

TEXNOАОГIKO EKПAIDEYTIKO IДPYMA КРНTHะ

ェXOAH \triangle IOIKH工Hエ KAI OIKONOMIA
TMHMA EMПOPIAГ KAI $\operatorname{\Delta IAФHMI\Sigma H\Sigma ~}$

ENAAAAKTIKEE MOPФEट TOYPILMOY KAI ПPOOПTIKE ANAПTYEHエ АГРОТОYPIEMOY KAI OINOTOYPIEMOY： Н ПЕРІПТЛЕН THЕ IEPAПETPA乏

ЕПIBАEП®N КАӨНГНТНЕ ：ПАППАЕ NIKOАAOХ

EILHГHTPIA ：ПAПAఆANALIOY MAPIA
©

Abstract

АН $\mathbf{\Omega} \mathbf{\Omega} \mathbf{\Sigma H}$

Палаө $\alpha \nu \alpha \sigma$ íov M α рí α

31/08/2007

ПЕРІАНЧН

 tov owoточріб μ ои́.

 тюо́ло бıбколю́v.

 кє甲 $\alpha \lambda \alpha ı$.

 $\mu о р ф$ м́v точрıбцои́.

Λ I TTA ПЕРIEXOMEN $\Omega \mathrm{N}$

Пعрıєұо́ $\mu \varepsilon v \alpha$ iii
＾í $\sigma \tau \alpha$ Пıvóк ωv ．V
＾í $\tau \alpha \Sigma \chi \varepsilon \delta 1 \alpha \gamma \rho \alpha \mu \mu \alpha ́ \tau \omega \nu$. ．vi

ПЕРIEXOMENA

КЕФАへAIO 1 TOYPI $\Sigma T I K O \Sigma \Sigma X E \Delta I A \Sigma M O \Sigma ~ K A I ~ A N A П T Y \Xi H ~$ 1
1．1 Eıб $\alpha \gamma \omega \gamma \dot{\eta}$ ． 2
1．2 Toupıб μ о́s－Oрıбио́с тоv＇Opov ． 3
 ． 5
 7
 9
1．5．1 Моvté $\lambda \alpha$ Kv́кえоu Z $\omega \eta ̆ \varsigma$ 10
1．5．2 Мор甲одоүюко́ Моүтє́л α 13
 14
 15
 18
$1.8 \Sigma v \mu \pi \varepsilon \rho \alpha \dot{\sigma} \mu \alpha \tau \alpha$ 20
КЕФАААIO 2 ENA $\Lambda \Lambda A K T I K E \Sigma ~ M O P Ф E \Sigma ~ T O Y P I \Sigma M O Y ~$ 22
2．1 Eıб $\alpha \gamma \omega \gamma \dot{\eta}$ 23
2．2．Еvà $\lambda \alpha \kappa \tau \iota к \varepsilon ́ \varsigma ~ М о р \varphi \varepsilon ́ \varsigma ~ T o u p ı \sigma \mu о и ́ ~$ 23
 26
 26
 27
2．3．3 T $\alpha \chi \alpha \rho \alpha \kappa \tau \eta \rho \iota \tau \tau \kappa \alpha ́ \tau \omega v \alpha \gamma \rho о \tau о \cup \rho ı \tau \not ́ v$ 28
 29
2．4 Oıvoточрıбцós－Гعıкки́． 30
 31
 32
 34
$2.5 \Sigma v \mu \pi \varepsilon \rho \alpha \dot{\sigma} \sigma \alpha \tau \alpha$ 37
KЕФАЛАIO 3 ME $\Theta О \triangle О О Г I A ~ E P E Y N A \Sigma . ~$ 39
3．1 Eıo $\alpha \gamma \omega \gamma \dot{\eta}$ 40
 40
 41
3．4 К α Өорıбцо́с єрєиขๆтıкои́ бколои́ 42
 43
 44
 45
 46
 47
3．10 Үлодоүı σ о̧́ $\Delta \varepsilon \dot{\prime} \gamma \mu \alpha \tau о \varsigma$ 47
 48
3.12 Е $\mu \pi \downarrow \tau \varepsilon \cup \tau \iota \kappa о ́ \tau \eta \tau \alpha$ 49
3.13 Пєрьорьбноі́ Ерєиvас 49
КЕФАЛАIO 4 АПОТЕЛЕЕМАТА EPEYNAะ 51
4．1 Еıоб $\gamma \omega \gamma \dot{\eta}$ 52
4.2 Прочíл єрюто́ $\mu \varepsilon v \omega v$. 53
4．3 Toupıбтוкŋ́ ко兀о́бт $\alpha, \sigma \eta$ 54
4．4 H $\sigma \chi \varepsilon ́ \sigma \eta ~ \tau \omega \nu ~ к \alpha \tau о і ́ к \omega \nu ~ \mu \varepsilon ~ \tau о \nu ~ \tau о и \rho \imath \sigma \mu o ́ ~$ 55
 61
 64
 67
 68
 71
 72
 75
 $\alpha \gamma \rho о \tau о \cup \rho ı \sigma \mu о$ к каı owoточ $1 \sigma \mu$ ои́． 77
 80
 82
 84
4．16 А $\gamma \rho о \tau о \cup \rho \imath \tau \tau к \varepsilon ́ \varsigma ~ \mu о v o ́ \delta \varepsilon \varsigma . ~$. 86
 87
 89
 91
 92
КЕФАААІО 5 ГҮМПЕРАГМАТА－ПРОТАГЕİ 97
5．1 Eıб $\alpha \gamma \omega \gamma \dot{\eta}$ 98
 98
 $\pi \varepsilon \rho ⿺ \chi$ йя． 99
 100
 $\pi \varepsilon \rho ю \chi$ ŋ́ 101
 102
 104
5．8 Елíえоүоя 106
ВІВАІОГРАФІА 108
ПАРАРТНМА 117

AIETA IINAKSN

 53
 54
Пívакаऽ $4.4 \Sigma \chi \varepsilon ́ \sigma \varepsilon \iota \varsigma ~ \tau \omega v ~ v \tau о ́ \pi \iota \omega \nu ~ \mu \varepsilon ~ \tau о \nu ~ \tau о v \rho ı \sigma \mu o ́ ~$ 56
62
 Ієра́лєтрач. 65
 69
 $\kappa \alpha l v \alpha \pi \rho о \omega \theta \eta \theta o v ́ v$ 73
 ауротоvрибнои́ η оьvотоvрибнои́ 78
 82
 ovvoтovрıб μ ó 85
 аүротоvрıбнои́ 88
 90
 92
Пívккаऽ 4.20 Кри́тєऽ тоvрі́бтєऽ 93
 94
Пívакаऽ 4.20ү Evрютайоı тоvрі́бтеऽ 95
Пívакач 4.20 Үлєратлаvєıкоі́ тоvрі́бтєऽ 96

$\Lambda I \Sigma T A \Sigma X E \Delta I A Г$ PAMMAT ΩN

 10
 13
єори́тєрŋ $\pi \varepsilon \rho \iota о \chi \eta ́ ~$67
 71
 81
 86

КЕФАААIO 1

TOYPIETIKOE $\mathbf{\Sigma X E}$ IIA $\mathbf{M O} \mathbf{~ K A I ~}$ ANAMTYEH

1.1 Eıбоүตүŋ́

 $\kappa \alpha _\mu \varepsilon \tau \alpha ́$.

 Movté $\lambda \alpha \tau \omega v$ Doxey (1976) к α Butler (1980).

1.2 Tovpıбนós - Opıбนós $\operatorname{\tau ov}$ 'Opov

Aлó $\mu i \alpha \alpha \dot{\alpha} \lambda \lambda \eta$ олтıкŋ́ $\gamma \omega v i \alpha$ ol Jansen -Verbeke $\kappa \alpha \iota$ Dietvorst (1987) $\delta \varepsilon v$ dívouv tóбo

- тov $\alpha v \theta \rho \dot{\pi} \pi$ vov $\delta \cup v \alpha \mu ı к о и ́ ~$
- $\tau \eta \varsigma \pi \varepsilon \rho 1 \circ \chi \eta ์ \varsigma \pi \rho о \varepsilon ́ \lambda \varepsilon v \sigma \eta \varsigma$

 $\varepsilon \pi \alpha \varphi \eta^{\prime}>$.

- $\tau \eta \nu \alpha \gamma o \rho \alpha ́$
- $\tau 0 \tau \alpha \xi \mathfrak{\xi} \delta \imath$
- $\tau о v \pi \rho о о \rho ı \sigma \mu o ́ ~ к \alpha ı ~$
- $\tau 0$ marketing.

 $\mu \varepsilon$ тоv Нүочцєขо́кך (1999):

 $\delta \delta \alpha ́ \sigma \tau \eta \mu \alpha$ ($\lambda i \gamma \varepsilon \varsigma \varsigma \kappa ́ \rho \varepsilon \varsigma, \varepsilon \beta \delta о \mu \alpha ́ \delta \varepsilon \varsigma \varsigma ~ \eta ́ ~ \varepsilon ́ \sigma \tau \omega ~ \mu \eta ́ v \varepsilon \varsigma) . ~$

1.3 Tovpıбтıкŋ́ Aváл $\tau v \xi ̧ \eta$

 (Коккю́бๆऽ \& Tбо́ $\rho \tau \alpha \varsigma, 2001)$

1. ol $\alpha v \theta \rho \dot{\pi} \pi \imath \varepsilon \varepsilon \varsigma \alpha v \alpha ́ \gamma \kappa \varepsilon \varsigma \varsigma \pi \imath \beta i ́ \omega \sigma \eta \zeta$

2. то $\varepsilon \pi i ́ \pi \varepsilon \delta о ~ \delta i \alpha \beta i ́ \omega \sigma \eta \varsigma$.

 WTO, (1992), E, (1993), Wold Travel Tourism, (1992) vđ ́́p
 $\sigma \chi \varepsilon ́ \sigma \eta$:

 World Travel and Tourism, (1992).

 $\alpha к о \lambda о \cup \theta \eta \theta \varepsilon i ́$.

 Eyssartel $\kappa \alpha_{1}$ Rochette (1992).

Y ж́́p

$\Delta \mathbf{t} \alpha \sigma \pi \boldsymbol{\sigma} \boldsymbol{\alpha}$

$\Theta \varepsilon \omega \rho i ́ \alpha \tau \eta \varsigma E \xi \not ́ \rho \tau \eta \sigma \eta \zeta$

 $\varepsilon \xi \alpha \rho \tau \tau \mu \varepsilon ́ v \varepsilon \varsigma .(B r o w e t t, 1980)$

- $\tau \eta \varsigma \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa o ́ \tau \eta \tau \alpha \varsigma \tau \eta \zeta$ оюкоvo $\mu i \alpha \varsigma$ (economic efficiency)

1. $\eta \chi \rho \eta ́ \sigma \eta \pi о ́ \rho \omega v \mu \varepsilon \tau \rho о ́ \pi о ~ \beta 1 ळ ́ \sigma \not \mu о$
2. $\eta \mu \varepsilon i ́ \omega \sigma \eta \tau \eta \varsigma ~ v \pi \varepsilon \rho \kappa \alpha \tau \alpha v \alpha ́ \lambda \omega \sigma \eta \zeta \kappa \alpha \iota \tau \omega v \alpha \pi о \rho \rho \not \mu \mu \alpha ́ \tau \omega v$
3. $\eta \delta i \alpha \tau \eta \dot{\rho}\rceil \sigma \eta \tau \eta \zeta \kappa \lambda \eta \rho о v o \mu \alpha<\varsigma$

4. $\eta \alpha \pi о \delta о \chi \eta ́ ~ \sigma \cup \mu \beta о \nu \lambda \omega ́ v \tau \omega v \pi \alpha \rho \alpha \gamma о ́ v \tau \omega v$ к $\alpha \iota \tau 0 \cup$ коเvоט́
5. $\eta \varepsilon \kappa \pi \alpha i \delta \varepsilon v \sigma \eta \pi \rho о \sigma \omega \pi ı \kappa о и ́$
6. η عиӨи́v η тоирıттıкои́ $\mu \alpha ́ \rho к \varepsilon \tau ı v \gamma к ~$
7. $\eta \delta \varepsilon \varepsilon \xi \alpha \gamma \omega \gamma \eta \dot{\eta} \varepsilon ́ \rho \varepsilon \cup v \alpha \varsigma$

- $\tau \alpha$ Movté $\lambda \alpha$ Kúк $\lambda o v ~ Z \omega \eta ́ \varsigma ~$

- A $\lambda \lambda 0 \gamma \varepsilon v \eta ́ ~ M o v \tau \varepsilon ́ \lambda \alpha ~$

1.5.1 Movtéえ α Kv́кえov Z ω ท̧́

 (Andriotis, 2000).

To $\mu \circ \vee \tau \varepsilon ́ \lambda o ~ \tau o v ~ D o x e y ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \mu \varepsilon ́ \rho o ̧ ~ \tau \omega v ~ M o v \tau \varepsilon ́ \lambda \omega v ~ \tau o v ~ K u ́ \kappa \lambda o v ~ Z \omega \eta ́ \varsigma ~ к \alpha ı ~$

 (Fennel, 2001):

Teatko ellilileao

EIIIIEAO ANTALSNILMOY

EIIIIEAO AIIAQEIAL

EПIIIE \triangle O EYФOPIAL

 $\varepsilon \pi i \pi \varepsilon \delta o$.
 $\theta \omega \rho о и ์ v ~ \tau o u ̧ ~ \tau о \cup \rho i ́ \sigma \tau \varepsilon \zeta ~ \delta \varepsilon \delta о \mu \varepsilon ́ v o u ̧ ~ \kappa \alpha l ~ \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon \tau \alpha \tau \rho \varepsilon ́ \pi \varepsilon \tau \alpha l ~ \sigma \varepsilon ~ к \alpha \theta \alpha \rho \alpha ́ ~$
 $\theta \varepsilon ́ \sigma \eta ~ \tau \eta \varsigma ~ \sigma \tau о ~ \sigma \chi \varepsilon \delta 1 \alpha \sigma \mu \circ ́ \mu \alpha ́ \rho \kappa \varepsilon \tau \imath v \gamma \kappa$.

 $\pi \rho о \sigma \tau \alpha \sigma \dot{\alpha} \alpha \varsigma$ ท́ $\varepsilon \lambda \varepsilon ́ \gamma \chi \circ \cup \tau \eta \varsigma \pi \varepsilon \rho ю \chi \eta ́ \varsigma ~ \tau о \cup \varsigma$.

 1976).

 $\nu \alpha \alpha v o \chi \tau \varepsilon i ́ ~ \pi \rho \circ \varsigma ~ v \varepsilon ́ o u ̧ ~ о \rho i \zeta ̧ o v \tau \varepsilon \varsigma . ~$

 оı vлобо $\mu \varepsilon ́ \varsigma ~ o ́ \mu \omega \varsigma ~ \pi о ט ~ v \pi \alpha ́ \rho \chi о v v, ~ \varepsilon i ́ v \alpha ı ~ v \pi o ́ ~ \alpha v \alpha ́ \pi \tau v \xi ̆ \eta . ~ Н ~ \varepsilon \mu \pi о \rho ı к \eta ́ ~ \sigma ט v \alpha \lambda \lambda \alpha \gamma \eta ́ ~$

 $\alpha \pi \varepsilon ́ v \alpha v \tau \iota ~ \sigma \tau о \cup \varsigma ~ \tau о \cup \rho i ́ \sigma \tau \varepsilon \varsigma$.

 $\Sigma \chi \varepsilon \delta 1 \alpha \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma$

 $\kappa_{\alpha}{ }^{1} \Delta$ тои $\Sigma \chi \varepsilon \delta<\alpha \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma$.

1.5.2 Морфодоүчко́ Моут ́̇да

1. η Eıঠıкŋ́ Toupıбтıкŋ́ Zóvๆ

2. ol Толıке̧́ Гєıтоvı̧́́

3. ои Перıрєрєıккє́ц Пєрıоє́ц

1.5.3 A $\lambda \lambda$ оүєvŋ́ Movté入 α

 (Britton, 1982, Freitag, 1994).

 Institute of Marketing (Holloway \& Robinson, 2003 oع λ 17):

 $\pi \alpha ́ \nu \tau \omega \nu \varepsilon \pi \eta \rho \varepsilon \alpha \sigma \tau \varepsilon i ́$.

 $\alpha \pi о р \alpha \sigma i ́ \sigma о v \mu \varepsilon ~ \gamma 1 \alpha ~ \tau \eta \nu ~ \alpha \gamma о \rho \alpha ́-~ \sigma \tau о ́ \chi о ~ \sigma \tau \eta \nu ~ о \pi о i ́ \alpha ~ \alpha \pi \varepsilon v \theta v v o ́ \mu \alpha \sigma \tau \varepsilon ~ \mu \varepsilon ~ \sigma к о \pi o ́ ~ v \alpha ~ \tau \eta \nu$

2. $\sigma \tau \eta \nu$ TIMH, η олоí $\theta \alpha$ л $\pi \varepsilon ́ \pi \varepsilon \imath ~ v \alpha ~ \lambda \alpha ́ \beta \varepsilon ı ~ v \pi o ́ \psi \eta ~ \tau о \nu ~ \alpha v \tau \alpha \gamma \omega v ı \sigma \mu o ́ ~ \kappa \alpha ı ~ \alpha \nu \alpha ́ \lambda о \gamma \alpha$. $\nu \alpha \delta 1 \alpha \mu о \rho \varphi \omega \theta \varepsilon i ́$.

 $\varepsilon \delta \rho \alpha \iota \omega \theta \varepsilon i ́ \alpha \lambda \lambda \alpha \dot{\alpha} \kappa \alpha \imath v \alpha \gamma i v \varepsilon \imath \alpha \pi о \delta \varepsilon \kappa \tau$ ó $\sigma \tau \eta v \alpha \gamma о \rho \alpha ́-\sigma \tau о ́ \chi 0$.

 2001)

 (Morrison, 2001)

 $\pi \rho о \sigma \varphi о \rho \alpha ́ \alpha \alpha \iota \tau \eta \zeta \eta \tau \tau \varnothing \eta$.

 $\alpha \varepsilon \rho о \lambda \lambda \mu \varepsilon ́ v \alpha \ldots$

 $\mu \varepsilon ́ \chi \rho ı ~ \tau \varepsilon ́ \lambda \eta ~ \Sigma \varepsilon \pi \tau \varepsilon \mu \beta \rho i ́ o v ~ \varepsilon \vee ต ́ ~ \sigma \varepsilon ~ \chi \varepsilon ц \mu \varepsilon \rho เ v \alpha ́ ~ \theta \varepsilon ́ \rho \varepsilon \tau \rho \alpha ~ \mu o ́ v o ~ \kappa \alpha \tau \alpha ́ ~ \tau \eta \nu ~ \pi \varepsilon \rho i ́ o \delta o ~ \tau о ט ~$

 $\pi \rho \circ \varsigma \tau \tau \nu \tau \varepsilon \lambda \iota \kappa \circ ́ \chi \rho \eta ́ \sigma \tau \eta$.

 $\gamma \varepsilon \cup ́ \mu \alpha \sigma \tau \eta \tau \downarrow \mu \dot{\eta} \ldots$

1.7 Ма̧̧ıко́я Tovpıбнóg

 (Коккळ́бŋऽ \& Tоф́ $\rho \tau \alpha \varsigma, 2001$)

 Weiler \& Hall, 1992, Tó́ $\rho \tau \alpha \varsigma, 1996)$.

$1.8 \Sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \mu \tau \alpha$

 $\pi \rho о \sigma \tau \alpha \sigma \dot{\alpha} \alpha$ тоข $\pi \varepsilon \rho \imath \beta \dot{\alpha} \lambda \lambda$ оขтос.

КЕФAAAIO 2

ENAAAAKTIKEE MOPФEE TOYPIEMOY
- АГРОТОYPIEMOE
-OINOTOYPIEMOE

2.1 Eıб $\boldsymbol{\sigma} \boldsymbol{\gamma} \boldsymbol{\gamma} \boldsymbol{\eta}$

 $\tau \rho о ́ \pi \omega \nu$ ఢФท́ร.

 Ієро́лєт $\rho, \varsigma_{.}$

 (इрккıк夫о́кךร, 2000):
 $\alpha \gamma \rho о \tau \iota к о$ о́ $\boldsymbol{\sigma v \varepsilon \tau \alpha \iota \rho ı \sigma \mu о v ́ . ~}$

 $\varepsilon \mu \pi \varepsilon \varsigma \dot{\rho} \varepsilon \varsigma$.

 тоvpıбио́c.

 тоvpıбนóç véov.

 $\delta \eta \mu \imath \quad \rho \gamma о и ́ v \tau \alpha \iota \varepsilon \iota \delta \kappa \alpha ́ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha$.

 vүро乃เо́толตv.

 $\pi \rho о \tau 七 \mu о и ์ v \tau \alpha$.

 єข๙бходท́бєıร тоия.

2.3.1. Aүротоvрıб μ óg-Гєvıки́

О $\alpha \gamma \rho о \tau о \cup \rho \imath \sigma \mu о ́ \varsigma ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \sigma u v \delta \varepsilon \theta \varepsilon i ́ ~ o ́ \chi \imath ~ \mu o ́ v o ~ \mu \varepsilon ~ \chi \alpha \lambda \alpha ́ \rho \omega \sigma \eta, ~ \eta \rho \varepsilon \mu i \alpha, ~ к \alpha ı ~ \delta ı \alpha к о \pi \varepsilon ́ \varsigma ~ \alpha \lambda \lambda д \alpha ́ ~$

 $\tau \omega v \alpha \iota \omega \in \omega v$.

- Iбторі́ α, Те́ χ vȩ, По $\lambda \tau \iota \sigma \mu o ́, ~ П \alpha \rho \alpha ́ \delta о \sigma \eta ~$

- $\quad \sigma \mu \mu \varepsilon \tau \varepsilon ́ \chi о v v$

Avti $\theta \varepsilon \tau \alpha, \sigma \tau о \not \chi \varepsilon i ́ \alpha$ ó $\pi \omega \varsigma$ (Rural Invest, 2006):

- А $л \frac{\mu}{}{ }^{\circ} v \omega \sigma \eta \tau \eta \varsigma \varepsilon \pi \chi \chi \varepsilon i ́ \rho \eta \sigma \eta \varsigma$

 $\alpha \gamma \rho о \tau о \cup \rho ı \tau \tau к \eta ́ \varsigma ~ \mu о 火 \alpha ́ \delta \alpha \varsigma$.

2.3.3 T $\alpha \chi \alpha \rho \alpha \kappa \tau \eta \rho \iota \sigma \tau \iota \kappa \alpha ́ ~ \tau \omega v \alpha \gamma \rho о \tau о v \rho \iota \sigma \tau \omega v$

2.3.4 П $\rho \alpha \delta \varepsilon i ́ \gamma \mu \alpha \tau \alpha \pi \varepsilon \rho ı \pi \tau \omega ́ \sigma \varepsilon \omega v ~ \alpha \gamma \rho о \tau о v \rho ı \sigma \tau \iota \kappa \dot{v} \mu о v \alpha ́ \delta \omega v$

 www.agrotourismos.gr, $\kappa \alpha l$ www.agronews.gr

 2006).

2.4 Oıvotovpıб μ ós - Гعvıки́

 точ $\mu \alpha ́ \rho к \varepsilon \tau \iota v \gamma к ~ \pi \rho о о \rho ı б \mu о ч ́ » ~(W e s t e r n ~ A u s t r a l i a n ~ T o u r i s m ~ B o a r d, ~ 2000) . ~$.

 $\pi \rho о$ ӧ́v $\tau \alpha$ touc.

- $\tau \eta \nu \delta \rho о \mu о \lambda o ́ \gamma \eta \sigma \eta \gamma 1 \alpha \sigma \tau \alpha \delta \delta \alpha \kappa \eta ́ \alpha \pi о \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta \tau \omega \nu \sigma \eta \mu \alpha \tau о \delta о \tau \eta ́ \sigma \varepsilon \omega v$

 тоирıбтוкळ́v $\delta 1 \alpha \delta \rho о \mu \omega ́ v$

 $\varepsilon v \delta ı \alpha \varphi$ ќpovто̧

 $\kappa \alpha \imath \mu \varepsilon \varepsilon є \sigma o ́ \delta \eta \mu \alpha \mu \varepsilon \gamma \alpha \lambda u ́ \tau \varepsilon \rho \circ 0$ тоט $\mu \varepsilon ́ \sigma o v$ ó $\rho о v$.

 $\mu \varepsilon \tau \eta \nu$ épeuva $\tau\rceil \varsigma$ Magda Antonioli Corigliano (1996) $\chi \omega \rho i \zeta o v \tau \alpha \iota \omega \varsigma \varepsilon \xi \check{\eta} \varsigma:$

 тоט̧ $\alpha \rho \varepsilon ́ \sigma \varepsilon \imath ~ \tau о ~ к р \alpha \sigma i ́ ~ \alpha \lambda \lambda \alpha ́ ~ \tau \alpha v \tau о ́ \chi \rho о v \alpha ~ \lambda \alpha \tau \rho \varepsilon v ́ o v v ~ к \alpha ı ~ \tau о ~ к \alpha \lambda о ́ ~ \varphi \alpha \gamma \eta \tau o ́, ~ \tau ı \varsigma ~$

- Oı $\Lambda \alpha ́ \tau \rho \varepsilon ı ̧ ~ \tau о v ~ к \rho \alpha б ъ о и ́ ~(t h e ~ W i n e ~ L o v e r s): ~ \pi \rho o ́ к \varepsilon ı \tau \alpha ı ~ \gamma ı \alpha ~ \tau о и р i ́ \sigma \tau \varepsilon ̧ ~ \mu \varepsilon ~$

 $\mu \alpha ́ \theta o v v ~ \pi \varepsilon \rho \imath \sigma \sigma o ́ \tau \varepsilon \rho \alpha ~ \pi \rho \alpha ́ \gamma \mu \alpha \tau \alpha ~ \gamma 1 \alpha ~ \tau о ~ к \rho \alpha \sigma i ́ ~ \alpha \lambda \lambda \alpha ́ ~ \eta ~ \varepsilon \pi i ́ \sigma \kappa \varepsilon \psi \eta ~ \tau о и \varsigma ̧ ~ \varepsilon ́ \chi \varepsilon є ~ к \alpha ı ~$ $\gamma \alpha \sigma \tau \rho о \nu о \mu \kappa \varepsilon ́ \varsigma ~ \pi \rho о \varepsilon к \tau \alpha ́ \sigma \varepsilon \longleftarrow \varsigma$.

 $\kappa \alpha ́ \theta \varepsilon \alpha \mu \pi \varepsilon \lambda о$ орүои́/ owvoл $\alpha \rho \alpha \omega \gamma о v$.

 1998).

2.4.3 Поркסєí $\gamma \mu \alpha \tau \alpha$ оıvoтоvрıбтькळ́v μ оvó $\delta \omega v$.

 Margaret River. (Margaret River, 2006)

 $\alpha \rho \kappa \varepsilon \tau \alpha ́ \beta \rho \alpha \beta \varepsilon i ́ \alpha$.

 $\pi \varepsilon \rho i ́ \pi о v$ ol owo $\alpha \alpha \rho \alpha \gamma \omega \gamma o i ́ . ~(m a r g a r e t r i v e r, ~ 2006) ~$

 $\pi \alpha \rho \alpha ́ \lambda \lambda \lambda \eta \lambda \varepsilon \varsigma \delta \rho \alpha \sigma \tau \eta \rho ⿺ 𠃊 ́ \tau \eta \tau \varepsilon \varsigma \mu \mu \zeta ̧$ í. (WineTravel Group, 2006)

 P $\alpha \delta$ ıо $\omega v i \alpha, 2006$)

 Мошробо́ $\varphi v \eta$.

 Sauvignon, Chardonnay, Merlot $\alpha \lambda \lambda \alpha \dot{\alpha} \kappa \alpha \imath \tau \omega v \varepsilon \lambda \lambda \eta \nu \imath \kappa \omega ́ v \tau о \kappa \imath \lambda \iota \omega v$ Podít $\kappa \alpha \imath$

 $\chi \rho \eta \sigma \mu о \pi о ю и ์ v \tau \alpha 1$.

$2.5 \Sigma v \mu \pi \varepsilon \rho \dot{\alpha} \sigma \mu \alpha \tau \alpha$.

 $\pi \varepsilon \rho ю \chi \eta ́ ~ \tau \eta \varsigma ~ І \varepsilon \rho \alpha ́ \pi \varepsilon \tau \rho \alpha \varsigma ~ \tau о и ~ N o \mu о и ́ ~ \Lambda \alpha \sigma ı \theta i ́ o v ~ K \rho \eta ́ \tau \eta \varsigma . ~$

 $\varepsilon \pi \imath \theta \nu \mu i \varepsilon \varsigma ~ \alpha, \varphi o v ́ ~ \eta ~ \beta \alpha \rho v ́ \tau \eta \tau \alpha ~ \tau \omega v ~ \pi \rho \alpha к \tau о ́ \rho \omega v ~ \delta i ́ v \varepsilon \tau \alpha » ~ \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho о ~ \sigma \tau \eta ~ \delta \eta \mu ı о и \gamma \gamma i ́ \alpha ~$

 $\kappa \lambda i \mu \alpha \tau о \varsigma \pi \varepsilon \rho i ́ ~ \tau о и ~ \tau о \cup \rho \imath \sigma \mu о v ́ . ~$

 $\varepsilon v \alpha \lambda \lambda \alpha \kappa \tau \iota \kappa о v ́$.

КЕФАААIO 3

ME@OДOАОГIA EPEYNA天

3.1 Eıбоүต $\boldsymbol{\eta}$

 $\alpha \lambda \lambda \alpha ́ \kappa \alpha \imath \theta \alpha \delta 1 \alpha \sigma \varphi \alpha \lambda i \zeta ̧ \varepsilon \imath \tau \eta v \varepsilon \gamma \kappa \cup \rho o ́ \tau \eta \tau \alpha \tau \omega v \alpha \pi \circ \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha ́ \tau \omega \nu \tau \eta \varsigma$.

 отохєєí ωv лоข $\pi \rho о \varepsilon ́ к и ч \alpha v . ~$

 $\alpha v \alpha \xi$ เó $t \downarrow \tau \varepsilon \varsigma$. (Denzin \& Lincoln, 1998)

 $\mu \varepsilon$ Өóסous. (Denzin \& Lincoln, 1998)

 тŋऽ દ́p

$3.3 \Delta \eta \mu 10 v \rho \gamma i ́ \alpha$ Eрєvvŋтıкоv́ Ерюти́ $\mu \alpha \tau о \varsigma$

 $\Theta \varepsilon \omega \rho \eta \tau ⿺ к о$.

- $\sigma \tau \eta \nu \pi \rho о ́ \beta \lambda \varepsilon \psi \eta$ ко́лошข $\mu \varepsilon \lambda \lambda о \nu \tau \iota \kappa ळ ́ v ~ \gamma \varepsilon \gamma о v o ́ \tau \omega v ~ \mu \varepsilon ~ \sigma \tau о ́ \chi о ~ \tau о \nu ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu o ́ ~$
 ૬ŋंचทoŋร

 $\alpha \lambda \lambda \alpha \gamma \dot{\eta})$
 то́бE!̧)

 vocítaı Toupıтікŋ́.

Abstract

 $\varepsilon \pi \alpha \gamma \gamma \varepsilon \lambda \mu \alpha \tau \iota \kappa \eta$ ¢ като́бтабךऽ $\dot{\eta} \mu о \rho \varphi \omega \tau \iota к о и ́ ~ \varepsilon \pi \iota \pi \varepsilon ́ \delta o v ~ \sigma \chi \varepsilon \tau \iota к \alpha ́ ~ \mu \varepsilon ~ \tau \eta \nu ~$ $\kappa \alpha \tau \dot{\sigma \tau \tau \alpha \sigma \eta ~ \tau о v ~ \tau о v \rho ı \sigma \mu о v ́ ~ \sigma \tau \eta v ~ I \varepsilon \rho \alpha ́ \pi \varepsilon \tau \rho \alpha, ~ \tau \eta v ~} \theta \dot{\varepsilon} \lambda \eta \sigma \eta ~ \pi о v ~ v \pi \dot{\alpha} \rho \chi \varepsilon \iota$ भıа $\pi \varepsilon \rho \alpha \iota \tau \varepsilon ́ \rho \omega ~ \beta \varepsilon \lambda \tau i \omega \sigma \eta ~ \eta ́ ~ к \alpha ı ~ \varepsilon v \alpha \sigma \chi o ́ \lambda \eta \sigma \eta ~ \mu \varepsilon ~ \tau о v ~ \tau о \mu \varepsilon ́ \alpha ~ \tau о v ~$ $\tau \dot{\lambda} \lambda о \varsigma ~ \tau \eta \nu \dot{\alpha} \pi о \psi \eta ~ \tau o v \varsigma ~ \gamma l \alpha ~ \tau о ~ к \alpha \tau \alpha ́ ~ \pi о ́ \sigma o ~ \alpha v \tau \varepsilon ́ \varsigma ~ o l ~ \pi \varepsilon \rho ı \pi \tau \dot{\sigma \sigma \varepsilon ı \varsigma ~}$

 $\varepsilon \pi \imath \theta \rho \mu \eta \tau$ о́ $\alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha$.

 тоирıбиои́.
 $\pi \varepsilon \rho ю \chi$ ๆ̆ร.

 Ієро́л $\varepsilon \tau \rho \alpha \varsigma$.
 Ієро́лєт $\rho \propto$.

 $\sigma \chi \varepsilon \delta ı \alpha \sigma \mu \circ u ́ \varsigma ~ \varepsilon ́ \rho \varepsilon \cup v \alpha c ̧ ~(S e k e r a n, ~ 2000): ~$

- $\tau о \downarrow$ Пгртүрарıко́ (Descriptive)
- $\tau о v$ Елє $\xi \eta \gamma \eta \mu \alpha \tau \iota \kappa o ́ ~(E x p l a n a t o r y) ~$

 $\alpha \xi ю \lambda o ́ \gamma \eta \sigma \eta$.

 (Malhorta, 1996).

 $\kappa \alpha ı \alpha v \alpha ́ \lambda u \sigma \eta$ тоט.

 $\tau \eta \vee \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa о ́ \tau \eta \tau \alpha$ к кı $\varepsilon \pi \iota \tau \cup \chi i ́ \alpha$ тovs (Veal, 1997).

 одокл $\eta \rho \omega \theta \varepsilon i ́ ~ \kappa \alpha ı v \alpha$ о $\delta \eta \gamma \eta \theta \varepsilon i ́ ~ \sigma \varepsilon ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha$.

2. $\Delta \varepsilon \cup \tau \varepsilon \rho о \gamma \varepsilon \vee \eta ́ \varsigma ~ \varepsilon ́ \rho \varepsilon \cup v \alpha ~$
3.П $\alpha \rho \alpha \tau \dot{\rho} \rho \sigma \eta$

 $\pi \rho о \sigma \chi \varepsilon \delta 1 \alpha \sigma \mu \varepsilon ́ v o$ (Fontana \& Frey, 1994)

 каı тоv oเvoточрıб μ ои́.

3.8 Ot Ерштஸ́иєvo七

 Ієро́лє $\tau \rho \alpha$.

 $\alpha v о$ ктои́ ти́тоv, лоט α 甲орои́v:
 $\pi \varepsilon \rho ı \chi \eta$ т $\tau \varsigma$

5. $\sigma \tau \eta \nu \alpha v \alpha ́ \pi \tau \cup \xi ̧ \eta ~ \sigma \varepsilon \sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon \varepsilon \vee \alpha \lambda \lambda \alpha \kappa \tau \kappa \varepsilon ́ \varsigma ~ \mu о \rho \varphi \varepsilon ́ \varsigma ~ \tau о \cup \rho \imath \sigma \mu о v ́ ~$

 $\theta \alpha \pi \rho о \sigma \varepsilon \lambda \kappa$ ט́ovт $\alpha v \sigma \tau \eta \nu \pi \varepsilon \rho ı \chi \eta \dot{\eta}$.

3.10 Үлодоүıбцо́я $\Delta \varepsilon і ́ \gamma \mu \mu \tau о \varsigma$.

$\alpha \rho \nu \eta \tau 1 \kappa \alpha ́ . ~ A \pi o ́ ~ \tau о ~ \sigma ט ́ v o \lambda o ~ \tau \omega v ~ \alpha \pi \alpha \nu \tau \eta ́ \sigma \varepsilon \omega v ~ \tau о ~ 95 \% ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \tau o ~ \delta \delta \alpha ́ \sigma \tau \eta \mu \alpha$,

$\mathrm{N}=(\mathrm{t}-\mathrm{table})^{2 *}(\mathrm{TR}) / \mathrm{S}^{2} \Rightarrow \mathrm{~N}=(1,96)^{2} *(0,5)^{*}(0,5) /(0,5)^{2} \Rightarrow 384,16 \quad \delta \eta \lambda \alpha \delta \dot{\eta} \quad \pi \varepsilon \rho i ́ \pi о и \quad 400$

 $\tau \eta \varsigma ~ « \Sigma u \chi v o ́ \tau \eta \tau \alpha \varsigma »$ (Frequencies) $\chi \rho \eta \sigma \mu о \pi о \emptyset \emptyset \theta \eta \kappa \varepsilon \mu \varepsilon$ бколо́ $\tau \eta \nu \kappa \alpha \tau \alpha \mu \varepsilon ́ \tau \rho \eta \sigma \eta \tau \eta \varsigma$ $\sigma \cup \chi v o ́ \tau \eta \tau \alpha \varsigma \tau \omega v \alpha \pi \alpha v \tau \eta \dot{\sigma} \varepsilon \omega v \sigma \varepsilon \mu i ́ \alpha \mu \varepsilon \tau \alpha \beta \lambda \eta \tau \eta \dot{\prime}(М \alpha \kappa \rho \alpha ́ \kappa \eta \varsigma, 2005)$.

 $\chi \rho \eta \sigma \mu о \pi о$ ŋ́ $\theta \eta \kappa \varepsilon \sigma \tau \iota \varsigma \pi \varepsilon \rho \imath \pi \tau \dot{\sigma} \sigma \varepsilon \iota \varsigma \mu \varepsilon \mu \dot{\prime} \alpha \mu$ о́vo $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \eta$.

 $\delta 1 \alpha к \dot{\mu \alpha} \boldsymbol{v \sigma \eta \varsigma}$ One way ANOVA.

3.12 Е $\mu \pi \iota \sigma \tau \varepsilon \tau \tau \kappa к ́ \tau \eta \tau \alpha$.

 $\tau \alpha, \varepsilon \rho \omega \tau \eta \mu \alpha \tau о \lambda о ́ \gamma 1 \alpha$

3.13 Перıорıбиоí Eрєvvac.

 $\alpha v \tau \eta ́$.

КЕФАААIO 4

AПOTEAELMATA EPEYNAI

4.1 Eıбоүตүŋ́

 $\varepsilon \vee \alpha \lambda \lambda \alpha \kappa \tau \iota \kappa \omega ́ v \mu о р \varphi \dot{v}$ тоирьб $\mu о v$.

4.2 Профíд єрюто́ $\mu \varepsilon \nu \omega v$

 $\sigma \tau \eta \nu$ ह́peuva

	N	(\%)
ФY ${ }^{\text {O }}$		
ANDPAE	88	41,5
Γ YNAIKA	124	58,4
HAIKIA		
18-35	127	59,9
35-50	66	31,1
$50 \mathrm{KAI} \mathrm{AN} \Omega$	19	8,96
EПIПEDO EKПAIDEYГHГ		
ПР Ω TOBA ${ }^{\text {MIA }}$	10	4,7
\triangle EYTEPOBA@MIA	89	41,98
TPITOBA MIA	113	53,3
EYNOAO	212	

 $\varepsilon к \pi \alpha i ́ \delta \varepsilon v \sigma \eta \varsigma ~ \varepsilon i ́ v \alpha l ~ \tau о ~ 41,98 \% ~ \tau \omega v ~ \varepsilon \rho \omega \tau \eta \theta \varepsilon ́ v \tau \omega v . ~ А л о ́ р о \imath о и ~ \tau \eta \varsigma ~ \pi \rho \omega \tau о \beta \alpha ́ \theta \mu \mu \alpha \varsigma ~$

APIOMHTIKOE MEEOE	2,99
TYПІКН АПОКАІІН	0,782
ФY^O	
ANDPAE	2,99
Γ YNAIKA	2,98
T Ratio	0,044
EHMANTIKOTHTA	0,146
HAIKIA	
18-35	2,99
36-50	3,11
50 KAI AN Ω	2,63
F Ratio	2,787
EHMANTIKOTHTA	0,064
EПIПEDO EKПAIDEYГHD	
ПР 2 TOBAӨMIA	2,90
\triangle EYTEPOBA@MIA	2,97
TPITOBA@MIA	3,01
F Ratio	0,136
EHMANTIKOTHTA	0,873

4.4 H $\sigma \chi \varepsilon ́ \sigma \eta ~ \tau \omega v$ к котоíк $\omega \mathrm{v} \mu \varepsilon$ тоv $\tau о \nu \rho ı \sigma \mu o ́$

 об $\eta \gamma \varepsilon i ́ \sigma \varepsilon \mu i ́ \alpha$ о $\eta \mu \alpha \nu \tau \kappa о ́ \tau \eta \tau \alpha$.

	Пєраıєє́рю тоирıбтькй $\alpha v \alpha ́ \pi \tau v \underset{ŋ \eta}{\eta}$	$\mu \varepsilon$ тоv тоvpıбио́ $\omega \subseteq ̧ v \pi \alpha ́ \lambda \lambda \eta \lambda 0 t$	$\alpha \pi \alpha \sigma \chi 0 ́ \lambda \eta \sigma \eta \varsigma \mu \varepsilon$ тоv тоטpıбно́ $\omega \varsigma$ єрүобо́тє؟	Y $\pi \varepsilon \rho \tau \varepsilon \rho \varepsilon i ́ \eta$ $\alpha \pi \alpha \sigma \chi 0 ́ \lambda \eta \sigma \eta \mu \varepsilon$ тоv тоטpıб白 $\omega \varsigma$ $\varepsilon \pi \alpha ́ \gamma \gamma \varepsilon \lambda \mu \alpha$	Y $\boldsymbol{\alpha} \dot{\alpha} \rho \chi \varepsilon \iota \theta \dot{\theta} \lambda \boldsymbol{\eta} \boldsymbol{\eta} \boldsymbol{\eta} \gamma \boldsymbol{\gamma} \boldsymbol{\alpha}$ $\pi \varepsilon \rho \alpha \iota \tau \varepsilon ́ \rho \omega$ $\varepsilon к \pi \alpha i ́ \delta \varepsilon v \sigma \eta$ к αt $\kappa \alpha \tau \alpha ́ \rho \tau \iota \sigma \eta$	$\Theta \varepsilon ́ \lambda \eta \sigma \eta \gamma \boldsymbol{\gamma} \alpha \varepsilon \eta \eta \mu \dot{\rho} \rho \omega \sigma \eta$ $\mu о р ф$ т тоурıбноv́
Total Mean	3,89	3,09	3,42	3,40	3,40	3,44
Std. Deviation	1,090	1,148	1,227	1,452	1,137	1,244
ФY^O						
ANAPAE	3,81	2,85	3,27	3,41	3,39	3,38
Γ YNAIKA	3,95	3,27	3,53	3,39	3,41	3,49
T Ratio	-0,953	-2,622	-1,522	0,108	-0,157	-0,674
EHMANTIKOTHTA	-0,229	0,514	0,968	0,302	0,251	0,114
HAIKIA						
18-35	3,82	3,06	3,46	3,22	3,25	3,28
36-50	4,08	3,14	3,42	3,80	3,71	3,79
50 KAI AN Ω	3,74	3,16	3,16	3,16	3,32	3,37
F Ratio	1,423	0,120	0,514	3,881	3,706	3,822
ェHMANTIKOTHTA	0,243	0,887	0,599	0,022	0,026	0,023
EIIIIEAO EKПAIAEYEHE						
ПРЛТОВАЄМIA	4,60	3,40	3,30	2,30	3,90	4,20
\triangle EYTEPOBA@MIA	4,10	3,16	3,39	3,44	3,62	3,70
TPITOBA@MIA	3,66	3,02	3,46	3,46	3,19	3,18
F Ratio	6,559	0,738	0,127	3,056	4,769	6,624
EHMANTIKOTHTA	0,002	0,479	0,881	0,049	0,009	0,002

 $\varepsilon \pi \imath \theta v \mu \varepsilon i ́ ~ \tau о ~ 55,6 \% ~ к \alpha ı ~ \tau \omega v ~ \delta u ́ o ~ \varphi и ́ \lambda \omega v . ~$

 $\delta \dot{\alpha} \theta \varepsilon \sigma \eta$.

$4.5 \Delta \iota \alpha \varphi \eta ́ \mu \iota \sigma \eta$ к $\alpha \iota \tau о v \rho \iota \sigma \tau \iota \kappa \eta ́ ~ \pi \rho о \beta о \lambda \eta ́$

 $\tau \eta \nu \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \tau \kappa \eta \dot{\tau} \tau о \cup \rho เ \sigma \tau 1 \kappa \eta ́ \pi \rho о \beta о \lambda \eta \dot{\tau} \tau\rceil$.

	$\kappa \alpha \iota \pi \rho о ळ ́ \theta \eta \sigma \eta \varsigma$ тоирเбтıкои́ $\pi \rho o$ ö́v $\tau \boldsymbol{\sigma} \sigma \tau \eta \nu$ І $\varepsilon \rho \alpha ́ \pi \varepsilon \tau \rho \alpha$	Ієро́лєтр $\alpha \kappa \boldsymbol{\kappa}$ 	оккоvоцико́v π ó $\rho \omega v$ ү $\boldsymbol{\iota} \alpha$ $\delta \iota \alpha \varphi \eta \not \mu \iota \sigma \eta$	$\Delta ı \alpha \varphi \eta ́ \mu \iota \sigma \eta$ к $\alpha \iota$ vย́ $\varepsilon \varsigma ~ \tau \varepsilon \chi v 0 \lambda 0 \gamma i ́ \varepsilon \varsigma$	K $\alpha \tau \dot{\alpha} \sigma \tau \alpha \sigma \eta$ тоирьбтькйร $\pi \varepsilon \rho 10 \chi \mathfrak{ŋ} \varsigma$
APIOMHTIKOL MEEOE	2,20	3,23	3,73	3,86	1,95
TYIIIKH АПОКАİН	1,115	1,112	1,288	1,271	1,122
ФYAO					
ANAPAE	2,24	3,34	3,75	3,91	2,00
ГYNAIKA	2,18	3,15	3,71	3,83	1,92
T Ratio	0,393	1,264	0,224	0,442	0,515
EHMANTIKOTHTA	0,191	0,807	0,228	0,980	0,762
HAIKIA					
18-35	2,24	3,15	3,76	3,85	2,15
36-50	2,21	3,42	3,67	4,08	1,71
50 KAI AN Ω	1,89	3,05	3,68	3,21	1,47
F Ratio	0,813	1,587	0,134	3,515	5,425
EHMANTIKOTHTA	0,445	0,207	0,875	0,032	0,005
$\begin{aligned} & \hline \text { EПIПEДO } \\ & \text { EKПAIAEYटHट } \\ & \hline \end{aligned}$					
ПРЛТОВАЄМIA	3,10	2,90	3,60	3,20	2,70
\triangle EYTEPOBA@MIA	2,35	3,40	3,52	3,63	2,07
TPITOBA@MIA	2,01	3,12	3,90	4,11	1,80
F Ratio	5,975	2,160	2,312	5,125	3,884
EHMANTIKOTHTA	0,003	0,118	0,102	0,007	0,022

 $\tau \eta \varsigma \mu \eta \varepsilon v \alpha \sigma \chi$ о́ $\eta \eta \eta_{\varsigma} \tau \sigma \cup \varsigma \mu \varepsilon \alpha 0 \tau \varepsilon ́ \varsigma$.

 $\alpha \pi о \varphi \varepsilon ́ \rho \varepsilon \imath \kappa \alpha \imath \tau \alpha \alpha v \alpha ́ \lambda о \gamma \alpha \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha$.

 $\pi \rho \alpha \gamma \mu \alpha \tau 1 \kappa \alpha ́ \kappa \alpha \imath \kappa \alpha ́ \tau \imath \nu \alpha \alpha \lambda \lambda \alpha \dot{\xi} \xi \iota$.

	АIAAIKTYO	THAEOPALH	PALIOФSNO	ENTYПA	AIE@NEİ EKOE LEIL	ЕФНМЕРIAELПEPIOAIKA	TOYPIETIKOI ПРАКТОРЕЕ
ФYAO							
ANAPAE	46	55	21	22	19	8	14
Γ YNAIKA	66	80	39	37	18	12	12
HAIKIA							
18-35	71	74	30	39	22	11	18
36-50	35	46	23	15	13	9	8
$50 \mathrm{KAI} \mathrm{AN} \mathrm{\Omega}$	6	15	7	5	2	-	-
EПIIIEAO EKIAIAEYEHE							
ПР 2 TOBA@MIA	5	8	4	26	16	5	7
\triangle EYTEPOBA@MIA	44	60	24	36	21	15	19
TPITOBA@MIA	63	67	3	-	37	20	26

 $\omega \varsigma ~ \mu \varepsilon ́ \sigma o ~ \varepsilon \vee \eta \mu \varepsilon ́ \rho \omega \sigma \eta \varsigma$.

 т $\tau \vee$ єиро́тгр $\pi \varepsilon \rho ⿺ \propto \chi \dot{\eta}$

 $\pi \varepsilon \rho ю \chi \eta ́ \varsigma$.

 $\tau \omega \vee \tau 0 \cup \rho \iota \sigma \tau \omega ́ v$.

 $\alpha v \alpha \mu о v \eta ́ \varsigma ~ \sigma \tau \eta ~ \sigma \tau \alpha ́ \sigma \eta$.

 $\pi \rho о о \rho ı \sigma \mu о v ́ \varsigma, ~ \varepsilon ́ \sigma \tau \omega ~ \tau о v ~ \varepsilon \sigma \omega \tau \varepsilon \rho ı к о и ́ ~ к \alpha ı ~ v \alpha ~ \alpha \pi о \varphi \varepsilon ט ́ \gamma о \nu \tau \alpha ı ~ \varepsilon ́ \tau \sigma \imath ~ \tau \alpha ~ \delta \rho о \mu о \lambda о ́ \gamma ı \alpha ~ \pi \rho о \varsigma ~ \tau \alpha ~$

 عítє $\alpha \kappa \tau о \pi \lambda о і ̈ к \omega ́ \varsigma . ~$

			$\begin{aligned} & \text { W } \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$				$\begin{aligned} & \sqrt[4]{4} \\ & \sqrt[4]{4} \\ & \frac{1}{2} \\ & \sqrt{2} \end{aligned}$			
TYAO										
ANAPAL	14	26	5	8	6	12	18	3	4	7
ГYNAIKA	9	36	9	11	15	19	29	2	3	9
HAIKIA										
18-35	9	3	4	10	10	17	17	2	4	6
36-50	11	23	9	7	9	11	24	1	2	7
$50 \mathrm{KAI} \mathrm{AN} \Omega$	3	6	1	2	2	3	6	2	1	3
EПIIIEAO EKII/LHट										
ПРЛТОВАЄМIA	2	1	-	7	1	1	1	-	1	7
\triangle EYTEPOBA@MIA	7	21	4	12	3	13	17	2	2	7
TPITOBA@MIA	14	40	10	19	17	1	29	3	4	9

 $\mu \kappa \kappa ŋ ́ \eta$ бıа.роро́.

 $\tau \omega v \pi \tau \cup \chi ю v ์ \chi \omega v$ єлі́ซ ς.

 $\varepsilon \kappa \pi \alpha i \delta \varepsilon v \sigma \eta \varsigma(70 \%) \kappa \alpha ı \mu \alpha ́ \lambda ı \tau \alpha \alpha \gamma \nu \alpha i ́ \kappa \varepsilon \varsigma(7,2 \%)$ то $\delta \eta \lambda \omega ́ v o v v$.

 $\sigma \tau \eta v \gamma$ үорти́ $\tau о$ А A

4.11 П $\alpha \rho \alpha \delta 0 \sigma เ \alpha \kappa \alpha ́ \pi \rho о$ ö́v $\tau \alpha$

 $\gamma \dot{\rho} \rho \omega \alpha \pi$ о́ $\alpha v \tau \grave{\nu}$.

 $\pi \rho о \tau і ́ \mu \eta \sigma \eta ~ \alpha v \alpha . \varphi \varepsilon ́ \rho \varepsilon \tau \alpha l$ бто коккıvє́ $\lambda ı \tau \omega v \mathrm{M} \alpha \lambda \lambda \omega \dot{\nu}$.

	TYPIA	KPAEI	PAKI	ГАYKA	A $\mathbf{N A O}$
TYAO					
AN \triangle PAE	35	55	69	57	35
ГYNAIKA	51	68	102	83	39
HAIKIA					
18-35	49	72	104	75	33
36-50	31	40	49	49	31
$50 \mathrm{KAI} \mathrm{AN} \Omega$	6	11	18	16	10
ПР 2 TOBA@MIA	4	5	5	6	4
\triangle EYTEPOBA@MIA	50	55	74	59	27
TPITOBA@MIA	32	63	92	75	43

 $\pi \alpha \rho \alpha \delta о \sigma \iota \alpha \kappa$ толıко́ лрӧ̈óv.

	Aváлтvక̧ท $\boldsymbol{\tau} \boldsymbol{\omega} v$ बvv\＆т $\alpha \iota \rho \iota \sigma \mu \oplus ้$ $\kappa \alpha \iota \alpha ́ v \theta \iota \sigma \eta \tau \eta ร$ толькйร оккоуоцías	Avóл $\tau v \underset{\eta}{\eta} \boldsymbol{\tau} \boldsymbol{\omega}$ बvvetalpıбนஸ́v тоvрıбтळ́v	Avóлтvĕ̉ $\boldsymbol{\tau 0 v}$ ауротоvpıбцои́ кал о七коуоцía	Avón $\tau \boldsymbol{v} \boldsymbol{\eta}$ тоv $\alpha \gamma \rho о \tau о v \rho \iota \sigma \mu о v ́ к \alpha \iota$ $\pi \varepsilon \rho เ$ ódov	ауротоvpıбнои́ $\kappa \alpha \iota \beta \varepsilon \lambda \tau i ́ \omega \sigma \eta$ тоvрıбтікฑ́s $\pi 010 ์ \tau \eta \tau \alpha \varsigma$	olvotovpıбио v́кגı оккоуоцía	Avóлтvక̧ŋ $\mathfrak{\tau 0 v}$ оเvotovpıбцо тоорıбтікйร $\pi \varepsilon \rho 10 ́ \delta o v$	Avóл $\tau \boldsymbol{v} \boldsymbol{\eta} \boldsymbol{\eta} \tau 00$ 0tvotovplauo v́к人l $\beta \varepsilon \lambda \tau_{i ́ \omega} \omega \boldsymbol{\eta}$ тоvрıбтוкй $\pi 0$ о́тŋ $\tau \alpha \varsigma$
$\begin{aligned} & \text { APIQMHTIKOइ } \\ & M E \Sigma O \Sigma \end{aligned}$	4，24	3，90	4，33	4，17	4，14	3，68	3，86	3，57
TYПIKH AПOKAIEH	0，966	1，060	0，850	0，972	0，973	1，135	1，079	1，208
ФY $\mathbf{~ O}$								
AN \triangle PA Σ	4，32	4，05	4，43	4，24	4，28	3，80	3，88	3，55
ГYNAIKA	4，19	3，80	4，25	4，11	4，04	3，60	3，85	3，59
T Ratio	0，986	1，680	1，539	0，928	1，807	1，206	0，187	0，256
ェHMANTIKOTHTA	0，467	0，325	0，189	0，478	0，351	0，943	0，285	0，840
AGE								
18－35	4，06	3，72	4，25	4，07	4，02	3，73	3，91	3，58
36－50	4，53	4，12	4，44	4，38	4，38	3，74	3，91	3，68
$50 \mathrm{KAI} \mathrm{AN} \Omega$	4，42	4，32	4，42	4，05	4，16	3，16	3，37	3，11
F Ratio	5，693	4，812	1，189	2，350	3，086	2，270	2，176	1，707
2HMANTIKOTHTA	0，004	0，009	0，307	0，098	0，048	0，106	0，116	0，184
ЕПIПE EKПAIAEYEHE								
ПР®ТОВАЄМIA	4，40	4，40	4，50	4，70	4，30	3，90	4，20	4，30
\triangle EYTEPOBA＠MIA	4，22	3，83	4，28	4，20	3，96	3，72	3，97	3，64
TPITOBA＠MIA	4，24	3，91	4，35	4，09	4，27	3，64	3，74	3，45
F Ratio	0，147	1，310	0，361	1，949	2，870	0，318	1，597	2，560
Σ LMANTIKOTHTA	0，863	0，272	0，697	0，145	0，059	0，728	0，205	0，080

 елілоүе́ц тоис.

 о七отоирıбцо́ $\sigma \tau \eta \nu \pi \varepsilon \rho เ ๐ \chi \eta ́$.

 E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha$.

	$\Delta \eta \mu \iota о v \rho \gamma i ́ \alpha \mu о$ с́́ $\boldsymbol{\alpha}$ с oเvotovpıб μ ov́ $\alpha \pi$ ó $\tau \eta v$ $\pi \alpha \rho \alpha \gamma \omega \gamma \eta \dot{\eta} \mu \varepsilon ́ \chi \rho!\tau \eta \nu$ $\varepsilon \mu \varphi \iota \alpha ́ \lambda \omega \sigma \eta$	оเvotovpıбนои́ $\mu \varepsilon$ $\pi \alpha \rho о \chi \eta ์ ~ \tau 0 v \rho เ \sigma \tau เ \kappa ต ́ v ~$ vтๆрєбเต́v
API@MHTIKOE MELOE	2,66	2,62
TYПIKH АПОКАILH	0,102	0,108
TY 10		
ANDPAE	2,48	2,32
ГYNAIKA	2,78	2,82
T Ratio	-1,414	-2,330
EHMANTIKOTHTA	0,352	0,528
HAIKIA		
18-35	2,78	2,74
36-50	2,43	2,48
$50 \mathrm{KAI} \mathrm{AN} \Omega$	2,42	2,08
F Ratio	1,439	1,682
EHMANTIKOTHTA	0,241	0,190
EПIПEDO EKПAIDEYटHE		
ПР Ω TOBA ${ }^{\text {M MIA }}$	2,00	1,86
\triangle EYTEPOBA@MIA	2,84	2,60
TPITOBA@MIA	2,57	2,70
F Ratio	1,897	0,154
EHMANTIKOTHTA	1,325	0,269

4.15 Evסєıкvvó $\mu \varepsilon v \varepsilon \varsigma ~ \pi \varepsilon \rho ı \chi \varepsilon ́ \varsigma ~ \delta \eta \mu ı 0 v \rho \gamma i ́ \alpha \varsigma ~ \mu о v \alpha ́ \delta \omega v ~ o ı v o \tau o v \rho ı \sigma \mu о v ́ . ~$

	$\frac{4}{2}$	\sum_{i}^{0}	$\begin{aligned} & \frac{\pi}{2} \\ & 0 \\ & \frac{6}{4} \\ & \frac{4}{4} \end{aligned}$				$\begin{aligned} & 0 \\ & \frac{8}{4} \\ & \frac{1}{4} \\ & \frac{1}{4} \end{aligned}$			$\frac{\pi}{k}$		$\begin{aligned} & 0 \\ & \frac{0}{1} \\ & \frac{1}{0} \end{aligned}$	$\frac{2}{5}$
ФYAO													
ANDPAE	2	1	26	31	2	8	13	29	7	10	6	9	1
ГYNAIKA	1	2	34	33	5	14	15	28	10	17	2	16	3
HAIKIA													
18-35	1	2	38	32	6	14	14	29	9	14	4	19	3
36-50	2	1	17	27	1	6	12	24	3	11	3	4	1
$50 \mathrm{KAI} \mathrm{AN} \Omega$	-	-	5	5	-	2	2	4	5	2	1	2	-
$\begin{aligned} & \hline \text { EПIПE } \triangle O \\ & \text { EKПAIAEYГHГ } \end{aligned}$													
ПРЛТОВАЄМIA	-	-	2	1	-	1	-	3	4	8	1	1	-
\triangle EYTEPOBA@MIA	1	1	36	31	5	10	10	25	4	19	3	9	2
TPITOBA@MIA	2	2	22	32	2	11	18	29	9	27	4	15	2

 $\sigma \tau \eta \nu \pi \varepsilon \rho \ldots \chi \eta$ ๆ.

4.17 Evסєıкvvó $\mu \varepsilon v \varepsilon \varsigma ~ \pi \varepsilon \rho ı \chi \varepsilon ́ \varsigma ~ \gamma ı \alpha \tau \eta ~ \delta \eta \mu ı v \rho \gamma i ́ \alpha \mu о v \alpha ́ \delta \omega v$ аүротоvрıбนои́

 $\delta \iota, \varphi о \rho \varepsilon \tau \iota к о ́$.

	$\frac{4}{2}$	\sum_{i}^{O}	$\begin{aligned} & T \\ & E \\ & E \\ & B \end{aligned}$			$\begin{aligned} & 0 \\ & \frac{0}{4} \\ & 4 \\ & \frac{1}{4} \\ & \frac{1}{n} \end{aligned}$	$\begin{aligned} & \frac{1}{k} \\ & 0 \\ & \frac{0}{k} \\ & \frac{4}{4} \end{aligned}$	$\begin{aligned} & \text { W } \\ & 0 \\ & \text { W } \\ & \text { W } \end{aligned}$			$\begin{aligned} & \text { W } \\ & \text { O } \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { K } \\ & \hline \end{aligned}$		$\frac{4}{4}$	$\frac{2}{2}$	$\begin{aligned} & 0 \\ & \underset{a}{z} \\ & \hat{0} \end{aligned}$	$\frac{2}{5}$	\sum_{E}^{T}
ФYAO																		
ANDPAL	2	1	27	5	11	22	37	8	7	8	11	19	3	3	9	7	1	3
ГYNAIKA	4	4	19	2	18	27	43	5	3	8	13	22	2	3	15	10	1	3
HAIKIA																		
18-35	1	1	22	3	15	27	42	8	5	13	13	21	1	2	13	7	-	3
36-50	4	3	23	3	14	19	30	4	4	2	11	17	3	3	11	6	2	3
50 KAI AN ת	1	1	1	1	-	3	8	1	1	1	-	3	1	1	-	4	-	-
EПIПE EKПO																		
ПР Ω TOBA@MIA	1	2	-	-	-	2	2	1	-	-	-	1	-	-	-	-	-	-
\triangle EYTEPOBA@MIA	2	3	19	4	11	20	36	8	5	5	12	22	2	2	8	11	1	4
TPITOBA@MIA	3	5	27	3	18	27	42	4	5	8	12	18	3	4	16	6	1	2

 $\pi \rho о \tau i ́ \mu \eta \sigma \eta$ бто $\Sigma \varepsilon \lambda \alpha ́ \kappa \alpha v o ~ \mu \varepsilon$ то 21,2 \% va то $\pi \rho о \tau \varepsilon$ ível $\omega \varsigma ~ \mu i ́ \alpha ~ \kappa \alpha \tau \alpha ́ \lambda \lambda \eta \eta \lambda \eta$

	$\begin{array}{r} 20-30 \\ \varepsilon \tau \omega ́ v \\ \hline \end{array}$	$\begin{array}{r} 31-40 \\ \varepsilon \tau \omega ́ v \\ \hline \end{array}$	$\begin{array}{r} 41-50 \\ \varepsilon \tau \omega ́ v \\ \hline \end{array}$	$\begin{array}{r} 51 \kappa \alpha t \\ \dot{\alpha} v \omega \\ \hline \end{array}$	EYNOAO
TY ${ }^{\text {a }}$					
ANDPAE	18	46	19	5	88
Γ YNAIKA	22	64	34	4	124
HAIKIA					
18-35	31	60	39	5	127
36-50	6	39	19	2	66
$50 \mathrm{KAI} \mathrm{AN} \Omega$	3	11	3	2	19
EПIПEDOEKПAIDEYटHट					
ПРЛТОВАЄМIA	1	5	4	0	10
\triangle EYTEPOBA@MIA	19	50	18	2	89
TPITOBA@MIA	20	55	31	7	113

 $\alpha \alpha^{\alpha} \omega$.

	$\begin{array}{r} 20-30 \\ \varepsilon \tau \omega ́ v \end{array}$	$\begin{array}{r} \hline 31-40 \\ \text { عtढ́v } \end{array}$	$\begin{array}{r} \hline 41-50 \\ \varepsilon \tau \omega ́ v \end{array}$	$\begin{array}{r} 51 \kappa \alpha \iota \\ \dot{\alpha} v \omega \\ \hline \end{array}$	EYNOAO
ФY ${ }^{\text {SO }}$					
ANDPA乏	14	53	18	3	88
ГYNAIKA	18	66	32	8	124
HAIKIA					
18-35	19	70	29	9	127
36-50	11	39	15	1	66
$50 \mathrm{KAI} \mathrm{AN} \Omega$	2	10	6	1	19
$\begin{aligned} & \text { EПIПE } \triangle O \\ & \text { EKПAIDEYГHГ } \end{aligned}$					
ПРЛТОВА@МIA	2	7	0	1	10
\triangle EYTEPOBA@MIA	14	50	20	5	89
TPITOBA@MIA	16	62	30	5	113

 бuvoдıкó $\pi \alpha ́ \lambda \imath ~ \pi о \sigma о \sigma \tau o ́ ~ \tau \omega v ~ \delta u ́ o ~ \varphi u ́ \lambda \omega v ~ \tau \eta \zeta ~ \tau \alpha ́ \xi \eta \zeta ~ \tau о v ~ 30,4 \% ~ к \alpha ı ~ \tau \varepsilon \lambda \varepsilon v \tau \alpha i ́ o l ~ o l ~ 51 ~ \kappa \alpha ı ~$

 $\pi \rho о \tau \varepsilon \rho \alpha$ ı́ $\eta \tau \alpha \varsigma$.

 тоирıбцои́ $\sigma \tau \eta \nu \pi \varepsilon \rho ю \chi \eta ́ . ~$

Пívaка¢ 4.20 Кри́teऽ тоvрібтєऽ

	Пршт/бая 	$\Delta \varepsilon v \tau / \sigma a \varsigma$ $\Sigma \eta \mu \alpha \sigma i ́ \alpha$	Tрı $\tau / \sigma \alpha \varsigma$ $\Sigma \eta \mu \alpha \sigma i ́ \alpha \varsigma$	Tعт/бac $\Sigma \eta \mu \alpha \sigma i \alpha<$	IYNOA 0
ФY ${ }^{\text {OO }}$					
AN \triangle PA	17	15	17	39	88
ГYNAIKA	29	19	35	41	124
HAIKIA					
18-35	29	22	29	47	127
36-50	14	11	14	27	66
50 KAI AN ,	3	1	9	6	19
$\begin{array}{\|l\|} \hline \text { EПIПE } \triangle O \\ \text { EKПAIDEYГHГ } \end{array}$					
ПРЛТОВАЄМIA	2	4	2	2	10
\triangle EYTEPOBA@MIA	19	10	18	42	89
TPITOBA@MIA	25	20	32	36	113

	Пршт/баऽ $\Sigma \eta \mu \alpha \sigma i ́ \alpha \varsigma$	$\Delta \varepsilon v \tau / \sigma \alpha \varsigma$ इпи	Tрı $\tau / \sigma \alpha$ $\Sigma \eta \mu \alpha \sigma \dot{\alpha}$	Tev/ $\sigma \alpha c$ $\Sigma \eta \mu \alpha \sigma i \alpha g$	EYNOAO
ФY 40					
AN \triangle PA	24	32	31	1	88
Γ YNAIKA	38	58	26	2	124
HAIKIA					
18-35	36	52	36	3	127
36-50	20	29	17	0	66
50 KAI ANS	6	9	4	0	19
$\begin{aligned} & \text { ЕПIПЕДO } \\ & \text { ЕKПАIДEYГHГ } \end{aligned}$					
ПРЛТОВА@МIA	4	3	3	0	10
\triangle EYTEPOBA@MIA	22	37	27	3	89
TPITOBA@MIA	36	50	27	0	113

 то 47,3 аvто́v

 $\pi \tau \cup \chi 10 \cup ์ \chi \omega v$.

Пívaка¢ 4.20ү Evрютаіоı тоvрїтея

	Пршт/баऽ इұ $\eta \alpha \sigma \dot{\prime} \alpha \varsigma$	$\Delta \varepsilon v \tau / \sigma \alpha \varsigma$ $\Sigma \eta \mu \alpha \sigma i ́ \alpha s$	Tрıг/б人c $\Sigma \eta \mu \alpha \sigma i ́ \alpha c$	Tet/ $\sigma \alpha \varsigma$ $\Sigma \eta \mu \alpha \sigma i \alpha c$	EYNOAO
ФY ${ }^{\text {SO }}$					
AN \triangle PAE	42	21	23	2	88
ГYNAIKA	53	28	42	1	124
HAIKIA					
18-35	56	29	40	2	127
36-50	31	14	21	0	66
50 KAI AN ,	8	6	4	1	19
ПРЗТОВАЄМIA	3	3	4	0	10
\triangle EYTEPOBA@MIA	43	21	22	3	89
TPITOBA@MIA	49	25	39	0	113

 vıо $\varepsilon \tau \tau \circ v ์ v \tau \eta \nu i \delta i \alpha$ Ө́́бๆ.

 $\alpha \pi$ ó $\tau \alpha \alpha \sigma \eta$.

	Пршт/баऽ $\Sigma \eta \mu \alpha \sigma i ́ \alpha \varsigma$	$\Delta \varepsilon v \tau / \sigma \alpha \varsigma$ $\Sigma \eta \mu \alpha \sigma i ́ \alpha s$	Tрı $\tau / \sigma \alpha$ $\Sigma \eta \mu \alpha \sigma$ ías	T $\varepsilon \tau / \sigma \alpha \varsigma$ $\Sigma \eta \mu \alpha \sigma i \alpha c$	EYNOAO
ФY $\mathbf{S O}_{0}$					
ANDPAE	5	20	17	46	88
ГYNAIKA	4	19	21	80	124
HAIKIA					
18-35	6	24	22	75	127
36-50	1	12	14	39	66
50 KAI AN ,	2	3	2	12	19
$\begin{aligned} & \hline \text { EПIПE } \triangle O \\ & \text { EKПAIDEYГHГ } \end{aligned}$					
ПРЛТОВА@МIA	1	0	1	8	10
\triangle EYTEPOBA@MIA	5	21	22	41	89
TPITOBA@MIA	3	18	15		113

 $\varepsilon \kappa \pi \alpha i ́ \delta \varepsilon u \sigma \eta \varsigma ~ \alpha \varphi о и ́ ~ \tau о ~ 80 \% ~ \theta \varepsilon \omega \rho \varepsilon i ́ ~ \pi \rho о \varphi \alpha v \omega ́ \varsigma ~ \tau \eta ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \alpha \pi o ́ \sigma \tau \alpha \sigma \eta ~ \varepsilon گ ̌ ́ \sigma o v ~ \mu \varepsilon \gamma \alpha ́ \lambda о ~$

КЕФАААIO 5

ГҮМПЕРАГМАТА- ПРОТАГЕIธ

5.1 Eıбаү $\omega \gamma \eta$ ท́

 єо $о \dot{\tau \varepsilon \rho \eta \varsigma ~ \pi \varepsilon \rho ı \chi \eta ́ \varsigma . ~}$

 $\beta \alpha \theta \mu i ́ \delta \omega v$.

$\boldsymbol{\tau} \varsigma \boldsymbol{\pi \varepsilon \rho ⿺ 夂 \chi} \boldsymbol{\eta}$ ¢.

 $\tau \omega v \pi 0 \lambda \tau \tau \dot{v}$.

oเvoтovpıбนоv́ $\sigma \tau \eta \pi \varepsilon \rho เ o \chi \eta ́$

 o七voтovpıб μ ои́.

 $\tau 0 \cup \varsigma \kappa i v \eta \sigma \eta \pi$ т $\lambda \lambda \alpha \dot{\alpha} \chi \omega \rho \neq \alpha ́ \alpha v \alpha ́ \tau \eta \nu$ E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha$.

 $\kappa \alpha \imath \tau \eta \nu$ онор甲ı́́ тои૬.

 Үлєр $\alpha \tau \lambda \alpha v \tau 1 к о$ тоирі́бтєऽ

То $\pi \alpha \rho \theta \varepsilon ́ v o ~ \varepsilon ́ \delta \alpha, \varphi o \varsigma ~ \pi о v ~ \varepsilon \pi ı к \rho \alpha \tau \varepsilon i ́ ~ \pi \rho о \varsigma ~ \alpha v \tau \eta ́ ~ \tau \eta \nu ~ к \alpha \tau \varepsilon v ́ \theta u v o \eta ~ \delta \varepsilon v ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \theta \varepsilon \omega \rho \eta \theta \varepsilon i ́ ~$

 $\pi \rho о \sigma \varepsilon ́ \gamma \gamma \imath \emptyset \eta ~ \alpha \gamma \rho о \tau о ч \rho ı \tau \tau \kappa о ́$.

 $\varepsilon \pi \chi \chi \varepsilon \downharpoonright \eta \dot{\sigma} \omega \omega \mathrm{v}$.

 $\alpha \sigma \tau 1 \kappa \alpha ́ \kappa \varepsilon ́ v \tau \rho \alpha$.

 $\pi \rho о \kappa \cup ́ \psi o v v \alpha v \alpha \check{\eta} \tau \dot{\omega} v \tau \alpha \varsigma \tau \eta v \pi \alpha \rho \alpha \pi \varepsilon ́ \rho \alpha \chi \rho \eta \dot{\eta} \eta \tau \eta \varsigma$.

 $\mu \varepsilon \delta \iota \varepsilon \theta v \varepsilon i ́ ̧ ~ \iota \tau \tau о \sigma \varepsilon \lambda i \delta \varepsilon \varsigma ~ \alpha \gamma \rho о \tau о \cup \rho \iota \sigma \mu о v ́$.

 $\delta 1 \alpha \delta \iota \kappa \alpha \sigma i \alpha,, \tau \alpha$ ко́бтๆ $\pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma \kappa \alpha \iota \tau \iota \varsigma \pi \rho о о \pi \tau \tau \kappa \varepsilon ́ \varsigma$.

 عívol $\alpha v \alpha \gamma \kappa \alpha i ́ o l$.

 ó $\chi \imath \mu o ́ v o ~ \mu i ́ \alpha ~ \pi \rho о ́ к \lambda \eta \sigma \eta ~ \alpha \lambda \lambda \alpha ́ \alpha ~ \pi о \lambda v ́ ~ \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho \eta ~ \mu i ́ \alpha ~ \alpha v \tau о ́ \mu \alpha \tau \eta ~ к і ́ v \eta \sigma \eta ~ \mu \alpha ́ \rho к \varepsilon \tau ı v \gamma к ~ \mu \varepsilon ~$

 Еگ̧íov $\mu \pi о \rho \varepsilon i ́ v \alpha \varepsilon \xi \varepsilon \lambda \lambda \chi \theta \varepsilon i ́ ~ \eta ~ \gamma \varepsilon v ́ \sigma \eta ~ o ́ \lambda \omega v ~ \alpha \nu \tau \omega ́ v ~ \kappa \alpha ı ~ \sigma \tau \eta \nu ~ \pi \alpha, \rho \alpha \gamma \omega \gamma \eta ́, ~ \alpha \kappa o ́ \mu \eta ~ \pi ю ~ \pi \varepsilon ́ \rho \alpha, ~$

5.8 Елí̉oүog

 ко́то коı лоди́ орүо́v$\omega \sigma \eta$.

ВІВАІОГРАФІА

1. EENOTASEEH

Aaker, D. \& Day, G. (1990). Marketing Research, (4 ${ }^{\text {th }}$ eds). New York: Wiley.

Ali - Knight, J. \& Charters, S. (1999a) Education in a West Australian Wine Tourism Context. $\Sigma \tau 0$: Charters S \& Ali-Knight J. (2001) Who is the Wine Tourist? Tourism Management 23 (2002) 311-319.

Andriotis, K. (2000) Local Community Perceptions of Tourism as a Development Tool: The Island of Crete. Unpublished PhD Thesis, Bournemouth: Bournemouth University.

Antoniolo Corigliano, M. (1996) Caratteristiche della Domanda Strategie di Offertae Aspetti Territoriali e Ambientali Franco Angeli, Milano $\Sigma \tau o$: Charters S \& Ali-Knight J. (2001) Who is the Wine Tourist? Tourism Management 23 (2002) 311-319.

Browett, G. (1980) Development: The Diffusionist Paradigm and Geography. $\Sigma \tau 0$:

Buchholz, R. (1998) Principles of Environmental Management. The Greening of

Butler, R. (1980) The Concept of Tourist Area Cycle Evolution: Implications for Management of Resources. Canadian Geographer. 24(1), 5 - 12.

Cazes, G. (1989) Les nouvelles colonies de vacances? Paris: L'Harmattan. $\Sigma \tau 0$:

Cazes, G \& Potier, F. (1996) Le Tourisme Urbain, Série Que sais-je?, Editions PUF.

Charters, S \& Ali-Knight, J. (2001) Who is the Wine Tourist? Tourism Management 23 (2002) 311-319.

Clark, M., Riley, M., Wilkie, E. \& Wood, R. (2000). Researching and Writing Dissertations in Hospitality and Tourism. London: Thomson.

Denzin, K. \& Lincoln, S. (1998) Collecting and Interpreting Qualitative Materials. London: SAGE Publications.

Doxey, G. (1976) When Enough's Enough: The Natives are Restless in Old Niagara.

 $\Delta \omega \varphi \eta \eta^{\prime} \mu \varnothing \eta \varsigma$.

Eyssartel, A. M., Rochette B., (1992) Des Mondes Inventés: Les parcs à thème. Sqo:

Fennel, D., (2001) Oıкотоvрı $\sigma \dot{\partial} \varsigma ~ A \theta \eta \dot{v}$ 人: 'E $\lambda \lambda \eta \nu$.

Fontana, A \& Frey, H. (1994) Interviewing the Art of Science. $\Sigma \tau o$: N. П $\alpha \pi \pi \alpha ́ \varsigma, ~(2006) ~$

Friedmann, J. (1980) An Alternative Development? $\Sigma \tau o: ~ П \alpha \pi \pi \alpha ́ \varsigma ~ N . ~(2006) ~ \Sigma \eta \mu \varepsilon ı \omega ́ \sigma \varepsilon ı \varsigma ~$

Gee, Y.C. \& Makens, J.C. \& Choy, D. J. L. (1989) The Travel Industry, New York:

Getz, D. (1998). Wine Tourism: Global Overview and Perspectives on its development. Wine Tourism-Perfect Partners:Proceedings of the first Australian Wine Tourism

Conference. Evo: Charters S \& Ali-Knight J. (2001) Who is the Wine Tourist? Tourism Management 23 (2002) 311-319.

Gilbert, E. (1939) The Growth of Inland and Seaside Health Resorts in England. Σ гo:

Hall, M. \& Macionis, N. (1998) Wine Tourism in Australia and New Zealand. $\Sigma \tau \tau$: Charters S \& Ali-Knight J. (2001) Who is the Wine Tourist? Tourism Management 23 (2002) 311-319.
 K $\lambda \varepsilon \varepsilon \delta \alpha ́ \rho \imath \theta \mu \circ \varsigma$.

Hunziker, W.\& Kraft, K. (1942) Allgemeine Fremdenverkehrlehre, Zurich $\Sigma \tau 0$:

Jansen-Verbeke, M. \& Dietvorst, A. (1987) Leisure, Recreation, Tourism: a Geographic View on Integration, Annals of Tourism Research 14(3):361-375.

Johnson, G (1997). Surveying Wine Tourism in New Zealand. Quality Tourism: Beyond the Masses-Proceedings of the First National Tourism Students Conference. Ito: Charters S \& Ali-Knight J. (2001) who is the Wine Tourist? Tourism Management 23 (2002) 311-319.

Leiper, N. (1981) Towards a cohesive curriculum in tourism: the case for a distinct

Malhorta, K (1996) Marketing Research: An Applied Analysis. $2^{\text {nd }}$ (eds), London: Prentice Hall.

Mill, R. C., \& Morrison, A. M. (1985) The Tourism System, Englewood Cliffs $\Sigma \tau o$: Fennel, D., (2001) Oוкотоvрıб $\mu o ́ \varsigma ~ A \theta \eta ́ v \alpha: ~ E \lambda \lambda \eta \nu . ~$

Mitchell, R. \& Hall, C.M (2001a) The influence of gender and region on the New Zealand Winery Visit. $\Sigma \tau o$: Getz, D. \& Brown, G. (2004) Critical Success Factors for Wine Tourism Regions: a Demand Analysis. Tourism Management 27(2006) 146-158.
 'E $\lambda \lambda \eta \nu$.
 $\mathrm{K} \lambda \varepsilon \iota \delta \alpha ́ \rho \imath \theta \mu \sigma$.

Patton, Q. (1999) Utilization - Focused Evaluation in Africa: Evaluation Training Lectures Delivered to the Inaugural Conference of the African Evaluation Association. Nairobi - Kenya: 13-17 September.

Pizam, A (1994) Planning a Tourist Research Investigation. In: Richie, B. \& Goeldner, Travel, Tourism and Hospitality Research: A Handbook for Managers. $2^{\text {nd }}$ (eds), New York: Wiley.

Punch, F. (1998) Introduction to Social Research: Quantitative and Qualitative Approaches. Thousand Oaks: SAGE Publications.

Rostow, W. (1960) The Stages of Economic Growth. Cambridge: Cambridge University Press.

Sekaran, U. (2000) Research Methods for Business: a Skill-Building Approach. $3^{\text {rd }}$ (eds), New York: John Wiley and Sons Inc.

Siegfried, A. (1955) Les Aspects du XX Siècle. $\Sigma \tau \tau:$ B $\alpha \rho \beta \alpha \rho \varepsilon ́ \sigma o \varsigma ~ \Sigma \tau . ~(2000) ~$

Singleton, A., Straits, C. \& Straits, M. (1993) Approaches to Social Research. $2^{\text {nd }}$ (eds) New York: oxford University Press

Smith, V. L. \& Eadington, W. R. (1992) (Eds.), Tourism Alternatives: Potentials and

Smith, A. (1776) The Wealth of the Nations. Oxford: Clarendon Press.

Todaro, P. (1994) Economic Development. New York: Longman.

Tourism Concern (1992) Beyond the Green Horizon: Principles for Sustainable

Turner, L. \& Ash, J. (1975) The Golden Hordes: International Tourism and the Pleasure

Veal, J. (1997) Research Methods for Leisure and Tourism : A Practical Guide. $2^{\text {nd }}$ (eds), London: Pitman.

Walle, H. (1997) Quantitative Versus Qualitative Tourism Research. Annals of Tourism Research, 24(3), 524-536.

WCED (1987) Our Common Future. World Commission on Environment and Development. $\Sigma \tau o: ~ П \alpha \pi \pi \alpha ́ \varsigma ~ N . ~(2006) ~ \Sigma \eta \mu \varepsilon \iota \iota ́ \sigma \varepsilon ı \varsigma ~ M a \theta \dot{\eta} \mu \alpha \tau о \varsigma ~ \Sigma \chi \varepsilon \delta ı \alpha \sigma \mu o ́ \varsigma ~ T o v p ı \sigma \tau ı к \grave{\varsigma ~}$
 $\kappa \alpha ı \Delta 1 \alpha \varphi \eta ́ \mu \iota \sigma \eta \varsigma$.

Weaver, J \& Jameson, K. (1981) Economic Development, Competing Paradigms. Sto:

Weiler, B. \& Hall, M. C. (1992) (Eds.), Special Interest Tourism. London: Belhaven Press.

Williams, A. M. \& Shaw, G. (1994) Tourism and Development: Introduction. $\Sigma \tau \sigma$:

Wolfe, R. (1952) Wassage Beach - The Divorce from the Geographic Environment.

WTO (1993) Sustainable Tourism Development: Guide for Local Planners, Madrid.

2. EASHNIKH

 Екбо́бєıц Пролонло́ऽ.

 $\Sigma \tau \alpha \mu о v i \lambda \eta \varsigma$.

 $\operatorname{SPSS}\left(3^{\eta} \varepsilon \kappa \delta\right.$.), AӨŋ́vo:Gutenberg.

3．BIBAIOГРАФIA ПРОЕРХОМЕNH AПO TO ДIAAIKTYO

 тоирıб $\mu о v ́: ~ \pi \eta \gamma \eta ́ ~ \alpha \pi o ́ ~ \tau o ~ \Delta l \alpha \delta i ́ \kappa \tau v o: ~ h t t p: / / w w w . a g r o n e w s . g r / c g i-~$ bin／eap／printnews．cgi？id＝EEFA uupVIFapBrumDE，Avoк兀ŋ் $\theta \eta \kappa \varepsilon \sigma \tau \tau \varsigma ~ 19 / 10 / 06 . ~$.
 www．agrotravel．gr／agro／site／AgroTravel／t＿docpage？doc＝／Documents／navigationtravel／a grodefinition，Avoктŋ் $\theta \eta \kappa \varepsilon \sigma \tau \tau 5$ 12／01／07．

Ruralinvest（2006）Aүротоvрıбтıкó Eлıұءıряiv：$\pi \eta \gamma \eta ́ ~ \alpha \pi o ́ ~ \tau о ~ \Delta ı \alpha \delta i ́ к \tau v o: ~ h t t p: / / ~$ www．ruralinvest．gr，Avoкпŋ̆ $\theta \eta \kappa \varepsilon \sigma \tau \tau \varsigma ~ 12 / 01 / 07$.

Aүротоирıбнós（2007）A $\gamma \rho о \tau о v \rho \iota \sigma \mu o ́ s ~ \sigma \tau \eta \nu ~ E \lambda \lambda \alpha ́ \delta \alpha: ~ \pi \eta \gamma \eta ́ ~ \alpha \pi o ́ ~ \tau о ~ \Delta ı \alpha \delta i ́ к \tau v o: ~ h t t p: / / ~$ www．agrotourismos．gr Avబктŋं $\theta \eta \kappa \varepsilon \sigma \tau \iota \varsigma ~ 12 / 01 / 07$.

M $\dagger \lambda \alpha \alpha ́$（1994）Mountain Retreat：$\pi \eta \gamma \eta \dot{\eta} \alpha \pi o ́$ to $\Delta 1 \alpha \delta \dot{́} \kappa \tau v o:$ http：／／www．milia．gr Аvактŋ̆Өŋкє бтı̧ 12／01／2007．

Margaret River（2007）Margaret River：$\pi \eta \gamma \dot{\eta}$ $\alpha \pi$ ó $\tau 0 \quad \Delta 1 \alpha \delta i ́ \kappa \tau v o: ~ h t t p: / / ~$ www．margaretriver．com Avoклй $\theta \eta \kappa \varepsilon$ отıऽ 09／01／2007．

Wine Travel Group（2006）Buyers Meet Sellers：$\pi \eta \gamma \dot{\eta} \alpha \pi$ д́ $\tau 0 \quad \Delta 1 \alpha \delta i ́ \kappa \tau v o: ~ h t t p: / /$ www．wine travelgroup．com．au Avaк兀ŋं $\theta \eta \kappa \varepsilon \sigma \tau \iota \varsigma 19 / 10 / 2006$.
 $\Delta 1 \alpha \delta \dot{\kappa} \tau v o:$ http：／／www．sete．gr／files／Ebook／2006＿BOUTARIS＿detap．pdf Avaк兀ŋ่ $\theta \eta \kappa \varepsilon$ бтıc 21／06／07．

 Avんк兀ŋ் $\theta \eta \kappa \varepsilon$ от兀¢ 19／10／2006．

ПАРАРТНМА

ЕРЛТНМАТОАОГІО

IENIKA ETOIXEIA

A／A： \qquad
ONOMATEIISNYMO： \qquad
TOПOЕ／ПEPIOXH MONIMHE KATOIKIAะ： \qquad
DIEY＠YNDH： \qquad
THAEФSNO： \qquad

EPSTHEEIEANAMYEHE

 عири́тєрŋ лєрюхŋ́ тŋร．

Подv́ ка入入̀	$K \alpha \lambda \eta$	Ov́t¢ Kадท̉ Ov́t¢ Какй	Какй	Поди́ Каки́

 $\delta \eta \lambda \omega ́ \sigma \varepsilon \varsigma$ ．
 Ієро́лєєрац；

	1	2	3	4	5	

 $v \pi \alpha \dot{\alpha} \lambda \lambda \eta \lambda \lambda 1$

$\Delta 1 \alpha \varphi \omega v \dot{1}$ A τ ó $\lambda \cup \tau \alpha$	1	2	3	4	5	

$\Delta 1 \alpha \varphi \omega v \omega$ A τ ó $\lambda \cup \tau \alpha$	1	2	3	4	5	

 $\mu \varepsilon$ то⿱ тоирıб $о$ ；

$\Delta 1 \alpha \varphi \omega v \omega$ A π ó $\lambda \cup \tau \alpha$	1	2	3	4	5	

 $\sigma \varepsilon \mu \nu \nu \alpha \rho i \omega v, \beta \varepsilon \lambda \tau i \omega \sigma \eta \quad \varepsilon \pi l \pi \varepsilon ́ \delta o v$ द́v́v$\omega v \gamma \lambda \omega \sigma \sigma \omega ́ v . .$.

	1	2	3	4	5	$\Sigma)^{\text {2 }}$

 $\delta \eta \lambda \omega ́ \sigma \varepsilon \varsigma$.
 к $\alpha \lambda$ ó $\varepsilon \pi i ́ \pi \varepsilon \delta о$

 μ о́vo ото $\mu \alpha$ ఢ̧ко́ тоирıбцо́

$\Delta ı \alpha \varphi \omega v$ Aлó $\lambda \cup \tau \alpha$	1	2	3	4	5	

 $\pi \varepsilon \rho ю \rho \imath \sigma \mu \varepsilon ́ v o \imath ~$

	1	2	3	4	5	

K α 日ó λ ou	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	П $\alpha \rho \alpha$ По $\lambda \dot{v}$

 $\pi \rho \circ \beta о \lambda \eta \dot{\tau} \tau \varsigma \pi \varepsilon \rho \iota \chi \eta \dot{\varsigma} \tau \eta \varsigma$ І $\rho \alpha ́ \pi \varepsilon \tau \rho \alpha \varsigma ;$
 $\sigma \tau \eta \nu$ I $\varepsilon \rho \alpha ́ \pi \varepsilon \tau \rho \alpha \kappa \alpha ı \tau \eta \nu \varepsilon \cup \rho v ́ \tau \varepsilon \rho \eta \pi \varepsilon \rho ı \chi \eta \dot{\eta} \tau \eta ;$
A. NAI \square
Eóv Noı $\sigma \varepsilon$ лоюov̧ тонєíc;
B. OXI \square

 $\pi \alpha \rho \alpha \delta о \sigma \iota \kappa \alpha ́ \dot{\eta} \theta \eta \kappa \alpha _\varepsilon \in \theta \mu \alpha ;$
A. NAI \square

B. OXI \square
 $\pi \varepsilon \rho ю \chi \eta ं ;$

ONOMATILTE TA

Tuplá	-	
Крабі́		
Paкí		
Гдขки́		
A $\lambda \lambda 0$		

 $\delta \eta \lambda \omega ́ \sigma \varepsilon ६$.

$\Delta l \alpha \varphi \omega v \omega ́ ~ A \pi o ́ \lambda v \tau \alpha$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\Sigma v \mu \varphi \omega v \dot{~ A \pi o ́ \lambda v \tau \alpha}$

 $\pi \rho о \sigma \varepsilon ́ \lambda \kappa и \sigma \eta ~ \pi \varepsilon \rho \iota \sigma \sigma о ́ \tau \varepsilon \rho \omega v ~ \tau о и \rho \iota \sigma \tau \omega ́ v ;$

	1	2	3	4	5	

 $\sigma \cup \mu \beta \dot{\alpha} \lambda \lambda \varepsilon \iota \sigma \tau \eta \nu \pi \varepsilon \rho \alpha \iota \varepsilon \varepsilon \rho \omega \alpha$

	1	2	3	4	5	

E. $\mathrm{H} \alpha v \alpha ́ \pi \tau \cup \xi ŋ \eta ~ \alpha \gamma \rho о \tau о \tau о \cup \rho \imath \sigma \mu о и ́ ~ \sigma \tau \eta \nu ~ \pi \varepsilon \rho ı \chi \eta ́ ~ \tau \eta \varsigma ~ I \varepsilon \rho \alpha ́ \pi \varepsilon \tau \rho \alpha \varsigma ~ \theta \alpha ~ \mu \pi о \rho о v ́ \sigma \varepsilon ~ v \alpha$

$\Delta \downarrow \alpha \varphi \omega v \dot{\text { A }}$ Ао́ $\lambda \cup \tau \alpha$	1	2	3	4	5	

$\Delta 1 \alpha \varphi \omega v$ ¢́ Aлóえu ${ }^{\text {a }}$	1	2	3	4	5	$\Sigma ง \mu \varphi \omega v \omega$ Алодл兀 α

$\Delta 1 \alpha \varphi \omega v \omega ́ ~ A \pi o ́ \lambda u \tau \alpha$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\Sigma v \mu \varphi \omega v \omega ́ ~ A \pi o ́ \lambda v \tau \alpha$

$\Delta ı \alpha \varphi \omega v \dot{\text { A }}$ Ао́ $\lambda \cup \tau \alpha$	1	2	3	4	5	

A. NAI \square
B. OXI \qquad

Eóv Nar:

 $\tau \eta \nu \varepsilon \mu \varphi \stackrel{\alpha ́ \lambda}{ } \omega \sigma \eta$ к $\rho \alpha \sigma \iota \sigma \cup ;$

 $\psi \cup \chi \alpha \gamma \omega \gamma к \kappa о$ и́ лєрıєұонє́vоv;

Поди́ Е¢ıктท́	1	2	3	4	5	nou E¢ıк土ๆ

 ототоирıбиой;
\qquad
\qquad
\qquad
 $\kappa \alpha \tau \alpha \lambda \nu \mu \alpha ́ \tau \omega v$;
A. NAI \qquad

\qquad
\qquad
\qquad
B. OXI \qquad
 $\mu о р \varphi \varepsilon ́ \varsigma ~ \varepsilon v \alpha \lambda \lambda \alpha \kappa \tau \imath \kappa о и ́ ~ \tau о \cup \rho \imath \sigma \mu о и ́ ; ~$

	$\begin{gathered} 20-30 \\ \varepsilon \tau \dot{\omega} v \end{gathered}$	$\begin{gathered} \hline 31-40 \\ \varepsilon \tau \dot{\omega} v \end{gathered}$	$\begin{aligned} & \hline 41-50 \\ & \varepsilon \tau \dot{\omega} v \\ & \hline \end{aligned}$	$\begin{gathered} 51 \mathrm{\kappa} \mathrm{\alpha l} \\ \alpha v \omega \\ \hline \end{gathered}$	
A $\gamma \rho$ отоирıбرо́s	$\begin{gathered} 20-30 \\ \varepsilon \tau \omega v \end{gathered}$	$\begin{gathered} \hline 31-40 \\ \varepsilon \tau \omega \bar{v} \\ \hline \end{gathered}$	$\begin{gathered} 41-50 \\ \varepsilon \tau \omega \bar{v} \end{gathered}$	$\begin{gathered} 51 \mathrm{\kappa} \alpha \\ \alpha \\ \alpha v \omega \\ \hline \end{gathered}$	

Oı Evpotaíot Tovpíates	
Oı Y $\pi \varepsilon \rho \alpha \tau \lambda \alpha v \tau$ ¢коí Tovpíates	

\triangle НМОГРАФІКА Σ TOIXEIA

ФY $\mathbf{~ O}: ~ A N \triangle P A \Sigma \quad \square \quad$ ГYNAIKA \square

HAIKIA: 18-35 \quad 36-50 \square 50 KAI AN $\Omega \quad \square$

ЕПIПЕДО ЕКПАІДЕУГНГ: ПРЛТОВА@МIА \triangle EYTEPOBA ${ }^{\text {MIA }}$ TPITOBA@MIA

