
Technological Educational Institute Of Crete

Electrical Engineering Department

Bachelor Thesis

George Magoulakis (3459)

jmagoylakis@gmail.com

Supervisor: Prof. Dr. Grammatikakis Miltiades

Evaluation Committee: Dr. Sfakiotakis Michael

Dr. Vasilakis Konstantinos

date of presentation: 14/07/2014

Remote Surveillance of Power Systems Using Arduino Platform

mailto:jmagoylakis@gmail.com

Acknowledgements

By the completion of this thesis, I would like to thank all those who supported and

encouraged me in this thesis preparation and for my entire course at the T.E.I. of Crete and

particularly my parents and my friends who have always been my support.

In particular, I would like to thank my supervisor prof. Dr. Grammatikakis Miltiades for his

guidance, his patience and the help he provided me throughout this thesis.

Abstract

The topic of this thesis is the study and evaluation of the following three programming

models implemented on an Embedded System: the Serial, the Asynchronous Parallel and the

Synchronous Parallel. The parallel programming models are based on Protothreads, which are

lightweight threads, designed for severely memory constrained embedded systems. This study

provides the opportunity to see and understand in depth how these models work and to

comprehend the precise meaning and operation of an embedded system. The embedded

system which was used for the implementation of this thesis is the Arduino board, along with

some of its peripherals (sensors, actuators etc.) for collecting and processing the collected

data of the project.

For the accomplishment of the above objective, individual steps were followed which

constitute the methodology followed in this work. These are summarized below.

At first, concerning the methodology followed in this thesis, we studied issues which relate to

theoretical computer engineering concepts, such as embedded systems, in particular real-time

embedded systems, the Arduino microcontroller and sensor networks, as well as

programming models. We examined several types of threads (Linux threads, POSIX threads,

Protothreads etc.) as well as the ability to control and monitor data using specialized

programs, such as the Processing IDE and Grace for visualization.

Next, we describe the project, which is separated in three parts, one for each programming

model. The case study is related to the design and implementation of a Remote

Monitoring/Control Power Strip device (RC Power Strip). We used C-C++ (Arduino IDE)

and the Linux OS (OpenSUSE 12.3) and we examined how these models and their operating

parameters affect application performance and time behaviour.

Based on this methodology, this thesis provides the opportunity to draw important remarks

and conclusions on the efficiency of parallel programming models using Protothreads.

ΣΥΝΟΨΗ

Τν ζεκαηηθό αληηθείκελν ηεο παξνύζαο πηπρηαθήο εξγαζίαο είλαη ε κειέηε ηξηώλ κνληέισλ

πξνγξακκαηηζκνύ: ηνπ Σεηξηαθνύ, Αζύγρξνλνπ Παξάιιεινπ θαη Σύγρξνλνπ Παξάιιεινπ, ηα

νπνία κειεηήζεθαλ θαη αμηνινγήζεθαλ ζε ελζσκαησκέλν ζύζηεκα. Τα δύν παξάιιεια

κνληέια βαζίζηεθαλ ζηελ ηερλνινγία ησλ Protothreads, ηα νπνία εληάζζνληαη ζηελ

θαηεγνξία ησλ lightweight threads, θαη ε ρξήζε ηνπο ελδείθλπηαη ζε ελζσκαησκέλα

ζπζηήκαηα κε πνιύ πεξηνξηζκέλε κλήκε. Η κειέηε απηή δίλεη ηελ δπλαηόηεηα ζηνλ

ελδηαθεξόκελν λα δεη θαη λα θαηαλνήζεη ζε βάζνο πώο ιεηηνπξγνύλ απηά ηα κνληέια, θαζώο

θαη λα θαηαλνήζεη ηελ αθξηβή ζεκαζία θαη ιεηηνπξγία ησλ Ελζσκαησκέλσλ Σπζηεκάησλ.

Τν ελζσκαησκέλν ζύζηεκα πνπ ρξεζηκνπνηήζεθε είλαη ε πιαηθόξκα Arduino καδί κε

θάπνηα πεξηθεξεηαθά ηνπ (αηζζεηήξεο θ.α.), ηα νπνία ρξεζηκνπνηήζεθαλ γηα ηελ ζπιινγή

θαη ηελ επεμεξγαζία ησλ δεδνκέλσλ.

Γηα ηελ επίηεπμε ηνπ παξαπάλσ ζηόρνπ, αθνινπζήζεθαλ επηκέξνπο βήκαηα ηα νπνία

ζπλνςίδνληαη παξαθάησ θαη ηα νπνία ζπληζηνύλ θαη ηελ κεζνδνινγία πνπ αθνινπζήζεθε

ζηελ παξνύζα εξγαζία.

Πξώηα από όια, ζην κεζνδνινγηθό κέξνο ηεο πηπρηαθήο εξγαζίαο κειεηήζεθαλ ζέκαηα πνπ

αθνξνύλ ηηο απαξαίηεηεο ζεσξεηηθέο έλλνηεο πνπ αθνξνύλ ηα ελζσκαησκέλα ζπζηήκαηα, ηα

ελζσκαησκέλα ζπζηήκαηα πξαγκαηηθνύ ρξόλνπ, ηνλ κηθξνειεγθηή Arduino, ηα δίθηπα

αηζζεηήξσλ, όζν θαη ηα αλάινγα κνληέια πξνγξακκαηηζκνύ. Εμεηάζζεθαλ δειαδή ηύπνη

λεκάησλ (Linux threads, POSIX threads, Protothreads), όπσο θαη ε δπλαηόηεηα ειέγρνπ θαη

παξαθνινύζεζεο δεδνκέλσλ κε ηελ ρξήζε δηαθόξσλ πξνγξακκάησλ (Processing IDE,

Grace).

Σηελ ζπλέρεηα, αλαπηύμακε ην project ζε ηξία ζθέιε, έλα γηα θάζε κνληέιν

πξνγξακκαηηζκνύ. Μειεηήζακε ηελ ρξνληθή ζπκπεξηθνξά ησλ κνληέισλ απηώλ θαη

ζπγθξίλακε ηα ραξαθηεξηζηηθά ηνπο κε βάζε εθαξκνγή πνπ αθνξά απνκαθξπζκέλε

πξόζβαζε θαη έιεγρνο ζπζθεπώλ παξνρήο ελέξγεηαο (RC Power Strip). Χξεζηκνπνηήζακε C

– C++ (Arduino IDE) θαη ιεηηνπξγηθό ζύζηεκα Linux (OpenSUSE 12.3) θαη εμεηάζακε πώο

απηά ηα κνληέια θαη νη αληίζηνηρεο παξάκεηξνη ιεηηνπξγίαο ηνπο επεξεάδνπλ ηελ απόδνζε

ηεο εθαξκνγήο.

Με βάζε ηε κεζνδνινγία απηή, ε πηπρηαθή εξγαζία δίλεη ηελ δπλαηόηεηα λα εμάγνπκε

ζεκαληηθά ζπκπεξάζκαηα σο πξνο ηελ απνδνηηθόηεηα ησλ παξάιιεισλ κνληέισλ

πξνγξακκαηηζκνύ θαη ησλ Protothreads.

Table of contents

1. Embedded Systems .. 1

1.1 Definition Of The Embedded Systems .. 1

1.1.1 Characteristics Of Embedded Systems .. 2

1.1.2 Elements Of Embedded Systems ... 3

1.1.3 Embedded Systems - Interfacing To Physical World .. 5

1.1.4 Designing An Embedded System .. 6

1.2 Real-Time Embedded Systems .. 7

1.3 Sensors And Sensor Networks... 8

1.3.1 Sensors ... 8

1.3.2 Ideal And Real Sensors .. 9

1.3.3 Sensor Networks .. 10

2. Arduino .. 11

2.1 Hardware ... 13

2.1.1 Arduino Uno R3 Microcontroller .. 13

2.1.2 Arduino Sensors .. 15

2.1.3 Memory – Sd Card Module .. 16

2.1.4 Ethernet Shield ... 17

2.2 Software .. 19

2.2.1 Arduino Ide ... 19

2.2.1.1 Installing The Arduino Ide On Opensuse V.12.3 ... 19

2.2.2 Threads ... 25

2.2.2.1 Processor Threads ... 25

2.2.2.2 Linux Threads ... 26

2.2.2.2.1 Fork () ... 27

2.2.2.2.2 Clone () ... 27

2.2.2.3 Posix Threads (Pthreads) .. 27

2.2.2.3.1 Thread Management ... 31

2.2.2.4 Protothreads .. 33

2.2.2.4.1 Limitations Of The Protothreads .. 35

2.2.2.4.2 Implementation Of The Protothreads ... 35

2.3 Visualization And Data Monitoring ... 38

2.3.1 Using Arduino, Processing And Grace Together For Visualizing Data 42

3. Project Design .. 47

3.1 Energy Management ... 47

3.1.1. Definition Of Energy Management .. 47

3.1.2. Designing An Energy Management System ... 48

3.2 Hardware .. 48

3.2.1 Hardware Development .. 48

3.2.1.1 Arduino Mega 2560 R3 .. 49

3.2.1.2 Characteristics Of Arduino Mega 2560 R3 .. 51

3.2.1.3 1602 Lcd Hd44780 Lcd Screen .. 52

3.2.1.4 Experimental Part ... 53

3.3 Software .. 55

3.3.2 Protothreads Asynchronous .. 61

3.3.4 Protothreads With Synchronization .. 67

4. Results ... 74

4.1 Metrics ... 74

4.1.1. Nothread.Csv File .. 74

4.1.2. Nosync.Csv File .. 78

4.1.3. Syncfile.Csv File ... 78

4.1.4 Comparing The Results ... 79

4.2 Graphics And Evaluations ... 80

4.2.1 Nothread.Csv File‟s Diagrams... 80

4.2.2 Nosync.Csv File‟s Diagrams ... 85

4.2.3 Syncfile.Csv File‟s Diagrams .. 88

4.2.4 Comparing The Results ... 94

5. Future Work... 100

6. References ... 101

Table of Pictures

Figure 1 – 1: A typical autonomous tank vehicle ... 1

Figure 1 – 2: Apollo Guidance Computer .. 2

Figure 1 – 3: Block diagram of a typical embedded system. .. 2

Figure 1 – 4: A General Purpose Microprocessor .. 3

Figure 1 – 5: A typical Microcontroller .. 4

Figure 1 – 6: Traditional versus Harvard Architecture ... 5

Figure 1 – 7: Real-time embedded systems .. 7

Figure 1 – 8: Real-time embedded systems time spectrum .. 7

Figure 1 – 9: Examples of Sensors and Sensor Networks .. 9

Figure 2 – 1: Several types of Arduino Boards .. 11

Figure 2 – 2: The Arduino Uno R3 Board .. 13

Figure 2 – 3: ATMega328 PIN Mapping ... 14

Figure 2 – 4: Several types of Arduino Sensors ... 15

Figure 2 – 5: Ethernet Shield .. 17

Figure 2 – 6: Loading picture of the Arduino IDE ... 19

Figure 2 – 7: Install Software via 1-click button .. 19

Figure 2 – 8: Arduino IDE .. 21

Figure 2 – 9: The Serial Monitor of the Arduino IDE. ... 22

Figure 2 – 10: The Libraries menu of the Arduino ... 24

Figure 2 – 11: Processor Threads ... 25

Figure 2 – 12: Threads vs. Processes .. 25

Figure 2 – 13: UNIX Process vs. Threads within a UNIX Process .. 28

Figure 2 – 14: Threads .. 31

Figure 2 – 15: Joining and Detaching Routines .. 32

Figure 2 – 16: Stack Management Routines ... 33

Figure 2 – 17: Miscellaneous Routines .. 33

Figure 2 – 18: Comparison of the Arduino IDE and Processing PDE .. 40

Figure 2 – 19: The Grace Environment .. 42

Figure 2 – 20: The result on Grace ... 46

Figure 3 – 1: Energy Management Model ... 47

Figure 3 – 2: Arduino Mega R3 .. 49

Figure 3 – 3: ATmega2560 Microprocessor ... 50

Figure 3 – 4: The Elements of the Arduino Mega 2560 R3 .. 51

Figure 3 – 5: The front and the back side of 1602 LCD Screen ... 52

Figure 3 – 6: Connections in the Experimental Platform ... 54

Figure 4 – 1: Graphical View of the Timetable of the Program in one period 79

Figure 4 – 2: Virtual Triangular Waveform and the Relay Status .. 81

Figure 4 – 3: Error in Generating Triangular Voltage Distribution .. 81

Figure 4 – 4: The two for loops in the Program.. 81

Figure 4 – 5: Status Error of the Relay Module .. 83

Figure 4 – 6: Variation RelayOn Sorted Diagram .. 84

Figure 4 – 7: Variation RelayOff Sorted Diagram ... 85

Figure 4 – 8: Virtual Triangular Waveform and the Relay Status .. 86

Figure 4 – 9: Error in Generating Triangular Voltage Distribution .. 86

Figure 4 – 10: Status Error of the Relay Module .. 87

Figure 4 – 11: Variation RelayOn Sorted Diagram .. 87

Figure 4 – 12: Variation RelayOff Sorted Diagram ... 88

Figure 4 – 13: Virtual Triangular Waveform and the Relay Status .. 89

Figure 4 – 14: Error in Generating Triangular Voltage Distribution .. 89

Figure 4 – 15: Error in Generating Triangular Voltage Distribution (Focused Graph) 90

Figure 4 – 16a: t1 and t4 Time Limits .. 90

Figure 4 – 16b: Time limits highlighted with different colours .. 91

Figure 4 – 16c: t2 Time Limit .. 92

Figure 4 – 16d: t3 Time Limit .. 92

Figure 4 – 17: Status Error of the Relay Module .. 93

Figure 4 – 18: Variation RelayOn Sorted Diagram .. 94

Figure 4 – 19: Variation RelayOff Sorted Diagram ... 94

Figure 4 – 20: Comparison of Execution Timings of the Three Programming Models 95

Figure 4 – 21: Comparison of RelayOn Variation in the three programming models 98

Figure 4 – 22: Comparison of RelayOff Variation in the three programming models 99

1

1. Embedded Systems

1.1 Definition of the Embedded Systems

Figure 1 – 1: A typical autonomous tank vehicle

What are the Embedded Systems?

Although it is really difficult to define the term “embedded systems”, we can initially describe

them as computer systems that do not use a monitor, keyboard or mouse (general purpose

computers). According to this general definition of the embedded systems, we can easily

imagine where we can find applications of them in our lives.

Consumer applications (mp3 players, video cameras etc.), telecommunications (such as

mobile and smart phones), cooking, industrial (sensors and thermostats etc.), automotive,

medical (for vital sign monitoring), military applications and games (e.g. see Figure 1 – 1) are

just a few examples. One of the first recognizably modern embedded systems was the Apollo

Guidance Computer [1] (see Figure 1 – 2) which was developed by Charles Stark Draper at

the MIT Instrumentation Laboratory in 1966.

2

Figure 1 – 2: Apollo Guidance Computer

But, what is exactly an (Embedded) System? System is a way to organize, work and perform

one or many tasks according to rules, or schedules of a program. Thus, Embedded Systems

are software, embedded into hardware. This means that systems can be used for implementing

dedicated computing, communication and synchronization protocols, often related to a

specific schedule associated with real-time computing constraints.

1.1.1 Characteristics of Embedded Systems

Figure 1 – 3: Block diagram of a typical embedded system.

3

Embedded Systems have the following characteristics.

o They are application specific and specialized. This means that they are designed for

a specific application and programs are running repeatedly.

o They are optimized for performance (execution time, latency), energy efficiency,

code size, dimensions and cost.

o They are typically designed to meet real-time constraints. This means that they are

designed to react to stimuli from the object that they control, within the given time

interval. Slower reaction than the time schedule is a problem for Real-time systems.

o They are interacting with the environment through sensors and actuators (see Figure

1 – 3). Therefore they are typically reactive systems.

o They generally have minimal or no user interface.

1.1.2 Elements of Embedded Systems

The elements which comprise an embedded system are Hardware and Software.

1. Focusing first on Hardware, the core element of an embedded system is the

processor who is programmed to perform specific tasks using a variety of options.

Processors are divided into General Purpose Microprocessors (κP) and

Microcontrollers – Embedded Processors.

a. General Purpose Microprocessors

Figure 1 – 4: A General Purpose Microprocessor

Although a general purpose κP contains on a single chip an ALU, a Program

Counter, a Stack Pointer, registers, a clock and interrupt circuits, these

elements do not compose a complete computer. For this reason, as shown in

Figure 1 – 4, ROM and RAM, memory decoder, oscillator and a number of

serial and parallel ports are also necessary.

General purpose κPs are designed to run a large number of applications and

are used to prototype embedded system, offering a short design time since the

only thing that needs to be developed is the software. The characteristics of a

general purpose κP are:

4

 High cost

 High speed

 High Power consumption

 Large-scale architecture

 Large memory size

 Extra capabilities, e.g. onboard flash and cache

 External bus interface

b. Microcontrollers – Embedded Processors

Figure 1 – 5: A typical Microcontroller

Microcontroller is a functional computer system on a chip, which is not

expandable since it has no external bus interface. It has a processor, memory

and several peripheral devices, all in one chip. This results in low-power

consumption and compactness. The characteristics of a microcontroller are

 Low cost

 Low speed

 Low Power

 Small architecture

 Small memory size

 Onboard flash

 Limited I/O

5

Software is the soul of embedded systems. We can use a variety of languages and libraries

according to the tasks that we want to run, depending on the nature of the application. For

example, a particular approach (language, library or protocol) which is good for control-

dominated applications might not be as good in other applications. In fact, several languages

are involved in system design. While Hardware Design Languages (HDLs), such as Verilog

[2] or VHDL [3] (or even SystemC [4]) are used to describe hardware components, General

Programming Languages, especially High Level Languages (C, C++, Java, ADA etc.) or

Assembly (symbolic and difficult to understand) are ioften used for embedded software.

Other specialized Languages are better for specific application domains, e.g. dataflow or

streaming languages for digital signal processing (DSP) applications, Esterel for real-time

systems and SDK framework for embedded architecture development in specialized (Xilinx -

based) platforms.

Figure 1 – 6: Traditional versus Harvard Architecture

Another related issue concerns the computer architecture. While in the von Neumann model,

program and data memory is shared between them including address bus and data bus, in the

Harvard architecture, the data memory and the program memory are separate, and thus the

data bus and the address bus are separate for each memory (cf. Figure 1 – 6).

1.1.3 Embedded Systems - Interfacing to Physical World

Previously we mentioned that embedded systems are using sensors and actuators in order to

interact with the external environment. Sensors are like “senses” for the embedded systems

and actuators are like “limbs”. Some of the physical parameters that are used for this purpose

are light, temperature, acceleration, speed, mass, distance etc. and the communication

interfaces that are used for transducing these sets of physical parameters to an embedded

system, are:

 Synchronous or Asynchronous Serial Communication Interfaces

6

 Universal Serial Bus (USB) or other Peripheral Buses

 Networks (Ethernet, Controller Area Network etc.)

 Analog to Digital and Digital to Analog Converters (ADC/DAC).

1.1.4 Designing an Embedded System

The design of an embedded system consists of several stages (which may overlap in time):

 Requirement analysis

 Defining system specifications

 Modeling the system under design. Examining different architectures and algorithms

and performing preliminary simulations for concept validation. Factoring the task into

smaller subtasks and modeling their interactions.

 HW-SW partitioning. Task allocation the tasks into hardware or software (called

HW/SW Co-design) proceeds in parallel with modeling.

 Detailed VHDL simulation and choice of process technology.

 Resource Analysis, in terms of performance, energy, cost, time-to-marker, manpower

etc.

 Identification of components and development tools (routing & placement)

 Circuit design and Schematic Capture, PCB layout design or custom ASIC

fabrication

 Firmware development - debugging & testing

 System Integration

 Testing – functional, environmental

 Certifications, if required

 Final documentation

7

1.2 Real-time Embedded Systems

Figure 1 – 7: Real-time embedded systems

As mentioned in the previous section, real-time systems are used for specialized work based

on a specific application which exhibits real-time computing constraints. This is common in

many application domains, such as chemical and nuclear plants, space applications and

transportation (see Figure 1 – 7).

But, what is actually a real-time system? Real-time systems produce a result of a process

which is executed, and this result, not only must be logically correct, but it must become

available within a certain time period.

In general, we consider two kinds of tasks: periodic and aperiodic tasks. In periodic tasks, a

period is defined as the amount of time between iterations of the repeated task. In contrast to

Periodic tasks, aperiodic tasks respond to randomly arriving events.

Figure 1 – 8: Real-time embedded systems time spectrum

Reflecting the importance of time in a real-time system, we can say that a real time system

does not need to be very fast, but it must return correct results predictably, i.e. always

before a deadline. Hence, deadline is a time limit for a system operation, after which any

result may be worthless, depending on how important is the time limit of the specific

application. If we consider as a scale the importance of keeping the deadlines on individual

applications, we can divide real-time systems into non real-time systems, soft real-time

systems and hard real-time systems. This scale is illustrated in Figure 1 – 8.

As we can see in the time spectrum, at one end, where non-real-time systems are located,

there are no deadlines or deadlines are not important. At the other end, where hard-real-time

8

systems are located, all deadlines must not be missed, otherwise this event results critical

system failure. Between these two ends, there are soft real-time systems.

Missing a deadline on a hard-real-time system, it results in system failure, e.g. causing

potential injuries or even death to system users. One example of a hard-real-time system is the

flight controller. If the controller is not responding in the proper time limits and misses the

deadline, it is possible that the aircraft will crash to the ground. So, there are no mistakes that

are allowed for a controller (part of the aircraft navigation system).

From the opposite side, soft-real-time systems often have time limits, but occasional violation

does not result in critical system failure. But under no circumstances this means that it is

acceptable to have a continuous violation. For example, considering the cruise control

application, if the system fails to measure the current velocity in time, it can use the previous

value of it, without resulting to an error as the difference between the old and the current

value of the speed is very small. But if it misses several consecutive values, it might leads to a

problem, because the cruise control would likely stop meeting application requirements for

the current speed.

Predictability is a term that is used to describe real-time systems. When we say that a real-

time system is predictable, it means that its timing behaviour is within an acceptable time

range. In other words, a real-time system must behave in a way that can be predicted

mathematically. Thus, in order to design a predictable real-time system, we need to know the

period, the deadline and the worst-case execution time of each individual application. Taking

into consideration these parameters, a system can be designed with the most appropriate

scheduling algorithm, to ensure that it meets all timing constraints for predictability.

A special property of a predictable real-time system is determinism. Determinism represents

the ability to ensure the execution of an application without concerns that outside factors may

upset the execution in an unpredictable way. That means its timing behaviour can be

predetermined. For example, we can consider a router (device) with pre-allocated slots (in

time and space) for certain types of packets (tasks). Execution for these packets only occurs

during those time slots. Therefore, upper bounds on the latency for every packet can be

computed precisely and we avoid anomalies in system predictability [5].

1.3 Sensors and Sensor Networks

1.3.1 Sensors

Sensors are devices which can measure a physical quantity and convert it into a signal which

can be read by an observer, such as an electronic instrument. In other words, a sensor is a

device which responds to an input physical quantity (e.g. temperature) by generating a

functionally related output function usually in a form of an electrical or an optical signal. As

For example, by using a mercury-in-glass thermometer, we can easily read the temperature of

the environment in a calibrated glass tube. Another way to measure temperature is to use a

thermocouple which converts temperature differences into voltage which we can measure

using a voltmeter.

9

Figure 1 – 9: Examples of Sensors and Sensor Networks

Nowadays, sensors are having numerous applications in our lives (see Figure 1 – 9). They are

used in simple or complicated applications in every embedded system today, such as

automotive, train and aerospace industry, computer monitoring systems, fire detection,

electricity distribution, industrial automation, automated and smart homes, audio/image/video

surveillance, traffic monitoring, medical device monitoring, weather/climate monitoring, air

traffic control and robot control.

Actually, without sensors, it would be difficult to design or even imagine a control,

surveillance or security system. An airplane without sensors will not have the ability to

measure the distance between the aircraft and the ground. Hence, the idea of flying would

remain as primitive as in the era of the Wright brothers [6].

1.3.2 Ideal and Real Sensors

A sensor needs to follow these three rules.

 First rule is that the sensor must be sensitive only to the physical quantity for which the

sensor has been created.

 Second rule is that the sensor must not be influenced by any other kind of physical

quantity that might influence the system.

 Third rule is that the sensor must not influence the measured physical quantity (minimal

intrusiveness), so that in it provides correct values of the measured quantity.

If all previously mentioned rules are obeyed, the sensor would be ideal. An ideal sensor is

typically a linear or logarithmic mathematical function of the measurement. Its output is an

analogue signal, related to the value of the measured quantity. If a sensor needs to be used by

a digital system, then its analogue output must be converted into digital, using an Analogue to

Digital Converter.

In real sensors, deviations are observed. The resolution of a sensor is the smallest deviation in

the measured physical quantity that it can detect. It obviously relates on the accuracy of the

sensor.

Sometimes the sensitivity might not be appropriate for the application in which a sensor is

used. Other times deviations due to non-linearity, hysteresis, noise and many other conditions

e.g., related to the sampling frequency are observed. These deviations can be categorized as

http://searchcio-midmarket.techtarget.com/definition/smart-home-or-building

10

systematic errors and random errors. Systematic errors can be reduced by calibrating the

sensitivity of the sensors while random errors (e.g. noise) interfering with the hardware can

usually be reduced by placing filters.

1.3.3 Sensor Networks

Previously it was mentioned that sensors are used for monitoring environmental or physical

quantities. However, some of these measurements are really difficult to perform, since they

must be placed under extreme conditions. For example, using instruments inside the volcano

crater is required in order to predict a volcanic eruption or an earthquake. Similarly, placing

sensors on satellites before sending them in deep space to measure the magnetic field of the

earth, or the ultraviolet radiation that comes from the Sun is an extreme task. This leads us to

create sensor networks which can monitor an environment from a safe distance and transmit

data far away from their location. Such achievements can help predict physical disasters or

understand our planet and our galactic neighbourhood even better.

So, a sensor network is a group of specialized transducers [7] with a communication

infrastructure intended to monitor and record conditions at diverse locations. Commonly

monitored parameters are temperature, humidity, pressure, wind direction and speed,

illumination intensity, vibration intensity, sound intensity, power-line voltage, chemical

concentrations, pollutant levels, and vital body functions.

A sensor network consists of multiple detection stations called sensor nodes, each of which is

small, lightweight and portable. Every sensor node is equipped with a transducer,

microcomputer, transceiver and power source. The transducer generates electrical signals

based on sensed physical effects and phenomena. The microcomputer processes and stores the

sensor output. The transceiver, which can be hardwired or wireless, receives commands from

a central computer and transmits data back to that computer. The power source for each

sensor node is derived from the electric utility or from a battery.

11

2. Arduino

Figure 2 – 1: Several types of Arduino Boards

According to the official site [8], the Arduino is an open-source electronics prototyping

platform based on flexible, lightweight easy-to-use hardware and software. In other words,

the Arduino is an Embedded Computing Platform which can be viewed as an interactive

system.

Arduino platforms can be used for developing stand-alone, possibly distributed applications.

Arduino can also be accessed from a computer in order to support data exchanges, e.g.

monitoring information. It is intended for artists, designers, hobbyists and anyone interested

in creating interactive objects or environments.

The Arduino board is always designed with an Atmel AVR microprocessor, a crystal

oscillator and a 5-volt linear regulator. However, depending of the type of use, different

Arduino boards can support a USB connector, Pins and others elements.

Today, a plethora of Arduino boards exists (see Figure 2 – 1), depending on the embedded

application or of interest. In Table 1, official Arduino boards are presented [9]. Although

there are many official Arduino versions, there are also several unofficial Arduino based

platforms (e.g. Funduino [10], Sainsmart [11] etc.) because both, the manufacturing process

and the programs which are being developed, are Open source. So, anyone who wishes to

build his own Arduino, he can freely make one without paying royalties to the designer.

12

Processor Frequency Digital I/O Digital I/O with PW M (Pins) Analog Input (Pins)

Arduino Leonardo Atmega32u4 16 MHz 68.6 × 53.3 USB 32u4 5 32 1 2.5 14 6 12 23/7/2012

Arduino UNO R3 ATmega328P 16 MHz 68.6 × 53.3 USB 16u2 5 32 1 2 14 6 6 24/9/2010

Arduino UNO R1&R2 ATmega328P 16 MHz 68.6 × 53.3 USB 8u2 5 32 1 2 14 6 6 24/9/2010

Arduino DUE AT91SAMX8E 84 MHz 101.6 × 53.3
USB 16u2 +

native host
3.3 512 0 96 54 12 12 22/10/2012

Arduino Mega2560 ATMega2560 16 MHz 101.6 × 53.3 USB 16u2 5 256 4 8 54 14 16 24/9/2010

Arduino Ethernet ATmega328 16 MHz 68.6 × 53.3

Ethernet

Serial

interface -

Wiznet

Ethernet

5 32 1 2 14 4 6 13/7/2011

Arduino Fio ATmega328P 8 MHz 66.0 × 27.9 Xbee Serial 3.3 32 1 2 14 6 8 18/3/2010

Arduino Nano ATmega328 16 MHz 43.18 × 18.54 USB FTDI 5 16/32 0.5/1 1.0/2 14 6 8 15/5/2008

LilyPad Arduino

ATmega168V

or

ATmega328V

8 MHz 51 mm 2.7-5.5 16 0.5 1 14 6 6 17/10/2007

Arduino Mega ADK ATmega2560 16 MHz 101.6 × 53.3

8U2

MAX3421E

USB Host

5 256 4 8 54 14 16 13/7/2011

Arduino Esplora Atmega32u4 16 MHz 165.1 × 61.0 32u4 5 32 1 2.5 10/12/2012

Arduino Micro ATmega32u4 16 MHz 17.8 × 48.3 5 32 1 2.5 20 7 12 8/11/2012

Arduino (Pro) Mini

ATmega168[30]

(Pro uses

ATMega328)

8 MHz

(3.3 V model)

or 16 MHz

(5 V model)

17.8 × 33.0 5 or 3.3 16 0.5 1 14 6 6 23/8/2008

Name
Dimensions

(mm)

Host

Interface

Voltage

(V)

Flash

(kB)

EEPROM

(kB)

SRAM

(kB)

I/O
Release Date

Processor

Table 1: List of all the official Arduino boards in 2014 [9]

13

2.1 Hardware

2.1.1 Arduino UNO R3 Microcontroller

Figure 2 – 2: The Arduino Uno R3 Board

The Arduino Uno Rev.3 microcontroller (see Figure 2 – 2) has the following characteristics

according to the official site of Arduino:

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recom.) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM [12] output)

Analogue Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328) of which 0.5 KB used by bootloader

SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

Arduino board can be powered via USB, or via an external power adapter of 9 Volts DC and

1 Ampere. The power source is chosen automatically. It has power PINS which are: VIN (the

input pin of the Arduino board which is connected to an external power supply), 5V (it gives a

regulated 5V from the regulator on the board), 3V3 (it gives 3.3 volts), the IOREF (it provides

the voltage reference with which the microcontroller operates) and the GND.

Arduino has a Serial communication (RX & TX), external interrupts, PWM Pins (3, 5, 6, 9,

10, and 11), SPI Pins (10, 11, 12, and 13), and TWI [13] (A4 or SDA pin and A5 or SCL pin.

14

Support TWI communication using the Wire library), AREF (Reference voltage for the

analogue inputs), Reset (Bring this line LOW to reset the microcontroller). The ATMega328

PIN mapping is shown in Figure 2 – 3:

Figure 2 – 3: ATMega328 PIN Mapping

The Arduino UNO can communicate with a computer, with another Arduino, or with other

microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is

available on digital pins 0 (RX) and 1 (TX).

The Arduino software includes a serial monitor which allows simple text to be sent to and

from the Arduino board. The RX and TX LEDs on the board will flash when data is being

transmitted via the USB-to-serial chip and USB connection to the computer (but not for serial

communication on pins 0 and 1). The ATmega328 also supports I2C (TWI) and SPI

communication. The Arduino software includes a Wire library to simplify use of the I2C bus.

Finally, the Arduino can be reset by a button that is assembled on its board. But if the Arduino

is powered by USB, every time it starts, it does a reset. It also has the ability to reset

automatically by a program running from a PC. One of the hardware flow control lines (DTR)

of the ATmega8U2/16U2 is connected to the reset line of the ATmega328 via a 100

nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough

to reset the chip.

15

2.1.2 Arduino Sensors

Figure 2 – 4: Several types of Arduino Sensors

As it was foretold in a previous section of this thesis, Arduino belongs to embedded systems,

which means that it communicates with its environment through sensors. As the Arduino

became known and spread all over the world, new sensors were designed. At the same time,

the need of measuring different physical quantities led to design better control and monitoring

systems. That led to the design of a plethora of sensors which, as the years were passing, were

appropriate for measuring each physical quantity at different levels of accuracy. In the

following link [14] a variety of Arduino sensors is shown with their current price

(18/11/2013).

Throughout this project different sensors have been used, for which we provide below a

deeper analysis of their physical characteristics.

 Photosensitive

Detection Switch

Light Sensor

Module

Compact light sensor module with on-board photoresistor,

with three pins for 5V power supply, TTL electrical level

(or SCM) and GND power respectively. This light sensor

module comes with indicator for output signal and the

sensitivity is adjustable.

Main Chip: LM393, photoresistor

Working Voltage: DC 3V ~ 5V

Single-way output signal with indication

Low-level output for effective signal

Sensitivity is adjustable

Perfect for light control applications

Overall Size: Approx. 65 x 11 x 13 mm

16

 5V 4-Channel Relay

Module Switch

Board For Arduino

 1602 LCD module for

Arduino

Along with these sensors, we have also used various electronic components such as

photoresistor, potentiometers, resistors of various values, LED, breadboard etc.

2.1.3 Memory – SD Card Module

In this design work, we had to record different runtime measurements that were carried out in

Arduino, mostly for measuring time or voltage, as well as the states of the relay. The reasons

for which these measurements were made will be explained in a next unit of this thesis.

For recording the above values, we choose an SD card of 1 GB, along with an SD Card

module.

5V 4-Channel Relay interface board, and each one needs

15-20mA Driver Current.

Equipped with high-current relay, AC250V 10A; DC30V

10A.

Standard interface that can be controlled directly by

microcontroller (Arduino, 8051, AVR, PIC, DSP, ARM,

ARM, MSP430, TTL logic).

Indication LED‟s for Relay output status.

LCD display module with blue backlight.

Wide viewing angle and high contrast.

Built-in industry standard HD44780 equivalent LCD

controller.

Commonly used in: copiers, fax machines, laser printers,

industrial test equipment, networking equipment such as

routers and storage devices.

LCM type: Characters

Can display 2-lines X 16-characters.

Operate with 5V DC.

Module dimension: 80mm x 35mm x 11mm.

Viewing area size: 64.5mm x 16mm.

17

2.1.4 Ethernet Shield

Figure 2 – 5: Ethernet Shield

The Ethernet Shield (see Figure 2 – 5) allows an Arduino or compatible board to connect to

the internet. It is based on the Wiznet W5100 Ethernet chip providing a simplified network

The module adopts a pop-up SD card interface, designed

with a double interface, convenient for pinhole

connection.

Features:

All SD SPI pins output, MOSI, SCK, MISO and CS.

Support 5V/3.3V input

It is easily interfaced as a peripheral to Arduino sensor

shield module.

Through programmable, i.e. we can read and write to the

SD card by using the Arduino.

SD Card is more commonly used with MP3 Player,

digital cameras, MCU/ARM system control.

Specifications:

Item size:51*30*4mm

Net weight: 8g

Colour: Blue

18

(IP) stack capable of both TCP and UDP. Its data sheet is attached at the end of this project.

The Ethernet Shield supports up to four simultaneous socket connections. Using the Ethernet

library we can write appropriate software sketches that can connect to the internet using the

shield.

The Ethernet shield connects to an Arduino - or compatible board using long wire-wrap

headers which extend through the shield. This keeps the pin layout intact and allows for

another shield to be stacked on top.

The latest revision of the shield adds a micro-SD card slot, which can be used to store files for

serving over the network. An SD card library is not yet included in the standard distribution.

The Shield includes a reset controller, to ensure that the W5100 Ethernet module is properly

reset on power-up. Previous revisions of the shield were not compatible with the Mega and

needed to be manually reset after power-up.

The Shield communicates with both the W5100 and SD card using the SPI bus (through the

ICSP header). This is on digital pins 11, 12, and 13 on the Arduino Duemilanove and pins 50,

51, and 52 on the Arduino Mega. On both boards, pin 10 is used to select the W5100 and pin

4 for the SD card. These pins cannot be used for general I/O. On the Mega, the hardware SS

pin, 53, cannot be used to select either the W5100 or the SD card, but it must be kept as an

output or the SPI interface won't work.

Note that because the W5100 and SD card share the SPI bus, only one can be active at a

time. If you are using both peripherals in your program, this should be taken care of by the

corresponding libraries. If you are not using one of the peripherals in your program, however,

you will need to explicitly deselect it. To do this with the SD card, set Pin 4 as an output and

write a high to it. For the W5100, set digital pin 10 as a high output.

The shield provides a standard RJ45 Ethernet jack. The reset button on the shield resets both

the W5100 and the Arduino board.

The shield contains a number of informational LEDs:

PWR: indicates that the board and shield are powered

LINK: indicates the presence of a network link and flashes when the shield transmits or

receives data

FULLD: indicates that the network connection is full duplex

100M: indicates the presence of a 100 Mb/s network connection (as opposed to 10 Mb/s)

RX: flashes when the shield receives data

TX: flashes when the shield sends data

COLL: flashes when network collisions are detected

The solder jumper marked "INT" can be connected to allow the Arduino board to receive

interrupt-driven notification of events from the W5100, but this is not supported by the

Ethernet library. The jumper connects the INT pin of the W5100 to digital pin 2 of the

Arduino.

19

2.2 Software

2.2.1 Arduino IDE

Figure 2 – 6: Loading picture of the Arduino IDE

In the previous section of this thesis, it was mentioned that the Arduino is a platform, based

on easy-to-use hardware and software. So, as the hardware of the Arduino has already been

considered, we proceed to investigate the software of the microcontroller.

According to Wikipedia, the Arduino IDE (Integrated Development Environment) [15] is

described as a cross-platform [16] application written in Java, and is derived from the IDE for

the (programming language) Processing and the Wiring projects. In simpler words, the

Arduino IDE is a free to download program and it is used to program the Arduino to do

design work or run an application. The IDE runs on Windows, mac OS and Linux platforms.

2.2.1.1 Installing the Arduino IDE on OpenSUSE v.12.3

There are a couple of ways to install the Arduino IDE on every version of openSUSE that is

currently maintained. One of them, is by visiting the site of Arduino [17] and pressing the

green button “Install Software via 1-click” as it is shown in Figure 2 – 7.

Figure 2 – 7: Install Software via 1-click button

Then, the installer will automatically choose packages of the same architecture (32 or 64 bit)

as those used on your system. After installation, you will need to make every user a member

of the groups: "dialout", "lock" and "uucp".

To do this in YaST, select the Security and Users section, open the User and Group

Management module and make the changes required here.

20

To do this from the command line, enter the following as root:

usermod -A dialout,lock,uucp <USER_NAME>

Then log out and log in again.

Now run arduino in your favourite terminal.

The other way to install Arduino IDE on openSUSE, is through the Terminal.

Enter the following commands as root from the command line, replacing the "<NN.N>" part

of the URI with the version number required, eg. "12.3":

zypper ar -f

http://download.opensuse.org/repositories/CrossToolchain:/avr/openSUSE_<NN.N>

'CrossToolchain:avr'

zypper ref

zypper in arduino

Still as root, add the users to the required groups by entering the following:

usermod -A dialout,lock,uucp <USER_NAME>

Then log out and log in again.

Now run arduino in the terminal.

The Arduino package from arduino.cc works well too. Make sure the packages avrdude, rxtx-

java, avr-libc, (cross-)avr-binutils and (cross-)avr-gcc are also installed. For further

instructions the official site of Arduino provides usefull information.

2.2.1.2 Environment of the Arduino IDE

The Arduino development environment contains a text editor, a message area (the black area

at the bottom of the Arduino environment), a menu and a few buttons (Toolbar) (see Figure

2 – 8).

21

Figure 2 – 8: Arduino IDE

The Arduino IDE can be downloaded by the official site of Arduino [18]. The latest stable

release is the 1.0.5 and it runs on Windows, mac OS, and the Linux operating system. In this

site, older releases of the Arduino IDE can also be found, as well as releases which support

the newer members of the Arduino family, the Arduino YUN, the Arduino Due and the

Arduino Intel Galileo, available in 32bit and 64bit versions.

When the Arduino program is running the interface looks as shown in Figure 2 – 8. Its title

has the name sketch as the programs under development are by default named. Programs are

saved with the extension .ino; in some versions of the Arduino IDE (v.1.0), it is possible to

open a .pde file format but the user is prompted to save as .ino file format on save. The

message area gives feedback while saving and exporting and also displays errors. The console

displays text output by the Arduino environment including complete error messages and other

information. At the right bottom corner of the application the type of Arduino used and the

serial port (through which the board is connected to the computer) are shown.

Regarding the toolbar of the Arduino, the following buttons exist:

22

 It checks if the code has any error.

 It compiles and uploads the program to the Arduino.

 It creates a new sketch.

 It opens an existed sketch.

 It saves the current sketch.

 It opens the Serial Monitor that displays serial data being sent from the Arduino board.

This is shown in Figure 2 – 9.

Figure 2 – 9: The Serial Monitor of the Arduino IDE.

In order to communicate with the board we can type text and press enter or the send button on

the serial monitor as it is shown in the picture. The Baud rate from the drop-down matches the

rate passed to Serial.begin in the sketch. Note that on Mac or Linux, the Arduino board resets

(reruns the sketch from the beginning) when it connects with the serial monitor.

The menu of Arduino environment has different commands and options:

 Edit

o Copy for Forum

23

It copies the code of your sketch to the clipboard in a form suitable for

posting to the forum, complete with syntax colouring.

o Copy as HTML

It copies the code of your sketch to the clipboard as HTML, suitable for

embedding in web pages.

 Sketch

o Verify/Compile

It checks your sketch for errors.

o Show Sketch Folder

It opens the current sketch folder.

o Add File...

Adds a source file to the sketch (it will be copied from its current location).

The new file appears in a new tab in the sketch window. Files can be

removed from the sketch using the tab menu.

o Import Library

Adds a library to your sketch by inserting #include statements at the start of

your code.

 Tools

o Auto Format

This formats your code nicely: i.e. indents it so that opening and closing curly

braces line up, while statements inside curly braces are indented.

o Archive Sketch

It archives a copy of the current sketch in .zip format. The archive is placed

in the same directory as the sketch.

o Board

Select the board that you're using.

o Serial Port

This menu contains all serial devices (real or virtual) on your machine. It

should automatically refresh every time you open the top-level tools menu.

o Programmer

It is useful for selecting a hardware programmer when programming a board

or chip and not using the on-board USB-serial connection. It is used in the

case of burning a bootloader to a new microcontroller.

24

o Burn Bootloader

The items in this menu allow you to burn a bootloader onto the

microcontroller on an Arduino board.

The Arduino platform has many, ready to use libraries as well as examples which help the

user get an early start in designing an application according to his needs. To import a library

to a sketch, we select Sketch Import Library… as it is shown in the Figure 2 – 10.

Figure 2 – 10: The Libraries menu of the Arduino

Also, any user who has created his own library and wishes to add it into Arduino

environment, he can easily add it by clicking the “Add Library…” option and use it

immediately.

The examples which accompany the Arduino IDE and relate to different application domains

are easy to use by choosing File Examples.

25

2.2.2 Threads

2.2.2.1 Processor Threads

Figure 2 – 11: Processor Threads

According to Wikipedia, in computer science, a thread of execution is the smallest sequence

of programmed instructions that can be managed independently by an operating system

scheduler. The scheduler itself is a light-weight process.

A typical UNIX process is thought to work as a thread as it is doing one thing at a time.

Adding more threads in a process has as a result increasing the concurrency of the code. This

means that the user-level threads:

1. Can manage in a better way code which deals with asynchronous events,

handling the asynchronous events in parallel.

2. Can easily share system resources automatically, unlike processes which need

complex mechanisms like pipes, shared memory, FIFO etc. to do that.

3. Can share the load of the problem between them, in order to achieve better

performance.

4. Can greatly reduce program response time, since each thread undertakes to

complete each task of the program independently.

Figure 2 – 12 illustrates the way in which the threads work within the process.

Figure 2 – 12: Threads vs. Processes

26

Sometimes, a multithreading program is confused with a multicore system, as its benefits are

obvious even in a single-core system. Furthermore, when some threads in a program have

been blocked, others can run unhindered, providing results to the user.

The information which a thread needs to have in order to run correctly in a program is its ID,

which has significance within the context of the process to which belongs, a set of register

values, a stack, its scheduling information, a signal mask, an errno variable which gives

additional information about errors which have occurred in the UNIX system and thread-

specific data. Everything else within a process is sharable, including the code text of the

thread, the memory, the data etc.

2.2.2.2 Linux Threads

The threads are divided into the user-level threads and the kernel-level threads.

The kernel-level threads (or lightweight processes) are created and scheduled by the kernel.

So, the kernel knows and manages the threads, by using a thread table that keeps track of all

the threads of the system. The advantages of the kernel-level threads are:

1. Depending of the number of threads that exist in a process, the scheduler may give

more time to a process which has an enormous number of threads to execute, instead

of another which does not has many threads, as the kernel has full knowledge of all

threads of the OS.

2. Kernel-level threads are especially good for applications that frequently block.

The disadvantages are:

1. They are extremely slow and inefficient. For instance, thread operations are hundreds

of times slower than that of user-level threads.

2. Since kernel must manage and schedule threads as well as processes, it requires a full

thread control block (TCB) for each thread to maintain information about threads. As

a result there is a significant overhead and increased in kernel complexity.

The Linux threads belong to kernel-level threads. Previously it was mentioned that Linux-

level threads are also named as lightweight processes. This means that differences between

Linux threads and other threads are mostly differences between the processes and the threads,

which are:

1. Processes are not sharing their resources while threads do.

2. Since there is no sharing of the same resources to the processes, it is quite difficult for

the communication between them to be achieved, while the threads which are being

executed within the same process, can easily communicate with each other as they

have their resources in common e.g. memory etc.

3. As the processes are being executed independently of each other, their

synchronization is taken care by kernel functions, while the thread‟s synchronization

is being carried out by the process in which they are executed.

4. Context switching between threads is fast as compared to context switching between

processes.

The Linux threads belong to kernel-level threads category. They can be created by using

specific system calls.

27

2.2.2.2.1 Fork ()

On UNIX systems, the fork() process [19] is a procedure in which a process creates a copy of

itself in order to run other programs etc. The new generated process is called child-process

and the original parent-process. The child-process, calls the exec system call; it ceases

execution of its former program in favour of the other.

The child-process is an exact duplicate of the parent-process except from the following points,

which are specified in POSIX:

1. The child has its own unique process ID, and this PID does not match the ID of any

existing process group.

2. The child's parent process ID is the same as the parent's process ID.

3. The child does not inherit its parent's memory locks.

4. Process resource utilizations and CPU time counters are reset to zero in the child.

5. The child's set of pending signals is initially empty.

6. The child does not inherit semaphore adjustments from its parent.

7. The child does not inherit record locks from its parent.

8. The child does not inherit timers from its parent.

9. The child does not inherit outstanding asynchronous I/O operations from its parent,

nor does it inherit any asynchronous I/O contexts from its parent.

Also parent and child differ in the following Linux-specific process attributes:

1. The child does not inherit directory change notifications from its parent.

2. The child does not receive a signal when the parent terminates.

3. The default timer slack value is set to the parent's current timer slack value.

4. Memory mappings are not inherited across a fork().

5. The port access permission bits are not inherited by the child; the child must turn on

any bits that it requires.

2.2.2.2.2 Clone ()

The clone() function [20] creates processes in similar way to the fork() function, with the

difference that the clone() function allows sharing of memory, file descriptor tables and signal

handlers tables.

Also one more difference between them, is that the child-process, which created by calling the

fork() function continues to execute from the point of which the fork() function called. This is

in contrast with the clone() called child-process, where the call of a function which is defined

by the fn(arg) pointer, is done at the start of the execution of the child-process.

The child-process terminates when the function returns an integer. Also the child might

terminate when a fatal signal arrives of by the exit() command.

Any further information can be found by visiting the open Linux manuals link: [21].

2.2.2.3 Posix Threads (Pthreads)

28

Historically, the programmers used their own type of threads in order to create a parallel

program. This resulted in portability issues when developing parallel applications. This reason

was the cause which led to the need of the creation of the POSIX standard. POSIX, is an

abbreviation for “Portable Operating System Interface” and it has determined by the standard

of IEEE POSIX 1003.1c (1995).

Pthreads are defined as a set of C language programming types and procedure calls,

implemented with a pthread.h header/include file and a thread library [22] [23].

Figure 2 – 13: UNIX Process vs. Threads within a UNIX Process

The advantages of using Pthreads instead of processes are remarkable. They can provide to

the user of an application high performance by achieving faster execution. In other words,

performance can be achieved in the following ways.

1. By overlapping CPU processing with I/O or communication. While a program is

waiting for an input for a long time, a thread can run a part of the process in which it

is within, at the same time for time saving.

2. Using priority/real-time scheduling. Higher execution priority for the threads which

are more important than others in the application.

3. Via synchronous event handling.

29

Also, when compared to the cost of creating and managing a process, a thread can be created

with much less operating system overhead. Managing threads requires fewer system resources

than managing processes.

The primary motivation for considering the use of Pthreads on SMP architecture is to achieve

optimum performance. In particular, if an application is using MPI for point-to-point

communications, there is a potential that performance could be greatly improved by using

Pthreads.

Pthreads can also be used for serial applications, to emulate parallel execution and/or take

advantage of spare cycles.

There are some considerations which need to be made by an application developer in order to

design a parallel program.

1. Type of parallel programming model

2. Problem partitioning

3. Load balancing

4. Cache coherence

5. Communications

6. Data dependencies

7. Synchronization and race conditions

8. Memory issues

9. I/O issues

10. Program complexity

11. Programmer effort/costs/time etc.

But also a program should have the following characteristics to be suited for pthreads:

1. Work that can be executed, or data that can be operated on, by multiple tasks

simultaneously

2. Blocking for potentially long I/O waits

3. Use many CPU cycles in some places but not others

4. Must respond to asynchronous events

5. Some work is more important than other work (Priority interrupts)

Depending on the characteristics of the developing application, there are different patterns for

thread programming:

1. Manager and Worker model: The manager thread assigns works to worker threads

and coordinates them.

2. Pipeline model: A program is broken into a series of tasks, each of which is handled

in series but concurrently, by a different thread.

3. Peer model: Similar to Manager/Worker model but after the main thread creates other

threads, it participates in the work.

The threads need to interact with each other. So, specifying the way they do that is the

definition of Threads API (Application Programming Interface). There are four groups of

routines which comprise the pthreads API:

1. Thread management

30

2. Mutexes

3. Condition variables

4. Other synchronization

The thread management routines work directly on threads. This means that threads can join,

create, or detach etc. without the use of others conditions or mutexes.

Mutexes are an abbreviation for „‟mutual exclusion‟‟ and they are functions used for thread

synchronization. In computer programming, a mutex is a program object that allows multiple

program threads to share the same resource, such as file access, but not simultaneously. When

a program is started, a mutex is created with a unique name. After this stage, any thread that

needs the resource must lock the mutex from other threads while it is using the resource. The

mutex is set to unlock when the data is no longer needed or the routine is finished.

As for condition variables, these are subroutines which address communications between the

threads that share a mutex. The conditions involve wait and signal actions as specified by the

programmer. The synchronization routines manage read/write locks and barriers.

Some of the objects and function of the pthreads API are shown in the Table 2.

Table 2: Definitions for the pthreads API

The pthreads API contains more than 100 subroutines. Always the pthread.h header file

should be included in the program.

31

2.2.2.3.1 Thread Management

Figure 2 – 14: Threads

The main program of an application is considered separately and threads must be explicitly

created by the programmer. So the routine pthread_create creates a new thread and

makes it executable. After that, the newly created threads are peers and may create other

threads with no dependency between them.

The threads are created with certain attributes. But some of them can be changed by the

programmer. The routine pthread_attr_init initializes the thread attribute object and

the pthread_attr_destroy destroys it. However, there are other important attributes of

the thread that can be initialized. Some of them are:

 Detached or joinable state

 Scheduling inheritance. If we decide to use scheduling, we don't need to individually

set the scheduling attributes of each thread we create. Instead, we can specify that

each thread should inherit its scheduling characteristics from the thread that created it.

 Scheduling policy. A thread's scheduling policy is a way of expressing how threads of

the same priority run and share the available CPUs.

 Scheduling parameters. This sets the priority of a thread to be scheduled. In more

details, the priority is an integer value. The higher the value the higher a thread‟s

priority for scheduling [24].

 Scheduling contention scope. Contention scope is the POSIX term for describing

bound and unbound threads. A bound thread is said to have system contention scope

i.e., it contends with all threads in the system. An unbound thread has process

contention scope i.e., it contends with threads in the same process.

 Stack size

 Stack address

 Stack guard (overflow) size

The definition of Thread Management is about:

1. Creating Threads.

32

While the main program it is considered to be as a single thread, all the other threads

need to be created by the programmer. By using the command pthread_create,

a new thread is created and it becomes executable. The maximum number of the

created threads is implementation dependent.

Concerning the scheduling of pthreads, if there is no scheduling mechanism, it is up

to OS or/and to the implementation to decide which threads will execute first and

when.

2. Terminating Threads

The following list, describes several ways of termination of pthreads:

a. When the thread completes its job.

b. When the pthread_exit subroutine is called. This routine, allows the

programmer to specify his own termination parameters. Also, any file which

has opened inside the thread will remain open after the thread terminates.

c. The thread cancelled by another thread via the pthread_cancel routine.

d. The entire process is terminated due to making a call to either exec() or

exit().

e. The main program finishes first.

3. Passing arguments to Threads

One argument can pass arguments to the thread when the pthread_create

routine is called. But sometimes it is necessary to pass more arguments in it. This can

be achieved by creating a structure which contains all of the arguments, and then

passing a pointer to that structure in the pthread_create routine. But, in order to

pass it safely to the thread, the passed data must be thread safe, i.e. it cannot be

changed directly by other threads.

4. Joining Threads

Figure 2 – 15: Joining and Detaching Routines

One way to accomplish synchronization between threads is the „‟joining‟‟ routines

(Figure 2 – 15), because the pthread_join subroutine blocks the calling thread

until the called thread is terminated.

A thread can be joinable only if it is created as joinable.

5. Detaching Threads

33

Calling the pthread_detach subroutine, can be used to explicitly detach a thread

even though it was created as joinable.

Depending on the implementation, a thread must be explicitly considered as joinable

if it must be joinable or as detached if some system resources must be freed by that

thread.

6. Stack Management

Figure 2 – 16: Stack Management Routines

The POSIX standard does not dictate the size of a thread's stack. This is

implementation dependent and varies.

7. Miscellaneous Routines

Figure 2 – 17: Miscellaneous Routines

The pthread_self returns the unique, system assigned thread ID of the calling thread.

The pthread_equal compares two thread IDs.

2.2.2.4 Protothreads

There are some lightweight threading approaches with limited stacks such as TOSThreads

under TinyOS (similarly for MANTIS) [25], and TinyThreads under Linux [26]. These

approaches enable applications to be developed using multithreading, where each thread has

its own stack to store its context. This approach, while greatly improving the expressivity of

programs, is not too attractive when considering memory efficiency.

Protothreads provide a better alternative in terms of memory efficiency; each thread only

requires 2 bytes of memory. However, protothreads are not as expressive as regular threads.

Protothreads is a programming model invented by Adam Dunkels [27] of the Swedish

University of Computer Science [28]. They are extremely lightweight stackless type of

threads, designed for severely memory constrained embedded systems.

The comparison of Protothreads with fast event-driven implementations can show that the

programs which are written with an event-driven model typically have to be implemented as

34

explicit state machines, in contrast with the Protothreads based programs, which can be

written in a sequential fashion without having to design explicit state machines.

Comparing the Protothreads with other threads, their main advantage is that Protothreads are

very lightweight, as they do not require a stack, which makes them proper for low memory

embedded systems. Another point that they differ, is that the Protothreads runs only within a

single C function and cannot span over others. In other words, a protothread may call other

functions but cannot block inside a called function. So, unlike threads, Protothreads makes

blocking explicit. Table 3 summarizes the features of Protothreads and compares them with

the features of discrete events and threads based on Adams Dunkels work [29].

Table 3: Qualitative comparison between events, threads and Protothreads [30]

1. Control Structure

A control structure is a block of programming that analyses variables and chooses a

direction in which to go based on given parameters. In event-driven models, control

structures must be broken in smaller pieces in order to implement continuation

structures in contrast to protothreads which allow blocking statements to be used

together with control structures.

2. Debug stack retained

Because the manual stack management and the free flow of control in the event-

driven model, debugging is difficult as the sequence of calls is not saved on the stack.

With both threads and Protothreads, the full call stack is available for debugging.

3. Implicit locking

All the yield points are immediately visible in event-driven models and in

protothreads with the use of pt_wait, instead of threads in which it is not always

evident that a particular function call yields.

4. Pre-emption

The semantics of the threaded model allows for pre-emption of a running thread: the

thread's stack is saved, and execution of another thread can be continued. Because

both the event-driven model and protothreads use a single stack, pre-emption is not

possible within either of these models.

5. Automatic Variables

Automatic Variables are allocated and deallocated automatically when program flow

enters and leaves the variable‟s context. Local variables, are usually synonymous

with automatic variables, but local is more general.

With threaded model, the automatic variables are retained even if the thread blocks as

it uses a single shared stack for all programs and it rewinds it every time a program

blocks. In contrast, with protothreads, automatic variables are not saved across a

blocking wait.

35

2.2.2.4.1 Limitations of the Protothreads

Although protothreads have many advantages which are the same as the multithreaded

programing model, they impose some limitations of the event-driven model. As it was

foretold, such a limitation is that they do not retain automatic variables while the protothread

blocks. Therefore the automatic variables must explicitly be saved somewhere before

protothreads go into standby state. However, some of the compilers of C like gcc provide the

user with warnings for automatic variables which is might not be saved after the execution of

the program.

The programmer can use the state objects method similar to the event-driven model in order

to save the state of an automatic variable. State objects are memory locations in which the

automatic variables are saved.

2.2.2.4.2 Implementation of Protothreads

Protothreads are based on a low-level mechanism: the local continuation mechanism, which is

implemented in a variety of ways. One possible way is based on the C switch statement.

A local continuation has two operations; set or resume. At the set operation, the condition of

the function is captured, except from its stack. At the resume operation, the condition of the

function is reset to what it was when the local continuation was set.

Implementation of protothreads imposes a restriction not to use the C switch statement in

programs using protothreads. If they are used together, in some cases the C compiler will

detect an error but in the most cases the error will not be traced by the compiler which makes

it hard to debug. Executing the program which has an untraced error, will result an erroneous

mixture of one particular implementation of protothreads and switch statements.

Protothreads are based on C macros rather than C functions, because protothreads are altering

the flow of control. This is typically difficult to do with C functions since such an

implementation would require low-level assembly code to work.

As Adam Dunkels, who is the Protothreads creator, recommends, we will explain the use of

protothreads and local continuations with the following simple example [31]:

#include "pt.h" 1

static int counter; 2

static struct pt example_pt; 3

static 4

PT_THREAD(example(struct pt *pt)) 5

{ 6

 PT_BEGIN(pt); 7

 while(1) { 8

 PT_WAIT_UNTIL(pt, counter == 1000); 9

 printf("Threshold reached\n"); 10

 counter = 0; 11

 } 12

 PT_END(pt); 13

36

} 14

int main(void) 15

{ 16

 counter = 0; 17

 PT_INIT(&example_pt); 18

 while(1) { 19

 example(&example_pt); 20

 counter++; 21

 } 22

 return 0; 23

} 24

This program, waits for a counter to reach a certain threshold, prints out a message, and resets

the counter. This is done in a while() loop that runs forever. The counter is increased in

the main() function.

It is important to explain the protothreads macros. The following definition (originated from

Adam Dunkels) is a combined version of the protothreads macros and the local continuation

macros implemented with the C switch statement.

struct pt { unsigned short lc; };

#define PT_THREAD(name_args) char name_args;

#define PT_BEGIN(pt) switch(pt->lc) {case 0:

#define PT_WAIT_UNTIL(pt, c) pt->lc=__LINE__; \

 case __LINE__: \

If(!(c)) return 0

#define PT_END(pt) }pt->lc = 0; return 2

#define PT_INIT(pt) pt->lc = 0

We see that the struct pt consists of a single unsigned short (2 bytes) called lc, short for

local continuation. This unsigned short variable is the source of the "two byte overhead".

Furthermore, we see that the PT_THREAD macro simply puts a char before its argument.

Also, we note how the PT_BEGIN and PT_END macros open and close a C switch statement,

respectively. The PT_WAIT_UNTIL macro is the most complex one. It contains one

assignment, one case statement, one if statement and a return statement. Also, it uses the

built-in __LINE__ macro twice. The __LINE__ macro is a special macro that the C

preprocessor will expand to the line number at which the macro is issued. Finally, the

PT_INIT macro simply initializes the lc variable to zero.

Many of the statements used in the protothread macros are not commonly used in macros. The

return statement used in the PT_WAIT_UNTIL macro breaks the flow of control in the

function the macro is used. The PT_BEGIN macro opens a switch statement, but does not

close it. The PT_END macro closes a compound statement that it has not itself opened. These

things do look weird when looked at without the perspective of protothreads. However, in the

context of protothreads these things are absolutely essential for correct operation of

protothreads: the macros essentially change the flow of control in the C function in which

they are used. This is indeed the whole essence of protothreads.

37

In order to understand how protothreads really work, we will see how the protothread in the

example above looks when expanded by the C preprocessor:

The original protothread of the above program:

static 4

PT_THREAD(example(struct pt *pt)) 5

{ 6

 PT_BEGIN(pt); 7

 while(1) { 8

 PT_WAIT_UNTIL(pt, counter == 1000); 9

 printf("Threshold reached\n"); 10

 counter = 0; 11

 } 12

 PT_END(pt); 13

}14

is now expanded by the C preprocessor:

static 4

char example(struct pt *pt) 5

{ 6

 switch(pt->lc) { case 0: 7

 while(1) { 8

 pt->lc = 9; case 9: if(!(counter == 1000)) return 0; 9

 printf("Threshold reached\n"); 10

 counter = 0; 11

 } 12

 } pt->lc = 0; return 2; 13

} 14

At the first line of the code we see how the PT_THREAD macro has expanded so that the

example() protothread has been turned into a regular C function that returns a char. The

return value of the protothread function can be used to determine if the protothread is blocked

waiting for something to happen or if the protothread has exited or ended.

The PT_BEGIN macro has expanded to a PT(switch) statement with an open brace. If we

look down to the end of the function we see that the expansion of the PT_END macro

contains the closing brace for the switch. After the opening brace, we see how the PT_BEGIN

expansion contains a case 0: statement. This is to ensure that the code after the

PT_BEGIN statement is the first to be executed the first time the protothread is run. Recall

that PT_INIT set pt->lc to zero.

In the while(1) line, we see that the PT_WAIT_UNTIL macro has been expanded into

something that contains the number 9. The pt->lc variable is set to 9, and a case 9:

statement follows right after the assignment. After this, the counter variable is checked to see

if it has reached 1000 or not. If not, the example() function now executed an explicit

return.

38

The next time the example() function is called from the main() function, the pt->lc

variable will not be zero but 9, as it was set in the expansion of the PT_WAIT_UNTIL macro.

This makes the switch(pt->lc) jump to the case 9: statement. This statement is just

before the if statement where counter variable is checked to see if it has reached 1000. So

the counter variable is checked again. If it has not reached 1000, the example() function

returns again. The next time the function is invoked, the switch jumps to the case 9: again

and re-evaluates the counter == 1000 statement. It will continue to do so until the

counter variable reaches 1000. Then, the printf statement is executed and the counter

variable is set to zero, before the while(1) loop is executed again.

The number 9 finally, is the line number of the PT_WAIT_UNTIL statement. The nice thing

with line numbers are that they are monotonically increasing. In simpler words, if we put

another PT_WAIT_UNTIL statement later in our program, the line number will be different

from the first PT_WAIT_UNTIL statement. Therefore, the switch(pt->lc) knows

exactly where to jump.

We can notice something strange with the code above. The switch(pt->lc) statement

jumped right into the while(1) loop. The case 9: statement was inside the while(1)

loop. This feature of the C programming language was probably first found by Tom Duff in

his wonderful programming trick named Duff's Device. The same trick has also been used by

Simon Tatham to implement coroutines in C.

Duff‟s Device is an optimized implementation of a serial copy that uses a technique widely

applied in assembly language for loop unwinding. Its discovery is credited to Tom Duff in

November 1983 [32]. Loop unwinding (or loop unrolling) is a loop transformation technique

that attempts to optimise a program‟s execution speed at the expense of its binary size. Its

goal is to increase a program‟s speed by reducing instructions that control the loop [33].

Coroutines are similar to threads in the sense of multithreading. They have a line of

execution, with their own stack, local variables, and instruction pointer, however, sharing

global variables and mostly anything else with other coroutines. The main difference between

threads and coroutines is that, conceptually (or literally, in a multiprocessor machine), a

program with threads runs several threads concurrently. Coroutines, on the other hand, are

collaborative: A program with coroutines is, at any given time, running only one of its

coroutines and this running coroutine only suspends its execution when it explicitly requests

to be suspended [34].

Coroutines are computer program components that generalize subroutines to allow multiple

entry points for suspending and resuming execution at certain locations. Coroutines are well-

suited for implementing more familiar program components such as cooperative tasks,

exceptions, event loop, iterators, infinite lists and pipes [35].

2.3 Visualization and Data Monitoring

It is very essential in industrial and experimental cases to setup, monitor and control some

physical quantities, such as voltage and temperature. The efficient solution for this problem is

to develop a data logger.

39

Earlier development of data logger was done through manual measurements from analogue

instruments such as thermometers. Unfortunately this type of data logger cannot fulfil the

current requirements in terms of time and accuracy. Since 1990 further development in data

logging has taken place as people begin to create PC-based data logging systems. In a later

stage of development it has been found that microcontrollers (integration of microprocessors

and certain peripherals including memory on single chip) are more reliable as well as

efficient. Use of microcontrollers in embedded design has not only increased but also has

brought a revolutionary change. At the same time competition requires manufacturers to

expand their product functionality and provide differentiation while maintaining or reducing

the cost.

Monitoring and controlling physical parameters by embedded systems using microcontrollers

are very effective in industrial and research-oriented requirements. The nature of monitoring

information, e.g. temperature, pressure, humidity, and light, is ever-changing. The parameters

may be exposed to stimuli from their operating environment. For example, temperature can be

monitored through a variety of sensors; one should adhere to utmost care in selecting sensors

due to different levels of complexity associated with the calibration process. If calibration is

not implemented properly, output of the embedded system may vary from actual temperature

values measured through standard instruments. Similarly for the case of light photoresistors

(LDR), calibration in Lumens is difficult due to easy unavailability of Lux-meter. Hence in

general, the ADC reference voltage can be related with some precaution to light intensity

[36].

In this section, we will demonstrate a case study focusing on visualising and dynamically

imaging a physical quantity, such as voltage. This parameter will be used an embedded

system (Arduino Uno R3) and specific software packages such as Processing [37] and Grace

[38]. The Processing programming language will be used to read data from the Serial Port of

the computer connected to the Arduino board and store it into a .dat file, as long as the

Arduino sends data. This .dat file will be used by Grace for reading and visualising data into a

graph. We will operate the Grace program through specific linux commands (pipes) of the

OpenSUSE 12.3 terminal. The collected data are the virtual triangular voltage (3 – 0 – 3

Volts) versus time (seconds).

A brief description of the Processing IDE and Grace software follows.

1. Processing IDE.

According to the official site, Processing is a programming language, development

environment, and online community. Since 2001, Processing has promoted software

technology within the visual arts. Initially created as a software sketchbook for

teaching computer programming fundamentals within a visual context, Processing

evolved into a development tool for professionals. Today, there are tens of thousands

of students, artists, designers, researchers, and hobbyists who use Processing for

learning, prototyping, and production. Processing can easily be downloaded and

installed on Linux, Mac OS X, and Windows operating systems [39].

After the installation of Processing we notice that its environment (see Figure 2 –

18) is almost the same as the Arduino IDE. In fact, the Arduino IDE is based on

Processing. Furthermore, the Processing Environment includes a text editor, a

compiler, and a display window. It enables the creation of software within a carefully

40

designed set of constraints. Further information about Processing can be found on its

official site.

Figure 2 – 18: Comparison of the Arduino IDE and Processing PDE

2. Grace software (see Figure 2 – 19).

Grace is a WYSIWYG [40] 2D plotting tool for the X Window System [41] and

M*tif as described on Grace‟s official site. Grace runs on practically any version of

Unix-like OS. Grace features at a glance:

 General

a. WYSIWYG design

b. Convenient point-and-click graphical user interface

c. Precise control of graph features

d. True publication quality

e. Instant plot refresh

 Export Options

a. Exports vector graphics to (E)PS, PDF, MIF, and SVG formats

b. Supports cross-platform PNG, PNM, and JPEG formats

 Graphing Flexibility

a. Unlimited number of graphs

b. Unlimited number of curves on a graph

c. Up to 256 customizable colours

d. 9 dashed line styles

e. 32 fill patterns

f. 10 built-in marker symbols; plus, any character glyph from any font can

be used as a marker

g. Colour/fill markers

41

h. Text annotations with subscripts, superscripts, mixed fonts, styles and

colours and more complex typesetting

 Curve Fitting

a. Linear and nonlinear least-squares

b. Calculation and display of residuals

c. Arbitrarily complex user-defined fitting functions, including dynamically

loadable C/Fortran/... modules

d. Fitting with constraints

e. Region restrictions

f. Fitting with arbitrary weight functions

 Analysis Capability

a. FFT

b. Integration and differentiation

c. Histograms and statistics

d. Splines, including Akima splines

e. Interpolation and smoothing

f. Convolution, correlation, and covariation

g. Sorting

 Data Formats

a. Unlimited data size; up to six dimensions plus an optional array of strings

b. Reads text data input files

c. Reads 1D netCDF files

 Programmability

a. Built-in programming language

b. Math functions manipulate entire array

c. Variables, including arrays (1D)

d. User-definable functions via loadable modules

e. All aspects of plot outlook can be programmed

f. Controllable by external programs

42

Figure 2 – 19: The Grace Environment

A user‟s guide can be found on the official site of Grace [42] along with other useful tutorials

and documents.

2.3.1 Using Arduino, Processing and Grace together for Visualizing Data

The purpose of this section is to show practically how to achieve online monitoring and

visualization of a physical quantity (voltage) based on collected data continuously stored in a

file. In our experiments, we use the Arduino Uno R3 board as the hardware platform

(embedded system), and the Arduino IDE, Processing PDE, Grace Plot tool and OpenSUSE

12.3 terminal as the software part,. We developed two programs, one for each software

package, which we describe below.

1. The developed program for Arduino IDE.

This program is developed to run on the Arduino board. It produces a virtual

triangular voltage of 3 – 0 – 3 Volts versus time in seconds. It continuously sends

voltage vs. time data to serial port of the computer in order to be used from the

Processing PDE. The code of the Arduino IDE follows next with line numbers and

comments wherever they needed.

#define MAX_NO_ITERATIONS 8 1

#define MAX_VOLTAGE_SCALE 32 2

float voltage; //-->The virtual triangular voltage 3

int iterations, VL, j; 4

43

//Setting up the Serial port 5

void setup() 6

{ 7

 Serial.begin(9600); //-->Starts the serial port at 9600 8

} 9

//This function, creates the virtual triangular voltage 10

void triangVoltage() 11

{ 12

 for (iterations = 0; iterations < MAX_NO_ITERATIONS; 13

iterations++) 14

 for (VL = 0; VL < MAX_VOLTAGE_SCALE; VL++) 15

// waveform of 0-3-0 volts 16

 { 17

 if (iterations %2 != 0) 18

 { 19

 j = MAX_VOLTAGE_SCALE - VL; 20

 } 21

 else 22

 { 23

 j = VL; 24

 } 25

 //The next code sends the voltage and time data 26

from Arduino to Computer through Serial Port 27

 voltage = 3 - j * (1023 / MAX_VOLTAGE_SCALE) * 28

(3.0 / 1023.0); 29

 Serial.print(voltage); 30

 Serial.print(" "); 31

 int time = millis()/100; 32

 Serial.println(time); 33

 delay(100); 34

 } 35

} 36

//The infinite loop 37

void loop() 38

{ 39

 triangVoltage (); 40

} 41

2. The developed Processing IDE program.

This program, instead of the one which runs on the microcontroller, runs on the

computer and its purpose is to read data from the computer's Serial port and save into

a .dat file, which will be used from Grace. The code for Processing IDE follows next

with line numbers and comments where needed.

44

import processing.serial.*; 1

import java.text.*; 2

import java.util.*; 3

PrintWriter output; 4

String fileName; 5

Serial myPort; // Create object from the serial port 6

short portIndex = 0; //Select the com port, 0 is the 7

//first port 8

void setup () 9

{ 10

 size(200, 200); // set the window size: 11

 println(Serial.list()); // List all the available 12

//serial ports 13

 //If Arduino is in the first port in the serial list, 14

open Serial.list()[0]. 15

 myPort = new Serial(this, Serial.list()[0], 9600); 16

 // don't generate a serialEvent() unless you 17

 //get a newline character 18

 myPort.bufferUntil('\n'); 19

 background(50); // set initial background 20

 fileName = "dataFile"; 21

 output = createWriter(fileName + ".dat"); 22

} 23

void draw () 24

{ 25

} 26

void serialEvent (Serial myPort) 27

{ 28

 String inString = myPort.readStringUntil(' '); //this 29

//is the space character 30

 String tmString = myPort.readStringUntil('\n'); //this 31

//is the change line character 32

 if (inString != null && tmString != null) 33

 { 34

 inString = trim(inString); // trim off any whitespace 35

 tmString = trim(tmString); 36

 float Voltage = float(inString); //Arduino Voltage to 37

//a float Voltage 38

 int Time = int(tmString); // Arduino Time to int Time 39

 output.print(Time); 40

 output.print(" "); 41

 output.println(Voltage); 42

 output.flush(); // Writes data to the file 43

 } 44

45

} 45

void keyPressed() 46

{ 47

 output.flush(); //Writes the remaining data to the file 48

 output.close(); // Finishes the file 49

 exit(); //Stops the program 50

} 51

The above two programs are saved as triang_volt.ino and processing_triang.pde, and when

we make sure that they run correctly, i.e the Arduino program gives pairs of values (Voltage –

Time in its serial monitor and the Processing stores them into a .dat file on the computer, we

proceed to invoke Grace.

The terminal of the OpenSUSE 12.3 is one of the ways we can achieve this purpose. The

Grace Plot tool has many commands used from terminal to control the visualization process

[43]. If we assume that we save this experiment to /home/User/proc_grace folder, we can

use the following commands in a terminal.

Next command opens Processing from its installation folder.

./processing /home/User/proc_grace/processing_triang/processing_triang.pde

Next, we change the current directory of the terminal to:

>cd /home/User/proc_grace/processing_triang

This is necessary in order to operate correctly the Grace program. Now in the terminal we

should see the following:

User@linux-ftow: ~/proc_grace/processing_triang>

After that, we are going to use a named pipe [44] to invoke Grace from terminal.

> mkfifo /home/User/proc_grace/processing_triang/nameofpipe

Next, we open Grace and connect it with the pipe:

> xmgrace -npipe nameofpipe&

Next, we configure the graph by giving it a title and labels to its x, y axis:

> echo title \''Voltage vs. Time '' > nameofpipe

> echo xaxis label \''Time seconds\'' > nameofpipe

> echo yaxis label \''Voltage\'' > nameofpipe

After that, we create a while loop in terminal to help Grace to read the .dat file continuously

and draw its data to the graph:

> while true
> do
> echo ''read \''dataFile.dat\'' '' > nameofpipe

mailto:User@linux-ftow

46

> echo autoscale > nameofpipe
> echo redraw > nameofpipe
> done
Before we press enter key on terminal to run the while loop, we must run the Processing

program for reading the Serial input from Arduino and start to store data on the .dat file. After

that, we press the enter key on terminal.

The result we see on Grace looks like the Figure 2 – 20:

Figure 2 – 20: The result on Grace

We notice that the curve is updated continuously online, as long the Processing program runs

and the Arduino board is connected on the Serial port.

In the future, we can expand this experiment to show more plots, one for each data series

monitored on the Arduino board. We conclude that data monitoring is of high importance

because we can monitor every change of the measured values visually. This way of

monitoring is much easier than monitoring values without a graph, since online monitoring

gives us the opportunity to know at any time what happens in our device and detect any

erroneous behaviour.

47

3. Project Design

3.1 Energy Management

3.1.1. Definition of Energy Management

Figure 3 – 1: Energy Management Model

Energy Management has the effect of producing goods with minimal economic costs, as well

as minimal negative environmental effects. In fact, according to Capehart, Turner and

Kennedy Guide to Energy Management Fourth Edition [45] the Energy Management is

defined as the judicious and effective use of energy to maximize profits – or to minimize

costs – in order to enhance competitive positions. Another comprehensive definition of

Energy Management, states “The strategy of adjusting and optimizing energy, using systems

and procedures so as to reduce energy requirements per unit of output while holding constant

or reducing total costs of producing the output from these systems” [46].

The economic cost is minimized by managing energy consumption as follows:

1. With increased energy efficiency and reduced energy use

2. By cultivating the interest in energy matters through dissemination of issues related to

them

3. By developing better methods in monitoring, reporting and managing the energy

4. By facilitating research and investment in research projects, which searching ways for

energy savings

5. By increasing the interest in energy issues through education

Proper energy management has many benefits, not only individually but socially as well. As it

was foretold, the economical profits could be significantly increased, improving the quality of

life, reducing poverty and creating new works for the unemployment. In particular one can

achieve:

48

1. The increase of national wealth and security as the adequacy of oil rises

2. Growth of national economic competition

Regarding the environment, the energy management offers remarkable benefits for

environmental protection. Specifically:

1. Reduction of the acid rain

2. Limitation of global climate change

3. Increase of the amount of ozone in the upper atmosphere.

3.1.2. Designing an Energy Management System

The design of an Energy Management System (EMS) is essential in order to achieve an

effective energy saving. Designing an energy management system must follow the rules of

Figure 3 – 1. Such a system is based on the following processes:

1. Measuring the energy consumption and collecting data. A detailed interval of energy

consumption report provides more information about the current energy consumption

plan in order to redesign it.

2. Developing an energy use profile. An energy use profile will demonstrate how energy

use is distributed in an occasionally system.

3. Setting reduction targets. In order to create a better energy management system, it is

needed to predetermine the conditions and the terms under which that system will

work.

4. Developing strategic action plans for improvement.

5. Tracking, measuring and reporting the energy consumption.

3.2 Hardware

3.2.1 Hardware Development

Considering the theoretical part (Section one and two) of this thesis, which is related to the

design and implementation of the Remote Control Power Strip device (RC Power Strip),

implementation was divided into the following sub-stages:

1. Requirement analysis. The first stage was to set the problem which the RC Power

Strip device has to solve. More specifically, the problem relates to remote control of

devices based on energy monitoring.

2. Definition of system specifications and use-cases of the RC Power Strip device. In

particular, we define its minimum requirements as well as other characteristics. The

system which will be designed needs to have the following specifications:

a. Remote control of devices, via internet or Local Area Network,

b. Measuring AC current and AC voltage in order to protect the other devices

from overvoltage and short circuits,

c. Temperature and humidity measurement of the environment in which the RC

Power Strip device will operate.

3. Modelling the system under design, experimenting with different algorithms and

preliminary evaluation. In this step, the algorithm which will be used to perform the

previously mentioned tasks was developed. Different kinds of programming models

were used and a comparison between them was performed:

49

a. Serial Programming Model

b. Asynchronous Parallel Programming Model using Protothreads

c. Synchronous Parallel Programming Model using Protothreads

4. Selection of components and development tools. We have selected:

a. An Arduino Uno R3 for the development of the algorithm used by the device

b. An Arduino Mega 2560 R3 for the implementation of the device

c. An Arduino Ethernet Shield for connecting the Arduino board into a local

network or internet over the Ethernet

d. An ARM MCU SD Card module

e. A Songle one-relay module used as a (preliminary) experimental energy-

related component

f. A Songle four-relay module used for the implementation of the energy-

related component

g. A 1602 LCD hd44780 display module

h. Several electronic components, such as resistors of various values, LEDs,

potentiometers etc.

i. Jump wires, 3 breadboards of 830 tie points.

5. Schematic designing of the device by using Fritzing [47].

6. Construction of the device

7. Test of the device

3.2.1.1 Arduino Mega 2560 R3

Figure 3 – 2: Arduino Mega R3

The Arduino Mega 2560 Revision 3 (see Figure 3 – 2), is a microcontroller board based on

ATmega2560 microprocessor whose pin mapping is shown in Figure 3 – 3.

50

Figure 3 – 3: ATmega2560 Microprocessor

The microprocessor has:

1. 55 input/output pins

2. 16 analogue inputs

3. 4 UARTs (hardware serial ports)

4. A 16 MHz crystal oscillator

5. A USB connection

6. A power jack

7. An ICSP header

8. A reset button

All of the above elements are shown in the Figure 3 – 4:

51

Figure 3 – 4: The Elements of the Arduino Mega 2560 R3

3.2.1.2 Characteristics of Arduino Mega 2560 R3

According to the official site of Arduino [48], the characteristics of the Arduino Mega2560

are the following:

1. Operating Voltage: 5V

2. Input Voltage (recommended): 7 – 12V

3. Input Voltage (limits): 6 – 20V

4. Digital I/O Pins: 54(of which 15 provide PWM output)

5. Analogue Input Pins: 16

6. DC Current per I/O Pin: 49mA

7. DC Current for 3.3V Pin: 50mA

8. Flash Memory: 256KB

9. SRAM: 8KB

10. EEPROM: 4KB

11. Clock Speed: 16MHz

The Arduino Mega can be powered up either from USB or an external power supply. Its

power pins are the following:

1. VIN which is the input voltage when an external power supply is used,

2. 5V Pin which outputs 5V regulated voltage

3. 3V3 Pin which supplies 3.3V regulated voltage

4. GND Pins

5. IOREF Pin which provides the voltage reference with which the microcontroller

operates.

Some of the I/O Pins of the microcontroller have specialized functions, which are:

52

1. Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16

(TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX) TTL

serial data. Pins 0 and 1 are also connected to the corresponding pins of the

ATmega16U2 USB-to-TTL Serial chip.

2. External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4),

20 (interrupt 3), and 21 (interrupt 2).

3. PWM: power pins 2 to 13 and 44 to 46.

4. SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI

communication using the SPI library.

5. LED: 13. There is a built-in LED connected to digital pin 13.

6. TWI: 20 (SDA) and 21 (SCL). Support TWI communication using the Wire library.

3.2.1.3 1602 LCD HD44780 LCD Screen

Figure 3 – 5: The front and the back side of 1602 LCD Screen

The main features of the LCD screen of the Figure 3 – 5 are the following:

1. Display format: 16 character x 2 lines

2. Input data: 4-Bits or 8-Bits interface available

3. Display Font: 5 x 8 Dots

4. Power Supply: 5V ± 10%

5. Driving Scheme: 1/16Duty, 1/5Bias

6. Backlight: Blue

7. Operating Temperature: 0 – 50
o
C

Pin assignment of the LCD Screen (Table 4):

Table 4: Pin Assignment of the LCD Screen

53

3.2.1.4 Experimental part

In the experimental part of this thesis, the following components were used:

1. Breadboards

2. Resistors of several values

3. 1 potentiometer of 5.5K

4. 1 LED Bright blue

5. 1 Photosensitive light sensor module

6. 1 single Relay module

7. 1 SD card Module

8. 1 Arduino Uno R3

9. 1 1602 LCD Screen

The Light Sensor simulates a possible sensor which will detect errors and damage which arise

in each device that is plugged with the developing device; in a production stage, other

alternatives could use a more elaborate, but definitely more expensive sensor that transmits

power data. Those errors might be:

1. Over voltage

2. Under voltage

3. Faulty device

The LCD Screen was used to indicate the measurements of the light sensor and a flag

"working/not working" device depending on the last monitoring status info of the device.

As for the LED light, it represents the device which is connected to the RC power strip. The

device is powered independently from an external power source; in this case by a 9VDC

battery. For this reason the light sensor was selected to do the monitoring of the device.

Experimental simulation data was saved in a .csv file on SD card, for further data processing.

In Figure 3 – 6, we show the electronic components and the wiring for the implementation of

the experiment. The design was made using the Fritzing designing program.

 54

Figure 3 – 6: Connections in the Experimental Platform

55

3.3 Software

In this Section, we study the Serial and Parallel programming models. For the parallel

programming model, both asynchronous and synchronous implementations of the developing

program are examined. The models are compared by recording the execution time of specific

parts of the program involving processing or sensor communication, or of the whole program.

In particular, the measured values are the following:

1. Execution timings

a. of some parts of the program in microseconds (κS)

b. of the whole program in microseconds (κS)

2. The voltage of the LDR sensor in Volts.

3.3.1 Sequential

The serial model program with line numbers and detailed comments is provided next.

//importing of LCD library and SD library 1
#include <LiquidCrystal.h> 2
#include <SD.h> 3

/*Follows the definition of the variables in line, to create a 4
triangular waveform.*/ 5

#define MAX_NO_ITERATIONS 8 6
#define MAX_VOLTAGE_SCALE 32 7

const int lightRes = A1; //This is a sensor (LDR) that checks 8
if the Load indeed works 9

int ldr = 0; //definition of an ldr integer which is useful to 10
measure the analogue voltage from LDR Sensor 11

const int myRelay = 8; //The pin on which the Relay is 12
connected 13

LiquidCrystal lcd(9, 7, 6, 5, 4, 3); //The pins on which the 14
LCD is connected 15

static int sensorFlag = 0; //The flag that is used by the LDR 16
Sensor, is low (0) 17

float voltage, ldrVolt; //Definition of triangular voltage 18
and LDR Sensor’s Voltage as float 19

int iterations, VL, j; //This also helps in the produce of the 20
triangular waveform 21

/* The following variables is used to measure the time between 22
the parts of the program and of the whole program */ 23
unsigned long ldrTimerOn = 0, ldrTimerOff = 0, 24
timeRelayOnStart = 0, timeRelayOnEnd = 0, timeRelayOffStart = 25
0, timeRelayOffEnd = 0, overAllStart = 0, overAllEnd = 0; 26
/* The following variables is used to count how many times the 27
relayControl and ldrSensor functions are executed */ 28
unsigned long thread1Count =0, thread2Count = 0; 29
File noThread; //Definition of the file which will be used to 30

save data on SD card 31
boolean relayStatus = 0; //On 0 = normally off 32
long id = 1; //This counts how many times the whole program 33

is executed 34

56

/* Setting up the relay, the LCD and the Serial Communication 35
*/ 36

void setup() 37
{ 38
 Serial.begin(9600); 39
 lcd.begin(16, 2); //16 columns and 2 rows of the LCD 40

Screen 41
 pinMode (myRelay, OUTPUT); //Declaration of the Relay 42

pin as an Output 43
 while (!Serial) //While there is not any serial signal 44
 { 45
 ; //just waiting... 46
 } 47
 Serial.print("Initializing SD Card..."); 48
 pinMode(10, OUTPUT); //This PIN, should always be stated as 49

an output, or else the SD will not 50
work. 51

 digitalWrite(2, HIGH); 52
 if (!SD.begin(2)) //If there is NOT begin the SD on pin 2 53
 { 54
 Serial.println("Card failure!"); //print this on Serial 55
 return; 56
 } 57
//Or print the following messages 58
 Serial.println("Card ready!"); 59
 Serial.println(""); 60
 Serial.println("Writing data..."); 61
 Serial.println(""); 62
 SD.remove("noThread.csv"); //When the Arduino restarts, the 63

noThread.csv file will be 64
deleted 65

 noThread = SD.open("noThread.csv", FILE_WRITE); //and 66
recreated for writing data. 67

 if (noThread) //As long as the noThread file exists 68
 { 69
//write the following messages in the noThread file 70
noThread.println("S/N, Device, Voltage, Status, 71
timeRelayOffStart, timeRelayOffStop, timeRelayOnStart, 72
timeRelayOnStop, Sensor, Device, Voltage, timeLDRStart, 73
timeLDRStop, allStart, allStop"); 74
 noThread.close(); //Always close the file after any 75

addition 76
 } 77
 else 78
 { 79
 Serial.println("Error opening noThread.csv"); 80
 } 81
} 82
//This function activates the relay 83
void relayOn() 84
{ 85
 delay(20); //Wait for 20 mS 86
 digitalWrite(myRelay, HIGH); //Activate the relay 87
 lcd.setCursor(15, 0); //locating the cursor on LCD 88

57

 lcd.print("T"); //And writing “T” (this means On) on LCD 89
Screen 90

} 91
/* This function deactivates the relay in the same way as the 92
previous function */ 93
void relayOff() 94
{ 95
 delay(20); 96
 digitalWrite(myRelay, LOW); //Deactivates the relay 97
 lcd.setCursor(15, 0); 98
 lcd.print("F"); //writes “F” (Off) on LCD Screen 99
} 100
/* The following function writes down all the measuring data 101
from relayControl function to noThread.csv file on SD Card: */ 102
void printControlStatus() 103
{ 104
 noThread = SD.open("noThread.csv", FILE_WRITE); 105
 if (noThread) 106
 { 107
 noThread.print(id); //The count of execution of the 108

program 109
 noThread.print(",Relay1,"); 110
 noThread.print(voltage); //The triangular waveform 111
 noThread.print(","); 112
 noThread.print(relayStatus); //The relay status 113
 noThread.print(","); 114
 noThread.print(timeRelayOffStart); //The start execution 115

time of the relayOff 116
function 117

 noThread.print(","); 118
 noThread.print(timeRelayOffEnd); //The stop execution time 119

of the relayOff function 120
 noThread.print(","); 121
 noThread.print(timeRelayOnStart); //The start execution 122

time of the relayOn 123
function 124

 noThread.print(","); 125
 noThread.print(timeRelayOnEnd); //The stop execution time 126

of the relayOn function 127
 noThread.print(","); //This means an empty column 128
 noThread.print(","); 129
 noThread.print(","); 130
 noThread.print(","); 131
 noThread.print(","); 132
 noThread.print(","); 133
 noThread.print(overAllStart); //The start execution time 134

of the program 135
 noThread.print(","); 136
 noThread.println(overAllEnd); //The stop execution time of 137

the program 138
 noThread.close(); //Closing the noThread file 139
 } 140
} 141
/* The following function writes down in the same way as the 142
relayControl function, all the measuring data which are 143

58

measured by the ldrSensor function to noThread.csv file on SD 144
Card: */ 145
void printSensorStatus() 146
{ 147
 noThread = SD.open("noThread.csv", FILE_WRITE); 148
 if (noThread) 149
 { 150
 noThread.print(","); 151
 noThread.print(","); 152
 noThread.print(","); 153
 noThread.print(","); 154
 noThread.print(","); 155
 noThread.print(","); 156
 noThread.print(","); 157
 noThread.print(",S1,LDR Sensor,"); 158
 noThread.print(ldrVolt); //The analogue voltage of the LDR 159

Sensor 160
 noThread.print(","); 161
 noThread.print(ldrTimerOn); //The start execution time of 162

the sensor 163
 noThread.print(","); 164
 noThread.print(ldrTimerOff); //The stop execution time of 165

the sensor 166
 noThread.print(","); 167
 noThread.print(","); 168
 noThread.print(","); 169
 noThread.println(","); 170
 noThread.close(); //Closing of the noThread file 171
 } 172
} 173
/* This function, controls the relay */ 174
void relayControl() 175
{ 176
/* The following “for” command, repeats the next command lines 177
of it, as long as the iterations are less than 178
MAX_NO_ITERATIONS number */ 179
 for (iterations = 0; iterations < MAX_NO_ITERATIONS; 180
iterations++) 181
/* The following “for” command, repeats the following code 182
lines of it, as long as the VL variable is less than 183
MAX_VOLTAGE_SCALE number */ 184
 for (VL = 0; VL < MAX_VOLTAGE_SCALE; VL++) 185
 { 186
 overAllStart = micros(); //Start counting executing 187

time of all the program in uSec 188
 if (iterations %2 != 0) //Checks if the remainder 189

of division is not 0 190
 { 191
 j = MAX_VOLTAGE_SCALE - VL; 192
 } 193
 else 194
 { 195
 j = VL; 196
 } 197

59

/* The following code calculates the voltage which will 198
produce the triangular waveform: 3 is the maximum voltage 199
value, 1023 is the analogue reading. */ 200
 voltage = 3 - j * (1023 / MAX_VOLTAGE_SCALE) * 201
(3.0 / 1023.0); 202
 id++; //this is inside the for loop as it is 203

needed to count in every change of the voltage 204
 lcd.setCursor(0, 0); 205
 lcd.print("R1="); 206
 lcd.setCursor(3, 0); 207
 lcd.print(thread1Count); //the LCD shows how many 208

times the relayControl function is executed 209
 lcd.setCursor(0, 1); 210
 lcd.print("V1="); 211
 lcd.setCursor(3, 1); 212
 lcd.print(voltage); //Also shows the voltage 213
/* The following “if” statement checks if the voltage’s values 214
are between 2.1 and 2.4 (operating range) and also checks if 215
the LDR Sensor has detected any error to the connected device 216
(LED) */ 217
 if (voltage >= 2.1 && voltage <= 2.4 && 218
sensorFlag == 0) 219
 { 220
 thread1Count++; //counts how many times the 221

“if” statement is true 222
 timeRelayOnStart = micros(); //Starts 223

counting time in uSec 224
 relayOn(); //Activates the relay 225
 timeRelayOnEnd = micros(); //Stops counting 226

time in uSec 227
 relayStatus = 1; //Relay On 228
 printControlStatus(); 229
 } 230
 else 231
 { 232
 timeRelayOffStart = micros(); //Starts 233

counting time in uSec 234
 relayOff(); //Deactivates the relay 235
 timeRelayOffEnd = micros(); //Stops counting 236

time in uSec 237
 relayStatus = 0; //Relay Off 238
 printControlStatus(); 239
 } 240
 } 241
} 242
/* The ldrSensor function, checks if the connected device 243
(LED) is functional, or if under voltage or high voltage is 244
detected */ 245
void ldrSensor() 246
{ 247
 ldr = analogRead(lightRes); //Reading the analogue input 248

from PIN A1 249
 ldrTimerOn = micros(); //Starts counting time in uSec 250
 ldrVolt = ldr * (5.0 / 1023.0); //Transmute the analogue 251

reading into voltage 252
 lcd.setCursor(8, 0); 253

60

 lcd.print("S1="); 254
 lcd.setCursor(11, 0); 255

 thread2Count++; //counts how many times the ldrSensor 256
function has executes 257

 lcd.print(thread2Count); //the LCD shows how many times 258
the ldrSensor function executes 259

 lcd.setCursor(8, 1); 260
 lcd.print("V2="); 261
 lcd.setCursor(11, 1); 262
 lcd.print(ldrVolt); //Prints on LCD the voltage of the 263

LDR Sensor 264
/* The following “if” statement, checks the voltage of the LDR 265
Sensor. If it is lower than 0.30 volts, or equal to this 266
value, it keeps the flag down (0). This means that the 267
connected device (LED) has no problem or there is not any 268
under voltage or high voltage. But if the LDR voltage is more 269
than 0.30 volts, it raises the flag which means there is a 270
problem on the connected device and so it alerts the 271
relayControl function not to activate the relay. */ 272
 if (ldrVolt <= 0.30) 273
 { 274
 sensorFlag = 0; 275
 } 276
 else 277
 { 278
 sensorFlag = 1; 279
 } 280
 ldrTimerOff = micros(); //Stops counting time in uSec 281
 printSensorStatus(); 282
 overAllEnd = micros(); //Stops counting executing time of 283

all the program in uSec 284
} 285
//The infinitive loop 286
void loop() 287
{ 288
 relayControl(); //call of the relayControl function 289
 ldrSensor(); //call of the ldrSensor function 290
} 291

61

3.3.2 Protothreads Asynchronous

We provide the asynchronous parallel programming model, with line numbers and comments

where needed.

//importing of SD, protothreads and LCD library 1
#include <pt.h> //This is the protothreads library 2
#include <LiquidCrystal.h> 3
#include <SD.h> 4
/* Follows the definition of the variables in line, to create 5

a triangular waveform.*/ 6
#define MAX_NO_ITERATIONS 8 7
#define MAX_VOLTAGE_SCALE 32 8
const int lightRes = A1; //This is a sensor (LDR) that checks 9

if the Load indeed works 10
int ldr = 0; //definition of an ldr integer which is useful to 11

measure the analogue voltage from LDR Sensor 12
const int myRelay = 8; //The pin on which the Relay is 13

connected 14
LiquidCrystal lcd(9, 7, 6, 5, 4, 3); //The pins on which the 15

LCD is connected 16
static struct pt pt1, pt2; //Definition of the two 17

protothreads 18
static int sensorFlag = 0; //The flag that is used by the LDR 19

Sensor, is low (0) 20
float voltage, ldrVolt; //Definition of triangular voltage 21

and LDR Sensor’s Voltage as float 22
variable 23

int iterations, VL, j; //This also helps in the produce of the 24
triangular waveform 25

/* The following variables is used to measure the time between 26
the parts of the program and of the whole program */ 27
unsigned long ldrTimerOn = 0, ldrTimerOff = 0, 28
timeRelayOnStart = 0, timeRelayOnEnd = 0, timeRelayOffStart = 29
0, timeRelayOffEnd = 0, overAllStart = 0, overAllEnd = 0; 30
/* The following variables is used to count how many times the 31
relayControl and ldrSensor threads are executed */ 32
unsigned long thread1Count =0, thread2Count = 0; 33
File noSync; //Definition of the file which will be used to 34

save data on SD card 35
boolean relayStatus = 0; //On 0 = normally off 36
long id = 1; //This counts how many times the whole program is 37

executed 38
/* Setting up the relay, the LCD, the Serial Communication and 39

the protothreads */ 40
void setup() 41
{ 42
 Serial.begin(9600); //Starts the serial port at 9600 43
 lcd.begin(16, 2); //16 columns and 2 rows of the LCD Screen 44
 pinMode (myRelay, OUTPUT); //Declaration of the Relay pin 45

as an Output 46
 PT_INIT(&pt1); //Initialization of 47
 PT_INIT(&pt2); //the two protothreads 48
 while (!Serial) //While there is not any serial signal 49
 { 50

62

 ; //just waiting... 51
 } 52
 Serial.print("Initializing SD Card..."); 53
 pinMode(10, OUTPUT); //This PIN, should always be stated as 54

an output, or else the SD won’t work. 55
 digitalWrite(2, HIGH); 56
 if (!SD.begin(2)) //If there is NOT begin the SD on pin 2 57
 { 58
 Serial.println("Card failure!"); //print this on Serial 59
 return; 60
 } 61
//Or print the following messages 62
 Serial.println("Card ready!"); 63
 Serial.println(""); 64
 Serial.println("Writing data..."); 65
 Serial.println(""); 66
 SD.remove("noSync.csv"); //When the Arduino restarts, the 67

noSync.csv file will be deleted 68
 noSync = SD.open("noSync.csv", FILE_WRITE); //and recreated 69

for writing data. 70
 if (noSync) //As long as the noSync.csv file exists 71
 { 72
 noSync.println("S/N, Device, Voltage, Status, 73
timeRelayOffStart, timeRelayOffStop, timeRelayOnStart, 74
timeRelayOnStop, Sensor, Device, Voltage, timeLDRStart, 75
timeLDRStop, allStart, allStop"); 76
 noSync.close(); //Always close the file after any 77

addition 78
 } 79
 else 80
 { 81
 Serial.println("Error opening noSync.csv"); 82
 } 83
} 84
//This function activates the relay 85
void relayOn() 86
{ 87
 delay(20); //Wait for 20 mS 88
 digitalWrite(myRelay, HIGH); //Activate the relay 89
 lcd.setCursor(15, 0); //locating the cursor on LCD 90
 lcd.print("T"); //And writing “T” (this means On) on LCD 91

Screen 92
} 93
/* This function deactivates the relay in the same way as the 94
previous function */ 95
void relayOff() 96
{ 97
 delay(20); 98
 digitalWrite(myRelay, LOW); //Deactivates the relay 99
 lcd.setCursor(15, 0); 100
 lcd.print("F"); //writes “F” (Off) on LCD Screen 101
} 102
/* The following function writes down all the measuring data 103
from relayControl thread to noSync.csv file on SD Card: */ 104
void printControlStatus() 105
{ 106

63

 noSync = SD.open("noSync.csv", FILE_WRITE); 107
 if (noSync) 108
 { 109
 noSync.print(id); //The count of execution of the program 110
 noSync.print(",Relay1,"); 111
 noSync.print(voltage); //The triangular waveform 112
 noSync.print(","); 113
 noSync.print(relayStatus); //The relay status 114
 noSync.print(","); 115
 noSync.print(timeRelayOffStart); //The start execution 116

time of the relayOff 117
function 118

 noSync.print(","); 119
 noSync.print(timeRelayOffEnd); //The stop execution time 120

of the relayOff function 121
 noSync.print(","); 122
 noSync.print(timeRelayOnStart); //The start execution time 123

of the relayOn function 124
 noSync.print(","); 125
 noSync.print(timeRelayOnEnd); //The stop execution time of 126

the relayOn function 127
 noSync.print(","); //This means an empty column 128
 noSync.print(","); 129
 noSync.print(","); 130
 noSync.print(","); 131
 noSync.print(","); 132
 noSync.print(","); 133
 noSync.print(overAllStart); //The start execution time of 134

the program 135
 noSync.print(","); 136
 noSync.println(overAllEnd); //The stop execution time of 137

the program 138
 noSync.close(); //Closing the noSync.csv file 139
 } 140
} 141
/* The following function writes down in the same way as the 142
relayController thread, all the measuring data which are 143
measured by the ldrSensor thread to noSync.csv file on SD 144
Card: */ 145
void printSensorStatus() 146
{ 147
 noSync = SD.open("noSync.csv", FILE_WRITE); 148
 if (noSync) 149
 { 150
 noSync.print(","); 151
 noSync.print(","); 152
 noSync.print(","); 153
 noSync.print(","); 154
 noSync.print(","); 155
 noSync.print(","); 156
 noSync.print(","); 157
 noSync.print(",S1,LDR Sensor,"); 158
 noSync.print(ldrVolt); //The analogue voltage of the LDR 159

Sensor 160
 noSync.print(","); 161

64

 noSync.print(ldrTimerOn); //The start execution time of 162
the sensor 163

 noSync.print(","); 164
 noSync.print(ldrTimerOff); //The stop execution time of 165

the sensor 166
 noSync.print(","); 167
 noSync.print(","); 168
 noSync.print(","); 169
 noSync.println(","); 170
 noSync.close(); //Closing of the noThread file 171
 } 172
} 173
//This function (protothread), controls the relay 174
static int relayController(struct pt *pt) 175
{ 176
 PT_BEGIN(pt); //From this point on, is the code of the 177

relayController Protothread 178
/* The following “for” command, repeats the next command lines 179
of it, as long as the iterations are less than 180
MAX_NO_ITERATIONS number */ 181
 for (iterations = 0; iterations < MAX_NO_ITERATIONS; 182
iterations++) 183
/* The following “for” command, repeats the following code 184
lines of it, as long as the VL variable is less than 185
MAX_VOLTAGE_SCALE number */ 186
 for (VL = 0; VL < MAX_VOLTAGE_SCALE; VL++) 187
{ 188
 overAllStart = micros(); //Start counting executing time 189

of all the program in uSec 190
 if (iterations %2 != 0) //Checks if the remainder of 191

division is not 0 192
 { 193
 j = MAX_VOLTAGE_SCALE - VL; 194
 } 195
 else 196
 { 197
 j = VL; 198
 } 199
/* The following code calculates the voltage which will 200
produce the triangular waveform: 3 is the maximum voltage 201
value, 1023 is the analogue reading. */ 202
 voltage = 3 - j * (1023 / MAX_VOLTAGE_SCALE) * (3.0 / 203
1023.0); 204
 id++; //this is inside the for loop as it is needed to 205

count in every change of the voltage 206
 lcd.setCursor(0, 0); 207
 lcd.print("R1="); 208
 lcd.setCursor(3, 0); 209
 lcd.print(thread1Count); //the LCD shows how many times 210

the relayController thread is executed 211
 lcd.setCursor(0, 1); 212
 lcd.print("V1="); 213
 lcd.setCursor(3, 1); 214
 lcd.print(voltage); //Also shows the voltage 215

65

/* The following “if” statement checks if the voltage’s values 216
are between 2.1 and 2.4 (operating range) and also checks if 217
the LDR Sensor has detected any error to the connected device 218
(LED) */ 219
 if (voltage >= 2.1 && voltage <= 2.4 && sensorFlag == 0) 220
 { 221
 thread1Count++; //counts how many times the “if” 222

statement is true 223
 timeRelayOnStart = micros(); //Starts counting time in 224

uSec 225
 relayOn(); //Activates the relay 226
 timeRelayOnEnd = micros(); //Stops counting time in 227

uSec 228
 relayStatus = 1; //Relay On 229
 printControlStatus(); 230
 } 231
 else 232
 { 233
 timeRelayOffStart = micros(); //Starts counting time 234

in uSec 235
 relayOff(); //Deactivates the relay 236
 timeRelayOffEnd = micros(); //Stops counting time in 237

uSec 238
 relayStatus = 0; //Relay Off 239
 printControlStatus(); 240
 } 241
 } 242
 PT_END(pt); //Here stops the code of the relayController 243

protothread 244
} 245
/* The ldrSensor thread, checks if the connected device (LED) 246
is functional, or if under voltage or high voltage is detected 247
*/ 248
static int ldrSensor(struct pt *pt) 249
{ 250
 PT_BEGIN(pt); //Here starts the code for ldrSensor Thread 251
 ldr = analogRead(lightRes); //Reading the analogue input 252

from PIN A1 253
 ldrTimerOn = micros(); //Starts counting time in uSec 254
 ldrVolt = ldr * (5.0 / 1023.0); //Transmute the analogue 255

reading into voltage 256
 lcd.setCursor(8, 0); 257
 lcd.print("S1="); 258
 lcd.setCursor(11, 0); 259
 thread2Count++; //counts how many times the ldrSensor 260

function has executes 261
 lcd.print(thread2Count); //the LCD shows how many times the 262

ldrSensor function executes 263
 lcd.setCursor(8, 1); 264
 lcd.print("V2="); 265
 lcd.setCursor(11, 1); 266
 lcd.print(ldrVolt); //Prints on LCD the voltage of the LDR 267

Sensor 268
 /* The following “if” statement, checks the voltage of the 269
LDR Sensor. If it is lower than 0.30 volts, or equal to this 270
value, it keeps the flag down (0). This means that the 271

66

connected device (LED) has no problem or there is not any 272
under voltage or high voltage. But if the LDR voltage is more 273
than 0.30 volts, it raises the flag which means there is a 274
problem on the connected device and so it alerts the 275
relayControl function not to activate the relay. */ 276
 if (ldrVolt <= 0.30) 277
 { 278
 sensorFlag = 0; 279
 } 280
 else 281
 { 282
 sensorFlag = 1; 283
 } 284
 ldrTimerOff = micros(); //Stops counting time in uSec 285
 printSensorStatus(); 286
 overAllEnd = micros(); //Stops counting executing time of 287

all the program in uSec 288
 PT_END(pt); //The end of code of the ldrSensor protothread 289
} 290
//The infinitive loop 291
void loop() 292
{ 293
 relayController(&pt1); //call of the relayController thread 294
 ldrSensor(&pt2); //call of the ldrSensor thread 295
} 296

67

3.3.4 Protothreads with Synchronization

We examine the synchronous parallel programming model, with line numbers and comments

where necessary.

//importing of SD, protothreads and LCD library 1
#include <pt.h> 2
#include <LiquidCrystal.h> 3
#include <SD.h> 4
/* Follows the definition of the variables in line, to create 5

a triangular waveform.*/ 6
#define MAX_NO_ITERATIONS 8 7
#define MAX_VOLTAGE_SCALE 32 8
const int lightRes = A1; //This is a sensor (LDR) that checks 9

if the Load indeed works 10
int ldr = 0; //definition of an ldr integer which is useful to 11

measure the analogue voltage from LDR Sensor 12
const int myRelay = 8; //The pin on which the Relay is 13

connected 14
LiquidCrystal lcd(9, 7, 6, 5, 4, 3); //The pins on which the 15

LCD is connected 16
static struct pt pt1, pt2; //Definition of the two 17

protothreads 18
static int riseFlag = 0, sensorFlag = 0; //In this program, 19

were added two flags, one for the 20
relayController thread and one for 21
the ldrSensor thread 22

float voltage, ldrVolt; //Definition of triangular voltage 23
and LDR Sensor’s Voltage as float 24
variable 25

int iterations, VL, j; //This also helps in the produce of the 26
triangular waveform 27

/* The following variables is used to measure the time between 28
the parts of the program and of the whole program */ 29
unsigned long ldrTimerOn = 0, ldrTimerOff = 0, 30
timeRelayOnStart = 0, timeRelayOnEnd = 0, timeRelayOffStart = 31
0, timeRelayOffEnd = 0, relayWaitOn = 0, relayWaitOff = 0, 32
overAllStart = 0, overAllEnd = 0; 33
/* The following variables is used to count how many times the 34
relayControl and ldrSensor threads are executed */ 35
unsigned long thread1Count =0, thread2Count = 0; 36
File syncFile; //Definition of the file which will be used to 37

save data on SD card 38
boolean relayStatus=0; //On 0 = normally off 39
long id = 1; //This counts how many times the whole program is 40

executed 41
/* Setting up the relay, the LCD, the Serial Communication and 42

the protothreads */ 43
void setup() 44
{ 45
 Serial.begin(9600); //Starts the serial port at 9600 46
 lcd.begin(16, 2); //16 columns and 2 rows of the LCD Screen 47
 pinMode (myRelay, OUTPUT); //Declaration of the Relay pin 48

as an Output 49
 PT_INIT(&pt1); //Initialization of 50

68

 PT_INIT(&pt2); //the two protothreads 51
 while (!Serial) //While there is not any serial signal 52
{ 53
 ; //just waiting... 54
} 55
 Serial.print("Initializing SD Card..."); 56
 pinMode(10, OUTPUT); //This PIN, should always be stated as 57

an output, or else the SD won’t work. 58
 digitalWrite(2, HIGH); 59
 if (!SD.begin(2)) //If there is NOT begin the SD on pin 2 60
 { 61
 Serial.println(" Card failure!"); //print this on Serial 62
 return; 63
 } 64
//Or print the following messages 65
 Serial.println(" Card ready!"); 66
 Serial.println(""); 67
 Serial.println("Writing data..."); 68
 Serial.println(""); 69
 SD.remove("syncFile.csv"); //When the Arduino restarts, the 70

syncFile.csv file will be 71
deleted 72

syncFile = SD.open("syncFile.csv", FILE_WRITE); //and 73
recreated for writing 74
data. 75

 if (syncFile) //As long as the syncFile.csv file exists 76
 { 77
 syncFile.println("S/N, Device, Voltage, Status, 78
timeRelayOffStart, timeRelayOffStop, timeWaitStart, 79
timeWaitStop, timeRelayOnStart, timeRelayOnStop, S1, Device, 80
Voltage, timeWaitStart, timeWaitStop, overAllStart, 81
overAllEnd"); 82
 syncFile.close(); //Always close the file after any 83

addition 84
 } 85
 else 86
 { 87
 Serial.println("Error opening syncFile.csv"); 88
 } 89
} 90
//This function activates the relay 91
void relayOn() 92
{ 93
 delay(20); //Wait for 20 mSec 94
 digitalWrite(myRelay, HIGH); //Activate the relay 95
 lcd.setCursor(15, 0); //locating the cursor on LCD 96
 lcd.print("T"); //And writing “T” (this means On) on LCD 97

Screen 98
} 99
/* This function deactivates the relay in the same way as the 100
previous function */ 101
void relayOff() 102
{ 103
 delay(20); 104
 digitalWrite(myRelay, LOW); //Deactivates the relay 105
 lcd.setCursor(15, 0); 106

69

 lcd.print("F"); //writes “F” (Off) on LCD Screen 107
} 108
/* The following function writes down all the measuring data 109
from relayControl thread to noSync.csv file on SD Card: */ 110
void printControlStatus() 111
{ 112
 syncFile = SD.open("syncFile.csv", FILE_WRITE); 113
 if (syncFile) 114
 { 115
 syncFile.print(id); //The count of execution of the 116

program 117
 syncFile.print(",Relay1,"); 118
 syncFile.print(voltage); //The triangular waveform 119
 syncFile.print(","); 120
 syncFile.print(relayStatus); //The relay status 121
 syncFile.print(","); 122
 syncFile.print(timeRelayOffStart); //The start execution 123

time of the relayOff 124
function 125

 syncFile.print(","); 126
 syncFile.print(timeRelayOffEnd); //The stop execution time 127

of the relayOff function 128
 syncFile.print(","); 129
 syncFile.print(relayWaitOn); //The relayWaitOn and the 130

relayWaitOff variables help to count how 131
much time in uSec the relayController 132
waits for the ldrSensor to confirm that 133
the connected device has no problem 134

 syncFile.print(relayWaitOff); //The same as the previous 135
command 136

 syncFile.print(","); //This means an empty column 137
 syncFile.print(timeRelayOnStart); //The start execution 138

time of the relayOn 139
function 140

 syncFile.print(","); 141
 syncFile.print(timeRelayOnEnd); //The stop execution time 142

of the relayOn function 143
 syncFile.print(","); 144
 syncFile.print(","); 145
 syncFile.print(","); 146
 syncFile.print(","); 147
 syncFile.print(","); 148
 syncFile.print(","); 149
 syncFile.print(overAllStart); //The start execution time 150

of the program 151
 syncFile.print(","); 152
 syncFile.println(overAllEnd); //The stop execution time of 153

the program 154
 syncFile.close(); //Closing the syncFile.csv file 155
 } 156
} 157
/* The following function writes down in the same way as the 158
relayControl thread, all the measuring data which are measured 159
by the ldrSensor thread to noSync.csv file on SD Card: */ 160
void printSensorStatus() 161
{ 162

70

 syncFile = SD.open("syncFile.csv", FILE_WRITE); 163
 if (syncFile) 164
 {//1 165
 syncFile.print(","); 166
 syncFile.print(","); 167
 syncFile.print(","); 168
 syncFile.print(","); 169
 syncFile.print(","); 170
 syncFile.print(","); 171
 syncFile.print(","); 172
 syncFile.print(","); 173
 syncFile.print(","); 174
 syncFile.print(",S1,LDR Sensor,"); 175
 syncFile.print(ldrVolt); //The analogue voltage of the LDR 176

Sensor 177
 syncFile.print(","); 178
 syncFile.print(ldrTimerOn); //The start execution time of 179

the sensor 180
 syncFile.print(","); 181
 syncFile.print(ldrTimerOff); //The stop execution time of 182

the sensor 183
 syncFile.print(","); 184
 syncFile.print(","); 185
 syncFile.println(overAllEnd); //The finish execution time 186
of the program 187
 syncFile.close(); 188
 } 189
} 190
//This function (protothread), controls the relay 191
 static int relayController(struct pt *pt) 192
{ 193
 PT_BEGIN(pt); //From this point on, is the code of the 194

relayController Protothread 195
 { 196
 /* The following “for” command, repeats the next command 197
lines of it, as long as the iterations are less than 198
MAX_NO_ITERATIONS number */ 199
 for (iterations = 0; iterations < MAX_NO_ITERATIONS; 200
iterations++) 201
/* The following “for” command, repeats the following code 202
lines of it, as long as the VL variable is less than 203
MAX_VOLTAGE_SCALE number */ 204
 for (VL = 0; VL < MAX_VOLTAGE_SCALE; VL++) 205
// waveform of 0-3-0 volts 206
 { 207
 overAllStart = micros(); //Start counting executing 208

time of all the program in uSec 209
 if (iterations %2 != 0) //Checks if the remainder of 210

division is not 0 211
 { 212
 j = MAX_VOLTAGE_SCALE - VL; 213
 } 214
 else 215
 { 216
 j = VL; 217
 } 218

71

/* The following code calculates the voltage which will 219
produce the triangular waveform: 3 is the maximum voltage 220
value, 1023 is the analogue reading. */ 221
 voltage = 3 - j * (1023 / MAX_VOLTAGE_SCALE) * (3.0 / 222
1023.0); 223
 id++; //this is inside the for loop as it is needed to 224

count in every change of the voltage 225
 lcd.setCursor(0, 0); 226
 lcd.print("R1="); 227
 lcd.setCursor(3, 0); 228
 lcd.print(thread1Count); //the LCD shows how many 229

times the relayController thread is executed 230
 lcd.setCursor(0, 1); 231
 lcd.print("V1="); 232
 lcd.setCursor(3, 1); 233
 lcd.print(voltage); //Also shows the voltage 234
/* The following “if” statement checks if the voltage’s values 235
are between 2.1 and 2.4 (operating range) */ 236
 if (voltage >= 2.1 && voltage <= 2.4) 237
 { 238
 riseFlag = 1; //It rises the flag to inform the 239

ldrSensor thread that the voltage is 240
between 2.1 and 2.4 volts 241

 thread1Count++; //counts how many times the “if” 242
statement is true 243

 relayWaitOn = micros(); //The start time in uSec of 244
how many time the relayController 245
thread waits the ldrSensor thread 246
to confirm that the connected 247
device (LED) has no problem 248

 PT_WAIT_UNTIL(pt, sensorFlag != 0); //The 249
relayController waits until the 250
sensorFlag raises 251

 relayWaitOff = micros(); //The stop time 252
 sensorFlag = 0; // downhaul of flag 253
 if (ldrVolt <= 0.30) //This “if” statement checks if 254

the voltage of the ldrSensor 255
is less than 0.30V 256

 { 257
 timeRelayOnStart = micros(); //Starts counting 258

time in uSec 259
 relayOn(); //Activates the relay 260
 timeRelayOnEnd = micros(); //Stops counting time 261

in uSec 262
 relayStatus = 1; //Relay On 263
 printControlStatus(); 264
 } 265
 else 266
 { 267
 timeRelayOffStart = micros(); //Starts counting 268

time in uSec 269
 relayOff(); //Deactivates the relay 270
 timeRelayOffEnd = micros(); //Stops counting time 271

in uSec 272
 relayStatus = 0; //Relay Off 273
 printControlStatus(); 274

72

 } 275
 riseFlag = 1; //Rises the flag 276
 } 277
 else 278
 { 279
 timeRelayOffStart = micros(); //Starts counting time 280

in uSec 281
 relayOff();//Deactivates the relay 282
 timeRelayOffEnd = micros(); //Stops counting time in 283

uSec 284
 relayStatus = 0; //Relay Off 285
 printControlStatus(); 286
 riseFlag = 1; //Rises the flag 287
 } 288
 } 289
 } 290
 PT_END(pt); //Here stops the code of the relayController 291

protothread 292
} 293
/* The ldrSensor thread, checks if the connected device (LED) 294
is functional, or if under voltage or high voltage is detected 295
*/ 296
 static int ldrSensor(struct pt *pt) 297
{ 298
 PT_BEGIN(pt); //Here starts the code for ldrSensor Thread 299
 ldr = analogRead(lightRes); //Reading the analogue input 300

from PIN A1 301
 ldrTimerOn = micros();//Starts counting time in uSec 302
 ldrVolt = ldr * (5.0 / 1023.0); //Transmute the analogue 303

reading into voltage 304
 lcd.setCursor(8, 0); 305
 lcd.print("S1="); 306
 lcd.setCursor(11, 0); 307
 thread2Count++; //counts how many times the ldrSensor 308

function has executes 309
 lcd.print(thread2Count); //the LCD shows how many times the 310

ldrSensor function executes 311
 lcd.setCursor(8, 1); 312
 lcd.print("V2="); 313
 lcd.setCursor(11, 1); 314
 lcd.print(ldrVolt); //Prints on LCD the voltage of the LDR 315

Sensor 316
 sensorFlag = 1; //Rises the sensor flag 317
 PT_WAIT_UNTIL(pt, riseFlag != 0); //The ldrSensor thread 318

waits until the relayController 319
thread rise the flag, which 320
means that the relayController 321
has entered in the operation 322
range of voltage 323

 riseFlag = 0; // downhaul of flag 324
 ldrTimerOff = micros(); //Stops counting time in uSec 325
 overAllEnd = micros(); //Stops counting executing time of 326

all the program in uSec 327
 printSensorStatus(); 328
 PT_END(pt); //The end of code of the ldrSensor protothread 329
} 330

73

//The infinitive loop 331
void loop() 332
{ 333
 relayController(&pt1); //call of the relayController thread 334
 ldrSensor(&pt2); //call of the ldrSensor thread 335
} 336

74

4. Results

4.1 Metrics

In this Section, the experimental values of the three programming models are presented and

analysed. The programs ran for one hour, collecting a large amount of data which is shown in

charts in order to examine the behaviour of the microprocessor during the execution of each

of the three types of programming models.

4.1.1. NoThread.csv file

For the serial programming model, six tabs of Excel sheets are presented, with measured and

calculated data. These tabs are the following:

a. NoThread. This tab contains all measured data of the experiment. They are presented

in 15 columns of data, which are:

1. S/N: Serial Number

2. Device: Identifies the relay used

3. Voltage: The values of the virtual triangular waveform (3 – 0 – 3V)

4. Status: The state of the relay; 1 = ON, 0 = OFF

5. timeRelayOffStart: Capture the start execution time of the relayOff()

function

6. timeRelayOffStop: Capture the stop execution time of the relayOff()

function

7. timeRelayOnStart: Capture the start execution time of the relayOn()

function

8. timeRelayOnStop: Capture the stop execution time of the relayOn()

function

9. Sensor: ID of the sensor

10. Device: Type of the sensor

11. LDR Voltage: Capture of the voltage from the light sensor from the analogue

input of Arduino

12. timeLDRStart: Capture of the start execution time of the ldrSensor thread

13. timeLDRStop: Capture of the stop execution time of the ldrSensor thread

14. allStart: Capture of the start execution time of the whole program

15. allStop: Capture of the stop execution time of the whole program

b. Voltage and Error. This tab contains some of the data of the NoThread tab as well

as one column of evaluated data in order to create the Voltage and Status chart, as

long as the Error flag in Generating Triangular Voltage Distribution is not set. This

tab contains the following columns:

1. Voltage: Data were taken from the corresponding column of the NoThread

tab

2. allStart: Data was taken from the corresponding column of the NoThread tab

3. Status: Data was taken from the corresponding column of the NoThread tab

4. allStop: Data was taken from the corresponding column of the NoThread tab

75

5. Error: This shows the time which is needed for the program to be executed in

a period (the complete execution of the program)

The following charts were exported:

1. The virtual triangular waveform: Represents the virtual voltage 0 – 3 – 0

volts, versus start execution time of the program (allStart).

2. The Status of the relay: It is combined in the previously mentioned waveform,

in a second y axis and it represents the On or Off statements of the relay

through time versus voltage

3. The diagram named “Error in Generating Triangular Voltage Distribution”:

Represents graphically the stop execution time of every period of the

execution of the program. It results from the allStop column versus the Error

column.

c. Time per Period. This tab shows how many times the program was executed in the

total execution time of the 1 hour. The following data columns were used:

1. Voltage: Data was taken from the corresponding column of the NoThread tab

2. allStart: Data was taken from the corresponding column of the NoThread tab

3. allStop: Data was taken from the corresponding column of the NoThread tab

4. Time per Period (uSec): Shows the average execution time of each period of

the program in microseconds

5. Time per Period (Sec): Shows the average execution time of each period of

the program in seconds

6. Period: Shows the number of iterations of the execution of the program, in

the total time of one hour. It resulted from counting the number 3 of the

voltage column, by checking all the values of the voltage column.

7. LDR Voltage: The voltage of the LDR sensor is recorded each time the

ldrSensor thread executes

8. Period of the ldrVoltage: The number of executions of the ldrSensor thread

is indicated.

d. Status Error. In this tab, we checked if there was any incorrect state of the relay

module. It was checked if the relay was in an ON state, while the virtual triangular

voltage and the sensor‟s voltage was out of the predefined operational range and vice

versa. It is recalled that the operating range of the virtual triangular voltage is from

2.1 Volts to 2.4 Volts and the operational range of the LDR‟s voltage is less than 0.30

Volts.

The following columns of data were used:

1. Voltage: Data was taken from the corresponding column of the NoThread tab

2. ldrVoltage: Data was taken from the corresponding column of the NoThread

tab

3. allStart: Data was taken from the corresponding column of the NoThread tab

4. Theoretical Status: Represents the state of the relay as it should work, in

accordance to the virtual triangular voltage and the LDR Sensor‟s voltage.

The formula which were used in excel, was the following:

 =IF(AND(Ax1>=2.1;Ax1<=2.4;Bx1<=0.3);1;0)

76

5. Practical Status: Data taken from the Status column of the NoThread tab

6. Error: In this data column, the Theoretical Status and the Practical Status

were compared by using the formula:

 =IF(Dx1=Ex1;0;1).

If the relay module has any wrong state, then 1 should be written in the Error

column or else should be written 0, which indicates that the relay has the

correct state, according to the given parameters.

7. allStart: Same values as previously.

8. Error: Same values as previously.

The allStart and the Error columns were copied in order to be used together in the

exportation of the diagram which is presented on this tab. In its x axis are assigned the

allStart data column and in its y axis the Error data column. This diagram, named

Error, shows graphically the possibly state errors of the relay, during the execution

time of the program, which is the time of 1 hour.

e. RelayOn Delay. This tab calculated the variation of the relayOn() function and

exported it into a graph versus the timeRelayOnStart data column, which is the start

execution time of the relayOn() function of the program.

The following data columns were used:

1. AllStart: Data was taken from the corresponding column of the NoThread tab

2. Time: This data column clarifies at what time of the column allStart, the relay

is activated and deactivated, when i.e. the relayOn() function runs. The

values of this column are resulted by using the following excel formula:

=IF(AND(Cx2=Cx1;Dx2=Dx1);0;Ax2)

This formula shows that if both of the equations which are in the brackets, are

true, then the value of 0 will be written in the corresponding cell, in which the

formula is calculated. Otherwise, the value of the corresponding Ax cell will

be written in the formula cell.

3. timeRelayOnStart: Data was taken from the corresponding column of the

NoThread tab

4. timeRelayOnStop: Data was taken from the corresponding column of the

NoThread tab

5. RelayOn Time Variation. This data column shows the duration of the

relayOn() function. Its values are resulted by using the formula:

=Dx1-Cx1

This formula results the time duration of the relayOn() function; A

subtraction of the stop execution time of the relayOn() function from the

start execution time of the same function is made, in order to export the

duration time result.

Next, the previously mentioned columns (allStart, RelayOn Time Variation,

timeRelayOnStart, timeRelayOnStop, Variation RelayOn) were sorted in ascending order

based on the RelayOn Time Variation data column.

77

From the previously mentioned classification, the values of the timeRelayOnStart and the

Variation RelayOn data columns were used, but only those which start from the point on

which the relay changes state, i.e. as calculated in Time data column. So, those data are

copied in two new columns:

1. timeRelayOnStart sorted

2. Variation RelayOn sorted.

Consequently, the two new data columns are used in order to export the “Variation RelayOn

Sorted” graph in this tab. The x-axis represents the start execution time of the relayOn()

function and the y-axis corresponds to the variation of the relayOn() function.

f. RelayOff Delay. In the same way as the RelayOn Delay tab was calculated, the

variation of the relayOff() function was exported into a graph versus the

timeRelayOffStart data column, which is the start execution time of the

relayOff() function of the program.

The following data columns were used:

1. AllStart: Data was taken from the corresponding column of the NoThread tab

2. Time: This data column clarifies at what time of the column allStart, the relay

is activated and deactivated. When i.e. the relayOff() function runs. The

values of this column are resulted by using the following excel formula:

=IF(AND(Cx2=Cx1;Dx2=Dx1);0;Ax2)

This formula shows that if both of the equations which are in the brackets, are

true, then the value of 0 will be written in the corresponding cell, in which the

formula is calculated. Otherwise, the value of the corresponding Ax cell will

be written in the formula cell.

3. timeRelayOffStart: Data was taken from the corresponding column of the

NoThread tab

4. timeRelayOffStop: Data was taken from the corresponding column of the

5. NoThread tab

6. RelayOff Time Variation. This data column shows the duration of the

relayOff() function. Its values are resulted by using the formula:

=Dx1-Cx1

This formula results the time duration of the relayOff() function; A

subtraction of the stop execution time of the relayOff() function from the

start execution time of the same function is made, in order to export the

duration time result.

In the same way as the previous tab was created the two new columns:

1. timeRelayOffStart sorted

2. Variation RelayOff sorted.

Consequently, the two new data columns are used in order to export the “Variation RelayOff

Sorted” graph in this tab. The x-axis represents the start execution time of the relayOff()

function and the y-axis corresponds to the variation of the relayOff() function.

78

4.1.2. NoSync.csv File

This file corresponds to asynchronous parallel programming model. The procedure was

similar to the previous one, as the data types were the same with those of Section 4.1.1.

Therefore, we evaluated same things and were arisen charts which correspond to those of the

Section 4.1.1.

4.1.3. SyncFile.csv File

This file corresponds to synchronous parallel programming model. The procedure was also

similar to the two previous programming models, but there were some important differences

which will be analysed below:

a. SyncFile tab: In this tab, measurements and timings of the experiment was the same

as the previous two sections except from:

1. timeWaitStart: Capture of the start time of the relayController thread waiting,

which is achieved by using the PT_WAIT_UNTIL command of the

Protothreads library

2. timeWaitStop: Capture of the stop time of the relayController thread waiting,

which is also achieved by using the PT_WAIT_UNTIL command of the

Protothreads library

3. timeWaitStart: Capture of the start time of the ldrSensor thread waiting,

which is achieved by using the PT_WAIT_UNTIL command of the

Protothreads library

4. timeWaitStop: Capture of the stop time of the ldrSensor thread waiting,

which is also achieved by using the PT_WAIT_UNTIL command of the

Protothreads library

b. Voltage and Error. In this tab we followed the same process as we did in the

correspond tab of the two previous sections. But we have differences in the chart

“Error in Generating Triangular Voltage Distribution” which is analysed below.

The first chart which exported (Virtual triangular Waveform and Relay Status) is the

same as the corresponding one of the two previous sections. But in the second

diagram named “Error in Generating Triangular Voltage Distribution”, there are some

differences between the current programming model and the two others. This lies in

the fact that the two threads are synchronized between them by using the

PT_WAIT_UNTIL command. An important effect that the synchronization results

are that the execution time is differently managed, in comparison to the other

programming models. Also, the time behaviour of the program is different.

Analysing furthermore the previously mentioned data, the following remarks and

conclusions are arising:

1. While the virtual triangular voltage is out of the range of 2.1 – 2.4 Volts, the

program is on hold i.e. never reach its termination limit, until the virtual

triangular voltage‟s range is within the above range. This behaviour results

from the use of the PT_WAIT_UNTIL command. Thus, the following

execution timings are resulted:

79

a. t1 Time limit: The virtual triangular voltage is within the range of

3 – 2.41 Volts

b. t2 Time limit: The virtual triangular voltage is within the range of

2.4 – 2.1 Volts and 2.1 – 2.4 Volts

c. t3 Time limit: The virtual triangular voltage is within the range of

2.09 – 0 – 2.09 Volts

d. t4 Time limit: The virtual triangular voltage is within the range of

2.41 – 3 Volts

Figure 4 – 1: Graphical View of the Timetable of the Program in one period

4.1.4 Comparing the results

After analysing the collected data, it is important to compare results from the different

programming models. The file “Models Comparison.xlsx” was created in order to show this

comparison.

In this file four tabs of data are presented, which are:

a. Voltage and Error Comp. In this tab, we present collected data (“allStop” column

and “Error” column of “Voltage and Error” tab) of the three models: the serial

programming model (in blue), the asynchronous parallel programming model (in red)

and finally, the synchronous parallel programming model (in green). Figure 4 – 20

compares execution time, as analysed in the next Section. In addition, Table 6

compares the percentage difference of the execution speed of the three programming

models.

We also present the Table 7, titled as “Execution Time Variation for each Model

(μS)”, which shows the variation between the execution timings of the programming

models. In simpler words, with the help of this table, we show the difference between

80

the final end execution time of the program, minus its first end execution time of the

same program, for each programming model, in κS.

b. TimePerPeriod Comp. In this tab, we present the “Comparison of the Period of

the Program and of the ldrSensor Thread” table, which presents the average

execution time of one period of the program in κS and in S, the periods of the

program in the time of 1 hour and the periods of the ldrSensor in the same time, for

the three programming models.

c. RelayOn Delay Comp. In this tab, we present the “timeRelayOnStart Sorted” and

the “Variation RelayOn Sorted” data of the RelayOn Delay tab of the three files.

The highlighted colours are the same as previous. Also the “Comparison of the

RelayOn Variation of the three programming models” diagram is resulted. It will

be analysed in the next Section.

d. RelayOff Delay Comp. In the same way as the previous tab, we present the

timeRelayOffStart Sorted and the Variation RelayOff Sorted data of the RelayOff

Delay tab of the three files. The highlighted colours are also the same and the

“Comparison of the RelayOff Variation of the three programming models”

diagram is resulted.

4.2 Graphics and Evaluations

In this Section, we present charts and diagrams based on data analysis from the experimental

part of this thesis, at first examining each programming model separately.

4.2.1 NoThread.csv file’s diagrams

By processing certain tabs of the spread sheet (see Section 4.1), we obtain the following

charts:

1. Voltage and Error Tab Diagrams.

2. Error in Generating Triangular Voltage Distribution

81

Figure 4 – 2: Virtual Triangular Waveform and the Relay Status

Figure 4 – 3: Error in Generating Triangular Voltage Distribution

 Figure 4 – 2 is a combination of the virtual triangular voltage sweep and of

the Relay status, versus the total execution time of the program, which is

about 1 hour. The triangular voltage is illustrated in the y1 axis (left vertical),

the Relay status in the y2 axis (right vertical) and eventually, the total

execution time in the x axis (horizontal).

 Figure 4 – 3 presents differences between the current and the previous

execution time of the program versus the total execution time. In order to

understand better what this diagram illustrates, it is necessary to focus on the

following facts:

 The triangular voltage is produced using two for loops as the Figure

4 – 4 shows.

Figure 4 – 4: The two for loops in the Program

The first for loop produces the number of iterations of one period of

82

the waveform, i.e. how many periods of 3 – 0 – 3 volts will be

produced in one execution of the program. The default iterations are

8, thus typically when the “for loop” finishes its execution, the virtual

triangular voltage will have done 8 periods.

The second for loop, which is inside the previous for loop, produces

the steps by which the triangular voltage changes its values, in order

to create one period. These steps were predefined to be 32 in a single

period of the triangular voltage. Hence, the triangular voltage steps

are as follows:

Therefore, the first step of change is

In the same way all subsequent steps can be constructed until the

triangular voltages returns to 3 volts.

 When the previous processes are completed, the program stores all

the measured data, along with its stop execution time, in the

noThreads.csv file in the SD card module terminates and then it goes

again. When the program terminates once more, it stores the new

execution time of the program. The difference between the new

execution time and the previous execution time, gives the first point

in Figure 4 – 2. When this process is repeated for all data points,

Figure 4 – 2 is produced.

Figure 4 – 3 reveals an upward trend in the difference of the total execution time of

the program. This is due to the gradual increase of the recorded data on the SD card

module, as the process of the Arduino for data storing in SD Card (opening of the file,

finding the last storing, storing the new data, closing of the file), creates an increasing

delay of the execution time of the program (see Table 7). In conclusion, we notice

that the hardware of the Arduino (the microprocessor and the varying response times

of the Arduino peripherals) is influencing the execution time, and thus time behaviour

of the program. In real-time systems, this variance could be unacceptable.

3. Status Error tab Diagram.

In Figure 4 – 5 we examine if the relay module is ever at a wrong state, as mentioned

in Section 4.1.

83

Figure 4 – 5: Status Error of the Relay Module

The x axis corresponds to the total execution time of the program (1 hour) and the y

axis corresponds to the possible error status of the Relay. It is emphasized that if the

relay has a wrong status while the program executes, it will return the value of 1.

Otherwise, it will return the value of 0.

By observing the Figure 4 – 5, we notice that the relay does not have any wrong state

for the whole duration of the execution, thus the program behaves consistently.

4. RelayOn Delay Tab Diagram.

In Figure 4 – 6, we show the “Variation RelayOn Sorted” Diagram which illustrates

the time duration of the relayOn() function, in comparison with the start time of

the same function. The duration time of this function in κS is computed via the

difference between its stop execution time minus its start execution time.

84

Figure 4 – 6: Variation RelayOn Sorted Diagram

Analysing this diagram, there is a slight variation of the duration of the execution

time of the relayOn() function which varies from 0 to 16 κS. Possible reasons for

this variation are non-deterministic response rate of the relay module or of the

microcontroller. Also another reason for this behaviour might be arithmetic rounding

of timing values when they come to many decimal digits.

However, there is no increase of the runtime of the function as happened in the Figure

4 – 3. This is an indication that the SD card module is the cause for the increase in the

runtime of the program that generates the triangular voltage sweep during the 1 hour

execution.

5. RelayOff Delay Tab Diagram.

In Figure 4 – 7, the “Variation RelayOff Sorted” is presented. This figure illustrates

the time duration of the relayOff() function, in comparison to the start time of the

same function.

85

Figure 4 – 7: Variation RelayOff Sorted Diagram

Notice that there is slightly greater variation of the runtime of the relayOff()

function, which is about 20 uSec, in relation to the variation in Figure 4 – 6.

4.2.2 NoSync.csv file’s diagrams

We proceed in a similar way with the noThreads.csv file.

1. Voltage and Error Tab Diagrams (Figures 4 – 8 and 4 – 9).

Figures 4 – 8 and 4 – 9 are similar to Figures 4 – 2 and 4 – 3, and thus the remarks are

also similar to the ones in Section 4.2.1.

86

Figure 4 – 8: Virtual Triangular Waveform and the Relay Status

Figure 4 – 9: Error in Generating Triangular Voltage Distribution

2. Status and Error Tab Diagram.

Figure 4 – 10 is similar to Figure 4 – 5, and the remarks are also similar to Section

87

Figure 4 – 10: Status Error of the Relay Module

3. RelayOn Delay Tab Diagram.

Figure 4 – 11 presents the Variation in the time duration of the relayOn()

function, in comparison with the start time of the same function.

Figure 4 – 11: Variation RelayOn Sorted Diagram

The variation of the duration of the execution time of the relayOn() function is

88

from 0 to 16 κS. The reasons are similar to those of Figure 4 – 6.

4. RelayOff Delay Tab Diagram.

Figure 4 – 12 presents he variation of the relayOff() function, in comparison

with the start time of the same function. The same remarks and conclusions can be

made for this diagram, as Figure 4 – 7 of the noThreads.csv file.

Figure 4 – 12: Variation RelayOff Sorted Diagram

4.2.3 syncFile.csv file’s diagrams

Most of the diagrams in this Section were the same as previous ones, but there were also

some differences between them, which are explained below.

1. Voltage and Error Tab Diagrams.

Figures 4 – 13 and 4 – 14 are similar to the ones in Sections 4.2.1 and 4.2.2, except

that the differences in timing stem from the synchronization between threads.

89

Figure 4 – 13: Virtual Triangular Waveform and the Relay Status

Figure 4 – 14: Error in Generating Triangular Voltage Distribution

A focused “Error in Generating Triangular Voltage Distribution” graph is presented

next (Figure 4 – 15).

90

Figure 4 – 15: Error in Generating Triangular Voltage Distribution (Focused Graph)

In Figure 4 – 14 we illustrate the t1, t2, t3 and t4 time limits as they were described in

Section 4.1. As shown in Figure 4 – 16a, the t1 and t4 time limits, correspond to 3 –

2.4 Volts (t1) and 2.4 – 3 Volts (t4) of the virtual triangular voltage (orange

highlighted area), i.e. two intervals equal in duration.

Figure 4 – 16a: t1 and t4 Time Limits

91

Figure 4 – 16b: Time limits highlighted with different colors

Figure 4 – 16b illustrates the time limits which were described in Section 4.1, as they

were depicted by the experiment in this graph, but emphasized with different colour

for each time limit. In more details, the green spots of the curve represent the t2 time

limit, the red spots the t1 and t4 time limits and finally the yellow spots represent

the t3 time limit.

As in the other two programming models, we notice that there is a gradual increase of

the program execution time during the complete system execution time of 1 hour,

which is due to storing an increasing amount of data on the SD card module. This

increase is compared to the other programming models in Table 7, cf. next section.

 t1 and t4 Time Limits (red spots on the 4 – 16b graph)

These time limits essentially concern the waiting time of the program until

the triangular voltage values are within the operation limits of the

experimental device (i.e. between 2.1 – 2.4 Volts). This extra wait in the

program results from use of the protothreads PT_WAIT_UNTIL command.

 t2 Time Limit.

As shown in Figure 4 – 16c, the t2 time limit corresponds to the operating

range of the experimental device, which is 2.4 – 2.1 Volts and 2.1 – 2.4 Volts

of the triangular voltage (orange highlighted area). Therefore, this time limit

is essentially the execution time of the program, without any wait from

synchronization. In simple terms, in this time interval, the program executes

in parallel both threads in every step of the triangular voltage and checks all

92

parameters for the correct operation of the device (i.e. sensor values). If

everything is in order, the program terminates and starts again, doing the

same process, until the operation limits of the triangular voltage are out of

the working range, or the sensor outputs eventually report an unacceptable

value. In the latter, the program enters again in standby mode by calling

PT_WAIT_UNTIL.

Figure 4 – 16c: t2 Time Limit

 t3 Time Limit.

As it is shown in Figure 4 – 16d, the t3 time limit corresponds to 2.1 – 0 – 2.1

volts of the triangular voltage (Orange highlighted area).

Figure 4 – 16d: t3 Time Limit

93

The t3 time limit concerns another waiting time of the program until the

triangular voltage's values are within the operation limits of the experimental

device. This program wait also results from use of the protothreads

PT_WAIT_UNTIL command.

2. Status and Error tab Diagram.

Figure 4 – 17 reveals consistent operation, as mentioned in Section 4.1.

Figure 4 – 17: Status Error of the Relay Module

3. RelayOn Delay Tab Diagram.

Figure 4 – 18 presents a variation in the time duration of the relayOn() function in

comparison to the start time of the same function. The variation of the duration of the

execution time of the relayOn() function is again from 0 to 20 μS and the reasons

for this variation have been described before.

94

Figure 4 – 18: Variation RelayOn Sorted Diagram

4. RelayOff Delay Tab Diagram.

In Figure 4 – 19, we show variation of the time duration of the relayOff()

function, in comparison with the start time of the same function. The same remarks

and conclusions can be drawn as previous Sections.

Figure 4 – 19: Variation RelayOff Sorted Diagram

4.2.4 Comparing the Results

After the data analysis made in the previous sections, we focus on comparing results of the

three programming models against each other, in order to make conclusions and remarks

about how parallelism affects program execution time on an Arduino microcontroller. As

95

foretold, the “Models Comparison.xlsx” file has been created to process comparison data.

1. Voltage and Error Comp. Tab.

In this tab, we have combined the “Error in Generating Triangular Voltage

Distribution” graphs of the three programming models into Figure 4 – 20.

Figure 4 – 20: Comparison of Execution Timings of the Three Programming Models

Figure 4 - 20 shows variation in execution speed for each programming model during

system operation of 1 hour. While the Asynchronous Parallel programming model

has almost the same behaviour as the Serial programming model, it is slightly faster,

while the Synchronous model is always much faster. There is also a tendency for the

execution time to increase, which is most likely due to delay in SD card data logging

as more data is recorded (see Section 4.2.1). In real-time systems, this variance could

be unacceptable.

Table 5: Average Execution Time (per loop) of the Three Programming Models

Average Execution Time (μS)

Serial Model 14138110.0

Asynchronous Parallel

Programming Model 13088806.0

Synchronous Parallel

Programming Model 593082.2

96

Table 6: Speedup of Parallel Programming Models

Table 5 shows the average execution time (per loop) of the programming models.

We can see that the Parallel programming models are both faster than the Serial

model. In fact, as Table 6 shows, the Asynchronous Parallel programming model has

a small speedup factor (1.08), while the Synchronous model achieves a significant

speedup (23.84) over the Serial model. This big improvement is due to

synchronization between the two threads of the program, i.e. use of

PT_WAIT_UNTIL. Notice that if the maximum number of iterations currently set to

8 (cf. MAX_NO_ITERATIONS in lines 6 (7 or 7) in the sequential (resp.

asynchronous and synchronous) is decreased to a bare minimum of 1, the relative

speedup decreases to 5.64 (instead of 23.84). However, the overhead of the sequential

and asynchronous implementations can never be smaller than 5.64, without the use of

proper lightweight thread synchronization mechanisms.

Execution Time Variation

for each Model (μS)

Serial Model complete execution 1796280

Asynchronous Parallel

Programming Model
complete execution 1868424

Synchronous Parallel

Programming Model

t2 Time Limit 35184

t1 + t4 Time Limits 951564

t3 Time Limit 1027708

Total 2014456

Table 7: Execution Time Variation for each model

Table 7 shows gradual increase in the execution time (drift) for each model, by

comparing duration of the last execution of the program with its first during the 1-

hour experiment. As it can be easily observed in this table the execution time

increases during the 1-hour experiment of the Synchronous Parallel programming

model. For the synchronous model each specific time limit has been defined in a

previous Section. The drift appears to be similar for all models.

Relative Speedup vs. Serial Model

Asynchronous Model 1,08

Synchronous Model
23,84

97

2. TimePerPeriod Comp. tab.

In this tab, Table 8 compares the average execution time per each period in the

program for all three models. In addition, we compare how many times the program

loop and the ldrSensor thread has been executed within the 1 hour system run.

Table 8: Comparison of the Periods of the Programs

By comparing the results we notice that:

a. The average time per period of the program is almost the same between the three

models. The same is true for the number of periods (loop) executed in the

program.

b. Concerning the Serial and Asynchronous Parallel programming models, we

notice that the ldrSensor thread runs almost the same number of times, while for

the Synchronous Parallel programming model we notice a huge increase of the

execution of the ldrSensor thread. This means that the ldrSensor thread was

executed 24 (or 22) times more than the Serial programming model (resp.

asynchronous model). This indicates that if we use synchronization in a parallel

program based on protothreads, in the same time in which this program needs to

run in serial mode, the synchronous parallel programming model executes much

more updates of the ldrVoltage. Therefore, better system monitoring and control

can be achieved.

Comparison of the Period of the Program and of the ldrSensor

Thread

Programming Models
Average Time Per

Period (μS)

No. Periods

(loop)

No. Periods

(ldrVoltage)

Serial Programming

Model
3606568.318 1019 260

Asynchronous Parallel

Programming Model
3366347.819 1102 283

Synchronous Parallel

Programming Model
3711874.690 1014 6345

98

3. RelayOn Delay Comp. tab

Figure 4 – 21: Comparison of RelayOn Variation in the three programming models

In this tab we examine if the relayOn() function runs in the same way in the three

programming models. As we notice in Figure 4 - 21, the relayOn() function runs

in the same way in the three programming models.

4. RelayOff Delay Comp. tab

99

Figure 4 – 22: Comparison of RelayOff Variation in the three programming models

Similarly to the relayOn() function, we examine if the relayOff() function

runs in the same way in the three programming models. As we see in Figure 4 - 22,

the relayOff() function runs in almost the same time for all three programming

models.

100

5. Future Work

Through the experimental study and analysis in this thesis, we have studied and

evaluated the execution time behaviour of three different programming models (serial,

asynchronous parallel and synchronous parallel programming) on an Arduino board

design focusing on energy monitoring. In order to make accurate comparisons among

the three programming models, all designs use the same monitors, equivalent

execution environment, as well as identical control flow. Moreover, during

experimentation, all designs compute the same performance metrics.

The objective of this study is to demonstrate experimentally whether a parallel

programming model based on lightweight protothreads is as reliable as the serial

programming model, but faster.

During the course of this experiment some concerns were raised related to whether

parallelism is achieved with protothreads while the asynchronous programming model

is running, or not. More specifically, it was noticed that the asynchronous parallel

programming model operates exactly as the serial programming model does. So, one

of the results is that the protothreads library requiring further development in order

that true parallelism can be achieved, even when there is no synchronization between

the parallel execution of the threads.

Extensions of the protothreads library can consider synchronization and especially

mutual exclusion of collected data. For example, when Thread1 attempts to increase

the value of x by 1, at the same moment, Thread2 (which is faster than Thread1) for

some reason, e.g. because of the input signal of a sensor, attempts to reduce x by 1,

(while Thread1 is already attempting to do that), the x variable may result with an

error value unless locks are used.

Along with execution differences in the programming models, we examined the way

to manage their execution time. Specifically, by taking into consideration the

execution speed of the synchronous programming model, one possible future

extension of this experiment would be to use it in a real-time system environment.

Possible ways to convert the current setup into a real-time system require

reprogramming of the code depending on the time response of the device, the creation

of new libraries based on interrupt signals, the simplification of both hardware and

software of the device etc. These conversions would make possible the use of the

device in an environment which has specific operation time-frames and deadlines. It

can also be examined whether the Arduino board is reliable enough for use in

commercial real time systems.

This is particularly important in cases that dangerous (hazardous) situations may arise

during the execution of the program. In this case, the code must safeguard and protect

the human factor and equipment from potential damage or injuries. Therefore, an

additional future extension of this application would be the ability to predict these

conditions. In other words, it is necessary to design smart devices that will have the

ability to decide what action to take, according to data received from sensors, in

combination with a real-time library, in order to act immediately, before there is any

damage or injury.

101

6. References

[1] http://en.wikipedia.org/wiki/Apollo_Guidance_Computer - Apollo Guidance Computer

[2] http://www.fullchipdesign.com/verilog_tutorial.htm - Verilog

[3] http://en.wikipedia.org/wiki/VHDL - VHDL

[4] http://embedded.eecs.berkeley.edu/research/hsc/class/ee249/lectures/l10-SystemC.pdf -

System C

[5] http://www.informit.com/articles/article.aspx?p=1352549&seqNum=2 - Predictability and

determinism

[6] http://en.wikipedia.org/wiki/Wright_brothers - Wright Brothers

[7] http://searchcio-midmarket.techtarget.com/definition/transducer - Transducers

[8] http://arduino.cc/ - Arduino Official Site

[9] http://arduino.cc/en/Main/arduinoBoardUno - Arduino Uno Rev 3

[10] http://www.funduino.cn/ - Funduino

[11] http://www.sainsmart.com/ - Sainsmart

[12] http://arduino.cc/en/Tutorial/PWM - PWM

[13] http://web.engr.oregonstate.edu/~traylor/ece473/lectures/twi.pdf - TWI

[14] http://www.trossenrobotics.com/c/arduino-sensors.aspx - List of Arduino Sensors with their

price

[15] http://el.wikipedia.org/wiki/Arduino - Arduino IDE Wikipedia

[16] http://en.wikipedia.org/wiki/Cross-platform - Cross-platform applications

[17] http://playground.arduino.cc//Linux/OpenSUSE - Installing Arduino IDE on OpenSUSE

[18] http://arduino.cc/en/Main/Software - Download link of the Arduino IDE

[19] http://man7.org/linux/man-pages/man2/fork.2.html#section_dir – fork()

[20] http://man7.org/linux/man-pages/man2/clone.2.html#section_dir – clone()

[21] http://man7.org/linux/man-pages/man2/clone.2.html#COLOPHON - Further information

about Linux Threads

[22] https://computing.llnl.gov/tutorials/pthreads/ - Pthreads

[23] http://www.yolinux.com - Pthreads

[24] http://www.cs.cf.ac.uk/Dave/C/node30.html#SECTION003062000000000000000 -

Scheduling Parameters

[25] Threads under specialized OS,

 http://www.tinyos.net/tinyos-2.x/doc/html/tep134.html - TOSThreads

 http://www.cs.berkeley.edu/~prabal/teaching/cs294-11-f05/slides/day8c.pdf MANTIS OS

[26] Thread libraries under Linux, http://tinythreadpp.bitsnbites.eu

[27] http://dunkels.com/adam/ - Adam Dunkels CV

[28] https://www.sics.se/media/news/adam-dunkels-receives-prestigious-chester-carlson-prize -

Swedish University of Computer Science

[29] http://dunkels.com/adam/pt/ - Adam Dunkels work: Protothreads

[30] Dunkels A. Schmidt O. Voigt T. Using Protothreads for Sensor Node Programming, 2005

[31] http://dunkels.com/adam/pt/expansion.html - How protothreads really work

[32] http://en.wikipedia.org/wiki/Duff's_device - Duff‟s Device

[33] http://en.wikipedia.org/wiki/Loop_unwinding - Loop Unwinding

[34] http://www.lua.org/pil/9.html - Coroutines

[35] http://en.wikipedia.org/wiki/Coroutine - Coroutines definition: Coroutines wiki

[36] Goswami A. Bezboruah T. Sarma K.C. Design of An Embedded System For Monitoring and

Controlling Temperature and Light, Research India Publications, India, 2009

[37] http://processing.org/ - Processing

[38] http://plasma-gate.weizmann.ac.il/Grace/ - Grace

[39] https://processing.org/download/?processing - Download Processing

[40] http://en.wikipedia.org/wiki/WYSIWYG - WYSIWYG

[41] http://en.wikipedia.org/wiki/X_Window_System - X Window System

http://en.wikipedia.org/wiki/Apollo_Guidance_Computer
http://www.fullchipdesign.com/verilog_tutorial.htm
http://en.wikipedia.org/wiki/VHDL
http://embedded.eecs.berkeley.edu/research/hsc/class/ee249/lectures/l10-SystemC.pdf
http://www.informit.com/articles/article.aspx?p=1352549&seqNum=2
http://en.wikipedia.org/wiki/Wright_brothers
http://searchcio-midmarket.techtarget.com/definition/transducer
http://arduino.cc/
http://arduino.cc/en/Main/arduinoBoardUno
http://www.funduino.cn/
http://www.sainsmart.com/
http://arduino.cc/en/Tutorial/PWM
http://web.engr.oregonstate.edu/~traylor/ece473/lectures/twi.pdf
http://www.trossenrobotics.com/c/arduino-sensors.aspx
http://el.wikipedia.org/wiki/Arduino
http://en.wikipedia.org/wiki/Cross-platform
http://playground.arduino.cc/Linux/OpenSUSE
http://arduino.cc/en/Main/Software
http://man7.org/linux/man-pages/man2/fork.2.html#section_dir
http://man7.org/linux/man-pages/man2/clone.2.html#section_dir
http://man7.org/linux/man-pages/man2/clone.2.html#COLOPHON
https://computing.llnl.gov/tutorials/pthreads/
http://www.yolinux.com/
http://www.cs.cf.ac.uk/Dave/C/node30.html#SECTION003062000000000000000
http://www.tinyos.net/tinyos-2.x/doc/html/tep134.html
http://www.cs.berkeley.edu/~prabal/teaching/cs294-11-f05/slides/day8c.pdf
http://dunkels.com/adam/
https://www.sics.se/media/news/adam-dunkels-receives-prestigious-chester-carlson-prize
http://dunkels.com/adam/pt/
http://dunkels.com/adam/pt/expansion.html
http://en.wikipedia.org/wiki/Duff's_device
http://en.wikipedia.org/wiki/Loop_unwinding
http://www.lua.org/pil/9.html
http://en.wikipedia.org/wiki/Coroutine
http://processing.org/
http://plasma-gate.weizmann.ac.il/Grace/
https://processing.org/download/?processing
http://en.wikipedia.org/wiki/WYSIWYG
http://en.wikipedia.org/wiki/X_Window_System

102

[42] http://plasma-gate.weizmann.ac.il/Grace/doc/UsersGuide.html - Grace‟s User Guide

[43] http://plasma-gate.weizmann.ac.il/Xmgr/doc/commands.html - Grace‟s terminal commands

[44] http://www.tldp.org/LDP/lpg/node15.html - Named pipe

[45] Capehart B. Turner W. Kennedy W. Guide to Energy Management Fourth Edition, The

Fairmont Press, Inc. United States of America, 2003

[46] http://www.ihu.edu.gr/gateway/expertise/research-areas/energy_management.html -

Definition of Energy Management

[47] http://fritzing.org/home/ - Fritzing Program

[48] http://arduino.cc/en/Main/arduinoBoardMega2560 - Official site of Arduino Mega 2560

Pictures

[1 – 1]: http://www.engineersgarage.com/articles/embedded-systems

[1 – 2]: http://en.wikipedia.org/wiki/Apollo_Guidance_Computer

[1 – 3]: http://www.engineersgarage.com/articles/embedded-systems

[1 – 4]: http://www.engineersgarage.com/articles/embedded-systems?page=2

[1 – 5]: http://www.engineersgarage.com/articles/embedded-systems?page=2

[1 – 6]: http://www.engineersgarage.com/articles/embedded-systems?page=4

[1 – 7]: http://www.ercim.eu/publication/Ercim_News/enw52/donhoffer.html ,

http://www.thinkdefence.co.uk/2013/10/game-spydin-barcelona/

[1 – 8]: http://www.embedded.com/electronics-blogs/beginner-s-corner/4023859

/Introduction-to-Real-Time

[1 – 9]: http://cert.ics.uci.edu/sesa2011/Schedule.html ,

http://www.sbbindia.com/relays.php

[2 – 1]: http://accitron.blogspot.gr/

[2 – 2]: http://arduino.cc/en/Main/arduinoBoardUno

[2 – 3]: http://arduino.cc/en/Hacking/PinMapping168

[2 – 4]: http://www.buyapi.ca/product/37-in-1-arduino-compatible-shield-mega-kit/ ,

http://www.wiregarden.org/

[2 – 5]: http://arduino.cc/en/Main/ArduinoEthernetShield

[2 – 7]: http://playground.arduino.cc/Main/WikiSandbox

[2 – 11]: http://en.wikipedia.org/wiki/Thread_(computing)

[2 – 12]: http://web.cs.miami.edu/home/gallo/CSC322/Content/UNIXProgramming

/UNIXThreads.shtml

[2 – 13]: https://computing.llnl.gov/tutorials/pthreads/

[2 – 14]: https://computing.llnl.gov/tutorials/pthreads/

[2 – 15]: https://computing.llnl.gov/tutorials/pthreads/

[2 – 16]: https://computing.llnl.gov/tutorials/pthreads/

[2 – 17]: https://computing.llnl.gov/tutorials/pthreads/

[3 – 1]: http://www.neuralenergy.info/2011_08_01_archive.html

[3 – 2]: http://arduino.cc/en/Main/arduinoBoardMega2560

[3 – 3]: http://www.datasheetdir.com/ATMEGA2561+AVR-microcontrollers

http://plasma-gate.weizmann.ac.il/Grace/doc/UsersGuide.html
http://plasma-gate.weizmann.ac.il/Xmgr/doc/commands.html
http://www.tldp.org/LDP/lpg/node15.html
http://www.ihu.edu.gr/gateway/expertise/research-areas/energy_management.html
http://fritzing.org/home/
http://arduino.cc/en/Main/arduinoBoardMega2560
http://www.engineersgarage.com/articles/embedded-systems
http://en.wikipedia.org/wiki/Apollo_Guidance_Computer
http://www.engineersgarage.com/articles/embedded-systems
http://www.engineersgarage.com/articles/embedded-systems?page=2
http://www.engineersgarage.com/articles/embedded-systems?page=2
http://www.engineersgarage.com/articles/embedded-systems?page=4
http://www.ercim.eu/publication/Ercim_News/enw52/donhoffer.html
http://www.thinkdefence.co.uk/2013/10/game-spydin-barcelona/
http://www.embedded.com/electronics-blogs/beginner-s-corner/4023859/Introduction-to-Real-Time
http://www.embedded.com/electronics-blogs/beginner-s-corner/4023859/Introduction-to-Real-Time
http://cert.ics.uci.edu/sesa2011/Schedule.html
http://www.sbbindia.com/relays.php
http://accitron.blogspot.gr/
http://arduino.cc/en/Main/arduinoBoardUno
http://arduino.cc/en/Hacking/PinMapping168
http://www.buyapi.ca/product/37-in-1-arduino-compatible-shield-mega-kit/
http://www.wiregarden.org/
http://arduino.cc/en/Main/ArduinoEthernetShield
http://playground.arduino.cc/Main/WikiSandbox
http://en.wikipedia.org/wiki/Thread_(computing)
http://web.cs.miami.edu/home/gallo/CSC322/Content/UNIXProgramming/UNIXThreads.shtml
http://web.cs.miami.edu/home/gallo/CSC322/Content/UNIXProgramming/UNIXThreads.shtml
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
http://www.neuralenergy.info/2011_08_01_archive.html
http://arduino.cc/en/Main/arduinoBoardMega2560
http://www.datasheetdir.com/ATMEGA2561+AVR-microcontrollers

