
Design, analysis and presentation of Intrusion Detection Systems.

by

SFAKIANAKIS IOANNIS

A THESIS

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF INFORMATICS ENGINNERING

SCHOOL OF APPLIED TECHNOLOGY

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

June 2015

Approved by:

Supervisor
Ass. Prof. Harry Manifavas

[2]

[3]

Abstract

Ιt is very significant to maintain a high level security to ensure safe and trusted

communication of information exchanged between various organizations. Computer security

has become a major problem in our society. But secured transfer packets over internet and any

other network are always under threats caused by intrusions and misuses. Intrusion Detection

System has become a useful component in terms of computer and network security.

Security threats have become more sophisticated and are now able to pass basic security

solutions such as firewalls and antivirus programs. Further protection is therefore required to

enhance the overall security of the network.

This thesis thus acts as documentation for setting up an Intrusion Detection System evaluation

tests. We explore IDS models that are being used for detecting attacks. We analyze two main

types of IDS: the Network IDS and Host-Based IDS. The main goal of this thesis is to point

how typical intrusion attacks might be detected.

[4]

Σύνοψη

Τη σημερινή εποχή είναι πολύ σημαντικό να διατηρείται ένα υψηλό επίπεδο ασφαλείας το

οποίο να εξασφαλίζει την ασφάλεια και την αξιοπιστία των υπολογιστικών και δικτυακών

συστημάτων.Ακόμα είναι πολύ σημαντικό να διατηρηθεί ένα υψηλό επίπεδο αξιοπιστίας στην

επικοινωνία.Η μεταφορά δεδομένων μέσω τηλεπικοινωνιακών συστημάτων δημιουργεί

προβλήματα καθώς αυτά καθίστανται ευπρόσβλητα σε κακόβουλες ενέργειες. Η ασφάλεια

των υπολογιστικών συστημάτων και των επικοινωνιών έχει εξελιχθεί σε ένα μείζων

πρόβλημα.

Μια λύση στα παραπάνω προβλήματα είναι τα συστήματα ανίχνευσης εισβολών (IDS). Τα

συστήματα αυτά αποτελούν ένα χρήσιμο εργαλείο και ένα επιπλέον επίπεδο για την

ασφάλεια των υπολογιστικών και δικτυακών συστημάτων.

Οι απειλές για την ασφάλεια έχουν γίνει πιο περίπλοκες και είναι πλέον σε θέση να περάσουν

τις βασικές λύσεις ασφάλειας όπως τα firewalls και τα antivirus. Ως εκ τούτου, μια

πρόσθετη λυση ασφαλείας απαιτείται για να ενισχυθεί η συνολική ασφάλεια του δικτύου.

Μια πιθανή λύση για την ενίσχυση της ασφάλειας είναι να προσθέσουμε ένα σύστημα

ανίχνευσης εισβολής (IDS) ως ένα επιπλέον επίπεδο των λύσεων ασφαλείας.

Στην παρούσα πτυχιακή γίνεται μελέτη,ανάλυση και παρουσίαση των IDS. Τα συστήματα

ανίχνευσης εισβολών που χρησιμοποιήθηκαν είναι τα Snort,Suricata,Bro.Πιο συγκεκριμένα,

η μελέτη και ο σχεδιασμός του συστήματος που αναπτύχθηκε αφορά δύο κατηγορίες των

IDS τα HIDS και NIDS.

[5]

Acknowledgements

I would like to express my deep gratitude to Professor Harrys Manifavas, my supervisor, for

his patient guidance, enthusiastic encouragement and useful critiques on this work. His

willingness to give his time so generously has been very much appreciated.

Last but not least, I would like to thank my wife, Eleni, for her patience and support she has

shown during the past one year it has taken me to finalize this thesis.

[6]

Contents

Abstract .. 3

Acknowledgement .. 5

List of Tables .. 8

List of Figures .. 9

Chapter 1: Introduction .. 12

1.1 Introduction .. 12

1.2 Motivation .. 13

1.3 Growth of the Internet .. 13

1.4 Growth of Internet attacks .. 14

1.5 History of Intrusion Detection Systems ... 15

1.6 Financial risks .. 15

1.7 Why use IDS? ... 15

1.8 Limitations of Intrusion Detection System .. 16

Chapter 2: Intrusion Detection Systems ... 17

2.1 Introduction .. 17

2.2 Free Intrusion Detection Systems .. 18

2.3 Problems with Existing Systems .. 19

2.4 Process model for Intrusion Detection ... 19

2.5 Effectiveness of IDS ... 20

2.6 Network Intrusion Detection Systems .. 20

2.7 Host Intrusion Detection Systems .. 22

2.8 IDS Analysis ... 23

2.8.1 Misuse Detection ... 24

2.8.2Anomaly Detection .. 24

2.8.3 Specification Detection ... 26

2.8.4 Hybrid .. 26

2.9 IDS Architecture ... 26

Chapter 3: System Model ... 27

3.1 Overview of the proposed system .. 27

3.2 Port mirroring .. 27

3.2.1 Configuration set up switch ... 29

[7]

Chapter 4: Snort ... 31

4.1 Introduction .. 31

4.2 Snort Features ... 32

4.3 Architecture of Snort .. 32

4.3.1 Packet Decoder .. 33

4.3.2 The Preprocessors.. 33

4.3.3 Detection Engine ... 33

4.3.4 Snort Alerts .. 34

4.3.5 Snort Packet Data .. 34

4.4 Three modes of Snort ... 34

4.5 Snort Rules ... 34

4.5.1 Rules Headers .. 35

4.5.2 IP Addresses .. 35

4.5.3 Activate/Dynamic Rules .. 35

4.5.4 General Rule Options .. 36

4.6 The Snort Configuration File ... 38

4.7 Snort IDS mode .. 40

4.7.1 Test ids (ping) .. 41

 4.7.1.1 Rule Ping .. 42

4.8 Port Scan Detection .. 42

4.8.1 Rule Scan Fin .. 43

4.9 Detect SYN flood ... 43

4.9.1 Rule SYN Flood .. 45

4.10 Detect brute-force ftp ... 45

4.10.1 Rule brute-force .. 46

4.11 Detect UDP Flood .. 46

4.11.1 Rule UDP Flood .. 48

 4.12 Detect brute-force SSH .. 48

 4.12.1 Rule brute-force SSH ... 48

Chapter 5: Suricata ... 49

5.1 Suricata ids ... 49

5.1.1Suricata configuration files .. 51

5.1.2Max-pending-packets ... 51

[8]

5.1.3Default-packet-size ... 51

5.1.4Action-order ... 51

5.1.5Detection engine ... 52

 5.1.5.1Inspection configuration .. 52

5.2 Suricata ids mode ... 54

 5.2.1 Test Suricata ids ... 55

 5.2.1.1Rule Ping .. 56

5.3 Detection Port Scan .. 57

5.3.1Rule Port Scan .. 57

5.4 Detection SYN flood .. 57

5.4.1Rule SYN Flood ... 58

5.5 Detection UDP flood .. 58

5.5.1Rule UDP Flood ... 59

5.6 Suricata vs Snort ... 59

Chapter 6: Bro .. 61

6.1 Bro IDS .. 61

6.1.1 Managing Bro with Bro control .. 61

6.1.2 Browsing Log Files ... 61

6.2 Bro Scripts .. 61

6.3 Bro Log Files .. 63

6.3.1 Signature main.bro .. 65

6.3.2 Reporter main.bro .. 66

6.3.3 Communication main.bro .. 67

6.4 Detect Port scan .. 68

6.4.1 Scan.bro ... 71

6.5 Detect SYN Flood .. 75

6.6 Detect UDP flood ... 77

6.7 Detect Brute Force SSH ... 79

 6.7.1 Brute-Force.log ... 81

6.8 Bro vs Snort .. 83

Chapter 7: Conclusion .. 84

7.1 Future Work .. 84

[9]

List of Tables

Table 1-1: Snort Metadata Keys .. 37

Table 1-2: General rule option keywords .. 37

Table 5-1: Global Overview .. 60

[10]

List of figures

Figure 1-1:Attack Complexity .. 13

Figure 1-2: Internet Per 100 Inhabitants ... 14

Figure 1-3:Intrusion Detection System .. 16

Figure 2-1: Intrusion Detection System 2 .. 17

Figure 2-2: IPS In Complete Deployment Mode .. 18

Figure 2-3:NIDS In Complete Deployment Mode .. 20

Figure 2-4:NIDS Architecture With Mirror Port .. 22

Figure 2-5: Host Intrusion Detection System .. 13

Figure 1-1: Attack Complexity ... 13

Figure 1-1: Attack Complexity ... 12

Chapter 1 Introduction

1.1 Introduction

In recent years, a gradually increasing number of intrusion detection systems are being in use.

An intrusion detection system is a device or a software application that monitors network or

system for malicious activities or policy violations that produces reports [1]. This has been

driven by numerous developments, including the growing e-business paradigm, the increasing

interconnection. These incidents highlight the increasing need for organizations to protect

their networks from attacks. Instead of a firewall that filters bad traffic, an IDS monitored

packets to detect malicious attack attempts. The use of secure protocols and the enforcement

of security attributes have the potential to prevent disadvantages from being exploited and

from having costly consequences [2].

IDSs are host-based, network-based and distributed IDSs [3]. Host based IDS monitors

specific host machines, network-based IDS identifies intrusions on key network points and

distributed IDS operates both on host as well as network [3].

Considering the damage caused by the attacks [4], it is important to detect attacks and take, if

it is feasible, appropriate actions to prevent them. Efficiency of IDS can be measured by its

high detection rate and a low false positive rate [5]. IDS can be correlate with fortress defense

against any intrusion where as firewall can act as a first line of defense against the attackers.

[11]

Firewalls can be by passed through attacks strategies with the help of e-mail based trojan

horse viruses by a concealed access through DNS or ICMP protocols [6].

We have two classes of intrusion detection systems [21]: anomaly and misuse detection.

Anomaly detection systems attempt to model the usual or acceptable traffic. They have high

false positive rates and usually have detection system delay. Misuse detection is an IDS

technique that follows defined patterns of attack that exploit disadvantages in the system.

Unfortunately, dependable IDS should continuously provide correct services [7]. Therefore,

two factors need to be considered to ensure IDS reliability. First, the IDS should deliver

reliable detection results. The IDS method should be effective in discovering intrusions since

poor detection performance ruins the trustiness of the IDS [7].

Furthermore, the IDS should be able to work in hostile environments or even under attack [8].

We can study also a determination based IDS that instruments a target application, and uses a

scheduler to confirm timing analysis results [9].

Today’s networks [10] are not only heterogeneous, but also dynamic. Therefore, intrusion

detection systems need to back up mechanisms to dynamically change their configuration as

the security state of the protected system evolves. Most intrusion detection systems [10] are

initialized with a set of signatures at startup time.

In the end, the ad hoc nature of IDSs [11] platforms does not permit one to dynamically

configure a running sensor so that a new packet stream can be used as input for the security

analysis.

1.2 Motivation

A big difficulty of the existing intrusion response systems is to build a system (IDS) model

[12]. This assigned value for the resources is used in the process of evaluating metrics like

intrusion damage cost. Any system topology can be divided into many parts that may be a

service. But it becomes a risk in general for the system administrator to assign values for a

specific system model. It is not only a difficult job for the system administrators but it may

not also be a secure estimate for that system [12].

We have implemented a breakthrough system model that will be a good solution to these

problems. We provide a procedural method to detect network attacks.

[12]

FIGURE 0-1: ATTACK COMPLEXITY

1.3 Growth of the Internet

In a matter for very few years, the internet has been a very powerful platform [13] that has

changed the form of communication. It is the universal source of information and has given a

globalized dimension to the word.

The Internet continues to evolve [13], driven by ever greater amounts of online information

and social networking. The Internet allows greater advantage in working a lot and location,

specifically when it comes to high-speed networks. The Internet can be accessed in most cases

by using mobile, tablet pc and other Internet devices. Mobile phones, data cards, tablet pc,

handheld game machines and routers allow users to connect to the Internet Wi-Fi. Within the

constraints imposed by small screens and other limited facilities of such electronic devices,

the services of the Internet, including email and the web, may be available [13].

E-commerce is trying to add revenue streams using the Internet to build and enhance

relationships with clients and partners [13].

[13]

 Figure 0-2: Internet Per 100 Inhabitants

1.4 Growth of Internet attacks

The attacks on the net have become both more complicated and easier to implement because

of the ubiquity of the Internet and the ease of use operating systems and development

environments [13].

There are multiple points for intrusions to take place in a network system. For instance, at the

network level carefully created malicious IP packets can crash a victim host at the host level,

disadvantages of system software can be exploited to yield an illegal root shell. The security

attacks have exploited all kinds of networks ranging from traditional computers to point to

point and distributed network systems. There are operating systems that regularly publish

updates, but its association of administered machines, uninformed number of targets, and

ever-present software bugs has allowed exploits to remain ahead of patches [13].

When attacks occur specifically against infrastructure [13] then important internet resources

are being targeting. Malicious exploits are having access to web hosting and name servers,

and data centers. This means that forming that seek high-reputation and resource-rich assets.

Buffer errors are a top threat, at 21 percent of the Common Weakness Enumeration threat

categories.

Wireless Sensor Networks [14] are vulnerable to many types of security attacks due to open

wireless medium, decentralized communication and deployment physically non protected

areas. In mote-class attacks, the attacker accommodates few of the sensor nodes inside a

Wireless Sensor Networks. In laptop-class attacks, the attacker has more powerful devices to

launch more intense attack against WSNs.

[14]

1.5 History of Intrusion Detection Systems

In the early ‘90s [15], researchers created real-time intrusion detection systems that reviewed

audit data as it was produced.

Currently attacks on computer systems is continuously growing and in 2000 it was a fact [16]

that the incident numbers of attacks reported to CERT was parallel to the growth of the

internet. The Audit Data Analysis and Mining IDS in 2001 used tcp dump to create profiles of

rules for classification.

In 2003, Dr. Yong guang Zhang and Dr. Wenke Lee argue about the importance of IDS in

networks with mobile nodes [17, 18].

In our days, Wireless Wide Area Networks are being implemented in organizations. The

usefulness of these technologies is only showing the increased need for an organization in

implementing an intrusion detection system within their infrastructure [19].

1.6 Financial risks

The threats on the Internet can cause essential losses resulting from business disruption, loss

of time and money, and damage the brand name. The cost of application downtime and lost

productivity caused by the increasing number of attacks.

The most important cost of network viruses comes from its financial damage to company

performance and to national economies. Network virus damages trade, brand name, novelty,

and global economic growth.

The costs of network viruses for the world are:

• Will continue to increase as more business operates move online and as more companies and

people around the world connect to the Internet.

• Losses from the theft of highbrow property will also increase.

1.7 Why use IDS?

The companies have installed IDS outside of the firewall and routers have done this in order

to see the full breadth of attempted attacks against their organization. Intrusion detection

allows protecting organization systems against attacks that appear with increasing network

connectivity and the interdependency of information systems.

Most companies have developed IDS devices on their network. This means that the IDS exist

on a shared media and captures as many traffic packets as it can handle in a mixed mode and

reports this data back to a management console. One benefit of using IDS is that avoid

problems by dissuading hostile individuals and detect attacks that not prevented by other

protection systems.

[15]

 FIGURE 0-3: INTRUSION DETECTION SYSTEM

1.8 Limitations of Intrusion Detection System

 IDS cannot give a unique solution for all security problems.

 False positives [37]: False alarms when there is not real intrusion taking place.

 False negatives [37]: When a real attack or intrusion remains undetected [20].

 Resources [28]: The process of analysis and data logging, especially in real-time,

makes intrusion detection systems have important requisites on system resources such

as process time or stored space in data bases.

 Defense against new attacks: In most cases, intrusion detection systems cannot detect

recently appeared attacks or variants of existing ones. This happens with most

commercial products that have detectors based on signature technique, with attack

patterns.

 Ciphering: The use of encrypted communication may disable the use of an intrusion

detector based on network, because it cannot interpret what it is monitoring.

Chapter 2 Intrusion Detection Systems

2.1 Introduction

Intrusion detection [22] has the ability of checking the events occurring in a computer system

or network and analyzes them for signs of reasonable incidents, which are violations attacks

[16]

of computer security rules, acceptable usage of rules, or standard security practices. An

intrusion detection system is software that automates the intrusion detection process [22]. The

goal of IDS is to detect intrusions. Incidents have many causes, such as malware, attackers are

getting unauthorized access to systems from the Internet, and authorized users of systems

who misuse their privileges or attempt earning additional privileges for which they are not

authorized .

An intrusion detection system is a device or software application that observes network or

system activities for malicious activities or policy violations and produces reports to a

management station [22]. Detection precision and detection stability are two basic indicators

to evaluate intrusion detection system [23]. Also, flow-based techniques can be used to detect

scans, worms, Botnets and Denial of Service attacks [24]. Security always remains a

challenge in Ad Hoc Networks [56] and becomes a goal to detect the activities of those

networks.

There are network [22] (NIDS) and host (HIDS) intrusion detection systems. Intrusion

detection and prevention systems [1, 22, 25] (IDPS) are mainly in used on identifying

possible incidents, logging information about them, and reporting attempts. In addition,

organizations use IDPSs for various reasons, such as detecting problems with security

policies, documenting existing threats. IDPSs have become necessarily addition to the

security infrastructure of nearly every organization [22].

 FIGURE 2-1: INTRUSION DETECTION SYSTEM 2

An intrusion prevention system [25] (IPS) has all the functions of an intrusion detection

system and can also attempt to prevent possible threats. IDS and IPS technologies offer many

of the same functions, and administrators can often disable prevention function in IPS

products, causing them to be IDS.

[17]

 FIGURE 2-2: IPS IN COMPLETE DEPLOYMENT MODE

2.2. Free Intrusion Detection Systems

Snort: An open source and free network intrusion detection and prevention system was

created by Martin Roesch in 1998 and now is developed by Sourcefire. In 2009, Snort entered

InfoWorld's Open Source Hall of Fame as one of the “greatest open source software of all

time” [26, 27].

Ossec: An open source host based intrusion detection system executes log analysis, integrity

checking, rootkit detection, time-based alerting and active response [28, 29].

Ossim: The aim of Open Source Security Information Management is to provide an integrated

compilation of tools to administrators with a detailed view over each and every aspect of

networks, hosts, physical access devices, and servers [29].

Suricata: An open source based intrusion detection system was developed by the Open

Information Security Foundation (OISF) [30].

Bro: An open-source, Unix-based network intrusion detection system [31]. Bro detects

intrusions by first analyze network traffic to extract its application-level semantics and then

performing event-oriented analyzers that compare the activity with patterns deemed

troublesome [31].

Base: The Basic Analysis and Security Engine, BASE [28] is a PHP-based analysis engine to

search and procedure a database of security events generated by various IDSs, firewalls and

network monitoring tools.

Sguil: Sguil is built by network security analysts for network security analysts [29].

Acarm-ng : ACARM-ng [28] is an alert correlation software which can significantly facilitate

analyses of traffic in computer networks. It is responsible for collection and analyze of alerts

sent by network and host sensors, also referred to as NIDS and HIDS respectively.

[18]

2.3 Problems with Existing Systems

Most of intrusion detection systems have at least two of the following disadvantages [32].

 First, the data used by the intrusion detection system is taken from audit trails or from

network packets. Data packets have to pass through a longer path from its origin to the

IDS but during this an attack may destroy them. Furthermore, the intrusion detection

system has to be informed of the functionality of the system from the data collected,

which can lead misconception or missed events.

 Second, the intrusion detection system continuously uses additional resources in the

system and it is monitoring even when there are no intrusions happening, because the

data of the intrusion detection system have to be running all the time. This is the main

problem of use resource.

 Third, because the elements of the intrusion detection system are applicable as

separate programs, they are not appropriate for changes. An intruder administrator can

turn off or modify the programs running on a system, which can make the intrusion

detection system useless or unreliable. This is the credibility problem.

2.4 Process model for Intrusion Detection

Most of IDSs can be described in terms of three fundamental functional ingredients [35]:

 Information Sources: The different systems of event information used to define

whether an intrusion has taken place. These elements are from different parts of the

system, with network, host, and application tracking most common.

 Analysis: The part of intrusion detection systems that decides when intrusions are

occurring or have already taken place. The most common analysis approaches are

misuse and anomaly detection.

 Response: The set of actions that the system doing in intrusion detection. These

actions are pooled into active and passive measures, with measure actions participate

in some automated intervention on the part of the system, and passive actions

participate in reporting IDS findings to humans, who are then expected to take action

based on those reports.

2.5 Effectiveness of IDS

The functionality of an intrusion detection system is the rate at which audit events are

processed. Incompleteness happens when the intrusion detection system can’t manage to

detect an attack [33]. An intrusion detection system has to perform and take its analysis as

quickly as possible to enable the security system. An intrusion detection system should itself

[19]

be not vulnerable, particularly denial of service, and should be designed with this aim in mind

[34].

2.6 Network Intrusion Detection Systems

Network Intrusion Detection Systems (NIDS) are fitted at a basic point within the network to

monitor packet traffic on the network [51]. It performs an analysis of passing packets on the

entire subnet, works in a promiscuous mode, and checks the flow that is passed on the subnets

to the library of known attacks. Once an attack is identified, or threat is detected, the

administrator receives an alert. Ideally one would scan all incoming and outcoming traffic,

however doing so might make a bottleneck that would damage the overall speed of the

network [35].

In [58], they proposed a FPGA based deep packet inspection of NIDS that cab support both

static and dynamic patterns. Therefore [59], an intrusion detection and security system on

virtual machines. For secondary users in Cognitive Radio Networks [60] to quickly detect

whether they are being attacked, a simple yet effective IDS is also proposed. In [61], they

prevent virtual machines from being compromised in the cloud system with a multi-phase

distributed vulnerability detection, measurement and counter measure selection.

 FIGURE 2-3: NIDS IN COMPLETE DEPLOYMENT MODE

A NIDS has the following advantages and disadvantages [35]:

 Advantages

• Many well placed network based IDSs can monitor a huge network.

• The NIDSs have a small impact on the network, usually remaining passive and not

interfering with normal operations of the latter.

[20]

• Network-based IDSs can be made very secure against attack and even made unnoticeable to

many attackers.

Disadvantages

• The sensors not only analyze the headers of the packages, they also analyze their content, so

they may have difficulties processing all packages in a large network or with much traffic and

may fail to recognize attacks during periods of high traffic. Some vendors are trying to solve

this problem by implementing IDSs completely in hardware, which makes them much faster.

• The network based IDSs do not analyze the encrypted information. In environments where

communication is encrypted it is unfeasible to examine the package contents and therefore

unable to evaluate whether this is a package with malicious contents or not. This problem is

increased when the organization uses encryption in the network topology, but can be solved

with a more relaxed security policy.

• The network-based IDSs do not know whether the attack was successful or not, the only

thing known is that it was launched. This means that after a Network IDS detects an attack,

administrators must manually explore every host attacked to determine if the attempt was

successful or not.

• Some NIDSs have problems dealing with network-based attacks travelling in fragmented

packages. These packages make the IDS not notice the attack or be volatile and may even get

to fail.

• Due to their general configuration, NIDSs may have a high false acceptance or false positive

rate. They may report a lot of normal activities identified as attacks. The problem comes when

the number of such alarms is very high.

• Perhaps the biggest disadvantage of NIDSs is their implementation of the stack for network

protocols that may differ from the stack of the systems they protect. Many servers and

desktop systems do not follow in some aspects the current TCP / IP standards, thus it is

possible to have them block packages the NIDS has accepted.

 FIGURE 2-4: NIDS ARCHITECTURE WITH MIRROR PORT

[21]

2.7 Host Intrusion Detection Systems

Host Intrusion Detection Systems (HIDS) are installed on hosts or devices on the network

[55]. A HIDS monitors the inbound and outbound traffic from the device only and will alert

the user or the administrator if suspicious traffic is detected. It takes a part of existing system

files and matches it to the previous system. If the crucial system files were modified or

deleted, an alert is sent to the administrator. An example of HIDS usage can be seen on

mission crucial machines, which are not expected to change their conformations [55].

 FIGURE 2-5: HOST INTRUSION DETECTION SYSTEM

HIDS has the following advantages and disadvantages [55]:

Advantages

• The HIDS, having the ability to monitor local events of a host, can detect attacks that cannot

be seen by NIDS.

• HIDS can often operate in an environment in which network traffic pass encrypted, since the

source of information is analyzed before the data is encrypted on the host and after the data is

decrypted on the end host.

• HIDSs are uninfluenced by switched networks.

• When HIDSs operate on operating system audit trails, they can help detect attacks that

involve software integrity breaches. These appear as inconsistencies in process execution.

Disadvantages

• HIDSs are more costly to administer as they must be managed and configured at each

monitored host. While the NIDSs have an IDS for whole monitored systems, HIDSs have an

IDS for each of them.

[22]

• If the analysis station is within the monitored host, the IDS can be disabled if an attack

achieves success on the machine.

• They are not sufficient for detecting attacks on a network since the IDS only analyses those

network packets sent to it.

• HIDSs use resources of the host that they are monitoring, influencing its performance.

.

 FIGURE 2-6: HOST INTRUSION DETECTION SYSTEM 2

2.8 IDS Analysis

There are two basic features [36, 40] to analyzing events to detect attacks: misuse detection

and anomaly detection. Misuse detection, in which the analysis aims something known to be

bad, is the technique used by most popular systems. Anomaly detection, in which the analysis

searches for unusual patterns of activity, has been, and continues to be, the subject of a great

research. Anomaly detection is used in specified form by a number of IDSs. There are

advantages and disadvantages with each approach, and it appears that the most effective IDSs

use mainly misuse detection methods with a smattering of anomaly detection components.

2.8.1 Misuse Detection

Misuse detectors [39] examine system activity, looking for functions that match a specified

pattern which describe a known attack. As the patterns equivalent to known attacks are termed

signatures, misuse detection is sometimes termed signature based detection. However, there

are more advanced functions to doing misuse detection that can leverage a single signature to

detect groups of network and host attacks. Also, Hybrid intrusion detection systems [57] use

misuse detection technique.

Advantages [39]:

[23]

 • Misuse detectors are very efficient at detecting attacks without make the vast number of

false alarms.

• Misuse detectors can quickly and reliable detect the use of a specific attack tool or

technique. This can help security administrators prioritize corrective measures.

 • Misuse detectors can permit system administrators independently of their security level, to

detect security problems on their systems, initiating handling procedures.

Disadvantages [39]:

 • Misuse detectors can only detect popular and are being updated with signatures of new

attacks.

• A lot of misuse detectors are designed to use signatures that prevent them from detecting

variations of popular attacks.

FIGURE 2-7: MISUSE DETECTION MODEL

2.8.2Anomaly Detection

Anomaly detectors [38] identify unusual traffic on a host or network. Anomaly intrusion

detection identifies differences from the normal usage conduct patterns to identify the

intrusion. There are two types of anomaly detection [39]. The first is static anomaly detection,

which supposes that the behavior of monitored targets never change, the second type is

dynamic anomaly detection. They function on the case that attacks are different from normal

activity and can therefore be detected by systems that detect these differences. Anomaly

detectors make profiles representing normal behavior of hosts or networks traffic. These

profiles are making from data collected over a period of usual function. The detectors then

gather event data and use some measurements to determine when monitored activity deviates

from the usual.

Anomaly detection uses some measures and techniques, which include:

• Threshold detection, in which some features of user and system behavior are denominated in

terms of counts, with some level established as allowable. Such behavior trait can include the

number of files accessed by a user in a certain period of time, the number of unsuccessful

system logins, the amount of CPU utilized by a process. This level can be static.

[24]

• Statistical measures, in which allotment of the profiled features is supposed to fit a specific

pattern, and non-parametric, where the distributions of the profiled features are drawn from a

set of historical values, observed over time.

 • Rule based measurements, which are similar to non-parametric statistical measurements in

that observed data defines eligible usage patterns.

 • Other measurements, including neural networks, genetic algorithms, and immune system

models. Only the first two measures are used in current commercial IDSs.

 Unfortunately, in some cases [39] a number of false alarms are produced by anomaly

detectors and the IDSs based on them, due to variation of a system behavior or normal

patterns of users. Despite this drawback, unlike signature-based IDSs that rely on matching

patterns of past attacks, researchers affirm that anomaly-based IDSs are able to detect new

attack forms.

Furthermore [39], some misuse detectors may acquire information sources which are

produced from certain forms of anomaly detection. For example, a threshold-based anomaly

detector can generate a figure representing the number of files accessed by a certain user. The

misuse detector can use this figure as an element of a detection signature.

Advantages [39]:

 • IDSs using anomaly detection detect unusual traffic and thus have the ability to detect

attacks without specific knowledge of details.

• Anomaly detectors can generate elements that can in turn be used to define signatures for

misuse detectors.

Disadvantages [39]:

 • Anomaly detection usually triggers a large number of false alarms due to the unusual

behaviors of users and networks.

 • Anomaly detection often requires extensive training sets of system event files in order to

characterize normal behavior patterns.

2.8.3 Specification Detection

Specification approaches [33] takes the middle ground between misuse and anomaly

detection. The aim is to create a system behavioral determination under the affair that a

rightful and well-behaved system will only operate within these confines, and any outside

traffic can be considered an intrusion. This is functionally different from anomaly detection as

it identifies a list of functions a system may not do, rather than identifying unusual activities.

[25]

2.8.4 Hybrid

Due to the advantages of each of these hosts and networks systems, it is clear that a

combination of misuse and anomaly would provide better detection results, for example,

allowing anomaly detection to manage unknown events while misuse detection specifies

known attack signatures [57]. Such an approach should reduce the level of false positives if an

appropriate method of checking conflicting decisions from multiple detection approaches can

be properly managed. Some approaches have also two anomaly detection engines together in

order to try to balance the false positive rate of one against the other [57].

2.9 IDS ARCHITECTURE

All intrusion detection systems have some well-known elements that are described more

detailed below [39]:

• Application data collection sources: The place where the collection of data for current or

later analysis are gathered.

• Rules: These rules are often those that describe the violations that may be bound and which

the data obtained in the previous point are compared to.

• Filter: This part handles the applied rules concerning the obtained data.

• Anomaly detectors: When in use of an IDSs based on anomaly analysis, they are those that

detect threats in the system or monitored resources.

• Alarm or report generator: Once the data have been processed with the filter rules, if there is

any situation that gives the impression that the system security has been compromised, this

part of the intrusion detector informs the administrator about this fact.

[26]

Chapter 3

System Model

 Figure 3-1: IDS Scenario

3.1 Overview of the proposed system

Setup involves three hosts generating the different kinds of application and system log traffic

and sending it to the central log collector (Monitoring PC). Specifically, IDS is installed on

the Monitoring PC which logs the network inbound and outbound traffic into the database.

Furthermore, we use three PCs (virtual machines). The packets are examined in real-time by

the intrusion detection system. The switch has been configured with a mirrored port for the

detect operability. Tests run on my local network.

3.2 Port mirroring

Port mirroring is configured on a network switch to send a copy of network packets seen on

one switch port to a network monitoring connection on another switch port [41]. This is

ordinarily used for network hosts that require monitoring of network traffic like an intrusion

detection system technology that is used to support application performance management.

Port mirroring enables the system manager to keep close track of switch performance by

placing a protocol analyzer on the port that's receiving mirroring data [42].

An administrator configures port mirroring by assigning a port from which will send a copy

of all packets and another port in which those packets will be sent [41]. A packet bound for

heading away from the first port will be sending to the second port as well.

[27]

FIGURE 3-2: MIRRORED PORT

FIGURE 3-3: NETWORK ANALYZER

In this figure, the sniffer is attached to a port that is configured to receive a copy of every

packet that host ascends. This port is called a SPAN port.

FIGURE 3-4: SNIFFER MODE

[28]

A monitored port has these characteristics [41] [42]:

 It can be any port type.

 It can be tracked in multiple SPAN sessions.

 It cannot be a destination port.

 Each port of switch can be configured with a direction to monitor.

 Source ports can be in the same or not the same VLANs.

 All active ports in the source VLAN are included as source ports.

3.2.1 Configuration set up switch

FIGURE 3-5: CONFIGURATION SWITCH

Main Code

switch>enable

switch#configure terminal

Enter configuration commands, one per line. End with

CNTL/Z.

switch(config) #monitor session 1 source interface

fastEthernet 0/1

switch(config)#monitor session 1 source interface

fastEthernet 0/2

switch(config)#monitor session 1 source interface

fastEthernet 0/3

[29]

switch(config)#monitor session 1 source interface

fastEthernet 0/4

switch(config)#monitor session 1 source interface

fastEthernet 0/5

switch(config)#monitor session 1 source interface

fastEthernet 0/6

switch(config)#monitor session 1 source interface

fastEthernet 0/7

switch(config)#monitor session 1 source interface

fastEthernet 0/8

switch(config)#monitor session 1 destination interface

gigabit Ethernet 0/1

1

2

3

4

5

6

7

8

9

switch#show monitor session 1

Session 1

Type: Local Session

Source Ports :

Both : Fa0/1-8

Destination Ports : Gi0/1

Encapsulation: Native

[30]

Chapter 4 Snort

4.1 Introduction

Snort is a signature based IDS [46] that allows to manage the status of a network topology. Its

operation has some common functions with sniffers, because Snort assays all the network

traffic looking for any type of intrusion. Snort is a detection machine that allows registering,

warning, and responding to any attack previously defined. It is one of the most defaults used,

has a large number of preset signatures and constantly updated.

The basic data of its architecture are [46]:

 The module of capture of traffic that allows capturing all the network packages the

decoder, which is reliable of creating data structures with the packages and identifying

the network protocols.

 The pre-processors that allow extending the system parts.

 The detection engine that analyzes the packages pursuant the signatures.

 The file of signatures where the popular attacks are defined for their detection.

 The detection plugins that allow modifying the functionality of the detection engine

and finally, the output plugins for determining what, how and where the alerts are

saved.

In last years, some significantly projects have been proposed to extend the abilities of Snort

[43, 44, 45]. For instance, [43] models only the http traffic, [44] models the network traffic as

a set of events and look for disadvantages in these events, [45] enhance the functionalities of

Snort automatically create patterns of misuse from attack data, and the ability of detecting

successive intrusion behaviors, that is a pre-processor based on studying the reconstruction of

package in the network to avoid popular attacks in the IDS.

Snort [46] is the most popular open source detection intrusion system. It is able to analyze the

TCP/IP datagram traffic on a network in real time. It is network based and can be used either

as a sniffer or as IDS. It is flexible software which can be connected to the most important

databases such as Oracle, MySQL. It is consists of an attack detection engine as well as a port

scanner, which allows alerting or responding to any kind of previously defined attack.

Furthermore, Snort [46] has other possible supplements to make the analysis easier to the

user. There can be found GUI interfaces such as IDS center or a web application such ACID

or BASE that will get data from the database and will show it in a friendlier html format.

Snort implements an easy rule creation language, powerful and clean.

Snort can work [46] as a sniffer so the traffic in the network can be shown. But the side we

want to use is the IDS. When a packet matches some rule pattern it is logged. Afterwards or at

that moment the user knows when, how and from where the attack was performed.

[31]

FIGURE 4-1: SNORT

4.2 Snort Features

Snort uses an ordered set of behaviors [47] to define what network traffic matches its rules

and should be alerted on. Much of this behavior is customizable. Inbound data is decoded first

by the packet decoder. If we are using Snort only as a packet sniffer, the decoded data will be

formatted for the console display and shown. If we’re using Snort as a packet logger, the

packets will be put into either ASCII format in a directory tree or a binary file, which ever one

we clarified on the command line, and saved to disk. If we are using Snort as a NIDS, the

function is somewhat complex. When using Snort as a NIDS, after the inbound packets are

analyzed by the packet decoders, the data is then sent through any preprocessors that we may

have enabled in our snort configuration file. That data are being sent to the detection machine,

which matches it against the rules in any ruleset enabled in our snort configuration file.

Matches are sent to the alerting and logging levels, to be passed through whatever output

plug-ins we have selected [47].

4.3 Architecture of Snort

The Snort processes the data in one thread and in five stages [46]. The first step is a

compilation of packets that pass through the decoder of Snort, and with suitable adjustment

can be made and detects attacks using the decoder alerts. Then activated all preprocessors that

beyond decoding and further processing of the packets may also detect attacks and send

alerts. This is the point where the Snort, although it belongs to the IDS signatures, enters with

its own way the concept of detecting abnormalities. Then, the intrusion detection mechanism

[32]

is activated by applying signatures and Snort rules in processed packets. Finally, made known

to the user the results of the operation of Snort from different output units.

FIGURE 4-2: ARCHITECTURE OF SNORT

4.3.1 Packet Decoder

The packets [46] enter through the network card and are decoded off the wire by the packet

decoder, which defines which protocol is in use for a given packet and fits the data against

allow able behavior for packets of their protocol. The packet decoder can generate alerts of its

own based on malformed protocol headers, exceedingly long packets, unusual or incorrect

TCP options that are contained in the headers, and other such behavior. We can enable or

disable more verbose alerting for all of these fields in your snort.conf file.

4.3.2 The Preprocessors

Preprocessors [46] are plug-ins to Snort that allows us to parse incoming data in different

ways that may be useful. If we run Snort without any preprocessors given in our snort.conf

configuration file, we will only look at each packet as it comes in over the wire. This is

probably going to cause missing some attacks, since many popular attacks aim to functions

like overwriting data in overlapping fragments, purposeful IDS evasion techniques such as

putting part of a malicious application request in one packet and the rest in a different packet,

and other such practices.

4.3.3 Detection Engine

The Detection Engine [46] achieves the actual attack detection by matching various values

taken in the previous steps against a set of rules that encodes patterns of known attacks. If a

[33]

match is found, the corresponding action that is defined in rule will be executed, e.g. drop and

log the packet, generate alert to system administrator.

4.3.4 Snort Alerts

In most cases, the first part of information [46] that an analyst reviews is an alert. An alert

packet passed from a detection machine when it matches an event to a well-known pattern.

This message can take many forms: pager message, syslog entry, ticket system entry.

4.3.5 Snort Packet Data

Snort can use packet data in three base formats [47]: ASCII, Pcap binary format, and Unified

binary format. ASCII logs, are easier to read using a text editor, are not as useful as the binary

logs for analysis. Pcap binary logs can be processed by many tools that have been designed

with analysis network traffic. A few examples of tools that can read Pcap format files are

tcpdump, ethereal, ngrep, tcpreplay, logsorter, ethereape, and many, many more.

4.4 Three modes of Snort

• Sniffer mode, which analyze the packets off of the network traffic and displays them for a

continuous Stream on the console [47].

• Packet Logger mode, which logs the packets to disk [47].

• Network Intrusion Detection System (NIDS) mode, which does detection and analysis

functions on network traffic. This is the most complex and configurable mode [47].

4.5 Snort Rules

Snort uses straightforward rules [48] description language that is versatile and quite useful.

There are a number of straightforward guidelines when writing Snort rules that will help

safeguard our logic.

Most Snort rules are written [48] in a single line. A snort rule has two parts, the header and the

logical. The rule header includes the rule's action, protocol, source and destination IP

addresses and netmasks, and the source and destination ports details. The rule option section

includes alert messages and information on which parts of the packet should be shall inspect

to determine if the rule action should be used.

[34]

Figure 4-3: Sample Snort Rules

4.5.1 Rules Headers

The rule header [46, 48] contains the information that defines the function of a packet, as well

as what to do in the event that a packet with all the properties indicated in the rule should

show up. The first part in a rule is the rule action. The action of rule tells Snort what to do

when it finds a packet that meets the rule criteria. There are five known standard actions in

Snort, alert, log, pass, activate, and dynamic. In addition, if we are running Snort in inline

mode, we have additional options which include drop, reject, and sdrop.

 alert

 pass

 activate

 dynamic

4.5.2 IP Addresses

A rule header [46, 48] contains IP address and port information for a given rule. The keyword

could be used to describe any address. Snort does not have a function to provide host name

lookup for the IP address fields in the configuration file. The addresses are created by a

straight numeric IP address and a CIDR block. The CIDR block includes the net mask that

should be applied to the rule's address and any inbound packets that are tested against the rule.

FIGURE 4-4: EXAMPLE IP ADDRESS NEGATION RULE

FIGURE 4-5: EXAMPLE IP ADDRESS LIST

4.5.3 Activate/Dynamic Rules

Activate/dynamic rule [46, 48] pairs give Snort a powerful function. We can now have one

rule activate another when its action is executed for a set number of packets. This is very

useful if we want to set Snort up to execute follow on recording when a particular rule does

not work. Activate rules operate just like alert rules, unless they have a required option field

activate.

[35]

 FIGURE 4-6: ACTIVATE DYNAMIC RULES

4.5.4 General Rule Options

The msg rule [46, 48] option tells the logging and alerting engine the message to print along

with a packet dump or to an alert. It is only a text string that utilizes the \ as an escape

character to show a discrete character that might otherwise confuse Snort's rules parser.

 msg:"<message text>";

The reference keyword [46, 48] permit rules to include references to outer attack

identification systems. The plugin currently supports different specific systems as well as

unique URLs. This plugin is to be used by outer plugins to provide a link to additional

information about the alert packets.

The gid keyword [46, 48] is used to recognize what parts of Snort produce the event when a

particular rule happens. For example gid 1 is associated with the rules subsystem and some

gids over 100 are designated for specific preprocessors and the decoder. To evade difficult

conflict with gids defined in Snort, it is proposed that values starting at 1,000,000 be used. For

overall rule writing, it is not proposed that the gid keyword be utilized. This option should be

utilized with the sid keyword.

 gid:<generator id>;

The sid [46,48] keyword is used to uniquely recognize Snort rules. This information allows

output plugins to recognize rules easily. This option should be used with the rev keyword.

 sid:<snort rules id>;

The rev keyword [46, 48] is used to uniquely recognize revisions of Snort rules. Revisions,

along with Snort rule ids, allow signatures and characteristics to be refined and replaced with

updated information. This option should be used with the sid keyword.

 rev:<revision integer>;

The class type keyword [46, 48] is used to classify a rule as detecting an attack that is part of

a more overall type of attack class. Snort provides a standard set of attack classes that are used

by the standard set of rules it provides. Defining classifications for rules provides a way to

better organize the event data Snort produces.

[36]

The class type [46, 48] option can only use registrations that have been defined

in snort.conf by using the config registration option. Snort provides a standard set of

classifications in classification. Config that are used by the rules it provides.

The metadata tag [46, 48] allows a rule writer to incorporate more information about the rule,

typically in a key-value format. Some metadata keys and values have meaning to Snort and

are classify in Table. Keys other than those listed in the table are efficiently ignored by Snort

and can be free form.

Table: Snort Metadata Keys

Key Description Value Format

engine Indicate a Shared Library

Rule
"shared"

soid Shared Library Rule

Generator and SID gid sid

service Target-Based Service

Identifier
"http"

 Table 1-1: Snort Metadata Keys

The examples [46, 48] below show a stub rule from a shared library rule. The first uses

multiple metadata keywords, the second a unified metadata keyword, with keys divided by

commas.

 metadata:key1 value1;

 metadata:key1 value1, key2 value2;

 alert tcp any any -> any 80 (msg:"Shared Library Rule Example"; \

 metadata:engine shared; metadata:soid 3|12345;)

 alert tcp any any -> any 80 (msg:"Shared Library Rule Example"; \

 metadata:engine shared, soid 3|12345;)

Table: General rule option keywords [48]

Keyword Description

msg

The msg keyword tells the logging and alerting

engine the message to print with the packet dump

or alert.

reference

The reference keyword allows rules to include

references to external attack identification

systems.

[37]

gid

The gid keyword (generator id) is used to identify

what part of Snort generates the event when a

particular rule fires.

sid

The sid keyword is used to uniquely identify

Snort rules.

rev

The rev keyword is used to uniquely identify

revisions of Snort rules.

classtype

The classtype keyword is used to categorize a

rule as detecting an attack that is part of a more

general type of attack class.

priority

The priority keyword assigns a severity level to

rules.

metadata

The metadata keyword allows a rule writer to

embed additional information about the rule,

typically in a key-value format.

 Table 1-2: General rule option keywords

4.6 The Snort Configuration File

Snort uses a configuration file [46, 48] at begin time. A sample configuration file is included

in the snort program.

There are other benefits to using the configuration file name as a command line argument to

snort. For example, it is feasible to invoke multiple Snort instances on different network

interfaces with different configuration. This configuration file of snort contains six basic parts

[46, 48]:

 Variable definitions, where we define different variables. These variables are used in

snort rules as well as for other aims, like specifying the location of rule files.

 Config parameters. These parameters recognize different snort configuration options.

Some of them can also be used on the command line.

[38]

 Preprocessor configuration file. Preprocessors are performing a few actions before a

packet is operated by the main snort detection engine.

 Output module configuration. Output modules check how snort data will be logged.

 Defining new action parts. If the default action parts are not adequate for our

environment, we can define custom action types in the configuration file of snort.

 Rules files and configurations. Although we can add any rules in the main file, the

agreement is to use different files for rules. These files are then included inside the

main configuration file using the include keyword.

Using a List of Networks in Variables.

We can also define variables [46, 48] that contain different items. Consider that we have

multiple networks in the company. Intrusion detection system is right back of the company

firewall connecting to the Internet.

Var HOME_NET []

Using Interface Names in Variables.

We can also use interface names in defining variables [46, 48]. The following two statements

define HOME_NET and EXTERNAL_NET variables on a Linux unit.

var HOME_NET $eth0_ADDRESS

var EXTERNAL_NET $eth1_ADDRESS

The any keyword could also be a variable [46, 48]. It fits to everything, just as it does in.

var EXTERNAL_NET any

The config directives [46, 48] in the snort.conf file permit a user to configure many general

settings for snort.

config directive name[: value]

Preprocessors or input plug-ins [46, 48] operate on received packets before snort rules being

in use. The preprocessor configuration is the second important part of the configuration file.

This part provides basic details about adding or removing Snort preprocessors. The general

format of configuring a preprocessor is for example:

[39]

preprocessor <preprocessor_name>[: <configuration_options>]

Output modules [46, 48], also called output plug-ins, manipulate output from snort rules. For

example, if we want to log information to a database or send SNMP traps, we need output

modules.

output <output_module_name>[: <configuration_options>]

4.7 Snort IDS mode

sudo /usr/local/snort/bin/snort -A console -c /usr/local/snort/etc/snort.conf -i eth0

FIGURE 4-7: START SNORT

[40]

FIGURE 4-8: SNORT IDS MODE

4.7.1 Test ids (ping)

Tests run on my local network.

FIGURE 4-9: ICMP ALERT

[41]

4.7.1.1 Rule Ping

alert icmp any any -> any any (msg:"ICMP Testing Rule"; sid:1000001; rev:1;)

4.8 Port Scan Detection

The part when scanning a computer's ports [64]. Port is used as a mean of transferring data in

and out of a computer system, port scanning recognizes open doors to a computer. Also, port

scanning has legitimate uses in managing networks, but port scanning also can be malicious

by default if someone is looking for a weakened access point to break into our computer.

The attacker checks if there are any open ports with the help of a particular software tool, a

port scanner [64]. This program tries to connect with several ports on the destination

computer. If it is successful, the tool informs about the specific ports as open and the attacker

has the necessary information, showing which network services are available on the

destination computer.

Tests run on my local network.

FIGURE 4-10: PORT SCAN

The following figure shows the alerts that have produced the snort with message SCAN FIN.

FIGURE 4-11: ALERT PORT SCAN

[42]

4.8.1 Rule Scan Fin

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN FIN"; flow:stateless;

flags:F,12; classtype:attempted-recon; sid:621; rev:7;)

4.9 Detect SYN flood

A SYN flood [65] is a type of denial-of-service attack in which an attacker transmits a

sequence of SYN requests to a target's system in an effort to use enough server resources to

make the system unresponsive to network traffic.

FIGURE 4-12: SYN FLOOD

In a normal [65] three-way handshake, the client would return an ACK (acknowledged)

packet to confirm that the server's SYN/ACK packet was received, in order that

communications could begin. Although, in a SYN flood, the ACK packet is never sent back

by the enemy client. Instead, the client program sends repeated SYN requests to all the

server's ports. An enemy client always knows a port is open when the server responds with a

SYN/ACK packet.

The enemy [65] client makes the SYN requests all appear reliable, but because the IP

addresses are fake ones, it is difficult for the server to terminate the connection by sending

RST packets back to the client. Instead, the connection stays open. Before time-out can occur,

another SYN packet comes from the inimical client. A connection of this type is called a half-

open connection. Under these circumstances, the server becomes completely or almost

completely busy with the enemy client and communications with rightful clients is difficult or

impossible.

[43]

hping3 --flood -S -p 80 192.168.1.68

 Flood: sends as many packets as can the network card.

 -S: The TCP packet has flag SYN.

 -p 80: Packets are sent to port 80.

Tests run on my local network.

FIGURE 4-13: SYN FLOOD

FIGURE 4-14:ALERT SYN FLOOD

4.9.1 Rule Syn Flood

alert tcp any any -> $HOME_NET any (flags:S; threshold: type threshold, track by_dst, count

20, seconds 3; msg:"DDoS SYN flood attack detected!";sid:12121;)

[44]

4.10 Detect brute-force FTP

In cryptography, a brute-force attack [53] is a cryptanalytic attack that can, theoretically, use

any encrypted data except when data are encrypted in an information-theoretically

secure way. An attack like this might be used when it is hard to exploit other weaknesses in an

encryption system that would make the work easier. It consists of systematically checking all

possible keys or passwords until the right one is found.

Brute-force attacks [54] might not be that efficient when obfuscating the data to be encoded,

something that makes it more difficult for an attacker to acknowledge whether the code has

been cracked. An encryption system can also calculate the time an attacker takes to

successfully mount a brute-force attack against it.

Brute-force attacks are an application of brute-force search, the common problem-solving

technique used for enumerating all candidates and checking each one [54].

Tests run on my local network.

FIGURE 4-15 BRUTE FORCE

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptanalytic_attack
http://en.wikipedia.org/wiki/Information-theoretically_secure
http://en.wikipedia.org/wiki/Information-theoretically_secure
http://en.wikipedia.org/wiki/Key_(cryptography)
http://en.wikipedia.org/wiki/Passwords
http://en.wikipedia.org/wiki/Obfuscation
http://en.wikipedia.org/wiki/Brute-force_search

[45]

FIGURE 4-16 ALERT BRUTE FORCE FTP

4.10.1 Rule Brute Force Ftp

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP Brute force attack";

content: "PASS"; nocase; offset:0; depth:4; content:"|0a|"; within:3;

flow:from_client,established; sid:10491;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP Brute force

attackgumenORT/smi"; classtype:misc-attack; sid:3441; rev:1;)

4.11 Detect UDP Flood

A UDP flood [53] attack is a denial-of-service (DoS) attack using the UDP protocol, a

connectionless computer networking protocol.

UDP when it comes to denial-of-service attacks [53] can be more complicated than TCP

protocol. However, a UDP flood attack sends a large number of UDP network packets to

random ports on a remote host.

For numerous UDP packets [53], the system that is under attack will be forced into sending

many ICMP packets, thus leading it to be unreachable by other clients. The attackers might

also be able to spoof the IP address of the UDP packets, securing that the ICMP return packets

do not arrive them, and hiding their network locations [49].

hping3 --udp --flood -p 80 192.168.1.68

 Udp: sends udp packets.

 -p 80: Packets are sent to port 80.

[46]

Tests run on my local network.

FIGURE 4-17 UDP FLOOD

FIGURE 4-18 ALERT UDP FLOOD

4.11.1 Rule UDP Flood

alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:“UDP Testing Rule ";

threshold: type threshold, track by_src, count 10000, seconds 5; sid: 10000002; rev: 1;)

[47]

4.12 Detect Brute Force ssh

In cryptography, a brute-force attack [53] is a cryptanalytic attack that can, theoretically, use

any encrypted data except when data are encrypted in an information-theoretically secure

way. Such an attack might be used when it is not easy to take advantage of other inability in

an encryption system that would make the task easier. It consists of systematically checking

all possible keys or passwords until the right one is found.

Tests run on my local network.

FIGURE 4-19 ALERT BRUTE FORCE SSH

4.12.1 Rule Brute-Force SSH

alert tcp any any -> $HOME_NET (msg:"Potential SSH Brute Force Attack"; flow:to_server;

flags:S; threshold:type threshold, track by_src, count 3, seconds 60; classtype:attempted-dos;

sid:2001219; \ rev:4; resp:rst_all;)

[48]

Chapter 5 Suricata

5.1 Suricata ids

Suricata is a rule-based IDS/IPS [50] program that uses externally developed rule sets to

monitor network traffic and warns the admin by using alerts when suspicious events occur.

Designed to be compatible with existing network security components, The Suricata Engine is

a fairly new open-source intrusion detection and prevention engine. It is developed by Open

Information Security Foundation. Suricata features unified output functionality and pluggable

library options to accept calls from other applications. As a multi-threaded engine, Suricata

offers increased speed and efficiency in network traffic analysis. Furthermore to hardware

acceleration the engine is build to utilize the increased processing power offered by the latest

multi-core CPU chip sets.

The operation modes of Suricata [50] are the same as Snort’s. It can be used either as an IDS

or IPS system. There are no differences when connecting Suricata to the network. Suricata

even has basically the same rule syntax as Snort, which means that both systems can use more

or less the same rules.

The general data flow through Suricata [50] is similar to Snort. Packets are captured, decoded,

processed and analyzed. However, when it comes to the internals of the Suricata Engine,

differences become apparent.

Suricata also features the HTP Library [50] that is a HTTP normalizer. This incorporates and

provides advanced processing of HTTP streams for Suricata.

Suricata [50] uses a multi-threaded approach opposed to the Snort’s single threaded engine.

Threads use one or more thread modules for this. Threads have an inbound queue handler and

an outbound queue handler. These are used to get packets from other threads, or from the

global packet pool.

Taking these few [50], but significant differences into account, it is probable that Snort and

Suricata perform differently when it comes to the speed and efficiency of network traffic

analysis.

[49]

FIGURE 5-1 MULTI-THREAD DESIGN

FIGURE 5-2 MULTI-CPU AFFINITY

 Suricata Features [50]:

 High rate of performance, expandable through multi-threading.

 Protocol recognition.

 File recognition, extraction, on the fly MD5 calculation.

 TLS handshake analysis, detect/prevent operate like Diginotar.

 Rules and outputs compliant to Snort syntax.

 Helpful logging like HTTP request log, TLS certificate log, DNS logging.

[50]

5.1.1 Suricata configuration file

Suricata [50] uses the yaml format for configuration.

5.1.2 Max-pending-packets

With the max-pending-packets [50] setting we can set the number of packets we allow

Suricata to process at the same time. This can range from one packet to tens of

thousands/hundreds of thousands of packets. As a result have higher performance and more

use of memory, or lower performance and less use of memory. Numerous packets being

processed results in a higher performance and the use of more memory. A low number of

packets, leads to lower performance and less use of memory.

max-pending-packets: 1024

5.1.3 Default-packet-size

For the max-pending-packets option [50], Suricata has to retain packets in memory. With the

default-packet-size option, we can regulate the size of the packets on our network level. The

computer machine can still process these bigger packets, but processing it will lower the

performance.

default-packet-size: 1514

5.1.4 Action-order

All signatures [50] have different properties. Action property is one of those. A summary of

what will happen when a signature fits and includes one of those actions [50]:

[51]

Pass

If a signature contains the action pass, Suricata stops checking the packet and skips to the end

of all rules.

Drop

This action only uses the mode of IPS/inline. If the program checks a signature that matches,

containing drop, it stops instantly and the packet will not be sent any more.

Reject

This is an active dismiss of the packet. Both receiver and sender receive a dismiss packet.

Alert

If a signature fits include alert, the packet will be dealt like any other non-threatening packet,

excluding this one an alert will be created by Suricata.

5.1.5 Detection engine

5.1.5.1 Inspection configuration

The detection engine [51] builds internal groups of signatures. Suricata loads signatures

comparing all the network traffic. The truth is that many rules probably will not be needed.

For that reason, all signatures will be categorized in groups [51]. Although, a distribution

containing a lot of groups will make use of a certain amount of memory. Not every type of

signature will be categorized in the same group. There is a possibility that different signatures

with common properties will be placed together in a group. The number of groups [51] will

define the balance between memory and performance. A low amount of groups will lower the

performance yet uses a low amount of memory. The opposite counts for a higher number of

groups. The engine allows us to control the balance between memory and performance.

detect-engine:

 -profile: medium #The balance between performance and memory usage.

This is the default setting.

 - custom-values:

 toclient_src_groups: 2

 toclient_dst_groups: 2

[52]

 toclient_sp_groups: 2

 toclient_dp_groups: 3

 toserver_src_groups: 2

 toserver_dst_groups: 4

 toserver_sp_groups: 2

 toserver_dp_groups: 25

 - sgh-mpm-context: auto

 - inspection-recursion-limit: 3000

At all of these options, we can add a value. Most signatures have the ability to focus on one

direction, meaning focusing on the server, or focusing on the client [51].

FIGURE 5-3 DETECTION ENGINE GROUPING TREE

[53]

src Stands for source IP-address.

dst Stands for destination IP-address.

sp Stands for source port.

dp Stands for destination port.

5.2 Suricata ids mode

FIGURE 5-4 START SURICATA

[54]

FIGURE 5-5 SURICATA IDS MODE

5.2.1 Test suricata ids

Tests run on my local network.

FIGURE 5-6 TEST SURICATA IDS

[55]

Test ping

FIGURE 5-7 ICMP ALERT

 FIGURE 5-8 ICMP ALERT2

5.2.1.1 Rule Ping

#alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL ICMP Information

Request undefined code"; icode:>0; itype:15; classtype:misc-activity; sid:2100418; rev:8;)

[56]

5.3 Detect Port Scan

Tests run on my local network.

FIGURE 5-9 PORT SCAN

Tests run on my local network.

FIGURE 5-10 PORT SCAN 2

FIGURE 5-11 ALERT PORT SCAN

5.3.1 Rule Port Scan

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"TCP Testing Rule";

flow:stateless; flags:F,12; classtype:attempted-recon; sid:621; rev:7;)

5.4 Detect Syn flood

Tests run on my local network.

[57]

FIGURE 5-12 ALERT SYN FLOOD

5.4.1 Rule Syn Flood

alert tcp any any -> any any (msg:"SURICATA STREAM 3way handshake SYNACK resend

with different ack"; stream-event:3whs_synack_resend_with_different_ack; sid:2210004;

rev:1;)

5.5 Detect UDP flood

Tests run on my local network.

FIGURE 5-13 UDP FLOOD

[58]

FIGURE 5-14 ALERT UDP FLOOD

5.5.1 Rule UDP Flood

alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:“UDP Testing Rule ";

threshold: type threshold, track by_src, count 10000, seconds 5; sid: 10000002; rev: 1;)

5.6 Suricata vs Snort

For a long time, Snort has been the standard for open source Intrusion Detection Systems

(IDS/IPS) [62]. Its engine combines the advantages of signatures, protocols, and anomaly-

based inspection and has become the most common deployed IDS/IPS in the world.

Suricata, a new and less widely product developed by the Open Information Security

Foundation (OISF) [62]. It is based on signatures but incorporates revolutionary techniques.

This engine embeds an http normalizer and parser that provide very advanced processing of

HTTP streams.

Both Snort and Suricata [62] are based on sets of rules. Most of the tests have shown that

VRT Snort and Emerging Threats rules are complementary and are both needed to optimize

the detection of all attack types. Furthermore, both Snort and Suricata have demonstrated their

ability to detect attacks based on signatures from rules.

http://www.aldeid.com/wiki/Snort
http://www.aldeid.com/wiki/Suricata

[59]

Suricata offers new features that Snort could implement in the future like multi-threading

support, capture accelerators but suffers from a lack of documentation [62]. In addition,

Suricata doesn't accept some rules from VRT::Snort and Emerging Threats due to

incompatibilities. The support of these missing keywords should be implemented in future

versions of Suricata.

On the other hand, Snort is mature [62]. It remains a very powerful and effectiveness

IDS/IPS, very well documented over the net and that properly detects most of the malwares

and evasion techniques. Its preprocessors are very useful powerful for reassembling

fragmented packets.

Param Suricata Snort

IPS feature
optional while compiling (--enable-

nfqueue)

Snort_inline or snort used with -Q

option

Rules
 VRT::Snort rules

 EmergingThreats rules

 VRT::Snort rules

 SO rules

 EmergingThreats rules

Threads Multi-thread Single-thread

Ease of install
Not available from packages.

Manual installation.

Relatively straightforward. Installation

also available from packages.

Documentation Few resources on the Internet
Well documented on the official website

and over the Internet

Event logging Flat file, database, unified2 logs for barnyard

IPv6 support Fully supported
Supported when compiled with --

enable-ipv6 option.

Capture

accelerators

PF_RING, packet capture

accelerator
None, use of libpcap

Configuration file
suricata.yaml, classification.config,

reference.config, threshold.config
snort.conf, threshold.conf

Offline analysis

(pcap file)
yes

Frontends Sguil, Aanval, BASE, FPCGUI (Full Packet Capture GUI), Snortsnarf

Table 5-1: Global Overview

http://www.aldeid.com/wiki/Snort_inline
http://www.aldeid.com/wiki/Snort
http://www.aldeid.com/wiki/Suricata/Suricata-yaml-configuration-file

[60]

Chapter 6 Bro

6.1 Bro IDS

Bro is an open-source, [36, 63] Unix-based Network Intrusion Detection System (NIDS) that

passively monitors network traffic and looks for an abnormal action. Bro detects intrusions by

first parsing network traffic to extract its application level significant and then executing

event-oriented analyzers that correlate the activity with patterns deemed troublesome.

Bro uses a particular policy language [63] that permits a site to tailor Bro's operation, both as

site policies develop and as new attacks are discovered. If Bro detects something of interest, it

can be commandment to either produce a log entry, alert the operator in real-time.

A bro script [63] could be written to keep track of user attempts against the application and

create an alert if it overdraws a threshold value. This requires the intrusion detection system to

not only comprehend the protocol but also keep track of failed user sessions against the

application. This crucial feature of Bro to understand the higher order application details gives

it a distinct advantage against signature based intrusion detection systems.

6.1.1 Managing Bro with Bro control

Bro Control [63] is an interactive shell for easily operating or managing Bro installations on a

system or even across multiple systems in a traffic-monitoring cluster.

6.1.2 Browsing Log Files

By default, logs [63] are written out in human-readable (ASCII) format and data is organized

into columns.

6.2 Bro Scripts

Bro includes an event-driven scripting language [63] that provides the primary means for an

organization to extend and customize Bro’s operability. Virtually all of the output generated

by Bro is, in fact, generated by Bro scripts. It’s almost easier to think about that Bro will be an

entity behind the scenes processing connections and generating facts while Bro’s scripting

language is the medium through which we can succeed communication. Bro scripts

effectively shall notify Bro that should there be an event of a type we define, and then let us

[61]

have the information about the connection so we can execute some function on. .

 FIGURE 6-1 BRO ARCHITECTURE

Architecturally, Bro is layered into two major levels [63]. Its event engine decreases the

inbound traffic stream into a series of higher-level events. These events represent network

function in policy neutral terms, they describe what has been seen, but not why, or whether it

is considerable.

Such semantics [63] are instead derived by Bro’s second main element, the script interpreter,

which performs a set of event users written in Bro’s custom scripting language. These scripts

can implement a site’s security policy, i.e., what activities to take when the monitor detects

different types of activity. More generally they can log any desired properties and statistics

from the input traffic.

[62]

Start Bro

FIGURE 6-2 START BRO

6.3 Bro Log Files

Bro is shipped with an interactive shell for management purpose: Bro Control [63]. This

application is able to control and monitor the Bro installation. In a cluster and multi Bro

installation case Bro Control is crucial. When using Bro Control, Bro creates logs in the

directory $BROHOME/log. The directory is $BROHOME/log/current but logs are often

moved to $BROHOME/log/YYYY-MM-DD. These log files are in clear text ASCII unless

default configuration is changed [63].When running from CLI, all log files are created in

actual directory where we start Bro. The following log files are always created: conn.log,

loaded_scripts.log and notice_policy.log. These filenames reveal much of the actual log file

content, but some more description is necessary [63]:

 Conn.log consists of the complete connection log during Bro’s run time.

 Loaded_scripts.log shows Bro scripts that were loaded during Bro startup.

 Notice_policy.bro shows the current Bro Notice policy.

Bro create several new log files during run time. This overview shows more general and

internal log files [63]:

 Communication.log logs for Bro’s internal communication between remote and central

instances, clusters etc.

 Conn-summary.log generated when Bro is terminated. Post processing connection

summaries.

[63]

 Known_hosts.log hosts that have performed complete TCP handshake.

 Notice.log notices that Bro rises.

 Reporter.log internal messages and warnings errors for troubleshooting.

Bro also creates a lot of log files that are protocol/service specific [63]:

 Dns.log log over DNS queries.

 Dpd.log log over what port/service dependent dynamic protocol detection analysis that

has been activated.

 Http.log log over http request and responses including metadata.

 Software.log reports known and recognized software detected from protocol

analyzers.

 Weird.log notices that Bro has tagged as weird. Odd protocol behavior will be logged

here. A log of unexpected protocol-level activity.

FIGURE 6-3 BRO SCRIPTS

[64]

6.3.1 Signature main.bro

Actions for a signature [63]:

 const actions: table[string] of Action = {

 ["unspecified"] = SIG_IGNORE, # place-holder

 } &redef &default = SIG_ALARM;

 ## Signature IDs that should always be ignored.

 const ignored_ids = /NO_DEFAULT_MATCHES/ &redef;

 ## Generate a notice if, for a pair [orig, signature], the number of

 ## different responders has reached one of the thresholds.

 const horiz_scan_thresholds = { 5, 10, 50, 100, 500, 1000 } &redef;

 ## Generate a notice if, for a pair [orig, resp], the number of

 ## different signature matches has reached one of the thresholds.

 const vert_scan_thresholds = { 5, 10, 50, 100, 500, 1000 } &redef;

 ## Generate a notice if a :bro:enum:`Signatures::SIG_COUNT_PER_RESP`

 ## signature is triggered as often as given by one of these thresholds.

 const count_thresholds = { 5, 10, 50, 100, 500, 1000, 10000, 1000000, }

&redef;

 ## The interval between when :bro:enum:`Signatures::Signature_Summary`

 ## notices are generated.

 const summary_interval = 1 day &redef;

 ## This event can be handled to access/alter data about to be logged

 ## to the signature logging stream.

 ## rec: The record of signature data about to be logged.

 global log_signature: event(rec: Info);

}

if (action == SIG_ALARM_ONCE)

 {

 if ([sig_id] !in did_sig_log)

 {

 notice = T;

 add did_sig_log[sig_id];

 }

 }

 if (notice)

 NOTICE([$note=Sensitive_Signature,

 $conn=state$conn, $src=src_addr,

 $dst=dst_addr, $msg=fmt("%s: %s", src_addr, msg),

 $sub=data]);

Log::write(Signatures::LOG,

 [$ts=network_time(),

 $note=Multiple_Signatures,

 $src_addr=orig,

[65]

 $dst_addr=resp, $sig_id=sig_id,

6.3.2 Reporter main.bro

This framework is intended to create an output and filtering path internal

messages/warnings/errors. It should typically be loaded to log such messages to a file in a

standard way [63]:

export {

 ## The reporter logging stream identifier.

 redef enum Log::ID += { LOG };

 ## An indicator of reporter message severity.

 type Level: enum {

 ## Informational, not needing specific attention.

 INFO,

 ## Warning of a potential problem.

 WARNING,

 ## A non-fatal error that should be addressed, but doesn't

 ## terminate program execution.

 ERROR

 };

The record type which contains the column fields of the reporter log.

 type Info: record {

 ## The network time at which the reporter event was generated.

 ts: time &log;

 ## The severity of the reporter message.

 level: Level &log;

 ## An info/warning/error message that could have either been

 ## generated from the internal Bro core or at the scripting-layer.

 message: string &log;

 ## This is the location in a Bro script where the message originated.

 ## Not all reporter messages will have locations in them though.

 location: string &log &optional;

 };

}

event bro_init() &priority=5

 {

 Log::create_stream(Reporter::LOG, [$columns=Info]);

 }

event reporter_info(t: time, msg: string, location: string) &priority=-5

 {

[66]

 Log::write(Reporter::LOG, [$ts=t, $level=INFO, $message=msg,

$location=location]);

 }

event reporter_warning(t: time, msg: string, location: string) &priority=-5

 {

 Log::write(Reporter::LOG, [$ts=t, $level=WARNING, $message=msg,

$location=location]);

event reporter_error(t: time, msg: string, location: string) &priority=-5

 {

 Log::write(Reporter::LOG, [$ts=t, $level=ERROR, $message=msg,

$location=location]);

 }

6.3.3 Communication main.bro

Main.bro [63]:

module Communication;

export {

 ## The communication logging stream identifier.

 redef enum Log::ID += { LOG };

 ## Which interface to listen on. The addresses ``0.0.0.0`` and ``[::]``

 ## are wildcards.

 const listen_interface = 0.0.0.0 &redef;

 ## Which port to listen on. Note that BroControl sets this

 ## automatically.

 const listen_port = 47757/tcp &redef;

 ## This defines if a listening socket should use SSL.

 const listen_ssl = F &redef;

 ## Defines if a listening socket can bind to IPv6 addresses.

 ## Defines the interval at which to retry binding to

 ## :bro:id:`Communication::listen_interface` on

 ## :bro:id:`Communication::listen_port` if it's already in use.

 const listen_retry = 30 secs &redef;

 ## Default compression level. Compression level is 0-9, with 0 = no

 ## compression.

 global compression_level = 0 &redef;

 ## A record type containing the column fields of the communication log.

 event bro_init() &priority=5

[67]

 {

 Log::create_stream(Communication::LOG, [$columns=Info]);

 }

function do_script_log_common(level: count, src: count, msg: string)

 {

 Log::write(Communication::LOG, [$ts = network_time(),

 $level = (level == REMOTE_LOG_INFO ? "info" :

"error"),

 $src_name = src_names[src],

 $peer = get_event_peer()$descr,

 $message = msg]);

 }

This is a core generated event.

event remote_log(level: count, src: count, msg: string)

 {

 do_script_log_common(level, src, msg);

 }

Actually initiate the connections that need to be established.

event bro_init() &priority = -10 # let others modify nodes

 {

 if (|nodes| > 0)

 enable_communication();

 for (tag in nodes)

 {

 if (! nodes[tag]$connect)

 next;

 connect_peer(tag);

 }

 }

6.4 Detect Port scan

Tests run on my local network.

FIGURE 6-4 CONN-SUMMARY.LOG

[68]

FIGURE 6-5 CONN.LOG

FIGURE 6-6 COMMUNICATION.LOG

[69]

FIGURE 6-7 NOTICE.LOG

FIGURE 6-8 WEIRD.LOG

[70]

6.4.1 Scan.bro

Scan.bro [63]:

@load base/frameworks/notice

@load base/frameworks/sumstats

@load base/utils/time

module Scan;

export {

 redef enum Notice::Type += {

 ## Address scans detect that a host appears to be scanning some

 ## number of destinations on a single port. This notice is

 ## generated when more than :bro:id:`Scan::addr_scan_threshold`

 ## unique hosts are seen over the previous

 ## :bro:id:`Scan::addr_scan_interval` time range.

 Address_Scan,

 ## :bro:id:`Scan::port_scan_threshold`

 ## unique ports on a single host over the previous

 ## :bro:id:`Scan::port_scan_interval` time range.

 Port_Scan,

 };

 ## Failed connection attempts are tracked over this time interval for

 ## the address scan detection. A higher interval will detect slower

 ## scanners, but may also yield more false positives.

 const addr_scan_interval = 5min &redef;

 ## Failed connection attempts are tracked over this time interval for

 ## the port scan detection. A higher interval will detect slower

 ## scanners, but may also yield more false positives.

 const port_scan_interval = 5min &redef;

 ## The threshold of the unique number of hosts a scanning host has to

 ## have failed connections with on a single port.

 const addr_scan_threshold = 25.0 &redef;

 ## The threshold of the number of unique ports a scanning host has to

 ## have failed connections with on a single victim host.

 const port_scan_threshold = 15.0 &redef;

 global Scan::addr_scan_policy: hook(scanner: addr, victim: addr,

scanned_port: port);

 global Scan::port_scan_policy: hook(scanner: addr, victim: addr,

scanned_port: port);

[71]

}

event bro_init() &priority=5

 {

 local r1: SumStats::Reducer = [$stream="scan.addr.fail",

$apply=set(SumStats::UNIQUE), $unique_max=double_to_count(addr_scan_threshold+2)];

 SumStats::create([$name="addr-scan",

 $epoch=addr_scan_interval,

 $reducers=set(r1),

 $threshold_val(key: SumStats::Key, result:

SumStats::Result) =

 {

 return result["scan.addr.fail"]$unique+0.0;

 },

 #$threshold_func=check_addr_scan_threshold,

 $threshold=addr_scan_threshold,

 $threshold_crossed(key: SumStats::Key, result:

SumStats::Result) =

 {

 local r = result["scan.addr.fail"];

 local side = Site::is_local_addr(key$host) ? "local" :

"remote";

 local dur = duration_to_mins_secs(r$end-r$begin);

 local message=fmt("%s scanned at least %d unique hosts on

port %s in %s", key$host, r$unique, key$str, dur);

 NOTICE([$note=Address_Scan,

 $src=key$host,

 $p=to_port(key$str),

 $sub=side,

 $msg=message,

 $identifier=cat(key$host)]);

 }]);

 # Note: port scans are tracked similar to: table[src_ip, dst_ip] of

set(port);

 local r2: SumStats::Reducer = [$stream="scan.port.fail",

$apply=set(SumStats::UNIQUE), $unique_max=double_to_count(port_scan_threshold+2)];

 SumStats::create([$name="port-scan",

 $epoch=port_scan_interval,

 $reducers=set(r2),

 $threshold_val(key: SumStats::Key, result:

SumStats::Result) =

[72]

 {

 return result["scan.port.fail"]$unique+0.0;

 },

 $threshold=port_scan_threshold,

 $threshold_crossed(key: SumStats::Key, result:

SumStats::Result) =

 {

 local r = result["scan.port.fail"];

 local side = Site::is_local_addr(key$host) ? "local" :

"remote";

 local dur = duration_to_mins_secs(r$end-r$begin);

 local message = fmt("%s scanned at least %d unique ports

of host %s in %s", key$host, r$unique, key$str, dur);

 NOTICE([$note=Port_Scan,

 $src=key$host,

 $dst=to_addr(key$str),

 $sub=side,

 $msg=message,

 $identifier=cat(key$host)]);

 }]);

 }

function add_sumstats(id: conn_id, reverse: bool)

 {

 local scanner = id$orig_h;

 local victim = id$resp_h;

 local scanned_port = id$resp_p;

 if (reverse)

 {

 scanner = id$resp_h;

 victim = id$orig_h;

 scanned_port = id$orig_p;

 }

 if (hook Scan::addr_scan_policy(scanner, victim, scanned_port))

 SumStats::observe("scan.addr.fail", [$host=scanner,

$str=cat(scanned_port)], [$str=cat(victim)]);

 if (hook Scan::port_scan_policy(scanner, victim, scanned_port))

[73]

 SumStats::observe("scan.port.fail", [$host=scanner, $str=cat(victim)],

[$str=cat(scanned_port)]);

 }

function is_failed_conn(c: connection): bool

 {

 # Sr || ((hR || ShR) && (data not sent in any direction))

 if ((c$orig$state == TCP_SYN_SENT && c$resp$state == TCP_RESET) ||

 (((c$orig$state == TCP_RESET && c$resp$state == TCP_SYN_ACK_SENT) ||

 (c$orig$state == TCP_RESET && c$resp$state == TCP_ESTABLISHED && "S"

in c$history)

) && /[Dd]/ !in c$history)

)

 return T;

 return F;

 }

function is_reverse_failed_conn(c: connection): bool

 {

 # reverse scan i.e. conn dest is the scanner

 # sR || ((Hr || sHr) && (data not sent in any direction))

 if ((c$resp$state == TCP_SYN_SENT && c$orig$state == TCP_RESET) ||

 (((c$resp$state == TCP_RESET && c$orig$state == TCP_SYN_ACK_SENT) ||

 (c$resp$state == TCP_RESET && c$orig$state == TCP_ESTABLISHED && "s"

in c$history)

) && /[Dd]/ !in c$history)

)

 return T;

 return F;

 }

event connection_attempt(c: connection)

 {

 local is_reverse_scan = F;

 if ("H" in c$history)

 is_reverse_scan = T;

 add_sumstats(c$id, is_reverse_scan);

 }

event connection_rejected(c: connection)

 {

 local is_reverse_scan = F;

 if ("s" in c$history)

[74]

 is_reverse_scan = T;

 add_sumstats(c$id, is_reverse_scan);

 }

event connection_reset(c: connection)

 {

 if (is_failed_conn(c))

 add_sumstats(c$id, F);

 else if (is_reverse_failed_conn(c))

 add_sumstats(c$id, T);

 }

event connection_pending(c: connection)

 {

 if (is_failed_conn(c))

 add_sumstats(c$id, F);

 else if (is_reverse_failed_conn(c))

 add_sumstats(c$id, T);

 }

6.5 Detect Syn Flood

Tests run on my local network.

FIGURE 6-9 SYN FLOOD

[75]

FIGURE 6-10 CONN.LOG

FIGURE 6-11 REPORTER.LOG

[76]

FIGURE 6-12 WEIRD.LOG

6.6 Detect UDP flood

Tests run on my local network.

FIGURE 6-13 UDP FLOOD

FIGURE 6-14 REPORTER.LOG

[77]

FIGURE 6-15 WEIRD.LOG

FIGURE 6-16 CONN.LOG

[78]

6.7 Detect Brute Force ssh

Tests run on my local network.

FIGURE 6-17 SSH.LOG

FIGURE 6-18 SOFTWARE.LOG

[79]

FIGURE 6-19 SERVICES.LOG

FIGURE 6-20 CONN-SUMMARY.LOG

[80]

6.7.1 brute-force.bro

brute-force.bro [63] :

@load base/protocols/ssh

@load base/frameworks/sumstats

@load base/frameworks/notice

@load base/frameworks/intel

module SSH;

export {

 redef enum Notice::Type += {

 ## Indicates that a host has been identified as crossing the

 ## :bro:id:`SSH::password_guesses_limit` threshold with

 ## failed logins.

 Password_Guessing,

 ## Indicates that a host previously identified as a "password

 ## guesser" has now had a successful login

 ## attempt. This is not currently implemented.

 Login_By_Password_Guesser,

 };

 redef enum Intel::Where += {

 ## An indicator of the login for the intel framework.

 SSH::SUCCESSFUL_LOGIN,

 };

 ## The number of failed SSH connections before a host is designated as

 ## guessing passwords.

 const password_guesses_limit: double = 30 &redef;

 ## The amount of time to remember presumed non-successful logins to

 ## build a model of a password guesser.

 const guessing_timeout = 30 mins &redef;

 ## This value can be used to exclude hosts or entire networks from being

 ## tracked as potential "guessers". The index represents

 ## client subnets and the yield value represents server subnets.

 const ignore_guessers: table[subnet] of subnet &redef;

}

event bro_init()

 {

 local r1: SumStats::Reducer = [$stream="ssh.login.failure",

$apply=set(SumStats::SUM, SumStats::SAMPLE), $num_samples=5];

 SumStats::create([$name="detect-ssh-bruteforcing",

[81]

 $epoch=guessing_timeout,

 $reducers=set(r1),

 $threshold_val(key: SumStats::Key, result:

SumStats::Result) =

 {

 return result["ssh.login.failure"]$sum;

 },

 $threshold=password_guesses_limit,

 $threshold_crossed(key: SumStats::Key, result:

SumStats::Result) =

 {

 local r = result["ssh.login.failure"];

 local sub_msg = fmt("Sampled servers: ");

 local samples = r$samples;

 for (i in samples)

 {

 if (samples[i]?$str)

 sub_msg = fmt("%s%s %s", sub_msg, i==0 ?

"":",", samples[i]$str);

 }

 # Generate the notice.

 NOTICE([$note=Password_Guessing,

 $msg=fmt("%s appears to be guessing SSH passwords

(seen in %d connections).", key$host, r$num),

 $sub=sub_msg,

 $src=key$host,

 $identifier=cat(key$host)]);

 }]);

 }

event ssh_auth_successful(c: connection, auth_method_none: bool)

 {

 local id = c$id;

 Intel::seen([$host=id$orig_h,

 $conn=c,

 $where=SSH::SUCCESSFUL_LOGIN]);

 }

event ssh_auth_failed(c: connection)

 {

[82]

 local id = c$id;

 # Add data to the FAILED_LOGIN metric unless this connection should

 # be ignored.

 if (! (id$orig_h in ignore_guessers &&

 id$resp_h in ignore_guessers[id$orig_h]))

 SumStats::observe("ssh.login.failure", [$host=id$orig_h],

[$str=cat(id$resp_h)]);

 }

6.8 Bro vs Snort

Contrast of Snort and Bro is made on the basis of different parameters such as speed,

signatures, flexibility, interface and operating system ability [52].

 a. Speed: Bro IDS has the advantage to run in high-speed networks. Bro is very effective and

able to collect data from Gbps networks. This makes it suitable for Bro to run prefect in high

speed networks without losing packets or slowing down the traffic.

b. Signatures: When it comes to the signatures used for detecting intrusions, the Bro

signatures are more refined than the signatures used in Snort.

c. Flexibility: Bro is a flexible intrusion detection system with the ability of being configured

and then clarified for its intended computer network. Bro comes with policy scripts which can

be used right out of the box and these will detect the most well-known attacks.

d. Interface: Snort has a graphical user platform which makes it more sophisticated. Bro’s lack

of a user interface (GUI) can also be regarded as a disadvantage since one should have

expertise of how a UNIX system function and be able to handle shell commands to

understand this system.

e. Operating System Compatibility: The Snort can run on all of today’s most well known

operating systems and is not confined to a fully establishments server hardware platform

whereas Bro is confined to UNIX like operating systems.

[83]

Chapter 7 Conclusion

Network intrusion models based on detection events are able to detect real-time threats. In

addition, network intrusion models show a possibility of threat prediction by analyzing

correlation of intrusion detection events.

The IDSs are gaining importance in the field of internet security. It is not a tool intended to

replace firewalls or anti-viruses, but a basic tool for network security.

We have seen many projects of IDSs, which deduct the relevance of this tool in the computer

field. Many users are covered within the development of IDSs from administrators, who

install IDSs to defend its small network, to companies, who buy powerful security tools.

Although an intrusion detection system is a good way to keep our network safe from attacks,

this option is not useful at all if we do not take into account other aspects much more basic

such as having appropriate passwords in our systems, correct firewall settings and a backup.

IDSs are not autonomous systems but they are alert tools that must be interpreted by security

expertise to get knowledge of who attacks and how the attacks are performed to apply

measures so that the system cannot be compromised again.

We should accept that intrusion detection systems are not suitable for all organizations. If an

organization cannot afford a specialist on attack responses, having an intrusion detection

system will not provide any additional security. For the rest of the organizations, the use of

IDSs should be stated in their security policy, completely coordinated with the other

resources.

We have noticed that the intrusion detection systems are not perfect yet, since new malicious

codes are constantly coming up just as holes in new software. Those can be exploited by the

hacker to bypass the security system. Two very important recommendations can be given to

avoid bad things: Developers of software must carefully follow the rules to create secure

programmes and the security system must be always updated to prevent the zero day attacks.

An optimal IDS deployment should have some operational procedure behind it to gather

additional information and optimize the process. Many customers think that a given security

product like an IDS will protect them from 100% of the attacks. In a practical world, there

are no absolutes, instead IDS can significantly reduce the risk from network attacks, but they

are not perfect.

7.1 Future Work

Regarding future enhancement and development of certain IDS aspects some suggestions

might concern automatic generation of the dependency for the system as well as metrics

development when it comes to measuring system security policies, in general creating

standards to assess the system resources in terms of security policies. Additionally a

[84]

mechanism for transferring the knowledge of one response engine to another, so that it is

shared across all hosts would be essential.

Another proposal could be the development of standards to measure the success of a selected

response on different environments. By this the comparison between results of response

selected between one environment and another could be achieved.

Future IDS will also have to address scalability and distributed data collection issues in order

to achieve the level of effectiveness that is required.

[85]

BIBLIOGRAPHY

[1] K. Scarfone, P. Mell, “Guide to Intrusion Detection and Prevention Systems (IDPS)”. Computer

Security Resource Center (National Institute of Standards and Technology). February 2007.

[2] Robin Berthier, William H. Sanders, and Himanshu Khurana, Intrusion Detection for Advanced

Metering Infrastructures: Requirements and Architectural Directions,IEEE,2010

[3] Irfan Gul, M. Hussain, Distributed Cloud Intrusion Detection Mode, International Journal of

Advanced Science and Technology Vol. 34,2011

[4] Computer Economics, “2007 malware report: The economic impact of viruses, spyware,

adware, botnets, and other malicious code,” 2008.

[5] http://en.wikipedia.org/wiki/Intrusion_detection_system.

[6] Giovanni Vigna. Fredrik Valeur Richard A. Kemmerer, Designing and Implementing a Family of

Intrusion. Detection Systems, Reliable Software Group, ACM New York,2003

[7] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Proceedings of the

USENIX LISA ’99 Conference, November 1999.

[8] C. Wang and J. C. Knight. Towards survivable intrusion detection. In Proceedings of the 3rd

Information Survivability Workshop (ISW-2000), Boston, USA, October 2000.

[9] C.Zimmer,B.Bhat,F.Mueller, and S.Mohan, “Time-based intrusion detection in cyber-physical

systems,”inProc.1stACM/IEEEInt.Conf. CyberPhysicalSyst.,Stockholm,Sweden,2010,pp.109–

118.

[10] A. Avizienis, J. Laprie, and B. Randell. Fundamental concepts of dependability. Technical

Report N01145, LAAS-CNRS, 2001.

http://en.wikipedia.org/wiki/Intrusion_detection_system
http://www.acm.org/publications

[86]

[11] Joseph S. Sherif, Tommy G. Dearmond, “Intrusion Detection: Systems and Models”, Eleventh

IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises (WETICE) 2002.

[12] I. Balepin, S. Maltsev, J. Rowe, and K. Levit. “Using specification-based intrusion detection for

automated response,” in the 6th International Symposium on Recent Advances in Intrusion

Detection (RAID) 2003.

[13] Cisco, Annual Security Report, 2014.

[14] NabilAliAlrajeh S.Khan and BilalShams, Intrusion Detection Systems in Wireless Sensor

Networks: A Review, Hindawi, 2013.

[15] Ashara Banu Mohamed ,Norbik Bashah Idris,Bharanidharan Shanmugum, A Brief Introduction

to Intrusion Detection System, First International Conference, IRAM 2012, Kuala Lumpur,

Malaysia, November 28-30, 2012.

[16] Barbara, Daniel, Couto, Julia, Jajodia, Sushil, Popyack, Leonard, and Wu, Ningning, "ADAM:

Detecting Intrusions by Data Mining," Proceedings of the IEEE Workshop on Information

Assurance and Security, West Point, NY, June 5–6, 2001.

[17] Intrusion Detection Techniques for Mobile Wireless Networks, ACM WINET 2003.

[18] McHugh, J., Christie, A. & Allen J. Defending yourself: the role of intrusion detection

systems.IEEE Software, 2000.

[19] Thamilarasu, G., Balasubramanian, A., Mishra, S. & Sridhar, R. A cross-layer based intrusion

detection approach for wireless ad hoc networks.IEEE International Conference on Mobile

Adhoc and Sensor Systems Conference, 2005.

[20] Daniele Sgandurra, A Survey of Intrusion Detection Systems, Istituto di Informatica e

Telematica, CNR, Pisa, Italy,2009.

[87]

[21] Svetlana Radosavac, John S. Baras, Detection and Classification of Network Intrusions Using

Hidden Markov Models, 2003 Conference on Information Sciences and Systems, The Johns

Hopkins University, March 12–14, 2003

[22] Scarfone, Karen, Mell, Peter (February 2007). "Guide to Intrusion Detection and Prevention

Systems (IDPS)". Computer Security Resource Center (National Institute of Standards and

Technology) (800–94). Retrieved 1 January 2010.

[23] Silva, L. D. S., Santos, A. C., Mancilha, T. D., Silva, J. D., & Montes, A. Detecting attack

signatures in the real network traffic with ANNIDA. Expert Systems with Applications, 34(4),

2326–2333.2008.

[24] Anna Sperotto, Gregor Schaffrath, Ramin Sadre, Cristian Morariu, Aiko Pras and Burkhard

Stiller, An Overview of IP Flow-Based Intrusion Detection, IEEE COMMUNICATIONS

SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010.

[25] Karen A. Scarfone, M. Mell,Guide to Intrusion Detection and Prevention Systems

IDPSACM,2007.

[26] Snort (software) http://en.wikipedia.org/wiki/Snort_%28software%29.

[27] InfoWorld, The greatest open source software of all time,

2009.http://www.infoworld.com/d/open-source/greatest-open-source-software-all-

time776?source=fssr.

[28] Sectools.Org: 2006 Results http://sectools.org/tools2006.html.

[29] SecTools.Org: Top 125 Network Security Tools; http://sectools.org/tag/ids/.

[30] Suricata (software), http://en.wikipedia.org/wiki/Suricata_(software).

http://en.wikipedia.org/wiki/Snort_%28software%29
http://sectools.org/tools2006.html
http://sectools.org/tag/ids/
http://en.wikipedia.org/wiki/Suricata_(software)

[88]

[31] The Bro Network Security Monitor, http://bro-ids.org/.

[32] R. Graham, “FAQ: Network Intrusion Detection Systems”. March 21, 2000.

[33] P.A. Porras, A. Valdes, Live traffic analysis of tcp/ip gateway, Proc. ISOC Symp. on Network

and Distributed System Ž . Ž Security NDSS’98 , San Diego, CA, March 1998 .

[34] Hervé Debar, Marc Dacier, Andreas Wesp, Towards a taxonomy of intrusion-detection

systems,ACM,1999.

[35] http://en.wikipedia.org/wiki/Intrusion_detection_system,2015.

[36] Ganesh Kumar Varadarajan, Web Application Attack Analysis Using Bro IDS, SANS,2012.

[37] Shevali Agarwal, Anurag Punde , Shubhi Kesharwani, Proposed Algorithm for Network Traffic

Classification Based On DB Scan, IJESRT,2013.

[38] Sandhya Peddabachigaria, Ajith Abrahamb, Crina Grosanc, Johnson Thomas, Modeling

intrusion detection system using hybrid intelligent systems, Elsevier,2005.

[39] S. Chebrolu, A. Abraham, and J. P. Thomas. Feature deduction and ensemble design of intrusion

detection systems. Computers & Security, 24(4):295–307, 2005.

[40] Hung-Jen Liao a , Chun-Hung Richard Lin a,n , Ying-Chih Lin a,b , Kuang-Yuan Tung a,

Intrusion detection system: A comprehensive review,Elsevier, 2013.

[41] http://searchnetworking.techtarget.com/.

[42] http://en.wikipedia.org/wiki/Port_mirroring.

http://bro-ids.org/
http://en.wikipedia.org/wiki/Intrusion_detection_system,2015
http://searchnetworking.techtarget.com/
http://en.wikipedia.org/wiki/Port_mirroring

[89]

[43] Díaz-Verdejo, J.E., García-Teodoro, P., Muñoz, P., Maciá-Fernández, G., De Toro, F.: Una

aproximación basada en Snort para el desarrollo e implantación de IDS híbridos (A Snort-based

approach for the development and deployment of hybrid IDS). IEEE Latin America Transactions

5(6), 386–392 (2007).

[44] Hwang, K., Cai,M., Chen, Y., Qin, M.: Hybrid Intrusion Detection with Weighted Signature

Generation Over Anomalous Internet Episodes. IEEE Transactions on Dependable and Secure

Computing 4(1), 41–55 (2007).

[45] Wuu, L.C., Hung, C.H., Chen, S.F.: Building intrusión pattern miner for Snort network intrusión

detection system. Journal of Systems and Software 80(10), 1699–1715 (2007) 12.

[46] http://www.snort.com.

[47] Jay Beale, Snort 2.1 Intrusion Detection, Syngress, 2004.

[48] http://manual.snort.org/.

[49] http://en.wikipedia.org/wiki/UDP_flood_attack.

[50] http://suricata-ids.org/.

[51] https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricatayaml.

[52] Pritika Mehra, A brief study and comparison of Snort and Bro Open Source Network Intrusion

Detection Systems, International Journal of Advanced Research in Computer and

Communication Engineering Vol. 1, Issue 6, August 2012.

[53] Paar Christof, Pelzl Jan, Understanding Cryptography: A Textbook for Students and

Practitioners,ISBN 3-642-04100-0, Bart (2010).

http://www.snort.com/
http://manual.snort.org/
http://en.wikipedia.org/wiki/UDP_flood_attack
http://suricata-ids.org/
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricatayaml

[90]

[54] http://en.wikipedia.org/wiki/Brute-force_attack.

[55] V. Jaiganesh , S. Mangayarkarasi , Dr. P. Sumathi, Intrusion Detection Systems: A Survey and

Analysis of Classification Techniques, International Journal of Advanced Research in Computer

and Communication Engineering Vol. 2, Issue 4, April 2013.

[56] Neeraj Kumar Naveen Chilamkurti, Collaborative trust aware intelligent intrusion detection in

VANETs, Elsevier, August, 2014.

[57] Gisung Kima, Seungmin Leeb,Sehun Kima, A novel hybrid intrusion detection method

integrating anomaly detection with misuse detection, Elsevier 2014.

[58] Tran Ngoc Thinh, Tran Trung Hieu, Van Quoc Dung, Kittitornkun, S, A FPGA-based deep

packet inspection engine for Network Intrusion Detection System,IEEE,2014.

[59] Junaid Arshad, Paul Townend, Jie Xu, Junaid Arshad, A Novel Intrusion Severity Analysis

Approach for Clouds, Elsevier,2013.

[60] Zubair Md. Fadlullah, Hiroki Nishiyama, Nei Kato, and Mostafa M. Fouda, Intrusion Detection

System (IDS) for Combating Attacks Against Cognitive Radio Networks, IEEE Network

Magazine, vol. 27, no. 3, pp. 51-56, MayJune 2013.

[61] Chun-Jen Chung, Pankaj Khatkar, Tianyi Xing, Jeongkeun Lee, Dijiang Huang , Network

Intrusion Detection and Countermeasure Selection in Virtual Network Systems, IEEE,2013.

[62] http://www.aldeid.com/wiki/Suricata-vs-snort.

[63] www.bro.org

[64] http://www.webopedia.com/TERM/P/port_scanning.html

[65] http://en.wikipedia.org/wiki/SYN_flood

http://en.wikipedia.org/
http://www.aldeid.com/wiki/Suricata-vs-snort

