the Number of Objects and the Number of Clusters 

increase then the execution time increases.   
 

Objects with Number of Coordinates 2 and Data Cache Disabled 

 
Figure 3. 26 : Execution Times for K-means Clustering, for Objects with Coordinates 2, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Disabled) 

Figures 3.27 and 3.28 are different aspects of 3 Dimensional Figure 3.26. 

 
Figure 3. 27 : Different aspect of 3D Figure 3.26 

 
Figure 3. 28 : Different aspect of 3D Figure 3.26 
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Objects with Number of Coordinates 3 and Data Cache Enabled 

 

Figure 3. 29 : Execution Times  for K-means Clustering for Objects with Coordinates 3 Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Enabled) 

Figures 3.30 and 3.31 are different aspects of 3 Dimensional Figure 3.29. 

 
Figure 3. 30 : Different aspect of 3D Figure 3.29 

 
Figure 3. 31 : Different aspect of 3D Figure 3.29 
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Objects with Number of Coordinates 3 and Data Cache Disabled 

 

 

Figure 3. 32 : Execution Times  for K-means Clustering for, Objects with Coordinates 3, Number of Objects within 60-

120,Number of Clusters 10 – 60 (Caching Disabled) 

Figures 3.33 and 3.34 are different aspects of 3 Dimensional Figure 3.32 

 
Figure 3. 33 : Different aspect of 3D Figure 3.32 
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Figure 3. 34 : Different aspect of 3D Figure 3.32 

Objects with Number of Coordinates 4 and Data Cache Enabled 

 
Figure 3. 35 : Execution Times  for K-means Clustering for Objects with Coordinates 4, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Enabled) 

Figures 3.36 and 3.37 are different aspects of 3 Dimensional Figure 3.35 

 
Figure 3. 36 : Different aspect of 3D Figure 3.35 

 
Figure 3. 37 : Different aspect of 3D Figure 3.35 
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Objects with Number of Coordinates 4 and Data Cache Disabled 

 

Figure 3. 38 : Execution Times  for K-means Clustering for Objects with Coordinates 4, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Disabled) 

Figures 3.39 and 3.39 are different aspects of 3 Dimensional Figure 3.38. 

.  
Figure 3. 39 : Different aspect of 3D Figure 3.38 

 
Figure 3. 40 : Different aspect of 3D Figure 3.38 
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Objects with Number of Coordinates 5 and Data Cache Enabled 

 

Figure 3.41 : Execution Times  for K-means Clustering for Objects with Coordinates 5, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Enabled) 

Figures 3.42 and 3.43 are different aspects of 3 Dimensional Figure 3.41. 

 
Figure 3.42 : Different aspect of 3D Figure 3.41 

 
Figure 3. 43 : Different aspect of 3D Figure 3.41 
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Objects with Number of Coordinates 5 and Data Cache Disabled 

 

Figure 3. 44 : Execution Times  for K-means Clustering for Objects with Coordinates 5, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Disabled) 

Figures 3.45 and 3.46 are different aspects of 3 Dimensional Figure 3.44. 

 
Figure 3.45 : Different aspect of 3D Figure 3.45 

 
Figure 3. 46 : Different aspect of 3D Figure 3.44  
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Chapter 4 -  Workload time prediction 

In this section the methodology that was followed in order to have a reliable estimation of 

execution time of each kernel will be described. Each kernel requires data as input and returns 

the computational results for each input data set. To estimate the execution time of each kernel 

is a very important procedure, especially for real time embedded systems. Furthermore it is 

also important to have tight upper bound on execution time for a variety of reasons. 

It is essential to estimate execution time for each kernel, for scheduling reasons [23], for 

efficient use of resources [24] or even for allowing an embedded system to identify anomalous 

software behaviors in order to provide online reconfiguration and re-execution in run-time 

[22].  

Before continuing to the description of the methodology followed, important definitions will 

be provided about the WCET (Worst Case Estimation Time), the Regression Analysis and the 

Coefficient determination known as R-Square.  

Worst Case Execution Time 

According to Wikipedia (https://en.wikipedia.org/wiki/Worst-case_execution_time last 

accessed 15/10/2015) the worst-case execution time (WCET) of a computational task is the 

maximum length of time the task could take to execute on a particular hardware platform. It is 

typically used in reliable real-time systems, where understanding the worst case timing 

behavior of software is important for reliability or correct functional behavior. 

Wilhelm et al. [46] in their work define that the determination of upper bounds on execution 

times is commonly called Worst-Case Execution Times (WCETs) and that it is a necessary 

step in the development and validation process for hard real-time systems. This problem is 

hard if the processor’s architecture has components such as caches, pipelines, branch 

prediction, and other speculative components. In their paper they describe different 

approaches to this problem and surveys several available tools and research prototypes. 

Hard real-time systems need to satisfy strict timing constraints, which stem from the systems 

they control. For example, a computer system that controls the behavior of an engine in a 

vehicle should respond to inputs within a specific amount of time. In general, upper bounds on 

the execution times should comply with these constraints. Unfortunately, it is not possible in 

general to obtain upper bounds on execution times for programs. Otherwise, someone could 

solve the known “halting problem” [46]. 
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While WCET is potentially applicable to real-time systems, in practice the assurance of 

WCET is mainly used by real-time systems that are related to high reliability or safety. The 

increasing use of software in automotive systems leads to the need of using WCET analysis of 

software. 

The Common methods used for Finding WCET are: 

 End-to-end measurements of code for a subset of data inputs – test cases. This method 

is often called dynamic timing analysis. 

 Manual static program analysis techniques such as measurements of parts of the task 

instructions for each function, loop, etc. and then combining them to give better 

predictions. 

But according to Wilhelm et al. [46] these methods don’t guarantee to give bounds on the 

execution time and so are not safe for hard real-time systems. 

The worst case execution time (WCET) analysis refers to the execution time of single thread, 

task or process. However, on modern hardware with multi-core architecture, tasks in the 

system will affect the WCET of a given task if they share cache memory and other hardware 

features. Further, task scheduling events like blocking or interrupting should be considered in 

WCET analysis if they can occur in a particular system. Therefore, it is important to consider 

the framework in which WCET analysis is applied [46]. 

Regression analysis 

According to the Wikipedia (https://en.wikipedia.org/wiki/Regression_analysis last accessed 

15/10/2015) in statistics, regression analysis is a process, for estimating the relationships 

between variables. It includes techniques for modeling and analyzing several variables, when 

the aim is on the relationship among a dependent variable and one or more independent 

variables. More specifically, regression analysis helps someone understand how the value of 

the dependent variable changes when any one of the independent variables changes, while the 

independent variables stay fixed.  

Sykes [51] mentions that regression techniques have long been central to the field of economic 

statistics. Increasingly, they have become important to lawyers and legal policy makers as 

well, but we can see that are also used in the field of computer science. 

A wide range of test cases are found in the literature that use regression analysis for modeling 

in computer science, like the paper of Yang et al. “Estimation of Execution times on 
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Heterogeneous Supercomputer Architectures” [48] or the paper of Giusto et al. “Reliable 

estimation of execution time of embedded software” [49] that are modeling execution times of 

software on different architectures. In the work of Li & John “Run-time Modeling and 

Estimation of Operating System Power Consumption” [50] are modeling the power 

consumption of different Operating System tasks.   

Coefficient of determination 

In the Wikipedia (https://en.wikipedia.org/wiki/Coefficient_of_determination last accessed 

15/10/2015) the definition Coefficient of determination in statistics is denoted R
2
 or r

2
. It is a 

number that indicates how well data fit a statistical model like a line or a curve. It is used in 

the context of statistical models that aim to the prediction of future outcomes or the testing of 

hypotheses, based on   related information. It provides a measure of how well observed 

outcomes are replicated by the model, as the proportion of total variation of outcomes 

explained by the model. The coefficient of determination ranges from 0 to 1. But In some 

special cases R
2
 can yield negative values, cases that don’t concern this paper.   

Modeling kernel for WCET 

Since it is impractical to compute for every possible input data set a kernel’s actual execution 

time was decided to resolve this problem by trying to identify each program’s worst-case input 

data set or executing the kernels with a wide range of input data set. The execution times were 

collected and processed in order to model each kernel for the WCET for a given data set.  

Regression analysis was performed using MATLAB Curve Fitting Tool in order to create the 

mathematical model for each kernel and finally a function was implemented in C language 

that computes the estimated WCET of each kernel provided independent input data sets. 

Next in this section, for each kernel the mathematical model created will be presented. For 

each kernel and for the same input data set the results were collected for the cases of enabled 

and disabled data caching. 

The Figures presented in Chapter 3 will also be presented and commented in this section in 

order to avoid changing of pages while reading this paper.   

BasicMaths Cubic Solving  

In this benchmark the execution time is depended on the number of the values that solve the 

third degree polynomial and the execution time is between 400000-600000 cycles when 

https://en.wikipedia.org/wiki/Coefficient_of_determination
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caching is disabled and 120000-200000 cycles when caching is enabled. So the function 

returns the maximum value of the data in order to get the estimated WCET. For testing 

purposes the function that returns the execution time, for testing purposes, has the option to 

return the minimum and average value of the data collected.      

 

Figure 4.1 : Execution times required for solving the equation  aX3+bX2+cX+d=0 with constants a,b,c,d within the 

ranges  -10<a<10 , -10<b<10 , -5<c<15 , -3<d<3 

Unsigned Integer Square Roots Computation 

In this benchmark the execution time is depended on the integer that the Square Root is 

computed whose maximum value is around 210000 cycles when caching is disabled and 

around 2000 cycles when caching is enabled. So the function returns the maximum value of 

the data in order to get the estimated WCET. For testing purposes the function that returns the 

execution time, has the option to return the minimum and average value of the data collected.      

 

Figure 4.2 : Execution times for computing the SQRT of Unsigned Integer 

Degrees to Radians Conversion 
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In this benchmark the execution time is independent of the value that is Converted to Degrees. 

As we can see in the graph the mean value is around 7800 cycles when caching is disabled and 

around 2800 cycles when caching is enabled. So the function returns the maximum value of 

the data in order to get the WCET. For testing purposes the function that returns the execution 

time, has the option to return the minimum and average value of the data collected. 

 

Figure 4.3 : Execution Times for the conversion of Degrees to Radians Degrees Range within 

Black & Scholes 

In this program it is observed that the execution times are depended on the Number of Days in 

a linear way in both cases of data caching disabled and data caching enabled. 

The mathematical model is polynomial of first degree f(x)=p1*x+p2. 

In the case of Data Cache Enabled p1=1084e+05 and p2= -2e+04 

In the case of Data Cache Disabled p1=3054e+05 and p2= -5821e+04 

The value of the R-Square is expected to be between 0 – 1. In both cases it is R-Square=0,999, 

which means that the model computed is very close to the real values collected.  
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Figure 4.4 : Execution Times for the computation of a stock price for a range of days within 10 – 365 

CRC32 

In this program it is observed that the execution times are depended on the Number of Bytes 

that are used to compute the CRC32 in a linear way in both cases of data caching disabled and 

data caching enabled. 

The mathematical model is polynomial of first degree f(x)=p1*x+p2. 

In the case of Data Cache Enabled p1=42,21 and p2= 702,1 

In the case of Data Cache Disabled p1= 380 and p2= 278 

The value of the R-Square is expected to be between 0 – 1. In both cases it is R-Square=1. 

Which means that the model computed perfectly fits the data.  

 

Figure 4.5 : Execution Times for creating a CRC code for a range of text size within 10-660 bytes 
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In this program the execution times are dependent on the number of nodes that are included in 

the graph. As the number of Nodes increases we observe that the execution time increases in 

an exponential way. The model for this case is a power of first degree f(x)=p1*X^p2. 

In the case of Data Cache Enabled p1=281 and p2= 2,147 with R-Square=0,9877 

In the case of Data Cache Disabled p1= 2620 and p2= 2,107  with R-Square=0,9991 

The data were collected with constrain that 5 shortest paths should be returned.   

 

 

Figure 4.6 : Execution Times for finding 5 shortest paths in a Graph of adjacent  Nodes within the range of 5 - 50 

In this case, it must be highlighted that the number of shortest paths that are returned from the 

program does not affect the execution times. This can be seen from the following graph were 

the execution time remains almost the same while the number of required shortest paths 

increases and the number of nodes remains 50. 

 

Figure 4.7 :  Execution Times to find 5 – 50 shortest paths in a Graph of 50 adjacent Nodes 
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SHA-1 

In this program it is observed that the execution times are depended on the Number of Bytes 

that are used to compute the SHA-1 in a linear way in both cases of data caching disabled and 

data caching enabled. 

The mathematical model is polynomial of first degree f(x)=p1*x+p2. 

In the case of Data Cache Enabled p1=276,4 and p2= -6018 

In the case of Data Cache Disabled p1= 2792 and p2= -5,651e+04 

The value of the R-Square is between 0 – 1 and in both cases R-Square=1. Which means that 

the model computed perfectly fits the data.  

 

Figure 4.8: Execution Times to execute the hash function for a range of bytes within 25- 9925 bytes 

FFT & IFFT 

In this kernel the execution time is dependent from the next higher power of two (2), called 

NFFT complex number, which is greater than the Number of the signal samples. For example 

if the number of signal samples (Nx) is 10 then the next higher power of two (2) is NFFT 

complex number is 2
4
=16 . In the same way if the samples of the signal samples (Nx) are 30 

then the NFFT complex number is 2
5
=32. 

As it can be observed from the Figure 4.9 the model looks like a stairs line depended on the 

NFFT. In order to convert this model to linear model the lower values of the data values were 

excluded.     
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Figure 4.9 :  Execution Times for computing FFT & IFFT values for a range within 2 – 512 

The model from the regression analysis for this case is a power of first degree f(x)=p1*X^p2. 

In the case FFT with Data Cache Enabled p1= 1.895e+04 and p2= 1,157 with R-

Square=0,9999 

In the case FFT with Data Cache Disabled p1= 7.275e+04 and p2= 1,142  with R-Square=1 

 

Figure 4.10 : WCET for computing FFT values for a range within 2 – 512 

(Caching Enabled) 

 

Figure 4. 11 :  WCET for computing FFT values for a range within 2 – 512 

(Caching Disabled) 
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In the case IFFT with Data Cache Enabled p1= 2.386e+04 and p2= 1,148 with R-Square=1 

In the case IFFT with Data Cache Disabled p1= 2.386e+04and p2= 1,148  with R-Square=1 

 

Figure 4. 12 : WCET for computing IFFT values for a range within 2 – 512  

(Caching Disabled) 

 

Image Processing – Image Denoise 

In this kernel the execution time is dependent on the number of pixels of processed image. 
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times are 0. The problems arise probably due to shortage of memory. On the contrary when 
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Figure 4.13 : Execution Times for applying median filter on images with image size with 16 - 900 pixels 

Image Processing – Image Edge Detection 

In this kernel there were some problems due to memory shortage that didn’t allow a wide 

range of input data set. This is the reason why the image pixels range varies between 16 pixels 

to 196 pixels. Despite the problems, it was decided to show the results of the tests for 

discussion and for further examination after reconfiguration of the hardware. Apart from the 

above it must be highlighted that the processed images were squared images which means that 

they had the same number of rows and columns. This is also a future work that has to be 

examined after reconfiguration of the accelerator. 

In the case of data cache enabled the model seems to be linear model a polynomial of first 

degree f(x) = p1*x + p2. 

With p1 = -5.992, p2 =   4.155e+05 and Goodness of fit: R-square: 0,993 

In the case of data cache disabled the model seems to be linear model exponential of second 

degree   f(x) = a*exp(b*x) + c*exp(d*x). 

With a =   4.137e+05, b =   -0.001405, c = 8863, d = 0.01749 and Goodness of fit R-square= 

0,9863. 

But as it was mentioned at the beginning the range of input data set is too small to have a 

reliable model.  

 

Figure 4.14 :  Execution Times for applying Edge Detection on Images with image size within 16 – 196 pixels 

Search String 

This kernel was more complicated than the previous kernels and programs. That is due to the 

fact that there are two (2) independent variables. The execution times are dependent from 

SearchString length and the FindString length. The FindString is the string looked for 

(searched) in the SearchString. 
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In this case in order to create a reliable lineal model with the Worst Case Estimation time the 

lower values of the execution times were excluded and a polynomial of two variables of first 

degree for each variable was created. 

For the case of Data Cache enabled the model is f(x,y) = p00 + p10*x + p01*y 

p00 = -412,1 ,  p10 = 48,74  ,  p01 =  9,772 and Goodness of fit  R-square: 0.9896 

 

Figure 4. 15 : Execution Times for searching strings within 50-1000 chars in strings within 50-1000 chars (Caching 

Enabled) 

For the case of Data Cache disabled the model is   f(x,y) = p00 + p10*x + p01*y 

p00 =  2746, p10 = 481,2 , p01 = 65,04 Goodness of fit R-square = 0,9999 

 

Figure 4. 16 :  Execution Times for searching strings within 50-1000 chars in strings within 50-1000 chars (Caching 

Disabled) 

K-means 

This program was the most complicated of all. There are three (3) independent variables that 

had to be included in the model. The program is a clustering method that aims to partition n 

observations (Number of Objects 60-120) into k clusters (Number of Clusters 10-60) in which 
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each observation belongs to the cluster with the nearest mean. The objects have a number of 

Coordinates more or equal to two (2). For this case it was decided to divide the problem into 

sub problems. The tests were performed separately for different number of coordinates 

(Coordinates: 2, 3, 4, 5). 

Objects with Coordinates 2 

Linear model Poly11: 

     f(x,y) = p00 + p10*x + p01*y 

Coefficients (with 95% confidence bounds): 

       p00 =  -4.706e+06  (-5.444e+06, -3.967e+06) 

       p10 =   7.213e+04  (6.4e+04, 8.026e+04) 

       p01 =   6.311e+04  (5.561e+04, 7.061e+04) 

 

Goodness of fit: 

  SSE: 1.204e+14 

  R-square: 0.7922 

  Adjusted R-square: 0.7895 

  RMSE: 8.872e+05 

 

 

Figure 4. 17 :  Execution Times  for K-means Clustering for Objects with Coordinates 2 Number of Objects within 60-

120 Number of Clusters 10 – 60 (Caching Enabled) 

Linear model Poly11: 

     f(x,y) = p00 + p10*x + p01*y 

Coefficients (with 95% confidence bounds): 

       p00 =  -4.658e+07  (-5.367e+07, -3.948e+07) 

       p10 =    6.71e+05  (5.929e+05, 7.492e+05) 

       p01 =   6.231e+05  (5.51e+05, 6.952e+05) 

 

Goodness of fit: 

  SSE: 1.112e+16 
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  R-square: 0.7911 

  Adjusted R-square: 0.7884 

  RMSE: 8.526e+06 

  

 
Figure 4. 18 :  Execution Times  for K-means Clustering for Objects with Coordinates 2, Number of Objects within 60-

120, Number of Clusters 10 – 60(Caching Disabled) 

Objects with Coordinates 3 

Linear model Poly11: 

     f(x,y) = p00 + p10*x + p01*y 

Coefficients (with 95% confidence bounds): 

       p00 =  -5.592e+06  (-6.684e+06, -4.499e+06) 

       p10 =   8.758e+04  (7.555e+04, 9.96e+04) 

       p01 =   7.937e+04  (6.827e+04, 9.046e+04) 

 

Goodness of fit: 

  SSE: 2.635e+14 

  R-square: 0.7266 

  Adjusted R-square: 0.7231 

  RMSE: 1.312e+06 
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Figure 4. 19 :  Execution Times  for K-means Clustering for, Objects with Coordinates 3,Number of Objects within 60-

120,Number of Clusters 10 – 60 (Caching Enabled) 

Linear model Poly11: 

     f(x,y) = p00 + p10*x + p01*y 

Coefficients (with 95% confidence bounds): 

       p00 =  -5.484e+07  (-6.511e+07, -4.457e+07) 

       p10 =   8.089e+05  (6.959e+05, 9.22e+05) 

       p01 =    7.71e+05  (6.667e+05, 8.753e+05) 

 

Goodness of fit: 

  SSE: 2.329e+16 

  R-square: 0.7296 

  Adjusted R-square: 0.7261 

  RMSE: 1.234e+07 

 

Figure 4. 20 : Execution Times  for K-means Clustering for Objects with Coordinates 3, Number of Objects within 60-

120, Number of Clusters 10 – 60 (Caching Disabled) 
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Linear model Poly11: 

     f(x,y) = p00 + p10*x + p01*y 

Coefficients (with 95% confidence bounds): 

       p00 =  -5.113e+06  (-6.405e+06, -3.821e+06) 

       p10 =   7.492e+04  (6.069e+04, 8.915e+04) 

       p01 =   8.934e+04  (7.621e+04, 1.025e+05) 

 

Goodness of fit: 

  SSE: 3.689e+14 

  R-square: 0.6538 

  Adjusted R-square: 0.6493 

  RMSE: 1.553e+06 

 

  
 

Figure 4. 21: Execution Times  for K-means Clustering for Objects with Coordinates 4, Number of Objects within 60-

120, Number of Clusters 10 – 60(Caching Enabled) 

Linear model Poly11: 

     f(x,y) = p00 + p10*x + p01*y 

Coefficients (with 95% confidence bounds): 

       p00 =  -5.221e+07  (-6.434e+07, -4.009e+07) 

       p10 =   6.958e+05  (5.623e+05, 8.293e+05) 

       p01 =   8.837e+05  (7.605e+05, 1.007e+06) 

Goodness of fit: 

  SSE: 3.247e+16 

  R-square: 0.6673 

  Adjusted R-square: 0.663 

  RMSE: 1.457e+07 
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Figure 4. 22 :  Execution Times  for K-means Clustering for Objects with Coordinates 4,Number of Objects within 60-

120,Number of Clusters 10 – 60(Caching Disabled) 

Objects with Coordinates 5 

Linear model Poly11: 

     f(x,y) = p00 + p10*x + p01*y 

Coefficients (with 95% confidence bounds): 

       p00 =  -7.207e+06  (-8.568e+06, -5.845e+06) 

       p10 =   1.037e+05  (8.87e+04, 1.187e+05) 

       p01 =   1.084e+05  (9.46e+04, 1.223e+05) 

 

Goodness of fit: 

  SSE: 4.093e+14 

  R-square: 0.7361 

  Adjusted R-square: 0.7326 

  RMSE: 1.636e+06 

 

 

Figure 4. 23 :  Execution Times  for K-means Clustering for Objects with Coordinates 5, Number of Objects within 60-

120, Number of Clusters 10 – 60(Caching Enabled) 
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Linear model Poly11: 

     f(x,y) = p00 + p10*x + p01*y 

Coefficients (with 95% confidence bounds): 

       p00 =  -7.023e+07  (-8.299e+07, -5.748e+07) 

       p10 =   9.584e+05  (8.18e+05, 1.099e+06) 

       p01 =   1.048e+06  (9.186e+05, 1.178e+06) 

 

Goodness of fit: 

  SSE: 3.593e+16 

  R-square: 0.7408 

  Adjusted R-square: 0.7374 

  RMSE: 1.532e+07 

 

.  

Figure 4. 24 : Execution Times  for K-means Clustering for  Objects with Coordinates 5  Number of Objects within 60-

120 Number of Clusters 10 – 60(Caching Disabled) 
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Chapter 5 -  Kernels Concurrent Scheduling  

According to Brucker [27], since mid-fifties scheduling problems concern computer scientists 

as a tool to increase the performance of computer systems. Furthermore, scheduling problems 

have been investigated and classified according to their computational complexity. The 

scheduling problem nowadays has different views and a lot of research has been done in this 

domain. The problems are classified between single machines scheduling problems, parallel 

machines scheduling problems [32], for homogeneous and heterogeneous systems scheduling 

problems [29, 30]. There are also papers that tackle independent tasks/jobs problems [26], 

dependent tasks/jobs scheduling problems and due-date scheduling problems [27]. 

In most of the cases the scheduling problem is a Directed Acyclic Graph DAG problem whose 

optimal solution is considered to be NP-Hard problem. Brucker [27] in his thesis, describes a 

great number of scheduling algorithms found in the literature, like Sarkar,  HLFET (Highest 

Level First with Estimated Time) , ETF (Earliest Time First), ISH (Insertion Scheduling 

Heuristic), FLB (Fast Load Balancing), DSC (Dominant Sequence Clustering), CASS-II, DCP 

(Dynamic Critical Path), MCP (Modified Critical Path) and MD that as he mentions work on 

homogeneous systems but are useful to be studied and also work on heterogeneous systems. 

In our case we used the source code of Doss [53] which solves the multiprocessor scheduling 

problem using a Partition Approximation algorithm [33, 52, 53]. Doss [52] describes the 

partition scheduling problem as the problem that asks that a given set (S) of integer values that 

represent process running times, to be subdivided into two subsets S' and S'' in a way that the 

sum of all process running times in the first set (S') is equal to the sum of all process running 

times in the second set (S''). In this way, the total sum of process running times in both subsets 

is equivalent, or very close, to the half of the total cost of all process running times in the 

original set (S). This is a NP-Complete problem and can be proven via a reduction from three 

dimensional matching. 

As it is well known NP-Complete problems do not have to date, any polynomial time 

algorithm that can solve them. It is supposed that such problems don’t have a polynomial time 

solution. However, approximation algorithms deal with many NP-Complete problems, a 

reason why they have been developed. Approximation algorithms are algorithms which do not 

solve the NP-Complete problem optimally in all cases but they trade accuracy for 

performance. As Doss [53] highlights, not all NP-Complete problems can be approximated; 

however, the partition scheduling problem has several. With this technique an approximation 

for the partition scheduling problem can be generalized to approximate scheduling for many 

https://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CEsQygQwBGoVChMImJaU3O_CyAIVyP5yCh3tjQ9x&url=https://parasol.tamu.edu/groups/amatogroup/research/scheduling/scheduling_algorithms/


70 

 

processors machines where the number of processors is a power of two, like 2
1
, 2

2
, 2

3
, 2

4
, and 

so on [34]. 

Scheduling Simulation 

In order to perform the simulation we assume that our platform has two (2) preloaded 

accelerators with the same configuration. This means that each accelerator can execute the 

kernels in the same time and according to the models that have been constructed previously.  

In Table 5.1 there is a list of seven (7) kernels that must be executed in parallel from the 

platform with the two (2) accelerators. In Column 3 we can see the execution time of each 

kernel, provided by the models. In Column 4 there is the input data set for each kernel finally, 

we assume that all kernels are executed with Caching Enabled. 

Task ID Kernel Name Execution Time Input Data Set Caching 

T1 
Unsigned 

Integer SQRT 
1899 Integer: 1000000 Yes 

T2 
Degrees to 

Radians 
2793 Degrees: 180

o
 Yes 

T3 CRC32 21807 Data Size : 500 Yes 

T4 Search String 5439 
20 Find String Size 

100 Search String Size 
Yes 

T5 Image Denoise 161933 Image Pixels: 225 Yes 

T6 SHA-1 270382 Data Size : 1000 Yes 

T7 Cubic Solving 154998  Yes 
Table 5. 1 : Independent Task Simulation 

The results of the Schedule are: 

size [7] cpus [2] 

 log2 [1] 

 queue size [2] 

cpu = [0] 

len = [5] { 270382 21807 5439 2793 1899 } 

 sum = [302320] 

cpu = [1] 

 len = [2] { 161933 154998 }  

 sum = [316931] 
 

Figure 5. 1: Schedule for 7 tasks on 2 cpus 

Now if there were four (4) accelerators in the platform the results would be: 

size [7] cpus [4] 

 log2 [2] 

 queue size [4] 

cpu = [0] 

 len = [1] { 270382 }  

 sum = [270382]  
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cpu = [1] 

 len = [4] { 21807 5439 2793 1899 }  

 sum = [31938] 

cpu = [2] 

 len = [1] { 161933 }  

 sum = [161933] 

cpu = [3] 

 len = [1] { 154998 }  

 sum = [154998] 
Figure 5. 2 : Schedule for 7 tasks on 4 cpus 

Now as we can see the SHA-1 lasts for very long time comparing the other kernels execution 

times. Since all tasks are independent and they start at the same time, the scheduler could 

reduce power consumption of the platform by disabling the caching from some accelerators 

and manage to finish all the kernels at the same time. In this case the Table 5.1 could change 

to Table 5.2. 

 

Task ID Kernel Name Execution Time Input Data Set Caching 

T1 
Unsigned 

Integer SQRT 
20413 Integer: 1000000 No 

T2 
Degrees to 

Radians 
7788 Degrees: 180

o
 No 

T3 CRC32 21807 Data Size : 500 Yes 

T4 Search String 5439 
20 Find String Size 

100 Search String Size 
Yes 

T5 Image Denoise 161933 Image Pixels: 225 Yes 

T6 SHA-1 270382 Data Size : 1000 Yes 

T7 Cubic Solving 154998  Yes 
Table 5. 2: Independent Tasks Simulation with power consumption optimization 

And the results would be for 2 accelerators: 

size [7] cpus [2] 

 log2 [1] 

 queue size [2] 

cpu = [0] 

 len = [4] { 270382 21807 20413 7788 }  

 sum = [320390] 

cpu = [1] 

 len = [3] { 161933 154998 5439 }  

 sum = [322370] 

 

Figure 5. 3 : Schedule for 7 tasks on 2 cpus with power optimization 

The results for 4 accelerators: 

size [7] cpus [4] 

 log2 [2] 

 queue size [4] 

cpu = [0] 

 len = [1] { 270382 }  

 sum = [270382] 

cpu = [1] 
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 len = [3] { 21807 20413 7788 }  

 sum = [50008] 

cpu = [2] 

 len = [1] { 161933 }  

 sum = [161933] 

cpu = [3] 

 len = [2] { 154998 5439 }  

 sum = [160437] 
Figure 5. 4 : Schedule for 7 tasks on 4 cpus (With Power Optimization) 

As we can see from the results all kernels would finish after 270382 cycles which is the 

highest execution time of SHA-1 kernel, but in the second case the power consumption would 

be less. 

Conclusions 

The main objective of this thesis was to describe the steps followed to present a methodology 

for retrieving the best performance in execution time and power consumption of independent 

tasks executed by optimally configured processing element in an embedded heterogeneous 

system. 

The steps of the procedure / methodology are listed below. 

1. Choosing kernels of different domains of embedded systems, like simple math 

computations, digital signal processing, image processing, network, economics, etc. 

Adapt the code in C to run on the Processing Elements, in our case the MicroBlaze 

processor in the Zynq-7000 All programmable SoC FPGA platform of Xilinx. 

2. Execution of the Kernels for different data inputs to log the execution time. In order to log 

execution times for enabled and disabled caching tests were executed for each case. The 

results showed that in all kernels the execution times were higher when caching was 

disabled than when it was enabled according to the theory.    

3. Regression analysis was performed using the execution times logged for each kernel for 

modeling the execution time (dependent variable) and data input (independent variables). 

To implement this process the Matlab Curve fitting tool was used.  

4. All the models were included in a single function which returns the predicted execution 

time for each kernel depended on different inputs. 
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5. Finally, a list of tasks is imported in a multiprocessor scheduler using Partition 

Approximation, which would decide in what order the tasks will be executed from a 

specified number of processing elements.  

Future Work 

This thesis is a part of a bigger project; at this point there is the need to test the 

predicted/estimated WCET with the measured WCET of each kernel, like it is done in the 

paper Li et al. [24]. The ratio between the measured and the predicted WCET will show how 

close the predicted/estimated value is to the measured value and accordingly if it is needed to 

improve the models created. 

As it was also mentioned in section 5.4 the configuration of the accelerator should be changed 

in order to achieve better results of the image processing kernel (edge detection).  

Another important future work, as it was mentioned in the motivation section 1.1 is to 

compact all this steps to work together by implementing to the system manager the scheduling 

and the message passing ability to the accelerators, preload and configure them with the 

specific tasks. 

Finally the scheduler must be modified with the intelligence of taking into account the power 

consumption reduction by choosing cache enabling/disabling of tasks.   
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