
Technological Educational Institute of Crete

Department of Informatics Engineering

Software Engineering

Student: Fifli Konstantina

AM: 2422

Supervisor Professor: Papadakis Nikolaos

Heraklion, 2016

BSC. THESIS

SUPERVISION OF DATA

TRANSFER WITH PYTHON

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 1

Acknowledgment

I wish to express my sincere thanks to Mr. Papadakis, my thesis supervisor, for provid-

ing me with all the necessary information and guiding me during the whole process. I

take this opportunity to express gratitude to all the Department faculty members for

their technical support. Principally, special thanks to my parents, Kyriakos and

Kondulia Fifli for the unceasing encouragement and the continuous economic support

and inspiration. Finally, I would like to express my gratitude to all friends who have

accompanied me during all those academic years.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 2

Σύνοψη

Σήμερα, υπάρχουν πολύ περισσότεροι άνθρωποι που αλληλεπιδρούν με πληροφορίες. Το ποσό των

ψηφιακών πληροφοριών αυξάνεται κατά δέκα φορές κάθε πέντε χρόνια. Κάθε μέρα, δημιουργούμε

2,5 τετράκις εκατομμύρια bytes δεδομένων - το 90% των δεδομένων στον κόσμο σήμερα έχει δημιο-

υργηθεί τα τελευταία δύο χρόνια μόνο. Τα παραπάνω στοιχεία προέρχονται από παντού: αισθητήρες

που χρησιμοποιούνται για τη συλλογή πληροφοριών κλίματος, δημοσιεύσεις σε δικτυακούς τόπους

κοινωνικών μέσων ενημέρωσης, ψηφιακές φωτογραφίες και βίντεο, καθώς και τα σήματα GPS κινη-

τών τηλέφωνων, για να αναφέρουμε μερικά. Ο κόσμος περιέχει αφάνταστα τεράστια ποσότητα ψηφι-

ακών πληροφοριών που γίνεται αχανές όλο και πιο γρήγορα. Επιπλέον, να εξασφαλίσουμε την ασφά-

λεια των δεδομένων και την προστασία τους γίνεται όλο και πιο δύσκολο.

Η δημιουργία αντιγράφων ασφαλείας των δεδομένων του υπολογιστή είναι κρίσιμη. Είναι κάτι που

πρέπει να ληφθεί σοβαρά υπόψη, για παράδειγμα, εταιρείες σήμερα θα μπορούσαν να οδηγηθούν σε

πτώχευση από εάν χάσουν τα δεδομένα τους. Η δημιουργία αντίγραφων ασφαλείας (Backup) είναι

μια διαδικασία που είναι πλέον υποχρεωτική και πρέπει να εκτελεστεί σωστά και αποτελεσματικά.

Όμως, εξαιτίας πολλών προβλημάτων, τα αντίγραφα ασφαλείας μπορεί να μην πραγματοποιηθούν με

επιτυχία.Η παρουσία ενός προγράμματος, το οποίο επιτρέπει την ανίχνευση διπλοαντιγράφων δεδο-

μένων, καθώς επίσης, παρέχει την ασφάλεια ενός υψηλού επίπεδου μεταφοράς δεδομένων, αποτελεί

ένα χρήσιμο εργαλείο για τη διαχείριση των δεδομένων.

Ένα πρόγραμμα που είναι σε θέση να μειώσει δραματικά την άσκοπη χρήση επιπλέον χώρου αποθήκε-

υσης και επιπλέον, βοηθά τους ανθρώπους να ελαχιστοποιήσουν το χρόνο που δαπανούν για να οργα-

νώσουν τα δεδομένα τους και κατά γενική ομολογία, απαλλάσσει τους πελάτες από ένα μεγάλο φόρτο

εργασίας

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 3

Abstract

Nowadays, there are much more people who interact with information. The amount of

digital information increases tenfold every five years. Every day we create 2.5 quintil-

lion bytes of data, so much that 90% of the data in the world today has been created in

the last two years only. Data come from everywhere: sensors used to gather climate

information, posts on social media websites, digital pictures, videos, purchase transac-

tion records, and cell phone GPS signals to name a few. The world contains an unim-

aginably vast amount of digital information that is currently getting bigger and bigger

every day.

Moreover, ensuring data security and protecting them is becoming harder as infor-

mation are shared even more widely around the world. Backing up computer’s data is

critical and is something that should not be taken lightly, for instance companies today

could go bankrupt by losing all their data. Backup is a process that is now mandatory

and that needs to be performed properly and efficiently.

The presence of a program allowing the detection of duplicated data as well as provid-

ing the insurance of a high performed transfer, constitutes a useful tool for insuring

that data are correctly transferred between two locations, and reduce dramatically the

unnecessarily occupying extra space of storage. In addition, it helps people to mini-

mize the time spend on organizing their data and admittedly exempts people of a sig-

nificant workload.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 4

Content

Acknowledgment .. 1

Σύνοψη .. 2

Abstract ... 3

Chapter 1. Introduction ... 9

1.1 Summary .. 9

1.2 Motivation for conducting project ... 9

1.3 Main subject .. 10

1.4 Structure... 11

Chapter 2. Research & Methodology ... 12

2.1 Programming Language .. 12

2.1.1 What is Python? Executive Summary ... 12

2.1.2 Comparing Python to Other Languages .. 13

2.1.3 Python as Programming Language ... 16

2.1.4 Python Versions .. 17

2.2 The Development Environment .. 18

2.2.1 What is a Text Editor?... 18

2.2.2 What is an IDE? .. 19

2.2.3 Text Editor Vs IDE ... 21

2.2.4 PyCharm .. 22

2.3 Methodology .. 24

Chapter 3. Project implementation ... 25

3.1 Installations .. 25

3.1.1 Python installation ... 25

3.1.2 IDE/PyCharm installation ... 28

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 5

3.1.3 Configuring Python Interpreter ... 31

3.2 Implementation .. 32

3.2.1 Scripts for comparison .. 33

3.2.2 Other scripts .. 39

3.2 Test phase .. 41

Chapter 4. Results ... 44

4.1 Text report ... 44

4.2 HTML report ... 47

Chapter 5. Conclusion & Future work .. 52

5.1 Conclusion ... 52

5.2 Future work.. 52

6. BIBLIOGRAPHY ... 53

6.1 Links .. 53

6.2 Books ... 53

Chapter 7. Appendixes .. 54

7.1 Check.py .. 54

7.2 Statistic.py ... 56

7.3 Basicmp.py .. 59

7.4 Digest.py .. 61

7.5 Duplicate.py ... 62

7.6 List.py .. 66

7.8 Results TXT ... 66

7.8 Results HTML ... 67

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 6

Figure 1. Most popular programming Language .. 15

Figure 2. Versions of Python .. 17

Figure 3. Text Editors ... 19

Figure 4. PyCharm .. 23

Figure 5. Gantt Diagram ... 24

Figure 6. Download python .. 25

Figure 7. Step1: Python installation .. 26

Figure 8. Step2: Python installation .. 26

Figure 9. Step3: Python installation .. 26

Figure 10. Step4: Python installation .. 27

Figure 11. Step5: Python installation .. 27

Figure 12. Step6: Python installation .. 27

Figure 13. PyCharm download ... 28

Figure 14. Step1: pyCharm installation .. 28

Figure 15. Step2: pyCharm installation .. 28

Figure 16. Step3: pyCharm installation .. 29

Figure 17. Step4: pyCharm installation .. 29

Figure 18. Step5: pyCharm installation .. 29

Figure 19. Step6: pyCharm installation .. 30

Figure 20. Step7: pyCharm installation .. 30

Figure 21. Step8: pyCharm installation .. 30

Figure 22. Step9: pyCharm installation .. 31

Figure 23. PyCharm theme ... 31

Figure 24. Step2 configure interpreter .. 32

Figure 25. Step3 configure interpreter .. 32

Figure 26. Line numbers ... 32

Figure 27. Scripts architecture .. 33

Figure 28. Statistic.py - folder size ... 34

Figure 29. Statistic script-number of folders .. 35

Figure 30. Statistic.py- table code... 35

Figure 31.statistic table-terminal .. 36

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 7

Figure 32.comparsion.py- call .. 36

Figure 33. Basicmp.py .. 36

Figure 34. Basicmp.py-results .. 36

Figure 35. Comparison.py-digest.py ... 37

Figure 36.comparison.py-digest results .. 37

Figure 37. Duplicate.py -1 .. 38

Figure 38. Duplicate.py-2 ... 38

Figure 39. Duplicate.py - results ... 39

Figure 40. List.py .. 40

Figure 41. Check.py .. 40

Figure 42.Check.py2 ... 41

Figure 43.Check.py- results .. 41

Figure 44. Check.py usage .. 41

Figure 45. Dircmp ... 42

Figure 46. Dircmp- Results1 ... 42

Figure 47. Dircmp - Results2 .. 43

Figure 48 New List-timer-sec ... 43

Figure 49. Txt command ... 44

Figure 50.Results1- TXT .. 45

Figure 51. Results2 - TXT .. 45

Figure 52. Check.py –TXT ... 45

Figure 53. Statistic.py- TXT ... 46

Figure 54. Digest.py –TXT ... 46

Figure 55. Duplicate.py -TXT .. 46

Figure 56. Basicmp.py - TXT ... 46

Figure 57. HTML report- results1 .. 47

Figure 58. HTML report- results2 .. 48

Figure 59. HTML report- results3 .. 48

Figure 60. HTML_tools.py ... 49

Figure 61 HTML.py .. 49

Figure 62.HTML code .. 50

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 8

Figure 63. Check.py –HTML.. 50

Figure 64. Statistics.py- HTML .. 50

Figure 65. Bascmp.py –HTML ... 50

Figure 66. Digest.py –HTML ... 51

Figure 67. Duplicate.py –HTML .. 51

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 9

Chapter 1. Introduction

1.1 Summary

 In the present BSc. thesis is designed, developed and implemented, an

autonomous software program for supervising and securing any data transfer. The

purpose of this program is to better organize data and transfer them in a safer and

harmless way. It can be benefic to a large range of users like companies, big sized or

small sized, up to a single person who owns a computer. Briefly, this program is de-

signed to provide the opportunity to check for duplicated data of any type as well as to

detect data that have been modified and/or altered while transferring from a storage to

another.

This program is coded with Python scripting language and developed through

the PyCharm editor. Also are used, the Markup Language HTML helped by CSS for

an appropriate display of the results.

1.2 Motivation for conducting project

The evolution of technology has influenced our lives and our “technological”

habits. Consequently, the amount of data which we produce daily is increased. As the

use of the internet is broad and the technological achievements greatly multiply, sever-

al amounts of data are produced and stored in local disks, removable disks, cloud, and

servers. Sometimes we even have duplications of the same data which is unnecessari-

ly occupying extra space of our storage. At one point, this data redundancy creates the

unavoidable need to delete some data or to alternatively transfer it onto another stor-

age. However, due to several reasons, the transfer of data might not happen success-

fully.

The presence of a program, which allows the detection of the unnecessarily du-

plicated data, provides the insurance of a high performed transfer, constitutes a useful

tool for managing data. In addition, beyond its use case, it helps people to minimize

the time spend on organizing their data and admittedly, exempts clients of a significant

workload.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 10

As part of the requirements which are referenced above, is developed a program

which is the main subject of the current thesis.

1.3 Main subject

 The main goal of this thesis is to compare data and supervise its transfer. We

need to frequently delete unnecessary data which are duplicated or just updated and

modified.

File comparison is an important, and most likely integral, part of file synchroni-

zation and backup. In backup methodologies the issue of data corruption is crucial.

Corruption occurs without warning and without our knowledge, therefore, once it is

noticed then it’s too late to recover the missing parts. Usually, the only way to know

for sure that a file has been corrupted is when it is opened by the user. Barring that,

the user must use a comparison tool to at least recognize that a difference has been

made. Therefore, all file synchronization or backup programs must include file com-

parison to be useful and trustworthy.

Below are summarized the functions performed by the program.

 Compares any type of format (ex. Microsoft Word, Excel, PowerPoint, PDF, Text,

DOCX)

 Track file deletions (files deleted on either side)

 Track file conflicts (files changed on both sides)

 Detect and compare hidden files/folders

 Detect Size difference

 Detect Digest difference

 Follow and compare symbolic links

 Compare histogram data

 Check both ASCII & Binary

 Works with all media: hard disks, USB disks, NAS, flash drives, DVD-RW,

CD-RW, etc.

 Works between computers, over Network, LAN, VPN

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 11

 5 Reconciliation Methods: Synchronization, Backup, Mirroring, Replication,

Consolidation

 No limit on data size or file size

Furthermore, it will list all the export comparison results, in a generated TXT

file and in an HTML report.

Below are summarized what will be performed by the HTML report and the TXT file.

 The paths of the missing folders/files

 The paths of the modified folders/files

 The paths of duplicated files

 The numbers of items compared

 The real size, in bytes and in GB

1.4 Structure

Below is described the current project’s structure.

Chapter 2 is describing the expected research on the subject in order to define

the methodology that will be follow. In chapter 3 is covering the implementation

phase, which is divided into two subcategories, the implementation phase itself and the

test phase. The consequent results of the project can be found in chapter 4 enrichened

with figures in order to give plain examples. Shortly before the end, chapter 5 is com-

posed of the conclusions and the possible future extensions. Chapter 6 contains the

bibliography and in chapter 7 are listed the appendixes.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 12

Chapter 2. Research & Methodology

2.1 Programming Language

 To begin with, the idea of creating a tool which can compare data was not an

innovation. By doing a quick research, we can easily find that there are plenty of soft-

ware offering the possibility to compare data. Despite all of these, the decision to build

a totally new tool was taken. A tool which will not cost anything and which will meet

all the user’s expectations.

Starting with the research of the programming language which will be used to

develop the idea, is usually the first thing to do. After taking a deep and careful general

look at many programming languages, Python was the one catching the interest. To

justify this choice the following section covers an introduction about Python, firstly,

and secondly a comparison between Python and few others programming languages.

2.1.1 What is Python? Executive Summary

Python is an interpreted, object-oriented, high-level programming language

with dynamic semantics. Its high-level built in data structures, combined with dynam-

ic typing and dynamic binding, makes it very attractive for Rapid Application Devel-

opment, as well as for use as a scripting or glue language to connect existing compo-

nents together. Python's simple, easy to learn as the syntax emphasizes readability and

therefore reduces the cost of program maintenance. Python supports modules and

packages, which encourages program modularity and code reuse. The Python inter-

preter and the extensive standard library are available in source or binary form without

charge for all major platforms and can be freely distributed.

Often, programmers choose work with Python because of the increased produc-

tivity it provides. Since there is no compilation step, the edit-test-debug cycle is in-

credibly fast. Debugging Python programs is easy, a bug or bad input will never cause

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 13

a segmentation fault. Instead, when the interpreter discovers an error, it raises an ex-

ception. When the program doesn't catch the exception, the interpreter prints a stack

trace. A source level debugger allows inspection of local and global variables, evalua-

tion of arbitrary expressions, setting breakpoints, stepping through the code a line at a

time, and so on. The debugger is written in Python itself, testifying to Python's intro-

spective power. On the other hand, often the quickest way to debug a program is to

add a few print statements to the source, the fast edit-test-debug cycle makes this sim-

ple approach very effective.

2.1.2 Comparing Python to Other Languages

 Python is often compared to other interpreted languages such as Java, JavaS-

cript, and Perl. Comparisons to C can also be enlightening. In this section, will briefly

compare Python to each of these languages. These comparisons are focused on lan-

guage issues only. In practice, the choice of a programming language is often dictated

by other real-world constraints such as cost, availability, training, and prior invest-

ment, or even emotional attachment. Since these aspects are highly variable, it seems a

waste of time to consider them much for this comparison.

 Java

Python programs are generally expected to run slower than Java programs, but

they also take much less time to develop. Python programs are typically 3-5 times

shorter than equivalent Java programs. This difference can be attributed to Python's

built-in high-level data types and its dynamic typing. For example, a Python pro-

grammer wastes no time declaring the types of arguments or variables. Also Python's

powerful polymorphic list and dictionary types, for which rich syntactic support is

built straight into the language, find a use in almost every Python program. Because

of the run-time typing Python's run time must work harder than Java's. For example

when evaluating the expression a+b, it must first inspect the object a and b to find out

their type which is not known at compile time. It then invokes the appropriate addition

operation which may be an overloaded user-defined method. Java, on the other hand,

can perform an efficient integer or floating point addition but requires variable declara-

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 14

tions for a and b and does not allow overloading of the + operator for user-defined

classes instances.

For these reasons, Python is much suited as a "glue" language while Java is bet-

ter characterized as a low-level implementation language. In fact, the two together

make an excellent combination. Components can be developed in Java and combined

to form applications in Python. Python can also be used to prototype components until

their design can be "hardened" in a Java implementation. To support this type of de-

velopment, a Python implementation written in Java is under development which al-

lows calling Python code from Java and vice versa. In this implementation, Python

source code is translated to Java bytecode (with help from a run-time library to support

Python's dynamic semantics).

 JavaScript

Python's "object-based" subset is roughly equivalent to JavaScript. Like JavaS-

cript (and unlike Java), Python supports a programming style that uses simple func-

tions and variables without engaging in class definitions. However, for JavaScript,

that's all there is. Python, on the other hand, supports writing much larger programs

and better code reuse through a true object-oriented programming style where classes

and inheritance play an important role.

 Perl

Python and Perl come from a similar background (UNIX scripting which both

have long outgrown) and sport many similar features but have a different philosophy.

Perl emphasizes support for common application-oriented tasks, e.g. by having built-in

regular expressions, file scanning and report generating features. Python emphasizes

support for common programming methodologies such as data structure design and

object-oriented programming, and encourages programmers to write readable (and

thus maintainable) code by providing an elegant but not overly cryptic notation. As a

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 15

consequence, Python comes close to Perl but rarely beats it in its original application

domain; however Python has an applicability well beyond Perl's niche.

 C++

Almost everything said for Java also applies for C++, just more so: where Py-

thon code is typically 3-5 times shorter than equivalent Java code, it is often 5-10

times shorter than equivalent C++ code. Anecdotal evidence suggests that one Python

programmer can finish in two months what two C++ programmers can't complete in a

year. Python shines as a glue language, used to combine components written in C++.

Figure 1. Most popular programming Language

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 16

2.1.3 Python as Programming Language

Due to the above reasons, Python was chosen as Programming Language. To

summarize it all:

 Python is robust

It's solid and powerful. Python has a relative small quantity of lines of

code, which makes it less prone to issues, easier to debug, and more maintainable. It's

also very fast.

 Python is flexible

Because it wasn't originally created to answer a specific need, Python

isn't driven by templates or specific APIs and is, therefore, well-suited to the rapid de-

velopment of all kinds of applications.

 Python is easy to learn and use

"Python, in particular, emerges as a nearly ideal candidate for a first programming

language", says John M. Zelle, in the Department of Mathematics, Computer Science,

and Physics at Wartburg College in Iowa.

 Python is free

Since Python is an open source programming language, it immediately reduces up-

front project costs by leveraging Python in the development projects.

In conclusion, Python can be used in a variety of situations, both online and of-

fline. Here are just a few interesting places where Python is used:

 Google uses python in its spiders.

 NASA uses Python in its Integrated Planning System as the standard scripting

language at Johnson Space Center.

 Red Hat uses Python for Red Hat Linux's installer (anaconda) and configuration

utilities.

 IBM uses Python to create the business practice logic for factory tool control

applications at IBM East Fishkill.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 17

 The CIA built its website in Python with Zope.

 Walt Disney Feature Animation uses Python to add script ability to their anima-

tion production system.

2.1.4 Python Versions

As Python is chosen as Programming Language, another question came up.

Should be used Python 2 or Python 3 for the development activity? Unlike other pro-

gramming Languages, Python has introduced 2 different versions of itself, which are

not totally compatible to each other. The state of things essential is as follow:

 Python 2.7 has been the standard for a long time.

 Python 3 introduced major changes to the language, which many devel-

opers are unhappy with.

 Python 2.7 will receive necessary security updates until 2020.

 Python 3 is continually evolving like Python 2 did in years past.

Figure 2. Versions of Python

After taking a closer look at the two different versions of the language, Python

3 is a nicer and more consistent language but there is very limited third-party module

support for it. Python 2 version has been around for longer time, which can be an ad-

vantage, but not all the libraries available for Python 2 have been ported to Python 3.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 18

As Python 2.7 version is used for a longer time and in many projects, it is going

to be the version used during this project.

2.2 The Development Environment

 In continue, after choosing the Programming Language and the specific version

of it, the next step is to choose the Development Environment. The Language which is

used and its interpreters or compilers are the only tools necessary to develop software.

Another important matter is the Programming Environment. Unlike some Languages,

where the choices are limited, there are one or two obviously superior options, Python

has no "standard" tool as Python developers can use any editors and IDEs from a wide

range of choice. Choosing the right tool for that project is not difficult but it is not to

be taken lightly. Selection of the right editor can greatly influence productivity and

efficiency of Python programming.

After making research around, there are plenty of options. Some people still

prefer a basic text editor that can be extended with features like syntax highlighting

and autocomplete. But a lot of power users working on large projects with complex

code bases prefer an Integrated Development Environment (IDE) than the text editor

and its terminal.

2.2.1 What is a Text Editor?

There are text editors that are made specifically for writing programming Lan-

guages. Commonly called programming text editors to highlight the difference, they

are generally known simply as text editors. They still only deal with plain text files but

they also have some handy features for programmers:

 Syntax Highlighting

 Colors are used to highlight different parts of a program. It makes code easier

to read and debug. For instance you could set up syntax highlighting so that Python

keywords are blue, comments are green, string literals are orange and so on.

 Automatic Editing

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 19

 Programmers format their programs so that blocks of code are indented togeth-

er. This indentation can be done automatically by the editor.

 Compilation and Execution Commands

 To save the programmer having to switch from the text editor to a terminal

window these editors have the ability to compile and execute programs. Therefore,

debugging can be done all in one place.

The chart below displays a survey of the most popular Text Editors for Python. For the

survey were interviewed 100 Python specialists. Survey “Which Code Editors Do

Pythonists Use?” by Abder-Rahman Ali for SitePoint. The most used editor is Sublime

Text.

Figure 3. Text Editors

2.2.2 What is an IDE?

IDE stands for Integrated Development Environment. An integrated develop-

ment environment (IDE) is a programming environment that has been packaged as an

application program, typically composed of a code editor, a compiler, a debugger, and

a graphical user interface (GUI) builder. They are powerful tools for programmers

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 20

that offer all the features of a programming text editor and much more. The idea be-

hind an IDE is to encompass everything a programmer could want to do in one appli-

cation. Theoretically, it should allow them to develop programs faster.

There are so many features an IDE can contain but the following list contains

only few selected ones. It should highlight how useful they can be to programmers:

 Automatic Code Completion

 Whilst typing, the IDE can help by showing a list of possible options. For ex-

ample, when using a String object a programmer might want to use one of its methods.

As they type a list of methods, that they can pick one, will appear in a popup menu.

 Access Databases

To help connect applications to databases IDEs can access different databases

and query data within them.

 GUI Builder

Graphical user interfaces can be created by dragging and dropping Swing com-

ponents on to a canvas. The IDE automatically writes the code that creates the GUI.

 Optimization

As applications become more complex, speed and efficiency become more im-

portant. Profilers built into the IDE can highlight areas where the code could be im-

proved.

 Version Control

 Previous versions of source code files can be kept. It's a useful feature because

a working version can be stored. If in the future it is modified then a new version can

be created. If the modifications cause problems the file can be rolled back to the previ-

ous working version.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 21

2.2.3 Text Editor Vs IDE

Eventually, IDE's and Text Editors are fundamentally different tools that each

has their strengths and weaknesses. Concisely, they are presented further down.

Text Editor: Strengths

 Fast

 Easy to extend (macros, plugins)

 Text edit functions (Ex: sublime text 2 unending keyboard shortcuts)

Text Editor: Weaknesses

 Need to use another service to compile

 Low support for code completion (intelligence features)

IDE: Strengths

 Integrated testing

 Compilation

 Breakpoints/stepping through code

 Integration with other services (database views), automated class dia-

grams

IDE: Weaknesses

 Large memory footprint

 Cost

After taking into account the advantages and the disadvantages of both Text

editors and IDEs and what each one is able to provide to a developer, using an Inte-

grated Development Environment is preferable.

Consequently, searching for the most suitable IDE is required. While searching

for the most popular IDEs for Python, plenty of options appear on the way. Eclipse,

Eric, IDLE, Komodo, PyCharm, Spyder, Wing IDE are just a few of them. After read-

ing the advantages and disadvantages of each and taking into consideration some opin-

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 22

ions of experienced developers, resulted a list with the 3 most popular IDEs for Py-

thon.

 Pydev with Eclipse

 PyCharm

 Wing IDE

To conclude with, “There are some very good options among IDEs: if you

want a free one that works well, install Eclipse and PyDev; if you are willing to pay

money, PyCharm and Wing IDE have similar capabilities and are both excellent

IDEs.” written by Jason Fruit, author at Python Central. PyCharm became the official

Integrated Development Environment of this project.

2.2.4 PyCharm

 Key Facts

 PyCharm is a Python IDE with a complete set of tools for productive develop-

ment with Python programming language. In addition, the IDE provides high-class

capabilities for professional Web development with Django framework.

 Key Benefits

Like others IDEs, PyCharm offers a smart code editor which understands the

specificities of Python and offers remarkable productivity booster: automatic code

formatting, code completion, refactoring, auto import, one-click code navigation, and

more. Backed by advanced code analysis routines, these features make PyCharm a

powerful tool in the hands of both professional Python developers and those who are

just starting out with the technology.

 Key Features or https://www.jetbrains.com/pycharm/features/index.html

• Coding Assistance: smart and configurable editor with code completion, snippets,

and various intention actions.

• Code Analysis: on-the-fly code syntax, error highlighting, intelligent inspections and

one-click quick-fix suggestions to improve the code.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 23

• Project Code Navigation: quick navigation from one file to another, from method to

its declaration or usages and through classes’ hierarchy.

• Python Refactoring: project-wide code modifications are painless with rename, ex-

tract method/superclass, introduce field/variable/constant, move and pull up/push

down refactoring.

• Web Development with Django: rapid Web development with Django framework

backed up with excellent HTML, CSS, and JavaScript editing facilities.

• Version Control Integration: Check-in, check-out, view diffs, merge, all in the uni-

fied VCS user interface for Mercurial, Subversion, Git, Perforce and other SCMs.

• Integrated Unit testing: Run a test file, a single test class, a method, or all tests in a

folder. Results are presented in a special graphical test runner with execution statistics.

• Graphical Debugger for Python or Django applications and unit tests with break-

points, stepping and frames view, watches and evaluate expressions.

• Google App Engine Support for creating Google App Engine applications and dele-

gating routine deployment tasks to the IDE.

• Customizable & Extensible Environment with bundled Textmate, NetBeans, Eclipse

& Emacs keyboard schemes, and Vi/Vim emulation plugin.

Figure 4. PyCharm

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 24

2.3 Methodology

 As important as the research is the creation of a methodology that it should be

followed, strictly. At the moment an important step is to elaborate the way of working

on the project. Should be taken under consideration the allowed time to accomplish the

project which is nearly six months. In the following figure is displayed the Gantt dia-

gram which was designed at the beginning of the project. The Gantt Diagram helped to

prevent delayed deadline and to provide extra time to deal with unanticipated situa-

tions. It also helps to keep an order on the project and to have a concrete plan.

Figure 5. Gantt Diagram

 The above figure is exhibiting the Gantt Diagram of the current thesis. The

Gantt Diagram is displaying 3 categories: the methodology, the implementation phases

and also the results. The methodology is composed of two subcategories, the research

part and the personal time taken for training. In total, those two categories require a

month to be accomplished. Then can be found the implementations phases which con-

sist of the implementation phase itself and the phase called testing phase. As the im-

plementations phases compose the real development of the project, they are given

nearly two months, implementation time. The last category of the Gantt Diagram is

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 25

called results and it includes the creation of a TXT file and of an HTML report for dis-

playing the results of the implementation phase. More or less it will be needed 10

days according to the Gantt Diagram for the creation of both reports.

Chapter 3. Project implementation

3.1 Installations

 In this chapter is developed step by step the implementation phase. The installa-

tions required are present, as well as, the development code. Should be mentioned that

the operating system used for this project is Microsoft Windows 7.

3.1.1 Python installation

 Firstly is present the installation of the programming language. In this case is

Python 2.7 version. Python is found on the website: https://www.python.org and it can

be downloaded and installed as below.

Figure 6. Download python

 Select the desired version and follow the steps below:

https://www.python.org/

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 26

Figure 7. Step1: Python installation

Figure 8. Step2: Python installation

Figure 9. Step3: Python installation

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 27

Figure 10. Step4: Python installation

Figure 11. Step5: Python installation

Figure 12. Step6: Python installation

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 28

3.1.2 IDE/PyCharm installation

 Next step is to install the desired Integrated Development Environment. In this

case the IDE is called PyCharm. Below are the steps to follow.

Figure 13. PyCharm download

Figure 14. Step1: pyCharm installation

Figure 15. Step2: pyCharm installation

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 29

Figure 16. Step3: pyCharm installation

Figure 17. Step4: pyCharm installation

Figure 18. Step5: pyCharm installation

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 30

Figure 19. Step6: pyCharm installation

Figure 20. Step7: pyCharm installation

Figure 21. Step8: pyCharm installation

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 31

Figure 22. Step9: pyCharm installation

3.1.3 Configuring Python Interpreter

Within those simple steps, the installation of the pyCharm IDE is finished. As

the installation is done, there are some configurations to take part afterwards. Those

simple but necessary configurations are referenced below.

 When the IDE is set up and working fine, the following steps are required to

configure the interpreter before use:

Open the Settings dialog box, and click Project Interpreter page. In the Projects

pane, choose the desired project. For the selected project, choose SDK from the list of

available Python interpreters and virtual environments. Scroll down and click on the

option show all.

Figure 23. PyCharm theme

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 32

Figure 24. Step2 configure interpreter

Figure 25. Step3 configure interpreter

Figure 26. Line numbers

The last figure shows the easiest way to enable line numbers, something that is

indeed practical. After all tools needed for the project installed, the development part

can start.

3.2 Implementation

In this chapter, the development of the project will take place. Through the im-

plementation phase all the code is written in Python, developing the tool to provide

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 33

data transfer’s supervision. The descriptions below are explaining analytically, the

ways that the project is developed. Generally, Python documentation includes many

modules which are providing data comparison such as diff, dcmp, filecmp, difflip and

so on. In this project, those modules are not used and they are not part of the program

but therefore are used in the testing phase. The forenamed modules constitute a very

useful tool which can be compared with the developed program and give results for the

validity and clarity as well as the efficiency and the credibility of the project.

3.2.1 Scripts for comparison

To begin with, in python every single script can be imported by another script.

Scripts are programs written for a special run-time environment that automate the exe-

cution of tasks that could alternatively be executed one-by-one by a human operator or

imported by each other. That allows the creation of clear and flexible code that does

not need to be written in one script. In addition, it provides the capability to handle all

the project from only one script that will bear the responsibility of running the other

scripts properly. Below at figure 27 is displayed the way that the scripts are imported

by others particularly for this project.

 Figure 27. Scripts architecture

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 34

Figure 28. Statistic.py - folder size

Apart the scripts depicted, there are few more scripts that will be imported and

explained afterwards. Between others, there is the importation script which contains all

the libraries used in the program and also the list.py which includes the lists of the ar-

guments necessary for the comparison. (lists of folders paths) The user needs to put the

paths of the folders which he desires to compare into the lists of the script called

list.py. Once paths filled, they are automatically imported to the other scripts. To run

the comparison is required only the script check.py. Once the check script runs then

the comparison script and statistical one run in parallel. Moreover, the comparison

script calls two other scripts named basic comparison and digest. The .py is a script

file format used by Python and is similar with the popular .txt, .pdf, .doc extensions.

The supervision of data transfer is based mostly on two scripts, the statistic

script and the comparison one. Let's focus on those two, the first one is created to pro-

vide general information about the folders under comparison, information such as the

file size, the number of items, the number of folders and so on. The second one named

comparison script is divided into two other scripts, the basic_comparison and the

digest one. The reason that the statistics and the comparison are two different scripts is

obvious as they don't do the same thing. Also, it is preferable to have those two scripts

separate as they can be used independently. The fact that the comparison script is di-

vided into two is because of technical reasons.

Below there are parts of the statistic script and its results. The whole script can

be found in the appendices.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 35

Figure 29. Statistic script-number of folders

\

In figure 28 is shown the code which collects and provides basic information

about the folders under comparison, such as the folder size. With the help of

os.listdir() and os.path() functions, the program walks into directories and takes back

the real folder size.

In a similar way os.walk()
1
 function walks into the directories while there is a

loop and gives back the total number of items, folders and files. There are few more

functions used for statistical information which at the end will be displayed in a table.

In the figure below the function abs () is used to return the absolute value of a number.

The argument may be a plain, a long integer or a floating point number.

Figure 30. Statistic.py- table code

The result returned by the statistic script in the terminal looks like below:

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 36

Figure 31.statistic table-terminal

The comparison script calls two other scripts, like below:

The comparison.py script is able to call other scripts because of the imported

module sub process. The basic comparison script is responsible for walking into the

desired folders, compare them and give back a list of missing folders or files from each

folder compared to the other.

Figure 33. Basicmp.py

Basic comparison’s results are shown in the following picture. As you can see

it detects missing all the missing files and folders even if they are hidden:

Figure 34. Basicmp.py-results

 Part of the comparison is also the script called digest. The digest script is using

the filecmp module as below, it detects the common files of the folders which having

different size. The whole code for the dasicmp.py and digest.py can be found in the

appendices.

Figure 32.comparsion.py- call

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 37

Figure 36.comparison.py-digest re-

sults

Figure 35. Comparison.py-digest.py

The result of the digest script is dis-

played on the right. The program is able to

detect common files in directories and find out

digest differences. Many times two or more

files seem identical but they have some differ-

ences. For instance, the first file detected, called

gantt.png is a picture in which is added a dot.

The program detects any difference even

though is just a dot.

 To finish with the comparison scripts, last but not least, is the duplicate.py

script. This one is not about the source and destination folders but it is about compar-

ing files within the source or destination folder individually. As the name betrays, the

duplicate script is looking for duplicated files. Using it in each folder may be useful

because it happens that in the same folder there are unnecessary duplicates of a file.

Parts of the code are underneath.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 38

Figure 37. Duplicate.py -1

Figure 38. Duplicate.py-2

The script is comparing the size of the files (bytes) and when two files have the

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 39

same size then the script compares the hash of each file, with the help of the MD5 al-

gorithm. The MD5 message digest algorithm is a widely used cryptographic hash

function producing a 128-bit (16-byte) hash value, typically expressed in text format

as a 32 digit hexadecimal number. MD5 has been utilized in a wide variety of crypto-

graphic applications and is also commonly used to verify data integrity. Point this

script in a folder or several folders and it will find all duplicate files within the folders,

referring the source file as the original one in case of duplicates. It is designed to han-

dle hundreds of thousands of files of any size at a time and to do it very quickly. The

results are given from the script look like as below:

 To conclude with, after presenting all the scripts which are participating in the

comparison process, here is a summary:

 Statistic.py, gives all the statistical information about the compared di-

rectories (source/destination).

 Comparison.py, calls two other scripts to be used.

o Basic comparison.py, detects the missing folders and files.

o Digest.py, detects the size differences between similar files.

 Duplicate.py which compares same size files and finds out the identical.

3.2.2 Other scripts

 Here will be explained the rest of the project apart from the comparison phase

previosuly described. The idea of the project is to supervise data transfers without size

limitation and without limitation of folders per each time. To be clear, the project in-

cludes a script list where the user is able to put the folders paths.

Figure 39. Duplicate.py - results

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 40

Figure 41. Check.py

Figure 40. List.py

Each time the local path1 compares with the remote path1, source and destina-

tion, so the user should put all folders paths he/she wishes to compare in the local

path1 list and then all folders paths, that needs to be compare with, into the remote

path1 list. In order for this to happen, it is necessary that the check script take action.

The check script contains a loop which allows the program to run continuously all

paths and needs just one execution in order to compare the numerous folders.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 41

Figure 42.Check.py2

Check.py includes all the possible scenarios, such as paths that do not exist or if

the user gave fewer arguments than the necessary and so on. In addition, it allows the

user to choose if he wants to run a script separately, for instance if he needs to check

only for duplicates files, and also he can do the comparison only on a pair of folders

through the terminal or for plenty of them by using the list.

Figure 43.Check.py- results

 Figure 44. Check.py usage

3.2 Test phase

 Another important phase, as important as the implementation one, is the test

phase. During this phase, the program can be tested in many ways in order to improve

it. Many factors influence the performance of the project and they need to be identi-

fied and faced. To begin with, the test phase started with testing the program by

changing the data and performing different test scenarios:

 Replace a letter in a file, in order to keep the same size, but the digest to be dif-

ferent.

 Create hidden files and add them in the folders.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 42

Figure 45. Dircmp

 Include in existing data many different formats, such as .pdf, .doc, .xml, .py,

.exe, etc. Actually, all the type of data which can be found in a usual computer.

 Duplicate folders in different folders

 Duplicate files in different folders

 Delete folders/files

 Add images /modify images/ add a dot on them

 Add Videos /modify videos.

 Add symbolic links to see if they can be followed.

After modifying data and comparing them once more, the expected results were

returned. To evaluate the quality of the program next step was to compare those re-

sults with results provided by a standard and reliable tool called dircmp, which is a

free Python module available in its documentation.

(https://docs.python.org/2/library/filecmp.html)

The above capture displays a dircmp method comparing directories, a module

that is available in Python’s standard documentation. The dircmp class compares files

by doing shallow comparisons and the report_full_closure() prints a comparison be-

tween a and b and common subdirectories recursively.

Figure 46. Dircmp- Results1

https://docs.python.org/2/library/filecmp.html

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 43

Figure 48 New List-timer-sec

On the figures 46 and 47 are captured the results the dircmp module. Obviously

the dircmp comparison gives all the folders details but in a different way than the pro-

gram of this thesis does. When paying attention at lists named “different files” and

comparing them with the figures 34 and 36, the results which are coming out ensure

that the program works as it is supposed to.

Next step is to test the program on numerous directories at the same time and by

applying timers at the beginning and at the end of the check script in order to check

how much time is needed for the execu- tion.

For instance, the execution time required to compare 1 Gigabytes of data with more

than 7000 items was seconds.

Figure 47. Dircmp - Results2

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 44

Chapter 4. Results

To summarize until now are described, the implementation and the test phase.

During the implementation phase, the code was written in Python and developed

through the IDE PyCharm. The results of this project are returned on a terminal. The

results include a statistical table, the missing files from the compared paths, and dupli-

cated files in the comparing directories. Also, the results include the ostensibly same

files but with different digest. There is a need from the user to have the results export-

ed in a file, an easy way to read and transfer them. Also can’t the user have the ability

to read the results within an HTML display? Something that is indeed quite common

and practical.

4.1 Text report

 Between many file types, such as PDF, Word, Excel and txt the chosen format

to display the results was a .txt file. It was selected because it requires fewer code

lines comparing to the others. It’s easy to implement it and is even easier for the users

to read the results without having to download a third party tool or plugin (like Mi-

crosoft word etc.). In order to get the results written in a txt file, it is necessary that

every script includes two code lines like below:

Figure 49. Txt command

Thanks to the first line a txt file is created named “results.txt” and it is going to

be in the same file as the current program. So in this case the “. /” path is used but it

could be any other path instead. The results will be exported in the txt file as below.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 45

Figure 50.Results1- TXT

Figure 51. Results2 - TXT

The above results are coming from the combination of the following code parts. In-

deed, each script has his own “export-to-txt” code part.

Figure 52. Check.py –TXT

Between the parentheses contain the desired text to be displayed. For example here a

warning will be returned to the user if the path that he/she gave was wrong. The

sys.argv[1] is pointing to the argument number, in this example the first path inserted

by user was wrong.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 46

Figure 55. Duplicate.py -TXT

Figure 53. Statistic.py- TXT

Same here, parenthesis contain the desired text displayed and the “+” sign allows to

concatenate variables to it. In this example the local and remote paths variables are

used.

Figure 54. Digest.py –TXT

Depending on variables, it is necessary to declare them differently. For instance as %s

for a string, as %d for an integer and %f for a float.

Above, the .format(path) is responsible to print the current scanning paths of the direc-

tories and below the join.() is helping to print lists into a TXT file.

Figure 56. Basicmp.py - TXT

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 47

4.2 HTML report

 Generate a HTML report can be complicated or simple depending on how much

complex the results are or how much complexed layouts are needed. In this project a

simple and friendly HTML display is used because the project itself aims to facilitate

the user’s life. The results are well organized and easy to read. A sample of the re-

sults in HTML format is displayed below. More samples are available in the appen-

dices.

Figure 57. HTML report- results1

On the above screenshot, you can see that results are visible via a web browser

and they are organized in an HTML table with different colors and titles. The infor-

mation are listed in columns and all the useful statistics are gathered and displayed

within the HTML table.

 The figure 58 shows the HTML report generated by the project and particularly

by the statistics script. The following screenshot is also part of the report and is gener-

ated by the “duplicated” script. Titles in different colors are here to mention the re-

sults of duplicated files and their paths.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 48

Figure 58. HTML report- results2

Figure 59. HTML report- results3

 Above in the figures 59 and 60 are respectively captured the results of the

“basic comparison” and “digest” scripts. By comparing the two directories, the pro-

gram detects if there are missing folders from each directory compared to the other and

gives the paths of the corresponding files. The last script is underlining files that seem

identical but that are not.

 The HTML report is created thanks to two scripts. Those scripts are imported in

the project and they are respectively named HTML and HTML tools. The copyrights

of the HTML.py belong to the cooperation between Philippe Lagadec

(http://www.cecill.info) and the Institute Laue–Langevin. Some parts appear below

and the whole scripts are included in the appendices.

http://www.cecill.info/

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 49

Figure 60. HTML_tools.py

Figure 61 HTML.py

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 50

Figure 62.HTML code

To generate an HTML report for this project, it is needed for each script of the

program to include three lines as shown:

The first two lines import the

HTML tools and third line opens an

HTML page created in the same

folder as the project and name it “results.html”. Instead of “a” could be “w” is all

about the writing rights. The “w” allows the results to be written in the HTML form

from the beginning, whereas “a” allows to write in the continuity of the existing text.

Therefore, in the same way as the TEXT file, to write the results into an HTML form

there are more than just those 3 lines. In the following figures, are captured some ex-

amples of how the project is generating the HTML report.

Figure 63. Check.py –HTML

Title 4 is the method settling different titles size that HTML tools provide. It could be

title 3 for bigger title size or title 5 for smaller ones.

Figure 64. Statistics.py- HTML

At the figure 63 is presented an HTML table called htmlcode. It has 4 columns and the

background is white. Also it uses large font size.

Figure 65. Bascmp.py –HTML

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 51

Figure 66. Digest.py –HTML

Here are used the methods title 4 and paragraph as it is going to display a list, meaning

several written lines.

Figure 67. Duplicate.py –HTML

The extra code HTML_Tools_Ligne is adding a line underneath the end of the results.

In this way results can be split in different groups for a better understanding.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 52

Chapter 5. Conclusion & Future work

5.1 Conclusion

 The main purpose of the current thesis is to develop a program supervising data

transfers. Comparing in deep the copied data with the original, the program ensures the

successfully transfer and allows the users to delete the original data. Furthermore, the

user is able to detect files duplicates which unnecessarily occupies extra storage capac-

ity. It is a tool which keeps organized the big amount of data that are daily produced.

5.2 Future work

 The aforesaid program can be developed even further in the future. Firstly, it

can be part of a software instead of being just a python program. Secondly, it can in-

cludes code which detects and displays where exactly the data were modified instead.

Also, why not to have a side by side display of the modified data. In any ways, it can

be used as it is or it can be developed even more.

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 53

6. BIBLIOGRAPHY

6.1 Links

 http://java.about.com/od/gettingstarted/a/ideversuseditor.htm

 http://www.sixfeetup.com/blog/why-we-choose-python

 http://www.udemy.com/blog/modern-language-wars/

 http://itpings.com/category/development/

 http://en.wikipedia.org/wiki/SHA-1#The_SHA-1_hash_function

 http://www.xorbin.com/tools/sha256-hash-calculator

 http://www.tutorialspoint.com/python/os_lstat.htm

 http://pythoncard.sourceforge.net/what_is_python.html

 http://en.wikipedia.org/wiki/MD5

 https://docs.python.org/3/

 https://www.jetbrains.com/pycharm/download/#section=windows

 https://www.python.org/doc/essays/comparisons/

6.2 Books

 Learning to Program Using Python

 Think Python: An Introduction to Software Design

 An Introduction to Python

 A Byte of Python

 Learn Python the hard way

http://java.about.com/od/gettingstarted/a/ideversuseditor.htm
http://www.udemy.com/blog/modern-language-wars/
http://en.wikipedia.org/wiki/MD5
https://docs.python.org/3/
https://www.jetbrains.com/pycharm/download/#section=windows
https://www.python.org/doc/essays/comparisons/

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 54

Chapter 7. Appendixes

7.1 Check.py

import os.path

import subprocess

import sys

import HTML_tools

from list import *

import time

text = open("./results.txt", "w")

htm = open("./results.html", 'w')

def main():

 pass

start = time.time()

if len(sys.argv) != 3 and len(sys.argv) != 1:

 print "Usage: py name.py /Local_path /Remote_path"

else:

 if len(sys.argv) == 3:

 local_path = sys.argv[1]

 remote_path = sys.argv[2]

 if not os.path.isdir(sys.argv[1]):

 print "Wrong path-directory name: " + sys.argv[1]

 text.write("Wrong path-directory name: " + sys.argv[1])

 text.flush()

 t17 = ("Wrong path-directory name: " + sys.argv[1])

 htm.write(HTML_tools.Title4(t17))

 if not os.path.exists(sys.argv[2]):

 print "Wrong path-directory name: " + sys.argv[2]

 text.write("Wrong path-directory name: " + sys.argv[2])

 text.flush()

 t18 = ("Wrong path-directory name: " + sys.argv[2])

 htm.write(HTML_tools.Title4(t18))

 else:

 subprocess.call(" py statistic.py " + local_path + " " + remote_path, shell=True)

 subprocess.call(" py duplicate.py " + local_path + " " + remote_path, shell=True)

 subprocess.call(" py comparison.py " + local_path + " " + remote_path, shell=True)

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 55

 if len(sys.argv) == 1:

 size = len(local_path1)

 for i in range(size):

 local_path = local_path1[i]

 remote_path = remote_path1[i]

 if not os.path.isdir(local_path):

 print "Wrong path-directory name: " + local_path

 text.write("Wrong path-directory name: " + local_path)

 text.flush()

 t17 = ("Wrong path-directory name: " + local_path)

 htm.write(HTML_tools.Title4(t17))

 if not os.path.exists(remote_path):

 print "Wrong path-directory name: " + remote_path

 text.write("Wrong path-directory name: " + remote_path)

 text.flush()

 t18 = ("Wrong path-directory name: " + remote_path)

 htm.write(HTML_tools.Title4(t18))

 else:

 subprocess.call(" py statistic.py " + local_path + " " + remote_path, shell=True)

 subprocess.call(" py duplicate.py " + local_path + " " + remote_path, shell=True)

 subprocess.call(" py comparison.py " + local_path + " " + remote_path, shell=True)

end = time.time()

print(end - start)

text.close()

if __name__ == '__main__':

 main()

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 56

7.2 Statistic.py

import os

import os.path

import sys

import HTML

import HTML_tools

text = open("./results.txt", "a")

htm = open("./results.html", 'a')

local_path = sys.argv[1]

remote_path = sys.argv[2]

def getFolderSize(path):

 total_size = os.path.getsize(path)

 for item in os.listdir(path):

 itempath = os.path.join(path, item)

 if os.path.isfile(itempath):

 total_size += os.path.getsize(itempath)

 elif os.path.isdir(itempath):

 total_size += getFolderSize(itempath)

 return total_size

totalc = 0

totac = 0

totc = 0

for root, dirs, files in os.walk(remote_path):

 totalc += len(files)

 totac += len(files)

 totalc += len(dirs)

 totc += len(dirs)

totalo = 0

totao = 0

toto = 0

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 57

for [root, dirs, files] in os.walk(local_path):

 totalo += len(files)

 totao += len(files)

 totalo += len(dirs)

 toto += len(dirs)

t_size_local_path = float(getFolderSize(local_path))

x = "%0.1f " % (t_size_local_path / (1024 * 1024 * 1024.0))

t_size_remote_path = float(getFolderSize(remote_path))

y = "%0.1f " % (t_size_remote_path / (1024 * 1024 * 1024.0))

a = abs(totalo - totalc)

b = abs(toto - totc)

c = abs(totao - totac)

d = abs(t_size_local_path - t_size_remote_path)

e = float(float(t_size_local_path / (1024 * 1024 * 1024.0)) - float(t_size_remote_path / (1024 * 1024 * 1024.0)))

f = "%0.4f" % abs(e)

print "Comparing: " + local_path + " with:" + remote_path + "\n"

text.write("Comparing: " + local_path + " with: " + remote_path + "\n")

text.flush()

t1 = "Comparing: " + local_path + " with: " + remote_path + "\n"

htm.write(HTML_tools.Title3(t1))

htm.write(HTML_tools.Ligne())

d1 = [

 ['PATH', [('LOCAL:', local_path), ('REMOTE:', remote_path), ('DIFF:', "")]],

 ['ITEMS', [('LOCAL:', totalo), ('REMOTE:', totalc), ('DIFF:', a)]],

 ['DIRECTORIES', [('LOCAL:', toto), ('REMOTE:', totc), ('DIFF:', b)]],

 ['FILES', [('LOCAL:', totao), ('REMOTE:', totac), ('DIFF:', c)]],

 ['T.SIZE/Byte', [('LOCAL:', t_size_local_path), ('REMOTE:', t_size_remote_path), ('DIFF:', d)]],

 ['GB', [('LOCAL:', x), ('REMOTE:', y), ('DIFF:', f)]],

]

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 58

COLUMN_WIDTH = 10

STRING_WHEN_MISSING = '""'

PADDING_STRING = '.'

labelSize = 21

labelColumn = ''

labels = ['NAME', 'LOCAL', 'REMOTE', 'DIFF']

labelColumn += labels[0] + (labelSize - len(labels[0])) * PADDING_STRING + 2 * ' '

labelColumn += labels[1] + (labelSize - len(labels[1])) * PADDING_STRING + 2 * ' '

labelColumn += labels[2] + (labelSize - len(labels[2])) * PADDING_STRING + 2 * ' '

labelColumn += labels[3] + (labelSize - len(labels[3]) - 11) * PADDING_STRING + '*'

labelColumn += '\n'

for (row) in d1:

 rowId = row[0]

 valueLocal = row[1][0][1]

 valueRemote = row[1][1][1]

 valueDIFF = row[1][2][1]

 labelColumn += rowId + (labelSize - len(rowId)) * PADDING_STRING + 2 * ' '

 labelColumn += str(valueLocal) + (labelSize - len(str(valueLocal))) * PADDING_STRING + 2 * ' '

 labelColumn += str(valueRemote) + (labelSize - len(str(valueRemote))) * PADDING_STRING + 2 * ' '

 labelColumn += str(valueDIFF) + (labelSize - len(str(valueDIFF)) - 11) * PADDING_STRING + '*'

 labelColumn += '\n'

print' Statistical Table'

text.write("\n" + ' Statistical Table' + "\n")

text.flush()

t2 = 'Statistical Table'

htm.write(HTML_tools.center(t2))

print labelColumn

text.write(labelColumn + "\n")

text.flush()

table_data = [

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 59

 ['PATH', local_path, remote_path, ""],

 ['ITEMS', totalo, totalc, a],

 ['DIRECTORIES', toto, totc, b],

 ['FILES', totao, totac, c],

 ['T.SIZE/Byte', t_size_local_path, t_size_remote_path, d],

 ['GB', x, y, f]

]

htmlcode = HTML.table(table_data,

 header_row=['NAME', 'LOCAL', 'REMOTE', 'DIFF'],

 col_width=['40', '40%', '40%', '40%'],

 col_align=['left', 'left', 'left', 'char'],

 col_styles=['font-size: large', 'font-size: large', 'font-size: large',

 'background-color:#AFE9E0'])

htm.write(htmlcode + '<p>\n')

7.3 Basicmp.py

import HTML_tools

import sys

import os

text = open("./results.txt", "a")

htm = open("./results.html", 'a')

local_path = sys.argv[1]

remote_path = sys.argv[2]

folder_a = set(os.listdir(local_path))

folder_b = set(os.listdir(remote_path))

missing_from_a = folder_a - folder_b

missing_from_b = folder_b - folder_a

if not missing_from_a:

 print("NO missing folders or files from: {}".format(local_path)) + "\n"

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 60

 text.write("NO missing folders or files from: " + local_path + "\n")

 t3 = "No missing folders or files from: {}".format(local_path)

 htm.write(HTML_tools.Title4(t3))

else:

 print "Missing folders or files from: {}".format(local_path)

 print ', '.join(missing_from_a) + "\n"

 text.write('Missing folders or files from:' + local_path + "\n")

 text.write(",".join(missing_from_a))

 text.write("\n")

 t3 = "Missing folders or files from: {}".format(local_path)

 htm.write(HTML_tools.Title4(t3))

 t5 = (' , '.join(missing_from_a))

 htm.write(HTML_tools.Paragraph(t5))

 htm.write(HTML_tools.Ligne())

text.write("\n")

if not missing_from_b:

 print("No missing folders or files from: {}".format(remote_path)) + "\n"

 text.write("No missing folders or files from: " + remote_path + "\n")

 t3 = "No missing folders or files from: {}".format(remote_path)

 htm.write(HTML_tools.Title4(t3))

else:

 print "Missing folders or files from: {}".format(remote_path)

 print ', '.join(missing_from_b) + "\n"

 text.write("Missing folders or files from: " + remote_path + "\n")

 text.write(",".join(missing_from_b))

 text.write("\n")

 t3 = "Missing folders or files from: {}".format(remote_path)

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 61

 htm.write(HTML_tools.Title4(t3))

 t5 = (' , '.join(missing_from_b))

 htm.write(HTML_tools.Paragraph(t5))

 htm.write(HTML_tools.Ligne())

text.write("\n")

7.4 Digest.py

import sys

from filecmp import dircmp

import HTML_tools

text = open("./results.txt", "a")

htm = open("./results.html", 'a')

local_path = sys.argv[1]

remote_path = sys.argv[2]

print "Files with different Size/Digest: "

text.write("Files with different Size/Digest: " + "\n")

t3 = "Files with different Size/Digest: "

htm.write(HTML_tools.Title4(t3))

def print_diff_files(dcmp):

 for name in dcmp.diff_files:

 print "file: %s" % (name)

 text.write("In: %s file: %s" % (dcmp.left, name) + "\n")

 text.flush()

 t3 = "Files with different Size/Digest: "

 htm.write(HTML_tools.Title4(t3))

 t11 = ("In: %s file: %s" % (dcmp.left, name) + "\n")

 htm.write(HTML_tools.Paragraph(t11))

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 62

 for sub_dcmp in dcmp.subdirs.values():

 print_diff_files(sub_dcmp)

dcmp = dircmp(local_path, remote_path)

print_diff_files(dcmp)

text.close()

7.5 Duplicate.py

import md5

import os

import os.path

import stat

import sys

import HTML_tools

text = open("./results.txt", "a")

htm = open("./results.html", 'a')

local_path = sys.argv[1]

remote_path = sys.argv[2]

def duplicate(path):

 filesBySize = {}

 def walker(arg, dirname, fnames):

 d = os.getcwd()

 os.chdir(dirname)

 try:

 fnames.remove('Thumbs')

 except ValueError:

 pass

 for f in fnames:

 if not os.path.isfile(f):

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 63

 continue

 size = os.stat(f)[stat.ST_SIZE]

 if size < 100:

 continue

 if filesBySize.has_key(size):

 a = filesBySize[size]

 else:

 a = []

 filesBySize[size] = a

 a.append(os.path.join(dirname, f))

 os.chdir(d)

 for x in path:

 os.path.walk(x, walker, filesBySize)

 potentialDupes = []

 potentialCount = 0

 potentialCount1 = 0

 trueType = type(True)

 sizes = filesBySize.keys()

 sizes.sort()

 for k in sizes:

 inFiles = filesBySize[k]

 outFiles = []

 hashes = {}

 # if len(inFiles) is 1: continue

 # print 'Testing %d files of size %d...' % (len(inFiles), k)

 for fileName in inFiles:

 if not os.path.isfile(fileName):

 continue

 aFile = file(fileName, 'r')

 hasher = md5.new(aFile.read(1024))

 hashValue = hasher.digest()

 if hashes.has_key(hashValue):

 x = hashes[hashValue]

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 64

 if type(x) is not trueType:

 outFiles.append(hashes[hashValue])

 hashes[hashValue] = True

 outFiles.append(fileName)

 else:

 hashes[hashValue] = fileName

 aFile.close()

 if len(outFiles):

 potentialDupes.append(outFiles)

 potentialCount += len(outFiles)

 potentialCount1 = potentialCount / 2

 print 'Scanning directory {0:s} for duplicate files'.format(path)

 text.write('Scanning directory {0:s} for duplicate files'.format(path) + '\n')

 t12 = ('Scanning directory for duplicates files in: {}'.format(path))

 htm.write(HTML_tools.Title4(t12))

 print 'Identical files: %d' % potentialCount1

 text.write('Identical files: %d' % potentialCount1)

 text.write("\n")

 t13 = ('Identical files: %d' % potentialCount1 + "\n")

 htm.write(HTML_tools.Title4(t13))

 dupes = []

 for aSet in potentialDupes:

 outFiles = []

 hashes = {}

 for fileName in aSet:

 aFile = file(fileName, 'r')

 hasher = md5.new()

 while True:

 r = aFile.read(4096)

 if not len(r):

 break

 hasher.update(r)

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 65

 aFile.close()

 hashValue = hasher.digest()

 if hashes.has_key(hashValue):

 if not len(outFiles):

 outFiles.append(hashes[hashValue])

 outFiles.append(fileName)

 else:

 hashes[hashValue] = fileName

 if len(outFiles):

 dupes.append(outFiles)

 i = 0

 for d in dupes:

 print 'Original %s' % d[0]

 text.write('Original %s' % d[0] + "\n")

 text.flush()

 t14 = ('Original %s' % d[0] + "\n")

 htm.write(HTML_tools.Paragraph(t14))

 for f in d[1:]:

 i = i + 1

 print 'Duplicate %s' % f + "\n"

 text.write('Duplicate %s' % f + "\n")

 text.write("\n")

 text.flush()

 t15 = ('Duplicate %s' % f + "\n")

 htm.write(HTML_tools.Paragraph(t15))

 htm.write(HTML_tools.Ligne())

print "\n"

if sys.argv[1:]:

 duplicate(sys.argv[:2])

 duplicate(sys.argv[2:])

text.write("\n")

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 66

7.6 List.py

local_path1 = ["C:\Users\Simon\Desktop\dina_the"

]

remote_path1 = ["C:\Users\Simon\Desktop\dina_thesis"

]

7.8 Results TXT

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 67

7.8 Results HTML

Πτυχιακή Εργασία, Τμήμα Μηχανικών Πληροφορικής – Α.Τ.Ε.Ι. Κρήτης

ΦΙΦΛΗ ΚΩΝ/ΝΑ Α.Μ. 2422 68

