Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

EEo@uiio Avagopdg IItopuaxng Epyaciog
Teyvoroywko Exnarogvtiko Topopa Kpnnge

Yol Teyvoroyikov E@Qappoyov
Tuqpa Mnyevikov IIAnpogopikig

topuexny Epyocia

Cognition in Digital Environments

Kapoveavég 'eapyrog (AM : 2744)

Emprénov KaOnynmcg : Hamadovpdkne I'edpyrog

HPAKAEIO
2016

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Abstract of the final year project in English

This document contains the results of an attempt to explore the differences in the activity of
the human brain that is exposed to a digital world through Virtual Reality(VR), as opposed to more
traditional media (Computer Screen). It was a three-phased project.

Phase one consisted of creating a professional, detailed digital world for use with Virtual Reality, using
Unity (a Game Engine), Blender (a 3D modeling tool), Adobe Photoshop, CrazyBump (a Normal Map
creation tool) and several other programs, thoroughly mentioned in Part One of the paper.

Phase two consisted of understanding the way Emotiv's Epoc Electroencephalographer(EEG)
functions, either using or implementing drivers to obtain relevant to the research data and finding
volunteers to form a big enough group for the purposes of the experiment.

The final phase consisted of the actual experiment itself, the post-processing of the data, the
calculation of the Summary Statistics (mean, median, mode), the creation of the graphs, the
explanation of the results and the documentation of the experiment.

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Hepiinyn wtoyrekng oto EAAnvika

To mapoév Eyypapo mepi€yel Ta amoTeAEcpata TG amdmelpag va e&gpeuvndody ot Slopopég
OTNV EYKEQOAIKT] dpaoTNPOTTE €VOG aTtOUoV ekTebelévov o ynelokd kocpo péom Teyvntig
[paypotwdrag, avti péow mo cvpPatikdv pebddmv, OTmg 1 086vn evac VITOAOYIGTY.

To eyyeipnpa glye Tpelg PACELS.

H mtpdytn pdon mepirdpupave ™ dnpiovpyio evog AETTOUEPOVS YNOLOKOD KOGHOL UE YPNoN dApopmV
gpyoreimv, ommwg Unity, Blender kot Adobe Photoshop.

H dgbtepn @don mepihdppove v katavonomn tov tpdmov Aettovpyiog tov EEG Epoc g Emotiv, n
kotaokevn 1 agloroinomn drivers yio ™ Ayn HEGm oVToH TOV OTOPUITHTOV TANPOPOPLDY KOl 1|
€0peon EVOLHPEPOUEV®V Y10, TIG SOKIHEG.

H televtaia pdon mepthdpuPave 1o 1610 10 MElpOpa, TV eneEepyacio TV onoTEAECUATOV, TOV
VTOAOYIGUO SAPOPOV GTUTIOTIKMOV OEIKTAV, TN YPAPIKT AIOTOTIMGCT GVTMOV Kol TNV EXEENYNCN Kot
KOTAYPOQT TOV UTOTELECUATOV.

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Table of Contents
EEDQUALO AVOPOPAG TITUYIOKNG EPYOOTOG. .. vvieiiiicece e e et 1
Teyvoloyud EKToude0TKO TOPULOL KPITIIG . .iiiiiiiiiiiiiiiie et 1
... 1
ZyOM TEYVOAOYIKDY EQUPLLOYEIV ...ttt ettt e et nennenne e 1
TR MNYOVIKOV TIATIPOQOPIKNG ..ttt sttt et r e n e e e et st esnenrennene 1
Abstract of the final year project in ENGHISN..........oiiie e 3
TTeptAnyn TTUYLOKIG OTO EAAVUCEL «...ceeveieeeie ettt et ne 4
TaDIE OF PICTUIES.......eei bbb bbb 6
LS OF TADIES...... bbb bbb 8
0. INEFOTUCTION ... bbb bbb bbbttt 9
L08R I T @ o] 1= ot L OSSPSR 9

0.2 Summary
0.3 Motivation

0.4 Document Structure
1. The Digital Environment

1.1 Creating @ VR-COMPALible ENVIFONMENTcoiiiiiiieiriceee sttt ettt et sbe e neene e 11
I I T T T oo 113 S POSOTRORS 11
1.1.2 3D MOAEI CIBALIONcueuivveeciieit sttt bbbt bbbttt bbbttt 13
1.1.3 Normal Maps, Textures, Shaders and MALEIIAIS...........ccoovreiriiieiereee et 14
I =T =1 A Tot U] [T PO SRRR 14
1.2.1 Terrain: TEXTUIE PaINTING.......citiiierteiteieieetiee sttt ettt b bbb b e st e bt ekt e bt b s b e b e e et e beebeabenaeaben 15
1.2.2 Terrain: Nature and VEGELATIONcoueiiiiiiiieitereee ettt bbb b e bttt eb et nre b 21
1.2.3 TErTAIN © OFNAMENESveuiiteiiieeteitet ettt b et b et b et b ke bt b e bt E bbbt e bt b et e b bt b et eb e b an e 25
1,24 TEITAIN: CIBALUIES.e.v vttt ettt ettt h bbbt b st b bbb bR s e b h b bbbt e bt bt e b bt e bt b eb e bt an e 31
1.2.5 TOITAIN: PRYSICS. . uitiieieietiete ettt sttt ettt ettt e bt s e et et e st et e e bt e be s beebe b e n s e s e e st ebesbesbeseenteseeneeseaneabeneenben 40
1.2.6 TEITAIN: SOUNG.....c.eitiiiitiiiteei itttk b bbb bbb bbb bbbt b et b et e b bbbt eb e bt nn e 42
A A -4 UL T o] Vo OSSR ET S SRUSPSPRST 44
1.2.8 Terrain: Image PoSt-proCessing EFfECLS.........coviiiiiiiie e 52
1.3 Terrain: VR Integrationc.ccoceeveene.
1.3.1 Terrain : Optimization
1.3.2 TErTAIN : CONCIUSION.......ceuiitiiiieieeiet ettt bbb bbbt bbbt b bbbt bbbt et ne e
2. TRE EEGo oottt ettt ettt b ettt Rt e ke Rt e R bRt e ARt R e AR e R e e Rt e Rt e R e R e R e nR et et eR e e R e e ReeRe bt e e eneereeReetenrenre s 67
2.1UNderstanding the Braincc.oiiiiioiieic e ettt e et e e s et e b e bbb et reebeenenrenreen 67
2.2 TESHING PRESE ...ttt ettt bt bt e b e b e R e E e b e e bt e bt b e e e m b e st e Rt e b e eb e e b e nb et et en b ebe e bt e benae b ean 70
3L RESUIES ... R R R R R R Rt n et r s 74
3.1 Data DOCUMENTALIONoviviiiiiiirecitee e e e e bt r et nn et b et r e nn e nn s 74
3.2 SUMMANY STALISTICSveueereetieteeti ettt ettt ettt bbbt e st b e bt e bt e b e b e e e m b e s e e Rt e bt e bt e b e nb et et e nt e s e ebeebenbeabeean 76
3.2.1 SINQIE L8-PEISON GIOUDueeveeiterteteseeseeseateetestesteseeseeseeseeteabesbesteabeseesseseabeabesbeabeneem e e s e emeabeabeabenbe b e e entabeabeabesbenbenean 76
3.2.2 Single 18-Person Group, OULHErS REMOVEMcueiiiiiiiiierieie ettt sae s 78
3.2.3 Two 9-Person groups, OULHErS REMOVET.........co.oiiiiiiieieiie ettt et sbe s 80
3.3 INLErPreting the RESUILSc.e ittt bt bt b e bt bt b e s b et et et e b e e beebesbeebeean 83
4. RETEIEICES ...ttt Rt R R R R R R R R R R R R Rt R et n e 89

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Table of Pictures

1.1 Unreal Engine 4 Environment

1.2 CryEngine 3 Environment

1.3 Unity Environment

1.4 Blender Environment

1.5 Empty, basic material

1.6 Material with texture

1.7 Material with texture and normal map
1.8 Basic, empty Unity terrain

1.9 Sculpted Unity terrain

1.10 Brick road texture

1.11 Normal map

1.12 Texture

1.13 Normal map over texture

1.14 Specular map

1.15 Normal and specular maps on texture
1.16 Comparison between textures

1.17 Sculpted terrain, no textures

1.18 Sculpted, painted terrain

1.19 Grass texture

1.20 Grass texture alpha

1.21 Thin grass
1.22 Thick grass example

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.23 Under-grass texture with leaves

1.24 Under-grass texture with rocks

1.25 Water4Advanced

1.26 The unoptimized model

1.27 The optimized model

1.28 Textured, optimized model

1.29 Basic, empty particle system

1.30 Smoke texture

1.31 Smoke particle, untextured

1.32 Smoke particle, finished and integrated

1.33 Waterfall particle system

1.34 Bird flock particle system

1.35 Rigged humanoid model

1.36 Untextured spider model

1.37 Textured, integrated spider model

1.38 Non-navigational terrain

1.39 NavMesh on top of the terrain

1.40 NavMesh Agent on spider model

1.41 Terrain with baked NavMesh

1.42 Creature Checkpoints

1.43 Flying creature example: Butterfly

1.44 Aquatic creature example: Whale

1.45 Rock with Collider and Rigidbody Components
3.1 First person Character Controller

3.2 Audio Mixer

1.46 Direct light shading example

1.47 Point light

1.48 Effect of a Point Light in the scene

1.49 Spot light

1.50 Effect of a Spot Light in the scene

1.51 Directional light

1.52 Effect of a Directional Light in the scene

1.53 Area Light

1.54 Effect of an Area Light to the scene

1.55 GI Effects: Color Bleed

1.55 Highlights: Directional Light

1.56 Highlights: Point Light (Colored)

1.56 no post-processing effects

1.57 sun shafts (god ray effect)

1.58 landscape before depth-based color correction
1.59 landscape after depth-based color correction
1.60 landscape before the application bloom

1.61 landscape after the application of bloom

1.62 no antialiasing with antialiasing (fxaalpresetb algorithm used)
1.63 vr headset, razer's osvr hacker dev kit

1.64 game rendered in vr

1.65 Vr enabled first-person controller

1.66 lod 0: the fully detailed version of the model is rendered
1.67 lod 1: the model loses detail

1.68 lod 2: model replaced by an even less detailed version
1.69 lod 0

1.70 lod 3: the model is replaced with a billboard version of it
3.5 culled model

1.71 simplified scene view, no frustum or occlusion culling
1.72 occlusion and frustum culling and sight lines
1.73 occlusion and frustum culling

2.1 Epoc+ to research-grade equipment comparison
2.2 Epoc+ eeq

2.3 correct sensor placement

2.4 green: strong signal received by sensor

2.5 first person shooter example 2.6 survey

2.6 Survey

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

List of Tables

Table 1: Data Documentation

Table 2: 18-Person-Group Summary Statistics
Table 3: No Outliers Summary Statistics

Table 4: Group 1 Summary Statistics

Table 5: Group 2 Summary Statistics

Table 6: Engagement

Table 7: Female difference from mean excitement
Table 8: Excitement

Table 9: Excitement female 2@diua! To apyeio poéicvons s avapopds oev fpéOnke.

Table 10: Interest

Table 11: Interest female mean divergence
Table 12: Relaxation

Table 13: Interest female mean divergence
Table 14: Stress

Table 15: Stress female mean divergence
Table 16: Focus

Table 17: Focus female Zpaiua! To apyeio npoéicvons tns avapopds ocv fpéOnke.

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

0. Introduction

Virtual Reality(VR), also known as immersive multimedia or computer-simulated reality is
an emerging technology that replicates an environment, real or imagined, and simulates a user's
physical presence and environment to allow for user interaction. It, artificially, creates a sensory
experience, which includes sight and hearing, and in more advanced applications touch and smell[1].
As the very name of the technology implies, audiovisual content presented through VR means tend to
be a lot more immersive and vivid to the user than through more traditional devices.

And while the above are a truth easily understood and felt by any modern VR user, no modern
attempts have been made to calculate and document exactly how different an experience it is.

0.1 The Objective

The work below is an attempt to prove beyond doubt that the differences between
experiencing a virtual environment through the screen of a computer and a VR Headset do exist and to
give an estimate as to how big these differences are.

It is not, however, the large scale research using incredibly powerful EEG equipment and thousands of
testers that would be needed to obtain precise numbers and make safe, irrefutable assumptions.

It should be viewed as a first step, as proof that such a large-scale research would, in fact, yield
interesting results.

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

0.2 Summary

The basic idea behind the experiment is simple. The user experiences a digital environment, in
first-person view, first through a monitor and then through a VR Headset.
At the same time, the brain activity is being monitored by a portable EEG. Brain activity is also being
monitored while the user is in a calm, neutral state.
Finally, the user fills a short survey providing information, such as age and experience with virtual
environments, to help refine the data even further.
By comparing the above, one could, in theory, determine the differences between the two activities for
each tester.

0.3 Motivation

Virtual reality is an emerging technology and very little research has been done on this very
interesting field.
What's more, very few people can be currently considered experts on it. Experience on VR is and will
be on high demand for the years to come. And, finally, this project resonates with my personal
interests and skills.

0.4 Document Structure

The structure of this document directly reflects the workflow of the project.
The first chapter, the creation of the digital world that was used in conjunction with VR, is thoroughly
explained in 1. The Digital Environment.
This is the biggest chapter, reflecting the fact that making this environment required the most time and
effort.
The second chapter, 2. The EEG, describes and analyzes the hardware and software used to collect the
brainwave data.
The third chapter, 3. Results, contains the documented data obtained from the EEG, the resulting
inferences drawn from them and all the metrics and algorithms used to do so.

10

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1. The Digital Environment

A digital environment is a simulated place made through the use of computers. For this project,

two digital environments were used.
One of them was created specifically for the purposes of this experiment, to be used with a VR

Headset.
The second was part of a bigger environment, made by a third-party developer, that resembled (to a

degree) the custom, VR environment and filled certain criteria.

1.1 Creating a VR-compatible Environment

1.1.1 The Game Engine

The very first, and most important, choice a developer has to make when creating a digital
environment is the Game Engine he or she is going to use.
It's such an important choice because it's irreversible. A Game Engine switch halfway across the
project is one of the most destructive scenarios, as it practically means starting over.The available
game engines at the beginning of this project were three, Unreal Engine 4, CryEngine 3 and Unity.

Unreal Engine : A very powerful engine, created by Epic Games. Its fourth edition became
available to all users for free on March 2015. It has a large community, offering a great amount of
support to users old and new in the form of tutorials and ready assets, many of them free. Primary
scripting language is C++.

1.1 Unreal Engine Environment

11

https://www.unrealengine.com/what-is-unreal-engine-4

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

CryEngine : Another powerful engine, created by Crytek. At the start of this project,
CryEngine was distributed under a monthly subscription fee, which posed a huge obstacle to
developers not planning on making profit.

1.2 CryEngine 3 Environment

Unity : Arelatively new engine, developed by Unity Technologies. It's being distributed for
free and offers incredible support to new developers, mostly in the form of free assets and tutorials. It's
arguably the least powerful of the three engines but the easiest to learn. It offers easy VR integration
and a large choice of scripting languages, including C#.

Due to the above, and for many other minor reasons, Unity was, finally, chosen.

1.3 Unity Environment

12

http://www.crytek.com/cryengine
https://unity3d.com/

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.1.2 3D Model Creation

3D models are an essential part of every digital environment. Creating entirely new models is
an art, and a very time-consuming process. For this one-man project, finding, modifying and re-using
free models was a necessity.
Unity offers a very large selection of free assets, but even so, sometimes creating your own models or
modifying existing ones to fit your needs is necessary.
To cover those needs, a free modeling software, Blender, was used. Made by the Blender Foundation
and supported by Unity, it was the obvious choice for non-profit, academic work.

1.4 Blender Environment

13

https://www.blender.org/about/

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.1.3 Normal Maps, Textures, Shaders and Materials

Materials are a huge chapter in the creation of any digital environment. They cover every
model in the game, providing information on how the surface of the model should appear. To do that,
they combine textures, which are simple bitmap images, with shaders, scripts that implement specific
calculations and algorithms for calculating the color of the textures depending on the lighting of the
environment (i.e. making water semi-transparent or golden bars shiny).

Finally, a normal map is a special kind of texture that adds surface detail to models.
Pictures 1.5 to 1.7 is a graphical representation of the process of creating a material for use in a game

1.5 Empty, basic material

1.6 Material with texture
engine.

1.2 Terrain: Sculpting

14

1.7 Material with texture and normal map

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Aterrain in Unity is a large, modifiable plane that allows for the creation of landscapes.
Terrain sculpting is the process of using specific tools to turn a flat plane into a landscape, and
depending on the desired quality and size, it can be a very difficult and time-consuming activity.
Unity provides many types and shapes of tools for adjusting the height, smoothness and shape of the
terrain.

Pictures 1.8 and 1.9 is an example project, visually explaining the concept of terrain sculpting.

1.8 Basic, empty Unity terrain

1.9 Sculpted Unity terrain

1.2.1 Terrain: Texture Painting

15

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

After the terrain has been sculpted to sufficient detail (modifications can be performed at a
later stage, but it tends to be harder and more time-consuming), the next step is applying materials.
Much like any 3D object, materials for Unity terrains are created by combining textures and normal
maps. Shaders, though, for reasons of optimization (terrains are big, complex objects), cannot be
freely chosen.

Unity provides specific shaders for use with its terrains.

To create a new, custom material, we must first provide the desired texture, usually in the form of
PNG or JPG.

For example, wanting to paint a brick road on our terrain, we pick the following image (Picture 1.10).

1.10 Brick road texture

This image (also called texture), can, in theory, be used immediately to paint our terrain. The
result might be of low quality and detail, but it is one way to make the environment lighter on
hardware requirements. Applications on mobile might benefit from such a decision.

For a detailed, professional, terrain though, a normal map must also be created to add realism
and visual fidelity.

The theory behind normal mapping is that a layer is created over a flat texture that provides
information on how digital light should behave after hitting it. The map reflects light as if the texture
was a detailed, 3D object and tricks the eye into believing a 2D surface is actually 3D without adding
any resource-costly, polygon details.

In this project, Crazybump was used to generate such layer.

16

http://www.crazybump.com/

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

The texture is imported into Crazybump, some parameters are set (for example, detail intensity)

and the normal map is automatically generated.
The resulting normal map can be observed in Picture 1.11.

CrazyBump Evaluation - ground_texture_by_jesielt (1536 x 1020) & X|

Invert Shape Recognition

Normal Map Mixer...

Show 3D Preview...

Normal Map:
Intensity:
Sharpen:
Noise Removal:
Shape Recognition:
Very Fine Detail:
Fine Detail:
Medium Detail:
Large Detail:

Very Large Detail:

Normals

& -2 X

1.11 Normal map

And in Picture 1.12 the texture is displayed again, imported in the software.

Preview

options

1.12 Texture

17

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.13 Normal map over texture
Finally, when combining the above, we can see the material produced (Picture 1.13).

Before we apply this material, however, there is still one more layer we can generate and apply.
Every real substance and material has some degree of glossiness. For example, wet marble is very

glossy, while dry dirt is not.
Utilizing Crazybumps capabilities, we can create another layer, called Specular, for the purposes of

simulating that effect.
In Picture 1.14 is of the specular map generated.

18

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

CrazyBump Evaluation - ground_texture_by_jesielt (1536 x 1020)

Invert Shape Recognition

Normal Map Mixer...

Show 3D Preview...

Normal Map:

& -

1.14 Specular map

So, by applying everything created so far, we achieve a realistic looking material (Picture 1.15)

for use on our terrain that is relatively computationally cheap.

options

1.15 Normal and specular maps on texture

To sum everything up, Picture 1.16 is of a comparison between a simple and a normal/specular

mapped texture.

19

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

pil.

_ —
ray \'::"\ n\a'q’ i
Wiy or

) 76
Wip o

1.16 Comparison between textures

By using any or all of the above techniques, suitable materials for the terrain can be created.
It also needs to be mentioned that ready-for-use materials can also be downloaded from the Unity
Asset Store.
In the store, an incredible amount of free and purchasable materials, shaders and textures can be
downloaded. Since time is valuable, it’s always a good idea to visit the store before trying to make
anything new in Unity.
Chances are it already exists and constantly “reinventing the wheel” is extremely counter-productive,
both for solo developers and huge teams.

After the required materials have been made and stored, they need to be applied on the terrain.
Unity provides a special toolkit for painting terrains, much like they do for sculpting them.
By using brush-tools and adjusting parameters such as texture strength and tiling size, the
developer slowly covers the terrain and produces a realistic, yet void, landscape.
The following images (Pictures 1.17 and 1.18) depict the actual terrain created for this experiment,
from sculpting to painting.

e Explorer - #C. <ox11> - o x
File Edt Assets GomeObject Component Window Help

@ ¥ Temnm] @static ~
Tog (Temain__+) Layer (sfask__&

ciiff
Waterd AdvancedRefiectionSceneC
WaterdAdvancedReflectonfirstper
WatersAdvancedReflectionPrevien

CreatureRegister

> skeleton_static (2)

¥ skeleton_static (1)
»8ip01

0 Console
Collapse | Clear sn By | EmerPavse

1.17 Sculpted terrain, no textures

20

https://www.assetstore.unity3d.com/
https://www.assetstore.unity3d.com/

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

File
O+ S X E 0

3 Animator @ Asset Store
T

1.18 Sculpted, painted terrain

1.2.2 Terrain: Nature and Vegetation

The next step towards a realistic, mountainous landscape is adding vegetation and other
natural details.

Vegetation is, usually, consisted of two categories. 3D and 2D.

The first includes trees, large plants, bushes and anything we want to be detailed and
standalone.

The second is consisted of 2D assets, usually grouped together to produce a 3D feeling to the
onlooker. Grass and small plants are usually put in this category due to performance issues. Trees
and large plants generally take up space. Three or four trees can effectively cover a small area, if used
correctly.

Grass, on the other hand, has to exist in bulk in order to be visually appealing and realistic.
And since rendering a thousand patches of grass one by one, in 3D, would be computationally
devastating, a technique was developed to render them grouped together, in 2D.

For this to work, every 2D-grass-image is forced to constantly face the camera (Billboard).
While grass is usually rendered and grouped together using the technique above, anything can be made
to do so in order to save computational resources. Two fitting examples are weeds and small flowers.

For the first category, individual 3D models of the desired vegetation are needed. These can be
made in any 3D graphics software, like Blender, in specialized software, like Speedtree and/or
downloaded in the asset store for free or for a fee. Also, Unity has its own built-in system for tree-
creation. Most of the flora used in this environment was downloaded from the Unity Asset Store. Then,
it was either used as-is or got modified in Blender or in Unities native tree-maker.

By re-using pieces of models, like leaves and trunks and combining them together, it's easy to
create an abundance of different, unique models to decorate even huge landscapes with. For this
project, at least 20 different models were used to sufficiently fill the terrain.

When all the needed models are found and imported, the developer faces yet another choice.
He/she can simply place them, much like any other object, on the terrain one by one or have Unity
treat them like Tree Assets and use special tools for placing them in the scene.

21

https://en.wikipedia.org/wiki/Artistic_rendering
http://www.speedtree.com/

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

When they are simply placed in the scene, the developer has more control over them but Unity does
not recognize them as trees. So, the developer must make his/her own effects and physics, but can
also select and affect each tree directly.

On the other hand, if the developer decides to utilize Unities tree-placing system, they enjoy
perks, such as automatically generated wind movement, physics (collision detection, for example),
randomized trees(if a tree model fills certain prerequisites, each tree placed will differ from the rest),
better large-scale tree management(can affect traits of all the trees at once), mass-random tree
placement and optimization.

The same is true for grass and the rest of the 2D assets mass placed in Unity. While it is
possible to place them one-by-one, it's far more efficient to mass place them using Unities tools.
These assets, due to their nature, are more like textures than models. They can be found in the Asset
Store or made in any imaging/photo editing software, with Adobe Photoshop being a good example.
Unlike simple textures, these assets usually are a pattern in a picture, with the alpha being zero in all
the empty areas.

Pictures 1.19 and 1.20 are an example of a single grass leaf patch and its alpha cutoff.

1.19 Grass texture 1.20 Grass texture alpha

So each piece of grass is, basically, a 2D square image with invisible edges that always faces
the observer. When one of these is rendered alone, its poor quality and strange movement are easy to
notice. When, on the other hand, many of these are placed together, covering big areas, the loss in
quality is hardly noticeable, as demonstrated below (Picture 1.21 and 1.22).

22

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Single Patch (56 tris)

1.21 Thin grass

1.22 Thick grass example

23

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Another method used for making grass seem realistic is painting the terrain below the grass
with a suitable, green texture. It makes the grass seem thicker and volumetric. By using a proper
texture, grass density can be reduced, resulting in huge computational savings and, thus, better
framerate.

1.23 Under-grass texture with leaves

One of the many advantages of using Unities built-in tools for managing the vegetation is that the
density of grass can be adjusted at any time using a slider, instead of adding-removing patches of
grass.

1.24 Under-grass texture with rocks
This also means that the end-user can personalize the scene to a degree by choosing the desired
amount of detail(grass, flowers) density his machine can adequately support.
Images 1.23 and 1.24 are two texture examples used in conjunction with grass to amplify the visual
fidelity in this very project.

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Finally, an element used in most digital worlds is, of course, water.
Unlike other elements and possible visual effects, water is a frequent sight in reality and one of the
best ways of naturally ending the landscape.
Creating realistic digital water, though, is a very complicated activity. Water reflects and refracts
light, forms ripples, waves, foam where it comes into contact with objects and game physics behave
in a completely different way than on land.
Fortunately, Unity comes equipped with two free, decent water-making shaders. They still need a
great amount of configuration, but it is nothing compared to the time one would need to make
completely custom water.
In this project, the Water4Advanced asset was used, configured to imitate slightly fluorescent, calm
lake water as shown in Picture 1.25 below.

1.25 Water4Advanced

1.2.3 Terrain : Ornaments

Ornaments, in a digital world, could include rocks of various shapes and sizes, special
effects(fire, smoke, lava, clouds), interact-able items and any other visual part of the landscape that is
not vegetation, water or some sort of creature.

These 3D models add a lot to the realism of the digital world and make the virtual experience more
interesting to the user.

The Asset Store has an abundance of models, from cars and skyscrapers to skeletons and statues.
Unity, though, has no built-in, optimized way of handling these models, so it's up to the user to
integrate them in the scene(instance of all or part of the digital world) and make sure they are up to the
project standards.

An example of bad integration is using a very high polygon-count model of a car in a racing game
meant to be played on a mobile device. The model should be used, but its polygon-count should first
be reduced using a relevant software (Blender, for example).

One of the biggest advantages of developing this project, where a general landscape is needed
for use with VR, is that there are no limitations imposed in decoration. Any relevant 3D model,
distributed for free on the Internet, could be used. And the fact that it was developed for academic
reasons and not for profit-making, ensured that almost every asset could be legally used.

Pictures 1.26 and 1.27 describe the typical procedure of downloading, processing and using
a 3D model.

25

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

It's decided that this model will have a relatively small scale in the scene, thus it does not have
to be detailed. But it's made by an incredibly high amount of polygons (more than 50.000). It needs
to be simplified before being used.

Using the decimate function of Blender, we reduce the polygon-count as much as possible while
trying to keep quality high. This way we manage to reduce polygons, and thus computational
requirements for using this model, by 90%.

Picture 1.27 shows the final, optimized result. The differences are almost unidentifiable to the

eye.

1.26 The unoptimized model

1.27 The optimized model

26

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

After the optimization process is finished, we import the model in Unity where we create and apply
a material, much like we did for the terrain.

1.28 Textured, optimized model

The other noteworthy type of ornament widely used in digital worlds are special effects,
formally named Particle Effects in game design.
Unity has its own, build-in system for creating and handling these effects. Its basic function is simple.
There is a source, the core of the effect, that generates either 2D or simple 3D models. The size,
generation rate, speed and texture of those models, along with many other attributes, can be freely
customized. What's more, every one of those models can, at any point, be made into a source of its
own. Proper use of that system makes effects like fire easy to create and handle.
Pictures 1.29 to 1.33 show the process of making such an effect.

27

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

First, we create an empty, basic particle effect within Unity (Picture 1.29).

Scene | € Game .
Textured + RGB s e’ 4) Gizmos + Al

Particle Effect

Pause Stop
Playback Speed 1.00
_ Playback Time 33.13

1.29 Basic, empty particle system

The white, round objects are called particles and, at the bottom, the invisible area that emits
them is called the source. In Picture 1.29, the source is near the green dot. All those visible particles
started there, before ascending to their current level. The basic, automatically generated particle
system emits white(untextured) particles that are have an initial speed and ignore gravity and
collisions. The particles are emitted in customizable intervals or when certain criteria are met. For
the basic model above, emittion is set to one particle per minute.

These particles can me modified and given almost any shape and size by combinations of geometry,
kinetics and textures. If, for example, we wanted to create smoke, one way would be to apply a
relevant texture to the particles, as shown in Picture 1.30 below. The alpha values on black areas are
near zero, to give smoke its transparency effect.

By adjusting some values concerning particle physics, size, rotation and speed, we create the
effect seen in Picture 1.31. Then, we apply the texture, adjust the effect to the specifics of the scene
and get final result in Picture 1.32.

28

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.32 Smoke particle, finished and integrated

To demonstrate the power of the particle system creator, by adjusting some physical values
(gravity strength, speed, rotation, collision..) on the system above and using a different texture, the

1.31 Smoke particle, untextured
particle effect in Picture 1.33 can, relatively easily, be created.

29

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.33 Waterfall particle system

Finally, apart from creating special effects, particle systems can also be used for a number of
other things. By creatively combining textures and components, particle systems can simulate
anything.

In this project, for example, particle systems were used to create birds flying high across the
sky. This was achieved by constantly replacing a bird texture in various flying positions, much like the
technique that was used to film cartoons in the past. Using a particle system instead of making and
using actual bird models saves a lot of processing power, makes the end-product lighter and smaller
and the birds easily configurable.

Below, Picture 1.34 is the resulting effect in the scene.

30

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Q Unity Personal (64bit) - screenShotScenelnstance.unity - Explorer - PC, Mac & Linux Standalone* <DX11>
File Edit Assets GameObject Component Window Help

S,:D:E] [#8 Pivot | @Local |

= Hierarch: em| ¥ Scene €G

Shaded 2 Gizmos = | (a-All
.....

Specular
¥ butterfly2
Butterfly Mesh

g

» Butterfly.Root
¥ Campfire
Light
Spark Particles
Flame Particles
Heat Particles
Directional light
» Rocks
» Ornaments
» VRFirstPersonController
WindZone
¥ ParticleEffects
FairiesInBush3
FairiesInBushS
FairiesInBush3 (1)

v >
= o

@p O console it Audio Mixer
Create *

&)

| Assets » DragonEgg »

e [I | e s
A4
Vi Assets
» & 3D Model

>l alien veg Materials EggMat EgqgMat2

> AllFaunaAssets

» &l AllosaurusAndSkeleton

> ancient_ruins_01

» Gl Ash

> G Body_splatter_parts
500w

B RE 75 3k A

a

[\ The tree 22_lod0_prefab must use the Nat ft Occlusion shader, Otherwise billboarding/lighting will not work correctly.

1.34 Bird flock particle system

1.2.4 Terrain: Creatures

Ornaments and flora are extremely important to any scene, but nothing brings a digital world to
life more than mobile, interactive creatures. On the other hand, the process of integrating those

creatures is a lot harder than for simple ornaments and particle effects.

Commonly, there are three major aspects to integrating a creature in the scene, Creating a Rigged

Model, Applying Movement and Animations and Pathfinding/Artificial Intelligence.

Below, the process of integrating a creature (spider) in our digital world is explained.

31

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

A Rigged Model is a special type of 3D model that contains a digital skeletal system, called an
armature or rig, that is attached, mapped to it. Animation is then applied to the skeletal system, which
in turn moves the model itself.

There are many reasons for doing animation this way. First of all, we can make minor changes in the
model without the need to change every animation as well. A second reason is generalization. If we
create an animation for a humanoid skeletal system, we can apply that animation to any model using
that system. We can animate a standard human male model, a clown model, even a fantasy
human-like model like a hobbit using the same animations.

The third reason is automation. A lot of specialized software exists for the automatic generation of
skeletal systems and animations for specific skeletal systems. Such a thing would not be possible if
every model was animated autonomously.

Rigged models, much like normal models, are created using specialized software (Blender, for
example). Also, normal models can be made into rigged models using that same software. So,
downloading suitable model and riggifying it is also an option.

Picture 1.35 is a human model rendered black to illustrate its rig.

male body?.

2Z: 0.00000

€ @ oelayr

¥ Bone Groups

Lock to Object:

@ Lockto Cursor
@ tock Camera to View
Cip:

End: 1000.000
Local Camera:
aaaaa

o Wbl 1] O C—

1.35 Rigged humanoid model

32

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

The spider model integrated in this digital world was downloaded from the Unity Asset Store.

The model contained textures, an armature and several animations. Picture 1.36 and 1.37 demonstrate
the basic and the textured, imported spider model.

Mesh
1339 verts, 1764 tris uv,skin

1.36 Untextured spider model

& Unity Personal (64bit) - screenShotScenelnstance.unity - Explorer - PC, Mac & Linux Standalone* <DX11>
File Edit Assets GameObject Component Window Help

(V] :: S =G 9 Pivot | @ Local > 1M
cchy & .= | #Scene € Game %8 Animator £ Asset Store
L — 20 || % <) & -

ly.Mesh =
» Butterfly .Root
¥ Campfire
Light
Spark Particles
Flame Particles
Heat Particles
Directional light
» Rocks
» Ornaments
» VRFirstPersonController
WindZone
» ParticleEffects
¥ CheckPoints
CritterCheckPoint (3)
CritterCheckPoint (1)
CritterCheckPoint
» Tunnel
» MyColliders
¥ EggNest
¥ DragonEggl (1)
VEgg
Eg_MeshPartd
¥ DragonEggl
YEgg v
@3 project O console itf Audio Mixer
Create - <
> Humpback whale 4 Assets » DragonEgg -
> ICE 3

> idol

> KY_effects —

> Lava_Flowing_Shader - J o O o

» & Liquid Particle Systems Ll
& Materials

> Medieval props U

il
as

» & Nobiax plant pack Materials
>l OSVRUnity

& R

> ParticleSystems

» (il PB_Spider

» (G Plugins

EggMat EggMat2

[\ The tree 22_lodo_prefab must use the Nature/Soft Occlusion shader. Otherwise billboarding/lighting will not work correctly.
=

1.37 Textured, integrated spider model

33

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

After integrating it, we need to enable the animations. This is usually done using Unities inbuilt

animation system called Mechanim. This model, however, uses an older type of animation, Legacy.

This meant that most of the animating for this model was done via script and was implemented within

the code handling the behavior, or Al (Artificial Intelligence) of the spider.

The last thing we must do before the spider can run around the scene, interacting with objects is

Pathfinding.

In order for a model to move around a scene safely and realistically, a map of the terrain needs to be
drawn and areas where objects can and cannot reach must be specified on it. This process is called

“Baking a Navigation Mesh, or NavMesh” and can be done automatically by Unity once we have the

terrain and all objects (possible obstacles) set in the scene. The baking, along with the parameters
needed for its correct completion, are visualized in Pictures 1.38 and 1.39 below.

Scene Filter:

Directional light Navigation Static
Main Camera A Generate OffMeshLinks (]
Navigation Area

1 Selectscene geometry that should
affect the navigation — walkable
surfaces and obstacles.

= Hierarchy | (9 project o | ¥ Scene e o - 5
Create | (GrAIl) ||| Textured <) | & 17| | Gizmos -| @rAT D)
¥ Level

¥ Ground

Meshl
¥ wall
Mesh2
Agent i T
Directional light = b 0.6
Main Camera 4
Heightdefines how low
spaces the agent can
o reach. . Agent Radius
" Agent Height

Generated Off Mesh Links

Jump Distance I

¥ Advi

Step Heightdefines your agent size.
igh obstructions % /

how higl
the agent can step on.

Radiusdefines how

close the agent center can

getto a wall or a ledge. w Heigh! \
;

1.39 NavMesh on top of the terrain

|:Mesh Renderers “Terrains

L:{Mesh2 (Mesh Renderer) and 1 other

2 Checkto include selected objects
in the NavhMesh baking process.

RENGliRspector 5 Navigation |
EATT

| onee (D
L s |

Drop Height o

3 Adjust the bake settings to match

4 Ciick baketo build the navmesh.

34

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

For the bake above to be successful and functional, we also need to specify the circumference
and height of our moving object. We do that by attaching a NavMesh Agent component to it and
setting the correct parameters while baking the NavMesh.

The NavMesh agent is, basically, a cylinder containing the model. So, instead of moving the model
around, we move the cylinder which has set geometry, making calculations a lot easier.
This can be visualized in Picture 1.40.

=+ Scene € Game 78 Animator £ Asset Store i =
Shaded =l2D | o * Gizmos ~| ‘Al k

< Persp.

e ‘
L. =

1.40 NavMesh Agent on spider model

To conclude navigation, Picture 1.41 demonstrates the calculated NavMesh of our actual terrain.
Blue declares the area available for navigation. Grass has been omitted in this picture, so the
NavMesh can be properly viewed.

35

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Scene b :
| | Shaded -3 izmos ~| (arAll)

1.41 Terrain with baked NavMesh

After the NavMesh is baked and ready, it's very easy to move a creature around the scene and
even create more creatures at runtime and have them navigate the scene too.
The following, simple C# script can be added on the spider to move it anywhere on the scene that the
NavMesh allows.

//MoveDestination.cs

using UnityEngine;

public class MoveDestination : MonoBehaviour

{

public Transform goal;

void Start ()

{

NavMeshAgent agent = GetComponent<NavMeshAgent>(); //get the NavMesh agent of the object

agent.destination = goal.position; //send the agent(with the attached object) at “goal.position”

11

36

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

To complete the script above, we could also enable the “walk’ animation, so that the spider
appears to be walking towards its destination.
The final script implementing the “walk-to-destination” function is:

//MoveDestination.cs

using UnityEngine;

public class MoveDestination : MonoBehaviour

{

public Transform goal;

void Start ()

{

NavMeshAgent agent = GetComponent<NavMeshAgent>(); //get the NavMesh agent of the object
agent.destination = goal.position; //send the agent(with the attached object) at “goal.position”

animation.Play("walk", PlayMode.StopAll); //play the walking animation and stop all others
}

Now that the infrastructure is ready, we can proceed to implement the Al. In our digital world,
we wanted the spiders to roam around the forest semi-randomly, while avoiding the player. We also
want them to “die” if the player steps on them.

To implement the above, four Checkpoints (Picture 1.42) were made in the scene. A pseudo-script
implementing the behavior would be :

//pseudoScript

while (bool){ moveDestination(random(checkpoint))

}

if(distance(player,spider)< x/10) //if the distance is very small,

//stop walking, then die

{

bool=false

dieSpider()

}

else_if(distance(player,spider)< (x)) //if the distance is small

{ //enough, run away

bool = false

runaway(player.position)

/

37

http://docs.unity3d.com/462/Documentation/ScriptReference/PlayMode.StopAll.html

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

+ Scene € Game “3 Animator 3 Asset Store
Shaded *| 20 o) | &

Gizmos *

1.42 Creature Checkpoints

It's easily observed that the code used is not only simple and short, which means less chance
for logical errors, it's also extremely flexible and reusable. This script can be directly applied on any
creature with a NavMesh Agent and properly named animations and it will work perfectly. This means
that new creatures can be created and used at runtime, that the scene can easily be updated with
new creatures as they become available and that more checkpoints can be added or removed, as
needed. Generally, this modular approach is extremely flexible, easy to implement and simple.

Below, Pictures 1.43 and 1.44 show two other creatures implemented in a similar manner, a

flying and an aquatic animal. For making proper NavMeshes on these creatures, invisible, not-
rendered terrains were made.

38

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

& Unity Personal (64bit) - screenShotScenelnstance.unity - Explorer - PC, Mac & Linux Standalone* <DX11>
File Edit Assets GameObject Component Window Help

- _f; = 51 »j Pivot | & Local -

= Hierarchy ®em| #Scene | € Game °% Animator & Asset Store. =
ATl | shaded 1|20 % (<)@ -

» VRFirstPersonController
WindZone
¥ ParticleEffects
FairiesInBush3
FairiesInBushS
FairiesInBush3 (1)
FairiesInBush3 (2)
FairiesInBushS (1)
FairiesInBushS (2)
FlockOfgirds
¥ CheckPoints
CritterCheckPoint (3)
CritterCheckPoint (2)
CritterCheckPoint (1)
CritterCheckPoint
» Tunnel
» MyColliders
¥ EggNest
¥ DragonEgg1 (1)
¥ Egg
Egg_MeshParto
¥ DragonEggl
¥ Egg
Egg_MeshPart0
Area Light

xer.

4 Assets » DragonEgg »

LAl Prefabs =
o, e |
i Assets
» & 30 Model

» G alien veg Materials EggMat
» @l AllFaunaAssets
» & AllosaurusAndSkeleton
» @l ancient_ruins_01
> Ash
» Gl Body_splatter_parts e
RO ana —"
[\ The tree 22_lodo_prefab must use the Nature/Soft Occlusion shader. Otherwise billboarding/lighting will not work correctly.

1.43 Flying creature example: Butterfly

2 Unity Personal (64bit) - screenShotScenelnstance.unity - Explorer - PC, Mac & Linux Standalone* <DX11>
File Edit Assets GameObject Component Window Help

F VRFirstPersonController
WindZone
¥ ParticleEffects
iesInBush3
esInBushS
FairiesInBush3 (1)
FairiesInBush3 (2)
FairiesInBushS (1)
FairiesInBushS (2)
FlockOfBirds.
¥ CheckPoints.
CritterCheckPoint (3)
CritterCheckPoint (2)
CritterCheckPoint (1)
CritterCheckPoint
» Tunnel
» MyColliders
¥ EggNest
¥ DragonEgg1 (1)
¥ Egg
Egg_MeshPart0
¥ DragonEggl
¥ Egg
Egg_MeshPart0
Area Light

@ project
| Create -
¥ /Favorites 4 Assets » DragonEgg »
v Assets

L All Materials
©LAll Models
©L Al Prefabs
©\ All Scripts - ‘ (>}
¥ 3D Model —
> alien veg Hatehls
» & AllFaunaAssets
&l AllosaurusAndSkeleton
> ancient_ruins_01 |

> Ash
> Bod

latter_parts

|

1.44 Aquatic creature example: Whale

39

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.2.5 Terrain: Physics

The term Physics in game-design is the ability to give a model(object) convincing physical
behavior. An object in a game must accelerate correctly and be affected by collisions, gravity and other
forces. Unity’s built-in physics engines provide components that handle the physical simulation
instead of the developer. With just a few parameter settings, we can create objects that behave
passively in a realistic way (i.e., they will be moved by collisions and falls but will not start moving by
themselves). By controlling the physics from scripts, we can give an object the dynamics of a vehicle,
a machine or even a moving piece of cloth.

To utilize Unities physics system, all we have to do is add a Rigidbody component (component
something that is contained in the Object) to it.

This will immediately cause any object to be affected by gravity. If we add a Collider component too,
the object will start behaving realistically, colliding with the ground and with other objects having
Collider components[2].

A Collider component is, essentially, a geometrical shape around an object. When this
geometrical shape detect another such shape colliding with it, it notifies the Rigidbody, which, then,
depending on our settings, applies physics.

What's more, we can adjust the Rigidbody and Collider components' parameters to achieve even
more realistic results, for example setting a big stones' mass and drag to a high value and making the
stones' Collider a sphere that correctly envelopes it.

Picture 1.45 is such a rock object from our scene, enveloped in a correctly-sized Collider, set
with a Rigidbody component.

S prefab Static ~

Prefal alect Fevert appl

~ Transform Lo
Position X 629.7 Y 16,48 2 187.6

Rotation X0 Yo zo |
Scale X 0.2 Y 0.2 z02
Rock_05 (Mesh Filter) (

v Mesh Renderer @

Q

22

. Rigidbody
s

-
P

C o,

&% Edit Colide

Material None (Physic Material) 2

X -3.833923 Y -1.903067 Z 6.028671

e
X 60.32398 Y 26.972 2 58.60265

1.45 Rock with Collider and Rigidbody Components

40

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

One last mention regarding physics in Unity are Character Controllers. Character Controllers
(Picture 3.1) are special components, meant to be applied to the player-controlled character. Usually,
the player-controlled character’s acceleration and movement will not be physically realistic. It may
be able to accelerate, brake and change direction almost instantly without being affected by
momentum. Also, a character controller cannot walk through static colliders in a scene, and so will
follow floors and be obstructed by walls. It can push rigidbody objects aside while moving but will
not be accelerated by incoming collisions. This means that we can use the standard 3D colliders to
create a scene, around which the controller will walk, but we are not limited by realistic physical
behavior on the character itself[3].

© Inspector [IIEEE
; |First Person Controller | [)static v
Tag | Untagged 4+ | Layer | Default |
Prefab | Select | Rewert | aApply |
A~ Transform @ 2=
Position X 43.684 Y 39.470 2 -314.8.
Rotation X0 Yo 20

Scale X1 Y41 Z4i1

& [M character Controller

Slope Limit 45

Step Offset 600

Skin Width 0.05

Min Move Distance 0

Center
X0 y[o 1z/0

Radius 0.4

Height 2

3.1 First person Character Controller

41

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.2.6 Terrain: Sound

Sound effects add, as one easily understands, a great deal of immersion, realism and life to any
digital environment. Even more so when the environment is perceived through VR, since the user has
limited perspective, and sound can be used as a point of reference or indicator to the user of where
he/her attention is needed.

In real life, sounds are emitted by objects and heard by listeners. The way a sound is perceived
depends on a number of factors. A listener can tell roughly which direction a sound is coming from
and may also get some sense of its distance from its loudness and quality.

A fast-moving sound source (like a falling bomb or a passing police car) will change in pitch as it
moves as a result of the Doppler Effect.

Also, the surroundings will affect the way sound is reflected, so a voice inside a cave will have an
echo but the same voice in the open air will not.

To simulate the effects of position, Unity requires sounds to originate from Audio Sources
attached to objects. The sounds emitted are then picked up by an Audio Listener attached to another
object, most often the player controlled character. Unity can then simulate the effects of a source’s
distance and position from the listener object and play them to the user accordingly.

The relative speed of the source and listener objects can also be used to simulate the Doppler Effect
for added realism.

Unity can’t calculate echoes purely from scene geometry but you can simulate them by adding
Audio Filters to objects.

For example, you could apply the Echo filter to a sound that is supposed to be coming from inside a
cave. The Unity Audio Mixer is a tool that allows the developer to mix various audio sources, apply
effects to them, and perform mastering[4].

So, first of all, we add an Audio Listener to our first-person character. Then we download all the
needed sounds of our scene (MP3 and WAV are the most frequently used formats) and add them
together with an Audio Source, to every single object we need producing sound.

We also create two empty, not-rendered objects that only contain an Audio Source for producing
ambient sounds (birds singing, wind howling etc.)

Last but not least we add an audio source to the feet of the player-controlled character for producing
stepping sounds. A small script detects where the player steps on, be it rocky, grassy or sandy ground
and swaps the stepping sound accordingly.

Below is part of the script, a function that produces the stepping sound.

//call this when a footstep sound is needed
public void Footstep(){

for(int i =0, i < groundTypes.Count; i++){
for(int k = O; k < groundTypes]i].textures.Length,; k++){

if(currentTexture == groundTypes[i].textures[k]){
footstepAudio.PlayOneShot(groundTypes[i].sounds[Random.Range(0,groundTypes[i].sounds.Length)]);

Debug.Log(currentTexture);

42

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Debug.Log(groundTypes|i].sounds[Random.Range(0, groundTypes[i].sounds.Length)]);

Another sound addition that is of interest is the one the spider emits when approached by the
player. A single line of code can make an extremely big difference in the realism of the world.
Many testers almost jumped off their seats when faced with a creature that they would have
completely overlooked if not for the sound it made.

Finally, the Audio Mixer tool (Picture 3.2) that Unity provides is a great way to group and
manage sounds. Instead of having to configure every single sound effect individually, the developer
can add them in groups and handle them together. Effects meant to be ambient can, for example, be

placed in an Ambient Sounds category and increase-decrease their intensity or apply filters to them as
a group.

iti Audio Mixer

Exposed Parameters (0) ¢

$ Groups
@ ¥ Master

® BackGround

® ScaryBackground

®© FootSteps
@ views ¥

3.2 Audio Mixer

43

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.2.7 Terrain: Lighting

In order to calculate the shading of a 3D object, Unity needs to know the intensity, direction and
color of the light that falls on it. Picture 1.46" demonstrates an example of shading.

300
C)OD Light source
174 0 Q

<&,

Bright shading 5

Dark shading

1.46 Direct Light Shading Example

These properties are provided by Light objects in the scene. The base color and intensity are
set identically for all lights but the direction depends on the type of light being used. Also, the light
may diminish with distance from the source. The four types of lights available in Unity are described
below

A Point Light is located at a point in space and sends light out in all directions equally. The
direction of light hitting a surface is the line from the point of contact back to the center of the light
object. The intensity diminishes with distance from the light, reaching zero at a specified range.

A point light is visualized in Picture 1.47.

44

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.47 Point light

Point lights are useful for simulating lamps and other local sources of light in a scene. They
can also be used to make a spark or explosion illuminate its surroundings in a convincing way. Picture
1.48 demonstrates the effects of a point light in the scene.

45

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.48 Effect of Point Light in the Scene

Much like a point light, a Spot Light (Picture 1.49) has a specified location and range over
which the light falls off. However, the spot light is constrained to an angle, resulting in a cone-shaped

1.49 Spot light

46

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

region of illumination. The center of the cone points in the forward (Z) direction of the light object.

Spot lights are generally used for artificial light sources such as flashlights, car headlights and
searchlights. With the direction controlled from a script or animation, a moving spot light will only

1.50 Effect of a Spot Light in the scene
illuminate a small area of the scene and create dramatic lighting effects (Picture 1.50).

A Directional Light (Picture 1.51) does not have any identifiable source position and so the
light object can generally be placed anywhere in the scene. All objects in the scene are illuminated as
if the light is always from the same direction. The distance of the light from the target object is not

1.51 Directional light

47

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

defined(infinite) and so the light does not diminish.

Directional lights represent large, distant sources that exist a position outside the range of the
game world (Picture 1.52). In a realistic scene, they can be used to simulate the sun or moon. In an
abstract game world, they can be a useful way to add convincing shading to objects without exactly
specifying where the light is coming from. When checking an object in the scene view (to see how its
mesh, shader and material look, for example) a directional light is often the quickest way to get an
impression of how its shading will appear. For such a test, we are generally not interested in where the
light is coming from but simply want to see the object looks “solid” and whether there are glitches in
the model.

1.52 Effect of a Directional Light in the scene

An Area Light (Picture 1.53) is defined by a rectangle in space. Light is emitted in all
directions, but only from one side of the rectangle. The light falls off over a specified range. Since the

lighting calculation is quite processor-intensive, area lights are not available at runtime and can only
be baked into lightmaps.

48

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

t Range

== Range

1.53 Area Light

Since an area light illuminates an object from several different directions at once, the shading
tends to be more soft and subtle than the other light types (Picture 1.54). A proper use to it would be
the creation of realistic street lights or a bank of lights close to the player. A small area light can
simulate smaller sources of light (such as interior house lighting) with a more realistic effect than a
point light.

1.54 Effect of an Area Light to the scene 49

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Global Illumination (GI) is a system that models how light is bounced off of surfaces onto
other surfaces (indirect light) rather than being limited to just the light that hits a surface directly from
a light source (direct light). Modeling indirect lighting allows for effects that make the virtual world
seem more realistic and connected, since objects affect each other’s appearance. One classic example
is ‘color bleeding’ where, for example, light hitting a red wall at a specific angle will cause red color to
be bounced onto the wall next to it (Picture 1.55). Another is when sunlight hits the floor at the
opening of a cave and bounces around inside so the inner parts of the cave are illuminated too.

1.55 Gl Effects: Color Bleed

Traditionally, video games, digital worlds and other realtime graphics applications have been
limited to direct lighting, while the calculations required for indirect lighting were too slow so they
could only be used in non-realtime situations such as CG animated films.

A way for games to work around this limitation is to calculate indirect light only for objects and
surfaces that are known ahead of time not to move around (that are static). That way the slow
computation can be done ahead of time, and since the objects won't move, the indirect light that is pre-
calculated this way will always be correct, even at runtime. Unity supports this technique, called
Baked Gl (also known as Baked Lightmaps), which is named after “the bake” - the process in which
the indirect light is pre-calculated and stored.

In addition to indirect light, Baked Gl also takes advantage of the greater computation time
available to generate more realistic soft shadows from area lights and indirect light than what can
normally be achieved with realtime techniques.

One noteworthy disadvantage of this technique, however, is that it dramatically increases the size of
the end-product due to the lightmaps it bakes, stores and uses.

By using all the lighting techniques above, we greatly increase the realism and visual fidelity of
our digital world. Pictures 1.55 and 1.56 below present two highlights from within that world. It is
worth mentioning that, due to a bug in Unity presented at the time, these results were done using the
minimum quality settings.

50

Mixer |

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

$ Animato) 3 Asset Store =
+ Free Aspect 5

Maximize on Play Mute audio | Stats Gizmos *

Display 1

)
3| Free Aspect

7

1.56 Highlights: Point Light (Colored)

51

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.2.8 Terrain: Image Post-processing Effects

Image post-processing effects are special effects applied on the digital world, often to simulate
physical camera and film properties and their correct use can add a great deal to the look and feel of
our world, especially since it's designed to be experienced in first-person view.

Important effects in this category include Sun Shafts, Bloom, Antialiasing and Color Correction
Curves.

Sun Shafts, or god ray effect, simulates the radial light scattering that arises when a very bright
light source is partly obscured. Picture 3.4 demonstrates the scene without any effects and Picture
1.56 god rays are included.

1.57 Sun Shafts (God Ray Effect)

52

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Color Corrections] is an effect used to make color adjustments for each color channel. Depth
based adjustments allow you to vary the color adjustment according to a pixel’s distance from the
camera. For example, objects on a landscape typically get more desaturated with distance due to the
effect of particles in the atmosphere scattering.

Selective adjustments can also be applied, so you can swap a target color in the scene for another color
of your own choosing.

Color Correction Curves is a tool visualizing and performing the above function by mapping color
channel values on curves, using a Cartesian system.

Saturation is an easy way to adjust all color saturation or desaturation (until image turns black &
white) which is an effect that is not achievable with curves only.

1.58 Landscape before depth-based Color Correction
Pictures 1.58 and 1.59 visualize the change Color Correction can have on a scene.

1.59 Landscape after depth-based Color Correction

53

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Blooming is the optical effect where light from a bright source (such as a glint) appears to leak
into the surrounding objects. The Bloom image effect adds the effect above and also automatically
generates lens flares in a highly efficient way.

Bloom is a very distinctive effect that can make a big difference to a scene and may suggest a magical
or dreamlike environment especially when used in conjunction with HDR _rendering. On the other
hand, given proper settings, it’s also possible to enhance photorealism using this effect. Glow around
very bright objects is a common phenomenon observed in film and photography, where luminance

values differ vastly.
Pictures 1.60 and 1.61 demonstrate the difference the Bloom effect can make in a scene.

1.61 Landscape after the application of Bloom

54

https://docs.unity3d.com/Manual/HDR.html

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Finally, the Antialiasing™ effect is a post processing effect offers a set of algorithms designed to
give a smoother appearance to graphics. When two areas of different color adjoin in an image, the
shape of the pixels can form a very distinctive “staircase” along the boundary. This effect is known as
aliasing and hence antialiasing refers to any measure which reduces the effect.

9 .

1.62 No antialiasing With Antialiasing (FXAAL1PresetB
algorithm used)

55

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.3 Terrain: VR Integration

Virtual reality is an artificial environment that is created with software and presented to the
user in such a way that the user suspends belief and accepts it as a real environment. On a computer,
virtual reality is primarily experienced through two of the five senses: sight and sound(7].

Although there were many different attempts regarding hardware for creating immersive VR, the latest
and most successful is using Headsets, devices mounted on the head in such a way that the digital
world is being presented as real. To do that, either the digital world is correctly rendered in two
different screens, one for each eye or two lenses correctly focus eyesight into two parts of one
screen (Picture 1.63, Picture 1.64).

1.63 VR Headset, Razer's OSVR Hacker Dev Kit

56

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.64 Game rendered in VR

For properly rendering the digital environment on OSVR (Picture 1.63), the official SDK needs
to be downloaded from GitHub.
After that, there are three steps to integration[s]. First of all, we need to supply our first-person
controller with a specific set of components (contained in the SDK). A ready-for-use, complete
controller is also provided, that would mean, though, that we would need to remake all the post-
processing image effects.
Those components are mainly the special VR camera and the script handling the extra VR head
movement (so that the movement of the players’ head translates into movement of the in-game
characters’ head).
Another integration step is the addition in the scene of a ClientKit. This object handles the connection
with the hardware.
Finally, an OSVR server must be run and connected to the ClientKit.

57

https://github.com/OSVR/OSVR-Unity/blob/master/GettingStarted.md

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

“F scene “8 Animator 13 Asset Store € Game

Shaded *||20 || X% |4)D| & -

1.65 VR Enabled First-person controller

While the process itself of integrating VR in a digital world is not hard or time-consuming, the
true challenge is making said world abide with certain rules or requirements. These rules, while not
mandatory, make VR safe and enjoyable to the users.

One example of a challenge is that, usually, the VR Headsets have extremely high-resolution screens.
Since the world is rendered on those screens, the framerate will drop significantly compared to a
standard Full-HD computer screen. What's more, low framerate in VR has been proven to cause mild
to severe motion sickness to its users[10]. That reason is why Oculus, a market leader in VR systems,
along with most other prodigies of VR, recommend striving for a steady framerate of over 60 frames
per second.

This means that the developer should strive to achieve sufficiently high visual fidelity to succeed in
immersing the user while also putting great effort in keeping the fps high. Towards that end, the digital
world needs a very high and professional level of optimization.

58

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.3.1 Terrain : Optimization

Optimizing a game or digital world is a not an exact science. There are countless ways to
increase framerate, but not one of them can guarantee good enough results in any situation by itself.
Usually it's a combination of many different techniques and on every aspect of the game that
produce a sufficient result.

Examples would be reducing the polygon-count when making/integrating models and adding LOD
support to them, avoiding using code that overly-burdens the system, reducing the rendering
distance for vegetation and objects, and adding a fog effect to cover it up and retain realism (Picture
1.66).

Finally, a more sophisticated, specialized technique for decreasing the amount of rendered objects and
greatly increasing framerate is Occlusion Culling.

LOD, or Level of Detail, is a smart way of optimizing models while retaining detailed
environments and realism. When an object in the scene is a long way from the camera, the amount of
detail that can be seen on it is greatly reduced. However, the same number of triangles will be used to
render the object, even though the detail will not be noticed.

LOD rendering (Pictures 1.66 — 1.70) allows you to reduce the number of triangles rendered for an
object as its distance from camera increases. As long as your objects aren’t all close to the camera at
the same time, LOD will reduce the load on the hardware and improve rendering performance.

LOD 0, the fully detailed, realistic model. When the player is this close or closer to the model,
he/she experiences the fully detailed version.

59

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

| # scene #8 Animator: 5 Asset Store € Game =
-[|20][% 9| @ -

1.66 LOD 0: The fully detailed version of the model is rendered

As the player moves away, the model gets replaced by a simplified version of itself (Picture
1.67).

" # Scene | ®8 Animator 9 Asset Store € Game
| Shaded -{|20 || % |<4) & -
- : T

I > '
T —

; ~

[

4
V‘_

-

1.67 LOD 1: The model loses detail

As distance increases even further, an even less detailed version of the model is used. Due to
the distance, though, the differences cannot be perceived. Picture 1.68 remonstrates LOD 2 from a
distance and Picture 1.69 the LOD difference from up close.

60

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

4 Scene %8 Animator £ Asset Store € Game — .=

Shaded - |2 AR~ x Gizmos = Al
‘Ph—lr

<Persp

1.68 LOD 2: Model replaced by an even less detailed version

Note the huge difference in the model detail compared to how little of a difference noticed when
viewed from a distance in Pictures 1.66 and 1.68.

1.69 LODO LOD 2

LOD 3 is the lowest level for this model and the distanced rendered in LOD is the max distance
this model can be viewed from. In LOD 3, the model is replaced by a billboard, a 2D image. Even so,
from such a great distance and using fog, it is barely noticeable.

61

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

+ Scene
Shaded

1.70 LOD 3: The model is replaced with a billboard version of it

Scene Animato £ Asset Store € Game

Gizmos * | (OrA

Culled

3.5 Culled Model
From this point and further, the model is not rendered(culled) at all (Picture 3.5).

62

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

It's easy to understand that applying LOD to every model in the scene will greatly increase
performance. But it should be applied carefully, properly blending the switches in geometry and
setting the distances for the LODs.

A good way of hiding the lack of detail in far-away models is fog. Seen above in Pictures 1.66-
1.70, fog is a lighting effect that can be created in various ways. Unities lighting system has an inbuilt
global fog generator, while in the Asset Store one can find 3D, volumetric fog systems and even some
created by using Particle Systems.

The one used in this project is Unities inbuilt system, set to linear, meaning the fog will increase
linearly, starting from the player and ending 1000 units away.
It's also set to an earthy orange color to assimilate better with the horizon (Picture 1.70).

Occlusion Culling is a feature that disables rendering of objects when they are not currently
seen by the camera because they are obscured (occluded) by other objects. This does not happen
automatically in 3D computer graphics since most of the time objects farthest away from the camera
are drawn first and closer objects are drawn over the top of them (this is called “overdraw”). Occlusion
Culling is different from Frustum Culling. Frustum Culling only disables the renderers for objects
that are outside the camera’s viewing area but does not disable anything hidden from view by
overdraw. Note that when you use Occlusion Culling you will still benefit from Frustum Culling.

The occlusion culling process will go through the scene using a virtual camera to build a hierarchy of
potentially visible sets of objects. This data is used at runtime by each camera to identify what is
visible and what is not. Equipped with this information, Unity will ensure only visible objects get sent
to be rendered. This reduces the number of draw calls and increases the performance of the game.

The data for occlusion culling is composed of cells. Each cell is a subdivision of the entire
bounding volume of the scene. More specifically the cells form a binary tree. Occlusion Culling uses
two trees, one for View Cells (Static Objects) and the other for Target Cells (Moving Objects).

View Cells map to a list of indices that define the visible static objects which gives more
accurate culling results for static objects.

It is important to keep this in mind when creating objects because a good balance is needed between
the size of the objects and the size of the cells. Ideally, cells shouldn't be too small in comparison with
your objects but equally there shouldn’t be objects that cover many cells. Sometimes, culling can be
improved by breaking large objects into smaller pieces. However, we can still merge small objects
together to reduce draw calls and, as long as they all belong to the same cell, occlusion culling will not
be affected.

In order to use Occlusion Culling, there is some manual setup involved. First, the level geometry
must be broken into sensibly sized pieces. It is also helpful to lay out the levels into small, well
defined areas that are occluded from each other by large objects such as walls, buildings, etc (this is
why there is so much geometry in the scene of this project). The idea is that each individual mesh will
be turned on or off based on the occlusion data. So if one object exists that contains all the objects in a
room then either all or none of the entire set of objects will be culled.

This doesn’t make nearly as much sense as making each object its own mesh, so each can individually
be culled based on the camera’s view point[6].

Any scene objects that we want to be part of the occlusion must be tagged as Occluder Static.
The fastest way to do this is to multi-select the objects we want to be included in occlusion
calculations, and mark them together.

Below (Picture 1.71, 1.72 and 173) are a visualization of Occlusion and Frustum Culling within the
scene.

63

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

+ Scene “8 Animator i Asset Store € Game .
Shaded *1|20 % | Q)| - Gizmos |

Occlusion Culling

1.71 Simplified scene view, no Frustum or Occlusion Culling

Picture 1.72 is a visualization of Occlusion and Frustum Culling with the sight lines used to
find obstructed objects.

64

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

+ Scene L ator 3 Asset Store € Game

Shaded I~ Gizmos - Al

Occlusion Culling

1.72 Occlusion and Frustum Culling and sight lines

Picture 1.73 demonstrates Occlusion and Frustum Culling results. Notice the areas behind the
mountain and in the lake that are not being rendered.

+ Scene °8 Animator 4 Asset Store € Game o=
Shaded 20| % Q)| Gizmos *)

Occlusion Culling

1.73 Occlusion and Frustum Culling

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1.3.2 Terrain : Conclusion

This part of the project was, by far, the hardest and most time consuming. It can be quite a
challenge for a single developer to understand and implement all the different parts that combine to
form a complete, adequate digital experience.

Of all those parts, only the most important were mentioned in this document. Fully covering the game-
design process would require thousands of pages and it would have been redundant, as many sites
exist on the Internet that excel on doing just that using both pictures and video.

Below, the final game statistics and the hardware used to run it are documented.

Scene information:

Framerate: 55-110fps
Triangles: 3.8million
Shadow casters: 268
Animations: 14

Hardware:

Intel Core i5-6600K @3.50GHz

16GB of RAM

AMD Radeon R9 390 with 8GB of dedicated memory
Razer OSVR Hacker Dev Kit v1.3(VR Headset)

66

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

2. The EEG

2.1 Understanding the Brain

The brain is a very complex system. The frontal cortex, the region where most of the conscious
thoughts and decisions are made, conducts much less than a tenth of the total activity in the brain.

Planning, modeling of our surroundings, interpretation of sensory inputs up to and including our
perception of reality, memory processing and storage and the basic drivers of our moods and emotions
occur in many functional regions distributed around the brain, including the visual cortex at the rear,
temporal cortex at the sides, parietal cortex behind the crown of the head and the limbic system deep
inside the brain. The limbic system controls the basic moods and emotions, the fight/flight response
and deeper long term memory encoding as well as control of basic bodily functions such as breathing
and heartbeat.

Most of these deeper functions interact intimately with different parts of the cortex (the outer
layer which is accessible to EEG measurements) however the interaction is quite complex and
distributed. In order to map the true activity of the brain it is very important to measure signals from
many different cortical structures located all around the brain surface. It is not possible to map these
signals purely from the frontal and temporal regions. Determination of the user’s complete mental
state is very poorly approximated unless signals from the rear of the brain are also considered. With
proper coverage and electrode configuration, it is possible to reconstruct a source model of all
important brain regions and to see their interplay .

The Epoc+ EEG system (Picture 2.2) used in this experiment is a very accurate, professional
device. Even compared to Research-type EEG equipment (costing $60,000), the data retrieved
(waveforms) are similar (Picture 2.1).

EMOTIV currently provides drivers that measure 6 different emotional and sub-conscious
dimensions in real time — Excitement (Arousal), Interest (Valence), Stress (Frustration),
Engagement/Boredom, Attention (Focus) and Meditation (Relaxation).

The detections above were developed based on rigorous experimental studies involving at least
20-30 volunteers for each state, where subjects were taken through experiences to elicit different levels
of the desired state. They were wired up with many additional biometric measures (heart rate,
respiration, blood pressure, blood volume flow, skin impedance and eye tracking), observed and
recorded by a trained psychologist and also self-reported. EMOTIV Performance Metrics have been
validated in many independent peer-reviewed studies.

The present experiment uses these categories (emotional states) to determine the effect of VR on
the average 18 to 25-year-old human. It, also, uses a similar test-group of 18 volunteers (20-30 were
used by EMOTIV to develop the emotional states).

Furthermore, the results were separated by gender and gaming experience using a short, nameless
survey each volunteer undertook.

67

http://emotiv.com/category/independent-studies/

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Research
©
| i
© 3 3
u S—
54 :
- a
»mE 5
400 0 100 200 300 400 500
i F P3
3
- _ 4 5
8% 2 £
31 :
(= £
-4 o
6
400 0 100 200 300 400 500
= 6-
F4
85 :
C E
U —
€f 9 g
.S E- -2+ a
»E E
e
6
- 4
=5 z
> 0
2 :
(= I £
© -4 o
6
400 0 100 200 300 400 500 400 O 100 200 300 400 500
latency (ms) latency (ms)

Figure 2 Research and gaming system ERP waveforms by condition, tone type, and hemisphere.
Group ERP waveforms for research (left-side) and gaming (right-side) systems. All graphs display wave-
forms for the passive and active (counting deviant tones) listening conditions. The upper 4 graphs depict
the left-hemisphere-activity (F3 and AF3) and the lower 4 graphs depict the right-hemisphere-activity (F4
and AF4). Rows 1 and 3 depict waveforms elicited by the standard tones, rows 2 and 4 depicts waveforms
elicited by the deviant tones. Error waveforms (in grey) represent the standard error of the mean.

2.1 Epoc+ to Research-grade equipment comparison

68

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

2.2 Epoc+ EEG

69

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

2.2 Testing Phase

The tests were performed on volunteers, most of them interested in trying Virtual Reality for
themselves. The subjects were 18-25 year olds of both genders, gamers and non-gamers. The testing
was performed in an empty, air-conditioned room with most other stimuli apart from the people
present in the room and the test itself removed. To that end, no cellphones or consumables were
allowed and conversation was kept to a minimum during the actual recording of the data.

The test on every individual had four distinct phases. Phase one was consisted of attuning the
EEG to the specifics of each individual. This was done by making a new profile for every volunteer,
apply a solution to each sensor (as per the company’s instructions) and having them properly wear the
device, so that the sensors were on the exact spot on the head they were supposed to be (with every
head and haircut being different, this was, at times, a challenge). Then, every sensor was
micromanaged, to achieve maximum signal, which was presented as a green color in the setup panel.
Yellow, Red and Black meant less than optimal, with Black being no signal at all (Picture 2.3 and
Picture 2.4) .

When every sensor is properly setup, the system is calibrated to the specifics of that person by a
series of automatic recordings as they have their eyes opened and closed.

2.3 Correct sensor placement

70

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

ENGINE STATUS USER STATUS
o ?1® System Statws: = Headect: User:
SretemUp Tome: 08515 0 <) b -] epoc control panel { 2,
® v Wircless Signal Good cene -
Qals? Batery Power Hoh 000 | avo usen | | mewovr usen | {save usen|

Y s sue | Aect sume | cogmitn swie [House Emotator | 2
Satus 0K

« [Headset Setup Guide

Sten 1
Before putting on the Emotty headaot, ensure that each of the 16 slectroda rocesses are fend |
vath & most felt pad. 1F the paca are not akeady mast, wet them vith sakne sdiuton befare

the headset, o, ¥4 uoe i mediine o to carefuly moksben e pads
whia akeady n place,

Step 2 Swetch on the Emasy headset and verify that the bult n battery is charged and i
[previdng pawer by lockng for the biue LED bocated haar the paver svitch at the back of the
headset. 1f the headset battery needs charging then set e power owitdh to the off postion and

phig the headset nto the Ematty battery charger using the med LSH cable provided w e
headset. Alow the headost battery to charge for st least 15 miutes before trying again,

Step I Verify that the Weeless Sonal recenbion is tepor ted as Good by looking at the Engre
Status box i the Emotiv Control Panel, 1f it is not, make sure that the Ematly Dorgle i reerted
nto a 158 port on your compuser and that the angie LED on the top half of the dongle ks cn
contiruously o fickering very ragidy. If the LED is birking skonly o is not dumnated, then
remove e dongle from the computer, rensertit, and try again, Remove any metalc or dence

the dongle or t, and move away from any powerfil
|sources of slectromagnetic interference, such as maonave ovens or hich-powered rado
vansmitters,

2.4 Green: Strong signal received by sensor

Phase two consists of a three-minute brain data recording, while the volunteer is asked to stay
seated and avoid any unnecessary action. It was quickly observed that friendly, normal conversation
had better results in keeping someone still for 3 minutes, so that was used with every tester.

These recording served a double purpose. First and foremost, they served as a 3-minute time window
for the EEG to specialize the data to the individual. And then, they also served as a reference to
understand the consistency and quality of the useful data obtained later. An example of quality control
would be having a Stress value of a 100% during a simple chat, which meant the sensor was not
working properly. A report was generated after this session and the data was saved locally and on the
EMOTIVs cloud service.

Phase three, the first to produce an important set of data, consisted of 3 minutes of the volunteer
playing an on-line First-Person Shooter game, mostly alone, with very few enemies occasionally
encountered. They were asked to roam around, doing anything they wanted for the duration. While the
game will remain nameless, in accordance with its Terms of Use, it is a typical, first person shooter
game, with 3D graphics and sound, played through an average PC screen. Picture 2.5 is another,
incredibly similar game.

The reasons behind choosing it were its perspective (first person), financial model (free to play) and
platform(it could be played on a browser). A report was generated and stored with the emotional-
brainwave data from this experience.

71

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

T R

2.5 First person shooter example

The final phase consisted of three minutes of using the custom digital VR environment through
the OSVR headset. Out of those 18 people, the first 9 had the headset correctly mounted on their head
with the built-in straps(although the experience, due to already wearing the EEG, was unpleasant) and
the rest kept the headset correctly placed on their head with their left hand, while navigating the scene
with their right using a joystick.

The reasoning behind this was that the first group had everything correctly placed on them as
specified in both the manuals of the EEG and OSVR, but felt discomfort while the other group felt
comfortable but at the cost of some immersion.

In the final calculations, the results were calculated both for one group of 18 people and two groups of
9. The data generated by this phase was, of course, stored.

Then, the volunteer was given a short survey (Picture 2.6) to fill. This helped refine the data even
further. Names were not used and the survey was connected to the data with a serial number.

72

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

18pupa
KpATNng

/‘&.‘,\) TexvoAoyiko
; ExknaideuTiko
w

Cognition in Digital Environments

Participant Survey
SeralD []

Age: 1
Gender : Male C Female

hoors gaming par wask: 0 <1 <3 <1? <30 40+
Video Game Experience : €X €€ €Y O C)

hoursusnz VR so0 &r: 0 <1 <5 <10 <100 100+
Virtual Reality Familiarity : (]} C> C> (> > O

2.6 Survey

73

3. Results

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

3.1 Data Documentation

For every ID the first row is the data (%6) recorded while having a calm discussion, the second

while playing the fps game and the third while experiencing the environment using VR.

Table 1:
Group ID Engagement | Excitement | Interest | Relaxation | Stress Focus
Numb.
1 000001 54 22 56 33 47 37
1 g00001 55 17 50 33 36 29
1 000001 55 53 57 33 31 53
1 000002 55 46 71 33 73 58
1 g00002 55 24 51 33 46 37
1 000002 59 50 63 33 55 59
1 g00003 57 60 59 34 47 61
1 000003 62 48 53 31 34 51
1 000003 68 33 56 32 39 37
1 g00004 66 40 53 33 48 46
1 000004 72 18 54 30 40 31
1 g00004 77 17 51 28 35 33
1 g00005 58 26 58 38 52 39
1 900005 62 16 56 40 46 29
1 g00005 60 43 62 43 54 48
1 900006 71 3 58 8 62 42
1 900006 70 40 50 31 41 45
1 g00006 64 53 61 35 39 52
1 900007 79 66 56 33 100 81
1 g00007 66 67 47 30 100 83
1 g00007 58 84 58 36 100 89
1 900008 70 25 48 33 42 34

74

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

1 000008 70 23 52 30 42 36
1 900008 55 47 64 33 63 56
1 g00009 66 28 68 34 46 47
1 900009 65 18 64 33 56 37
1 g00009 58 23 65 33 55 41
2 g00010 59 26 69 33 100 50
2 000010 73 17 48 31 100 52
2 g00010 62 35 58 36 60 45
2 g00011 66 41 60 35 100 60
2 g00011 69 23 52 30 100 57
2 g00011 67 49 66 46 100 62
2 900012 52 42 62 32 100 62
2 g00012 55 57 54 31 73 76
2 900012 55 77 75 33 83 77
2 900013 60 23 60 38 63 41
2 g00013 58 20 55 31 39 34
2 900013 65 25 59 28 59 46
2 g00014 62 41 52 32 52 51
2 g00014 59 59 55 30 42 59
2 000014 60 72 67 36 61 73
2 g00015 64 59 75 36 94 71
2 900015 75 23 54 27 56 42
2 900015 65 53 67 34 65 65
2 g00016 56 43 57 33 44 50
2 000016 55 6 54 33 42 26
2 g00016 59 64 57 36 49 63
2 g00017 62 38 64 34 100 58
2 g00017 64 32 54 33 100 59
2 g00017 55 71 82 33 100 80
2 000018 62 58 55 44 70 62
2 000018 64 25 52 40 50 38
2 g00018 75 54 56 34 65 63

75

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

3.2 Summary Statistics

The easiest way to mathematically picture the differences and to present the results are
Summary Statistics. For this analysis, the mean (the sum of a collection of numbers divided by the
number of values in the collection), median (the value separating the higher part of a data sample
from the lower part) and mode(the value that appears most often in a set of data) will be calculated.
The first two for the actual representation and the last one for quality control.

First, we calculate the difference between the values of “Calm” and “VR”, then “FPS” and “VR?”,
or the 1-3 and 2-3 rows of each emotional state. We do that for all 18 IDs. Then the mean and the
median will be calculated between all the corresponding values(differences) of all the IDs. We do this
for every emotional state.

Then, we calculate the mode. If the mode contains the 0 value, it means that there were many
readings without any difference from each other. An example would be Stress being 100 for all 3
readings of a volunteer. The logical assumption is that the reading was false, an outlier and that we
need to remove the problematic reading.

3.2.1 Single 18-person group

Below are the results, without removing any outliers, of all the IDs pooled together. Numbers
are the differences %. Negative values mean a decrease in the emotional state.

Table 2:

ENGAGEMENT
Mean Calm-VR -0.111
Mean FPS - VR -1.777
Median Calm-VR 1.500
Median FPS-VR -1
Mode Calm-VR 1,3
Mode FPS-VR 0,4,-2

EXCITEMENT
Mean Calm-VR 12
Mean FPS - VR 20.555
Median Calm-VR 13
Median FPS-VR 22
Mode Calm-VR 31

76

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Mode FPS-VR| 26,13,5
INTEREST
Mean Calm-VR 2.055
Mean FPS - VR 9.853
Median Calm-VR 0.500
Median FPS-VR| 10.500
Mode Calm-VR -3,-1
Mode FPS-VR 12
RELAXATION
Mean Calm-VR 1.277
Mean FPS - VR 2.529
Median Calm-VR 0
Median FPS-VR 3
Mode Calm-VR 0,3
Mode FPS-VR 0
STRESS
Mean Calm-VR -6.166
Mean FPS - VR 3.444
Median Calm-VR -2
Median FPS-VR
Mode Calm-VR
Mode FPS-VR
FOCUS
Mean Calm-VR 5.055
Mean FPS-VR| 12.333
Median Calm-VR 6.500
Median FPS-VR 13
Mode Calm-VR 22
Mode FPS-VR ALL

77

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

3.2.2 Single 18-Person Group, Outliers Removed

As we can easily observe in the data above, the value 0 keeps appearing in mode. We will

remove all outliers, calculate the differences again and follow the exact same procedure to re-calculate
mean-median-mode for the new set of data.

Below are the results, with most changes being on Engagement, Relaxation and Stress.

Table 3:
ENGAGEMENT
Mean Calm-VR 0.562
Mean FPS - VR -1.5
Median Calm-VR 1.500
Median FPS-VR -2
Mode Calm-VR 1,3
Mode FPS-VR -2
EXCITEMENT
Mean Calm-VR 12
Mean FPS-VR| 20.555
Median Calm-VR 13
Median FPS-VR 22
Mode Calm-VR 31
Mode FPS-VR| 26,13,5
INTEREST
Mean Calm-VR 2.055
Mean FPS - VR 9.853
Median Calm-VR 0.500
Median FPS-VR 10.500
Mode Calm-VR -3,-1
Mode FPS-VR 12
RELAXATION
Mean Calm-VR 1.533
Mean FPS - VR 3

78

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Median Calm-VR

Median FPS-VR

Mode Calm-VR
Mode FPS-VR| 3,4,6
STRESS
Mean Calm-VR -7.583
Mean FPS - VR 6.230
Median Calm-VR -6.500
Median FPS-VR 8
Mode Calm-VR 9
Mode FPS-VR 5,9
FOCUS
Mean Calm-VR 5.055
Mean FPS-VR| 12.333
Median Calm-VR 6.500
Median FPS-VR 13
Mode Calm-VR 22
Mode FPS-VR ALL

79

3.2.3 Two 9-Person groups, Outliers Removed

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Due to the difference in the way the VR headset was worn and the discomfort, the group can
be split into two pools of data.
Table 4 contains the results. There is an additional metric, the total MIN and MAX values calculated
per-group and per-emotional state.

Table 4:

GROUP1 -
ENGAGEMENT
Mean Calm-VR -3.25
Mean FPS - VR -2
Median Calm-VR -3
Median FPS-VR -4
Mode Calm-VR 11
Mode FPS-VR ALL
Min/Max Calm-VR -21/11
Min/Max FPS-VR -8/6
EXCITEMENT
Mean Calm-VR 9.666
Mean FPS-VR| 14.666
Median Calm-VR 17
Median FPS-VR 17
Mode Calm-VR ALL
Mode FPS-VR ALL
Min/Max Calm-VR -27/50
Min/Max FPS-VR -15/36
INTEREST
Mean Calm-VR 2.111
Mean FPS - VR 6.555
Median Calm-VR 1
Median FPS-VR 7
Mode Calm-VR -3

80

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Mode FPS-VR 11,12
Min/Max Calm-VR -8/12
Min/Max FPS-VR -1/12
RELAXATION
Mean Calm-VR 4.500
Mean FPS - VR 2.500
Median Calm-VR 1
Median FPS-VR 3
Mode Calm-VR ALL
Mode FPS-VR 3
Min/Max Calm-VR -5/27
Min/Max FPS-VR -2/6
STRESS
Mean Calm-VR -9.571
Mean FPS - VR 0.142
Median Calm-VR -13
Median FPS-VR 1
Mode Calm-VR ALL
Mode FPS-VR -5
Min/Max Calm-VR -23/9
Min/Max FPS-VR -12/9
FOCUS
Mean Calm-VR 2.888
Mean FPS - VR 10.111
Median Calm-VR 8
Median FPS-VR 7
Mode Calm-VR ALL
Mode FPS-VR ALL
Min/Max Calm-VR -23/22
Min/Max FPS-VR -13/24

81

Table 5:

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

GROUP 2 -
ENGAGEMENT
Mean Calm-VR 2.222
Mean FPS - VR -1
Median Calm-VR
Median FPS-VR
Mode Calm-VR
Mode FPS-VR ALL
Min/Max Calm-VR -7/13
Min/Max FPS-VR -11/11
EXCITEMENT
Mean Calm-VR| 14.333
Mean FPS - VR 26.444
Median Calm-VR 9
Median FPS-VR 26
Mode Calm-VR ALL
Mode FPS-VR ALL
Min/Max Calm-VR -6/35
Min/Max FPS-VR 5/58
INTEREST
Mean Calm-VR 3
Mean FPS - VR 12.111
Median Calm-VR 0
Median FPS-VR 12
Mode Calm-VR -1
Mode FPS-VR 4
Min/Max Calm-VR -12/18
Min/Max FPS-VR 3/28
RELAXATION
Mean Calm-VR 0
Mean FPS - VR 3
Median Calm-VR 0
Median FPS-VR 3
Mode Calm-VR| 11, -10

82

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Mode FPS-VR ALL
Min/Max Calm-VR -10/11
Min/Max FPS-VR -6/16
STRESS
Mean Calm-VR -4.800
Mean FPS-VR| 13.333
Median Calm-VR -4
Median FPS-VR 12.500
Mode Calm-VR ALL
Mode FPS-VR ALL
Min/Max Calm-VR -29/9
Min/Max FPS-VR 7120
FOCUS
Mean Calm-VR 7.666
Mean FPS-VR| 14.555

Median Calm-VR 5
Median FPS-VR 14
Mode Calm-VR 22

Mode FPS-VR ALL
Min/Max Calm-VR -6/22
Min/Max FPS-VR -7/137

3.3 Interpreting the Results

There are large differences in the data between the full and no-outlier group. There are even
bigger differences between the single and the double data pool approaches.
In this paper, while all the data discovered were documented for clarity and future use, only the no-
outlier, two-group approach will be fully explained, although the differences to each approach will be
mentioned.

Using the data from the surveys, we can define the “average person” as a 22 year old male

83

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

with a gaming experience of 21.8 hours per week.

Furthermore, of all the different metric-comparisons, the results of the female testers against the
averages of the groups they belonged to presented the most interest, so they were included. Since a
similar male-to-average comparison would be redundant (due to the average leaning decisively to the
male side) it was omitted.

Engagement

Engagement[11] is defined as emotional involvement or commitment. Results indicate small
overall changes in engagement between the different phases.

Engagement results:

No
- - ALL | Outliers | Group 1 | Group 2

Calm-VR mean -0.111 0.562 -3.250 2.222
FPS -VR mean -1.777 | -1.500 -2.000 -1.000
Calm-VR | median 1.500 1.500 -3.000 3.000
FPS -VR median | -1.000 | -2.000 -4.000 0.000

Female deviation from the average mean (negative values are lower than average):

- Group 1 Group 2
Calm-VR -11.25 5.778
FPS - VR -5.500 6.500

There are minor differences in Engagement from phase to phase, with the mean values getting
closer to the medians after we remove the outliers meaning our results get more robust. The above
results are interpreted as Engagement slightly decreasing when feeling slight discomfort (Group 1),

but, overall, remaining the same when using VR as opposed to more traditional means.
It's noteworthy, though, that female testers demonstrated more than twice the engagement increase
of the average, which dropped 2-3 times lower than the average when in slight discomfort.

Excitement

Excitement is a feeling of eager enthusiasm and interest. This is the emotional state with the
most fascinating, definite difference in VR. Female deviation from the average is large for this
emotional state too.

84

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Excitement results:

No
- - ALL | Qutliers | Group 1 | Group 2

Calm-VR mean 12.000 | 12.000 9.666 14.333
FPS - VR mean 20.555 | 20.555 14.666 26.444
Calm-VR | median | 13.000 | 13.000 17.000 9.000
FPS - VR median | 22.000 | 22.000 17.000 26.000

Female deviation from the average mean:

- Group 1 Group 2
Calm-VR -7.833 5.834
FPS - VR -15.444 9.834

The testers exhibited very big differences in this emotional state when experiencing a world
through VR as opposed to more traditional means. A similar(26.5 to 26%) mean and median
demonstrate that no big outliers exist in the data of Group 2, so that result is the most robust.

An increase of 5-12% can be noticed between the group feeling slight discomfort(Group 1) and
the other, comfortable group (Group 2).

Furthermore, with the minimum increase of Group 2 at 5% and maximum at an incredible 58%b,
this was the emotional state influenced most by VR.

Female deviation was also high regarding Excitement, with an increase of 5.8-9.8% when
comfortable and decrease of 7.8 to 15.4% when in slight discomfort.

Interest

Interest is a quality that attracts your attention and makes you want to learn more about
something or to be involved in something. This was the most robust set of data, with no outliers
detected and mean values being, generally, close to the median.

Interest results:

No
- - ALL | Outliers | Group 1 | Group 2

Calm-VR mean 2.055 2.055 2.111 3.000
FPS - VR mean 9.853 9.853 6.555 12.111

85

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Calm-VR median 0.500 0.500 1.000 0.000
FPS - VR median | 10.500 | 10.500 7.000 12.000
Female deviation from the average mean:
- Group 1 Group 2
Calm-VR -2.611 3.000
FPS - VR -0.515 2.389

The same motif appears in this emotional state as well. Group 2 exhibits a substantial increase

when using VR, especially when compared to playing a game through classic means., while group 2

demonstrates a much smaller increase.

Gender does not affect Interest as much, with minor (2-3%) differences exhibited.

Relaxation

Relaxation is something that stops someone from being nervous or worried. VR increased

relaxation for all genders in a minor way. This state had the most outliers, possibly due to the relevant
sensors being easier to move out of place.

Relaxation results:

- - ALL Oul:llci)ers Group 1l | Group 2
Calm-VR mean 1.277 1.533 4.500 0.000
FPS - VR mean 2.529 3.000 2.500 3.000
Calm-VR | median 0.000 1.000 1.000 0.000
FPS - VR median 3.000 3.000 3.000 3.000
Female deviation from the average mean:
- Group 1 Group 2
Calm-VR -3.500 -2.000
FPS -VR 0.500 5.500

Small differences for this emotional state in combination with many outliers and a relatively

large difference between mean and median render these results uninteresting.

86

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Stress

Stress is a state of mental tension and worry. There are big differences here from group to group
and among readings. This was probably caused by either the lenses of the VR not being properly
adjusted to each individual (something they could only do and notice themselves) which caused
nausea or a conductivity-sensor problem in the EEG that sometimes caused stress to spike at 100%, an
impossibility.

Stress results:

No
- - ALL | Outliers | Group 1 | Group 2

Calm-VR mean -6.166 | -7.583 -9.571 -4.800
FPS - VR mean 3.441 6.230 0.742 13.333
Calm-VR | median | -2.000 | -6.500 | -13.000 -4.000
FPS-VR median | 6.000 8.000 1.000 12.500

Female deviation from the average mean:

- Group 1 Group 2
Calm-VR -14.071 -2.300
FPS - VR 0.358 -0.833

Focus

Focus is defined as a center of activity, attraction, or attention. Focus had the second biggest
increases of all the emotional states and was largely indifferent to genders.

87

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

Focus results:

No
- - ALL | Outliers | Group 1 | Group 2

Calm-VR mean 5.055 5.055 2.888 7.666
FPS - VR mean 12.333 | 12.333 10.111 14.555
Calm-VR | median | 6.500 6.500 8.000 5.000
FPS - VR median | 13.000 | 13.000 7.000 14.000

Female deviation from the average mean:

- Group 1 Group 2
Calm-VR -1.888 0.334
FPS - VR -5.111 -1.555

The above can be interpreted as a tendency of humans to focus more on a digital environment
when using VR. The fact that eyesight is devoted to the digital world when experienced through VR
may be the explanation to this. Gender plays a minor, insignificant role on Focus.

Ntuytokn Epyacio Tunuatoc Mnyavikwyv NAnpodoptkig

4. References

[1]: Wikipedia

[2]: Unity Physics

[3]: Unity Character Controller
[4]: Unity Sound

[5]: Unity Lighting

[6]: Unity Post-Processing Effects
[7]: Techtarget

[8]: OSVR

[9]: Emotiv EPOC+ Manual

[10]: Wikipedia: VR Motion Sickness
[11]: Merrian-Webster

89

https://en.wikipedia.org/wiki/Virtual_reality
http://docs.unity3d.com/Manual/PhysicsSection.html
http://docs.unity3d.com/Manual/class-CharacterController.html
http://docs.unity3d.com/Manual/Audio.html
http://docs.unity3d.com/Manual/Lighting.html
http://docs.unity3d.com/Manual/comp-ImageEffects.html
http://whatis.techtarget.com/definition/virtual-reality
http://www.osvr.org/forum/viewtopic.php?t=11
https://emotiv.zendesk.com/hc/en-us/article_attachments/200343895/EPOCUserManual2014.pdf
https://en.wikipedia.org/wiki/Virtual_reality_sickness
http://www.merriam-webster.com/dictionary/engagement

