

MANIPULATION OF INTERNET BROWSER WITH MULTIMODAL DEVICES

 AND

INTRODUCTION OF MULTIMODAL INTERACTIVE FRAMEWORK C.O.A.L.S

by

VARCHALAMAS PETROS

B.A., Technological Educational Institute of Crete, 2015

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF INFORMATICS ENGINEERING

SCHOOL OF APPLIED TECHNOLOGY

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2015

Approved by:

Major Professor

Nikolaos Vidakis

Abstract

Humans interact with each other and with their environment in everyday life by utilizing

the five basic senses as input modalities while using for output, modalities like sounds, gestures,

gaze, facial and body expressions. In the other hand, when talking about human computer

interaction, the existence of a difficulty of interaction between both sides, is always present.

Thus through Human Computer Interaction science (HCI), this kind of interaction tends

to be more user friendly and operative through intuitive actions related to the frequent and

natural human behavior. Multimodal interaction provides an alternative means of communication

with an application, which is different enough from the traditional WIMP style. Despite the great

amount of devices in existence, most applications make use of a limited set of modalities, most

notably speech and touch.

 This thesis describes the procedure to interact with Google Chrome browser through

browser extensions, while performing hand and finger gestures and using them as multimodal

input to the system from the Leap and the Kinect sensors. In addition, it is introduced the

interactive multimodal framework C.O.AL.S., which enables the deployment of a vast variety of

modalities. More specifically by fusing - combining different modalities from different sources

or from a single source, in order to achieve the interpretation and extraction of semantic meaning

from them which can vary according to the context, the task, the user and the time and finally to

give the user the correct feedback according to the information gathered from the previous

procedure.

Table of Contents

Abstract ... ii

List of Figures ... 1

List of Tables .. 4

Acknowledgements ... 5

Chapter 1 - Introduction .. 6

Summary ... 7

Dissertation’s overview .. 8

Research questions .. 9

Chapter 2 - Review and State of the Art ... 10

Multimodal Interactive Systems ... 10

Input Interpretation - Fusion Engines ... 12

Dialogue Management .. 14

Output Generation - Fission engines ... 15

Multimodal devices ... 16

Microsoft Kinect ... 18

Comparison between Kinect for Windows and Kinect for Xbox 360 18

Depth Sensor and Infrared light transmitter .. 20

RGB Camera ... 21

Microphones ... 21

Accelerometer ... 22

Led Light ... 23

Motorized Tilt ... 23

Available APIs for the Kinect ... 24

Leap Motion .. 25

The Leap device hardware overview .. 25

Software overview .. 26

Public use .. 28

A reference to other multimodal devices .. 29

Xtion Pro LIVE by Assus ... 29

MYO by Thalmic .. 30

Oculus Rift by Oculus VR. ... 31

Google Glass by Google X ... 32

Plugins & Extensions .. 33

Plugins ... 33

Extensions ... 34

Blended Learning .. 36

Chapter 3 - Architectural Design & Description .. 39

C.O.A.L.S. Framework ... 39

Google Chrome Extensions .. 45

Chapter 4 - Approach of the Implementation ... 53

Loading the extension in Chrome ... 53

YouTube player Interaction with Leap Motion .. 55

Server side - Web Sockets Communication .. 55

Client side - Myscript.js walkthrough ... 56

Leap API ... 58

Interaction with YouTube page... 61

Popup and Options Page ... 64

Browser Interaction with Microsoft Kinect .. 66

Server side – Communication & Data Initialization ... 66

Client side – Myscript.js and Popup.js walkthrough .. 69

Chapter 5 - Conclusion, Final Thoughts & Future Work ... 77

References ... 79

1

List of Figures

Figure 1 - Human Computer Interaction ... 10

Figure 2 - Classic peripherals ... 16

Figure 3 - Belkin nostromo n52te gamepad .. 17

Figure 4 - Xbox One Controller .. 17

Figure 5 - PlayStation 4 controller .. 17

Figure 6 - Nintendo Wii controller ... 17

Figure 7 - Kinect interior .. 18

Figure 8 - Kinect fusion in action ... 19

Figure 9 - Structure of IR light map.. 21

Figure 10 - Image from depth sensor .. 21

Figure 11 - RGB image from the Kinect .. 21

Figure 12 - Microphones inside the Kinect... 22

Figure 13 - Kinect's Accelerometer coordinate system .. 22

Figure 14 - Kinect's accelerometer ... 23

Figure 15 - Kinect's LED light .. 23

Figure 16 – Kinect’s Motorized Tilt ... 24

Figure 17 - The Leap device ... 25

Figure 18 - The internal parts of the Leap device ... 25

Figure 19 - Interaction area of the Leap sensor .. 26

Figure 20 - Leap’s smaller observation area and high resolution ... 27

Figure 21 - Xtion Pro LIVE hardware .. 29

Figure 22 – Xtion Pro ... 29

Figure 23 – Xtion Pro LIVE ... 29

Figure 24 - MYO armband ... 30

Figure 25 - Oculus Rift DK1 .. 31

Figure 26 - Oculus Rift DK2 .. 32

Figure 27 - Google Glasses ... 32

Figure 28 - Multimodal human-machine interaction loop .. 39

file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310254
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310255
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310256
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310257
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310258
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310259
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310260
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310261
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310262
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310263
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310264
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310265
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310266
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310267
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310268
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310269
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310270
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310271
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310272
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310273
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310274
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310275
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310276
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310277
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310278
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310279
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310280
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310281

2

Figure 29 - Multimodal system architectural design .. 40

Figure 30 - Modalities & Devices ... 41

Figure 31 - State transactions of the C.O.A.L.S. frame .. 43

Figure 32 –The modalities that can deliver these three basic modes. ... 44

Figure 33 - Manifest in JSON format ... 50

Figure 34 - Background.html .. 51

Figure 35 - Popup.html ... 51

Figure 36 - Content script interaction ... 52

Figure 37 - Extensions in Chrome's options ... 53

Figure 38 - Extensions manager in Chrome ... 54

Figure 39 - Page action icon ... 54

Figure 40 - Browser action icon.. 54

Figure 41 - Web Sockets Communication .. 55

Figure 42 - Check Connection function .. 57

Figure 43 - Check focused Tab function.. 58

Figure 44 - Pointables information retrieved from Leap API ... 59

Figure 45 - Hands information retrieved from Leap API ... 59

Figure 46 – Pointables information retrieved by the Leap API .. 60

Figure 47 – Hands, Pointables and Fingers tracked .. 60

Figure 48 - Gestures provided by the Leap API ... 61

Figure 49 - Event triggered from circle gesture .. 62

Figure 50 - Get child elements and set them focused ... 63

Figure 51 - Popup Html page .. 64

Figure 52 - Extension's Options Page ... 65

Figure 53 - Web Socket Connection ... 67

Figure 54 - Device & Data stream initialization ... 68

Figure 55 - Server sends Blob & Json to the Client .. 69

Figure 56 - Drawing the user's skeleton on canvas ... 70

Figure 57 - Parsing retrieved Json data ... 71

Figure 58 - Getting skeleton's Id ... 71

Figure 59 - Get skeleton joints' names .. 71

file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310282
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310283
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310284
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310285
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310288
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310289
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310290
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310291
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310292
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310293
file:///C:/Users/Yo/Desktop/home%20files/masterThesis.doc%23_Toc442310304

3

Figure 60 - Specify joints to create gestures ... 72

Figure 61 - Functions called for gesture recognition .. 72

Figure 62 - Creation of right swipe gesture .. 73

Figure 63 - Creation of wave gesture .. 74

Figure 64 - Zoom in - out gesture and actions triggered ... 76

4

List of Tables

Table 1 - Input devices and their resulted actions ... 16

Table 2 - Multimodal - Complex gaming devices .. 17

Table 3 - Tokenization of the recognized data .. 41

Table 4 - Complete C.O.A.L.S. frame example.. 43

Table 5 - Actions triggered by gestures .. 75

5

Acknowledgements

I want to express deepest gratitude to my family and my friends who supported me in

every possible way.

6

Chapter 1 - Introduction

It is a fact that over the years and due to the evolution of technology, the relationship

between man and computer is becoming increasingly complicated and inherently multimodal.

When referring to modality according to Bellik and Teil [1] it is “a concrete form of a particular

communication mode” where mode is defined as the five human senses which constitute the

receiving information and the multifarious ways of human expression such as gesture, speech,

facial expressions and others which constitute the product information.

The interaction between them is studied from the scientific field of Human Computer

Interaction (HCI) [2], taking consideration both sides of the human and the machines.

 From the side of the machines, the interaction is related to the art of graphics, operating

systems, programming languages, the inner material of the devices and probably their

peripherals. On the other hand, what characterizes humans, is communication, linguistics, social

sciences, psychology and the human factor. So, given the multidisciplinary nature of HCI, people

with different scientific knowledge can contribute to its success.

The interaction between users and computers occurs inside the physical user interface

(Natural User Interface - NUI) [3], [4], which is a multimodal interface that is easy to interact

with and with the prospect of becoming invisible after its successful learning. This implies that

the multimodal interaction facilitates a more natural communication between humans and

systems in both input and output of data. But to make this possible, the right technology is

needed, while also being affordable for the average user.

To achieve the detection of the human body motion, the equipment needed is more

specialized and consequently more expensive, like digital sensors that provide high accuracy and

efficiency in the conception of the machines. Their specialization, the difficulty to be controlled

by anyone and in many cases their size, has the effect of turning these devices hardly accessible

to the users.

Fortunately due to the technological evolution, devices with features as these that were

previously mentioned and with affordable price were released recently to the public, from very

big companies in the technology area, like Kinect by Microsoft, the Xtion Pro LIVE by Assus,

7

The Leap by Leap Motion, MYO by Thalmic, Google Glass by Google X and Oculus Rift by

Oculus VR.

With their particular architecture, combining input from electromagnetic sensors,

accelerometer sensors, gyroscope sensors and from devices such as RGB camera, microphone

and the most important the depth camera, providing a remarkable motion tracking, giving the

opportunity and the freedom to developers to evolve more human-centric applications, while

giving a new impetus to what is so far known about the human machine interaction.

 Summary

As technology evolves, so does everything that is related to it or tries to keep up at least.

Inside the educational system the technological advances were always utilized in order learning

to be more successful in many ways. So blended learning or technology-mediated instruction

begins to exist since the ‘60s [5]. Through blended learning a student learns at least in part

through delivery of content and instruction via digital and online media with some element of

student control over time, place, path, or pace [6].

As part of the educational methods the games were always important and due the

progress of both sometimes they can’t be separated, especially when referring to preschool and

younger children. Education through entertainment starts to be popular during the ‘90s and in

general refers to any kind of education that also entertains even though it is usually associated

with video games with educational aims [7]. These games are known as educational games or

serious games.

Serious games are (digital) games used for purposes other than mere entertainment, allow

learners to experience situations that are impossible in the real world for reasons of safety, cost,

time, etc., but they are also claimed to have positive impacts on the players’ development of a

number of different skills.

With a series of games, which are developed to help kids with or without disabilities to

improve their skills in reading and mathematics, the users can interact with the system using

input modalities to receive information feedback through output modalities like sounds, graphics,

speech synthesis or a combination of these.

8

More specifically, the first aim of this thesis is to present an interactive multimodal

system that helps to achieve this natural human computer interaction, by fusing, meaning

combining all these various and different modalities from different sources or from a single

source, in order to achieve the second aim, meaning the interpretation and extraction of

semantic meaning from them which can vary according to the context, the task, the user and the

time. The third aim, is to give the user the correct feedback according to the information

gathered from the previous procedure. Finally the last aim is to gather the different modalities as

input to the system with the use of complex multimodal devices/sensors trying to minimize the

use of single modality devices.

Through the next chapters the key components of the system will be presented as well as

the way they are used in our approach alongside the topics that this thesis is part of.

 Dissertation’s overview

This dissertation consists of 5 chapters.

1st chapter Brief introduction about the topics that concern this thesis, followed by research

questions in order to specify more the area that will be covered.

2nd chapter Review and the state of the art of the following topics:

 Multimodal Interactive Systems

 Multimodal Devices

 Blended Learning

3rd chapter Description of the Architectural design of C.O.A.L.S framework, aiming to

combine multiple modalities.

Description of the Architectural design of the extensions hosted by the Google

Chrome browser.

4th chapter Approach of the implementation providing code snippets with explanation.

9

5th chapter The thesis ends with this chapter, which is composed of a general conclusion as

well as perspectives and future work related to the subjects presented in here.

 Research questions

In this section there are some questions cited, in order to guide the reader about the topics

and their issues that will be presented in the next chapters.

i. Could the educational methods be improved? How is this possible? How effective

could it be?

ii. What is multimodality and how it affects the applications?

iii. Following this specific architectural design solves the problems of combining

multimodal input and output in our application?

iv. The multimodal devices used in this system, are a good choice?

v. Are there any limits which should not be exceeded in our system and subsequently in

our use case scenarios?

10

Chapter 2 - Review and State of the Art

 Multimodal Interactive Systems

Multimodal Human–Computer Interaction (MMHCI) is a scientific filed that lies at the

crossroads of several research areas such as computer vision, artificial intelligence (AI),

psychology, social sciences and many

others. Through MMHCI there has been

efforts to determine how computer

technology can be more usable by people,

which requires the understanding of three

things like:

 The human factor meaning the

users themselves,

 The machine factor meaning the

system (the computer technology

and its usability), and lastly

 The interaction between both of them.

By considering these aspects, it is obvious that MMHCI is a multidisciplinary science field

since the designer of an interactive system should have expertise in a range of fields: psychology

and cognitive science to understand the user’s perceptual, cognitive, and problem solving skills,

sociology to understand the wider context of interaction, ergonomics to understand the user’s

physical capabilities, graphic design to produce effective interface presentation, computer

science and engineering to be able to build the necessary technology, etc. Thus, given the

multidisciplinary nature of HCI, people with different scientific knowledge can contribute to its

success.

The above statements lead to the conclusion that the interaction between human and machine

is nothing more than elements understandable by the human, on data that understands and

interprets the computer. But to create an interaction between these sides the created gap should

Figure 1 - Human Computer Interaction

11

be bridged. This bridging is obtainable by the user interface which is defined as: the part of the

human computer interaction that concerns the ways, the methods and the tools that implement

the communicative interaction between the user entity and the computer system [4].

Thus the user interface is consisted by elements which are part of the computer system by

giving information about the hardware and the software parts. More precisely the information

given to the users could be categorized as:

 System Input, allowing the users to control the system and

 System Output, allowing the system to bring up the results of the users’ actions.

Referring to human computer multimodal interaction the term of modality is widely used and

is referred to the combination of multiple modalities. These modalities mostly refer to the ways

that the system responds to the inputs, i.e. communication channels [8].The definition of these

channels is inherited from human types of communication which are basically their senses like

the sight, the hearing, the touch, the smell, and the taste. The possibilities for interaction with a

machine include but are not limited to these types [9].

Thus, a multimodal system acts as a simplifier of human-computer interaction via two or

more modes of input except the traditional widely used devices of the keyboard and the mouse.

The number of supported input modalities, their types and the way in which they work together

may vary widely from one multimodal system to another. Multimodal systems combine different

combinations of speech, gesture, gaze, facial expressions and other non-conventional modes of

input [10].Thus multimodality can offer a number of advantages over traditional systems like a

more natural and user-friendly experience, giving a more affordance to users and can

contributing to system robustness.

A classic example of a multimodal system is the “Put That There” demonstration system

[11] focusing on pointing and speech combined using speech/mouse, speech/pen [73],

speech/gesture [75], or speech/ gaze tracking [74].This system allowed the user to move an

object into a new location on a map on the screen by saying “put that there” while pointing to the

object itself then pointing to the desired destination. Since this pioneer work, multimodal

interaction developers have strived to integrate more modalities, to refine hardware and software

components and to explore limits and capabilities of multimodal interfaces. Another examples of

multimodal applications systems are listed below:

12

 Smart Video Conferencing [12].

 Intelligent Homes/Offices [13].

 Driver Monitoring [14].

 Intelligent games [15].

 E-Commerce [16].

 Helping People with Disabilities [17].

In the following sections it will be analyzed the stages that manipulate the information

retrieved from the system input in order to produce the desired output results.

 Input Interpretation - Fusion Engines

Although an ideal multimodal HCI system should contain a combination of single modalities

that interact correlatively, the practical boundaries and open problems in each modality oppose

limitations on the fusion of different modalities.

User input interpretation is one of the most crucial aspects of multimodal interactive systems.

This task can be a simple task, but tends to increase in complexity, in dependence with factors

such as the number and type of modalities involved, the architectural design of the system, and

user and context requirements.

As a system expands in terms of interaction modalities available, so does the amount and

diversity of data received. For that reason, a mechanism that can correctly interpret all these data

is needed. This mechanism must take into account, the way a user interacts with the system, the

restrictions imposed by the user context and the user surroundings, and special confinements

imposed by the application.

Multimodal fusion has been a research subject for the past two decades [1]. Sharma et. al.

[18], considers three levels of fusion for incoming data:

 Data-level (or sensor-level) fusion,

 Feature-level fusion and

 Decision-level fusion.

Sanderson and Paliwal [19] define terms with similar meaning such as

 Pre-mapping,

13

 Midst-mapping and

 Post-mapping fusion.

Data-level fusion focuses on the fusion of either identical or tightly-linked types of

multimodal data. An illustration of data-level fusion is the recording of a scene by multiple depth

cameras, from different angles [20]. Data-level fusion barely deals with the semantics of the

input data. However, it enriches or correlates data that is potentially processed by a higher-level

fusion process. Data level fusion, works on the raw data, produced by the recognizers, which

makes it very susceptible to noise or failures. For this reason, data-level fusion involves a very

basic recognition, and/or noise filtering.

Feature-level fusion focuses on data that is already processed by filters. Fusion is applied on

features extracted from the data, rather than the raw data. This kind of fusion is typically applied

to closely-coupled modalities with possibly different representations. A classic example is

presented in [21], where data modalities are speech that is recorded by a microphone, and lip

movement, recorded by a camera. Specifically, two distinct, synchronized data streams of

different modalities are used, and the goal is to achieve a more reliable speech recognition

through information combining. Feature-level fusion works with pre-processed data, which

makes it less susceptible to noise and failures than data-level fusion, although it conveys a lower

level of information detail.

Decision-level fusion derives interpretations based on semantic information. As claimed in

[22] this is the most common type of fusion. This fusion level correlates information coming

from loosely coupled modalities, such as speech and gesture. Due to this fact, decision-level

fusion is the most common fusion type in multimodal systems, and also the most versatile.

Decision-level fusion includes processes such as merging of high-level information obtained by

data- and feature-level fusion, modelling of human-computer dialogues and mutual

disambiguation using information derived from feature-level fusion [23].

14

 Dialogue Management

The dialogue management component is in charge of identifying the dialogue state, the

action to communicate to the given application and/or to generate the message that will be

returned through the fission engine.

Time constraints are crucial in multimodal systems, and all modalities should be properly

time-stamped. When two modalities are used in parallel in a synergistic manner, it is important

to know the order of the commands in order to perform the task accurately.

T. H. Bui [24] identifies four different approaches to dialogue management:

 Finite state and frame state approaches. In this approach, the dialogue structure is

represented as a state machine. Frame-based models, an extension of finite-state models,

use a slot-filling strategy in which a number of predefined information sources have to be

gathered [25].

 Information state-based approaches. Human machine dialogue is described by

following information states consisting of five main components, namely informational

components, formal representations of the information components, dialogue moves,

update rules and an update strategy [26].

 Plan-based approaches. Plan-based approaches are based on plan-based theories of

communicative action and dialogue [25]. These theories claim that the speaker’s speech

act is part of a plan and that it is the listener’s responsibility to identify and respond

appropriately to this plan [27].

 Collaborative agents-based approaches. These approaches view dialogue as a

collaborative process between intelligent agents. The agents work together to obtain a

mutual understanding of the dialogue. This induces discourse phenomena such as

clarifications and confirmations [28].

15

 Output Generation - Fission engines

Another integral part of the framework is the multimodal fission module. Fission is

responsible for generating and selecting the appropriate communication channels and output

modalities according to the user profile and the environmental context.

Systems that combine output modalities evolved since the early nineties where graphics

and text were combined (e.g. COMET [28]). Later, systems integrated more output modalities

such as speech, 2D/3D animations and avatars (e.g. SmartKon [29], MIAMM [30]).More recent

approaches include mobile personal assistants (e.g. Microsoft Cortana [31], Apple Siri [32]).

Even though most applications use a limited repertoire of output modalities and for that reason

straightforward fission techniques, dealing with the aforementioned output combinations, makes

the presentations more complex and more difficult to coordinate.

According to Oviatt [33], fission engines should follow three tasks:

 Message construction. The information to be included, must be selected and structured

in a proper manner. For example it is mandatory to decompose the semantic information

generated by the dialogue manager into specific data to be presented to the user. The

most prevalent approaches are the schema-based [34] and the plan based [35] approach.

 Modality selection. Following the message construction, the message must be adapted to

the user profile and environmental context, and allocated to the appropriate output

channels. The three prevalent approaches for the accomplishment of this goal are the rule

based [36], the composite based [37], and the agent based approach [38].

 Output coordination. The final step of modality fission is the instantiation, which

consists of getting the lexical and syntactic content and the modality attributes. Firstly,

the concrete content of the message is chosen and subsequently the modality attributes,

such as spatial and temporal parameters are established. For a more coherent and

synchronized result, all used channels must be coordinated.

16

 Multimodal devices

In computer science, an input device is any

peripheral (piece of computer equipment) used to provide

data to an information processing system such as the

computer. There are many input devices but the ones which

are widely used by the most computer user are the keyboard,

the mouse, the microphone, the scanner and the RGB

camera.

Every device gives each own system input that result the execution of commands or

actions such as:

Input Device Resulted Actions

Keyboard

Typing,

Control software with shortcuts

(pressing a combination of keys)

Mouse

Control the cursor,

Scrolling,

Clicking

Microphone Receiving sound input

Scanner Scanning documents

RGB Camera Receiving image or video input

Table 1 - Input devices and their resulted actions

Multimodal human-computer interaction has sought to provide alternative means of

communication with an application which, as the time goes by, will be more and more natural to

the users. Despite the great amount of devices in existence, most applications make use of a very

Figure 2 - Classic peripherals

17

limited set of modalities, most notably speech and touch. Nevertheless input devices that have

buttons as controls, like the mouse and the keyboard, can be combined into a single physical

device that could be seen as a multimodal - complex device. Many gaming controllers can

provide such a thing, like the following in the table below.

Table 2 - Multimodal - Complex gaming devices

Multimodal - Complex gaming controllers for PC and console use

Figure 3 - Belkin nostromo n52te gamepad Figure 4 - Xbox One Controller

Figure 5 - PlayStation 4 controller Figure 6 - Nintendo Wii controller

18

 Microsoft Kinect

On June 1st, 2009, Microsoft announced a project called Project Natal. The final product

of this project, which made its appearance on the market in November 2010, was named Kinect

[39] inspired from the words: kinetic (motor) and connect.

It is a motion sensing input device by Microsoft for Xbox 360 gaming console that uses

the whole human body to control the games. After a while there was released to public an API in

order to develop applications on Windows PC. The integrated depth sensor of the device, is

designed and created by the Israeli company PrimeSense, Ltd [40].

From that time onwards, this device revolutionized not only in the field of video games

but also in robotics, medicine and many other scientific sectors that can benefit from its useful

capabilities.

It also a fact that the performance between ratio and price is quite high. An example of an

expensive sensor is SwissRanger 4000, which had a cost of about $ 10,000 while Kinect

currently costs less than $ 100, although its performance as a sensor is far superior to that of

SwissRanger 4000 [41].

It is therefore logical two months after its release, Microsoft, have sold 8 million Kinect

devices, giving it the title of the electronic device with the fastest sale in the Guinness book.

 Comparison between Kinect for Windows and Kinect for Xbox 360

Both devices may seem identical in the exterior but they have a few but important differences

such as:

Figure 7 - Kinect interior

19

1. Near - mode tracking

It is enabled while the user is closer than 40 centimeters from the device, without losing any

accuracy of the received information.

2. USB cable

It ensures reliability in a wide range of computers and improves coexistence with other USB

peripherals.

3. Extensive camera settings

It provides additional settings to adjust the brightness, so that it can become better

coordinated.

4. Kinect Fusion

Kinect Fusion provides 3D object scanning and model creation using a Kinect for Windows

sensor. The user can paint a scene with the Kinect camera and simultaneously see, and interact

with, a detailed 3D model of the scene. Although the Kinect Fusion can be run at interactive

rates on supported GPUs, it also can run at non-interactive rates on a variety of hardware but

allowing larger volume reconstructions.

Kinect Fusion in action, taking the depth image from the Kinect camera with lots of missing

data and within a few seconds producing a realistic smooth 3D reconstruction of a static scene by

moving the Kinect sensor around. From this, a point cloud or a 3D mesh can be produced. [42]

Figure 8 - Kinect fusion in action

20

5. Product price

 The Kinect for Windows costs near 190 euro.

 The Kinect for XBOX 360 is much cheaper, costing about less than 100 euro.

From the other hand in order to connect with a pc, the purchase of a power

adapter is needed.

6. Licensing

According to the correct use of the device, set by Microsoft, when a public

presentation of an application takes place, the use of Kinect for Windows is essential and

not of Kinect for Xbox 360, because otherwise it is illegal.

So the meaning for the big difference between the prices of the two devices, is the

acquisition of the rights of use.

 Depth Sensor and Infrared light transmitter

Light Coding Technology ™ (Zalevsky, Z, et al. patent [43]) allows the Kinect device to

create 3D depth maps of a scene also known as triangulation process in real time [44]. The laser

source emits a single beam which is split into multiple beams from a diffraction grating, to create

a stable pattern spots which are projected onto the surfaces (see Figure 9) and a CMOS image

sensor (Complementary Metal Oxide Semiconductor) accepts the reflected rays. The PS1080

SoC chip (System on a Chip) made by PrimeSense that is contained inside the Kinect’s system,

controls the structure of light spots and processes the data from the CMOS sensor generating

depth data in real time [45]. The maximum resolution of the depth image generated by the

PS1080 (see Figure 10) is 640x480, with a frequency of 30 frames per second. At 2 meters

distance from the sensor there is an accuracy of 3 mm in height and width and of 1 cm in depth.

The range of proper operation is from 0.8 to 3.5 meters.

21

Figure 11 - RGB image from the Kinect

 RGB Camera

The Kinect device also has a built-in color

camera (Color CMOS - VNA38209015) with a

maximum resolution of 1280x1024 in order to obtain

the real picture beyond the depth map. The frame

frequency of the camera is 30 fps and the image

produced is good enough to be used in face, fingers

and body recognition algorithms. Example image

from RGB camera of the apparatus shown in Figure

11 - RGB image from the Kinect.

 Microphones

Using an array of four microphones Kinect is able not only to receive sound but also to

detect the angle of the source, measuring the sound field.

The description of the sound field can be done by using physical quantities such as the

sound pressure and the particle velocity. By measuring these properties it is indirectly possible to

obtain the direction of the sound source.

Figure 9 - Structure of IR light map Figure 10 - Image from depth sensor

22

Figure 13 - Kinect's

Accelerometer coordinate

system

In Figure 12 - Microphones inside the Kinect, we see the position of the microphones in

the device which separately processes each of the four channels which receive 16-bit audio

sampling frequency equal to 16 kHz.

 Accelerometer

The accelerometer is a device which as perceived by the

word itself, measures the acceleration. The acceleration is not

necessarily coordinates’ acceleration (change rate of velocity).

Instead, the accelerometer sees the acceleration associated with

the weight of any object.

The accelerometers are widely used in multiple

applications, in industry and in science fields. Their most

common use are inside tablet, computers, smartphones and

digital cameras, so that the images on the screens always

displayed upright.

The Kinect provides a three-axis accelerometer

(KXSD9-1026) which provides the information of the position

of the device relative to the gravity, of which the range is up to

2g - wherein g is the acceleration due to gravity.

The data returned by the accelerometer is a 3D vector

showing the direction of gravity, in the form of a Vector4 (x, y,

Figure 12 - Microphones inside the Kinect

23

z, w) with the value of w to 0.0. Also the accelerometer is

centered on the sensor, being a right hand coordinate system

with the positive value of the z axis pointing in the direction

facing the sensor (see Figure 14). The default value of the

vector is set to (0, -1.0, 0, 0).

So thanks to the sensor data it is identified an

"unusual" device orientation and by using the SDK of the

device scenarios augmented reality could be achieved. This

feature of Kinect has been widely used in the field of

robotics.

 Led Light

The Kinect device has a LED which has no particular utility other than to indicate the

status of the device.

 Motorized Tilt

The device also has a mechanical base, which is dynamically adjusted through the

software. The movement of the base comes from a small motor to the size of a coin and from

three fragile plastic gears, which are sensitive to heat and perhaps they are the weakest point of

the device. The base gives the opportunity to the Kinect device to turn upwards or downwards by

27 °.

Figure 14 - Kinect's

accelerometer

Figure 15 - Kinect's LED light

24

However, this motor revocation mechanism requires more energy that can be provided

through a USB port. For this reason, the device makes use of a special power cable (included in

the package along with the sensor), which divides the link into separate USB and power cable.

The required energy (12 Watt) is provided by a power adapter.

 Available APIs for the Kinect

There are quite popular APIs to decode the data provided by the Kinect device which are

free for public usage like the following:

 The official Microsoft’s SDK [46]

 OpenNI / NITE [47]

 Open Kinect Project [48]

 Libfreenect [49]

 CLNUI [50]

 Evoluce SDK [51]

Figure 16 – Kinect’s Motorized Tilt

25

 Leap Motion

The Leap Motion is a company that develops advanced motion detection technology to

human-computer interaction.

 Originally inspired by the frustration around the 3D modeling, using the mouse and

keyboard, they wanted to claim that accomplishing something in virtual reality, should be as easy

as in real life.

Not giving the public movements since 2010, the company announced its first product,

The Leap, on May 21, 2012 [52].

 The Leap device hardware overview

From a hardware point of view, the Leap Motion sensor is quite simple [53]. The interior

parts of the device (see Figure 18) consists of two cameras and three infrared LEDs. These track

infrared light with a wavelength of 850 nanometers. It is quite obvious that this spectrum range is

outside of humans’ visible light spectrum.

Thanks to its wide angle lenses, the device has a large interaction space of eight cubic

feet, which takes the shape of an inverted pyramid – the intersection of the binocular cameras’

fields of view.

The Leap Motion Controller’s viewing range is limited to roughly 1 meter above the

controller, by 1 meter wide on each side (150˚ angle), by 1 meter deep on each side (120˚ angle)

(see Figure 19). This range is limited by LED light propagation through space, since it becomes

much harder to infer a hand’s position in 3D beyond a certain distance. LED light intensity is

Figure 17 - The Leap device Figure 18 - The internal parts of the Leap device

26

ultimately limited by the maximum current that can be drawn over the USB 3.0 micro-B

connector.

Afterwards, the device’s USB controller reads the sensor data into its own local memory

and performs any necessary resolution adjustments. This data is then streamed via USB to the

Leap Motion tracking software.

The data takes the form of a grayscale stereo image of the near-infrared light spectrum,

separated into the left and right cameras. The only observable objects are those directly

illuminated by the Leap Motion Controller’s LEDs. However, incandescent light bulbs,

halogens, and daylight will also light up the scene in infrared.

 Software overview

Once the data of received image is streamed to the host computer, it’s time for some

heavy mathematical lifting. The Leap Motion Controller doesn’t generate a depth map – instead

it applies advanced algorithms to the raw sensor data.

The Leap Motion Service is the software on the host computer that processes the images.

After compensating for background objects (such as heads) and ambient environmental lighting,

the images are analyzed to reconstruct a 3D representation of what the device captures.

Next, the tracking layer matches the data to extract tracking information such as fingers

and tools or anything that could be used as an extension of the hand in the size of a pen that

could be used to point at something, just like a finger. The tracking algorithms used, interpret the

Figure 19 - Interaction area of the Leap sensor

27

3D data and infer the positions of occluded objects. Filtering techniques are applied to ensure

smooth temporal coherence of the data. The Leap Motion Service then feeds the results –

expressed as a series of frames, or snapshots, containing all of the tracking data – into a transport

protocol.

Through this protocol, the service communicates with the Leap Motion Control Panel, as

well as native and web client libraries, through a local socket connection (TCP for native, Web

Socket for web). The client library organizes the data into an object-oriented API structure,

manages frame history, and provides helper functions and classes.

From there, the application logic ties into the Leap Motion input, allowing a motion-

controlled interactive experience.

As shown in Figure 20 a hand with a tool is tracked. The spatial accuracy of a finger like

object crossing within the tracking area, is about 0, 01 mm (see). Because the picture is a bit

misleading, the Leap device is below the pencil or pen shown in the following figure, with which

the user "writes" and is located at a distance from the screen without touching it.

The smaller observation area and with a higher resolution of the device, it is

differentiated from the Kinect device, which is most suitable for monitoring and recognizing the

whole body in a space, in the size of an area like a living room. In a demonstration, the Leap was

Figure 20 - Leap’s smaller observation area and high resolution

28

shown to perform tasks such as navigating a Web page by using pinch-to-zoom gestures on high-

precision design maps, and manipulation of complex 3D data visualizations.

 Public use

The Leap Motion Company has distributed thousands of free devices to the developers

who are interested in creating applications for the device. The Leap Motion sensor was released

to public in July 2013 [54], priced around 90 $ USD.

One of the positive elements that came along with the device is the Airspace [55],

electronic application store. This is a very big advantage for developers in terms of quick finding

applications, but also for customers, so to ensure the acquisition of appropriate and compatible

with Leap applications, to be sure. This movement from the Leap Motion, is an integral part of

the company’s strategy, since without a software using this unique special device, it is unlikely

that someone will "stick" with it in the long run.

29

 A reference to other multimodal devices

As mentioned in the introduction chapter there exist other complex devices too that

combine modalities through different sensors and some of them provide this through a single

device, except from these presented in the previous chapter.

 Xtion Pro LIVE by Assus

In late spring of 2011, the first depth

sensing device of Asus was launched, the Asus

Wavi Xtion Pro [56] (see Figure 22). Targeting

purely the developers, it contained only the

depth sensor of Primesense Ltd. Unfortunately

this device hadn’t the expected popularity and

after a while Asus stopped its production and

released an update of the device that combined

both a depth sensor, an RGB camera and

microphones (see Figure 21). One big advantage over the Kinect of Microsoft was that the

connection with a computer was only via a USB port without needing external power supply.

The hardware of the Xtion pro LIVE sensor consists of one depth sensor, IR light transmitter,

and RGB camera and two microphones (see Figure 23).

Figure 21 - Xtion Pro LIVE hardware

Figure 22 – Xtion Pro Figure 23 – Xtion Pro LIVE

30

 MYO by Thalmic

About two years ago, an unknown startup by the name of Thalmic Labs started to reveal

its upcoming product, Myo (see Figure 24). Using a technique known as electromyography, this

little armband was able to read electrical signals from the muscles in the user’s forearm, map

them to gestures made with the hand, and control other devices with those gestures.

This was (and still is) a radical departure from the way gesture commands are typically

registered. Most gesture-control systems, like Microsoft’s Kinect, still detect movements with

cameras, which can be thrown off by poor lighting conditions, distance, and simple obstructions.

By drawing gesture information directly from the user’s arm muscles instead of a camera, Myo

circumvents all these problems and also works with devices that don’t have a camera in the first

place.

To read the muscle activity in your forearm, Myo wraps it in eight different blocks, each

of which contains a medical-grade EMG sensor. The armband also uses a three-axis gyroscope,

three-axis accelerometer, and three-axis magnetometer to sense motion in any direction.

Muscle activity and motion readings are handled by an onboard ARM Cortex M4

Processor, which communicates with your devices via Bluetooth. For devices that don’t have

Bluetooth functionality built in, Myo also comes with a Bluetooth dongle that plugs into any

USB port.

Figure 24 - MYO armband

31

 Oculus Rift by Oculus VR.

The Rift Development Kit 1 (see Figure 25) uses a 7-inch (18 cm) screen with a

significantly lower pixel switching time than the original prototype, reducing latency and motion

blur when turning one's head quickly. The LCD is quite bright and the color depth is 24 bits per

pixel. The field of view (FOV) is more than 90 degrees horizontal (110 degrees diagonal.

The resolution is 1280×800 (16:10 aspect ratio), which leads to an effective of 640×800

per eye (4:5 aspect ratio). However, since the Rift does not feature a 100% overlap between the

eyes, the combined horizontal resolution is effectively greater than 640. The image for each eye

is shown in the panel as a barrel distorted image that is then corrected by pincushion effect

created by lenses in the headset, generating a spherical-mapped image for each eye.

In March 2014, Oculus announced the upcoming Development Kit 2 (DK2) (see Figure

26). This is a small refinement of the crystal cove prototype, featuring several key improvements

over the first development kit, such as having a higher-resolution (960×1080 per eye) low-

persistence OLED display, higher refresh rate, positional tracking, a detachable cable, and the

omission of the need for the external control box.

Figure 25 - Oculus Rift DK1

32

 Google Glass by Google X

Google Glass is a project started by Google that is intended to bring hands-free display

technology to the general public. By utilizing voice commands, users can interact with their

Google Glass device to get information from their phones, participate in Google+ Hangouts or to

get information from the internet. With a wireless data connection, Google Glass adds an

augmented-reality overlay to whatever you're looking at, automatically bringing up relevant

information from various Google sources.

The user can wear the Glass as any pair of glasses, but it features an optical heads-up

display that projects a display in front of their eyes. Interaction is by means of voice commands,

accelerometer and gyroscope and a thin strip known as the “Touchpad” that runs alongside the

right hand side of the frame.

Figure 27 - Google Glasses

Figure 26 - Oculus Rift DK2

33

 Plugins & Extensions

In the early days of the World Wide Web, the first versions of HTML couldn’t deliver

fancy content like videos. Text, images, and links were pretty much the limit. Plug-ins were

invented to work around the previous limitations of HTML and deliver more interactive content.

Browser plugins and extension development is the actual creation of a software for a

specific browser because each browser type has its own architecture and APIs to build the

extensions which requires different code and skills.

Nevertheless nowadays there are development frameworks which allows developers to

build cross-browser extensions with only one code base and one API, eliminating the need to

develop a different extension version for each one of the Browsers. Examples of those

frameworks are:

 Crossrider development framework [57]

 Extension Maker [58]

 Kango cross-browser extension framework [59]

 Crossbrowser Free [60]

 Plugins

As mentioned above the plug-in is an additional piece of software that specializes in

processing particular types of content for example, users may download and install a plug-in like

the widely used Adobe Flash Player [61] to view a web page which contains a video or an

interactive game, or Java from Oracle in order to be able see java applets [62].The plug-in model

we could say that defines a distinct space on the web page for the plug-in, then steps aside. The

plug-in is free to operate inside that space, independent of the browser.

This independence means that a particular plug-in can work across many different

browsers. However, that ubiquity also makes plugins prime targets for browser security attacks if

they aren't up to date, lacking from the latest security fixes.

The plug-in model we use today is largely the one inherited from the web’s early days,

but the web community is now looking at new ways to modernize plugins in order their content

34

to be searchable, linkable, and can interact with the rest of the web page. More importantly, the

collaboration of some browser vendors and plug-in providers protect users from security risks.

For example, the Google Chrome and Adobe Flash Player teams have worked together to

integrate Flash Player into the browser and with Chrome’s auto-update mechanism it is ensured

that the Flash Player plug-in is never out-of-date and always receives the latest security fixes and

patches.

Many people confuse plugins and extensions in the browser world. They sound like they

should be the same thing, but in fact they are very different.

A plugin is, quite simply, a third party library that “plugs in” to the browser that can be

embedded inside a web page using an <embed> tag or a <object> tag. Many allow you to “talk”

to them through JavaScript, though that’s not required. More importantly, a plugin affects

only a specific page in which it is placed.

More examples of common plugins include:

 Adobe (Macromedia) Flash [63]

 Microsoft Silverlight [64]

 Apple QuickTime [65]

 Adobe Reader [66]

 Extensions

When browser extensions were first introduced, developers often had to build them in

unusual programming languages or in heavy-duty mainstream languages like C++ hence this

took a lot of work, time and expertise. More importantly while adding more code to the browser

could have as a result security concerns, as it gave attackers more chances to exploit the browser.

In addition to this issue, because of the bad coding sometimes the extensions were notorious for

causing browser crashes, too.

Nowadays, most of the extensions are written in user friendly programming languages of

the web like HTML, JavaScript and CSS as most web applications and pages they interact with.

They’re faster and easier to build, safer, and get better and better right along with the web

standards they’re built upon.

35

Extensions let the users add new features extending the capabilities of the browser,

meaning customization with the most important browser features of each user, depending on

their needs like allow the users to block advertisements, download videos from websites,

integrate the browser with social networks and even add features from other browsers.

 Another example of extension is the installation of a currency converter that shows up as

a new button next to the browser’s address bar and by clicking the button and it converts all the

prices of the current web page into any currency the users specify. Extensions like this, let the

users apply the same kind of functionality to every web page they visit.

Browser extensions can also act on their own, outside of web pages. An example of this

scenario is an email notifier extension that exists on the browser toolbar and quietly checks for

new messages in the users’ email account and let them know when one arrives. In this case, the

extension is always working in the background regardless what web page the users are looking at

and without logging in to their email account in a separate tab or window.

Just as in the plugins, in the extensions filed the security issues exist too. While Web

pages are constrained by the security model of the Web, extensions are not. As a result, a

browser extension may not behave as described, and take action against the interest of the users

that installed it. Such browser extensions are a form of Malware. For example some software

downloads come with unwanted bundled programs that install browser extensions without a

user's knowledge, while making it hard for the users to uninstall the add-on. However the crucial

security difference of both plugins and extensions is that, extensions add features the user can

use, while plug-ins add features websites can use.

36

 Blended Learning

Over the years, pedagogical methods have evolved and consistently improved, compared

to the educational systems of the past. A significant factor of this progress is unquestionably the

increasing use of technology in teaching. Nowadays, most educators prefer to blend traditional

teaching with interactive software, in order to achieve the maximum involvement of their

students and to consolidate their learning.

“Blended learning” is a term which has yet to be universally defined. A sufficient

description could be the following: “Blended learning is the process of using established

teaching methods merged with Internet and multimedia material, with the participation of both

the teacher and the students.”[6]

Still, there are a few matters in question regarding the process of creating blended learning

environments [67] :

 Firstly, there is the issue of the importance of face to face interaction. Several learners

have stated that they are more comfortable with the part of live communication in merged

teaching methods, considering it more effective than the multimedia based part. Others

are of the exact opposite opinion, which is that face to face instruction is actually not as

required for learning, as it is for socialization. There are also those who believe that both

live interaction and online or software material are of the same significance and it is the

learner’s decision which of the two is more suitable for their educational needs.

 Secondly, there is the question of whether the learners opt for combined learning

exclusively because of the flexibility and accessibility of the method, without taking into

account if they are choosing the appropriate type of blended teaching. Also, there are

doubts regarding the ability of the learners to organize their own learning without the

support of an educator.

 Another matter, is the need for the instructors to dedicate a large amount of time to guide

the learners and to equip them with the necessary skills in order to achieve their goals. In

addition, the instructors need to continue being educated themselves to be able to meet

the requirements of blended teaching.

37

 There is also the argument that schools which have integrated technology into the

curriculum are mostly addressed and beneficial to people in a comparatively favorable

position in terms of economic or social circumstances. This, however, is refuted by the

fact that blended teaching methods are quite affordable and easily accessible. The quick

distribution of the multimedia material used in this type of instructing, is considered an

advantage, but the universality of the system raises the need to modify the provided

material, in order to make it more culturally appropriate for each audience.

 Lastly, a continuous effort is being made to proceed to the new directions given by the

novelties of technology while maintaining a low-priced production of educational

material. The uninterrupted evolution of communication and information technology is

making this effort rather strenuous for the developers of such teaching models.

Despite the difficulties faced when designing blended learning techniques, the advantages of

combining face to face instructing with technology are many. Some of enormous importance

[68] are:

1. The learner is intrigued by the procedure itself and as a result, the material being taught

seems more interesting to them. This leads to the easier accomplishment of the

educational goals that the teacher has set.

2. There is no limitation regarding the time or the place of the lesson. A student can attend

remote classes being offered online, frequently having the opportunity to record and

watch again the lesson.

3. The cost of the teaching process is greatly reduced. Every school unit that uses blended

learning, has access to a variety of Internet and software material which would require a

lot of time and effort to be independently produced, resulting in additional expenses.

4. In industrial applications of blended learning, it has been observed that the desired results

have been achieved twice as fast as with the established instruction methods.

Regardless of how little official research has been done on blended learning, there are

Universities that provide substantial information on the matter [68]. Stanford University is an

institution with much experience in individually oriented programs for charismatic people. An

issue which troubled the University was that a great percentage of their students (a bit less than

half) would not finish the programs. They concluded that the fault was in the way the students

were being taught, compared with the way they wished they would be taught. Thus, they decided

38

to include live eLearning in their programs, leading to a spectacular rise in the completion

percentage, which then reached 94%. The factors that were credited to affect the scholars in such

a positive manner were: (a) the scheduled live interaction, which provided inspiration and

incentive to finish the assignment without delay, and (b) the access to communication with

numerous teachers and fellow students, which gave a chance to experience superior forms of

instructing and learning.

The example of Stanford University proves that joining customized educational material with

live eLearning interaction could facilitate both the participation in the program and the

completion of it. These findings, can motivate other institutions and companies to invest in self-

paced teaching systems combined with multimedia resources.

However, blended learning should not be conceived solely as a method of enriching the class

with technology or making the learning process more accessible and engaging. Its main purpose

is to modify and adjust the teaching and learning interaction in order to upgrade it. It assists and

enables the growth of critical thinking, creativity and cognitive flexibility [69].

39

Chapter 3 - Architectural Design & Description

 C.O.A.L.S. Framework

Human-computer interaction can be represented in the form of a perception-action cycle,

e.g. Norman’s human action cycle [76]:

 Humans perceive the world with their senses,

 Interpret these perceptions,

 Evaluate those interpretations and

 Decide on some kind of goal, based on their evaluation of those interpretations.

This goal is transformed into an intention to act, this intention itself is then translated into a

sequence of actions, which in turn is executed. From Norman’s human action cycle and Nigay’s

Pipe-Lines model [77] (a system side extension of Norman’s cycle), the model of the multimodal

human-machine interaction loop has been drawn [78] Figure 28.

Figure 28 - Multimodal human-machine interaction loop

40

Thus following the architectural design of multimodal systems, meaning the utilization of

a Fusion engine, a Dialogue Manager and a Fission engine, the received data can be manipulated

for the fulfillment of a purpose. Nevertheless the need of an intermediate framework is necessary

in order to collect, reorganize and transform the user input into meaningful data, which will then

be transferred into the parts of the architecture that were previously mentioned. Figure 29,

demonstrates the general architecture of a multimodal system from the software perspective.

According to the above design, the upper left box includes the input modalities, modality

recognizers and processors. The input modalities part, is practically the devices through which

the system can receive the input from the users and is divided into

 Visual,

 Audio,

 Haptic and

 Motion modalities.

Figure 29 - Multimodal system architectural design

41

In Figure 30, these modalities are separated along with the devices that can be produced

from. The modality recognizers and the processors are the software components that handle

(recognize and process) the received data from the previous step.

 In addition with the recognition there is a tokenization part, for example:

Command / Word Recognizers Extra info

Put Speech -

This Speech / Gesture Type of Point[x, y, z]

There Speech / Gesture Type of Point[x, y, z]

Table 3 - Tokenization of the recognized data

After the previous steps, the part of the integration committee (bottom box of the Figure

29), is responsible for handling this multimodal input, integrate it under a common context and

Figure 30 - Modalities & Devices

42

communicate with both the application and the user. More precisely the parts of the integration

committee are:

The Fusion engine:

 In C.O.A.L.S. builder each token takes a value and is packed in a “proto

frame”, which is a markup file. More precisely these values - states are:

o Command,

o Object,

o Attribute,

o Location and

o Selection

These values depend on the C.O.A.L.S vocabulary. This means, that with

more semantic values, the tokens can be “described” better, even though the amount

of the specific values are sufficient for the token description included in a simple

sentence.

 The C.O.A.L.S. state machine then, receives any proto frame created from the

previous step aiming to create a complete frame. The completion of the frame

is achieved when there is a combination of sufficient tokens that their state,

lead to the end of a sentence (see Figure 31). The minimum amount of the

tokens inside the frame is least one with “Command” state, while the

maximum amount is yet undefined because the size of the vocabulary could

be larger. In case of arrival of another token with “Command” state, before

the completion of the frame, the framework “resets” the procedure and restarts

the creation of the frame.

Word C.O.A.L.S. Vocabulary

Put Command

This Selection

[x, y, z] Point

There Location

43

[x, y, z] Point

Table 4 - Complete C.O.A.L.S. frame example

1. Dialogue Manager:

The dialogue manager is responsible for the creation of the “output frame”. Inside

this component, there are:

 The sentence which is stored inside the complete frame. Using the

application-actions mapping scheme, it is “translated” into applications’

functions.

 The appropriate message which after the subsequent implementation of the

user’s actions, should inform them, passing through the fission engine.

2. Fission Engine:

This “output frame” holds information about the mode (audio, visual, touch, etc.)

which occurs from the Context Manager and the data that will be delivered to the

user, as feedback, after completing a task.

Figure 31 - State transactions of the C.O.A.L.S. frame

44

 Message construction

Gathering of the messages according to the user’s actions, generated in the

previous step.

 Modality selection

Each message can be delivered to the user with various ways. To choose the

most adequate modality or a combination of modalities for the message

delivery, a stable matching algorithm is used along with the information of the

Context manager module.

 Coordination of the feedback

For this final step, modalities are time synchronized, in order to demonstrate

the feedback to the user in a natural manner. More precisely the concrete

content of the message is chosen and subsequently the modality attributes are

established. For a more coherent and synchronized result, all used channels

must be coordinated.

Figure 32 –The modalities that can deliver these three basic modes.

45

 Google Chrome Extensions

As mentioned in the previous sections (see Chapter 2 Plugins & Extensions) extensions

allow the users to add functionality to an Internet browser without diving deeply into native

code. The developers can create new extensions with core technologies that they are already

familiar with from web development such as HTML, CSS, and JavaScript. More precisely, the

aim of this chapter is to describe the way to create an extension in Google Chrome Browser, to

interact with the YouTube player with the use of multimodal devices like the Leap and Kinect, in

order to accomplish our case study.

Each extension has the following files:

 A manifest file

 One or more HTML files

 One or more JavaScript files

 Any other files the extension needs (image files)

Hence the very first thing needed to be created is a manifest file named manifest.json.

This manifest is nothing more than a metadata file in JSON format that contains properties like

the extension's name, the description, the version number and so on. More precisely, it will be

used to inform Chrome about what the extension is going to do, what permissions it requires in

order to do those things and what the most important files that it will use are. The manifest file

used in this approach is shown in Figure 33

 Manifest file Resources

More specifically the properties of the manifest file contain:

 “Manifest Version”:

Extensions are simply bundles of resources, wrapped up with a manifest.json file

that describes the package's contents. The format of this file is generally stable,

but occasionally changes must be made to address important issues. The

developers should specify which version of the manifest specification their

package targets, by declaring a manifest_version key in their manifests. As

46

mentioned in the developers’ page of Chrome [70] "Consider manifest version 1

deprecated as of Chrome 18. Version 2 is not yet required, but we will, at some

point in the not-too-distant future, stop supporting packages using deprecated

manifest versions."

 “Name”:

Self-explanatory field (set extension’s name).

 “Description”:

Self-explanatory field (set extension’s description).

 “Browser Actions”:

o Icon:

To set the icon, the default_icon field of browser_action in the manifest is

used, or the browserAction.setIcon method is called inside a JavaScript

code snippet.

Browser action icons can be up to 19 dips (device-independent pixels)

wide and high, but larger icons are resized to fit.

The icon can be set in two ways: using a static image or using the HTML5

canvas element. It is more common to use static images, but the canvas

element is used in order to create more dynamic UIs.

Static images can be in any format WebKit [71] can display, including file

formats like: BMP, GIF, ICO, JPEG, or PNG.

o Popup:

The popup appears when the user clicks the icon of the extension.

The popup can contain any HTML page and it's automatically sized to fit

its contents. The logic of rendering the content of the popup is

implemented by popup.js called inside the html code.

The HTML file is specified in the default_popup field of browser_action

in the manifest, or called from the browserAction.setPopup method inside

a JavaScript code snippet.

 “Permissions”:

The chrome.permissions API requests declared permissions at run time rather

than install time, in order to give the chance to the users to understand why the

47

permissions are needed and grant only those that are necessary if they are

optional.

Furthermore, permissions help limit the damage if the extension is compromised

by a malware.

In this manifest file the required permissions are:

o Tabs:

chrome.tabs API is used to interact with the browser's tab system, like

creating, modifying, and rearranging tabs in the browser. The use of most

chrome.tabs methods and events can be made without declaring any

permissions in the extension's manifest file. However, to access the url,

title, or favIconUrl properties of tabs.Tab, the declaration of the "tabs"

permission in the manifest is necessary.

o Active Tab:

Without activeTab, this extension would need to request full and persistent

access to every web site. This is a lot of power to entrust to such a simple

extension and if it is ever compromised, the attacker gets access to

everything it had.

By contrast, an extension with the activeTab permission only obtains

access to a tab following to an explicit user gesture. If the extension is

compromised, the attacker will need to wait for the user to invoke the

extension before obtaining access, while that access will only last until the

tab is navigated or closed.

 “Content Scripts”:

Content scripts are JavaScript files that run in the context of web pages. By using

the standard Document Object Model (DOM), they can read details of the web

pages the browser visits, or make changes to them.

Content scripts can indirectly use the chrome.* APIs, get access to extension data,

and request extension actions by exchanging messages with their parent

extension.

48

o Matches:

Content script matching is based on a set of URLs defined by match

patterns. A match pattern is essentially a URL that begins with a permitted

scheme (http, https, file, or ftp, and that can contain '*' characters. The

special pattern <all_urls> matches any URL that starts with a permitted

scheme. Each match pattern has 3 parts:

 scheme — for example, http or file or *

 host — for example, www.google.com or *.google.com or *; if the

scheme is file, there is no host part

 path — for example, /*, /foo*, or /foo/bar. The path must be

present in a host permission, but is always treated as /*.

o Js:

Even though this field is optional, it is very important because this is the

list of JavaScript files that will be injected into the matching pages and

they will be injected in the order they appear in this array.

 "Background":

The background page is an HTML page that runs in the extension process. It

exists as long as the extension does and only one instance of it at a time is active

with the only of exception when the extension uses incognito [72] "split" mode,

in which case a second instance is created for incognito windows. To specify

which is the appropriate HTML file in the background page, the page property

field is used (not in our case).

In a typical extension with a background page, the UI is implemented by dumb

views. When the view needs a state, it requests the state from the background

page.

 When the background page notices a state change, the background page

commands the views to update.

o Scripts:

This is simply the script that provides all actions in the background page.

49

o Persistent:

The persistent key is set to false in order to convert our background page

to an event page that will be loaded when it is “needed” and unloaded

when it goes idle again. Once it has been loaded, the event page will stay

running as long as it is active.

 “Options Page”:

To allow users to customize the behavior of the extension, most of the times an

options page is provided. If it is, a link will be provided from the extensions

management page at chrome://extensions. Clicking the Options link opens a new

tab redirecting to the options page. In our case, from the options page the user can

see raw data retrieved from the multimodal device. As in the previous fields this

page is an HTML page controlled by a JavaScript file.

50

{

 "manifest_version": 2,

 "name": "Youtube player interaction with Leap Motion",

 "description": "This extension allows the use of Leap Motion

controller to interact with Youtube player.",

 "version": "1.0.0",

 "browser_action": {

 "default_icon": "Ok-icon.png",

 "default_popup": "popup.html"

 },

 "permissions": [

 "tabs",

 "activeTab"

],

 "content_scripts": [

 {

 "matches": ["https://www.youtube.com/*"],

 "js": [

 "js/leap.min.js",

 "js/jquery-1.9.0.min.js",

 "js/myscript.js"

]

 }

],

 "background": {

 "scripts": ["background.js"],

 "persistent": false

 },

 "options_page": "options.html"

}

Figure 33 - Manifest in JSON format

 Extension’s Architecture Overview

Many extensions have a background page, in many cases an invisible page that holds

the main logic of the extension. In order to achieve the interaction between the web pages and

the extension, the extension must use a content script. The Figure 34 shows the place of a

browser action and a page action extension into the browser. Both extensions have background

51

pages, which are defined by the background.html file and have JavaScript code that controls their

behavior in both windows.

Figure 34 - Background.html

Extensions can contain ordinary HTML pages that display the extension's UI when the

icon of the browser action is clicked. Usually, an extension can have an options page, which lets

users customize how the extension works. The HTML pages inside an extension have complete

access to each other's DOMs, and they can invoke functions on each other. The following figure

shows the architecture of a browser action's popup.

If the extension needs to interact with web pages, then it needs a content script.

 A content script is a JavaScript file that is executed in the context of a page that has been

loaded into the browser and it’s not part of the extension it was packaged with, meaning its

parent extension. Content scripts can read details of the web pages the browser visits, and they

Figure 35 - Popup.html

52

can make changes to the pages. In the following figure, the content script can read and modify

the DOM for the displayed web page. It cannot, however, modify the DOM of its parent

extension's background page. In our case the actions and changes to the visited page are achieved

through programmatic injection in order to get the needed data. For security reasons the results

of this method are limited and the best way to surpass this problem is to use Google APIs,

specifically for Chrome and YouTube.

Figure 36 - Content script interaction

53

Chapter 4 - Approach of the Implementation

This chapter presents in detail the approach of the implementation created for the purpose

of this thesis. More precisely, the creation of two internet browser extensions in order to control

the pages that are visited from the user, with the use of multimodal devices like the Leap of Leap

Motion and the Kinect of Microsoft. The decision to choose a specific browser for the creation of

the extensions, was taken in order to avoid performance issues and support differences that

internet browsers have among each other. Google Chrome is the choice because is one of the

most used internet browser while supporting edge technologies like HTML5 and providing a

JavaScript API to help the development of extensions and applications based on it.

 Loading the extension in Chrome

There are a few ways to access the extension page in Google Chrome browser like:

 Typing to the address bar the exact link: “chrome://extensions/”.

 Finding the extensions from the “Customize and control Chrome” from

the upper right corner of the browser (see Figure 37).

Figure 37 - Extensions in Chrome's options

54

After navigating to the extensions page, the user must download the extension that

desires either from Google Chrome Web Store

(https://chrome.google.com/webstore/category/extensions?hl=en-US) or loading their own from

a specific directory of their PC, by clicking the button “Load unpacked extension…” from the

upper left corner of the extensions’ page. To achieve the second way, the “Developer Mode”

option must be checked as seen in Figure 38.

After the installation of the extensions, the user must check the “enable” button in order

to active them. The activated extension appears in the top right corner of the browser with a

slight difference. As mentioned in the previous chapter if the extension is refers to browser

action it appears outside of the address bar and if it refers to a page action it is placed inside the

address bar.

Figure 38 - Extensions manager in Chrome

Figure 39 - Page action icon Figure 40 - Browser action icon

https://chrome.google.com/webstore/category/extensions?hl=en-US

55

 YouTube player Interaction with Leap Motion

Leap motion device as mentioned in previous chapter is a sensor with great features and

use, in many fields of computer science. More precisely, its small size combined with the high

resolution hand/tool tracking, give to the user the opportunity to control the PC from closer

distance rather than using the Kinect sensor. For this reason the created extension, handles more

detailed DOMs which from a bigger distance would be harder to interact with.

 Server side - Web Sockets Communication

var ws;

// Create the socket with event handlers

function connectToWebSocket() {

 // Create and open the socket

 ws = new WebSocket("ws://localhost:6437/v4.json");

 // On successful connection

 ws.onopen = function(event) {

 var enableMessage = JSON.stringify({enableGestures: true});

 ws.send(enableMessage); // Enable gestures

 var backgroundMessage = JSON.stringify({background: true});

 ws.send(backgroundMessage); // Get frames in background

 console.log("open");

 };

 // On message received

 ws.onmessage = function(event) {

 var obj = JSON.parse(event.data);

 var str = JSON.stringify(obj, undefined, 2);

 if(obj.id){

 console.log("Frame data for " + obj.id);

 } else {

 console.log("message " + event.data);

 }

 };

 // On socket close

 ws.onclose = function(event) {

 ws = null;

 console.log("close");

 }

 // On socket error

 ws.onerror = function(event) {

 console.log("error");

 };

}

connectToWebSocket();

Figure 41 - Web Sockets Communication

56

The Leap Motion controller provides tracking data through a Web Socket server. The

Web Socket server listens to port 6347 on the localhost domain (http://127.0.0.1:6437). Any

client application, including Web clients that can make a Web Socket connection can access the

Leap Motion tracking data in the form of JSON-formatted messages. From the above code

snippet (see Figure 41) it is presented the way the Web Socket connection is established which is

included inside the “leap.min.js”.

 Client side - Myscript.js walkthrough

From the client side, this is the main file/script that handles the logic of the extension. In

this section will be presented the actions made through the user input along with screenshots in

order to be more understandable. From figure, inside the manifest.json, this is the last script

called after the “leap.min.js" as mentioned in the previous subsection and "jquery-1.9.0.min.js",

as order matters inside the array of “content scripts” “js”.

The script begins with the initialization of some variables as usual, with the most

important the “controllerOptions” variable which is used as argument later in the “Leap.loop”

function, in order the tracking of the gestures to be enabled.

var controllerOptions = {enableGestures: true};

Afterwards the function “init()” is called to check for two things:

 Sometimes even after successfully establishing the connection, issues may still

exist and the connection can be lost, resulting the Leap to be restarted and

establish a new connection.

From the API provided by Google Chrome a message is sent to the background.js

and if the connection is lost, the badge text of the extension is updated, as well the

user is prompted to restart the device and refresh the visited page (YouTube in our

case) as seen in Figure 42.

57

function check_connection()

{

 now = new Date().getTime() / 1000;

 if(now - last_poll > connection_lost_after)

 {

 clearInterval(connection);

 try {

 chrome.runtime.sendMessage({ connection: 'lost' },

function(response) {

console.error('Connection to Leap Motion Lost. Restart Leap

Motion and Refresh Page.');

$('body').append('<div

class="leap_mostion_connection" style="display:

none;"><\/div>');

$('.leap_mostion_connection').html('ATTENTION:<\/b>

Connection to Leap Motion Lost. Restart Leap Motion and

Refresh Page.').css({

 'position': 'fixed',

 'top': '0',

 'left': '0',

 'width': '100%',

 'color': '#222',

 'text-align': 'center',

 'height': '30px',

 'z-index': '1000',

 'line-height': '30px',

 'background-color': '#9AC847'

 }).fadeIn('slow');

 $('.leap_mostion_connection').click(function(){

$(this).fadeOut('slow'); });

 });

 }

 catch(error) {

 console.error(error.message);

 }

 }

}

Figure 42 - Check Connection function

 The second thing to check is, if the current tab has focus and only then, run this

extension on the active tab. Once again through the Chrome API a message is sent to

the background.js in order to receive the information needed like the active tab and

the page’s URL.

58

The other task that is made through this function, is to update the current page after

the user reloads the extension, because an error is produced, which is fixed by this

page refresh (see Figure 43).

function check_focus()

{

 try {

 chrome.runtime.sendMessage({ tab_status: 'current' },

function(response) {

 if(response.active && window.location.href ==

response.url && document.hasFocus())

 {

 tab_has_focus = true;

 }

 else

 {

 tab_has_focus = false;

 }

 });

 }

 catch(error) {

 if(error.message.indexOf

('Error connecting to extension') !== -1)

 {

 document.location.reload(true);

 }

 else

 {

 console.error(error.message);

 }

 }

}

Figure 43 - Check focused Tab function

 Leap API

“Leap” is the global namespace inside the Leap API. In addition to the classes in the API,

the Leap namespace contains the function of the “Leap.loop(options, callback)”.

The loop() function sets up the Leap controller and Web Socket connection and invokes

the specified callback function on a regular update interval. Moreover, the developer can create

their own Controller() object.

59

Each frame of data from the Web Socket server contains JSON defining a frame. The

attributes of a frame in the JSON include information about the collected data like the examples

below:

"pointables": array of Pointable objects

"bases": the 3 basis vectors for each bone, in index order,

wrist to tip, (array of vectors).

"btipPosition": the position of the tip of the distal phalanx

as an array of 3 floats.

"carpPosition": the position of the base of metacarpal bone as

an array of 3 floats.

"dipPosition": the position of the base of the distal phalanx

as an array of 3 floats.

 "direction": array of floats (vector)

 "extended": boolean (true or false)

 "handId": integer

 .

 .

 .

Figure 44 - Pointables information retrieved from Leap API

"hands": array of Hand objects

 "armBasis": the 3 basis vectors of the arm (array of vectors)

 "armWidth": float

 "confidence": float

 "direction": array of floats (vector)

 "elbow": array of floats (vector)

 "grabStrength": float

 "id": integer

 "palmNormal": array of floats (vector)

 .

 .

 .

Figure 45 - Hands information retrieved from Leap API

60

"pointables": array of Pointable objects

"bases": the 3 basis vectors for each bone, in index order, wrist

to tip, (array of vectors).

"btipPosition": the position of the tip of the distal phalanx as an

array of 3 floats.

"carpPosition": the position of the base of metacarpal bone as an

array of 3 floats.

"dipPosition:" the position of the base of the distal phalanx as an

array of 3 floats.

"direction": array of floats (vector)

"extended": boolean (true or false)

"handId": integer

 .

 .

 .

Figure 46 – Pointables information retrieved by the Leap API

Therefore while the information of the retrieved data is received, it can also be

manipulated as seen fit. The most important variables that are used to fulfil our case scenario, are

the hands, the fingers and the pointables of the user that are tracked as well the gestures produced

by them. An example of the code snippet is seen below in Figure 47.

for (var i = 0; i < frame.hands.length; i++) {

 var hand = frame.hands[i];

 // IDs of pointables associated with this hand

 if (hand.pointables.length > 0) {

 var fingerIds = [];

 for (var j = 0; j < hand.pointables.length; j++) {

 var pointable = hand.pointables[j];

 fingerIds.push(pointable.id);

 }

 if (fingerIds.length > 0) {

 handString += "Fingers IDs: " + fingerIds.join(", ") + "
";

 }

 }

 }

 }

 else {

 handString += "No hands";

 }

Figure 47 – Hands, Pointables and Fingers tracked

61

 if (frame.gestures.length > 0) {

 for (var i = 0; i < frame.gestures.length; i++) {

 var gesture = frame.gestures[i];

 switch (gesture.type) {

 case "circle":

gestureString += "center: " + vectorToString(gesture.center)

+ " mm, \n"

+ "normal: " + vectorToString(gesture.normal, 2) +

", \n"

+ "radius: " + gesture.radius.toFixed(1) + " mm,

\n"

+ "progress: " + gesture.progress.toFixed(2) + "

rotations \n\n";

 break;

 case "swipe":

gestureString +=

"start position: " +vectorToString(gesture.startPosition) + "

mm, \n" + "current position: " +

vectorToString(gesture.position) + " mm, \n"

 + "direction: " + vectorToString(gesture.direction, 1) + ", \n"

 + "speed: " + gesture.speed.toFixed(1) + " mm/s \n\n";

 break;

 case "screenTap":

 console.log("screenTap");

 break;

 case "keyTap":

gestureString += "position: " +

vectorToString(gesture.position) + " mm \n\n";

 break;

 default:

 gestureString += "unkown gesture type \n\n";

 }

 }

 }

 else {

 gestureString += "No gestures \n\n";

 }

Figure 48 - Gestures provided by the Leap API

 Interaction with YouTube page

This particular extension has any interaction effect only with the YouTube page as

mentioned before and noted inside the “manifest.json” file. More precisely inside the part of the

code that handles the detected gestures, there also can be found the actions that will be triggered

accordingly. An example of the action triggered by the circle gesture is shown below.

62

case "circle":

 //get the video DOM

 var x = document.getElementsByClassName("video-stream html5-

main-video")[0];

 //

 // check if the circle gesture is made clockwise or not

 //

 var clockwise = false;

 var pointableID = gesture.pointableIds[0];

 var direction = frame.pointable(pointableID).direction;

 var dotProduct = Leap.vec3.dot(direction, gesture.normal);

 if(gesture.state == "stop"){

 if (dotProduct > 0){

 clockwise = true;

 //increase volume

 if(x.volume < 0.8){

 x.volume = x.volume + 0.1;

 }

 }

 else{

 //decrease volume

 if(x.volume > 0.1){

 x.volume = x.volume - 0.1;

 }

 }

 }

 break;

Figure 49 - Event triggered from circle gesture

To be more specific, at this point will be presented the actions that the user can make to

interact with the YouTube page after generating a gesture:

 “Circle Gesture”:

When the circle gesture is tracked, the video element of the DOM (visited page) is

retrieved. If the circle gesture was made clockwise or not then the volume of the

player is increased or decreased.

 “Swipe Gesture”:

When the swipe gesture is tracked, the “moveNextElement()” function is called

(see Figure 50).

With this function the child nodes of the controls player’s panel are retrieved and

with each swipe gesture the focus moves to the next child element.

63

For more precision, the direction of the swipe gesture is checked and the action is

made accordingly to that too.

//

// Set focus to next element of the control list of Youtube

//

function moveNextElement(){

var controls = document.getElementsByClassName("ytp-chrome-

controls")[0];

var sizeOfControls = controls.childNodes.length;

 if(controlsCNT < sizeOfControls){

 focusedKey = controls.childNodes[controlsCNT];

 focusedKey.focus();

 console.log("focused element " + focusedKey.className);

 controlsCNT++;

 }

 else{

 controlsCNT = 0;

 }

}

Figure 50 - Get child elements and set them focused

 “Key Tap Gesture”:

Based on the swipe gesture, if a button is focused, when the key tap gesture is

tracked, then this button is clicked and provides the same action as it was clicked

with the mouse.

 “Screen Tap Gesture”:

Upon performing the screen tap gesture, the generated action is to quickly change

the size of the video without to focus its button with the swipe gesture and click it

with the key tap gesture.

Every action produced happens by injecting code inside the page of YouTube. Code

injection has its limits though, for example the key press of the fullscreen button is not allowed.

Hence especially in very secure internet sites like the YouTube, in order to fully interact with the

DOM it is preferred to take advantage of its API provided by Google.

64

 Popup and Options Page

As mentioned in chapter 3, when the user clicks on the icon of the extension, a popup

window appears, which in our case provides a link that redirects the user to the options page (see

Figure 51). This isn’t exactly a page that gives the user the opportunity to modify any option,

however they can preview an aggregation of the retrieved data in detail (see Figure 52).

Furthermore they can interrupt the input stream by displaying the values of the variables

as provided by the API, for the given instance. Additionally to that, the user has the opportunity

to pause once again the flow of data, when a gesture is tracked by the sensor. Apparently after

any of these actions, the user can resume the procedure and keep track of the new values.

Figure 51 - Popup Html page

65

Figure 52 - Extension's Options Page

66

 Browser Interaction with Microsoft Kinect

Microsoft Corporation released Kinect sensor that was one of the first single devices that

could combine multiple sources of system input like sound, video and image from RGB camera

and from Depth camera. Due to the minimum distance from the sensor (near 800mm) and in

order to have a variety of actions, different from these of the Leap Motion sensor, the actions that

will be presented in this section concern not only the visited pages but also the browser itself.

Apparently, the same architectural design and restrictions apply to this case too, since all

operations are made through an extension of Chrome.

This project consists of two sub-projects:

 A server-side WPF application written in C#, which uses Kinect SDK and

 A client-side web page displaying the skeleton joints on an HTML5 canvas

(popup.html) while performing gestures actions in another html page (visited

page).

 Server side – Communication & Data Initialization

The server application's job is straightforward: detect the users' joints, pack the data and

send them to the client using Web Sockets. The Web Socket server listens to port 8181 or on the

localhost domain (//localhost:8181) as seen in the code snippet of Figure 53.

 Web Sockets – Initialization of the connection:

67

private static void InitializeConnection()

 {

 var server = new WebSocketServer("ws://localhost:8181");

 server.Start(socket =>

 {

 socket.OnOpen = () =>

 {

 _clients.Add(socket);

 };

 socket.OnClose = () =>

 {

 _clients.Remove(socket);

 };

 socket.OnMessage = message =>

 {

 switch (message)

 {

 //....

 }

 };

 });

 }

Figure 53 - Web Socket Connection

 Device and Data stream initialization:

In Figure 54, the code starts with the initialization of the device with the one that

is found first. In the case that a sensor is available the script continues with the

initialization of the data streams like:

o The Color stream

o The Depth stream

o The Skeleton stream and

o The event listeners

68

private static void InitilizeKinect()

 {

var sensor =

KinectSensor.KinectSensors.SingleOrDefault();

 if (sensor != null)

 {

 sensor.ColorStream.Enable();

 sensor.DepthStream.Enable();

 sensor.SkeletonStream.Enable();

 sensor.AllFramesReady += Sensor_AllFramesReady;

 _coordinateMapper = sensor.CoordinateMapper;

 sensor.Start();

 }

 }

Figure 54 - Device & Data stream initialization

Without diving inside the code, in each data stream class that is enabled as previously

seen, there is a Serialize function through which data is packed into a Binary Large Object

(Blob). These blobs, in our case are images, audio or multimedia objects, which are sent to the

client side through the web sockets.

 However the part of the code that is responsible to store the skeleton data, inside the

Open skeleton frame function, is not a blob but a JSON file with a number of properties that can

be manipulated by the client as seen fit (see Figure 55).

69

static void Sensor_AllFramesReady(object sender,

AllFramesReadyEventArgs e){

 using (var frame = e.OpenColorImageFrame()){

 //...

 var blob = frame.Serialize();

 foreach (var socket in _clients){

 socket.Send(blob);

 }}

 using (var frame = e.OpenDepthImageFrame()){

 //...

 var blob = frame.Serialize();

 foreach (var socket in _clients){

 socket.Send(blob);

 }}

 using (var frame = e.OpenSkeletonFrame()){

 //...

 if (users.Count > 0){

 string json =

users.Serialize(_coordinateMapper, _mode);

 foreach (var socket in _clients){

 socket.Send(json);

 }}}}

Figure 55 - Server sends Blob & Json to the Client

 Client side – Myscript.js and Popup.js walkthrough

In the client’s side, JavaScript is used in order to receive the server’s data so the user can

manipulate the visited page, as well as having a visual representation of their skeleton that is

drawn in an html canvas in the “popup.html”.

 Popup.html

Upon loading the extension, its icon appears in the upper right corner of the browser.

When the user clicks on the icon, a popup window shows up, informing them with a “Status” of

connection, meaning if it was successfully or not established via Web Sockets between them and

the server. Below this, an HTML canvas exists, previewing a static image, until the connection is

established. So when the server sends the new data the static image is replaced by the skeleton of

the user.

70

 Myscript_k.js & popup.js

The common think between those two scripts, is the Web Socket connection check and

the parsing of the JSON file sent from the server with the user’s skeleton information. Except

these, the rest of the scripts and their job, are different.

With the “popup.js” the received data from the server, using “socket.onMessage()”

function, can be displayed on the canvas as mentioned before, as long as a user is tracked.

// SKELETON DATA

 // Get the data in JSON format.

 var jsonObject = JSON.parse(event.data);

 //clear the context of the canvas before drawing

 context.clearRect(0, 0, canvas.width, canvas.height);

 ///

 /// Display the skeleton joints.

 ///

 for (var i = 0; i < jsonObject.skeletons.length; i++) {

 for (var j = 0; j <

jsonObject.skeletons[i].joints.length; j++) {

 var joint = jsonObject.skeletons[i].joints[j];

 ///

 /// Draw

 ///

 context.beginPath();

 context.arc(joint.x, joint.y, 10, 0, Math.PI * 2,

true);

 context.closePath();

 context.fill();

 }

 }

Figure 56 - Drawing the user's skeleton on canvas

From the other hand, the “myscript_k.js” is responsible for the recognition of the hand

gestures, generated by the user, as well as the actions that are triggered accordingly. The flow of

the script code is as follows:

1. Checking if the current tab has focus and only then run the extension.(Figure 43)

2. Parsing of the JSON file to get skeleton info.

71

// Get the data in JSON format.

var jsonObject = JSON.parse(event.data);

Figure 57 - Parsing retrieved Json data

3. Manipulating the received data and store what is needed:

a. The skeleton’s Id

///

/// Get Skeleton ID

///

for (var i = 0; i < jsonObject.skeletons.length; i++) {

for (var j = 0; j < jsonObject.skeletons[i].id.length; j++) {

 var jointID = jsonObject.skeletons[i].id[j];

 skeletonIdArray.push(jointID);

 }

 }

Figure 58 - Getting skeleton's Id

b. The name of the tracked skeleton joints.

///

/// Get Joints Names

///

for (var i = 0; i < jsonObject.skeletons.length; i++) {

 for (var j = 0; j < jsonObject.skeletons[i].joints.length; j++){

 var jointName = jsonObject.skeletons[i].joints[j].name;

 jointNameArray.push(jointName);

 }

 }

Figure 59 - Get skeleton joints' names

c. Specify the skeleton joints needed in order to create the hand gesture

check while converting them into 3D Vectors objects.

72

for (var i = 0; i < jsonObject.skeletons.length; i++) {

 for (var j = 0; j < jsonObject.skeletons[i].joints.length; j++) {

 switch (jsonObject.skeletons[i].joints[j].name) {

 case "wristright":

 var wristRight_Vector3D =

 new Vector(jsonObject.skeletons[i].joints[j].x,

 jsonObject.skeletons[i].joints[j].y,

 jsonObject.skeletons[i].joints[j].z);

 break;

 case "wristleft":

 var wristLeft_Vector3D =

 new Vector(jsonObject.skeletons[i].joints[j].x,

 jsonObject.skeletons[i].joints[j].y,

 jsonObject.skeletons[i].joints[j].z);

 break;

 //...

 //...

 //...

 }

 }

Figure 60 - Specify joints to create gestures

d. Check for user’s performed hand gestures and trigger their events.

///

/// Detect Gestures and trigger actions

///

waveGesture(elbowRight_Vector3D, wristRight_Vector3D,

wristLeft_Vector3D, head_Vector3D);

setZoomPage(shoulderCenter_Vector3D, wristRight_Vector3D,

wristLeft_Vector3D,head_Vector3D,

shoulderRight_Vector3D, shoulderLeft_Vector3D);

Figure 61 - Functions called for gesture recognition

 Creating the Hand Gestures and the triggered actions

In contrast with the Leap API that provides a number of hand or finger gestures, the API

provided for Kinect, along with the SDK 1.8, gives the developer the opportunity to manipulate

the retrieved data, with no predefined hand or body gestures. This is the reason why, for our

approach, a number of simple hand gestures were created, in order to interact with the Chrome

73

browser or the visited page. As shown in Figure 61 two function are called to detect the

performed hand gestures by the user and trigger some browser actions accordingly.

 Wave – Swipe Gesture

This function is responsible to detect whether the user swipes with their right hand to any

direction in (x, y) axis or make a “wave” gesture. The arguments needed for the function are four

skeleton joints, such as:

 The right elbow,

 The right wrist,

 The left wrist and

 The head.

Since all these points are 3D vectors, the value of their position in (x, y) axis can be

stored and manipulated separately. More precisely, to create a swipe gesture, the following

checks should be made (see Figure 62):

 the wrist should be above or below the elbow (y axis check),

 the wrist should move either right or left of the elbow (x axis check).

To avoid conflict with other hand gestures, another check must be performed, meaning

whether the other hand from the one that produces the swipe gesture, is higher than the head (y

axis check). Whenever these checks succeed, then the swipe gesture is complete in each

direction.

///

/// wristR above elbowR

///

if (joint1_vector.y > joint2_vector.y) {

///

/// wristR right of the elbowR

///

if (joint1_vector.x < joint2_vector.x) {

///

/// left wrist above head

///

if(joint3_vector.y < joint4_vector.y){

///

/////////////////// ADD SWIPE ACTION //////////////////

//

} } }

Figure 62 - Creation of right swipe gesture

74

The left swipe gesture, or both gestures performed by the left hand, can be created by following

the same technique.

 The easiest way to create a wave gesture, is to consider it as a combination of many

swipe gestures. For this reason, after the completion of a swipe gesture, a “wave counter”

variable increases its value by one and when it reaches a specific number, then the wave gesture

is completed. In addition to the previous counter check, to avoid gesture conflicts, a timer is also

created in order to measure the time between the first performed swipe gesture and the

completion of the wave gesture. The logic behind this thought, is that the natural wave gesture is

performed quickly enough, separating it from distinct swipe gestures (see Figure 63).

// start right swipe gesture

waveCounter++;

/// Start action timer in order to avoid gesture conflict

if (start_action == 0) {

 start_action = new Date().getTime();

}

//.....

// start left swipe gesture

waveCounter++;

//.....

if (waveCounter == 4) {

 var end_action = new Date().getTime();

 //convert milliseconds to seconds

 var offset = (end_action - start_action) / 1000;

 waveCounter = 0;

 ///

 /// if the offset lasts less than 2.5 seconds, in order to

distinguish from swipe gestures

 ///

 if (offset < 2.5) {

 ///

 /////////////////// ADD WAVE ACTION //////////////////

 ///

 }}

Figure 63 - Creation of wave gesture

75

The actions triggered by the hand gestures, are achieved through code injection, as mentioned in

the previous chapter of Leap motion sensor and are demonstrated in the table below:

Hand Gestures Triggered Actions

Wave Reload page

Wrist above elbow

Right Swipe Play html5 video

Left Swipe Pause html5 video

Wrist below elbow

Right Swipe Increase video’s volume

Left Swipe Decrease video’s volume

Table 5 - Actions triggered by gestures

 Zoom In and Zoom Out the visited page

With this function, the user can increase or decrease the zoom level of the visited page’s

document body (see Figure 64). As arguments four skeleton joints are used:

 Spine,

 Right wrist,

 Left wrist and

 Head

The checks that must succeed are:

 The distance of both wrists from the spine joint, must exceed the 30cm, in order

to continue (z axis check).

 Calculate the distance between both wrists.

After calibrating the variable holding the value of this distance then the zoom level of the

document’s body changes accordingly. In addition to that, this variable is limited to the

browser’s minimum or maximum zoom level value.

76

The last gesture inside this script that must be check is, whether both wrists of the user exceed

the height of their head (y axis check) and if succeeded then restore the page’s default zoom

level.

spine_wristR_dist = joint1_vector.z - joint2_vector.z;

spine_wristL_dist = joint1_vector.z - joint3_vector.z;

wristR_wristL_dist = joint2_vector.x - joint3_vector.x;

if((spine_wristR_dist > 0.3)&& (spine_wristL_dist> 0.3)){

 currentZoom = wristR_wristL_dist - 70;

 if((currentZoom <= maxPageZoom) || (currentZoom >=

minPageZoom)){

 document.body.style.zoom = currentZoom.toString() + "%";

 if(currentZoom > maxPageZoom){

 document.body.style.zoom = maxPageZoom.toString() + "%";

 }

 else if(currentZoom < minPageZoom){

 document.body.style.zoom = minPageZoom.toString() + "%";

 }

 }

}

if((joint4_vector.y > joint2_vector.y) && (joint4_vector.y >

joint3_vector.y)){

 document.body.style.zoom = defaultZoom.toString() + "%";}

Figure 64 - Zoom in - out gesture and actions triggered

77

Chapter 5 - Conclusion, Final Thoughts & Future Work

Ambient intelligence or ubiquitous computing is attempting to embed modern technology

into education, work and mostly in everyday life. Even though the relationship between man and

computer is becoming increasingly complicated and inherently multimodal, many computer

science fields try to make this interaction more natural and invisible at the same time. The term

multimodal refers to the combination of multiple and different modalities and to the ways that

the system responds to the received inputs which originate from human types of communication.

 Hence through this dissertation, the beneficial use of an interactive multimodal

framework is presented, in order to successfully handle a complicated system with various

multimodal inputs, such as voice commands, hand gestures and touch gestures.

More precisely C.O.A.L.S. framework achieves the previously stated goals, firstly by

fusing – combining different modalities, secondly by interpreting the previous fusions while

extracting semantic meaning from them and thirdly by providing the user the right feedback,

according to the preceding procedures.

Furthermore, the final aim of this thesis, is to gather different modalities as input to the

system with the use of complex multimodal sensors such as the Microsoft Kinect and the Leap

Motion. These sensors collaborate with the internet browser through a client – server based

communication model. Even though these devices and their input are part of an interactive cross-

platform system, in this thesis it was preferred to present some use case scenarios, through

Google Chrome browser extensions. This choice was made because devices other than personal

computers and laptops, such as portable devices (tablets and smartphones) cannot connect with

the already mentioned sensors.

For future work there are enough thoughts that could be materialized. Regarding the

framework, much more descriptions and actions could be integrated inside the vocabulary which

is in the fusion engine and the applications – actions table in the dialogue manager, in order to

cover a wider field of commands in each application.

Concerning the browser extensions and the multimodal sensors, after using the existing

programming code with a specific application, the enrichment of the detected actions made by

the users is a good start point to begin from, in order to fulfill more use case scenarios.

Furthermore, cross browser scripting could be a good idea to follow, in order to avoid a single

78

browser selection. However the implementation is quite difficult along with incompatibilities

among the browsers. Moreover in the near future if the connectivity issues between external

multimodal sensors and portable devices cease to exist, the use of the browser extensions might

be less useful and will probably be avoided, even though their development might continue as a

separate application in collaboration with other ones.

79

References

[1] Bellik and D. Teil, “Définitions Terminologiques pour la Communication Multimodale,”

presented at the Proceedings of interface Hommemachine (IHM), 1992.

[2] Sears A. and Jacko J., “The Human-Computer Interaction Handbook: Fundamentals,

Evolving Technologies and Emerging Applications.”, 2007.

[3] Moore Christian, "New Community Open". NUI Group Community, 2006.

[4] Varchalamas Petros, “Development of a Natural User Interface and creation of a Context

Information Manager, using Microsoft Kinect.”, 2013.

[5] Josh Bersin, “The Blended Learning Book: Best Practices, Proven Methodologies and

Lessons Learned.”

[6] Norm Friesen, “Report: Blended Learning.”, 2012

[7] Tarja Susi, Mikael Johannesson, Per Backlund, “Serious Games – An Overview”,

University of Skövde, Sweden, 2007

[8] C.S. Wasson, “System Analysis, Design, and Development: Concepts, Principles, and

Practices”, John Wiley & Sons, Hoboken 2006.

[9] Karray, Fakhreddine; Alemzadeh, Milad; Saleh, Jamil Abou; Arab, Mo Nours, “Human-

Computer Interaction: Overview on State of the Art”, Waterloo, Canada 2008

[10] S. Oviatt, “Multimodal interfaces”, in J.A. Jacko and A. Sears (eds), The Human-

Computer Interaction Handbook: Fundamentals, Evolving Technologies, and

Emerging Application, Lawrence Erlbaum Associates, Mahwah 2003.

[11] R.A. Bolt, “Put-that-there: voice and gesture at the graphics interface”, Proceedings of

the 7th Annual Conference on Computer Graphics and Interactive Techniques,

Seattle, Washington, United States, pp 262-270 (1980).

[12] I. McCowan, D. Gatica-Perez, S. Bengio, G. Lathoud, M. Barnard and D. Zhang,

“Automatic analysis of multimodal group actions in meetings”, IEEE Transactions

on PAMI, 27(3), pp 305-317 (2005).

[13] S. Meyer and A. Rakotonirainy, “A Survey of research on context-aware homes”,

Australasian Information Security Workshop Conference on ACSW Frontiers, pp

159-168 (2003).

[14] P. Smith, M. Shah and N.D.V. Lobo, “Determining driver visual attention with one

camera”, IEEE Transactions on Intelligent Transportation Systems, 4(4), pp 205-218

(2003).

80

[15] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamentals, MIT Press,

Cambridge (2003).

[16] Y. Arafa and A. Mamdani, “Building multi-modal personal sales agents as interfaces to

E-commerce applications”, Proceedings of the 6th International Computer Science

Conference on Active Media Technology, pp 113-133 (2001).

[17] Y. Kuno, N. Shimada and Y. Shirai, “Look where you’re going: a robotic wheelchair

based on the integration of human and environmental observations”, IEEE Robotics

and Automation, 10(1), pp 26-34 (2003).

[18] L. Nigay and J. Coutaz, “Multifeature Systems: The CARE Properties and Their Impact

on Software Design,” in Multimedia Interfaces: Research and Applications, chapter

9, 1997.

[19] S. Oviatt, “Advances in robust multimodal interface design,” IEEE Computer Graphics

and Applications, vol. 23, no. 5, pp. 62–68, Sep. 2003.

[20] L. Nigay and J. Coutaz, “A Design Space for Multimodal Systems: Concurrent

Processing and Data Fusion,” in Proceedings of the INTERACT ’93 and CHI ’93

Conference on Human Factors in Computing Systems, New York, NY, USA, 1993.

[21] E. Petajan, B. Bischoff, D. Bodoff, and N. M. Brooke, “An Improved Automatic

Lipreading System to Enhance Speech Recognition,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, New York, NY, USA, 1988.

[22] C. Sanderson and K. Paliwal, Information Fusion and Person Verification Using Speech

& Face Information, 2002.

[23] L. Zhang, J. Sturm, D. Cremers, and D. Lee, “Real-Time Human Motion Tracking using

Multiple Depth Cameras,” in Proc. of the International Conference on Intelligent

Robot Systems (IROS), 2012.

[24] T. H. Bui, “Multimodal Dialogue Management - State of the art,” Jan-2006.

[25] P. Cohen, “Dialogue Modeling,” Dialogue Modeling, 1997.

[26] D. R. Traum and S. Larsson, “The Information State Approach to Dialogue

Management,” in Current and New Directions in Discourse and Dialogue, J. van

Kuppevelt and R. W. Smith, Eds. Springer Netherlands, 2003, pp. 325–353.

[27] G. E. Churcher, E. S. Atwell, and C. Souter, “Dialogue Management Systems: a Survey

and Overview,” 1997

[28] D. G. Novick and K. Ward, “Mutual Beliefs of Multiple Conversants: A Computational

Model of Collaboration in Air Traffic Control,” in Proceedings of the Eleventh

National Conference on Artificial Intelligence, Washington, D.C., 1993, pp. 196–

201.

81

[29] N. Reithinger, J. Alexandersson, T. Becker, A. Blocher, R. Engel, M. Löckelt, J. Müller,

N. Pfleger, P. Poller, M. Streit, and V. Tschernomas, “Smartkom - adaptive and

flexible multimodal access to multiple applications,” in IN PROC. OF THE 5TH

INT. CONF. ON MULTIMODAL INTERFACES, 2003, pp. 101–108

[30] N. Reithinger, D. Fedeler, A. Kumar, C. Lauer, E. Pecourt, and L. Romary, “Miamm —

A Multimodal Dialogue System Using Haptics,” in Advances in Natural Multimodal

Dialogue Systems, J. C. J. van Kuppevelt, L. Dybkjær, and N. O. Bernsen, Eds.

Springer Netherlands, 2005, pp. 307–332

[31] “Cortana”, Microsoft, “http://windows.microsoft.com/en-us/windows-10/getstarted-what-

is-cortana”.

[32] “Siri”,Apple, “http://www.apple.com/ios/siri “.

[33] S. Oviatt, “The Human-computer Interaction Handbook,” J. A. Jacko and A. Sears, Eds.

Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 2003, pp. 286–304

[34] M. Fasciano and G. Lapalme, “Intentions in the Coordinated Generation of Graphics and

Text from Tabular Data,” Knowledge and Information Systems, vol. 2, no. 3, pp.

310–339, Aug. 2000.

[35] C. Duarte, “Design and Evaluation of Adaptive Multimodal Systems,” PhD Thesis,

Universidade de Lisboa, 2007.

[36] J. Bateman, T. Kamps, J. Kleinz, and K. Reichenberger, “Towards Constructive Text,

Diagram, and Layout Generation for Information Presentation,” Computational

Linguistics, vol. 27, no. 3, pp. 409–449, Sep. 2001.

[37] M. Fasciano and G. Lapalme, “Intentions in the Coordinated”.

[38] Y. Han and I. Zukerman, “A Mechanism for Multimodal Presentation Planning Based on

Agent Cooperation and Negotiation,” Hum.-Comput. Interact., vol. 12, no. 1, pp.

187–226, Mar. 1997.

[39] Microsoft Kinect Official WebPage, “www.microsoft.com/en-us/kinectforwindows”

[40] PrimeSense Ltd, “The PrimeSensor(TM) Reference Design 1.08.”

[41] IR Camera Sensor SwissRanger 4000,

“http://www.adept.net.au/cameras/Mesa/SR4000.shtml”

[42] Kinect Fusion, Kinect for Windows, (SDK 1.7,1.8), “https://msdn.microsoft.com/en-

us/library/dn188670.aspx”

[43] Deapth Sensor patent, ZALEVSKY, Z. et al.,

“http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2007043036&recNum=1

&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCT+Biblio”

82

[44] K. Khoshelham. Accuracy Analysis of Kinect Depth Data, (2011).

[45] Z. S. A. M. A. e. a. Zalevsky, «Method and System for Object Reconstruction». USA

2006

[46] MICROSOFT KINECT SDK, ”http://www.microsoft.com/en-

us/kinectforwindows/develop/developer-downloads.aspx”

[47] OpenNI Nite , “http://openni.org/”

[48] Open Kinect Project, “http://openkinect.org/wiki/Main_Page”

[49] OPENKINECT Main Page,” http://openkinect.org/wiki/Main_Page”

[50] CL NUI Platform. Code Laboratories, “http://codelaboratories.com/kb/nui”

[51] EVOLUCE SDK, “http://www.evoluce.com/en/software/sdk-for-kinect.php”

[52] Leap Motion - The Leap, “https://www.leapmotion.com/”

[53] Leap motion sensor. How does it work?, “http://blog.leapmotion.com/hardware-to-

software-how-does-the-leap-motion-controller-work”

[54] Etherington, Darrell, "Leap Motion Controller Ship Date Delayed Until July 22, Due To

A Need For A Larger, Longer Beta Test", 2013

[55] Airspace download center, “https://www.leapmotion.com/apps”

[56] Asus - Xtion Pro Official WebPage, “http://www.asus.com/Multimedia/Xtion_PRO/”

[57] Crossrider framework, “http://crossrider.com/developers”

[58] Extension Maker, “http://extensionmaker.com”

[59] Kango framework, “http://kangoextensions.com/about.html”

[60] Crossbrowser, “http://crossbrowser.com”

[61] Adobe Flash Player, “http://www.adobe.com”

[62] Java, “https://www.oracle.com/java/index.html”

[63] Adobe (Macromedia) Flash, “https://en.wikipedia.org/wiki/Adobe_Flash_Player”

[64] Microsoft Silverlight [“https://www.microsoft.com/silverlight/what-is-silverlight”]

[65] Apple Quicktime [“http://www.apple.com/quicktime/what-is/”]

[66] Adobe Reader [“https://helpx.adobe.com/reader/faq.html”]

83

[67] Bonk, C. J. & Graham, C. R. (Eds.). (in press). Handbook of blended learning: Global

Perspectives, local designs. San Francisco, CA: Pfeiffer Publishing, Chapter 1.1,

Blended learning systems : Definition, current trends, and future directions

[68] A White Paper: Achieving Success with Blended Learning, By Harvi Singh and Chris

Reed, Centra Software

[69] Blended learning: Uncovering its transformative potential in higher education, D. Randy

Garrison*, Heather Kanuka Learning Commons, Room 525, Biological Sciences

Building, University of Calgary, 2500 University Drive NW, Calgary, Alberta,

Canada, 13 February 2004

[70] Google Chrome developers page,

“https://developer.chrome.com/extensions/manifest/manifest_version”

[71] WebKit, “https://www.webkit.org/”

[72] Extension’s Background page in Incognito Mode,

“https://support.google.com/chrome/answer/95464?hl=en”

[73] Cohen, P. R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., Chen, L., Clow,

J. 1997. QuickSet: multimodal interaction for distributed applications. In Proceedings

of the Fifth ACM international Conference on Multimedia, Seattle, USA, pp. 31-40,

(1997).

[74] Koons, D., Sparrell, C., Thorisson, K. 1993. Integrating simultaneous input from speech,

gaze, and hand gestures. In M. Maybury (Ed.), Intelligent Multimedia Interfaces.

Cambridge, MA: MIT Press, pp. 257- 276 (1993).

[75] Mugellini, E., Lalanne, D., Dumas, B., Evequoz, F., Gerardi, S., Le Calvé, A., Boder, A,

Ingold, R., Abou Khaled, O. 2009. Memodules as tangible shortcuts to multimedia

information. In Denis Lalanne, Jürg Kohlas eds. Human Machine Interaction, LNCS

5440, Springer-Verlag, Berlin/Heidelberg, pp. 103-132 (2009).

[76] Norman, D.A. 1998. The Design of Everyday Things. New York: Basic Book (1988).

[77] Nigay, L. 1994. Conception et modélisation logicielles des systèmes interactifs:

application aux interfaces multimodales. PhD dissertation.

[78] Bruno Dumas, “Frameworks, description languages and fusion engines for multimodal

interactive systems.”, 2010

