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Detecting and analyzing periodic signals based on evolutionary optimization
techniques

by Giorgos KARVOUNAS

Periodicity detection is a problem that has received a lot of attention, thus several
important tools exist to analyse purely periodic signals. However, in many real world
scenarios (time series, videos of human activities, etc) periodic signals appear in the
context of non-periodic ones. In this work we propose a method that, given a time
series representing a periodic signal that has a non-periodic prefix and tail, estimates
the start, the end and the period of the periodic part of the signal. We formulate this as
an optimization problem that is solved based on evolutionary optimization techniques.
Quantitative experiments on synthetic data demonstrate that the proposed method is
successful in localizing the periodic part of a signal and exhibits robustness in the pres-
ence of noisy measurements. Also, it does so even when the periodic part of the signal
is too short compared to its non-periodic prefix and tail. We also provide quantitative
and qualitative results obtained from the application of the proposed method to the
problem of unsupervised localization and segmentation of periodic activities in real
world videos.
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H ebpeon neproduxdtnag ebvan Eva tpdBAnua 6to omolo et agiepwiel onuovTiny TeoomTd-
Vel Katd cuvéneia, undipyouy apxeTd onuavTixd epyaAela Yior TNV aVIAUGT, OTUATLY TTou &i-
voi e£0N0XAEoL TepLodLXd. ‘Ouwe 68 TOAAS GEVARLO TOU TEAYUATIXOU XOGUOU (YPOVOCELES,
Bivteo e BpaoTnelOTNTES) Tol TepLodXd orjuato eppovi{ovton oTa TAUGLYL U1 TEPLOBLXWY. €
oUTN TNV TTLUY XN EpYaaior TpoTelvouE uLo uéYodo 0oL OE TEPLOBLXA OYUOTA TOU TEQIXAELOV-
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uattol Tou ofuatog. To cuyxexpyévo TedBinue to avtwetwnilovue we TEoBAnua BeATioTo-
roinone Bactlovtag v Adom Tou ot yevddoug e€ehixtinfic Bertiotonoinong. Ilepduarta oe
ouVIeTIxd dedopéva Belyvouv OTL 1) u€dodog unopel pe emtuyio vo evtonilel Teplodxd xou-
UdTior o€ oYdarToL oxoUaL xoi UTO TNV tapouasior Yopuou oTo Teplodixd xoppdtt. Autod yiveto
OXOUOL XOL OV TO TEQLOBIXO XOUMATL Elvan Uixpd o GYEoT) UE TOV VOpUPBO TOU TAUCUOVEL TO
ofjua. Télog napéyoupe anoteAéopata Tng UeVOdOL GE TpayUaTixd Bivieo.
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Chapter 1

Introduction

Periodic patterns and motions are ubiquitous in both natural and man-made environ-
ments [8]. Common periodic signals include the undulatory motion of biological or-
ganisms as well as the repetitive motions of man-made machines. Thus, the detection
and the characterization of such periodic patterns has been a topic addressed in several
disciplines such as signal processing, pattern analysis, image processing and computer
vision.

Several well established tools and techniques such as the Fourier Transform [10],
autocorrelation [2] and wavelets [11] can be used to analyse purely periodic signals.
However, in many real life scenarios, periodic signals appear as segments of larger
signals containing non-periodic parts. For example, consider the scenario of a sitting
human who stands up, performs a repetitive/periodic motion like walking, hand waiv-
ing, etc and then sits down again. It is also common that the periodic part of the signal
constitutes a small part of the whole signal. The detection of such periodic parts of the
motion and its characterization (i.e., the estimation of its period and temporal extent)
is an interesting problem that cannot be easily addressed by existing techniques.

In this paper we present a new method to solve exactly this problem. Given a uni-
variate or multivariate time series representing a periodic signal that has a non-periodic
prefix and tail (see Figure [1.1), our goal is to be able to estimate the start of the peri-
odic signal, its end and its period length in a totally unsupervised manner. In that
direction we formulate an appropriate objective function that is minimised by employ-
ing Particle Swarm Optimization (PSO) [14]. PSO belongs to the class of evolutionary
optimization algorithms that mimic the process of natural selection. This type of algo-
rithms solves a problem by maintaining a population of candidate solutions which are
points in the search space. The atoms of this population in PSO terminology are called
particles. The search space is explored by moving the particles in steps called gener-
ations. In each generation, the motion of each particle depends on its current fitness
score, the fitness score of others and possibly the whole fitness score history.

The employed objective function is parametrized by the begin and end of the pe-
riodic segment within the signal, as well as the period to be estimated. As shown by
experiments on synthetic data, the proposed method is robust to noise. Noise tolerance
is attributed to the robustness of the chosen optimization method and the appropriate
design of the employed objective function.

Our target application is to detect and characterize periodic events and activities
in monocular videos. Towards this end, we also propose a method that, based on
motion information, automatically extracts several time series from videos. The anal-
ysis of these time series based on the proposed periodicity detection method leads to
the spatio-temporal localization of periodic events as well as to the estimation of their
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FIGURE 1.1: The proposed method (left) detects the start (red delimiter), the end (cyan de-
limiter) and the period length (green delimiters) of a periodic signal that appears within a
non-periodic one. Because of the extended non periodic prefix and tail, the Fourier Trans-
form (center) and the autocorrelation (right) cannot cope with this problem in a robust and
computationally efficient way. The red circle in the center and right plots corresponds to
the ground truth regarding the periodic signal. The Fourier-based and autocorrelation-
based responses exhibit spurious peaks, different than that of the ground truth.

frequency. The resulting method has only a small number of tunable parameters, is
totally unsupervised and can detect short periodic events occurring in the context of
extended non-periodic activities. Several experiments show its effectiveness and accu-
racy in real world scenarios. From a computational point of view, the method delivers
near-optimal results at a computational cost that is several orders of magnitude less
compared to the one required by the naive exhaustive search over the parameters of
the problem.
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Literature Review

Physics was the first scientific area to deal with problems related to periodicity detec-
tion. Furthermore, many fields in computer science such as computer vision, databases
and digital signal processing have benefited from and improved upon the relevant
knowledge.

Signal processing methods: Firstly, back in the 19th century, Fourier [10] introduced
the Fourier Transform. Cooley and Tukey in [7] made it efficient to use the Fourier
Transform in digital signals by introducing the Fast Fourier Transform (FFT) that de-
composes a signal into its constituent frequencies. This transform is not suitable for
our problem because the non-periodic prefix and tail of the system introduce several
frequencies, therefore the unique frequency of the periodic part of the signal or its har-
monics cannot be distinguished. Additionally, the periodic part of the signal cannot be
localized. Autocorrelation [2] is a method to measure the similarity between values in
a signal and is more tolerant to non-stationary periodic signals. Wavelets, introduced
by Grossmann et al. [11] can tackle the Fourier transform locality issue, but their appli-
cation requires manual initialization of several parameters. All of the above methods
have low tolerance to noise.

Data mining: Finding sequential patterns has also received a lot of attention in the
area of data mining. Agrawal et al. [1] introduced the first rule for pattern mining
in databases and, two years later, proposed mining of often occurring sub-sequences.
Elfeky et al. [9] proposed the WARP algorithm for the detection of reoccurring, same or
similar transactions in databases. Han et al. [12,/13] also proposed a method for mining
single or multiple periodic patterns in databases. Data mining is out of the scope of
this work, but many real-world problems can be addressed using such techniques.
Vision-based tracking of periodic motions: Seitz et al. [18] present an algorithm to
estimate cyclic and periodic motions based on the Kolmogorov-Smirnov test. The
method is affine invariant regarding the observation viewpoint. The output of the
method is the estimated period of the motion, as well as a certainty score. Polana
and Nelson [17] devise an extension of the Fourier formula to detect periodicity. Visual
features are extracted by tracking the objects and then spatially aligning the frames us-
ing as guide the centroid of each object. Cutler and Davis in [8] address the problem
of periodicity detection for both the case of stationary and non-stationary periodic sig-
nals. For the case of stationary signals, this can be achieved by a Fourier Transform
followed by a Hanning filter. However, for the non-stationary case, Short-Time Fourier
Transform is employed to better handle the shifting spectrum. As in [17], the objects
are tracked and aligned before the periodicity analysis.
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Human gait analysis: Urtasun et al. [20] use the anthropomorphic walker [15] for the
application of person tracking. The anthropomorphic walker is a physics model de-
scribing bipedal locomotion. By detecting the frequency of collision with the ground,
the model can create a strong prior for the next move of the legs. On the other hand,
Collins et al. [6] successfully applied gait cycle analysis to identify humans by extract-
ing landmark poses.

Motif Detection: The detection of repeating sub-sequences (termed motifs) in time se-
ries, is also a problem relevant to periodicity detection. Buhler et al. [3] propose an
algorithm based on random projections to detect motifs. Chiu et al. [4] devise an adap-
tive version of the random projection algorithm [3]. They group input samples into
clusters that they call symbols, achieving low computational complexity. In a method
closely related to the proposed one, Serra and Arcos [19] propose the SWARMMOTIEF,
an evolutionary algorithm for the problem of motif detection. Their method can find
motifs with a prefix dissimilarity. An important issue of the algorithm is the maximum
number of motifs that can be detected in a time series. This parameter is decided upon
the initialization of the optimization algorithm.

The literature review shows that there is no method that is both computationally
efficient and robust to noise for the problem of recovering spatial and temporal param-
eters of periodic signals that appear in the context of non periodic ones. To the best of
our knowledge, in this work we propose the first such method.
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Methodology

3.1 The Proposed Method

The core of the proposed framework is a method that, given a univariate time series
containing a periodic part, detects the start, the end and the period length of that part
(Section 3.1.T). However, several phenomena can be represented more effectively as
multivariate time series (e.g., motion capture data representing the joint angles of a
human body in motion as a function of time). We consider multivariate time series as
a set of synchronized, univariate time series. We apply the core periodicity detection
method to each of them. Then, we employ a simple yet effective method to aggregate
partial results towards characterizing the periodicity of the event that is represented
with the multivariate time series (Section[3.1.2). Finally, we show how to transform an
input video to time series which are analysed by the proposed techniques in order to
detect and characterize periodic events in real world videos in a totally unsupervised
manner (Section (3.1.3).

3.1.1 Periodicity detection in a univariate time series

We consider a univariate time series x =< x1,29,...,zxy >. We assume that this time
series is periodic between times b and e. The period of that part of the signal is [. Thus,
between b and e, the signal consists of n = |(e — b)/l] repetitions of a certain motif.
Given the time series x and no other information, our goal is to estimate b, e and I. We
formulate the task as an optimization problem in a search space defined by b, e and .

Objective function

The role of the defined objective function is to quantify the quality of a candidate
solution (b, e,!). Given such a candidate solution the time series is segmented into
a prefix < x1,x9,...,xp—1 >, a tail < Zey1,Teq2,...,2xy > and an in-between part
< Tp, Tpy1, - - -, Te >, supposedly consisting of n repetitions of a segment of length [. If
the solution (b, e, 1) is correct, then the n segments

§; =< Thti-(i—1)s + + + » ToHli—1 > € {1 . n}, (31)

each of length /, should be very similar to each other. We quantify the total dissimilarity
of these segments as the mean squared error among all pairs of segments:

sl =230 3 s sl (32)

i=1 j=i+1
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where || - |3 denotes the squared Ls norm. Note that whenever [(e —b) mod [] # 0, the
last segment s,, is not entirely within the bounds b and e. Therefore, special care is taken
to properly handle the comparison of this last segment to the others. Essentially, the
same computation as Equation (3.2) is performed, but with appropriate limit values.
Specifically, the length of the last segment is [ — [(e — b) mod []. Therefore, only this
part of this segment is compared to the corresponding parts of the rest of the segments.

The sought solution (b, e, 1) to our problem minimizes ¢,(I). However, ¢4(1) is also
minimized if parts of the periodic signal are integrated to the non-periodic prefix or
tail. Thus, another term is incorporated to the objective function to favour solutions
with larger temporal extent. We achieve this by defining:

1
e—b’

er(bye,l,x) = a-es(l) + (3.3)
In Equation (3.3), a = 0.1 is an experimentally determined weight factor. The intuition
behind the use of the second, additive term is that, as 1/(e — b) diminishes for large
values of e — b, the optimization tends to favour solutions that include a larger number
of samples. Without this term, the method tends to prefer very small temporal extents
for the periodic signal since it is probable to find a good score in a few samples.

The special handling of the last segment results in an objective function surface
that is asymmetric around a given start and end. To alleviate this issue we compute
Equation for the input signal, as well as for its time-reversed version, appropri-
ately transforming the boundaries. Thus, the objective function O(b, e, [, x) guiding the
optimization is defined as

O(b,e,l,x) = e(b,e,l,x) + (L(x) — e, L(x) — b,1,7(x)), (3.4)

where L(x) denotes the length of signal x and r(x) represents the time-reversed signal
X.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic method that performs optimization
by iteratively improving a candidate solution with regard to a given measure of quality
(objective function). PSO maintains a population of candidate solutions, called parti-
cles, and moves these particles in the search space according to mathematical formulae
governing the particle’s position p and velocity V. The movement of each particle p; is
influenced by its local best known position P;, and simultaneously guided towards the
globally best known position G in the search-space. Both these positions are updated
as better positions are found by other particles. The update to the k-th generation is
described by:

Vik = ric1 (P — pig—1) + 1202 (G = pip—1) + wVip—1 (3.5
Pik = Pik—1+ Vik, (3.6)

where p; ;, and V; ;, respectively, denote the position and velocity of the particle p; at
the k-th generation, r; are samples of the uniform distribution U (0, 1), and ¢, ¢z and w
are parameters controlling the convergence speed of PSO. The particles are allowed to
move within per-defined ranges along each dimension of the search space. To enforce
this constraint, whenever it is violated the respective velocity V; ; is reduce up to the
point that the constraint is again satistied. These steps are followed iteratively, until
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a fixed upper bound of generations is reached. Regarding the parameters c;, c2 and
w, we follow the guidelines proposed in [5]. Specifically, ¢; = 2.8, ¢ = 1.3 and w =

2/ ‘2 — 1 — /P2 — 4¢’,where P =c1 + ca.

PSO can handle large search spaces and noisy, multi-modal objective functions. It
is suitable for our problem since the objective function exhibits multiple minima. For
our problem at hand, we use a standard variant of PSO which is termed canonical
PSO [5] to minimize the objective function of Equation over candidate solutions
(b, e,1). Canonical PSO optimizes real-valued parameters within a pre-specified cuboid
of the search-space. Our problem has integer-valued parameters, therefore we resort
to rounding the inputs to the closest integer. Furthermore, since parameters b and e
signify the begin and end of the periodic pattern, it should also hold that e > b. We
enforce this constraint by returning a very high objective function value whenever it is
violated.

3.1.2 Periodicity detection in a multivariate time series

The result of PSO is an estimated period length [ as well as the start b and the end e
of the periodic part within a single input signal. Given a K-dimensional multivariate
times series, we consider this as a collection of K univariate time series and seek for the
triplet (b, e, 1) suggested by all of them. Towards this end, each univariate time series
is individually processed, resulting in a set of candidate solution triplets (I, by, ex),
k € {1.K}. To come up with the single triplet describing the whole set, we resort to
computing the weighted median of all the estimated periods. As weights, we employ
the variances of the values of the time series. This forces signals with more information
to contribute more to the final estimation.

A final step is the handling of the case where our solution is in fact a multiple of the
basic frequency (called the fundamental). This is trivially handled by exhaustive, yet
efficient search. Keeping the estimated boundaries b and e, we vary the period length
parameter [. Starting from the estimated period [., we successively try the period val-
ues |l./i] fori =1,2,...,l./2. For each such value we compute the average objective
function value and check if it improves upon the previous average value. We terminate
the search as soon as the tested period value does not improve upon the previous one.
Regarding the boundaries, we compute the overall begin b and end e as the minimum
of all b, and the maximum of all e, over solutions with index k that resulted in the
dominant period length [.

It has to be noted that we intentionally handle a multivariate time series as a collec-
tion of K univariate time series. This is because in practical situations, it is not guaran-
teed that all K input signals (e.g., all joint angles of the human body or all time-varying
image patches of a video, see also Section exhibit some periodicity. The adopted
voting strategy handles this issue in an effective and natural way:.

3.1.3 From real world videos to time series

The proposed method as described in sections and is generic, in the sense
that in can be applied to any univariate or multivariate time series. In this section,
we describe how a video can be processed to give rise to time series that can feed
periodicity detection, resulting in the detection and characterization of periodic events
in arbitrary videos.

Assuming a static camera, objects that undergo periodic motion result in periodic
fluctuations of the brightness values of image points in time. Therefore, the intensity
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FIGURE 3.1: Illustration of the basic steps of the proposed method. Given a video as input,
the region of interest is localized. Region of interest is split in tiles, and signals are extracted
from them.We optimize the start, stop and period for each such signal. The solution comes
out as an aggregation of results through weighted voting.

value of each and every such point could form a time series to be analysed by the
proposed algorithm. However, apart from being unnecessarily complex, this would
also be very sensitive to noise. Thus, instead of processing individual pixels, we split
the input video in tiles of size 30 x 30, and select the ones that exhibit large intensity
variation over time.

Initially, we transform every frame from RGB to gray scale and then de-noise it by
applying a 9 x 9 Gaussian filter of o = 2. After noise removal, we compute the median
image M1 of all the video frames by computing the median value of each pixel inten-
sity over time. This serves as the background image, with most parts of the moving ob-
jects being removed. By subtracting each frame from M I, we create a new video that
mostly contains moving objects. The resulting video is then split into the aforemen-
tioned 30 x 30 tiles, and the ones that exhibit significant motion are selected for further
processing. The motion threshold is adaptive, computed as the sharpest increase in the
histogram of the whole video motion values. Finally, a time series is defined for each
of the remaining tiles, representing the time evolution of its average intensity. Fig-
ure 3.1| summarizes the steps of the proposed method for detecting periodic activities
in videos.
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Method Evaluation

4.1 Experimental Results

Computational budget vs accuracy: We evaluated the performance of the proposed
method for periodicity detection in univariate time series based on synthetic data.
Through this process we investigate the performance of the method in varying config-
urations of the computational budget of PSO. This investigation allows us to balance
between computational cost and accuracy of the estimated values.

The runtime of PSO is determined by the product of the total number of particles
times the maximum number of generations. We consider PSO budgets consisting of a
number of particles (from 5 to 100 in steps of 5) running for a number of generations
(from 5 to 100 in steps of 5). Thus, a total of 400 different budget combinations are
considered. We investigate the effect of the computational budget allocated to PSO us-
ing as input synthetic signals with known ground truth. Specifically, we generate 100
signals containing periodic parts of either [ = 5, 1 = 20 or | = 50 samples per period.
Figure[4.1shows 3 samples of these signals for every different class. Each periodic part
has values ranging between —1 and 1 and it is prepended and appended with 100 sam-
ples drawn from the uniform random distribution U(—1, 1). For each such signal and
PSO parametrization, we apply our method 10 times to factor out the stochastic nature
of PSO. From these 10 runs, we retain the median values for the estimated parameters
b, eand .

For a certain signal, consider that the ground truth parameters are (by, ey, ;) and
that some PSO parametrization estimated the solution (b, e.,l.). The defined error
metrics are m; = |((le +1g/2) mod ly) —1,/2|/l4 (as %, treating harmonics as correct),
mp = |bg — be| and m. = |ey — e.|. Figure (left to right) plots the median m;, my,
m, over all signals and PSO parametrizations. Evidently there is a direct correlation

B — M b
T BT ol b o o Moy
N T AYAMVARY T I AWVANAVY TP

FIGURE 4.1: Each plot shows a randomly selected signal of the three main classes.The
periodic part (in the middle) of each signal is formed by several repetitions of a pattern
which varies across signals.
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FIGURE 4.2: A performance representation of the proposed method in relation to the com-
putational budget. Beyond the chosen budget of 40 particles and 40 generations the per-
formance gain is small regarding the localization of the periodic part. Notice though that
a good estimation of the period can be achieved with even lower computational budget.
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FIGURE 4.3: The performance of the method deteriorates as the additive noise levels rise.
The objective function score also increases as a function of the noise levels. Notice again
that the estimation of the period is reliable even for high levels of noise.

between the PSO budget and the performance of the method. In practice, after 40 par-
ticles and 40 generations, the performance gain is disproportionate to the extra compu-
tational budget. Thus, for the remaining of the experiments we keep this PSO budget.
Interestingly, the individual plots of Figure |4.2| for each of the three classes of signals
forl = 5,1 = 20,1 = 50 (omitted due to space limitations) reveal that PSO requires
more budget in case that the periodic part of the signal constitutes a smaller part of the
whole signal. Thus, in case that there are known statistics about the input signals, the
accuracy/computational budget trade-off can be tuned appropriately.

Noise tolerance: We evaluate the performance of our method in the presence of noise.
We employ the same synthetic dataset as before adding to each sample random noise
drawn from a Gaussian distribution. The variance of the Gaussian samples is in the
range [0.05..2.0] in steps of 0.05. The computed performance metrics m;, m;, and m. are
shown in Figure 4.3|as functions of the noise level. It can be verified that the method
can tolerate noise levels up to almost twice the amplitude of the original signal. It
is interesting to note that, although the estimation error flattens after the noise level
of 1, the actual objective function score keeps increasing, reflecting the noisier input
signal. Figure 4.4/shows indicative results for the 7 activities. More qualitative results
are provided in the supplementary material.

Experiments on the MHAD dataset: We experimented with the MHAD dataset [16]
that captures human activities that are repeatedly performed in front of a camera sys-
tem. Interestingly, this dataset features MoCap data corresponding to 93 joint angles
of the human body captured by an optical motion capture system at 480H z. We thus
performed two different experiments based on this dataset:

(a) Periodicity detection based on motion capture data: We down-sampled the mo-
tion capture data to 30 Hz. K = 93 time series were defined and fed to our
method.
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Activity frames || (a) Motion Capture || (b) RGB video
l ‘ mp ‘ Me l ‘ mp ‘ Me
Jumping 174 28| 0 2 27 | 3 0
Jumping jacks 194 31| 0 0 30| 1 0
Bending 429 711 0 9 70| 0 1
Punching 204 31| 12 1 29| 9 1
Waive two hands 238 391 0 4 381 0 0
Waive one hand 248 451 0 7 431 0 5
Clapping 131 |[22] 3 0 21 14 | 1

TABLE 4.1: Summary of results for periodicity detection on the MHAD dataset for the
cases of employing motion capture data and RGB videos. See text for details.

Ve

FIGURE 4.4: The first row represents a hand-picked frame from each of the 7 MHAD activ-
ities. The second row represents a frame at half the estimated period apart and in the third
row a frame one estimated period apart. As the table shows above the results are similar
even if we choose the MoCap data as data source.

(b) Periodicity detection based on video data: We performed periodicity detection
based on time series produced as described in Section based on the 30Hz
RGB videos.

We experimented with 7 MHAD activities. For each of them, Table shows the es-
timated parameter [ and the error metrics my, m. for cases (a) and (b) above. Both
approaches provide very similar results that are in agreement with the ground truth.
Experiments on real-world sequences: Using the method described in Section [3.1.3]
we extract signals from four input videos. The 1st (pendulum, 192 frames) shows three
swings of a pendulum. The 2nd (turntable, 157 frames) shows a spinning turntable.
The 3rd (rope, 106 frames) captures a person pulling a rope. Finally, the 4th video
(machine, 836 frames) shows the periodic process of milling an object in a production
line. Our method estimated the period lengths of the observed activities (63, 52, 35 and
158 frames, respectively) within 3 frames from the manually determined ground truth.
Indicative frames are shown in Figure The similarity of frames at a temporal dis-
tance of [ frames indicates the accuracy of period length estimation. Sample qualitative
results are provided in the supplementary material.
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FIGURE 4.5: Indicative results from experiments in four videos (pendulum, turntable,
rope, machine). A pair of frames is selected from each video, a random one (left) and
one at a temporal distance equal to the period length computed by the proposed method
(right).
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