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Abstract 

The demands for understanding human activities have steadily grown in recent years in the 

health-care domain, especially in elder care support, rehabilitation assistance, diabetes, cognitive 

disorders, assisting living and wellness management. A significant amount of resources can be 

saved if sensors can help caretakers record and monitor elders or patients continuously and report 

automatically when any abnormal behavior is detected. The recognition of various activities of 

daily living (ADLs) can reveal valuable information about a person’s activity patterns.  

Many studies have successfully identified activities using wearable sensors with very low 

error rate, but the majority of the previous works are done in very constrained settings. Readings 

from multiple body-attached sensors achieve low error-rate, but the complicated setting is not 

feasible in practice. On the other hand, smartphones have been accepted from the research 

community as a powerful solution for sensing applications due to the increasing number of 

smartphone users and due to the vast capabilities of modern smartphones. This project uses low-

cost and commercially available smartphones as sensors to identify human activities. The 

growing popularity and computational power of smartphone make it an ideal candidate for non-

intrusive body-attached sensors. Unlike many previous reported works, we relaxed the 

constraints of attaching sensors to fixed body positions with fixed device orientation. In our 

design, the phone can be placed at any position around waist such as jacket pocket and pants 

pocket, with arbitrary orientation.  

In this work a feasibility study has been contacted to investigate whether a smartphone 

based recognition system can be used for estimating activity patterns in dynamic environments. 

To this end, different combinations of computational approaches have been taken. The 

computational pipeline was applied on separate activities of daily living and on complete 

sequences of activities, which describe a common scenario of daily living. The results showed 

that, using a 1 second-window with 80% overlap, the suggested feature sets and the k-NN 

classifier, the ADLs and the scenarios can be recognized with accuracy of 99% and 96 % 

respectively, when the 10-fold cross-validation evaluation method is applied.  A further 

investigation using the aforementioned combinations and the evaluation method of Leave-One-

subject-Out for the recognition of scenarios achieved accuracy of 79%.    
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1. Introduction 

Human activity recognition aims to identify and recognize the activities of a person over an 

observed period of time and via a series of actions. A high number of scientific studies 

advocating the emerging task of activity recognition and modeling have been published. The first 

step in developing an activity recognition system is the sensing of the activities. The involved 

sensors play an important role in the performance of the recognition system. Furthermore, human 

behavior modelling, a domain which includes the recognition of human activity patterns is 

attracting high interest from the research community. Human behavior can be defined as the set 

of mental, physical and social activities experienced during the phases of human life. The 

activities of daily living of a human can reveal valuable information about his activity patterns 

and subsequently, with the association of other behavior characterizing elements, they can lead 

to the development of behavioral models.  

The main objective of this study is to investigate the techniques and the processing steps 

that can be used to develop a recognition system for human activity patterns in dynamically 

changing environments. To achieve human behavior modelling or estimation of activity patterns 

it is essential to first recognize the activities of daily living effectively and accurately.  In this 

study, techniques and methods for activity recognition are deployed and compared. The findings 

are applied to scenarios of activities of daily living, within the boundaries of real life conditions. 

In the context of this thesis we will focus on the following: 1) Implementation of a 

thorough literature review; 2) Critical evaluation of existing approaches and methods in relation 

to recognition of complex activities; 3) Generation and annotation of an experimental dataset, 

including a range of elementary and complex human daily activities; 4) Implementation of a 

computational pipeline for recognition of complex human behaviors in dynamic environments, 

exploring the above dataset. In the process a variety of feature extraction, selection and 

classification methods will be tested.  

This study is structured as follows. Section 2 presents a literature review of the most 

commonly used approaches for activity recognition and behavioral modeling.  The methodology 

that is deployed in such systems is analyzed in Section 3. Section 4 presents the developed 

computational pipeline and Section 5 presents the respective results. Finally, the conclusions and 

suggestions of further work are reported in Section 6.    
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1.1. Human Activities 

Humans who are physically active and healthy can perform various activities. Thus, it is 

essential to categorize those activities into sets in order to develop a human activity recognition 

system. In general, there are two main classes of human activities, the activities of daily living 

and the instrumental activities of daily living. 

Activities of daily living (ADLs) are basic- fundamental tasks that people perform in 

their daily routine without needing assistance. The ability or inability to perform ADLs can be 

used as a very practical measure of ability/disability in many disorders. Based on the most 

common measure of functional ability namely, the Katz Activities of Daily Living Scale, the most 

representative ADLs include: bathing, dressing, transferring, using the toilet, continence, and 

eating [1]. Over the years, some additional measures of mobility have been included, such as 

walking, getting around inside, and getting around outside. On the other hand, instrumental 

activities of daily living (IADLs) are more complex tasks that require a certain amount of 

physical dexterity, sound judgment and organizational skills. The ability or inability to perform 

IADLs can be used as a measure of a person’s ability/disability to live safely and independently 

[1]. Common paradigms of IADLs include: handling personal finances, meal preparation, 

shopping, traveling, doing housework, using the telephone, and taking medications. 

Focusing on human activity recognition systems, Reyes-Ortiz [2] categorized the 

activities based on two classification schemes, a) with respect to their duration and complexity 

and b) with respect to the type of activity, as shown in Table 1.1 and Table 1.2  respectively.  

Table 1.1 Classification of activities based on their duration and complexity, fully adopted by Reyes-Ortiz 

[2] 

Duration/complexity Activity type Examples 

Short events 
Gestures Waving hands, nodding head, laughing 

Transitions Stand-to-sit, lie-to-sit 

Basic activities  
Static Standing, sitting, reading 

Dynamic Walking, running, cycling 

Complex activities  
Multi-activity Cooking, assembling furniture, weight training 

Multi-user Talking, ballroom dancing, hugging 
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In the framework of this thesis the recognition of ADLs/Short events and basic activities 

will to be investigated, based on information obtained from smart, wearable sensors. The rational 

for this is the fact that that these activities can be defined as prerequisite tasks in the 

“hierarchical” order of the most complex. For example, if a human performs a complex activity 

such as cooking this could include a sequence of basic activities with short events such as, 

walking, standing, moving hands etc.  

 

Table 1.2 Classification of activities based on their type, fully adopted by Reyes-Ortiz [2] 

Application Examples 

Daily living Waving hands, nodding head, laughing 

Locomotion Walking, riding, standing, laying down, falling 

Sports/fitness Jumping, weight lifting, climbing, swimming 

Communication/connectivity Phone calling, texting, talking, signing 

Complex activities (CAs) Cooking, assembling furniture, weight training 

Security/surveillance Loitering, chasing, supervising, stalking 

1.2. Input Sensors 

As the first step in the deployment of an activity recognition system is the sensing of the 

activities, the choice of the appropriate sensors plays a crucial role in the effectiveness and 

performance of the system [3]. With respect to sensor placement and interaction with the user 

there are two main categories of sensors: the ambient sensors (also called external or 

environmental) and the wearable sensors [2].  Based on the remarkable growth of smartphone 

users, latest research focuses on the use of smartphone devices as a wearable sensor for activity 

recognition [4], [5].  

1.2.1. Ambient sensors 

Ambient sensors are sensors capable of jointly sensing multiple physical phenomena in 

various surroundings [6]. The use of ambient sensing techniques is commonly used in the 

context of smart spaces, homes and buildings. In accordance with the desired outcome, there is a 

wide range of sensors which can be used such as microphones, video cameras, presence sensors, 

radio frequency identification (RFID) tags, thermometers and depth sensors [2]. 
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Figure 1.1 An example of the usage of ambient sensors in a smart home environment [7] 

1.2.2. Wearable sensors 

Wearable sensors are attached to different places of the person’s body such as waist, 

chest, legs, and hands, depending on the relevant attributes of interest to be measured [2]. More 

recently, such sensors are also fitted to clothes or embedded in accessories [8], [9] . Depending 

on the application domain, wearable systems may require the development of a particular design 

and location, i.e. wrist bracelets [7]. One of the challenges using wearable sensors is the 

controlled affix position that must be chosen without hindering body movements [6] or without 

“loosing” body movements in case of activity recognition.  

 

Figure 1.2 Multiple wearable sensors for monitoring user [8] 



5 

 

1.2.3. Smartphones 

Smartphones have been accepted from the research community as a powerful solution for 

sensing applications since it encompass a number of advantages that can overcome existing 

issues in the field [2], [5]. Smartphone based sensing systems have been developed in the area of 

health monitoring, environmental monitoring, traffic monitoring, human behavioral monitoring 

and social networking [10]. The tremendous number of smartphone users, the standardized- 

universal architecture, the wireless network, the size of the device and finally the variety of the 

embedded sensors [5] makes the use of smartphone a valuable sensing device for activity 

recognition. There are three broad categories of sensors included in the majority of smartphone 

devices namely, motion sensors, position sensors and environmental sensors. 

Table 1.3 Overview of smartphone’s embedded sensors as described in the official site of android 

developers guide
1
  

Sensor Type Description Category 

Accelerometer Hardware Measures the acceleration force in m/s
2
 

that is applied to a device on all three 

physical axes (x, y, and z), including the 

force of gravity. 

Motion 

Linear 

acceleration 

Software or 

hardware 

Measures the acceleration force in m/s
2
 

that is applied to a device on all three 

physical axes (x, y, and z), excluding the 

force of gravity. 

Motion 

 Gyroscope Hardware Measures a device's rate of rotation in 

rad/s around each of the three physical 

axes (x, y, and z). 

Motion 

Gravity Software or 

hardware 

Measures the force of gravity in m/s
2
 

that is applied to a device on all three 

physical axes (x, y, z). 

Motion 

Rotation vector Software or Measures the orientation of a device by Motion, 

                                                 

1
 http://developer.android.com/guide/topics/sensors/sensors_overview.html 
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hardware providing the three elements of the 

device's rotation vector. 

position 

Orientation Software Measures degrees of rotation that a 

device makes around all three physical 

axes (x, y, z). The inclination matrix and 

rotation matrix can be obtained for a 

device by using the gravity sensor and 

the geomagnetic field sensor 

Position 

Magnetic field Hardware Measures the ambient geomagnetic field 

for all three physical axes (x, y, z) in μT. 

Position 

Proximity Hardware Measures the proximity of an object in 

cm relative to the view screen of a 

device. This sensor is typically used to 

determine whether a handset is being 

held up to a person's ear. 

Position 

Pressure Hardware Measures the ambient air pressure in hPa 

or mbar. 

Environment 

Light Hardware Measures the ambient light level 

(illumination) in lx. 

Environment 

Ambient 

temperature 

Hardware Measures the ambient room temperature 

in degrees Celsius (°C) 

Environment 

Relative 

humidity 

Hardware Measures the relative ambient humidity 

in percent (%) 

Environment 

1.2.3.1. Accelerometer 

The accelerometer measures the acceleration force that is applied to a device on all three 

physical axes (x, y, and z), including the force of gravity, in other words the proper acceleration 

("g-force") [11]. The aforementioned forces could be static, for instance due to the constant 

gravitational force, or they could be dynamic, caused from movements or vibrations. The 

measurement of static acceleration due to gravity can be used for the estimation of device’s tilt 

angle with respect to the earth. Moreover by analyzing the dynamic acceleration forces, 
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information about the device’s motion patterns can be obtained. Hence an accelerometer can be 

used for measuring the changes in velocity and the changes in position.  

 

 

Figure 1.3 Localization of the three physical axes in a smartphone device (figure taken from Apple Inc.) 

1.2.3.2. Gyroscope 

The Gyroscope effect is based on the Coriolis effect and measures the rate of rotation 

around a particular axis [5]. Consequently, a gyroscope gives an indication of the angular rate. 

Thus a gyroscope can be used for measuring the changes in orientation and the changes in 

rotational velocity. 

 

 

Figure 1.4  Gyroscope effect in a smartphone device (figure taken from Apple Inc.)  
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2. Literature review 

2.1. Activity recognition 

 

Human activity recognition is the process of identifying and recognizing the activities 

and goals of one or more humans from an observed series of actions [4]. A number of studies 

have been published advocating the emerge task of activity recognition, using several approaches 

based on vision sensors, inertial sensors, smartphone sensors and a combination of the 

aforementioned. Activity recognition can be applied in several domains such as surveillance, 

human-computer interaction and proactive computing [3] [12]. The scope of this study is to 

focus in activity recognition based in smartphone sensors, as a cost effective and power solution 

to monitor motion data in real life scenario [13]. Nevertheless, a brief review for comparison 

purposes has been contracted for activity recognition approaches using external sensors. 

2.1.1. Recognition of Activities of Daily Living using Smartphones 

A recognition system based on the accelerometer sensor of a smartphone for simple 

(biking, stairs up, driving, lying, running, sitting, standing and walking) and complex (cooking, 

cleaning etc.) activities was reported in [14]. Ten participants performed the activities while it 

was left at each user’s will to decide about the placement of the smartphone, in terms of position 

and orientation. For the simple activities the user was also able to choose the action, the location, 

and the duration (manual start and stop) while for the complex activities these parameters were 

predefined. The sampling frequency was set at 80 Hz maximum although variations in the 

sampling rate were reported. Multiple windows sizes of 1, 2, 4, 8 and 16 seconds with 50% 

overlap were used. Although complex activities were classified with an accuracy of 50%, simple 

activities were classified with 93% accuracy with a Multilayer Perceptron and a window size of 

2 seconds. 

Siirtola and Roning [15], used accelerometer data from a smartphone with a sampling 

frequency of 40Hz while seven volunteers were performing five different activities: walking, 

running, cycling, driving a car, and sitting/standing. For each recording of the above activities, 

four smartphones were placed in different positions: trousers’ front pocket, jacket’s pocket, at 

backpack, at brachium and at the ear only when it was physically allowed. For the feature 
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extraction process a sliding window of 7.5 seconds with 25% overlap in an online application 

and one with 50% overlap in an offline application, were used. Classification was achieved using 

five classifiers based on quadratic discriminant analysis arranged in a three stage decision tree 

topology. Average recognition rate of almost 98.9% was reported in the offline and 90% in the 

online system. 

A smartphone-based recognition system is proposed in [16], in which the use of a low-

pass filter and a combination of Multilayer Perceptron, LogitBoost and Support Vector Machine 

(SVM) classifiers produced an accuracy of 91.15%. Four volunteers performed six activities: 

slow and fast running, walking, aerobic dance, stairs up and stairs down.  Samples were recorded 

continuously with the smartphone held in the hand of the user. In order to discriminate properly 

the collected data, volunteers were instructed to stop and wait a few seconds every time the 

willed to change an activity. The sampling rate was set at 100 Hz while a window of 1.28 

seconds with 50% overlap was used for feature extraction.   

A similar approach was introduced in [17] by Anjum and Ilyas, in which ten users 

performed seven different activities namely:  walking, running, stairs up, stairs down, cycling, 

driving and remaining inactive, by carrying the smartphone in various positions. The collection 

of the data was performed for each activity separately and each user manually started and 

stopped the recoding. A sampling rate of 15 Hz and time window of 5 seconds were used. Based 

on the ranking of the information gain, nine features were selected from the auto correlation 

function. For the classification process Naϊve Bayes, C4.5 Decision Tree, K-Nearest Neighbor 

and SVM classifiers were tested. The C4.5 Decision Tree performed better than the other 

classifiers with an accuracy of 95.2%. 

Based on the accelerometer data of a smartphone Fan et al. [18] studied three different 

decision tree models based on: a) the activity performed by the user and the position of the 

smartphone (vector: activity-position), b) only the position and c) only the activity. Fifteen users 

performed five kinds of activities: stationary, walking, running, stairs up and stairs down with 

the smartphone placed into a carrying bag, a trouser pocket or in the hand. Ten-second samples 

of accelerometer data were recorded for each different kind of activity and position of the 

smartphone. The authors concluded that the model based only on the activity outperformed the 

other two with an accuracy of 88.32%. 
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Buber and Guvensan [19] developed a recognition system based on tri-axial 

accelerometer data of a smartphone’s sensor. Eight activities were tested for this purpose, 

namely: walking, jogging, jumping, stairs up, stairs down, sitting, standing and biking. Five 

volunteers performed those activities with the smartphone placed in the front pocket of their 

trousers in a fixed orientation. The recordings were started and stopped by the user for each 

different activity.  The sampling rate was set at 20 Hz and a 10 second moving window was used 

for feature extraction. The evaluation was performed with two feature selection algorithms 

(OneRAttributeEval and ReliefFAttributeEval) and six classification algorithms (J48, K-Star, 

Bayes Net, Naïve Bayes, Random Forest, and k-NN) using 10-fold cross-validation. The authors 

resulted in a combination of 15 features with k-NN to perform best at a recognition rate of 94%. 

Using the accelerometer sensor of a smartphone Zheng et al. [20] proposed a two-phase 

method to achieve activity recognition. Five subjects performed four different types of activities 

(sitting, standing, walking and running) with the phone placed loosely in a pocket. For the 

training phase, two minute recordings were used, which included all the described activities, 

while for the testing phase, data from continuous records of several days were used. A sampling 

rate of 100 Hz was used. Noise reduction was achieved deploying Independent Components 

Analysis, specifically the fastICA algorithm, in combination with the wavelet transform for 

feature extraction. For the classification, a Support Vector Machine was employed using the 

WEKA toolkit.  A maximum accuracy of 98.78% was reported for a leave-one-out validation. 

Saputri et al. [21] proposed a system for activity recognition, which with the use of an 

Artificial Neural Network produced 93% accuracy. Twenty-seven subjects performed six types 

of activities, namely, walking, jogging, running, stairs up, stairs down and hopping. The 

smartphone was placed in the front trouser pocket, not clearly defined if the orientation was 

fixed, using a sampling rate of 50 Hz. In the feature extraction process, the window size was set 

at 2 seconds, while feature selection was performed using a self-devised three-staged genetic 

algorithm.   

An activity recognition system along with the functionality of getting user’s feedback for 

a refinement of the prediction model is proposed by Su et al. [22]  Acceleration and compass (for 

the orientation) data of a smartphone were used to recognize different types of activities 

including: walking, sitting, stairs up and down. The position of the phone and the exact data 

collection method were not described in detail. A sampling frequency of 64 Hz was used, while 



11 

 

time and frequency domain features were extracted. A comparison study with the reported results 

from Kwapisz et al. [23] (the comparison process is not reported clearly) was conducted and 

resulted in 98.7% accuracy with the use of a Multilayer Perceptron.  Hidden Markov model 

(HMM) was applied on the top of the classification model for identifying temporal dependencies 

of the activities.  

Using the accelerometer, gyroscope and proximity sensors along with the GPS module of 

a smartphone Han et al. [24] proposed a hierarchical activity recognition framework which 

extends the Naϊve Bayes approach. Based on four different physical movements (walking, 

sitting, jogging, and standing) they produced ten different activity models according to 

predefined location  points of the GPS namely, home, office and outdoor. Furthermore, when the 

undertaken activity was identified as outdoor, four activity models (Waiting for bus at bus stop; 

Having a meal at cafeteria; Exercising at gym; Visiting a park) were tested based only on the 

location (GPS) and  one (driving a car )  based on the moving speed of the user. Details on the 

collection data process, smartphone position and type of extracted features were not mentioned. 

The reported average classification accuracy was 92.96%. 

Another activity recognition system based on smartphone sensors is proposed by Hung et 

al. [25] using an open dataset [26], [27], which includes six activities (Standing, Walking, 

Running, Upstairs, Downstairs, Laying) performed by thirty volunteers with the smartphone 

positioned at the waist. In the referred dataset, data was collected with a sampling rate of 50 Hz 

and pre-processing included a sliding window of 2.56 sec in duration with 50% overlap. Forty-

five features were extracted and three different classifies were tested, namely, Decision Tree 

(J48), Support Vector Machine and Logistic Regression, with the last one outperforming the 

others with an overall accuracy of 96%. 

With the use of kernel discriminant analysis for the feature set and ANNs based on the 

feed-forward backpropagation algorithm Kahn et al. [28] reached an accuracy of 96% for activity 

recognition. Six volunteers performed five activities (sitting, walking, stairs up, stairs down and 

running) with the smartphone placed in five different positions, namely, the shirt’s top pocket, 

the jeans’ front-left pocket, the jeans’ front-right pocket and a jeans’ rear pocket. A sampling rate 

of 45 Hz and a sliding window of two seconds without overlapping were applied.  

Sang et al. [29] proposed an approach for recognizing activities of daily living using the 

accelerometer and gyroscope sensors’ data of a smartphone. Five different activities were tested 
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with the smartphone placed on user’s pocket, namely: driving a motorbike, stairs up and down, 

sitting and putting the smartphone on a table. Authors have not reported details for the data 

collection protocol. Classification process included the test of kNN and ANN with overall 

accuracy of 74% and 75.3% respectively.  
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Table 2.1 Overview of the methodology and results followed by the related studies which make use smartphone’s sensors 

Study No of 

subjects 
Activities1 Recordings 

Sampling 

Frequency 

Window 

size/overlap 

No of 

Feature

s 

Smartphone 

position 
Algorithms2 Performance 

[14] 10 

BIK, STU, DRI, 

LAY, RUN, SIT, 

STD WAL. 

Simple activities: user 

starts & stops recs  

Complex: predefined 

duration 

80Hz 
1,2,4,8,16/

50% 
6 

user’s choice 

(position & 

orientation) 

MLP, NB, 

BN, DT, B-

FT, K-star 

MLP: 93% 

2s window 

[15] 7 
WAL, RUN, BIK, 

DRI, SIT/STD 
- 40Hz 

online: 

7.5s/25% 

offline: 

7.5s/50%  

76 
5 smartphones :  

various position 
DC & QDA 

90% online 

98.9% offline 

[16] 4 
RUN, SWL FWL, 

ADN, STU, STN 

User stops and wait 

inactive between 

activities 

100Hz 1.28s/50% 18 hand of the user 

J48, K-Star, 

BN, NB, RF, 

kNN 

MLP & LB 

&SVM: 

91,15% 

Accuracy 

[17] 10 

RUN, STN, STU, 

BIK, STC, DRI, 

INA 

User starts & stops 

recs 
15Hz 5s 9* 

various 

positions 

NB, C4.5, 

KNN, SVM 
C4.5: 95.2%. 

[18] 15 
STC, WAL, RUN, 

STU,STN 
- - 10s 10* 

bag, trouser 

pocket & hands 
ID3 DC 80.29% 

[19] 5 

WAL, JOG, STN, 

STU, SIT, JUM, 

BIK 

User starts & stops 

recs 
20Hz 10s 15 

front pocket 

fixed orientation 

 

J48, K-Star, 

BN, NB, RF, 

kNN 

k-NN: 94% 

[20] 5 
SIT, STD, WAL, 

RUN 

Training: continuous 

two minute 

recordings, Testing: 

100Hz - 
feature 

vector 
freely in pocket SVM 98.78% 
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continuous records of 

several days 

[21] 27 
WAL, RUN, 

STN,STU, HOP 
- 50Hz 2s 21 front pocket ANN 93% 

[22] 4 

8 activities (not all 

specified ) WAL, 

STU, STN,SIT 

Testing: not specified 

Training: user 

feedback on three 

rated recognized 

activities 

64Hz 4s *8 - 

HMM and 

J48, Logistic 

regression, 

MLP 

MLP 98.7% 

[24] - 

WAL, JOG,  

STD,SIT 

15 models based on 

the location 

- 50Hz - - - 
Adaptive 

Naïve Bayes 
92.96% 

[25] 30 
STD, WAL, RUN, 

STN, STU, LAY 
Dataset used: [26] 50Hz 2.56S/50% 45 Waist 

J48,Logistic 

Regression, 

SVM 

LR 96% 

[28] 6 
SIT,WAL, 

STU,STD, RUN 
not - 45Hz 

2 sec/no 

overlappin

g 

- 

shirt’s top 

pocket, jeans’ 

front-left,  

right, rear 

pocket, coat’s 

inner pocket 

ANN based 

on the feed-

forward 

backpropagati

on algorithm 

96% 

[29] - 
SIT, DRVm, STU, 

STN, PPT  
- - - *4 On pocket KNN, ANN ANN 75.3% 

* Feature set includes that number of features but is not limited to. 
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2.1.2. Recognition of Activities of Daily Living using on-body sensors 

A comparison study of classification methods for human activity recognition based on 

acceleration data has been conducted by Mannini and Sabatini in [30]. A dataset described in 

detail in [31] was used, which includes signals from five on body accelerometers located at the 

hip, wrist, arm, ankle, and thigh of the user, while performing the following activities: sitting, 

walking, lying, stairs up, standing, running and cycling. A feature vector of thirty components 

was built from 50%-overlapping sliding windows of 6.7 seconds in duration.  The following 

single frame classifiers were tested: Naive Bayesian (NB), Support Vector machine (SVM), 

Binary decision tree (C4.5), Gaussian Mixture Model (GMM), Nearest mean (NM), Logistic 

classifier, k-NN, Parzen classifier and ANN (multilayer perceptron) along with the cHMM-based 

sequential classification algorithm. The results indicated an accuracy of 98.5% for the Nearest 

mean and 98.4% for the cHMM classifier.  

Guirya et al. [32] introduced an activity recognition system based on an accelerometer 

sensor mounted at the chest of the user and a smartphone placed in a pocket, acting as a 

supporting device. Twenty four volunteers performed the following activities: sitting, standing, 

lying, walking, walking on a treadmill at 5, 6, 8 km/h and cycling on an indoor bike. Authors 

tested a custom classifier and the following machine learning classifiers: Naïve Bayes, C4.5, 

CART, MLP and SVM. The best overall accuracy of 98% was reported with the use of C4.5 

classifier.  

An activity recognition system which utilizes body worn wireless accelerometers is 

proposed by Gaputa and Dallas in [33] . Three accelerometer sensors, mounted at the waist of the 

user, were used to obtain signals when two volunteers performed the following activities: 

walking, jumping, running, sit-to-stand/stand-to-sit, stand-to-kneel-to-stand, and being stationary 

(sitting or standing at one place). A sampling rate of 126Hz and a sliding window of 6 seconds 

with 50% overlap were deployed.  Thirty-one features were selected using Relief-F, and 

Sequential Forward Floating Search (SFFS) while k-NN (10 neighbors) and Naïve-Bayes 

classifiers were utilized for the classification with overall accuracy of 98% and 95% respectively. 
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Table 2.2 Overview of the methodology and results followed by the related studies using various sensors 

Study 

No of 

subject

s 

Activities
1 

Sampling 

Frequency 

Window 

size/overlap 

No of 

Features 
Sensors  Algorithms

2 
Performance 

[30] 13 

SIT, WAL, LYI, 

STU, STN, RUN, 

STD, CYC 

76.25 Hz 6.7s/50% 30 

5 bi-axial 

accelerometers, 

located at the hip, 

wrist, arm, ankle, 

and thigh. 

NB, GMM, 

Logistic, Parzen, 

SVM, NM, k-

NN, ANN, C4.5 

& 

cHMM-based 

sequential 

classifier 

NM 98.5% 

 cHMM 98.4% 

 [32] 24 

SIT, STD, LYI, 

WAL, WAL  at 5, 6, 

8  km/h, CYC indoor 

bike 

120Hz - 5* 

Accelerometer 

sensor on chest & 

Smartphone on 

pocket (as server) 

Naïve Bayes 

,Custom, C4.5 

,CART, MLP, 

SVM 

C4.5 98% 

[33] 2 

 WAL, JUM, RUN, 

SIT, STD,  sit-to-

stand/stand-to-sit, 

stand-to-kneel-to-

stand, one place) 

126Hz 6s/50% 31 
3 Accelerometers 

on waist. 

k-NN, Naïve 

Bayes 
 

* Feature set includes that number of features but is not limited to 
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2.1.3. Public Datasets 

The nature of the problem of activity recognition requires the collection of a large amount 

of data for training the classification system. To this end, researchers have created datasets in 

accordance with the processing approach. As already mentioned, the approaches include vision-

based i.e. video recording of activities, or body sensors i.e. accelerometers on straps and 

smartphone sensors.  

A dataset which uses a wide selection of sensors (accelerometers, video and audio 

sensors) to track and collect perceptual data from the user’s perspective during the activity of 

cooking has been made available from the Carnegie Mellon University [34]. On the other hand, 

Chaquet et al. [35] focused on a vision based approach and have conducted a survey of available 

video datasets for human activity recognition. A different approach for collecting data describing 

a user’s activities is introduced by Sarkar [36], which consists of a web-based activity data 

collection tool with a series of web-based interfaces allowing the user to configure and provide 

his activity experience. Abdallah et al. [37] introduced an adaptive model that learns 

incrementally from the evolving data streaming on an online recognition system. A 

comprehensive report on public datasets based on smartphone acceleration data is described 

below [2.1.3.1].  

2.1.3.1. Public datasets based on smartphone’s acceleration data 

Kwapisz et al. [23] introduced an activity recognition platform based tri-axial 

accelerometer data of a smartphone.  Twenty-nine users performed six different types of 

activities, namely:  walking, jogging, ascending stairs, descending stairs, sitting, and standing in 

a predefined period of time. During the recordings the phone was placed into a user’s pants 

pocket regardless of orientation.  A widow of 10 seconds in size was applied to the data prior to 

feature extraction (43 features) for the classification process, where decision trees (J48), logistic 

regression and multilayer neural networks were tested. The system achieved an overall accuracy 

of 91.7% with the use of Multilayer Perceptron. 

Using an IOS smartphone, McCall et al. [38] created a dataset for the recognition of daily 

activities. Ten subjects performed nine different activities (biking, running, climbing, standing, 

descending, treadmill walking, biking, walking and jump roping). For the recordings the 
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smartphone was placed in the right side of user’s belt. The sampling rate was set to 60 Hz. The 

overall classification accuracy using the hierarchical KNN model was 76%. 

Miao et al. [39] used the built-in accelerometer, gyroscope, proximity sensor, light sensor 

and the magnetic sensor of a smartphone to collect data while seven volunteers performed the 

following activities: standing still/sitting on a sofa/sitting at a desk, walking, running, stairs up 

and down. For the recordings the smartphone was placed on six body positions without standard 

orientation, the positions were the two front and back pockets on the trousers and the two front 

pockets on the coat. A low pass filter with 0.25 Hz cutoff frequency was employed to separate 

acceleration due to gravity (GA) and linear acceleration (LA). Six features resulting from a 

sliding window of 1.6 seconds with 50 % overlap were computed. The Sequential Minimal 

Optimization (SMO), J48 και Naïve Bayes (NB) classifiers were tested with the last one to reach 

an overall accuracy of 89.6%.  

Another dataset which includes six activities: standing, sitting, lying down, walking, 

stairs up and down has been created and tested in [27]. The accelerometer and gyroscope sensors 

of an android smartphone were used for signal acquisition with a sampling frequency of 50 Hz. 

Thirty volunteers performed two trials of the described activities. For the first trial the 

smartphone was placed in the left side of user’s belt while for the second trial the position was 

left at the user’s will. For feature extraction a moving window of 2.56 seconds with 50% overlap 

was used. A total of 561 features were extracted from the time and the frequency domain. A 

multiclass Support Vector Machine (SVM) classifier used for recognizing activities with an 

overall sensitivity 96%. 

Data from the accelerometer, gyroscope and magnetic sensors of five smartphones placed 

on different body positions while ten users were performing seven activities were recorded in 

[40]. A sampling frequency of 50Hz was applied. The activities performed were walking, stairs 

up and down, running, sitting on a chair and standing. A moving window of 2 seconds with a 

50% overlap was used for feature extraction. Four feature sets were created in the time and 

frequency domain for the evaluation. The following algorithms were tested: Bayes Network 

(BN), NB, LibSVM, LR, k-NN, PART, NNGE (rule-based classifier based on k-NN), RF and 

J48. An important outcome produced by the authors is that the use of the gyroscope together 

with the accelerometer is more efficient in most cases, although it is difficult to make a general 

remark because the role of each sensor depends on the location of the mobile. 
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Table 2.3 Overview of pubic datasets based on smartphone’s sensors 

Study 
No of 

subjects 
Activities Sensors used 

Sampling 

Frequency 

Window 

size/overlap 

No of 

Features 
Algorithms Performance 

Kwapsiz 

et al. 2011 
29 

WAL, JOG, STN, 

STU, SIT, STD 
Acc 20Hz 10s/0% 43 J48, LR, MLP MLP: 91,7% Accuracy 

McCall 

2012 
10 

BIK,EBK, STU, STN, 

JRO, RUN, STD, 

WAL, TWL 

Acc 60Hz 8.33s/0% 105 

hierarchical model 

with kNN and 

feature selection 

algorithms 

76% Accuracy 

Miao 

2015 
7 

STC(STD/SIT), RUN, 

STN, STU 

Acc, Gyro, 

Magn, 

proximity, 

light 

25Hz 1.6s/50% 30 SMO, J48, NB NB: 89,6% Accuracy 

Anquita 

2013 
30 

STD, SIT, LAY, 

WAL, STU, STN 
Acc, Gyro 50Hz 2.56s/50% 561 Multi class SVM 96% Accuracy 

Shoaib 

2014 
10 

WAL, RUN, STN, 

STU, SIT, STD, BIK 

Acc, Gyro, 

Magn 
50Hz 2s/50% 36 

BN, NB, LibSVM, 

LR, kNN, PART, 

NNGE, RF και J48 

Evaluation of different 

sensors and phone 

positions for each 

activity 
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2.2. Behavioral modeling based on human physical activity patterns 

Modeling human behavior is extremely useful in a variety of domains, such as surveillance-

based security and ambient assistive living [3] , [12]. Human behavior can be defined as the set 

of mental, physical and social activities experienced during the phases of human life. Thus, 

modeling human behavior is a multidimensional problem that can be studied only by targeting 

specific aspects of each application in the field of interest. The activities of daily living of a 

human can reveal valuable information about his activity patterns and subsequently, with the 

association of other behavioral characteristic elements, they can lead in the development of 

behavioral models. The behavioral characteristic elements (based on the studies that are analyzed 

in sections 2.2.1 and 2.2.2), except from motion, are: 

 Location (indoor and outdoor) 

 Interaction with  humans, devices, objects 

 Time 

 Environment  

Based on the above, in order to achieve human behavior modeling using activity patterns and 

to create the profile of the user it is essential to firstly recognize the activities of daily living 

effectively and accurately. A user’s activity profile can be defined as the specific way that a 

person performs an activity [41]. The majority of the published studies handle the activity 

recognition task as the recognition of separate activities and not as a sequence of activities. An 

activity sequence can be defined as the act of several activities in chronological order. 

The need of testing sequential dataset of daily activities for identifying abnormal activity 

patterns of elderly was shown in the study of Mendoza et al. [42], where data was collected over 

a six month period from a group of older adults in a geriatric center. The dataset consists of 

timestamped values and flags which characterize the action undertaken in a sequential manner. 

Authors applied clustering and mining sequential patterns for the analysis.  

 Yu and Korkmaz in [43] transformed an open sequential dataset [44], which contains binary 

temporal data from a number of sensing nodes monitoring the ADLs performed in a home setting 

by a single inhabitant, into a sequence graph and formulated the problem as k-hop longest path 

problem before the application of  a heuristic algorithm. 
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An important number of studies have been published for deriving activity patterns and/or 

behavior models based on physical activities in the context of smart environments. Location and 

motion are two fundamental elements for analyzing human behavior [45], which can be 

addressed in a smart environment with the use of sensors and tags on objects [46], such as Radio 

Frequency Identification (RFID) tags [47]. In the context of a smart environment an activity is 

usually considered as a sequence of events (such as the activation of a RFID tag, or a WiFi 

fingerprint) that are generated continuously from the sensors [48]. 

2.2.1. Ontology based approaches for activity modeling 

 An unsupervised approach based on ontology of activities of daily living and on semantic 

models of the environment and the deployed devices in combination with probabilistic reasoning 

methods is proposed by Dimitrov et al. in [46]. Data, including basic and complex activities, 

were recorded in two ambient intelligence labs. Thus for each instance characteristic information 

based on the ontologies of activities, devices and environment were combined for explaining the 

observed event.  

 Chen et al. [41] introduced an ontology based hybrid approach to activity modeling. The 

proposed system consists of three main phases: a) creation of initial basic ADL models through 

ontological engineering; b) the ADL models are used in the application for activity recognition 

and produce the respective classification results; c) classification results are used for finding new 

activities and user profiles and to also update the ADL models. Activity monitoring achieved 

through the interaction of the user with objects with attached sensors, namely, dense sensing 

technique. Moreover information about the timestamp values and the location were considered. 

To maintain quality of the model a user needs to validate and finalize the position and the label 

of an activity model.  

 Another approach, which combines ontological and pattern clustering techniques is 

introduced by Gayathri et al. [48] with the objective of identifying activity patterns.  The authors 

used an open public dataset [49], where the sensor data is received in the form of events and 

contain information such as date, time, sensor identification and status. In the data-driven 

approach of their methodology, data segmentation based on events and hierarchical event pattern 

clustering were applied; whereas in the knowledge-driven approach ontology construction and 
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activity modeling based on the occupants, activation of sensors were used for the prediction of 

the activities.  

2.2.2. Activity modeling based on multiple sensors  

Rashidi et al. [49] proposed a method which combines sequence mining and clustering 

algorithms to identify frequent activities and cluster similar activity patterns together. Models are 

learned to recognize these particular activities with the use of Hidden Markov Models. For the 

creation of the dataset (publicly available) twenty volunteers performed basic and complex 

activities namely: telephone use, hand washing, meal preparation, eating and medication use, and 

cleaning, in a smart apartment. A sensor network was designed to capture data from the 

following sensors:  motion sensors positioned on the ceiling, sensors for ambient temperature 

readings, custom-built analog sensors to provide readings for hot water, cold water, and stove 

burner use, Voice over IP for phone usage, contact switch sensors, and pressure sensors. Each 

sensor reading is tagged with the date and time of the event, the ID of the sensor that generated 

the event, and the sensor value. 

Another approach for activity modelling in the environment of a smart home with embedded 

sensors and absolute positions of RFID tags is introduced by Amirjavid et al. [50]. Fuzzy 

clustering methods were applied for constructing activity models, which consider uncertainty as 

a property of the activities. Uncertainties are characterized as temporal and could arise from: 

sensors; lack of knowledge; different ways of executing the same scenario; ignorance of world 

data or variables to avoid from process complexity. Two case studies were undertaken, the first 

one focused on the recognition of the activity “making coffee” and the second one focused on 

“drinking water’’, ‘‘making tea’’ and ‘‘making coffee’’. 

Pei et al. [45] focused on the development of a system based on smartphone sensors for 

human behaviour modelling, the LoMoCo model, which combines location information and 

motion states. For the activity recognition module, four users carried the smartphone in their 

pants’ front pocket in a fixed orientation while they performed, in a closed environment, six 

scenarios of activities (fetching coffee, fetching water, taking a break, having lunch, working, 

unknown class of scenario). These activities included the following motion states: sitting, normal 

walking, fast walking, standing, sharp turning and gradient turning.  By analysing the signals 

obtained from the smartphone’s sensors, thirteen features were extracted in both the time and 
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frequency domain. For the feature selection step, the sequential forward selection algorithm was 

used, while for the classification step the Least Square-Support Vector Machine algorithm was 

chosen. For the location module, the GPS sensor of the smartphone was used mainly for outdoor 

and the fingerprinting approach of WiFi positioning (43 reference points) for the indoor location. 

The authors concluded that although they achieved classification accuracy of approximately 

90%, further investigation is required regarding the optimal feature selection method and a study 

for the detection of abnormal behaviors is also suggested. 

An activity sequence-based indoor pedestrian localization approach using smartphones is 

introduced by Zhou et al.  [51]. The proposed approach consists of two main modules: the map 

matching and the activity detection module. The activity sequence includes several consecutive 

activities, i.e. turning at a corner, turning around, taking the elevator or the escalator and stairs up 

and down, which occur when the user walks through the special location points on the building 

that mark an activity change namely, a corner, an elevator, an escalator, and a stair. Four 

participants performed the activities while holding the smartphone in their hand. The sampling 

frequency was set at 100 Hz. Activity detection was achieved based on the accelerometer and the 

gyroscope sensors of the smartphone, with the use of a decision tree algorithm.  After the 

detection of an activity, a Hidden Markov Model was used to match the activities in the activity 

sequence to the corresponding nodes, which were labelled with coordinates, of the indoor road 

network. 
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3. Methodology  

A great challenge in activity recognition is to accurately recognize over a continuous record of 

sensor data the part of a signal that represents a particular activity. The activity recognition 

chain/process includes several stages, which include a) data acquisition b) preprocessing c) 

segmentation d) feature extraction and e) classification, as it can be seen in Figure 3.1. Noise 

filters can be applied prior or/and post the data segmentation stage. The decision of the 

methodology followed in each processing stage plays a crucial role in the final outcome of the 

recognition system.  

 

 

Figure 3.1 Overview of activity recognition process 

 

3.1. Preprocessing 

To the direction of increasing the detection accuracy of the activity recognition systems, 

pre-processing techniques are used. As all process, these techniques have a computational cost 

that must be taken in to account with respect to the produced improvement of classification. The 
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preprocessing stage includes signal filtering techniques and signal segmentation techniques that 

are further analyzed in the following sections 3.1.1and 3.1.2. 

3.1.1. Signal filtering 

The main purpose of signal filtering, in the preprocessing stage of a recognition system, 

is to eliminate or to minimize noise caused either from the user or the sensor. Another objective 

is to increase the differences in the contribution of each spectral component to the total signal 

and in this way make certain wavelengths more selective. According to the signal of interest and 

the goal of preprocessing different types of filters are applied. General purpose methodologies 

are smoothing and differentiation. The smoothing technique is applied for reducing the random 

noise in the signal while differentiation can be used to enhance spectral differences.  

In activity recognition with accelerometer signals the most popular filters, according to 

[52], [12], are a) the band pass filter, which is used to eliminate low frequency acceleration 

correlated with the orientation of the sensor and high frequency components of noise; b) the low 

pass filter which is used to eliminate noise caused by dynamic motions of the user; c) an average 

smoothing method. 

Although the filtering technique is applied for noise reduction and thus ultimately for a 

better classification accuracy, it does increase computational cost, which is crucial when dealing 

with a real-time system. After a comprehensive study for the impact of preprocessing procedures 

and in particular for filtering, authors in [52] concluded that the results of their classification 

were not significantly affected by the presence or absence of noise in the signal. It should also be 

noted that, when dealing with such a complex signal such as the one obtained from a 

smartphone’s sensors, filtering of the signal could cause unintended removal of important 

relevant information. 

3.1.2. Data segmentation  

Data segmentation aims to divide the continuous raw or filtered signal into small signal 

segments, which represent a respective activity and can be used for feature extraction. The 

choice of the segmentation technique is very important, due to its impact on the feature-set to be 

extracted and subsequently used for classification. Once more the computational cost of the 

technique must be taken in to account. The segmentation process analysis that follows has been 

conducted based on the findings of a comprehensive study on the processing of sensor data by 
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Krishnan and Cook [53]. Different approaches on how the sensor data can be handled are 

presented in Figure 3.2. 

 

 

Figure 3.2 Different approaches to processing sensor data (Source [53]) 

 

3.1.2.1. Event segmentation 

The input sequence of sensor events is partitioned into a number of non-overlapping 

subsequences [53]. These subsequences represent activity segments and are defined by their 

corresponding starting and ending time points, as shown in Figure 3.2. It must be noted that the 

segments may not always align exactly with the aforementioned activity boundaries. 

Furthermore there are two different approaches commonly used for event segmentation: a) 

supervised machine learning and b) unsupervised machine learning where features are utilized to 

identify the boundaries of each activity.   

3.1.2.2. Window segmentation  

Window segmentation can be further analyzed in to window segmentation with 

overlapping (also called shift) and window segmentation without overlapping. The size of the 

window can be either fixed (time or size based) or dynamically adjusted [53].  With respect to 

the technique, the size of the window has a strong effect on the performance of the recognition 

system [12], [52], [53], [54], [55].  The most common ranges of window sizes are: a) 1 to 6 
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seconds for time-based windows and b) 5 to 30 seconds for size-based windows, as described in 

the subsequent subsections.  

Time based windows 

In a timestamp-based sliding (also called moving) window, the continuous sensor data is 

equally divided in time intervals. As a result, with this approach every window includes a fixed 

amount of data. This approach is commonly used when the system’s sensors transmit data at a 

constant time and rate, such as the accelerometers and gyroscopes [12], [53]. Time-based sliding 

windows can be used with or without data overlap as it can be seen in Figure 3.3 and Figure 3.4. 

Depending on the percentage overlap, more or less data overlaps from window N into N + 1. 

This is also referred to as a window shift [56].  

 

Figure 3.3 Time based sliding window with no overlap 
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Figure 3.4 Time based sliding window with 50% overlap 

Size based windows 

In a size-based window approach, also referred to as bursty, fixed-size and sequence-

based sliding window, the sensor data are sent to the system in an asynchronous way, not 

constant in time,  and thus the size of the window is defined  by the number of sensor events and 

can vary in time durations. This approach is commonly used when multiple sensors are used 

[12], [53]. 

Weighting events within a window 

A time-based weighting window is proposed as a solution to the problem of fixed size 

windows containing sensor events widely spread apart in time. To overcome this, a time-based 

weighting factor can be applied to each event in the window based on its relative time to the last 

event in the window [53]. 

Dynamic window sizes 

In a dynamic window size approach, the size of the window is defined dynamically by 

rules or processes that have been set as prerequisites. Kozina et al. [57] applied dynamic 

segmentation in acceleration data by deploying methods for searching a significant change point. 
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The significant change is defined as the difference of values between the maximum and the 

minimum element in a sequence of consecutive data samples. A combination of a sliding 

window with overlap and a dynamic sliding window is proposed by Noor et al. [58]. This 

method categorizes the activities in static, dynamic and traditional. When a traditional activity 

window is detected, a dynamic sliding window mechanism is executed to expand the window 

size and capture the activity. 

 

3.2. Feature extraction 

Human activity recognition from sensor data is generally preceded by a feature extraction step, in 

order to obtain the most relevant signal features and to remove the redundant. The outcome of 

the feature extraction process is a feature set (also called feature vector) that contains all relevant 

and valuable information that was included in the initial/ non-reduced dataset. Several 

approaches from different domains of representation have been used in the activity recognition 

systems based on accelerometer data. The most commonly used and representative extracted 

features in the time, frequency and discrete domains, based on the analysis of previous studies 

[4] [13] [59] [60] [61] [62] [63] [64] [65] [66] are presented in the following sections 3.2.1, 

3.2.2, and 3.2.3. 

 

Figure 3.5 Overview of processing techniques for feature extraction, based on [61]. 
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3.2.1. Time domain features  

3.2.1.1. Statistical/Mathematical functions 

Time-domain features include mean, median, variance, skewness, kurtosis, range, etc. These 

features are widely used in the field of human activity recognition [67], [68]. Based on the 

review of the related work conducted, an elaborate list of time-domain features commonly used 

can be found below. 

 

 Mean : Average value 

 Median : Median signal value 

 Standard Deviation (STD): Mean deviation of the signal compared to the 

average 

 Variance: Square of the standard deviation 

 Min, Max : Minimum and maximum of the signal 

 Range: The difference between the largest and smallest values of the signal 

 Root Mean Square (RMS): Quadratic mean value of the signal 

 Correlation: The amount of correlation/similarity that exists between signals 

 Cross-Correlation: The amount of correlation/similarity of  two signals as a 

function of the lag of one relative to the other 

 Autocorrelation: cross-correlation of a signal with itself, there will always be a 

peak at a lag of zero, and its size will be the signal power  

 Linear correlation coefficient: The amount of correlation/similarity of  a linear 

relationship between two signals 

 Integration: measures the signal area under the data curve  

 Kurtosis: The degree of peakedness of the sensor signal distribution toward the 

mean 

 Skewness: The degree of asymmetry of the sensor signal distribution. A 

symmetric dataset will have skewness near 0. 

 Mode: The number that appears most often in the signal 

 TrimMean: Trimmed mean of the signal in the window 
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 Asymmetry coefficient: The first moment of the data in the window divided by 

STD over the window 

3.2.1.2. Other functions  

 

 Zero Crossing Rate (ZCR): Total number of times the signal changes from 

positive to negative or back, normalized by the window length 

 Mean Crossing Rate (MCR): Total number of times the signal changes from 

below average to above average, normalized by the window length 

 Differences 

 Angular velocity: is the rate of change of angular displacement, specifies the 

angular speed (rotational speed) of an object and the axis about which the object 

is rotating 

 Tilt angle: relates the angle of tilt in the xy-plane, and the angle of inclination 

from the gravity vector, to the measured acceleration in each axis 

 Signal Magnitude Vector (SMV): Sum of the Euclidean norm over the three 

axis over the entire window normalized by the window length 

 Normalized Signal Magnitude Area (SMA): Acceleration magnitude summed 

over three axes normalized by the window length 

 

Bouten et al. [67], applied the integral method to offer estimation of energy expenditure using an 

inertial sensor. The authors used the total Integral of Modulus of Accelerations (IMA). This 

metric is referred to the time integrals of the module of accelerometer signals: 

 

 
 

Where ax, ay, az denote the orthogonal components of accelerations, t denotes time and N 

represents the window length. 

 

Other time-domain features such as Zero-Crossings Correlation-Coefficient root mean square, 

etc. are also used in [61]. 
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3.2.2.  Frequency domain features 

3.2.2.1. Fourier Transformations 

 

 DC (direct current) component: is the average value of the signal 

 Coefficients sum: summation of spectral coefficients 

 Dominant frequency: the one frequency with the largest power in the power 

spectral density 

 Spectral Energy: The equivalent to the energy (refers to the area between the 

signal curve and the time axis) of the signal 

 Spectral Entropy: Measure of the distribution of frequency components, 

describes the complexity of a system. And helps to differentiate signals with 

similar energy values. To calculate entropy -> Power Spectral Density(PSD) then 

normalize PSD and then calculate entropy 

 Spectral roll-off: measurement of the skewness of the spectral shape 

 Spectral centroid: corresponds to the relative location of the “center of gravity” 

of the spectral power distribution. 

 Spectral flux: measurement of how quickly the power spectrum of a signal is 

changing 

 Binned distribution: represents the fraction of values that fall within equally-

spaced bins that span the entire range of sensor values, it is actually the histogram 

of FFT 

3.2.2.2. Wavelet transforms  

For a wavelet transform a scalable modulated window is shifted along the signal while 

the spectrum is calculated for every position. Then, the aforementioned process is repeated for 

every new cycle. The outcome of this process will be a collection of time-frequency 

representations of the signal, all with different resolutions. In the wavelet transform only the 

computation of spectral coefficients are used.  

 

 Coefficients sum: summation of spectral coefficients  
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3.2.3. Discrete domain features 

 Euclidean-based Distances: corresponds to the numeric distance between two 

signals 

 Levenshtein Edit Distance: measurement of the difference between two 

sequences and thus determines which set of representative samples is more 

similar to the given input sample.  

 Dynamic Time Warping: measurement of similarity between two sequences 

which may vary in time or speed. 

3.3. Feature Selection 

Feature selection (also called variable selection, attribute selection) is the process of 

selecting a subset of relevant features for use in the classification scheme of the constructed 

system.  The objective of feature selection is to improve the accuracy, the speed and the cost-

effectiveness of the classification system. There are three general classes of feature selection 

methods, shown in Figure 3.6: filter methods, wrapper methods and embedded methods, [69], 

which are analyzed in the following sections 3.3.1, 3.3.2 and 3.3.3. 

 

Figure 3.6 The three classes of feature selection methods 
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 Feature extraction and selection techniques are used to face the dimensionality problem, 

Figure 3.7. In the feature extraction approach the existing features are transformed in to a lower 

dimensional space while in selection, a subset of the existing features is selected without any 

further transformation.  

 

Figure 3.7 The curse of dimensionality. The performance of the classifier increases until the reach of the 

optimal number of features, further increase of the feature number results in a decrease of the 

performance.  

3.3.1. Filter methods 

Filter methods use variable ranking techniques. The features are ranked by the score and 

a threshold is applied to remove respective features with variables below it, or the cut-off point 

in the ranking is chosen via cross-validation.  Ranking methods are considered as filter methods 

since they are applied before classification [69]. Because of the method’s low complexity, the 

filter methods are characterized with a low computational cost. The disadvantage of a filter 

approach is that it does not consider the effect of the selected feature subset on the performance 

of the applied classification algorithm [70]. Filter methods can also be used as a preprocessing 

step for wrapper methods, allowing a wrapper to be used on larger problems. 

Examples of some filter methods include: 
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 The Chi squared test  

 Information gain  

 Correlation coefficient scores. 

 Mutual Information 

 

Examples of specific algorithms [63], [71] are: 

 ReliefF,  [72] 

 Correlation-Based Feature Selection (CFS), [73] 

 Fast Correlated Based Filter  (FCBF), [74] 

 INTERACT, [75] 

3.3.2. Wrapper methods 

Wrapper methods consider the selection of a set of features as a search problem, where 

different combinations are prepared, evaluated and compared to other combinations. Evaluation 

of the combined features is performed by a predictive model and a score based on the produced 

accuracy is assigned. Since wrapper methods apply exhaustive search, they have high 

computational cost. To overcome this issue, greedy search strategies such as forward selection 

and backward elimination are proposed [76]. According to Tang et al. [70], having a predefined 

classifier, a typical wrapper model will perform the following steps: 

Step 1: searching a subset of features, 

Step 2: evaluating the selected subset of features by the performance of the classifier, 

Step 3: repeating Step 1 and Step 2 until the desired quality is reached. 

 

Examples of some wrapper methods include the following algorithms: 

 Best-first search, [77] 

 Random hill-climbing algorithm (stochastic), [77] 

 Forward and backward passes (heuristics), [69]  

 Genetic algorithms (heuristics), [69] 

 Recursive feature elimination algorithm, [76] 
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3.3.3. Embedded methods 

Embedded methods incorporate the feature selection as part of training process [76], by 

learning which features contribute best to the accuracy while the model is being created. With 

this approach we achieve reduction of the computation time since there is no need of 

reclassifying different subsets [69]. Embedded methods can be further categorized into three 

classes: a) the pruning methods, such as Support Vector Machine Recursive Feature Elimination 

(SVM-RFE) b) models with a build-in mechanism, such as C4.5 decision tree and c) the 

regularization or penalization methods, which are the most common, such as the LASSO, Elastic 

Net and Ridge Regression [70]. 

3.4. Classification 

In the classification stage, the task of the classifier is to use the feature vector, provided 

by the feature extraction stage, in order to assign the signal to a category according to established 

criteria. The performance of the classifier depends strongly on the variability of the feature 

values for signals in the same category relative to the variability of feature values for signals in 

different categories [78]. In respect with the complexity of the described actions and/or signal 

noise, it can be noted variability in feature values of signals in the same category.  

3.4.1. Types of machine learning algorithms  

There are two broad categories proposed for the taxonomy of machine learning 

algorithms, the first one is based on the learning style [79] and the second one is based in the 

similarity [80]. Based on the learning style, machine learning algorithms can be categorized, in 

respect of the type of the input in the training procedure and the respective outcome, in to 

following six groups: supervised learning, unsupervised learning (also called clustering), semi-

supervised learning, reinforcement learning, transduction and developmental learning [79], [81]. 

  In general there are no clear borderlines in the taxonomy of classifiers. Manini et al.  

[30] have categorized the classifiers as follows: Firstly, a differentiation is performed between 

sequential and single-frame classifiers. A sequential classifier takes into account the previous 

classifications in order to decide for the current feature vector.  On the other hand a single frame 

classifier assigns labels to the input data regardless of previous assignments. Moreover, single 

frame classifiers can be further divided in to the following three approaches: 1) probabilistic, 

where given a sample input, the classifier can predict a probability distribution over a set of 



37 

 

classes and not only the most probable class for the sample; 2) geometric, where classification is 

performed based on decision boundaries, constructed during the training phase, which divide the 

feature space in order to indicate the region that the input sample belongs to; and 3) binary 

decision, where the classifier divides the given sample into two classes based on the 

classification rule that has been set.  

3.4.1.1. Supervised learning algorithms 

In supervised learning, the model is trained with a set of labeled data that have a 

corresponding relevance to the testing data. Based on the training set, the algorithm builds a 

model that can make predictions when new/unknown data is given, thus generalizing the 

problem. In most cases, the use of a large training set yields models with higher predictive 

power. Furthermore, based on their similarity the algorithms in supervised learning can be 

categorized in classification algorithms and regression algorithms. Some of the most popular 

algorithms for activity recognition with the use of smartphone’s sensors [4], [12], [30], [82] , 

[83], [84], [85] are described below.  

Support Vector Machine (SVM) 

A support vector machine is a binary classifier which constructs dimensional hyperplanes 

that separate all data points of one feature class from those of the other feature class [83]. The 

data points that are closest to the separating “line” of the hyperplanes are called feature vectors. 

The number of feature vectors is equal to the number of hyperplanes plus one.  

 

 

Figure 3.8 An overview of Support Vector Machine (Img. safaribooksonline.com) 
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A good separation is achieved by the hyperplane that has the largest distance to the 

nearest training-data point of any class (margin) [79]. The relationship between the margin and 

the generalization is inversely proportional, the larger the margin the lower the generalization 

error of the classifier. 

Naïve Bayes: 

The Naïve Bayes is a simple probabilistic technique based in the Bayesian theorem. The 

classification of a new input is produced by combining prior probabilities and measures of 

likelihood in order to form a posterior probability using the Bayes' rule. Furthermore there is a 

strong independence between features [83]. The Naïve Bayes algorithm can be used for 

classification and regression. 

 

 

Figure 3.9 An overview of Naïve Bayes 

Nearest neighbors (kNN) 

The k-Nearest Neighbors algorithm is a non-parametric, instance (or lazy) based 

algorithm that can be used for classification and regression. The kNN algorithm uses similarity 

measures (i.e. Euclidian distance) to find the closest samples in the feature space [83]. The value 

of k determines the number of classes included in the voting scheme. If k=1 the input is assigned 

to the class of that single nearest neighbor. The 1-NN rule provides acceptable classification 

performance in most applications [86]. 
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Figure 3.10 An overview of kNN 

Neural Network 

A neural network consists of layers of neurons (nodes) and weighted interconnections. 

Generally, it can be defined by the following parameters: a) the interconnection pattern between 

the different layers of neurons b) the learning process for updating the weights of the 

interconnections and c) the activation function that converts a neuron’s weighted input to its 

output activation.  

 

Figure 3.11 An overview of an ANN 

Decision trees 

Decision trees use a tree-like graph to undertake the decision process of classifying an 

instance based on the feature values. Starting from the root, each node is a feature from the 

instance to be classified, and each branch shows the value that the node can receive [87].  
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Figure 3.12 An overview of a Decision tree 

3.4.1.2. Unsupervised learning  

In the case of unsupervised learning the input vector of an algorithm consists of unlabeled 

data.  The inputs are organized into groups based on similarities and differences among the input 

patterns. Furthermore there is no feedback of evaluation for a potential classification.  The 

dimensionality of the feature space and the complexity of the properties of interest could be 

higher than in the case of supervised learning [88]. Unsupervised learning includes the following 

algorithms [89]: 

 Clustering techniques (k-Means, K-Median, Hierarchical clustering ) 

 Self-Organizing Maps  

 Principal Component Analysis (Kernel Principal Components, Sparse Principal 

Components ) 

 Non-negative Matrix Factorization 

3.4.2. Evaluation methods  

The most commonly used error estimation method for the evaluation of the classifier of 

the activity recognition system is the n-fold cross validation method [85].  Another important 
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error estimation method that has been used less frequently but has a high value is the leave-one-

out method [31].   

3.4.2.1.  n-fold cross validation 

Cross-Validation is a statistical method of evaluating and comparing learning algorithms. 

The basic form of cross-validation is n-fold cross validation where data is segmented into n equal 

sized partitions, named folds. Subsequently, one fold is kept for testing and the remaining folds 

are used for the training of the model [90]. This procedure is repeated until all folds have been 

tested. In machine learning the 10-fold cross validation is most commonly used [91]. 

 

Figure 3.13 n-fold cross validation [92] 

3.4.2.2. Leave-One-Out Cross Validation method 

The leave-one-out-cross-validation (LOOCV) method is the degenerate case of n-fold 

cross validation, where n is equal to the total number of data samples [92]. Thus, the model is 

tested on a single sample while all the remaining samples are used for the training. Although this 

method has large computational requirements its estimation is unbiased [86]. 

3.4.2.3. Leave-One-subject-Out method 

Similarly to the LOOCV method, in the Leave-One-subject-Out method the model is 

tested on a single’s subject samples while all the remaining samples from the rest subjects are 
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used for the training. This method has less computational requirements than the LOOCV and 

retains the unbiased estimation. 

 

3.4.3. Evaluation measures 

The evaluation of the performance of an algorithm, in supervised learning, can be 

measured with the use of a confusion matrix [93]. The confusion matrix is a visualization of the 

combinations between the predicted instances and the actual instances, as shown in Table 3.1. 

 

Table 3.1 Confusion matrix 

 Predicted class Total 

Instances 0 1 

Actual 

Class 

0 True Positive (TP) False Negative (FN) P 

1 False Positive (FP) True Negative (TN) N 

 True Positives (TP): The number of instances that have correctly classified as “0” 

 True Negatives (TN): The number of instances that have correctly classified as “1” 

 False Positives (FP), also called Type 1 Errors: The number of instances that are “1” but 

have classified as “0” 

 False Negatives (FN), also called Type 2 Errors: The number of instances that are “0” but 

have classified as “1” 

Using the descriptors of the confusion matrix several other metrics can be computed. The choice 

of metric depends on the developed algorithm, the application of the system and the desired 

findings [85]. Nevertheless, the accuracy of the classifier is the most common metric in activity 

recognition systems [94]. 

Accuracy describes the number of instances that have been correctly classified: 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
TP + TN

TP + TN + FP + FN
 

Sensitivity (also True Positive Rate or Recall) measures the proportion of positives that are 

correctly identified as positives. 

𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 =
TP

P
=

TP

TP + FN
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Specificity (also True Negative Rate) measures the proportion of negatives that are correctly 

identified as negatives. 

𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 =
TN

N
=

TN

TN + FP
 

 

Precision (also Positive Predictive Value) describes the degree to which the predicted positive 

values is expressed 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
TP

TP + FP
 

F-score or F1score or F-measure is the harmonic mean of precision and sensitivity. 

𝐅 − 𝐬𝐜𝐨𝐫𝐞 = 2 ∗
TP

(2 ∗ TP + FP + FN)
 

The Error Rate measures the deficiency of the algorithm. 

𝐄𝐫𝐫𝐨𝐫 𝐑𝐚𝐭𝐞 =
FP + FN

TP + TN + FP + FN
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4. Implementation  

4.1. Dataset description 

For the purpose of this study a publicly available
2
 benchmark dataset namely, the 

MobiAct dataset [4], was used. Furthermore an extended version of the aforementioned dataset 

was implemented to fit the needs of the study.  

The MobiAct dataset incorporates signal data from the accelerometer, gyroscope and 

orientation sensors of a smartphone while participants performed different types of activities and 

falls. In particular, it encompass four different types of falls and nine different ADLs, as shown 

in Table 4.1 and Table 4.2, from a total of 57 participants with more than 2500 trials. These types 

of falls were selected because they can occur from different body positions [13]. The choice of 

the ADLs were based on bibliography and the three following criteria: a) fall-like activities; b) 

sudden or rapid activities which produce signals similar to falls; and c) common everyday 

activities [4]. 

The extended version of the MobiAct dataset includes two extra types of ADLs (Chair up 

and Sitting), as shown in Table 4.2, and five different scenarios of daily living which include all 

the different types of the separate ADLs, as shown in Table 4.3, Table 4.4, Table 4.5, Table 4.6 

and Table 4.7 . The sequences of the activities are based on a scenario of daily living where the 

subject leaves his home, takes his car to get to his working place (although real driving was not 

recorded), reaches his office, sits on the chair and starts working. Once he gets off his work, he 

takes his car and goes in an open area to perform physical exercise. Once more he gets in the car 

and finally returns back home to rest. The initial scenario was split into five sub-scenarios, which 

are connected with idle ADLs (standing and sitting), in order to avoid recording issues that 

would lead to several repetitions and the frustration of the participants. As it can be seen the 

scenarios evokes all the ADLs included in the MobiAct dataset, a number of which have been 

recognized with accuracy of 99% in a previous study [4]. The main purpose for the construction 

of scenarios is to investigate how the recognition of different activities with natural transitions 

between them in continuous recordings, will affect the performance of the system, since in a real 

life scenario there is no clear separation from one activity to another. Although the durations of 

                                                 

2
 The MobiAct dataset is available for download from www.bmi.teicrete.gr  

http://www.bmi.teicrete.gr/
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the scenarios are short, one can assume that if the included activities can be accurately 

recognized, then this can also be achieved in a wider time frame as well. This could subsequently 

lead to the generation of activity patterns if the transition points between activities, the activities 

themselves and as the parameter of time will be combined together. The precise recognition of 

scenarios of daily living, in a base level, is crucial for a recognition system applicable on real 

life. As far as we know there is no study in the domain of activity recognition using smartphones 

that addresses the issue of recognizing sequences of activities or scenarios of activities. As 

shown in section 2.1.1 of this work, the studies that evoke continuous recordings request from 

the participant to remain inactive for a period of time before the beginning of a new activity. 

In summary the extended version of the MobiAct dataset includes: 

 Four different types of falls performed by 66 participants 

 Eleven different types of ADLs performed by 19 participants and nine types of 

ADLs performed by 59 participants 

 Five sub-scenarios which construct one scenario of daily living, which consists of 

a sequence of 50 activities and performed by 19 participants. 

 

 

Table 4.1 Falls recorded in the MobiAct dataset 

Label Activity Trials Duration Description 

FOL Forward-lying 3 10s 
Fall Forward from standing, use of hands to 

dampen fall 

FKL Front-knees-lying 3 10s 
Fall forward from standing, first impact on 

knees 

SDL Sideward-lying 3 10s Fall sideward from standing, bending legs 

BSC Back-sitting-chair 3 10s Fall backward while trying to sit on a chair 
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Table 4.2 Activities of Daily Living recorded in the MobiAct dataset 

 Label Activity Trials Duration Description 

In
it

ia
l V

er
si

o
n

 o
f 

M
o

b
iA

ct
 

STD Standing 1 5m Standing with subtle movements 

WAL Walking 1 5m Normal walking 

JOG Jogging 3 30s Jogging 

JUM Jumping 3 30s Continuous jumping 

STU Stairs up 6 10s Stairs up (10 stairs) 

STN Stairs down 6 10s Stairs down (10 stairs) 

SCH Sit chair 6 6s Sitting on a chair 

CSI Car step in 6 6s Step in a car 

CSO Car step out 6 6s Step out of a car 

N
ew

 

A
D

Ls
 CHU Chair up 6 6s Getting up from a chair 

SIT Sitting 1 60s Sitting with subtle movements 

 

 

Table 4.3 1
st
 Scenario of Leaving the Home (SLH) 

 

 

1
st
 Scenario of Leaving the Home (SLH), Total duration 125’’ 

N
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No. Label Activity Description 

1 STD Standing The recording starts with the participant standing 

outside the door and locking the door. Then walks 

and descent stairs to leave his home. Following, he 

riches the parking area where he stands in front of the 

car, unlocks the lock of the car, opens the door and 

gets in the car. He remains sited for some seconds, 

then he gets out of the car, closes the door and stands 

in front of the door to lock the car. 

2 WAL Walking 

3 STN Stairs down 

4 WAL Walking 

5 STD Standing 

6 CSI Car-step in 

7 SIT Sitting 

8 CSO Car-step out 

9 STD Standing 
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Table 4.4 2
nd

 Scenario of Being at Work (SBW), 

 

 

Table 4.5 3
rd

 Scenario of Leaving work (SLW) 

 

2
nd

  Scenario of Being at work (SBW), Total duration 185’’ 

N
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 No. Label Activity Description 

1 STD Standing The recording starts with the participant standing 

outside the cars door. Then walks from the parking 

area to his work building. He walks and ascent stairs 

till he riches his office where he stops in front of the 

door. Once he finds the keys he opens the door, gets 

in his office and walks to his chair, where he sits.  

2 WAL Walking 

3 STU Stairs up 

4 WAL Walking 

5 STD Standing 

6 WAL Walking 

7 SCH Sit chair 

8 SIT Sitting 

3
rd

 Scenario of Leaving work (SLW), Total duration 185’’ 

N
ew
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No. Label Activity Description 

1 SIT Sitting The recording starts with the participant sitting in the 

chair in his office area. Then he gets up from the 

chair, walks to the door and stands outside the office 

door. Once he find the keys, he lock the door and 

walks and descent stairs till he riches the parking 

area. He walks to his car and stands in front of the 

car, unlocks the lock of the car, opens the door and 

gets in the car. He remains sited for some seconds, 

then he gets out of the car, closes the door and stands 

in front of the door to lock the car. 

2 CHU Chair up 

3 WAL Walking 

4 STD Standing 

5 WAL Walking 

6 STN Stairs down 

7 WAL Walking 

8 STD Standing 

9 CSI Car-step in 

10 SIT Sitting 

11 CSO Car-step out 

12 STD Standing 



48 

 

Table 4.6 4
th
 Scenario of Being Exercise (SBE) 

 

Table 4.7 5
th
 Scenario of Returning at Home (SRH) 

 

4
th

 Scenario of Being Exercise (SBE), Total duration 125’’ 
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No. Label Activity Description 

1 STD Standing The recording starts with the participant standing in 

front of the car. He starts his exercise by walking, 

then starts jogging from some seconds and once again 

walking. Then he stops for some seconds to get a 

breath and he starts jumping and once more he 

standing to relax a little. Finally he walks till his car 

and stands outside the door.  

2 WAL Walking 

3 JOG Jogging 

4 WAL Walking 

5 STD Standing 

6 JUM Jumping 

7 STD Standing 

8 WAL Walking 

9 STD Standing 

5
th

 Scenario of Returning at Home (SRH), Total duration 155’’ 

N
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No. Label Activity Description 

1 STD Standing The recording starts with the participant standing 

outside the cars door. He unlocks the lock of the car, 

opens the door and gets in the car. He remains sited 

for some seconds, then he gets out of the car, closes 

the door and stands in front of the door to lock the 

car.  Then walks from the parking area to his home. 

He walks and ascent stairs till riches his home door, 

where he stands to finds the keys. Then he opens the 

door, gets in his home, walks till a chair and sits. 

2 CSI Car-step in 

3 SIT Sitting 

4 CSO Car-step out 

5 STD Standing 

6 WAL Walking 

7 STU Stairs up 

8 WAL Walking 

9 STD Standing 

10 WAL Walking 

11 SCH Sit chair 

12 SIT Sitting 
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4.1.1. Data acquisition  

The extended version of the MobiAct dataset was developed keeping the exact same 

acquisition protocol as for the MobiAct dataset. All the recorded activities and scenarios were 

performed at the Technological Educational Institute of Crete. 

 The main objective is to simulate real life conditions, which is a key focus of research in 

the field [2]. Based on this objective, the smartphone was placed loosely in any random 

orientation into the trousers’ pocket by the participant. The accelerometer, gyroscope and 

orientation sensors of a Samsung Galaxy S3 smartphone with the LSM330DLC inertial module 

(3D accelerometer and gyroscope) were used. As the orientation sensor is software-based, it 

derives its data from the accelerometer and the geomagnetic field sensor. A calibration of the 

gyroscope was performed using the device’s integrated tool, prior to the recordings. For the data 

acquisition, an Android application was used for the recording of raw data for the acceleration, 

the angular velocity and orientation [95]. In order to achieve the highest sampling rate possible 

the parameter “SENSOR_DELAY_FASTEST” was enabled. Finally, each sample was stored 

along with its timestamp in nanoseconds. For each recording the application produces three files, 

one for each sensor, in a txt format.  

Εach activity recording was performed in the unique way of each participant, while at the 

same time guidance from the instructor was provided in order to ensure the reliability of data. 

For example, the instructor informs the participant to sit on a particular chair, with his own way 

and rhythm. The participants placed the smartphone in the pocket; after hearing a sound signal 

notifying the start, she/he sits on the chair and waits until the stop signal sounds. The whole 

process is monitored by the instructor. When recording complex scenarios, the instructor also 

performed the scenario activities along with the participant in order to hold a timestamp for each 

change of activity with a second smartphone. In addition to the monitoring for activity change, 

participants were instructed to inform the instructor with voice commands each time they would 

transit into another activity that could not be obvious. For example, in case of the participant 

sitting inside the car and the next activity is to step out of the car, then the instructor asks the 

participant to step out and confirm back the command just before starting the action. It was 

crucial to make sure that all the sequences and transitions of activities that construct the 

scenarios were performed in a real, natural, manner.  
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4.1.2. Dataset characteristics or study participants  

The extended version of the MobiAct dataset includes records from 66 participants, 51 

men and 15 women. In particular, 66 subjects performed the falls described in Table 4.1, 59 

subjects performed nine of the eleven ADLs described in Table 4.2 while 19 performed all the 

ADLs, and finally 19 subjects performed the scenarios presented in Tables 4.3-4.7. The   

subjects’ age spanned between 20 and 47 years, the height ranged from 160 cm to 193 cm, and 

the weight varied from 50 kg to 120 kg. The average profile of the subject that occurs based on 

the described characteristics is 26 years old, 176 cm of height and 76 kg weight. All participants 

had different physical status, ranging from completely untrained up to athletes (minimum of 

cases). The challenge of the generalization [2] is addressed due to the high number of 

participants, the range of ages and the range of physical status included in the MobiAct dataset. 

4.2. Methodology of signal processing 

4.2.1. Software and tools used 

For data collection an android application, which was developed previously [4], [13], 

[95], was used. Subsequently in the processing chain, the matrix laboratory (MATLAB) platform 

was used for the signal data annotation and for the feature extraction. Finally for the feature 

selection and classification process the Waikato Environment for Knowledge Analysis (WEKA) 

tool [96], a popular suite of machine learning algorithms developed at the University of Waikato, 

was used.  

4.2.2. Pre-processing 

Based on the findings of Fida et al. [52] described earlier in Section 3.1 and in a try to 

avoid removal of important signal information, filtering techniques did not applied in this work. 

The pre-processing of raw signal data consists of three main steps: 1) sorting and conversation of 

file’s format, 2) synchronization and 3) data annotation.  

The sorting of the files was made according to the type of each recording (type of 

activity, sub- scenarios). Subsequently, a conversion to editable format for further processing in 

matlab (.mat files) was applied. 

Fort the synchronization of files the linear interpolation technique was used for handling 

the issues of the variability in the values of the timestamp and the sampling rate. The change on 
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the sampling rate is caused by the Android function, onSensorChanged, which runs for each 

sensor when its value is changing and not simultaneously.  

Since the developed recognition system was based on supervised learning algorithms the 

annotation of the data was mandatory. Labels were assigned to the data manually, following 

slightly different protocol for the two broad categories, ADLs and Scenarios. The labels and the 

corresponding activities and the labels of the sequence of activities which produce the scenarios 

are described in detail in Section 4.1 and in particular in Tables 4.1-4.7. Starting with the 

annotation of the separate ADLs, the signal is labeled from one to three labels, representing the 

initial activity state of the participant, the desired ADL, and the ending activity state. For 

example in case of the SCH (sit on chair) activity the initial state is “sitting”, following “sit on 

chair” and the ending state is “standing”. The annotation was made, empirically, by monitoring 

the signal change and recording the respective time values. Examples of signal annotation, 

randomly chosen recordings, for all the ADLs are shown in Figures 4.1- 4.11. 

 

Figure 4.1 Annotation of the activity "Standing" 
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Figure 4.2 Annotation of the activity "Walking", original and zoomed in 

 

 

 

 

Figure 4.3 Annotation of the activity "Jogging" 
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Figure 4.4 Annotation of the activity "Jumping"  

 

 

Figure 4.5 Annotation of the activity "Stairs up" 
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Figure 4.6 Annotation of the activity "Stairs down" 

 

 

 

Figure 4.7 Annotation of the activity "Stairs down" 
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Figure 4.8 Annotation of the activity "Car step in" 

 

 

 

Figure 4.9 Annotation of the activity "Car step out" 
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Figure 4.10 Annotation of the activity "Chair up" 

 

 

 

Figure 4.11 Annotation of the activity "Sitting" 

 

 

 

 

 

 

 



57 

 

Concerning the annotation process of the scenarios, there were three different sources to 

accurately record the time point where a transition of an activity was performed. As described in 

Section 4.1, the instructor of the recordings was saving a timestamp in another smartphone for 

each activity transition and for cross-check a handwritten copy was made. Thus, for the 

annotation of the scenarios the same protocol with the annotation of ADLs was followed and in 

advance, two checks were performed with the recorded timestamps. Examples of scenario 

annotations are shown in Figures 4.12 - 4.17. 

 

Figure 4.12 Annotation of the scenario "leaving home- SLH" 

 

 

Figure 4.13 Annotation of the scenario "Being at work- SBW" 
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Figure 4.14 Annotation of the scenario "Leaving work- SLW" 

 

 

 

 

Figure 4.15 Annotation of the scenario "Being exercise - SBE" 
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Figure 4.16: Annotation of the scenario "Return Home - SRH" 

4.2.3. Feature extraction & selection 

The first step before the feature extraction process is the determination of the window 

segmentation technique. The time-based sliding window is the most widely used technique for 

recognition systems based on accelerometer data. The window size has a high impact in the 

performance of the system [52]. The time length of the activities for recognition and the window 

size have a strong correlation, i.e. a big window size will overcome an activity of small duration. 

Taking in to consideration that the duration of the smallest investigated activities varies between 

1,5 and 2 seconds (CHU, SCH) and based on previous studies [12] [53], [54], [55]  three 

different sizes of windows, 1, 1.5 and 2 second, were tested. Furthermore an overlap of 80%, 

based on previous study [4] was combined with each window size.  

The choice of features for extraction was based on the findings of a previously published 

study [4]  while a further try to reduce the number of the feature set was performed, for reduction 

of the computational cost. Features were extracted from time and frequency domains, which are 

also accords to the most representative in the domain of activity recognition as described in 

Section 3.2. Subsequently, four features sets were created which were tested with all possible 

combinations for each window size.  

Feature set A 

In the first feature set 28 features in total have been excluded from the proposed set 

reported by Vavoulas et al. [4]. 27 features excluded from the absolute of signal and the spectral 
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centroid as it has been reported to affect the results of activity recognition negatively.  The first 

feature set consists of 40 features in total from time and frequency domain. 

 

 21 features: mean, median, standard deviation, skew, kurtosis, minimum and 

maximum of each axis (x, y, z) of the acceleration. 

 1 feature: the slope SL, which is defined as: 

 

𝑆𝐿 = √(𝑚𝑎𝑥𝑥 −  𝑚𝑖𝑛𝑥)2 + (𝑚𝑎𝑥𝑦 − 𝑚𝑖𝑛𝑦)2 + (𝑚𝑎𝑥𝑧 − 𝑚𝑖𝑛𝑧 )2  
 

 4 features: mean, standard deviation, skew and kurtosis of the tilt angle TAi between 

the gravitational vector and the y-axis. The tilt angle is defined as: 

 

𝑇𝐴𝑖 = sin−1 (
𝑦𝑖

√𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2

)  

where x, y and z is the acceleration in the respective axis. 

 10 features: mean, standard deviation, minimum, maximum, difference between 

maximum and minimum, entropy of the energy in 10 equal sized blocks, short time 

energy, spectral roll off, zero crossing rate and spectral flux from the magnitude of 

the acceleration vector. 

 

 4 features: the absolute of kurtosis of each axis (x, y, z) of the acceleration and the 

absolute of kurtosis of the tilt angle TAi between the gravitational vector and the y-

axis. 

Feature set B 

The second feature set consists of 37 features in total. It includes the features described in 

the feature set A minus the kurtosis of each axis (x, y, z) of the acceleration. 

Feature set C 

The third feature set consists of 33 features in total. It includes the features described in 

the feature set B minus the four features of the absolute. 

Feature set D 

The last feature set consists of 36 features in total. It includes the features described in the 

feature set B minus the absolute of kurtosis of the tilt angle TAi. 
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4.3. Classification & evaluation 

For the classification process the k-Nearest Neighbor (k-NN) classifier, with 1 nearest 

neighbor, and the C4.5 Decision Tree (DT) were used. Both of them achieved high performance 

in the specific application, as reported in [4]. The implementation of the algorithms was 

performed using the WEKA tool [96], where k-NN is referred to as IBk and the C4.5 DT as J48. 

The evaluation methods that applied were: 1) the n-fold-cross validation (with n equal to 10) 

which is the most commonly used approach and 2) the Leave One subject Out (LOO) validation, 

which is the most realistic scenario to simulate real life conditions.  
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5. Results 

In the experimental process 24 combinations of: a) window size (1, 1.5, 2 sec with 80% overlap); 

b) feature set (A, B, C, D, described in Section 4.2.3 ) and c) classification algorithm (k-NN, 

C4.5 DT) using the 10-fold-cross validation method, were performed for the recognition of both 

ADLs (Table 5.1) and Scenarios (Table 5.2). Consequently, the two best combinations were 

further evaluated with the deployment of the Leave-One-subject-Out validation method for the 

recognition of scenarios. The classification results for the recognition of ADLs for all the 

deployed combinations show an accuracy exceeding 98%, as shown in Table 5.1. 

 Although the differences do not significantly vary, the best accuracy is shown in the 

combination of using a 2 seconds-window with 80% overlap, using the feature set A, B or C and 

the k-NN classifier. Despite the high accuracy, none of these combinations can consider as 

optimal since short activities have been overlooked, as shown in the confusion matrices (Table 

5.3 and Table 5.4). This finding is encountered in both window sizes of 1.5 and 2 seconds. On 

the contrary, the confusion matrices of the combinations using 1 second-window with 80% 

overlap, the feature set A or B and the k-NN classifier suggest the best results despite the slightly 

lower accuracy.  In particular when using window of size 2 seconds, 214 instances of the activity 

SCH and 4 instances of the activity CHU are obtained while with the use of 1 second window, 

1992 and 447 instances of the activities SCH and CHU, respectively, are obtained. The 

recognition of short activities is crucial since they represent transitions of long activities, in terms 

of duration.  

Subsequently, the recognition of scenarios is performed using the same protocol of the 

combined parameters.  The results indicate a slight reduction in the accuracy, with all the 

deployed combinations exceeding 91% accuracy, as shown in Table 5.2. The combinations of 1 

second-window with 80% overlap, the feature set A or B and the k-NN classifier achieved the 

best accuracy of 95.9553% and 95.9198%, respectively. These findings confirm the 

aforementioned rejection of the two best classification results in terms of accuracy for the ADLs 

recognition. Nevertheless, the accuracy of the recognition of scenarios has been decreased 

compared to the accuracy of recognition of ADLs, using the two best combinations. This could 

be caused because of the lower number of data or due to the nature of the transition actions 

between activities.  
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Table 5.1 Classification results (% accuracy) for recognition of ADLs 

Recognition 

 of ADLs 

Feature set A Feature set B Feature set C Feature set D 

k-NN C4.5 DT k-NN C4.5 DT k-NN C4.5 DT k-NN C4.5 DT 

Window 1 sec 

80% overlap 
99.1166% 98.2168 % 99.1233 % 98.2215 % 99.1108 % 98.2329 % 99.1163 % 98.201  % 

Window 1.5 sec 

 80% overlap 
99.368  % 98.8013 % 99.3652 % 98.8327 % 99.3601 % 98.8024 % 99.3714 % 98.8024 % 

Window 2 sec 

 80% overlap 
99.5395 % 99.1065 % 99.5403 % 99.1027 % 99.5403 % 99.131  % 99.5364 % 99.0844 % 

 

 

Table 5.2 Classification results (% accuracy) for recognition of Scenarios 

Recognition 

 of Scenarios 

Feature set A Feature set B Feature set C Feature set D 

k-NN C4.5 DT k-NN C4.5 DT k-NN C4.5 DT k-NN C4.5 DT 

Window 1 sec 

80% overlap 
95.9553% 91.6467% 95.9198% 91.7105% 95.8858% 91.8% 95.9099% 91.6637% 

Window 1.5 sec 

 80% overlap 
95.3301 % 91.6339 % 95.2853 % 91.7642 % 95.2447 % 91.7919 % 95.2874 % 91.6702 % 

Window 2 sec 

 80% overlap 
95.1197 % 91.7185 % 95.0968 % 91.7871 % 95.0454 % 91.65   % 95.1054 % 91.8185 % 
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Table 5.3 Confusion Matrix of k-NN, with feature set A and 2s Window (99.5395 %) 

 

Table 5.4 Confusion Matrix of k-NN, with feature set B and 2s Window (99.5403 %) 

 

Table 5.5 Confusion Matrix of k-NN, with feature set A and 1s Window (99.1166%) 
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Table 5.6 Confusion Matrix of k-NN, with feature set B and 1s Window (99.1233%) 

 

 

Given that the best overall results are obtained with the use of k-NN, feature set A or B, 

1s window with 80% overlap and 10-fold cross-validation as an evaluation method, a further 

investigation was made using the aforementioned combinations and the evaluation method of 

Leave-One-subject-Out for the recognition of scenarios. The average accuracy using the feature 

set A reached 78.9987% while using the feature set B an accuracy of 79.5350% was achieved, as 

shown in Table 5.7. It is noticeable that the accuracy was reduced about 15% only by changing 

the evaluation method with a most realistic one, the LOO.  Furthermore, a wide range of 

classification accuracy is observed with the lowest one to be at 41.1994 % and the highest one to 

reach 90.8401 %. The low accuracy findings might not have been observed if more data were 

available. Nevertheless, the findings suggest that more work should be made using methods that 

simulate real life conditions. In Figures 5.1-5.3, the actual and the classified activities of the 

scenarios are shown, using the LOO method for three indicative participants were the 

classification accuracy reached low, middle and high levels. As a general observation it can be 

stated that the activities that are misclassified mostly are the STN and the STU. 
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Table 5.7 Classification results (% accuracy) for recognition of Scenarios using LOO method 

Leave-One-subject-Out 
k-NN, Feature set A, 

window 1s -80% overlap 

k-NN, Feature set B, 

window 1s -80% overlap 

1
st
 subject (sub1) 84.5677 % 84.6755 % 

2
nd

 subject (sub2) 84.7791 % 84.806 % 

3
rd

 subject (sub3) 74.8855 % 75.0741 % 

4
th

 subject (sub5) 59.6387 % 59.0725 % 

5
th

 subject (sub6) 41.1994 % 54.3143 % 

6
th

 subject (sub12) 90.8401 % 90.7046 % 

7
th

 subject  (sub20) 66.5051 % 66.2359 % 

8
th

 subject  (sub45) 73.3721 % 72.7209 % 

9
th

 subject (sub53) 79.3317 % 79.4395% 

10
th

 subject (sub58) 78.9547 % 78.1882% 

11
th

 subject (sub59) 88.1683 % 88.331% 

12
th

 subject (sub60) 84.0022 % 83.8944 % 

13
th

 subject (sub61) 87.4652 % 87.0474 % 

14
th

 subject (sub62) 71.3978 % 71.0746 % 

15
th

 subject (sub63) 88.3515 % 88.026% 

16
th

 subject (sub64) 90.5471 % 90.6284 % 

17
th

 subject (sub65) 87.0443 % 87.2069% 

18
th

 subject (sub66) 85.5295 % 85.26% 

19
th

 subject (sub67) 84.3953 % 84.4651% 

Average values 78.9987% 79.5350% 
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Figure 5.1 Visualization of the results obtained with the LOO method (sub1) and Feature set B 

 

 

Figure 5.2 Visualization of the results obtained with the LOO method (sub6) and Feature set B 
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Figure 5.3 Visualization of the results obtained with the LOO method (sub64) and Feature set B 

Finally, an unripe effort to check whether the developed computational method could be 

used to recognize the reordered scenarios (test set) based on the knowledge of the separate ADLs 

(train set), was performed. The accuracy of the recognition was further reduced, from the 

average results of the scenarios recognition using LOO, by 22%.    

 

Table 5.8 Classification results (% accuracy) for Training: ADLs Testing: Scenarios 

Train: ADLs Test: Scenarios Combination with 

Feature set A 

Combination with 

Feature set B 

Train: All ADLs Test: All Scenarios 56.6315 % 56.8289% 

Train: All ADLs 

Test: Scenario with highest accuracy (sub64) 

65.2492% 64.9242% 

Train: All ADLs 

Test: Scenario with middle accuracy (sub59) 

59.0656% 58.3217% 

Train: All ADLs 

Test: Scenario with lowest accuracy (sub6) 

52.4209% 52.4479% 
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6. Conclusion  

For recognizing-estimating consecutive human activity patterns, the first step is to 

accurately and effectively recognize separate activities of daily living. The activities of daily 

living can reveal valuable information about the person’s activity patterns and subsequently, with 

the association of other behavioral characteristic elements, they can lead in the development of 

behavioral models. The use of smartphone as a sensor device is a powerful solution as it is 

widely used in everyday life and in dynamically changing environments.  

The need of interfering more realistic conditions in the computational methodology is 

revealed via the differences of the accuracy when using the Leave-One-subject-Out method for 

the recognition of scenarios. The deployment of a hybrid approach using knowledge base 

techniques or event analysis techniques or additional sensors such as Radio Frequency 

Identification tags, for importing spatiotemporal aspects could be the lead way for the 

development of a system that can accurately estimate human activity patterns in real-life 

scenarios. 

It has been obvious through this study that complex activities or behaviors are ultimately 

a sequence of events with specific spatiotemporal characteristics.  It seems obvious to that 

exploring event-based processing methods could be a promising avenue, in our attempt to design 

a system, based on smartphone acquired data alone, to recognize complex, dynamic everyday 

behaviors tuned for the needs of elders and specific patient categories.  

6.1. Future work - exploring event based processing methods 

An event is simply something that happens, or contemplated as happening [97]. In particular any 

information that can carried along with time interval, regardless the source of information 

(sensor signal, video data, and GPS coordinate) can characterized as an event. A detailed study 

about the event recognition have been contacted by Skarlatidis [98], according to that study, the 

most important property of an event is that it occurs in a period of time, instantaneous or during 

some interval of time, independently of the carried information. 

The single information represented by one event can be related with other events in various 

ways, e.g., temporally, spatially, and causally. Moreover, related events produce event patterns 

that can be combined with other unrelated events, in respect with the domain of application. This 
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practice is commonly used in the domain of video surveillance, where the events representing 

that two or more people are undertaking physical activities at the same time (temporal relation), 

in specific distance and direction (spatial relations), could indicate the activity pattern of moving 

together (event pattern) [98]. 

Recognition systems that make use of multiple sensors for the deployment of events (event 

pattern detection systems) can be used to monitor an environment and respond to the occurrence 

of significant events. Examples of such application domains are health care monitoring, public 

transport management, telecommunication, network monitoring, credit card fraud detection and 

activity recognition [99], [100], [101].  

The preceding short introduction to event-based processing methods, in our view, 

confirm their applicability in the problem domain discussed and verify our intuition regarding 

their potential, thus confirming our suggestion for future work along these lines of investigation. 
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