
Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

1

Εξώφυλλο Αναφοράς Πτυχιακής Εργασίας

 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης

Σχολή Τεχνολογικών Εφαρμογών

Τμήμα Μηχανικών Πληροφορικής

Πτυχιακή Εργασία

Cognition in Digital Environments

Καβουσανός Γεώργιος (ΑΜ : 2744)

Επιβλέπων Καθηγητής : Παπαδουράκης Γεώργιος

ΗΡΑΚΛΕΙΟ

2016

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

2

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

3

Abstract of the final year project in English

 This document contains the results of an attempt to explore the differences in the activity of

the human brain that is exposed to a digital world through Virtual Reality(VR), as opposed to more

traditional media (Computer Screen). It was a three-phased project.

Phase one consisted of creating a professional, detailed digital world for use with Virtual Reality, using

Unity (a Game Engine), Blender (a 3D modeling tool), Adobe Photoshop, CrazyBump (a Normal Map

creation tool) and several other programs, thoroughly mentioned in Part One of the paper.

Phase two consisted of understanding the way Emotiv's Epoc Electroencephalographer(EEG)

functions, either using or implementing drivers to obtain relevant to the research data and finding

volunteers to form a big enough group for the purposes of the experiment.

The final phase consisted of the actual experiment itself, the post-processing of the data, the

calculation of the Summary Statistics (mean, median, mode), the creation of the graphs, the

explanation of the results and the documentation of the experiment.

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

4

Περίληψη πτυχιακής στα Ελληνικά

 Το παρόν έγγραφο περιέχει τα αποτελέσματα της απόπειρας να εξερευνηθούν οι διαφορές

στην εγκεφαλική δραστηριότητα ενός ατόμου εκτεθειμένου σε ψηφιακό κόσμο μέσω Τεχνητής

Πραγματικότητας, αντί μέσω πιο συμβατικών μεθόδων, όπως η οθόνη ενός υπολογιστή.

Το εγχείρημα είχε τρεις φάσεις.

Η πρώτη φάση περιλάμβανε τη δημιουργία ενός λεπτομερούς ψηφιακού κόσμου με χρήση διάφορων

εργαλείων, όπως Unity, Blender και Adobe Photoshop.

Η δεύτερη φάση περιλάμβανε την κατανόηση του τρόπου λειτουργίας του EEG Epoc της Emotiv, η

κατασκευή ή αξιοποίηση drivers για τη λήψη μέσω αυτού των απαραίτητων πληροφοριών και η

εύρεση ενδιαφερομένων για τις δοκιμές.

Η τελευταία φάση περιλάμβανε το ίδιο το πείραμα, την επεξεργασία των αποτελεσμάτων, τον

υπολογισμό διάφορων στατιστικών δεικτών, τη γραφική αποτύπωση αυτών και την επεξήγηση και

καταγραφή των αποτελεσμάτων.

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

5

Table of Contents

Εξώφυλλο Αναφοράς Πτυχιακής Εργασίας... 1

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης ... 1

 ... 1

Σχολή Τεχνολογικών Εφαρμογών .. 1

Τμήμα Μηχανικών Πληροφορικής .. 1

Abstract of the final year project in English .. 3

Περίληψη πτυχιακής στα Ελληνικά .. 4

Table of Pictures.. 6

List of Tables ... 8

0. Introduction .. 9

0.1 The Objective .. 9

0.2 Summary ... 10

0.3 Motivation ... 10

0.4 Document Structure .. 10

1. The Digital Environment ..11

1.1 Creating a VR-compatible Environment ..11

1.1.1 The Game Engine ..11

1.1.2 3D Model Creation .. 13

1.1.3 Normal Maps, Textures, Shaders and Materials ... 14

1.2 Terrain: Sculpting .. 14

1.2.1 Terrain: Texture Painting .. 15

1.2.2 Terrain: Nature and Vegetation .. 21

1.2.3 Terrain : Ornaments ... 25

1.2.4 Terrain: Creatures ... 31

1.2.5 Terrain: Physics .. 40

1.2.6 Terrain: Sound .. 42

1.2.7 Terrain: Lighting ... 44

1.2.8 Terrain: Image Post-processing Effects .. 52

1.3 Terrain: VR Integration .. 56

1.3.1 Terrain : Optimization ... 59

1.3.2 Terrain : Conclusion .. 66

2. The EEG .. 67

2.1 Understanding the Brain .. 67

2.2 Testing Phase .. 70

3. Results .. 74

3.1 Data Documentation ... 74

3.2 Summary Statistics .. 76

3.2.1 Single 18-person group ... 76

3.2.2 Single 18-Person Group, Outliers Removed .. 78

3.2.3 Two 9-Person groups, Outliers Removed ... 80

3.3 Interpreting the Results ... 83

4. References ... 89

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

6

Table of Pictures

 1.1 Unreal Engine 4 Environment

 1.2 CryEngine 3 Environment

 1.3 Unity Environment
 1.4 Blender Environment

 1.5 Empty, basic material

 1.6 Material with texture
 1.7 Material with texture and normal map

 1.8 Basic, empty Unity terrain
 1.9 Sculpted Unity terrain

 1.10 Brick road texture

 1.11 Normal map
 1.12 Texture

 1.13 Normal map over texture

 1.14 Specular map
 1.15 Normal and specular maps on texture

 1.16 Comparison between textures

 1.17 Sculpted terrain, no textures
 1.18 Sculpted, painted terrain

 1.19 Grass texture

 1.20 Grass texture alpha

 1.21 Thin grass

 1.22 Thick grass example

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

7

 1.23 Under-grass texture with leaves

 1.24 Under-grass texture with rocks

 1.25 Water4Advanced
 1.26 The unoptimized model

 1.27 The optimized model

 1.28 Textured, optimized model
 1.29 Basic, empty particle system

 1.30 Smoke texture

 1.31 Smoke particle, untextured
 1.32 Smoke particle, finished and integrated

 1.33 Waterfall particle system

 1.34 Bird flock particle system
 1.35 Rigged humanoid model

 1.36 Untextured spider model

 1.37 Textured, integrated spider model
 1.38 Non-navigational terrain

 1.39 NavMesh on top of the terrain

 1.40 NavMesh Agent on spider model

 1.41 Terrain with baked NavMesh

 1.42 Creature Checkpoints

 1.43 Flying creature example: Butterfly
 1.44 Aquatic creature example: Whale

 1.45 Rock with Collider and Rigidbody Components

 3.1 First person Character Controller
 3.2 Audio Mixer

 1.46 Direct light shading example

 1.47 Point light
 1.48 Effect of a Point Light in the scene

 1.49 Spot light

 1.50 Effect of a Spot Light in the scene
 1.51 Directional light

 1.52 Effect of a Directional Light in the scene

 1.53 Area Light
 1.54 Effect of an Area Light to the scene

 1.55 GI Effects: Color Bleed

 1.55 Highlights: Directional Light
 1.56 Highlights: Point Light (Colored)

 1.56 no post-processing effects

 1.57 sun shafts (god ray effect)
 1.58 landscape before depth-based color correction

 1.59 landscape after depth-based color correction
 1.60 landscape before the application bloom

 1.61 landscape after the application of bloom

 1.62 no antialiasing with antialiasing (fxaa1presetb algorithm used)
 1.63 vr headset, razer's osvr hacker dev kit

 1.64 game rendered in vr

 1.65 Vr enabled first-person controller
 1.66 lod 0: the fully detailed version of the model is rendered

 1.67 lod 1: the model loses detail

 1.68 lod 2: model replaced by an even less detailed version
 1.69 lod 0

 1.70 lod 3: the model is replaced with a billboard version of it

 3.5 culled model

 1.71 simplified scene view, no frustum or occlusion culling

 1.72 occlusion and frustum culling and sight lines

 1.73 occlusion and frustum culling
 2.1 Epoc+ to research-grade equipment comparison

 2.2 Epoc+ eeg

 2.3 correct sensor placement
 2.4 green: strong signal received by sensor

 2.5 first person shooter example 2.6 survey

 2.6 Survey

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

8

List of Tables

Table 1: Data Documentation

 Table 2: 18-Person-Group Summary Statistics

Table 3: No Outliers Summary Statistics

Table 4: Group 1 Summary Statistics

Table 5: Group 2 Summary Statistics

Table 6: Engagement

Table 7: Female difference from mean excitement

Table 8: Excitement

Table 9: Excitement female Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε.
divergence

Table 10: Interest

Table 11: Interest female mean divergence

Table 12: Relaxation

Table 13: Interest female mean divergence

Table 14: Stress

Table 15: Stress female mean divergence

Table 16: Focus

Table 17: Focus female Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε.
divergence

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

9

0. Introduction

 Virtual Reality(VR), also known as immersive multimedia or computer-simulated reality is

an emerging technology that replicates an environment, real or imagined, and simulates a user's

physical presence and environment to allow for user interaction. It, artificially, creates a sensory

experience, which includes sight and hearing, and in more advanced applications touch and smell[1].

As the very name of the technology implies, audiovisual content presented through VR means tend to

be a lot more immersive and vivid to the user than through more traditional devices.

And while the above are a truth easily understood and felt by any modern VR user, no modern

attempts have been made to calculate and document exactly how different an experience it is.

0.1 The Objective

 The work below is an attempt to prove beyond doubt that the differences between

experiencing a virtual environment through the screen of a computer and a VR Headset do exist and to

give an estimate as to how big these differences are.

It is not, however, the large scale research using incredibly powerful EEG equipment and thousands of

testers that would be needed to obtain precise numbers and make safe, irrefutable assumptions.

It should be viewed as a first step, as proof that such a large-scale research would, in fact, yield

interesting results.

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

10

0.2 Summary

 The basic idea behind the experiment is simple. The user experiences a digital environment, in

first-person view, first through a monitor and then through a VR Headset.

At the same time, the brain activity is being monitored by a portable EEG. Brain activity is also being

monitored while the user is in a calm, neutral state.

Finally, the user fills a short survey providing information, such as age and experience with virtual

environments, to help refine the data even further.

By comparing the above, one could, in theory, determine the differences between the two activities for

each tester.

0.3 Motivation

 Virtual reality is an emerging technology and very little research has been done on this very

interesting field.

What's more, very few people can be currently considered experts on it. Experience on VR is and will

be on high demand for the years to come. And, finally, this project resonates with my personal

interests and skills.

0.4 Document Structure

 The structure of this document directly reflects the workflow of the project.

The first chapter, the creation of the digital world that was used in conjunction with VR, is thoroughly

explained in 1. The Digital Environment.

This is the biggest chapter, reflecting the fact that making this environment required the most time and

effort.

The second chapter, 2. The EEG, describes and analyzes the hardware and software used to collect the

brainwave data.

The third chapter, 3. Results, contains the documented data obtained from the EEG, the resulting

inferences drawn from them and all the metrics and algorithms used to do so.

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

11

1. The Digital Environment

 A digital environment is a simulated place made through the use of computers. For this project,

two digital environments were used.

One of them was created specifically for the purposes of this experiment, to be used with a VR

Headset.

The second was part of a bigger environment, made by a third-party developer, that resembled (to a

degree) the custom, VR environment and filled certain criteria.

1.1 Creating a VR-compatible Environment

 1.1.1 The Game Engine

 The very first, and most important, choice a developer has to make when creating a digital

environment is the Game Engine he or she is going to use.

It's such an important choice because it's irreversible. A Game Engine switch halfway across the

project is one of the most destructive scenarios, as it practically means starting over.The available

game engines at the beginning of this project were three, Unreal Engine 4, CryEngine 3 and Unity.

 Unreal Engine : A very powerful engine, created by Epic Games. Its fourth edition became

available to all users for free on March 2015. It has a large community, offering a great amount of

support to users old and new in the form of tutorials and ready assets, many of them free. Primary

scripting language is C++.

1.1 Unreal Engine Environment

https://www.unrealengine.com/what-is-unreal-engine-4

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

12

 CryEngine : Another powerful engine, created by Crytek. At the start of this project,

CryEngine was distributed under a monthly subscription fee, which posed a huge obstacle to

developers not planning on making profit.

 Unity : A relatively new engine, developed by Unity Technologies. It's being distributed for

free and offers incredible support to new developers, mostly in the form of free assets and tutorials. It's

arguably the least powerful of the three engines but the easiest to learn. It offers easy VR integration

and a large choice of scripting languages, including C#.

Due to the above, and for many other minor reasons, Unity was, finally, chosen.

1.2 CryEngine 3 Environment

1.3 Unity Environment

http://www.crytek.com/cryengine
https://unity3d.com/

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

13

 1.1.2 3D Model Creation

 3D models are an essential part of every digital environment. Creating entirely new models is

an art, and a very time-consuming process. For this one-man project, finding, modifying and re-using

free models was a necessity.

Unity offers a very large selection of free assets, but even so, sometimes creating your own models or

modifying existing ones to fit your needs is necessary.

To cover those needs, a free modeling software, Blender, was used. Made by the Blender Foundation

and supported by Unity, it was the obvious choice for non-profit, academic work.

1.4 Blender Environment

https://www.blender.org/about/

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

14

 1.1.3 Normal Maps, Textures, Shaders and Materials

 Materials are a huge chapter in the creation of any digital environment. They cover every

model in the game, providing information on how the surface of the model should appear. To do that,

they combine textures, which are simple bitmap images, with shaders, scripts that implement specific

calculations and algorithms for calculating the color of the textures depending on the lighting of the

environment (i.e. making water semi-transparent or golden bars shiny).

Finally, a normal map is a special kind of texture that adds surface detail to models.

Pictures 1.5 to 1.7 is a graphical representation of the process of creating a material for use in a game

engine.

1.2 Terrain: Sculpting

1.6 Material with texture

1.7 Material with texture and normal map

1.5 Empty, basic material

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

15

 A terrain in Unity is a large, modifiable plane that allows for the creation of landscapes.

Terrain sculpting is the process of using specific tools to turn a flat plane into a landscape, and

depending on the desired quality and size, it can be a very difficult and time-consuming activity.

Unity provides many types and shapes of tools for adjusting the height, smoothness and shape of the

terrain.

Pictures 1.8 and 1.9 is an example project, visually explaining the concept of terrain sculpting.

 1.2.1 Terrain: Texture Painting

1.8 Basic, empty Unity terrain

1.9 Sculpted Unity terrain

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

16

 After the terrain has been sculpted to sufficient detail (modifications can be performed at a

later stage, but it tends to be harder and more time-consuming), the next step is applying materials.

Much like any 3D object, materials for Unity terrains are created by combining textures and normal

maps. Shaders, though, for reasons of optimization (terrains are big, complex objects), cannot be

freely chosen.

Unity provides specific shaders for use with its terrains.

To create a new, custom material, we must first provide the desired texture, usually in the form of

PNG or JPG.

For example, wanting to paint a brick road on our terrain, we pick the following image (Picture 1.10).

 This image (also called texture), can, in theory, be used immediately to paint our terrain. The

result might be of low quality and detail, but it is one way to make the environment lighter on

hardware requirements. Applications on mobile might benefit from such a decision.

For a detailed, professional, terrain though, a normal map must also be created to add realism

and visual fidelity.
The theory behind normal mapping is that a layer is created over a flat texture that provides

information on how digital light should behave after hitting it. The map reflects light as if the texture

was a detailed, 3D object and tricks the eye into believing a 2D surface is actually 3D without adding

any resource-costly, polygon details.

In this project, Crazybump was used to generate such layer.

1.10 Brick road texture

http://www.crazybump.com/

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

17

 The texture is imported into Crazybump, some parameters are set (for example, detail intensity)

and the normal map is automatically generated.

The resulting normal map can be observed in Picture 1.11.

And in Picture 1.12 the texture is displayed again, imported in the software.

1.11 Normal map

1.12 Texture

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

18

 Finally, when combining the above, we can see the material produced (Picture 1.13).

 Before we apply this material, however, there is still one more layer we can generate and apply.

Every real substance and material has some degree of glossiness. For example, wet marble is very

glossy, while dry dirt is not.

Utilizing Crazybumps capabilities, we can create another layer, called Specular, for the purposes of

simulating that effect.

In Picture 1.14 is of the specular map generated.

1.13 Normal map over texture

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

19

 So, by applying everything created so far, we achieve a realistic looking material (Picture 1.15)

for use on our terrain that is relatively computationally cheap.

To sum everything up, Picture 1.16 is of a comparison between a simple and a normal/specular

mapped texture.

1.14 Specular map

1.15 Normal and specular maps on texture

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

20

 By using any or all of the above techniques, suitable materials for the terrain can be created.

It also needs to be mentioned that ready-for-use materials can also be downloaded from the Unity

Asset Store.

In the store, an incredible amount of free and purchasable materials, shaders and textures can be

downloaded. Since time is valuable, it’s always a good idea to visit the store before trying to make

anything new in Unity.

Chances are it already exists and constantly “reinventing the wheel” is extremely counter-productive,

both for solo developers and huge teams.

 After the required materials have been made and stored, they need to be applied on the terrain.

Unity provides a special toolkit for painting terrains, much like they do for sculpting them.

By using brush-tools and adjusting parameters such as texture strength and tiling size, the

developer slowly covers the terrain and produces a realistic, yet void, landscape.

The following images (Pictures 1.17 and 1.18) depict the actual terrain created for this experiment,

from sculpting to painting.

1.16 Comparison between textures

1.17 Sculpted terrain, no textures

https://www.assetstore.unity3d.com/
https://www.assetstore.unity3d.com/

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

21

 1.2.2 Terrain: Nature and Vegetation

 The next step towards a realistic, mountainous landscape is adding vegetation and other

natural details.

Vegetation is, usually, consisted of two categories. 3D and 2D.

 The first includes trees, large plants, bushes and anything we want to be detailed and

standalone.

 The second is consisted of 2D assets, usually grouped together to produce a 3D feeling to the

onlooker. Grass and small plants are usually put in this category due to performance issues. Trees

and large plants generally take up space. Three or four trees can effectively cover a small area, if used

correctly.

 Grass, on the other hand, has to exist in bulk in order to be visually appealing and realistic.

And since rendering a thousand patches of grass one by one, in 3D, would be computationally

devastating, a technique was developed to render them grouped together, in 2D.

For this to work, every 2D-grass-image is forced to constantly face the camera (Billboard).

While grass is usually rendered and grouped together using the technique above, anything can be made

to do so in order to save computational resources. Two fitting examples are weeds and small flowers.

 For the first category, individual 3D models of the desired vegetation are needed. These can be

made in any 3D graphics software, like Blender, in specialized software, like Speedtree and/or

downloaded in the asset store for free or for a fee. Also, Unity has its own built-in system for tree-

creation. Most of the flora used in this environment was downloaded from the Unity Asset Store. Then,

it was either used as-is or got modified in Blender or in Unities native tree-maker.

 By re-using pieces of models, like leaves and trunks and combining them together, it's easy to

create an abundance of different, unique models to decorate even huge landscapes with. For this

project, at least 20 different models were used to sufficiently fill the terrain.

 When all the needed models are found and imported, the developer faces yet another choice.

He/she can simply place them, much like any other object, on the terrain one by one or have Unity

treat them like Tree Assets and use special tools for placing them in the scene.

1.18 Sculpted, painted terrain

https://en.wikipedia.org/wiki/Artistic_rendering
http://www.speedtree.com/

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

22

When they are simply placed in the scene, the developer has more control over them but Unity does

not recognize them as trees. So, the developer must make his/her own effects and physics, but can

also select and affect each tree directly.

 On the other hand, if the developer decides to utilize Unities tree-placing system, they enjoy

perks, such as automatically generated wind movement, physics (collision detection, for example),

randomized trees(if a tree model fills certain prerequisites, each tree placed will differ from the rest),

better large-scale tree management(can affect traits of all the trees at once), mass-random tree

placement and optimization.

 The same is true for grass and the rest of the 2D assets mass placed in Unity. While it is

possible to place them one-by-one, it's far more efficient to mass place them using Unities tools.

These assets, due to their nature, are more like textures than models. They can be found in the Asset

Store or made in any imaging/photo editing software, with Adobe Photoshop being a good example.

Unlike simple textures, these assets usually are a pattern in a picture, with the alpha being zero in all

the empty areas.

Pictures 1.19 and 1.20 are an example of a single grass leaf patch and its alpha cutoff.

 So each piece of grass is, basically, a 2D square image with invisible edges that always faces

the observer. When one of these is rendered alone, its poor quality and strange movement are easy to

notice. When, on the other hand, many of these are placed together, covering big areas, the loss in

quality is hardly noticeable, as demonstrated below (Picture 1.21 and 1.22).

1.20 Grass texture alpha

1.19 Grass texture

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

23

1.21 Thin grass

1.22 Thick grass example

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

24

 Another method used for making grass seem realistic is painting the terrain below the grass

with a suitable, green texture. It makes the grass seem thicker and volumetric. By using a proper

texture, grass density can be reduced, resulting in huge computational savings and, thus, better

framerate.

One of the many advantages of using Unities built-in tools for managing the vegetation is that the

density of grass can be adjusted at any time using a slider, instead of adding-removing patches of

grass.

This also means that the end-user can personalize the scene to a degree by choosing the desired

amount of detail(grass, flowers) density his machine can adequately support.

Images 1.23 and 1.24 are two texture examples used in conjunction with grass to amplify the visual

fidelity in this very project.

1.23 Under-grass texture with leaves

1.24 Under-grass texture with rocks

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

25

 Finally, an element used in most digital worlds is, of course, water.

Unlike other elements and possible visual effects, water is a frequent sight in reality and one of the

best ways of naturally ending the landscape.

Creating realistic digital water, though, is a very complicated activity. Water reflects and refracts

light, forms ripples, waves, foam where it comes into contact with objects and game physics behave

in a completely different way than on land.

Fortunately, Unity comes equipped with two free, decent water-making shaders. They still need a

great amount of configuration, but it is nothing compared to the time one would need to make

completely custom water.

In this project, the Water4Advanced asset was used, configured to imitate slightly fluorescent, calm

lake water as shown in Picture 1.25 below.

 1.2.3 Terrain : Ornaments

 Ornaments, in a digital world, could include rocks of various shapes and sizes, special

effects(fire, smoke, lava, clouds), interact-able items and any other visual part of the landscape that is

not vegetation, water or some sort of creature.

These 3D models add a lot to the realism of the digital world and make the virtual experience more

interesting to the user.

The Asset Store has an abundance of models, from cars and skyscrapers to skeletons and statues.

Unity, though, has no built-in, optimized way of handling these models, so it's up to the user to

integrate them in the scene(instance of all or part of the digital world) and make sure they are up to the

project standards.

An example of bad integration is using a very high polygon-count model of a car in a racing game

meant to be played on a mobile device. The model should be used, but its polygon-count should first

be reduced using a relevant software (Blender, for example).

 One of the biggest advantages of developing this project, where a general landscape is needed

for use with VR, is that there are no limitations imposed in decoration. Any relevant 3D model,

distributed for free on the Internet, could be used. And the fact that it was developed for academic

reasons and not for profit-making, ensured that almost every asset could be legally used.

 Pictures 1.26 and 1.27 describe the typical procedure of downloading, processing and using

a 3D model.

1.25 Water4Advanced

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

26

 It's decided that this model will have a relatively small scale in the scene, thus it does not have

to be detailed. But it's made by an incredibly high amount of polygons (more than 50.000). It needs

to be simplified before being used.

Using the decimate function of Blender, we reduce the polygon-count as much as possible while

trying to keep quality high. This way we manage to reduce polygons, and thus computational

requirements for using this model, by 90%.

 Picture 1.27 shows the final, optimized result. The differences are almost unidentifiable to the

eye.

1.26 The unoptimized model

1.27 The optimized model

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

27

After the optimization process is finished, we import the model in Unity where we create and apply

a material, much like we did for the terrain.

 The other noteworthy type of ornament widely used in digital worlds are special effects,

formally named Particle Effects in game design.

Unity has its own, build-in system for creating and handling these effects. Its basic function is simple.

There is a source, the core of the effect, that generates either 2D or simple 3D models. The size,

generation rate, speed and texture of those models, along with many other attributes, can be freely

customized. What's more, every one of those models can, at any point, be made into a source of its

own. Proper use of that system makes effects like fire easy to create and handle.

Pictures 1.29 to 1.33 show the process of making such an effect.

1.28 Textured, optimized model

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

28

First, we create an empty, basic particle effect within Unity (Picture 1.29).

 The white, round objects are called particles and, at the bottom, the invisible area that emits

them is called the source. In Picture 1.29, the source is near the green dot. All those visible particles

started there, before ascending to their current level. The basic, automatically generated particle

system emits white(untextured) particles that are have an initial speed and ignore gravity and

collisions. The particles are emitted in customizable intervals or when certain criteria are met. For

the basic model above, emittion is set to one particle per minute.

These particles can me modified and given almost any shape and size by combinations of geometry,

kinetics and textures. If, for example, we wanted to create smoke, one way would be to apply a

relevant texture to the particles, as shown in Picture 1.30 below. The alpha values on black areas are

near zero, to give smoke its transparency effect.

 By adjusting some values concerning particle physics, size, rotation and speed, we create the

effect seen in Picture 1.31. Then, we apply the texture, adjust the effect to the specifics of the scene

and get final result in Picture 1.32.

1.29 Basic, empty particle system

1.30 Smoke texture

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

29

 To demonstrate the power of the particle system creator, by adjusting some physical values

(gravity strength, speed, rotation, collision..) on the system above and using a different texture, the

particle effect in Picture 1.33 can, relatively easily, be created.

1.32 Smoke particle, finished and integrated

1.31 Smoke particle, untextured

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

30

 Finally, apart from creating special effects, particle systems can also be used for a number of

other things. By creatively combining textures and components, particle systems can simulate

anything.

 In this project, for example, particle systems were used to create birds flying high across the

sky. This was achieved by constantly replacing a bird texture in various flying positions, much like the

technique that was used to film cartoons in the past. Using a particle system instead of making and

using actual bird models saves a lot of processing power, makes the end-product lighter and smaller

and the birds easily configurable.

Below, Picture 1.34 is the resulting effect in the scene.

1.33 Waterfall particle system

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

31

 1.2.4 Terrain: Creatures

 Ornaments and flora are extremely important to any scene, but nothing brings a digital world to

life more than mobile, interactive creatures. On the other hand, the process of integrating those

creatures is a lot harder than for simple ornaments and particle effects.

Commonly, there are three major aspects to integrating a creature in the scene, Creating a Rigged

Model, Applying Movement and Animations and Pathfinding/Artificial Intelligence.

Below, the process of integrating a creature (spider) in our digital world is explained.

1.34 Bird flock particle system

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

32

 A Rigged Model is a special type of 3D model that contains a digital skeletal system, called an

armature or rig, that is attached, mapped to it. Animation is then applied to the skeletal system, which

in turn moves the model itself.

There are many reasons for doing animation this way. First of all, we can make minor changes in the

model without the need to change every animation as well. A second reason is generalization. If we

create an animation for a humanoid skeletal system, we can apply that animation to any model using

that system. We can animate a standard human male model, a clown model, even a fantasy

human-like model like a hobbit using the same animations.
The third reason is automation. A lot of specialized software exists for the automatic generation of

skeletal systems and animations for specific skeletal systems. Such a thing would not be possible if

every model was animated autonomously.

 Rigged models, much like normal models, are created using specialized software (Blender, for

example). Also, normal models can be made into rigged models using that same software. So,

downloading suitable model and riggifying it is also an option.

Picture 1.35 is a human model rendered black to illustrate its rig.

1.35 Rigged humanoid model

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

33

 The spider model integrated in this digital world was downloaded from the Unity Asset Store.

The model contained textures, an armature and several animations. Picture 1.36 and 1.37 demonstrate

the basic and the textured, imported spider model.

1.36 Untextured spider model

1.37 Textured, integrated spider model

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

34

 After integrating it, we need to enable the animations. This is usually done using Unities inbuilt

animation system called Mechanim. This model, however, uses an older type of animation, Legacy.

This meant that most of the animating for this model was done via script and was implemented within

the code handling the behavior, or AI (Artificial Intelligence) of the spider.

 The last thing we must do before the spider can run around the scene, interacting with objects is

Pathfinding.

In order for a model to move around a scene safely and realistically, a map of the terrain needs to be

drawn and areas where objects can and cannot reach must be specified on it. This process is called

“Baking a Navigation Mesh, or NavMesh” and can be done automatically by Unity once we have the

terrain and all objects (possible obstacles) set in the scene. The baking, along with the parameters

needed for its correct completion, are visualized in Pictures 1.38 and 1.39 below.

1.38 Non-navigational terrain

1.39 NavMesh on top of the terrain

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

35

 For the bake above to be successful and functional, we also need to specify the circumference

and height of our moving object. We do that by attaching a NavMesh Agent component to it and

setting the correct parameters while baking the NavMesh.

The NavMesh agent is, basically, a cylinder containing the model. So, instead of moving the model

around, we move the cylinder which has set geometry, making calculations a lot easier.

This can be visualized in Picture 1.40.

 To conclude navigation, Picture 1.41 demonstrates the calculated NavMesh of our actual terrain.

Blue declares the area available for navigation. Grass has been omitted in this picture, so the

NavMesh can be properly viewed.

1.40 NavMesh Agent on spider model

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

36

 After the NavMesh is baked and ready, it's very easy to move a creature around the scene and

even create more creatures at runtime and have them navigate the scene too.

The following, simple C# script can be added on the spider to move it anywhere on the scene that the

NavMesh allows.

//MoveDestination.cs

using UnityEngine;

public class MoveDestination : MonoBehaviour

{

public Transform goal;

void Start ()

{

NavMeshAgent agent = GetComponent<NavMeshAgent>(); //get the NavMesh agent of the object

agent.destination = goal.position; //send the agent(with the attached object) at “goal.position”

} }

1.41 Terrain with baked NavMesh

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

37

 To complete the script above, we could also enable the “walk” animation, so that the spider

appears to be walking towards its destination.

The final script implementing the “walk-to-destination” function is:

//MoveDestination.cs

using UnityEngine;

public class MoveDestination : MonoBehaviour

{

public Transform goal;

void Start ()

{

NavMeshAgent agent = GetComponent<NavMeshAgent>(); //get the NavMesh agent of the object

agent.destination = goal.position; //send the agent(with the attached object) at “goal.position”

animation.Play("walk", PlayMode.StopAll); //play the walking animation and stop all others
} }

 Now that the infrastructure is ready, we can proceed to implement the AI. In our digital world,

we wanted the spiders to roam around the forest semi-randomly, while avoiding the player. We also

want them to “die” if the player steps on them.

To implement the above, four Checkpoints (Picture 1.42) were made in the scene. A pseudo-script

implementing the behavior would be :

//pseudoScript
while (bool){ moveDestination(random(checkpoint))
}
if(distance(player,spider)< x/10) //if the distance is very small,
 //stop walking, then die
 {
bool=false
dieSpider()
}
else_if(distance(player,spider)< (x)) //if the distance is small
{ //enough, run away
bool = false
runaway(player.position)
}

http://docs.unity3d.com/462/Documentation/ScriptReference/PlayMode.StopAll.html

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

38

 It's easily observed that the code used is not only simple and short, which means less chance

for logical errors, it's also extremely flexible and reusable. This script can be directly applied on any

creature with a NavMesh Agent and properly named animations and it will work perfectly. This means

that new creatures can be created and used at runtime, that the scene can easily be updated with

new creatures as they become available and that more checkpoints can be added or removed, as

needed. Generally, this modular approach is extremely flexible, easy to implement and simple.

 Below, Pictures 1.43 and 1.44 show two other creatures implemented in a similar manner, a

flying and an aquatic animal. For making proper NavMeshes on these creatures, invisible, not-

rendered terrains were made.

1.42 Creature Checkpoints

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

39

1.43 Flying creature example: Butterfly

1.44 Aquatic creature example: Whale

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

40

 1.2.5 Terrain: Physics

 The term Physics in game-design is the ability to give a model(object) convincing physical

behavior. An object in a game must accelerate correctly and be affected by collisions, gravity and other

forces. Unity’s built-in physics engines provide components that handle the physical simulation

instead of the developer. With just a few parameter settings, we can create objects that behave

passively in a realistic way (i.e., they will be moved by collisions and falls but will not start moving by

themselves). By controlling the physics from scripts, we can give an object the dynamics of a vehicle,

a machine or even a moving piece of cloth.

 To utilize Unities physics system, all we have to do is add a Rigidbody component (component

something that is contained in the Object) to it.

This will immediately cause any object to be affected by gravity. If we add a Collider component too,

the object will start behaving realistically, colliding with the ground and with other objects having

Collider components[2].

 A Collider component is, essentially, a geometrical shape around an object. When this

geometrical shape detect another such shape colliding with it, it notifies the Rigidbody, which, then,

depending on our settings, applies physics.

 What's more, we can adjust the Rigidbody and Collider components' parameters to achieve even

more realistic results, for example setting a big stones' mass and drag to a high value and making the

stones' Collider a sphere that correctly envelopes it.

 Picture 1.45 is such a rock object from our scene, enveloped in a correctly-sized Collider, set

with a Rigidbody component.

1.45 Rock with Collider and Rigidbody Components

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

41

 One last mention regarding physics in Unity are Character Controllers. Character Controllers

(Picture 3.1) are special components, meant to be applied to the player-controlled character. Usually,

the player-controlled character’s acceleration and movement will not be physically realistic. It may

be able to accelerate, brake and change direction almost instantly without being affected by

momentum. Also, a character controller cannot walk through static colliders in a scene, and so will

follow floors and be obstructed by walls. It can push rigidbody objects aside while moving but will

not be accelerated by incoming collisions. This means that we can use the standard 3D colliders to

create a scene, around which the controller will walk, but we are not limited by realistic physical

behavior on the character itself[3].

3.1 First person Character Controller

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

42

 1.2.6 Terrain: Sound

 Sound effects add, as one easily understands, a great deal of immersion, realism and life to any

digital environment. Even more so when the environment is perceived through VR, since the user has

limited perspective, and sound can be used as a point of reference or indicator to the user of where

he/her attention is needed.

 In real life, sounds are emitted by objects and heard by listeners. The way a sound is perceived

depends on a number of factors. A listener can tell roughly which direction a sound is coming from

and may also get some sense of its distance from its loudness and quality.

 A fast-moving sound source (like a falling bomb or a passing police car) will change in pitch as it

moves as a result of the Doppler Effect.

Also, the surroundings will affect the way sound is reflected, so a voice inside a cave will have an

echo but the same voice in the open air will not.

 To simulate the effects of position, Unity requires sounds to originate from Audio Sources

attached to objects. The sounds emitted are then picked up by an Audio Listener attached to another

object, most often the player controlled character. Unity can then simulate the effects of a source’s

distance and position from the listener object and play them to the user accordingly.

The relative speed of the source and listener objects can also be used to simulate the Doppler Effect

for added realism.

 Unity can’t calculate echoes purely from scene geometry but you can simulate them by adding

Audio Filters to objects.

For example, you could apply the Echo filter to a sound that is supposed to be coming from inside a

cave. The Unity Audio Mixer is a tool that allows the developer to mix various audio sources, apply

effects to them, and perform mastering[4].

 So, first of all, we add an Audio Listener to our first-person character. Then we download all the

needed sounds of our scene (MP3 and WAV are the most frequently used formats) and add them

together with an Audio Source, to every single object we need producing sound.

We also create two empty, not-rendered objects that only contain an Audio Source for producing

ambient sounds (birds singing, wind howling etc.)

Last but not least we add an audio source to the feet of the player-controlled character for producing

stepping sounds. A small script detects where the player steps on, be it rocky, grassy or sandy ground

and swaps the stepping sound accordingly.

Below is part of the script, a function that produces the stepping sound.

//call this when a footstep sound is needed
public void Footstep(){

 for(int i = 0; i < groundTypes.Count; i++){
 for(int k = 0; k < groundTypes[i].textures.Length; k++){

if(currentTexture == groundTypes[i].textures[k]){

 footstepAudio.PlayOneShot(groundTypes[i].sounds[Random.Range(0,groundTypes[i].sounds.Length)]);
 Debug.Log(currentTexture);

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

43

 Debug.Log(groundTypes[i].sounds[Random.Range(0, groundTypes[i].sounds.Length)]);

 }
 }
 }
 }

 Another sound addition that is of interest is the one the spider emits when approached by the

player. A single line of code can make an extremely big difference in the realism of the world.

Many testers almost jumped off their seats when faced with a creature that they would have

completely overlooked if not for the sound it made.

 Finally, the Audio Mixer tool (Picture 3.2) that Unity provides is a great way to group and

manage sounds. Instead of having to configure every single sound effect individually, the developer

can add them in groups and handle them together. Effects meant to be ambient can, for example, be

placed in an Ambient Sounds category and increase-decrease their intensity or apply filters to them as

a group.

3.2 Audio Mixer

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

44

 1.2.7 Terrain: Lighting

 In order to calculate the shading of a 3D object, Unity needs to know the intensity, direction and

color of the light that falls on it. Picture 1.46
[5]

demonstrates an example of shading.

 These properties are provided by Light objects in the scene. The base color and intensity are

set identically for all lights but the direction depends on the type of light being used. Also, the light

may diminish with distance from the source. The four types of lights available in Unity are described

below

 A Point Light is located at a point in space and sends light out in all directions equally. The

direction of light hitting a surface is the line from the point of contact back to the center of the light

object. The intensity diminishes with distance from the light, reaching zero at a specified range.

A point light is visualized in Picture 1.47.

1.46 Direct Light Shading Example

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

45

Point lights are useful for simulating lamps and other local sources of light in a scene. They

can also be used to make a spark or explosion illuminate its surroundings in a convincing way. Picture

1.48 demonstrates the effects of a point light in the scene.

1.47 Point light

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

46

Much like a point light, a Spot Light (Picture 1.49) has a specified location and range over

which the light falls off. However, the spot light is constrained to an angle, resulting in a cone-shaped

1.49 Spot light

1.48 Effect of Point Light in the Scene

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

47

region of illumination. The center of the cone points in the forward (Z) direction of the light object.

 Spot lights are generally used for artificial light sources such as flashlights, car headlights and

searchlights. With the direction controlled from a script or animation, a moving spot light will only

illuminate a small area of the scene and create dramatic lighting effects (Picture 1.50).

A Directional Light (Picture 1.51) does not have any identifiable source position and so the

light object can generally be placed anywhere in the scene. All objects in the scene are illuminated as

if the light is always from the same direction. The distance of the light from the target object is not

1.50 Effect of a Spot Light in the scene

1.51 Directional light

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

48

defined(infinite) and so the light does not diminish.

Directional lights represent large, distant sources that exist a position outside the range of the

game world (Picture 1.52). In a realistic scene, they can be used to simulate the sun or moon. In an

abstract game world, they can be a useful way to add convincing shading to objects without exactly

specifying where the light is coming from. When checking an object in the scene view (to see how its

mesh, shader and material look, for example) a directional light is often the quickest way to get an

impression of how its shading will appear. For such a test, we are generally not interested in where the

light is coming from but simply want to see the object looks “solid” and whether there are glitches in

the model.

 An Area Light (Picture 1.53) is defined by a rectangle in space. Light is emitted in all

directions, but only from one side of the rectangle. The light falls off over a specified range. Since the

lighting calculation is quite processor-intensive, area lights are not available at runtime and can only

be baked into lightmaps.

1.52 Effect of a Directional Light in the scene

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

49

 Since an area light illuminates an object from several different directions at once, the shading

tends to be more soft and subtle than the other light types (Picture 1.54). A proper use to it would be

the creation of realistic street lights or a bank of lights close to the player. A small area light can

simulate smaller sources of light (such as interior house lighting) with a more realistic effect than a

point light.

1.53 Area Light

1.54 Effect of an Area Light to the scene

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

50

 Global Illumination (GI) is a system that models how light is bounced off of surfaces onto

other surfaces (indirect light) rather than being limited to just the light that hits a surface directly from

a light source (direct light). Modeling indirect lighting allows for effects that make the virtual world

seem more realistic and connected, since objects affect each other’s appearance. One classic example

is ‘color bleeding’ where, for example, light hitting a red wall at a specific angle will cause red color to

be bounced onto the wall next to it (Picture 1.55). Another is when sunlight hits the floor at the

opening of a cave and bounces around inside so the inner parts of the cave are illuminated too.

 Traditionally, video games, digital worlds and other realtime graphics applications have been

limited to direct lighting, while the calculations required for indirect lighting were too slow so they

could only be used in non-realtime situations such as CG animated films.

 A way for games to work around this limitation is to calculate indirect light only for objects and

surfaces that are known ahead of time not to move around (that are static). That way the slow

computation can be done ahead of time, and since the objects won't move, the indirect light that is pre-

calculated this way will always be correct, even at runtime. Unity supports this technique, called

Baked GI (also known as Baked Lightmaps), which is named after “the bake” - the process in which

the indirect light is pre-calculated and stored.

 In addition to indirect light, Baked GI also takes advantage of the greater computation time

available to generate more realistic soft shadows from area lights and indirect light than what can

normally be achieved with realtime techniques.

One noteworthy disadvantage of this technique, however, is that it dramatically increases the size of

the end-product due to the lightmaps it bakes, stores and uses.

 By using all the lighting techniques above, we greatly increase the realism and visual fidelity of

our digital world. Pictures 1.55 and 1.56 below present two highlights from within that world. It is

worth mentioning that, due to a bug in Unity presented at the time, these results were done using the

minimum quality settings.

1.55 GI Effects: Color Bleed

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

51

1.55 Highlights: Directional Light

1.56 Highlights: Point Light (Colored)

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

52

 1.2.8 Terrain: Image Post-processing Effects

 Image post-processing effects are special effects applied on the digital world, often to simulate

physical camera and film properties and their correct use can add a great deal to the look and feel of

our world, especially since it's designed to be experienced in first-person view.

Important effects in this category include Sun Shafts, Bloom, Antialiasing and Color Correction

Curves.

 Sun Shafts, or god ray effect, simulates the radial light scattering that arises when a very bright

light source is partly obscured. Picture 3.4 demonstrates the scene without any effects and Picture

1.56 god rays are included.

3.4 No Post-Processing Effects

1.57 Sun Shafts (God Ray Effect)

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

53

 Color Correction[6] is an effect used to make color adjustments for each color channel. Depth

based adjustments allow you to vary the color adjustment according to a pixel’s distance from the

camera. For example, objects on a landscape typically get more desaturated with distance due to the

effect of particles in the atmosphere scattering.

Selective adjustments can also be applied, so you can swap a target color in the scene for another color

of your own choosing.

Color Correction Curves is a tool visualizing and performing the above function by mapping color

channel values on curves, using a Cartesian system.

Saturation is an easy way to adjust all color saturation or desaturation (until image turns black &

white) which is an effect that is not achievable with curves only.

Pictures 1.58 and 1.59 visualize the change Color Correction can have on a scene.

1.58 Landscape before depth-based Color Correction

1.59 Landscape after depth-based Color Correction

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

54

 Blooming is the optical effect where light from a bright source (such as a glint) appears to leak

into the surrounding objects. The Bloom image effect adds the effect above and also automatically

generates lens flares in a highly efficient way.

Bloom is a very distinctive effect that can make a big difference to a scene and may suggest a magical

or dreamlike environment especially when used in conjunction with HDR rendering. On the other

hand, given proper settings, it’s also possible to enhance photorealism using this effect. Glow around

very bright objects is a common phenomenon observed in film and photography, where luminance

values differ vastly.

Pictures 1.60 and 1.61 demonstrate the difference the Bloom effect can make in a scene.

1.60 Landscape before the application Bloom

1.61 Landscape after the application of Bloom

https://docs.unity3d.com/Manual/HDR.html

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

55

 Finally, the Antialiasing
[6]

 effect is a post processing effect offers a set of algorithms designed to

give a smoother appearance to graphics. When two areas of different color adjoin in an image, the

shape of the pixels can form a very distinctive “staircase” along the boundary. This effect is known as

aliasing and hence antialiasing refers to any measure which reduces the effect.

1.62 No antialiasing With Antialiasing (FXAA1PresetB

 algorithm used)

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

56

 1.3 Terrain: VR Integration

 Virtual reality is an artificial environment that is created with software and presented to the

user in such a way that the user suspends belief and accepts it as a real environment. On a computer,

virtual reality is primarily experienced through two of the five senses: sight and sound[7].

Although there were many different attempts regarding hardware for creating immersive VR, the latest

and most successful is using Headsets, devices mounted on the head in such a way that the digital

world is being presented as real. To do that, either the digital world is correctly rendered in two

different screens, one for each eye or two lenses correctly focus eyesight into two parts of one

screen (Picture 1.63, Picture 1.64).

1.63 VR Headset, Razer's OSVR Hacker Dev Kit

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

57

 For properly rendering the digital environment on OSVR (Picture 1.63), the official SDK needs

to be downloaded from GitHub.

After that, there are three steps to integration[8]. First of all, we need to supply our first-person

controller with a specific set of components (contained in the SDK). A ready-for-use, complete

controller is also provided, that would mean, though, that we would need to remake all the post-

processing image effects.

Those components are mainly the special VR camera and the script handling the extra VR head

movement (so that the movement of the players’ head translates into movement of the in-game

characters’ head).

Another integration step is the addition in the scene of a ClientKit. This object handles the connection

with the hardware.

Finally, an OSVR server must be run and connected to the ClientKit.

1.64 Game rendered in VR

https://github.com/OSVR/OSVR-Unity/blob/master/GettingStarted.md

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

58

 While the process itself of integrating VR in a digital world is not hard or time-consuming, the

true challenge is making said world abide with certain rules or requirements. These rules, while not

mandatory, make VR safe and enjoyable to the users.

One example of a challenge is that, usually, the VR Headsets have extremely high-resolution screens.

Since the world is rendered on those screens, the framerate will drop significantly compared to a

standard Full-HD computer screen. What's more, low framerate in VR has been proven to cause mild

to severe motion sickness to its users[10]. That reason is why Oculus, a market leader in VR systems,

along with most other prodigies of VR, recommend striving for a steady framerate of over 60 frames

per second.

This means that the developer should strive to achieve sufficiently high visual fidelity to succeed in

immersing the user while also putting great effort in keeping the fps high. Towards that end, the digital

world needs a very high and professional level of optimization.

1.65 VR Enabled First-person controller

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

59

 1.3.1 Terrain : Optimization

 Optimizing a game or digital world is a not an exact science. There are countless ways to

increase framerate, but not one of them can guarantee good enough results in any situation by itself.

Usually it's a combination of many different techniques and on every aspect of the game that

produce a sufficient result.

Examples would be reducing the polygon-count when making/integrating models and adding LOD

support to them, avoiding using code that overly-burdens the system, reducing the rendering

distance for vegetation and objects, and adding a fog effect to cover it up and retain realism (Picture

1.66).

Finally, a more sophisticated, specialized technique for decreasing the amount of rendered objects and

greatly increasing framerate is Occlusion Culling.

 LOD, or Level of Detail, is a smart way of optimizing models while retaining detailed

environments and realism. When an object in the scene is a long way from the camera, the amount of

detail that can be seen on it is greatly reduced. However, the same number of triangles will be used to

render the object, even though the detail will not be noticed.

LOD rendering (Pictures 1.66 – 1.70) allows you to reduce the number of triangles rendered for an

object as its distance from camera increases. As long as your objects aren’t all close to the camera at

the same time, LOD will reduce the load on the hardware and improve rendering performance.

 LOD 0, the fully detailed, realistic model. When the player is this close or closer to the model,

he/she experiences the fully detailed version.

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

60

 As the player moves away, the model gets replaced by a simplified version of itself (Picture

1.67).

 As distance increases even further, an even less detailed version of the model is used. Due to

the distance, though, the differences cannot be perceived. Picture 1.68 remonstrates LOD 2 from a

distance and Picture 1.69 the LOD difference from up close.

1.66 LOD 0: The fully detailed version of the model is rendered

1.67 LOD 1: The model loses detail

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

61

 Note the huge difference in the model detail compared to how little of a difference noticed when

viewed from a distance in Pictures 1.66 and 1.68.

 LOD 3 is the lowest level for this model and the distanced rendered in LOD is the max distance

this model can be viewed from. In LOD 3, the model is replaced by a billboard, a 2D image. Even so,

from such a great distance and using fog, it is barely noticeable.

1.68 LOD 2: Model replaced by an even less detailed version

1.69 LOD 0

LOD 2

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

62

 From this point and further, the model is not rendered(culled) at all (Picture 3.5).

1.70 LOD 3: The model is replaced with a billboard version of it

3.5 Culled Model

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

63

 It's easy to understand that applying LOD to every model in the scene will greatly increase

performance. But it should be applied carefully, properly blending the switches in geometry and

setting the distances for the LODs.

 A good way of hiding the lack of detail in far-away models is fog. Seen above in Pictures 1.66-

1.70, fog is a lighting effect that can be created in various ways. Unities lighting system has an inbuilt

global fog generator, while in the Asset Store one can find 3D, volumetric fog systems and even some

created by using Particle Systems.

The one used in this project is Unities inbuilt system, set to linear, meaning the fog will increase

linearly, starting from the player and ending 1000 units away.

It's also set to an earthy orange color to assimilate better with the horizon (Picture 1.70).

 Occlusion Culling is a feature that disables rendering of objects when they are not currently

seen by the camera because they are obscured (occluded) by other objects. This does not happen

automatically in 3D computer graphics since most of the time objects farthest away from the camera

are drawn first and closer objects are drawn over the top of them (this is called “overdraw”). Occlusion

Culling is different from Frustum Culling. Frustum Culling only disables the renderers for objects

that are outside the camera’s viewing area but does not disable anything hidden from view by

overdraw. Note that when you use Occlusion Culling you will still benefit from Frustum Culling.

The occlusion culling process will go through the scene using a virtual camera to build a hierarchy of

potentially visible sets of objects. This data is used at runtime by each camera to identify what is

visible and what is not. Equipped with this information, Unity will ensure only visible objects get sent

to be rendered. This reduces the number of draw calls and increases the performance of the game.

 The data for occlusion culling is composed of cells. Each cell is a subdivision of the entire

bounding volume of the scene. More specifically the cells form a binary tree. Occlusion Culling uses

two trees, one for View Cells (Static Objects) and the other for Target Cells (Moving Objects).

 View Cells map to a list of indices that define the visible static objects which gives more

accurate culling results for static objects.

It is important to keep this in mind when creating objects because a good balance is needed between

the size of the objects and the size of the cells. Ideally, cells shouldn't be too small in comparison with

your objects but equally there shouldn’t be objects that cover many cells. Sometimes, culling can be

improved by breaking large objects into smaller pieces. However, we can still merge small objects

together to reduce draw calls and, as long as they all belong to the same cell, occlusion culling will not

be affected.

 In order to use Occlusion Culling, there is some manual setup involved. First, the level geometry

must be broken into sensibly sized pieces. It is also helpful to lay out the levels into small, well

defined areas that are occluded from each other by large objects such as walls, buildings, etc (this is

why there is so much geometry in the scene of this project). The idea is that each individual mesh will

be turned on or off based on the occlusion data. So if one object exists that contains all the objects in a

room then either all or none of the entire set of objects will be culled.

This doesn’t make nearly as much sense as making each object its own mesh, so each can individually

be culled based on the camera’s view point[6].

 Any scene objects that we want to be part of the occlusion must be tagged as Occluder Static.

The fastest way to do this is to multi-select the objects we want to be included in occlusion

calculations, and mark them together.

Below (Picture 1.71, 1.72 and 173) are a visualization of Occlusion and Frustum Culling within the

scene.

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

64

 Picture 1.72 is a visualization of Occlusion and Frustum Culling with the sight lines used to

find obstructed objects.

1.71 Simplified scene view, no Frustum or Occlusion Culling

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

65

 Picture 1.73 demonstrates Occlusion and Frustum Culling results. Notice the areas behind the

mountain and in the lake that are not being rendered.

1.72 Occlusion and Frustum Culling and sight lines

1.73 Occlusion and Frustum Culling

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

66

1.3.2 Terrain : Conclusion

 This part of the project was, by far, the hardest and most time consuming. It can be quite a

challenge for a single developer to understand and implement all the different parts that combine to

form a complete, adequate digital experience.

Of all those parts, only the most important were mentioned in this document. Fully covering the game-

design process would require thousands of pages and it would have been redundant, as many sites

exist on the Internet that excel on doing just that using both pictures and video.

Below, the final game statistics and the hardware used to run it are documented.

Scene information:

Framerate: 55-110fps

Triangles: 3.8million

Shadow casters: 268

Animations: 14

Hardware:

Intel Core i5-6600K @3.50GHz

16GB of RAM

AMD Radeon R9 390 with 8GB of dedicated memory

Razer OSVR Hacker Dev Kit v1.3(VR Headset)

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

67

 2. The EEG

 2.1 Understanding the Brain

 The brain is a very complex system. The frontal cortex, the region where most of the conscious

thoughts and decisions are made, conducts much less than a tenth of the total activity in the brain.

 Planning, modeling of our surroundings, interpretation of sensory inputs up to and including our

perception of reality, memory processing and storage and the basic drivers of our moods and emotions

occur in many functional regions distributed around the brain, including the visual cortex at the rear,

temporal cortex at the sides, parietal cortex behind the crown of the head and the limbic system deep

inside the brain. The limbic system controls the basic moods and emotions, the fight/flight response

and deeper long term memory encoding as well as control of basic bodily functions such as breathing

and heartbeat.

 Most of these deeper functions interact intimately with different parts of the cortex (the outer

layer which is accessible to EEG measurements) however the interaction is quite complex and

distributed. In order to map the true activity of the brain it is very important to measure signals from

many different cortical structures located all around the brain surface. It is not possible to map these

signals purely from the frontal and temporal regions. Determination of the user’s complete mental

state is very poorly approximated unless signals from the rear of the brain are also considered. With

proper coverage and electrode configuration, it is possible to reconstruct a source model of all

important brain regions and to see their interplay
 [9]

.

 The Epoc+ EEG system (Picture 2.2) used in this experiment is a very accurate, professional

device. Even compared to Research-type EEG equipment (costing $60,000), the data retrieved

(waveforms) are similar (Picture 2.1).

 EMOTIV currently provides drivers that measure 6 different emotional and sub-conscious

dimensions in real time – Excitement (Arousal), Interest (Valence), Stress (Frustration),

Engagement/Boredom, Attention (Focus) and Meditation (Relaxation).

 The detections above were developed based on rigorous experimental studies involving at least

20-30 volunteers for each state, where subjects were taken through experiences to elicit different levels

of the desired state. They were wired up with many additional biometric measures (heart rate,

respiration, blood pressure, blood volume flow, skin impedance and eye tracking), observed and

recorded by a trained psychologist and also self-reported. EMOTIV Performance Metrics have been

validated in many independent peer-reviewed studies.

 The present experiment uses these categories (emotional states) to determine the effect of VR on

the average 18 to 25-year-old human. It, also, uses a similar test-group of 18 volunteers (20-30 were

used by EMOTIV to develop the emotional states).

Furthermore, the results were separated by gender and gaming experience using a short, nameless

survey each volunteer undertook.

http://emotiv.com/category/independent-studies/

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

68

2.1 Epoc+ to Research-grade equipment comparison

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

69

2.2 Epoc+ EEG

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

70

 2.2 Testing Phase

 The tests were performed on volunteers, most of them interested in trying Virtual Reality for

themselves. The subjects were 18-25 year olds of both genders, gamers and non-gamers. The testing

was performed in an empty, air-conditioned room with most other stimuli apart from the people

present in the room and the test itself removed. To that end, no cellphones or consumables were

allowed and conversation was kept to a minimum during the actual recording of the data.

 The test on every individual had four distinct phases. Phase one was consisted of attuning the

EEG to the specifics of each individual. This was done by making a new profile for every volunteer,

apply a solution to each sensor (as per the company’s instructions) and having them properly wear the

device, so that the sensors were on the exact spot on the head they were supposed to be (with every

head and haircut being different, this was, at times, a challenge). Then, every sensor was

micromanaged, to achieve maximum signal, which was presented as a green color in the setup panel.

Yellow, Red and Black meant less than optimal, with Black being no signal at all (Picture 2.3 and

Picture 2.4)
 [9]

.

 When every sensor is properly setup, the system is calibrated to the specifics of that person by a

series of automatic recordings as they have their eyes opened and closed.

2.3 Correct sensor placement

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

71

 Phase two consists of a three-minute brain data recording, while the volunteer is asked to stay

seated and avoid any unnecessary action. It was quickly observed that friendly, normal conversation

had better results in keeping someone still for 3 minutes, so that was used with every tester.

These recording served a double purpose. First and foremost, they served as a 3-minute time window

for the EEG to specialize the data to the individual. And then, they also served as a reference to

understand the consistency and quality of the useful data obtained later. An example of quality control

would be having a Stress value of a 100% during a simple chat, which meant the sensor was not

working properly. A report was generated after this session and the data was saved locally and on the

EMOTIVs cloud service.

 Phase three, the first to produce an important set of data, consisted of 3 minutes of the volunteer

playing an on-line First-Person Shooter game, mostly alone, with very few enemies occasionally

encountered. They were asked to roam around, doing anything they wanted for the duration. While the

game will remain nameless, in accordance with its Terms of Use, it is a typical, first person shooter

game, with 3D graphics and sound, played through an average PC screen. Picture 2.5 is another,

incredibly similar game.

The reasons behind choosing it were its perspective (first person), financial model (free to play) and

platform(it could be played on a browser). A report was generated and stored with the emotional-

brainwave data from this experience.

2.4 Green: Strong signal received by sensor

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

72

 The final phase consisted of three minutes of using the custom digital VR environment through

the OSVR headset. Out of those 18 people, the first 9 had the headset correctly mounted on their head

with the built-in straps(although the experience, due to already wearing the EEG, was unpleasant) and

the rest kept the headset correctly placed on their head with their left hand, while navigating the scene

with their right using a joystick.

 The reasoning behind this was that the first group had everything correctly placed on them as

specified in both the manuals of the EEG and OSVR, but felt discomfort while the other group felt

comfortable but at the cost of some immersion.

In the final calculations, the results were calculated both for one group of 18 people and two groups of

9. The data generated by this phase was, of course, stored.

Then, the volunteer was given a short survey (Picture 2.6) to fill. This helped refine the data even

further. Names were not used and the survey was connected to the data with a serial number.

2.5 First person shooter example

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

73

2.6 Survey

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

74

 3. Results

 3.1 Data Documentation

 For every ID the first row is the data (%) recorded while having a calm discussion, the second

while playing the fps game and the third while experiencing the environment using VR.

Table 1:

Group

Numb.

ID Engagement Excitement Interest Relaxation Stress Focus

1 g00001 54 22 56 33 47 37

1 g00001 55 17 50 33 36 29

1 g00001 55 53 57 33 31 53

1 g00002 55 46 71 33 73 58

1 g00002 55 24 51 33 46 37

1 g00002 59 50 63 33 55 59

1 g00003 57 60 59 34 47 61

1 g00003 62 48 53 31 34 51

1 g00003 68 33 56 32 39 37

1 g00004 66 40 53 33 48 46

1 g00004 72 18 54 30 40 31

1 g00004 77 17 51 28 35 33

1 g00005 58 26 58 38 52 39

1 g00005 62 16 56 40 46 29

1 g00005 60 43 62 43 54 48

1 g00006 71 3 58 8 62 42

1 g00006 70 40 50 31 41 45

1 g00006 64 53 61 35 39 52

1 g00007 79 66 56 33 100 81

1 g00007 66 67 47 30 100 83

1 g00007 58 84 58 36 100 89

1 g00008 70 25 48 33 42 34

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

75

1 g00008 70 23 52 30 42 36

1 g00008 55 47 64 33 63 56

1 g00009 66 28 68 34 46 47

1 g00009 65 18 64 33 56 37

1 g00009 58 23 65 33 55 41

2 g00010 59 26 69 33 100 50

2 g00010 73 17 48 31 100 52

2 g00010 62 35 58 36 60 45

2 g00011 66 41 60 35 100 60

2 g00011 69 23 52 30 100 57

2 g00011 67 49 66 46 100 62

2 g00012 52 42 62 32 100 62

2 g00012 55 57 54 31 73 76

2 g00012 55 77 75 33 83 77

2 g00013 60 23 60 38 63 41

2 g00013 58 20 55 31 39 34

2 g00013 65 25 59 28 59 46

2 g00014 62 41 52 32 52 51

2 g00014 59 59 55 30 42 59

2 g00014 60 72 67 36 61 73

2 g00015 64 59 75 36 94 71

2 g00015 75 23 54 27 56 42

2 g00015 65 53 67 34 65 65

2 g00016 56 43 57 33 44 50

2 g00016 55 6 54 33 42 26

2 g00016 59 64 57 36 49 63

2 g00017 62 38 64 34 100 58

2 g00017 64 32 54 33 100 59

2 g00017 55 71 82 33 100 80

2 g00018 62 58 55 44 70 62

2 g00018 64 25 52 40 50 38

2 g00018 75 54 56 34 65 63

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

76

 3.2 Summary Statistics

 The easiest way to mathematically picture the differences and to present the results are

Summary Statistics. For this analysis, the mean (the sum of a collection of numbers divided by the

number of values in the collection), median (the value separating the higher part of a data sample

from the lower part) and mode(the value that appears most often in a set of data) will be calculated.

The first two for the actual representation and the last one for quality control.

 First, we calculate the difference between the values of “Calm” and “VR”, then “FPS” and “VR”,

or the 1-3 and 2-3 rows of each emotional state. We do that for all 18 IDs. Then the mean and the

median will be calculated between all the corresponding values(differences) of all the IDs. We do this

for every emotional state.

 Then, we calculate the mode. If the mode contains the 0 value, it means that there were many

readings without any difference from each other. An example would be Stress being 100 for all 3

readings of a volunteer. The logical assumption is that the reading was false, an outlier and that we

need to remove the problematic reading.

 3.2.1 Single 18-person group

 Below are the results, without removing any outliers, of all the IDs pooled together. Numbers

are the differences %. Negative values mean a decrease in the emotional state.

 Table 2:

ENGAGEMENT

Mean Calm-VR -0.111

Mean FPS - VR -1.777

Median Calm-VR 1.500

Median FPS-VR -1

Mode Calm-VR 1 , 3

Mode FPS-VR 0, 4, -2

EXCITEMENT

Mean Calm-VR 12

Mean FPS - VR 20.555

Median Calm-VR 13

Median FPS-VR 22

Mode Calm-VR 31

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

77

Mode FPS-VR 26 , 13 , 5

INTEREST

Mean Calm-VR 2.055

Mean FPS - VR 9.853

Median Calm-VR 0.500

Median FPS-VR 10.500

Mode Calm-VR -3 , -1

Mode FPS-VR 12

RELAXATION

Mean Calm-VR 1.277

Mean FPS - VR 2.529

Median Calm-VR 0

Median FPS-VR 3

Mode Calm-VR 0 , 3

Mode FPS-VR 0

STRESS

Mean Calm-VR -6.166

Mean FPS - VR 3.444

Median Calm-VR -2

Median FPS-VR 6

Mode Calm-VR 0

Mode FPS-VR 0

FOCUS

Mean Calm-VR 5.055

Mean FPS - VR 12.333

Median Calm-VR 6.500

Median FPS-VR 13

Mode Calm-VR 22

Mode FPS-VR ALL

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

78

 3.2.2 Single 18-Person Group, Outliers Removed

 As we can easily observe in the data above, the value 0 keeps appearing in mode. We will

remove all outliers, calculate the differences again and follow the exact same procedure to re-calculate

mean-median-mode for the new set of data.

Below are the results, with most changes being on Engagement, Relaxation and Stress.

 Table 3:

ENGAGEMENT

Mean Calm-VR 0.562

Mean FPS - VR -1.5

Median Calm-VR 1.500

Median FPS-VR -2

Mode Calm-VR 1 , 3

Mode FPS-VR -2

EXCITEMENT

Mean Calm-VR 12

Mean FPS - VR 20.555

Median Calm-VR 13

Median FPS-VR 22

Mode Calm-VR 31

Mode FPS-VR 26 , 13 , 5

INTEREST

Mean Calm-VR 2.055

Mean FPS - VR 9.853

Median Calm-VR 0.500

Median FPS-VR 10.500

Mode Calm-VR -3 , -1

Mode FPS-VR 12

RELAXATION

Mean Calm-VR 1.533

Mean FPS - VR 3

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

79

Median Calm-VR 1

Median FPS-VR 3

Mode Calm-VR 3

Mode FPS-VR 3 , 4 , 6

STRESS

Mean Calm-VR -7.583

Mean FPS - VR 6.230

Median Calm-VR -6.500

Median FPS-VR 8

Mode Calm-VR 9

Mode FPS-VR -5 , 9

FOCUS

Mean Calm-VR 5.055

Mean FPS - VR 12.333

Median Calm-VR 6.500

Median FPS-VR 13

Mode Calm-VR 22

Mode FPS-VR ALL

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

80

 3.2.3 Two 9-Person groups, Outliers Removed

 Due to the difference in the way the VR headset was worn and the discomfort, the group can

be split into two pools of data.

Table 4 contains the results. There is an additional metric, the total MIN and MAX values calculated

per-group and per-emotional state.

 Table 4:

GROUP 1 -

ENGAGEMENT

Mean Calm-VR -3.25

Mean FPS - VR -2

Median Calm-VR -3

Median FPS-VR -4

Mode Calm-VR 11

Mode FPS-VR ALL

Min/Max Calm-VR -21/11

Min/Max FPS-VR -8/6

EXCITEMENT

Mean Calm-VR 9.666

Mean FPS - VR 14.666

Median Calm-VR 17

Median FPS-VR 17

Mode Calm-VR ALL

Mode FPS-VR ALL

Min/Max Calm-VR -27/50

Min/Max FPS-VR -15/36

INTEREST

Mean Calm-VR 2.111

Mean FPS - VR 6.555

Median Calm-VR 1

Median FPS-VR 7

Mode Calm-VR -3

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

81

Mode FPS-VR 11 , 12

Min/Max Calm-VR -8/12

Min/Max FPS-VR -1/12

RELAXATION

Mean Calm-VR 4.500

Mean FPS - VR 2.500

Median Calm-VR 1

Median FPS-VR 3

Mode Calm-VR ALL

Mode FPS-VR 3

Min/Max Calm-VR -5/27

Min/Max FPS-VR -2/6

STRESS

Mean Calm-VR -9.571

Mean FPS - VR 0.142

Median Calm-VR -13

Median FPS-VR 1

Mode Calm-VR ALL

Mode FPS-VR -5

Min/Max Calm-VR -23/9

Min/Max FPS-VR -12/9

FOCUS

Mean Calm-VR 2.888

Mean FPS - VR 10.111

Median Calm-VR 8

Median FPS-VR 7

Mode Calm-VR ALL

Mode FPS-VR ALL

Min/Max Calm-VR -23/22

Min/Max FPS-VR -13/24

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

82

 Table 5:

GROUP 2 -

ENGAGEMENT

Mean Calm-VR 2.222

Mean FPS - VR -1

Median Calm-VR 3

Median FPS-VR 0

Mode Calm-VR 3

Mode FPS-VR ALL

Min/Max Calm-VR -7/13

Min/Max FPS-VR -11/11

EXCITEMENT

Mean Calm-VR 14.333

Mean FPS - VR 26.444

Median Calm-VR 9

Median FPS-VR 26

Mode Calm-VR ALL

Mode FPS-VR ALL

Min/Max Calm-VR -6/35

Min/Max FPS-VR 5/58

INTEREST

Mean Calm-VR 3

Mean FPS - VR 12.111

Median Calm-VR 0

Median FPS-VR 12

Mode Calm-VR -1

Mode FPS-VR 4

Min/Max Calm-VR -12/18

Min/Max FPS-VR 3/28

RELAXATION

Mean Calm-VR 0

Mean FPS - VR 3

Median Calm-VR 0

Median FPS-VR 3

Mode Calm-VR 11 , -10

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

83

Mode FPS-VR ALL

Min/Max Calm-VR -10/11

Min/Max FPS-VR -6/16

STRESS

Mean Calm-VR -4.800

Mean FPS - VR 13.333

Median Calm-VR -4

Median FPS-VR 12.500

Mode Calm-VR ALL

Mode FPS-VR ALL

Min/Max Calm-VR -29/9

Min/Max FPS-VR 7/20

FOCUS

Mean Calm-VR 7.666

Mean FPS - VR 14.555

Median Calm-VR 5

Median FPS-VR 14

Mode Calm-VR 22

Mode FPS-VR ALL

Min/Max Calm-VR -6/22

Min/Max FPS-VR -7/37

 3.3 Interpreting the Results

 There are large differences in the data between the full and no-outlier group. There are even

bigger differences between the single and the double data pool approaches.

In this paper, while all the data discovered were documented for clarity and future use, only the no-

outlier, two-group approach will be fully explained, although the differences to each approach will be

mentioned.

 Using the data from the surveys, we can define the “average person” as a 22 year old male

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

84

with a gaming experience of 21.8 hours per week.

 Furthermore, of all the different metric-comparisons, the results of the female testers against the

averages of the groups they belonged to presented the most interest, so they were included. Since a

similar male-to-average comparison would be redundant (due to the average leaning decisively to the

male side) it was omitted.

Engagement

 Engagement[11] is defined as emotional involvement or commitment. Results indicate small

overall changes in engagement between the different phases.

Engagement results:

-

-

ALL

No

Outliers

Group 1

Group 2

Calm – VR mean -0.111 0.562 -3.250 2.222

FPS – VR mean -1.777 -1.500 -2.000 -1.000

Calm – VR median 1.500 1.500 -3.000 3.000

FPS – VR median -1.000 -2.000 -4.000 0.000

Female deviation from the average mean (negative values are lower than average):

- Group 1 Group 2

Calm – VR -11.25 5.778

FPS – VR -5.500 6.500

 There are minor differences in Engagement from phase to phase, with the mean values getting

closer to the medians after we remove the outliers meaning our results get more robust. The above

results are interpreted as Engagement slightly decreasing when feeling slight discomfort (Group 1),

but, overall, remaining the same when using VR as opposed to more traditional means.

It's noteworthy, though, that female testers demonstrated more than twice the engagement increase

of the average, which dropped 2-3 times lower than the average when in slight discomfort.

Excitement

 Excitement is a feeling of eager enthusiasm and interest. This is the emotional state with the

most fascinating, definite difference in VR. Female deviation from the average is large for this

emotional state too.

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

85

Excitement results:

-

-

ALL

No

Outliers

Group 1

Group 2

Calm – VR mean 12.000 12.000 9.666 14.333

FPS – VR mean 20.555 20.555 14.666 26.444

Calm – VR median 13.000 13.000 17.000 9.000

FPS – VR median 22.000 22.000 17.000 26.000

Female deviation from the average mean:

- Group 1 Group 2

Calm – VR -7.833 5.834

FPS – VR -15.444 9.834

 The testers exhibited very big differences in this emotional state when experiencing a world

through VR as opposed to more traditional means. A similar(26.5 to 26%) mean and median

demonstrate that no big outliers exist in the data of Group 2, so that result is the most robust.

An increase of 5-12% can be noticed between the group feeling slight discomfort(Group 1) and

the other, comfortable group (Group 2).
Furthermore, with the minimum increase of Group 2 at 5% and maximum at an incredible 58%,

this was the emotional state influenced most by VR.
 Female deviation was also high regarding Excitement, with an increase of 5.8-9.8% when

comfortable and decrease of 7.8 to 15.4% when in slight discomfort.

Interest

 Interest is a quality that attracts your attention and makes you want to learn more about

something or to be involved in something. This was the most robust set of data, with no outliers

detected and mean values being, generally, close to the median.

Interest results:

-

-

ALL

No

Outliers

Group 1

Group 2

Calm – VR mean 2.055 2.055 2.111 3.000

FPS – VR mean 9.853 9.853 6.555 12.111

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

86

Calm – VR median 0.500 0.500 1.000 0.000

FPS – VR median 10.500 10.500 7.000 12.000

Female deviation from the average mean:

- Group 1 Group 2

Calm – VR -2.611 3.000

FPS – VR -0.515 2.389

 The same motif appears in this emotional state as well. Group 2 exhibits a substantial increase

when using VR, especially when compared to playing a game through classic means., while group 2

demonstrates a much smaller increase.

Gender does not affect Interest as much, with minor (2-3%) differences exhibited.

Relaxation

 Relaxation is something that stops someone from being nervous or worried. VR increased

relaxation for all genders in a minor way. This state had the most outliers, possibly due to the relevant

sensors being easier to move out of place.

Relaxation results:

-

-

ALL

No

Outliers

Group 1

Group 2

Calm – VR mean 1.277 1.533 4.500 0.000

FPS – VR mean 2.529 3.000 2.500 3.000

Calm – VR median 0.000 1.000 1.000 0.000

FPS – VR median 3.000 3.000 3.000 3.000

Female deviation from the average mean:

- Group 1 Group 2

Calm – VR -3.500 -2.000

FPS – VR 0.500 5.500

 Small differences for this emotional state in combination with many outliers and a relatively

large difference between mean and median render these results uninteresting.

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

87

Stress

 Stress is a state of mental tension and worry. There are big differences here from group to group

and among readings. This was probably caused by either the lenses of the VR not being properly

adjusted to each individual (something they could only do and notice themselves) which caused

nausea or a conductivity-sensor problem in the EEG that sometimes caused stress to spike at 100%, an

impossibility.

Stress results:

-

-

ALL

No

Outliers

Group 1

Group 2

Calm – VR mean -6.166 -7.583 -9.571 -4.800

FPS – VR mean 3.441 6.230 0.742 13.333

Calm – VR median -2.000 -6.500 -13.000 -4.000

FPS – VR median 6.000 8.000 1.000 12.500

Female deviation from the average mean:

- Group 1 Group 2

Calm – VR -14.071 -2.300

FPS – VR 0.358 -0.833

Focus

 Focus is defined as a center of activity, attraction, or attention. Focus had the second biggest

increases of all the emotional states and was largely indifferent to genders.

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

88

Focus results:

-

-

ALL

No

Outliers

Group 1

Group 2

Calm – VR mean 5.055 5.055 2.888 7.666

FPS – VR mean 12.333 12.333 10.111 14.555

Calm – VR median 6.500 6.500 8.000 5.000

FPS – VR median 13.000 13.000 7.000 14.000

Female deviation from the average mean:

- Group 1 Group 2

Calm – VR -1.888 0.334

FPS – VR -5.111 -1.555

 The above can be interpreted as a tendency of humans to focus more on a digital environment

when using VR. The fact that eyesight is devoted to the digital world when experienced through VR

may be the explanation to this. Gender plays a minor, insignificant role on Focus.

Πτυχιακή Εργασία Τμήματος Μηχανικών Πληροφορικής

89

 4. References

[1]: Wikipedia

[2]: Unity Physics

[3]: Unity Character Controller

[4]: Unity Sound

[5]: Unity Lighting

[6]: Unity Post-Processing Effects

[7]: Techtarget

[8]: OSVR

[9]: Emotiv EPOC+ Manual

[10]: Wikipedia: VR Motion Sickness

[11]: Merrian-Webster

https://en.wikipedia.org/wiki/Virtual_reality
http://docs.unity3d.com/Manual/PhysicsSection.html
http://docs.unity3d.com/Manual/class-CharacterController.html
http://docs.unity3d.com/Manual/Audio.html
http://docs.unity3d.com/Manual/Lighting.html
http://docs.unity3d.com/Manual/comp-ImageEffects.html
http://whatis.techtarget.com/definition/virtual-reality
http://www.osvr.org/forum/viewtopic.php?t=11
https://emotiv.zendesk.com/hc/en-us/article_attachments/200343895/EPOCUserManual2014.pdf
https://en.wikipedia.org/wiki/Virtual_reality_sickness
http://www.merriam-webster.com/dictionary/engagement

