
  

 

 

SEMANTIC WEB SERVICES FOR BLOG ARTICLES                                                                                                                                                                                                

 

 

by 

 

 

NIKOLAOS MARIDAKIS 

 

 

B.Sc. Computer Science, University of Crete, 2013 

 

 

 

A THESIS 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

MASTER OF SCIENCE 

 

 

 

 

DEPARTMENT OF APPLIED INFORMATICS  

AND MULTIMEDIA 

 

SCHOOL OF APPLIED TECHNOLOGY 

 

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE 

 

 

2016 

 

Approved by: 

 

Major Professor 

Dr. Nikolaos Papadakis 



  

Copyright 

NIKOLAOS MARIDAKIS 

2016 

 

  



  

Abstract 

The appearance of new web technologies and the massive available information online 

led to an information overload within the web.  Considering this revolution, blogs have become a 

new way of providing and distributing news as a new media. Although there are several 

arguments about their validity and quality of content, the huge amount of blogs currently 

available require the usage of novel techniques for the mining, analysis, collection and efficient 

querying of the available information. To this direction, this work presents a novel platform 

which provides aggregating, indexing and searching within blog articles. The information is 

modelled using an RDF/S Ontology named “Blogs Ontology” and is also published as Linked 

Open Data.  In addition, APIs are developed and provided for inserting, updating and searching 

information. The platform also offers graphical user interfaces (GUIs) for searching and inserting 

information.  During the time that this work was done, the presented platform is the only one 

currently available publishing blog articles as Linked Open Data and simultaneously providing 

API’s and GUIs for aggregating, inserting and searching articles. 

 

 

Key words: Blogs, Semantic Web, Search, Ontologies



1 

 

 

Table of Contents 

Copyright ........................................................................................................................................ ii 

Abstract .......................................................................................................................................... iii 

Table of Contents ............................................................................................................................ 1 

List of Figures ................................................................................................................................. 3 

List of Tables .................................................................................................................................. 4 

Acknowledgements ......................................................................................................................... 5 

Dedication ....................................................................................................................................... 6 

Chapter 1 - Introduction .................................................................................................................. 7 

1.1 Weblogs ................................................................................................................................ 7 

1.1.1 Definition ....................................................................................................................... 8 

1.1.2 Anatomy of a blog ......................................................................................................... 9 

1.1.3 Common Blogging Phrases ............................................................................................ 9 

1.2 Semantic Web Blog Search Engines .................................................................................. 11 

1.3 Research goals and questions ............................................................................................. 14 

1.4 Structure .............................................................................................................................. 15 

Chapter 2 - Related Work ............................................................................................................. 16 

2.1 Searching in Blogs .............................................................................................................. 17 

2.1.1 IceRocket ..................................................................................................................... 17 

2.1.2 Regator ......................................................................................................................... 18 

2.1.3 Twingly ........................................................................................................................ 19 

2.1.4 Notey ............................................................................................................................ 21 

Chapter 3 - System Architecture and Use Cases .......................................................................... 23 

3.1 Ontology ............................................................................................................................. 24 

3.2 The Service Layer ............................................................................................................... 25 

3.2.1 API ............................................................................................................................... 25 

3.2.2 Semantic Annotator...................................................................................................... 27 

3.3 The Graphical User Interface Layer ................................................................................... 28 

3.3.1 The BlogSearch Engine ............................................................................................... 28 



2 

 

3.3.2 The Publishing Wizard ................................................................................................ 31 

Chapter 4 - Implementation and Tools ......................................................................................... 32 

4.1 Ontology Schema ................................................................................................................ 32 

4.1.1 Classes .......................................................................................................................... 33 

4.1.2 Object Properties .......................................................................................................... 34 

4.1.3 Data Properties ............................................................................................................. 35 

4.2 OpenLink Virtuoso ............................................................................................................. 37 

4.3 Web Services ...................................................................................................................... 38 

4.4 REST Architecture .............................................................................................................. 38 

4.5 JSON ................................................................................................................................... 39 

4.6 Virtuoso Database ............................................................................................................... 41 

4.6.1 Core database engine ................................................................................................... 41 

4.6.2 Architecture .................................................................................................................. 41 

4.6.3 Locking ........................................................................................................................ 42 

4.6.4 Data integrity ............................................................................................................... 42 

4.6.5 Data dictionary ............................................................................................................. 43 

4.7 SPARQL ............................................................................................................................. 43 

4.7.1 SPARQL Advantages .................................................................................................. 43 

4.7.2 SPARQL Query Forms ................................................................................................ 44 

4.8 Virtuoso Setup .................................................................................................................... 44 

4.8.1 Ontology Import ........................................................................................................... 45 

4.9 Web Service Implementation .............................................................................................. 46 

4.9.1 Structure ....................................................................................................................... 46 

4.10 Jena API ............................................................................................................................ 48 

GET Handling ....................................................................................................................... 51 

PUT Handling ....................................................................................................................... 52 

4.11 JSON Parsing .................................................................................................................... 52 

Chapter 5 - Evaluation .................................................................................................................. 54 

Chapter 6 - Conclusion ................................................................................................................. 57 

References ..................................................................................................................................... 58 

 



3 

 

List of Figures 

Figure 1: Platform Architecture .................................................................................................... 23 

Figure 2: The core classes and properties of the BLOGS Ontology and equivalences with the 

FOAF and Schema.Org ontologies. ...................................................................................... 25 

Figure 3: Example JSON-LD........................................................................................................ 26 

Figure 4: The BlogSearch engine ................................................................................................. 28 

Figure 5: Reading an Article ......................................................................................................... 29 

Figure 6: The Publishing Wizard .................................................................................................. 31 

Figure 7: Web Service Architecture ............................................................................................. 32 

Figure 8: Classes of the Ontology ................................................................................................. 34 

Figure 9: Object Properties ........................................................................................................... 35 

Figure 10: Data Properties ............................................................................................................ 37 

Figure 11: Structures of a Value at JSON Format ........................................................................ 40 

Figure 12: JSON Serialization between Server and Browser ....................................................... 41 

Figure 13: The six subfolders of Virtuoso .................................................................................... 45 

Figure 14: Ontology's import main command .............................................................................. 46 

Figure 15: Structure of the Web Service....................................................................................... 47 

Figure 16: Class Diagram ............................................................................................................. 48 

Figure 17: The Way Jena Works .................................................................................................. 49 

Figure 18: GET Request Lifecycle ............................................................................................... 51 

Figure 19: PUT Request Lifecycle ............................................................................................... 52 

 

  



4 

 

List of Tables 

Table 1: Mapping between JSON and Java Entities ..................................................................... 52 

Table 2: The results for the various evaluation categories ........................................................... 54 

 

  



5 

 

Acknowledgements 

I want to publicly thank my parents and my five sisters and one brother who helped me 

get to this level, Nikolaos Papadakis and Theocharis Kondilakis for their valuable scientific 

assistance, Ioannis Komporakis for contribution to the formatting of the text, the patience and 

interest in the hearing of my work and all research participants from the third generation of 

graduate programs M.Sc in Informatics and Multimedia. 

  



6 

 

Dedication 

To my big family, my mentor and friends, I couldn’t have done this without you. 

Thanks you for all of your support along the way.   



7 

 

Chapter 1 - Introduction 

New survey over the last years reveals the rapid rise of Blogs. Searching the internet we 

find the definition given by the Wikipedia  [1],  blog is a discussion or informational site 

published on the World Wide Web and consists of discrete entities named “posts” typically 

displayed in reverse chronological order. 

Nowadays blogs influence public opinion affect reliability and policies as the means 

news reporting. Blogs can provide important information about the "public opinion" in a wide 

variety of topics, with basic products, political opinions, and entertainment, through aggregating, 

monitoring and analysis of information [2]. The blogging started slowly but now it has quickly 

gained in popularity and now exist more than 248 million blogs (as of February 2014) [1]. 

 

 1.1 Weblogs 

The concept weblog began taking shape in the mid-90s from the community of internet 

users who maintained websites to describe an innovative practice of renewal of such sites with 

dated and short records usually contain comments and links to interesting sites something like 

the "news" sections in modern websites say. Note that the websites at that time, was quite 

difficult to be refreshed on a regular basis. The term itself was first coined on December 17, 

1997 by John Varger [3], owner of website "robot wisdom" and comes from the shortening of 

words ‘web’ and ‘log’ (term used to describe an individual record dated usually in logbooks), 

referring precisely to this practice: logging the web, ie keep diary of my navigation on the web. 

According to Blood [4], who was somehow early ethnographer of that practice, at the 

time, maintaining a weblog was tightly related to people already were maintaining sites, since 

anyway they constituted a collateral activity in already existent websites. Then as this practice 

began to become popular, in the foreground, began to appear sites created exclusively for use as 

weblogs and yet again there were people who had relevant experience and knew quite well the 

html language to the set up from the beginning to the end. In early 1999, there were only 23 

websites of this kind (exclusively weblogs), but later on their number increased rapidly. At the 

same time, as early as October 1998, with the launch of Open Diary
1
, the ancestors of social 

                                                 

1
 http://www.opendiary.com/ 



8 

 

networking sites began to appear, creating social networking platforms that made use of many 

elements of what would later they characterized the weblogs as the comments. In early 1999, 

Peter Merholz
2
 announced that from now on will they be called the wee-blogs (in a reference that 

the community ties that already had been formed) and this is how they came to be referred to as 

"blogs", their authors as "bloggers" and the practice of maintaining them as "blogging".  

 1.1.1 Definition 

The definitions and conceptualizations of blogs vary as they grow along with the 

scientific vision of the web as a whole. Below is a wide range of definitions in the theory: 

 

“The blogs are multimedia and easy to use websites that through chronological structure 

and their potential function as archive abilities, personalized and interconnected filters the web 

by creating a new online Public sphere that turned the web back into the world” [5] 

 

"Blog is a series of archived records of internet usually characterized by brief texts 

displayed in reverse chronological order and in general contain hypertext links to other websites 

the author proposes " [6] 

 

"Blog is a website which is designed to be updated with a chronologically defined linear 

fashion, just as with a personal calendar but with the difference that the content is aimed at 

public consumption. Often manageable by a special software, the blogs contain articles or 

entries are grouped mainly by the date and time published "  [7] 

 

"A blog is typically comprised of usually dated records vary in size and frequency of 

replacement, is organized in reverse dating so that readers can always see the most recent first 

publication " [8] 

 

"Blog is a calendar based on the web in which the entries are posted in reverse 

chronological order " [9] 

 

                                                 

2
 http://www.peterme.com/ 



9 

 

“Blog is a website which often contains publications refreshed with the most recent at the 

top and past appear in reverse chronological order” [10] 

 

The unique feature in which all definitions have been converging It constitutes the 

definition this work adopts namely that every blog is often renewed site with reverse 

chronologically arranged entries (ie, from the newest to the oldest). 

 1.1.2 Anatomy of a blog 

In 1999, Cam Barret wrote an article trying to describe the different elements consisting a 

weblog [5]. He recognizes five aspects that are commonly associated with weblogs: i) daily 

updates, ii) easy-to-use user interface design, iii) theme (topic), iv) user interaction and v) 

emerging community. 

A blog can be private or used within group, public or controlled accessed, but has one 

and only specific Internet address (url). Everyone is able to intervene in a greater or lesser extent 

(depending on the technical skills) in looks and functions however there are three components 

that make up a typical blog: 

Title: the name of the blog, is normally at the top of the page very often replaced or 

accompanied by a banner that is a picture or a graphical title or a combination of them. 

The main part consists of individual, labeled and dated entries (posts / articles) or posts 

posted by reverse chronological order (the most recent words appear first). Each such record may 

be multimedia that include text, video, photos, audio and of course the structural architectural 

element of the web: the hyperlink or link. 

The side column (sidebar) usually contains information about the blog in logic menu (just 

like the category “about” the typical websites), for the administrators, the history to which you 

can refer to previous records listed chronologically categorized as a links (blogroll) to other sites 

and other blogs that mainly proposed as valuable and that a degree of their choice determines 

deliberately the identity of the reference blog [6] [7]. 

 1.1.3 Common Blogging Phrases 

Like most new technologies, the blogosphere (blogging world) is full of new words, 

terms, and slang used to describe blogs and the act of blogging. To get you started on knowing 

the lingo, here are some of the many blog-related terms you'll find written online today. 



10 

 

 blog: Short for Web log, a blog is a Web page that serves as a publicly accessible 

personal journal for an individual. Typically updated daily, blogs often reflect the 

personality of the author. 

 blogger: A person who blogs. 

 blogging: The act of writing or updating your blog. 

 blogosphere: Meaning all blogs, it is an expression used to describe the 'world of blogs'. 

 blogroll: Found on blogs it is a list of links to other blogs and Web sites that the blog 

author commonly references or is affiliated with. Blogrolls help blog authors to establish 

and build upon a their blogger community. 

 blogsnob: (1) A slang term used to describe a blogger who doesn't respond to blog 

comments left by people outside his or her own circle of blogger friends. 

(2) Written as BlogSnob, a free advertising exchange for blogs and personal sites. 

 b-blog: Short for business blog, a blog used by a business to promote itself. 

 klog: Short for knowledge blog, klog is a type of blog usually used as an internal / 

Intranet blog that is not accessible to the general public and that serves as a knowledge 

management system. The term klog is also being used to describe a blog that is technical 

content oriented. 

 moblog: Acronym used to combine the terms "mobile" and "Web log". Where a Web log 

(also called a blog) is a Web page that serves as a publicly accessible personal journal for 

an individual, a moblog is a blog which has been posted to the Internet from a mobile 

device such as a mobile phone or PDA. 

 tagging: Commonly used in blogs, site authors attach keyword descriptions (called tags) 

to identify images or text within their site as a categories or topic. Web pages and blogs 

with identical tags can then be linked together allowing users to search for similar or 

related content. If the tags are made public, online pages that act as a Web-based 

bookmark service are able to index them. tags can be created using words, acronyms or 

numbers. Tags are also called tagging, blog tagging, folksonomies (short for folks and 

taxonomy), or social bookmarking. 

 Blog and Ping: An online marketing term applied to a system that utilizes blogs and pings 

(short for pingback) to deliver content and /or sites for indexing in search engines with 

the ultimate aim of profit. Also called blog ping. 



11 

 

 vlog: Short for video blog, it is the term used to describe a blog that includes or consists 

of video clips. Typically updated daily (or with regular frequency) vlogs often reflect the 

personality or cause of the author. Also called vog. 

 1.2 Semantic Web Blog Search Engines 

“The Semantic Web is the representation of data on the World Wide Web. It is a 

collaborative effort led by W3C with participation from a large number of researchers and 

industrial partners. It is based on the Resource Description Framework (RDF), which integrates a 

variety of applications using XML for syntax and URIs for naming.” – W3C Semantic Web. The 

Semantic Web is a framework that allows publishing, sharing, and reusing data and knowledge 

on the Web and across applications, enterprises, and community boundaries [14]. Currently, the 

Semantic Web, consisting of Semantic Web documents typically encoded in the languages RDF 

and OWL, is essentially a Web universe parallel to the Web of HTML documents [15]. 

Knowledge encoded in Semantic Web languages such as RDF differs from both the largely 

unstructured free text found on most Web pages and the highly structured information found in 

databases. Such semi-structured information requires using a combination of techniques for 

effective indexing and retrieval. RDF and the Web Ontology Language (OWL) which are 

ontology based procedures or representing knowledge on the Web, introduce aspects beyond 

those used in ordinary XML, allowing users to define terms (for example, classes and 

properties), express relationships among them, and assert constraints and axioms that hold for 

well-formed data. An application of the emerging Semantic Web is a Semantic Web search 

engine which searches the Semantic Web documents against a user query for accurate results. 

Our work uses RDF encoded Semantic Web documents which are searched in response to a user 

query for exact results. 

Blog search engines are search engines for the blogosphere. They can only index and 

provide search results from weblogs. There are several examples of blog search engines like 

Google Blog Search and Technorati, that make use of the traditional ways of searching and 

indexing. In our work, we focus on Semantic Web search engines that enable more efficient 

searching and aggregating entries within the blogosphere. 

Accessing the right blog entries on the Web is often a difficult task. While searching the 

Web for information, users usually face huge amounts of irrelevant results that mislead them into 



12 

 

losing the way to the initial target. According to Guha et al. [8], semantic search attempts to 

augment and improve traditional search results (based on Information Retrieval technology) by 

using data from the Semantic Web. Traditional Information Retrieval (IR) technology is based 

almost purely on the occurrence of words in documents. Search engines like Google, augment 

this in the context of the Web with information about the hyperlink structure of the Web. The 

availability of large amounts of structured, machine understandable information about a wide 

range of objects on the Semantic Web offers some opportunities for improving on traditional 

search. 

Before getting into the details of how the Semantic Web can contribute to search, we 

need to distinguish between two very different kinds of searches.  

 Navigational Searches: In this type of searches, the user enters within the appropriate 

field of the search engine a phrase or combination of characters or words which expects 

to find in the results. There is no straight, reasonable interpretation of these words as 

denoting a concept. In such cases, the user is using the search engine, to serve him as a 

navigation tool to a specific document he is interested into. In this work, we are not 

interested in this class of searches and we will not focus into them. 

 Research Searches: In many other cases, the user provides the search engine with a 

phrase which is intended to denote an object about which the user is trying to 

gather/research information. There is no particular document which the user knows about 

that s/he is trying to get to. Rather, the user is trying to locate a number of documents 

which together will give him/her the information s/he is trying to find. This is the class of 

searches we are interested in, and in our case, the documents are blog entries. 

 

In a traditional programming environment the developers would write queries based on 

knowledge of the search criteria, data structure (e.g. relational database) and the query language. 

A truly optimized semantic search however requires a search engine that can write itself queries 

to be fed back into the query engine. This means that a semantic search tool needs to both link 

meanings to search keywords and be able to efficiently retrieve information. [9]. 

Given the fact that the trend is all waiting to go on, the techniques are very important in 

order to make the collection, access and effective questioning blogs. For example there are 

several engines like Regator [10] and the IceRocket [11] trying to show and allow search in 



13 

 

different blog posts. However, although some of the above search engines provide current 

information on both popular searches and tags used to categorize posting blog, they lack a 

systematic approach to increase the available semantic data and expose as Linked Open Data. 

The purpose of the Semantic Web is to create data with meaning effectively, making it 

easier to exchange data between systems and to support the integration of information from 

various sources [12]. To this direction, and to make this possible, relationships between the data 

need to be available is the basis of Linked Data - a group practice for publishing structured data 

on the web. The contributions of this paper are in this direction and are the following: 

 A new ontology, called Blogs Ontology to represent all relevant information and 

relationships between blog posts. The ontology links existing relevant ontologies and 

expand by adding the social dimension and extra-potential properties. 

 A repository using existing Semantic Web technologies to publish all information as 

Linked Open Data, which allows for the import, aggregation and integration of new 

information. 

 Even though this repository provides native query functionality through a SPARQL 

endpoint move further to provide our own APIs that use the REST services. There are 

two versions of the API that are available, namely a) the legacy API that allows the 

exchange of JSON data and b) the linked data API using JSON-LD. 

 Besides allowing users to interact using programmatically with the repository, a nice 

graphical user interface (GUI) is provided to the owners Blog, to acquaint all relative 

information. 

 We provide a search engine allows searching the content index. The search engine is 

more advanced and beyond the simple text search in order to a) enable the faceted search 

in different categories of information b) make semantic annotations of text available for 

the classification of returned results. 

 The evaluation effected displayed the benefits of our approach and the great advantages 

gained. 

During the examination of the current literature, it is noted that Blogsearch is a unique 

platform that combines an ontology which is able to represent all the information in its field, 

with the new APIs that enable the publication of information in a central repository and provide 

an advanced engine search with a user-friendly GUI interface to enable insertion and search 



14 

 

available information. The general notion is that the individual sites will use the API to propel 

their sites to our central repository. Then they will be available as Linked Open Data ready to be 

consumed either programmatically or by Blogsearch our semantic search engine. 

 1.3 Research goals and questions 

Semantic Web and Semantic Search are two different terms that share a common word, 

‘semantic’. Fortunately, understanding semantics in relation to the web is actually quite simple, 

and for many these is already a part of your daily routine. It isn’t a new concept, just one that has 

recently gained attention. 

But, how the terms Semantic Web and Semantic Search differ and why it matters? Being 

able to understand how these terms differ is important because it can help you better understand 

how search works and how you can make sure your information is getting in front of a relevant 

audience. Below explains the differences between these two terms that are often mistakenly 

meshed into one: 

In Semantic Web, The whole idea is to teach searchers about understanding the whole 

content of data as opposed to just the structure of search engines like Google. The Semantic Web 

is a set of technologies for representing, storing, and querying information. Although these 

technologies can be used to store textual data, they typically are used to store smaller bits of data.  

Essentially, the semantic web will include things like numbers and dates in order to be 

able to answer a very complex question. Semantic search focuses on the text, but the semantic 

web focuses on pulling data from multiple sources and multiple formats. 

Another way to look at it is that the semantic web is not going to store one page as just 

one page. Instead, it works to take each small detail on the page and retrieve those small details 

off every page to find one cohesive answer. 

On the other hand, Semantic Search, offers more relevant results without limiting 

searches to just keywords (traditional Google search would be called “keyword search” as 

opposed to a semantic search). The below definition puts it into simple terms: 

“Semantic search is the process of typing something into a search engine and getting 

more results than just those that feature the exact keyword you typed into the search box.” 



15 

 

Semantic search will take into account the context and meaning of your search terms. It’s 

about understanding the assumptions that the searcher is making when typing in that search 

query. 

In this direction, this work aims to answer the following question: 

How does Semantic Web Search in blogs perform in comparison to existing conventional 

search methods? To answer this question the following sub questions need to be answered. 

1. What information should a blog entry contain in order to be easily retrieved? 

2. How to design and build a Semantic Web Search engine for blogs? 

 1.4 Structure 

This master thesis is structured in five chapters as follows:  

Chapter 2, reviews and reports the related work. 

Chapter 3, the implementation of the whole work is presented, analyzing the architecture, 

the different components of the platform and the tools and technologies used for its construction. 

Chapter 4, presents usability evaluation results and finally  

Chapter 5, concludes this work and presents directions for further work. 

  



16 

 

 

Chapter 2 - Related Work 

To model information on news, there are several approaches by this moment. In 

journalism, for example, the BBC channel has recently published a new ontology named the 

History News [13]. This ontology consists of broad categories that describe news from various 

publishers and interconnected writers, publishers, etc. Nevertheless, the ontology is not primarily 

targeted to articles blog. But then, SiOC [14] is a collective effort to interconnect online 

communities, offering a general ontology for describing the information resides in message 

boards, forums, etc. If their work is focused on creating new connections between content and 

community objects ontology does not consider the explosion of existing social media platforms 

and cannot be adequately modeled current interactions social media. There is another approach 

with similar problems is Schema.Org offers shapes for modeling Blogs and blog postings. Our 

approach is based on both Schema.Org and FOAF ontology connection and expansion, aiming to 

additional social dimension of the media and their enrichment with more categories and 

properties. 

There were many attempts to model approach for relevant information as much as there 

were attempts to provide the blog search engines but stopped like Bloglines [15], the BlogScope   

[2] and Technorati [16]. These machines have a problem that they considered the blogs as static 

web pages using simple text search (and corresponding classification systems) ignoring personal, 

time, and social dimensions of these articles. In addition to the above machines there are many 

more that exist today, such as Regator [10] and Ice-Rocket [11]. These systems can detect, 

analyze and to index the blogs. Nevertheless, the results provided are not semantically high, the 

metadata provided is very little and the statement by the lack of semantic technologies is not 

possible. 

Additionally, the increasing use of micro-blogging platforms like Twitter, has created a 

huge number of tools that try to index and to search the content which created there. 

Nevertheless, both the focus as much and methods (get smaller message size, etc.) that there are 

different and our solution can be considered supplementary. 

On the other hand, there is the Swoogle [17] which is a popular semantic search engine 

that detects Semantic Web documents and elicits metadata which found. Their work focuses on 



17 

 

give results on appropriate ontologies based on the search term, or to characterize the Semantic 

Web with the collection of interconnected relations document. Their approach is different from 

standard search engines like semantic analyze documents instead of simple web sites, displaying 

the results in RDF format. In the same way, Sindice [18] crawls and indexes the web RDF 

collection of documents and provides an API so that developers can consolidate data in 

applications of third manufacturers. Nevertheless, the approach our indexing and aggregating 

blog posts them then presented as RDF / S. Furthermore the data APIs there are all the necessary 

GUIs available for active users to insert and search for related information. 

In another paper, Page et al. [19] sought to identify if the REST and Linked Data should 

be complementary architectural style or have cross purposes. In their paper, they have concluded 

that the two have similarities and differences. This will result founding various authorities in 

order to better serve the region's development-oriented applications together. The Blogsearch 

platform concurs with these principles for reconciling RESTful API to Linked Data technologies. 

 

 2.1 Searching in Blogs 

In the last decade, the exponential rise in the number of blogs has created a need for 

effective access and retrieval services. Today, there is a broad range of search and discovery 

tools for blogs, offered by a variety of players; some focus exclusively on accessing the blogs, 

while well-established web search engines such as Google
3
, Yahoo!

4
 and Bing

5
 offer specialized 

blog services or provide, among others, results from blogs also. 

Before we analyze the implementation of the system, we have to review the modern blog 

search engines. 

 2.1.1 IceRocket 

IceRocket is an Internet search engine which specializes in real-time search. Based in 

Dallas, Texas, it launched in 2004 hoping to market itself solely through “word of mouth”. It was 

originally launched with features designed to facilitate web searches on mobile devices such as 

                                                 

3
 https://www.google.com/ 

4
 https://yahoosearch.tumblr.com/ 

5
 https://blogs.bing.com/search/ 



18 

 

PDA much easier, allowing users, for example, to email a query to the engine and receive their 

results back in response. In August 2011, it was announced that IceRocket had been acquired by 

the Meltwater Group.  

 

 

Picture 1: IceRocket Homepage 

 

IceRocket is generally for blog searches but has expanded into searching the popular 

social networking websites Twitter and Facebook as well as allowing searching of news and the 

world wide web. “Big Buzz” feature allows users to search Blogs, Tweets, news, images etc. all 

from one page. Finally, it provides an API that it licenses to social media monitoring firms as 

well as PR agencies. 

 2.1.2 Regator 

“What is Regator? A curated blog directory and search engine. It's the easiest way to 

find, share, and read quality posts from hand-selected blogs in over 500 topics.”. This is what is 

written in the top of the home page
6
 of Regator blog search engine. It was founded in 2007 by 

Scott Lockhart, Chris Turner, and Kimberly Turner and it got in production in August 2008 [20].  

It provides an API platform that allows retrieving and tracking detailed trend and analyzing text. 

 

                                                 

6
 http://regator.com/ 



19 

 

 

Picture 2: Regator homepage 

 In the homepage of Regator, the visitor is exposed to the most popular blog posts by 

default, while he is able to filter them by date (new posts), or posts that include audio or video. It 

is also feasible to filter posts by trends, choose topics such as academics, arts, business, 

entertainment, health, humor, news etc. 

 

Picture 3: Searching in Regator 

 Searching in Regator, offers search result by string matching (conventional search), while 

it also offers tools for searching in related terms, refine results by type or by date and a 

mechanism to monitor the search by sending updates around it periodically. 

 2.1.3 Twingly 

Twingly is an advanced blog search service that offers instant results in XML, history up 

to 12 months, search across one or multiple languages simultaneously, querys with a custom 

query language, and search blog posts by tag. According to their blog [21], Twingly is “a 



20 

 

leading supplier of global blog data, monitoring more than 6 million active blogs. Its vision is to 

provide solutions for media and e-Commerce companies to improve their relations with 

bloggers, to have them blog more about their content, brands and products. The solutions are 

based on their blog data mining where so far have indexed more than 85 million blogs. 

Twingly offers a traditional blog search engine
7
 that the user is able to find results that 

exist within the blogosphere. 

 

Picture 4: Twingly Search Engine 

As it is shown in Picture 5, the results of the search can be filtered by rank, date and languages. 

 

Picture 5: Twingly search results 

                                                 

7
 https://www.twingly.com/search 



21 

 

 2.1.4 Notey 

Another blog search engine is Notey. It offers search between different interests such us 

trip planning, a TV show or a favorite football team. The difference between the other blog 

search engines that act as simple RSS readers, Notey relies on word of mouth to find interesting 

blogs. It started as a traveling assistance search engine, but it proceed to streamline the process 

and expand to many other topics (around 500,000 according to their website ) and now is the 

largest blog search and discovery platform. 

 

Picture 6: Notey search results 

 In the home page, the top stories of the day are provided in the main part of the page, 

while the most popular categories are presented on the top for rapid navigation. In the page of 

each category, there are featured posts, must read stories, latest additions of the blogosphere, and 

community tools such as friends that follow the same topic. Also, the top publishers of the 

content are listed.  



22 

 

 

Picture 7: Notey category page 

  



23 

 

 

Chapter 3 - System Architecture and Use Cases 

For the design of the platform a three - tier architecture was used, shown in Figure 1.  

 

Figure 1: Platform Architecture 

  

The three layers are the following: 

 The GUI Layer: This layer consists of a search engine and a publishing client that allow 

the manipulation of the information in relevance. 

 The API Layer: Is the middle layer, which is composed of web services required to 

communicate with the Linked Data Layer and a SPARQL endpoint which provides 

access to all information. External tools may use this layer to insert, update or search for 

relevant information using the appropriate HTTP Request calls. 

 The Linked Data Layer: In the lowest layer and the backbone of the platform, the 

Virtuoso triple store is used to store and provide access to the data. Virtuoso Universal 

Server is a middleware database hybrid engine that combines functionalities of typical 

RDMS and file server facilities. In our work the open source version of virtuoso was 

used. Among others, Virtuoso and OWLIM were considered [22] for the semantic 

backbone of our platform. Finally, Virtuoso was selected since OWLIM discontinued the 

open source version (it is now called GraphDB). 



24 

 

 

We have developed an ontology called Blogs ontology to form the information related to 

the posts. Moreover, it is noted that the web services implemented by following REST [23], an 

architectural style for building large-scale distributed hypermedia systems; evolving into a model 

for the development of web applications. REST based information over to abstract entities, 

declared as "resources", to be manipulated by a single interface via a URI. The RESTful web 

services have been used because of their advantages compared to standard RPC - style services 

(SOAP, WSDL, etc.) such as scalability, flexibility and safety [24], a rather natural response to 

prohibitive complexity of development and describes these services. There is a detailed 

description of the ontology below, the GUI and the API layers. 

 3.1 Ontology 

Ontology is a typical, clear description of a domain of interest [25]. In our case we 

produced an RDF / S ontology which describes blogs and their posts by analyzing a variety of 

blog sites available on the Internet. The requirements for our ontology were to create a robust 

ontology covering the use, the users and the information available at various web blog sites. Is 

based on a detailed analysis of the available information on various blog sites and the above 

conditions, the following main categories of generic produced to store various data in the blog: 

 Blog: This class describes individual blog sites. A blog site can have a name, a 

thumbnail, and a url. In addition a blog can have many members and many 

articles. 

 Article: An article is an individual post in a blog. It has an author, comments, 

dates for the creation and the update of the content, a rating, a thumbnail, a title 

and a url. 

 Author: An author is a person who produced a blog article. The person can have a 

name, an email, a nickname, a thumbnail etc. 

 Comment: Finally, a post might have many comments, produced on specific dates 

by specific persons. 

 

Apart from the main resource types we saw above, necessary attributes introduced to 

interconnect individual classes and literals. The main categories and their properties are shown in 



25 

 

Figure 2, while the ontology can be found online. To create the ontology used the Protégé tool, 

which is free and open-source ontology editor. 

  

 

Figure 2: The core classes and properties of the BLOGS Ontology and equivalences with 

the FOAF and Schema.Org ontologies. 

The developed ontology is also connected to the FOAF and ontologies Schema.Org to extend it 

by adding more metadata about the social dimension and properties and annotations on Articles 

blog, comments and authors. In Fig. 2, the matches of the main categories of BLOGS Ontology 

with FOAF and Schema.Org ontologies are shown (equivalences shown in orange). 

 3.2 The Service Layer 

In the service layer, the legacy and the linked data APIs  have been implemented and the 

semantic annotator web service too. The APIs allow an external application to introduce new 

information to our website and to allow programmatic update and search. On the other hand, the 

semantic annotator allows searching beyond simple text matching also utilizing ontology terms. 

 3.2.1 API 

As it is presented in the work, Blogsearch API allows users to have direct access to 

semantic data to the blog via the Hyper-text Transfer Protocol (HTTP), and provides an efficient 

way for users to search for programming article information. Among other authorities is an 

important step in any RESTful design is the identification of resources enforced basis of the data 

model. The Blogsearch API is designed in a Resource-Oriented architecture and includes four 

types of resource: Blogs, Authors, Articles and Comments. As the article informs [23], each 

object must be represented, are assigned to a URIs, and should be asked in a uniform matter. In 

our work we have established a base URL for each of the types of our resources, ie http: // [...] / 



26 

 

rest / blogs, http: // [...] / rest / articles etc. followed by an identifier allowing simple and easy 

access. On our web services someone can find information online
8
. 

Broadly speaking, RESTful APIs require the use of HTTP GET method for read-only 

queries and HTTP PUT method to create new resources. Most of these actions return structured 

data representing the object or effect of an act by the object. For encoding structured data, JSON 

was selected considering that it is the current default and popular option for web service 

interfaces and maintain the analysis support in many programming languages. 

Taking into account that we handle semantic data, each request for data retrieval or 

storage should be analyzed from triple JSON format display or conversely in case of a request 

for data storage. In our project we have created mechanisms to effectively analyze the required 

data, using Jena API. Included in other features, Jena API provides methods and support the 

creation or mapping of RDF graphs to Java Objects for data processing. The Blogsearch API 

uses Jena, not only for the analysis but additionally for communicating with the Linked Data 

Layer and particular Virtuoso triple store. 

Over and above the legacy API we also create a more advanced version of the API using 

JSON-LD, instead of a simple JSON. JSON-LD [33] is a lightweight Linked Data format. It is 

easy to use for people to read and write. Based on pre-existing successful JSON format and 

provides a way to help JSON data cooperate to Web-scale. JSON-LD is an ideal data format for 

programming environments and all implemented web services can also be found online 

connection. A simple example of JSON-LD of a single article is shown in Figure 3. 

Figure 3: Example JSON-LD 

[ 
{ 

"article_date_created":"2015-01-19T12:00:00Z", 

"article_uuid":"4abad6f9-d696-4556-8ff3-cb84049d780e", 

"author":"b57e067a-59f0-4668-867f-b5b8675b0940", 

"author_nickname":"andy3", 

"article_date_updated":"2015-01-19T12:00:00Z", 

"article_thumb_url":"http:\/\/i.kinja-img.com\/gawker- 

media\/image\/upload\/s--aOU9-C5_-- 

\/c_fit,fl_progressive,q_80,w_636\/dm3vjbsclmbbywztlm2n.jpg", 
"blog_title":"LifeHacker", 

                                                 

8
 http://83.212.124.52/?p=ontology 



27 

 

"article_url":"http:\/\/lifehacker.com\/ask-an-expert-all-about- custom-

pc-building-1680403516", 

"blog":"cff98839-a7e1-4402-b4b3-fc10a8cfff92ad4fa3f-fe40-44ff- 

954d-2ee3917ac2cb", 
"@context":{ 

"article_date_created":"sw:article_date_created", 

"sw":"http:\/\/sw.owncloud.gr\/articles#", 

"article_uuid":"sw:article_uuid", 

"author":{ "@type":"@id", 

"@id":"sw:author" 

}, "author_nickname":"sw:author_nickname", 

"article_date_updated":"sw:article_date_updated", 

"article_thumb_url":"sw:article_thump_url", 

"blog_title":"sw:blog_name", 

"article_url":"sw:article_url", 

"blog":{ "@type":"@id", 

"@id":"sw:blog" 

}, "article_categories":"sw:article_categories", 

"article_title":"sw:article_title", 

"article_comments_count":"sw:has_comment", 

"article_rating":"sw:article_rating", 

"article_body":"sw:article_body", 

"article_tags":"sw:article_tags" 

}, 

"article_categories":"Technology", 

"article_title":"Ask an Expert: All About Custom PC Building", 

"article_comments_count":2, 
"article_rating":2, 

"@id":"article_4abad6f9-d696-4556-8ff3-cb84049d780e", 

"article_body":”No one takes….”, "article_tags":"Technology, 

PC" 

} 
] 

 3.2.2 Semantic Annotator 

To increase the quality of search, unstructured text documents go through a semantic lifting and 

indexing phase. During this phase, the Semantic Annotator Service called at regular intervals, 

once each week, to comment on the recently introduced documents on the internet in terms from 

the BLOGS, Schema.Org and FOAF ontologies. The entire process is asynchronous since the 

time required to comment each article can be significant. Each document is analyzed using 

mailto:@context
mailto:@type
mailto:@id
mailto:@id
mailto:@type
mailto:@id
mailto:@id
mailto:@id


28 

 

Natural Language Processing (NLP) algorithms for tokenization, lemmatization and part of 

speech. [26] The Semantic NLP service is based on the XMedLan tool developed by XEROX 

company [27] and fit and exports ontology terms, concepts and semantic types of the 

aforementioned ontologies. All the extracted terms are stored in Virtuoso Triple Store and they 

are used to match documents to queries. To attain the purposes of this match the commentator is 

used at the runtime, and comment input queries in terms of ontology and then the cosine 

similarity of these comments with the article annotations is calculated as we will be seen below. 

 

 3.3 The Graphical User Interface Layer 

The User Interface is composed by two separate application. First, the Search Engine 

BLOGS and second, the Publishing Wizard. Both of the above applications have been developed 

using of the Java language and are based on the API developed. 

 3.3.1 The BlogSearch Engine 

The traditional search engines usually query keywords based on the webpages where the 

search term appears to have detected and indexed in accordance with the ranking. There are 

however, semantic search engines looking for ontological concepts transporting the meaning of 

the term. Until now, many semantic search engines have been created [28] [29] [30], but then 

either focus on the use of annotations to find the documents, in order to formulate queries with 

regard ontologies, or the lack of a user friendly interface. 

 Οur search engine: 

a) provides a nice, useful interface GUI and allows faceted search using the main 

categories of ontology (articles, blogs, authors) and their properties (anything, post’s title, text, 

keyword, blog’s title, author’s nickname, date, rating) 

b) is based potentials questions formed by user interaction generated by the system; 

c) exploits semantic annotations to go beyond the simple string matching 

d) an advanced level algorithm used to rank results 

Figure 4: The BlogSearch engine 



29 

 

 

Especially, a user of the platform can search for a term in whole ontology or execute a 

progressive, for example, search in a specific domain of the ontology. The user has the 

possibility of searching for articles, sites or authors using a variety set of properties. 

Additionally, the results can be ordered in many different ways. A beta version of our search 

engine is available online
9
. The landing page of our search engine is shown in Figure 4, and a 

screenshot of reading an article shown in Figure 5. Users may like the articles, to reflect, to read 

or to comment on them in the search engine conservation, however connections to their original 

source. Moreover, articles can be shared using the social networks like Facebook, Twitter, 

LinkedIn, and Google+ or sent directly from our website. The content comes from Virtuoso 

triple store using appropriately the available APIs. 

 

Figure 5: Reading an Article 

                                                 

9
 http://83.212.124.52/ 



30 

 

 

Our search engine goes beyond from simply matching string, to matching ontology annotations. 

The algorithm used for semantic search, extensively used in information retrieval and is an 

extension of the vector space model [31]. In sum, pursuantly to this model, two letters d and q 

queries are represented as vectors 

di = (w1,d, w2,d, …, wn,d) 

q = (w1,q, w2,q, …, wt,q) 

 Each wj,i is a weight for the annotation j in article i, and reflects the importance of that term. 

Those weights are computed on the basis of the frequency of the terms in the article, the query or 

the collection and are calculated based on the annotations produced by the Semantic Annotator. 

At retrieval time, the documents are ranked by the cosine of the angle between the document 

vectors and the query vector. 

The vector of the articles is computed based on the following metric wt,d = idft * tft,d  where tft,d  is 

the frequency of the term in the specific articles d and idft  is the inverse document frequency of 

the term t in all documents in the collection. All those weights are computed before and stored in 

our database to avoid the costly recalculation at runtime. The approach has already been proven 



31 

 

to have fertile results in the medical domain [32][39]. The novelty of our search engine lies in the 

fact that since the data are linked, using the appropriate SPARQL queries, complex queries over 

the social graph and the time dimension can be exploited (e.g. complex queries such as, give all 

articles published by the coauthors of “Jim Morison” published during November and December 

2015 can be answered). Moreover, we uniquely combine text search with search based on 

ontology annotations for ranking the results. 

 3.3.2 The Publishing Wizard 

Except to searching for information in the triple store an additional web application is 

provided to manually register articles in our data repository. The application is created as a 

wizard to enable the uninterrupted and easy insertion of relevant information. A screenshot is 

shown in Figure 6Figure 6 and is also available online
10

. 

 

Figure 6: The Publishing Wizard 

  

                                                 

10
 http://83.212.124.52/publish 



32 

 

Chapter 4 - Implementation and Tools 

For the purposes of this work, a Blog’s RDF Ontology was implemented, adopting a 

client-server architecture. The client-server model is adopted in order to enable clients to 

ubiquitously access (send and receive) to the ontology’s database stored to a Web application 

server.  

In this direction, the “OpenLink Virtuoso” was used, an Open-Source SQL-ORDBMS 

and Web Application Server hybrid that provides SQL, XML, and RDF data management in a 

single multithreaded server process. Triple Store access is available via SPARQL, SIMILE 

Semantic Bank API, ODBC, GRDDL, JDBC, ADO.NET, XMLA, WebDAV, and Virtuoso/PL 

(SQL Stored Procedure Language). 

Above this, a RESTful Web service is made to provide the appropriate intercommunicate 

between the client and Virtuoso’s RDF Ontology. The web service accepts HTTP PUT requests 

sent by the client from the available web form and forwards them to ontology’s database. It also 

forwards Virtuoso’s replies to the client’s HTTP GET requests. SPARQL queries are used in 

both, send and receive transactions, between web service and Virtuoso (Figure 7). 

Figure 7: Web Service Architecture 

 

 4.1 Ontology Schema 

An ontology design pattern is a reusable solution to a recurring ontology modeling 

problem. Our problem was to identify and describe the elements of a blog that is posted in the 

Internet. So we created and fully described the ontologies that a blog can be described when it is 

posted in the Internet. The ontologies were built incrementally according to the current state of 



33 

 

the blogs posted in the Internet. Based on the analysis of the requirements, we decided to use the 

following classes to store the persistent data for the blog elements. We used Protégé to create the 

model of the blog.   

The following diagram (created by smart draw) shows the classes and the object and data 

properties of each one. 

 

 4.1.1 Classes 

Below are the classes used to describe the blog. 

article 

The article ontology was used to describe all the articles of a blog. 

author 

The author ontology was used to describe all the authors of the articles of a blog, or the 

authors of a comment or the authors that reblogged an article of a blog. 

blog  

The blog ontology was used to describe the blog itself with all of its characteristics. 

comment  

The comment ontology was used to describe the comments that are been made in an 

article of a blog. The classes can be seen in Figure 8. 



34 

 

Figure 8: Classes of the Ontology 

 

 4.1.2 Object Properties 

The following object properties were used to describe the relations between the classes. 

comment_of 

This property describes the relation “A comment has been made on an article”. 

author_reblogged 

This property describes the relation “An author reblogged an article”. 

has_article 

This property describes the relation “A blog has an article”. 

has_author 

This property describes the relation “An article has an author”. 

has_comment 

This property describes the relation “An article has comment”. 

has_member 

This property describes the relation “A blog has an author”. 

has_publish 

This property describes the relation “An author has published an article”. 

member_of 

This property describes the relation “An author has a blog”. 



35 

 

published_on 

This property describes the relation “An article has been published in a blog”. 

reblogged_by 

This property describes the relation “An article reblogged by an author”. 

The object properties can be seen in Figure 9 as shown in Protégé. 

Figure 9: Object Properties 

 

 4.1.3 Data Properties 

Data Properties 

 

The following data properties were used to describe the relations between instances of the 

classes of a blog and the Xml schema datatypes. 

article_body 

The datatype of the article body text was declared as Literal. 

article_categories 

The datatype of the name of the article category text was declared as string. 

article_date_created 

The datatype of the date the article created was declared as dateTime. 

article_date_updated 

The datatype of the date the article updated was declared as dateTime. 

article_rating 

The datatype of the rating of the article was declared as integer. 

article_tags 



36 

 

The datatype of the tags of the article was declared as string. 

article_thump_url 

The datatype of the thumbnail Url of the article was declared as anyURI. 

article_title 

The datatype of the title of the article was declared as string. 

article_url 

The datatype of the article Url was declared as anyURI. 

article_uuid 

The datatype of the article unique ID was declared as string. 

author_email 

The datatype of the author email was declared as Literal. 

author_fullname 

The datatype of the author fullname was declared as string. 

author_nickname 

The datatype of the author nickname was declared as string. 

author_thump_url 

The datatype of the author thumbnail Url was declared as anyURI. 

author_uuid 

The datatype of the author unique ID was declared as string. 

blog_name 

The datatype of the blog name was declared as string. 

blog_thump_url 

The datatype of the blog thumbnail Url was declared as anyURI. 

blog_url 

The datatype of the blog Url was declared as anyURI. 

blog_uuid 

The datatype of the blog unique ID was declared as string. 

comment_body 

The datatype of the comment text body was declared as Literal. 

comment_by 

The datatype of the comment author was declared as string. 



37 

 

comment_date_created 

The datatype of the date the comment created was declared as dateTime. 

comment_uuid 

The datatype of the comment unique ID was declared as string. 

 

The data properties can be seen in Figure 10 as shown in Protégé. 

Figure 10: Data Properties 

 

This work was conducted using the Protégé resource, which is supported by grant 

GM10331601 from the National Institute of General Medical Sciences of the United States 

National Institutes of Health. 

 4.2 OpenLink Virtuoso  

Virtuoso Universal Server is a middleware and database engine hybrid that combines the 

functionality of a traditional RDBMS, ORDBMS, virtual database, RDF, XML, free-text, web 

application server and file server functionality in a single system. Rather than have dedicated 



38 

 

servers for each of the aforementioned functionality realms, Virtuoso is a "universal server"; it 

enables a single multithreaded server process that implements multiple protocols. The open 

source edition of Virtuoso Universal Server is also known as OpenLink Virtuoso. The software 

has been developed by OpenLink Software with Kingsley Uyi Idehen and Orri Erling as the 

chief software architects [40] 

 4.3 Web Services 

Web services provide a standard means of interoperating between different software 

applications, running on a variety of platforms and/or frameworks.  A Web service is a software 

system designed to support interoperable machine-to-machine interaction over a network. It has 

an interface described in a machine-processable format (specifically WSDL). Other systems 

interact with the Web service in a manner prescribed by its description using SOAP messages, 

typically conveyed using HTTP with an XML serialization in conjunction with other Web-

related standards. Two major classes of Web services can be identified: 

 R.E.S.T.-compliant Web services, in which the primary purpose of the service is to 

manipulate XML representations of Web resources using a uniform set of "stateless" 

operations; and  

 Arbitrary Web services, in which the service may expose an arbitrary set of operations.   

Both classes of Web services use URIs to identify resources and use Web protocols (such 

as HTTP and SOAP 1.2) and XML data formats for messaging [41]. 

 4.4 REST Architecture 

A Web API is a development of Web services emphasizing into simpler representational 

state transfer (R.E.S.T.) based communications.  R.E.S.T.ful APIs do not require XML-based 

Web service protocols, like SOAP and WSDL, to support their interfaces. Thus, they are more 

suitable for the Web. Representational State Transfer (REST) is an architectural style that 

specifies constraints, such as the uniform interface, that if applied to a web service induce 

desirable properties, such as performance, scalability, and modifiability, making them more 

efficient for the Web. In the REST architectural style data and functionality are considered 

resources are accessed using Uniform Resource Identifiers (URIs, typically links on the Web). 

The resources are acted upon by using a set of simple, well-defined operations. The REST 

architectural style constrains an architecture to a client/server architecture and is designed to use 



39 

 

a stateless communication protocol, typically HTTP. In the REST architecture style, clients and 

servers exchange representations of resources by using a standardized interface and protocol 

[42]. The following principles encourage RESTful applications to be simple, lightweight, and 

fast: 

Resource identification through URI: A RESTful web service exposes a set of 

resources that identify the targets of the interaction with its clients. Resources are identified by 

URIs, which provide a global addressing space for resource and service discovery. 

Uniform interface: Resources are manipulated using a fixed set of four create, read, 

update, delete operations: PUT, GET, POST, and DELETE. PUT creates a new resource, which 

can be then deleted by using DELETE. GET retrieves the current state of a resource in some 

representation. POST transfers a new state onto a resource. 

Self-descriptive messages: Resources are decoupled from their representation so that 

their content can be accessed in a variety of formats, such as HTML, XML, plain text, PDF, 

JPEG, JSON, and others. Metadata about the resource is available and used, for example, to 

control caching, detect transmission errors, negotiate the appropriate representation format, and 

perform authentication or access control. 

Stateful interactions through hyperlinks: Every interaction with a resource is stateless; 

that is, request messages are self-contained. Stateful interactions are based on the concept of 

explicit state transfer. Several techniques exist to exchange state, such as URI rewriting, cookies, 

and hidden form fields. State can be embedded in response messages to point to valid future 

states of the interaction. 

 4.5 JSON 

The JS.O.N. format (JavaScript Object Notation) is a lightweight open-standard data-

interchange format. It is easy for humans to read and write. It is easy for machines to parse and 

generate. It is based on a subset of the JavaScript Programming Language, Standard ECMA-262 

3rd Edition - December 1999. JSON is a text format that is completely language independent but 

uses conventions that are familiar to programmers of the C-family of languages, including C, 

C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal 

data-interchange language. JSON is built on two structures: 



40 

 

 A collection of name/value pairs. In various languages, this is realized as an object, 

record, struct, dictionary, hash table, keyed list, or associative array. 

 An ordered list of values. In most languages, this is realized as an array, vector, list, or 

sequence. 

These are universal data structures. Virtually all modern programming languages support 

them in one form or another. It makes sense that a data format that is interchangeable with 

programming languages also be based on these structures [42]. 

Figure 11: Structures of a Value at JSON Format 

 

In JSON, they take on these forms: 

An object is an unordered set of name/value pairs. An object begins with { (left brace) 

and ends with } (right brace). Each name is followed by : (colon) and the name/value pairs are 

separated by , (comma). An array is an ordered collection of values. An array begins with [ (left 

bracket) and ends with ] (right bracket). Values are separated by , (comma). A value can be a 

string in double quotes, or a number, or true or false or null, or an object or an array. These 

structures can be nested. A string is a sequence of zero or more Unicode characters, wrapped in 

double quotes, using backslash escapes. A character is represented as a single character string. A 

string is very much like a C or Java string. A number is very much like a C or Java number, 

except that the octal and hexadecimal formats are not used [42]. 



41 

 

Figure 12: JSON Serialization between Server and Browser 

 

 4.6 Virtuoso Database 

 4.6.1 Core database engine 

Virtuoso provides an extended object-relational model, which combines the flexibility of 

relational access with inheritance, run time data typing, late binding, and identity based access. 

Virtuoso Universal Server database includes physical file and in memory storage and operating 

system processes that interact with the storage. There is one main process, which has listeners on 

a specified port for HTTP, SOAP, and other protocols. 

 4.6.2 Architecture 

Virtuoso is designed to take advantage of operating system threading support and 

multiple CPUs. It consists of a single process with an adjustable pool of threads shared between 

clients. Multiple threads may work on a single index tree with minimal interference with each 

other. One cache of database pages is shared among all threads and old dirty pages are written 

back to disk as a background process. 

The database has at all times a clean checkpoint state and a delta of committed or 

uncommitted changes to this checkpointed state. This makes it possible to do a clean backup of 

the checkpoint state while transactions proceed on the commit state. 

A transaction log file records all transactions since the last checkpoint. Transaction log 

files may be preserved and archived for an indefinite time, providing a full, recoverable history 

of the database. 

A single set of files is used for storing all tables. A separate set of files is used for all 

temporary data. The maximum size of a file set is 32 terabytes, for 4G × 8K pages. 



42 

 

 4.6.3 Locking 

Virtuoso provides dynamic locking, starting with row level locks and escalating to page 

level locks when a cursor holds a large percentage of a page's rows or when it has a history of 

locking entire pages. Lock escalation only happens when no other transactions hold locks on the 

same page, hence it never deadlocks. Virtuoso SQL provides means for exclusive read and for 

setting transaction isolation. 

Transactions 

All four levels of isolation are supported: Dirty read, read committed, repeatable read and 

serializable. The level of isolation may be specified operation by operation within a single 

transaction. Virtuoso can also act as a resource manager and/or transaction coordinator under 

Microsoft's Distributed Transaction Coordinator (MS DTC) or the XA standard. 

 4.6.4 Data integrity 

Virtuoso ORDBMS database supports entity integrity and referential integrity. Virtuoso 

ensures that relationships between records in related tables are valid by enforcing referential 

integrity. Integrity constraints include: 

NOT NULL - Within the definition of a table, Virtuoso allows data to contain a NULL 

value. This NULL value is not really a value at all and is considered an absence of value. The 

constraint of NOT NULL required a value to be assigned to the field. 

Unique Key - Uniqueness for a column or set of columns means that the values in that 

column or set of columns must be different from all other columns or set of columns in that 

table. A unique key may contain NULL values since they are by definition a unique non-valued 

value. 

Primary Key - Primary key are much like unique keys except that they are designed to 

uniquely identify a row in a table. They can consist of a single column or multiple columns. The 

primary key cannot contain a NULL value. 

CHECK Constraint - Virtuoso provides on a column an integrity constraint that requires 

certain conditions to be met before the data is inserted or modified. If the checks are not satisfied 

then the transaction cannot be completed. 



43 

 

 4.6.5 Data dictionary 

Virtuoso stores all its information about all user objects in the database in the system 

catalog tables designated by db.dba*. 

 4.7 SPARQL 

SPARQL is an RDF query language, that is, a semantic query language for databases, 

able to retrieve and manipulate data stored in Resource Description Framework format. It was 

made a standard by the RDF Data Access Working Group (DAWG) of the World Wide Web 

Consortium, and is recognized as one of the key technologies of the semantic web. SPARQL 

allows for a query to consist of triple patterns, conjunctions, disjunctions, and optional patterns. 

Implementations for multiple programming languages exist. There exist tools that allow one to 

connect and semi-automatically construct a SPARQL query for a SPARQL endpoint, for 

example ViziQuer. In addition, there exist tools that translate SPARQL queries to other query 

languages, for example to SQL and to XQuery. 

 4.7.1 SPARQL Advantages 

SPARQL allows users to write queries against data that can loosely be called "key-value" 

data or, more specifically, data that follows the RDF specification of the W3C. The entire 

database is thus a set of "subject-predicate-object" triples. This is analogous to some NoSQL 

databases' usage of the term "document-key-value", such as MongoDB. 

RDF data can also be considered in SQL relational database terms as a table with three 

columns - the subject column, the predicate column and the object column. Unlike relational 

databases, the object column is heterogeneous, the per-cell data type is usually implied (or 

specified in the ontology) by the predicate value. Alternately, again comparing to SQL relational, 

all of the triples for a given subject could be represented as a row, with the subject being the 

primary key and each possible predicate being a column and the object is the value in the cell. 

However, SPARQL/RDF becomes easier and more powerful for columns that could contain 

multiple values (like "children"), and where the column itself could be a joinable variable in the 

query, rather than directly specified. 

SPARQL thus provides a full set of analytic query operations such as JOIN, SORT, 

AGGREGATE for data whose schema is intrinsically part of the data rather than requiring a 

separate schema definition. Schema information (the ontology) is often provided externally, 



44 

 

though, to allow different datasets to be joined in an unambiguous manner. In addition, SPARQL 

provides specific graph traversal syntax for data that can be thought of as a graph. 

 4.7.2 SPARQL Query Forms 

In the case of queries that read data from the database, the SPARQL language specifies 

four different query variations for different purposes. 

SELECT query: Used to extract raw values from a SPARQL endpoint, the results are 

returned in a table format. 

CONSTRUCT query: Used to extract information from the SPARQL endpoint and 

transform the results into valid RDF. 

ASK query: Use to provide a simple True/False result for a query on a SPARQL 

endpoint. 

DESCRIBE query: Used to extract an RDF graph from the SPARQL endpoint, the 

contents of which is left to the endpoint to decide based on what the maintainer deems as useful 

information. 

Each of these query forms takes a WHERE block to restrict the query although in the 

case of the DESCRIBE query the WHERE is optional. SPARQL 1.1 specifies a language for 

updating the database with several new query forms [43]. 

 4.8 Virtuoso Setup 

Another important key for our infrastructure is the host computer. In order for full 24/7 

availability, the implementation must be hosted in a server always-on and connected. Thus, we 

chose the IaaS (Infrastracture as a Service) Cloud Service solution, requesting a Virtual Machine 

from Okeanos, a Cloud Service Provider designed and developed by the Greek Research and 

Technology Network (GRNET). A Virtual Machine from Cyclades, Okeanos’ Compute and 

Network Service is used as the server for our infrastructure. 

We use OpenLink Virtuoso open source v.6.1 edition. Before we start the installation we 

set the appropriate environment variables. We determine the root location for the Virtuoso 

installation. We put the zip folder into the C:/Program Files (x86) directory. We start the System 

control panel (right-click My Computer and select Properties, or drill down through the Start 

menu -> Control Panels -> Administrative Tools -> System). 

Then we followed the steps below: 



45 

 

1. Click Advanced -> Environment Variables, create a new system environment variable 

called VIRTUOSO_HOME, with this path C:/Program Files/OpenLink 

Software/VOS6/virtuoso-opensource/) for its value. 

2. Locate the PATH system environment variable, click to EDIT it. 

3. Add the string below to the end of the existing PATH value.  

We have to be careful not overwrite the existing PATH value! Doing so will disrupt all 

use of our Windows environment.  

;%VIRTUOSO_HOME%/bin;%VIRTUOSO_HOME%/lib 

 

After that, click OK or Exit buttons until we have fully exited the System control panel. 

Now we are ready to unzip the file to our chosen location. This will create a directory virtuoso-

open-source, containing 6 subfolders: 

Figure 13: The six subfolders of Virtuoso 

 

The current Windows binary package is missing a php.ini file, required for PHP runtime 

hosting support. So, we download a copy of this file and manually place it in the database 

directory. 

The default administrator username and password are both dba. By default, the Virtuoso 

server will listen for HTTP connections at TCP port 8890, and for SQL data access (via iSQL, 

ODBC, JDBC, OLE DB, ADO.NET, etc.) at TCP port 1111. These ports may be changed by 

editing the virtuoso.ini file. 

 4.8.1 Ontology Import 

After having virtuoso running on a public server, the next step is to upload the ontology, we have 

created in Protégé, in order to be able to insert, update or query for data via Jena. In our 

workaround, the usage of a text based application named ‘curl’ is necessary, so we simply had to 



46 

 

download and install it, as it is not a windows default. Now in windows command prompt we 

uploaded the ontology by simple typing:  

83.212.124.52:80 

Figure 14: Ontology's import main command 

 

 

 4.9 Web Service Implementation 

The project was developed completely using NetBeans IDE. The IDE supports rapid 

development of RESTful web services using JSR 311 - Java API for RESTful Web Services 

(JAX-RS) and Jersey, the reference implementation for JAX-RS. 

In addition to building RESTful web services, the IDE also supports testing, building 

client applications that access RESTful web services, and generating code for invoking web 

services (both RESTful and SOAP-based.) 

Here is the list of RESTful features provided by the IDE: 

a. Rapid creation of RESTful web services from JPA entity classes and patterns. 

b. Rapid code generation for invoking web services such as Google Map, Yahoo News 

Search, and StrikeIron web services by drag-and-dropping components from the Web 

Services manager in the Services window. 

c. Generation of RESTful Java Clients for services registered in the Web Services manager. 

d. Test client generation for testing RESTful web services. 

e. Logical view for easy navigation of RESTful web service implementation classes in the 

project. 

 4.9.1 Structure 

The most important step in any RESTful design is the identification of the resources that 

should be made. Our Web Service is a Resource-Oriented RESTful service revolving four 

resources: Blogs, Authors, Articles, Comments. In order to be available for HTTP interactions, 

each resource is identified and assigned to a URI, such as http://.../SemanticWS-1.4/rest/blogs, 

http://.../SemanticWS-1.4/rest/authors etc.  



47 

 

In addition, we introduced specific methods for insert and retrieve interactions between 

the web service and the resource. In both cases, resources are accessed using actual HTTP GET 

and PUT requests. Some of these methods can be used from different resources, enabling 

interoperate capabilities. Recourses and methods introduced analytically in API Reference 

section. 

Figure 15: Structure of the Web Service 

 



48 

 

Figure 16: Class Diagram 

 

 4.10 Jena API 

For the implementation we used the Apache Jena RDF API and the connection was with 

the Virtuoso Jena Provider. Jena is an open source Semantic Web framework for Java which can 

be used to create and manipulate RDF graphs (including data extraction and writing to RDF 

graphs)The graphs are represented as an abstract model which denotes an RDF graph, so called 

because it contains a collection of RDF nodes, attached to each other by labeled relations. A 

model can be sourced with data from files, databases, URIs or a combination of these. Jena has 

methods for reading and writing RDF as XML. These can be used to save an RDF model to a file 

and later read it back in again. For linking Jena with Virtuoso we used the Virtuoso Jena 

Provider. The Virtuoso Jena RDF Data Provider is a fully operational Native Graph Model 

Storage Provider for the Jena Framework, which enables Semantic Web applications written 



49 

 

using the Jena RDF Frameworks to directly query the Virtuoso RDF Quad Store. The way of 

how this tool works is shown in the next figure. 

Figure 17: The Way Jena Works 

 

Each arc in an RDF Model is called a statement. Each statement asserts a fact about a 

resource. A statement has three parts (the subject, the predicate and  the object ).  A statement is 

sometimes called a triple, because of its three parts. An RDF Model is represented as a set of 

statements. The Jena model interface defines a listStatements() method which returns an 

StmtIterator, a subtype of Java's Iterator over all the statements in a Model. StmtIterator has a 

method nextStatement() which returns the next statement from the iterator (the same one that 

next() would deliver, already cast to Statement). The Statement interface provides accessor 

methods to the subject, predicate and object of a statement. Since the object of a statement can be 

either a resource or a literal, the getObject() method returns an object typed as RDFNode, which 

is a common superclass of both Resource and Literal. The underlying object is of the appropriate 

type, so the code uses instance of to determine which and processes it accordingly. 



50 

 

To use Virtuoso-specific SPARQL extensions, queries must bypass the Jena/ARQ parser 

and go straight to the Virtuoso server. This is done by using the 

VirtuosoQueryExecutionFactory.create() method, which always invokes the Jena/ARQ parser, 

which in turn rejects any Virtuoso-specific extensions. Some of the important methods used in 

our project mainly for the database communication were: get(gets metadata by ID), insert(inserts 

a new file), patch(updates file metadata), update(updates content as well as file 

metadata),copy(copies files),delete(deletes files). A big amount of these methods could be used 

by case not only for files and metadata but for parent-children relationships, permissions, 

revision, apps, comments and replies, real-life factors and properties for a bunch of other 

situation as well, along with other important methods. 

Some examples of the executed code are presented below: 



51 

 

 GET Handling 

VirtGraph set = new VirtGraph(....); 

String query = "[Select query]"; 

Query sparql = QueryFactory.create(query); 

 

VirtuosoQueryExecution vqe = VirtuosoQueryExecutionFactory.create(sparql, set); 

ResultSet results = vqe.execSelect(); 

 

while (results.hasNext()) { 

 

    QuerySolution result = results.nextSolution(); 

    RDFNode graph = result.get("graph"); 

    RDFNode comment_uuid = result.get("comment_uuid"); 

    RDFNode comment_by = result.get("comment_by"); 

    RDFNode comment_date_created = result.get("comment_date_created"); 

    RDFNode comment_body = result.get("comment_body"); 

 

    ... 

    ** Json Handling ** 

    .... 

 

} 

 

Figure 18: GET Request Lifecycle 

 

 

 

 



52 

 

 

Figure 19: PUT Request Lifecycle 

 

 4.11 JSON Parsing 

For our project we used the JSON.simple toolkit for Java. JSON.simple allows us to 

encode and decode JSON text and it is fully compatible with JSON specifications. It is flexible, 

easy to use, provides encode, decode/parse and escape JSON text functionalities, supports 

streaming output of JSON text and it is not dependent on external libraries. The mapping 

between JSON and Java entities is described in the following table: 

Table 1: Mapping between JSON and Java Entities 

JSON JAVA 

String java.lang.String 

Number java.lang.Number 

true|false java.lang.Boolean 

 PUT Handling 

VirtGraph set = new VirtGraph(...); 

 

String query = "[Insert query]"; 

System.out.println(query); 

VirtuosoUpdateRequest req = VirtuosoUpdateFactory.create(query, set); 

req.exec(); 



53 

 

Null null 

Array java.util.List 

Object java.util.Map 

 

  



54 

 

Chapter 5 - Evaluation 

Evaluating and validating software product, play important role to both its possession and 

development. The amount of importance of the several characteristics of software quality is 

strictly tied to the intended usage and the objectives of the system. In order to appraisal the 

quality issues during all the life cycle of the software, we followed standardized software 

development practices to reduce the likelihood of defects and the cost for both users and 

developers. For the assurance of quality, norms defined from the International Organization for 

Standardization (ISO) such as the Software Product Quality Requirements and evaluation [44] 

(SQUARE) has been used as a reference model. To this direction, the applicable functional and 

non-functional requirements according to ISO/IEC 25023 [45] had been defined in the early 

stages of the project and monitored during the whole software life-cycle. 

For the evaluation, the quality attributes from the item quality model of the ISO/IEC 

25000 arrangement alongside the System Usability Scale (SUS) for worldwide evaluation of 

frameworks convenience were utilized. At the assessment stage 30 understudies from the 

postgraduate project of the Department of Informatics Engineering, Technological Educational 

Institute of Crete were utilized. Having such a gathering of evaluators, the assessment questions 

must be basic, precise, straightforward, non-tedious and without loss of usefulness/quality. Thus 

the significant sub-attributes of programming quality measures from ISO/IEC 25000 

arrangement have been deciphered into straightforward inquiries in regular dialect. The 

assessment type of the web crawler was a rundown of such inquiries where the evaluator needed 

to reply with a level of fulfillment with Likert scale [46]. The structure can be found in the 

Appendix. We likewise utilized the System Usability Scale (SUS) [47] for worldwide appraisal 

of frameworks ease of use. 

 

Table 2: The results for the various evaluation categories 

F
u

n
ct

io
n

a
li

ty
 

Suitability 3,57 / 5 

3,62 Accurateness 3,43 / 5 

Compliance 3,86 / 5 

  

E
ff

ic
ie

n
cy

 Time Behavior 4,36 / 5 
4 

Resource utilization 3,64 / 5 



55 

 

  

 

 
C

o
m

p

a
ti

b
il

it

y
 Co-existence 3,57 / 5   

Interoperability 3,21 / 5 3,39 

  

U
sa

b
il

it
y

 Understandability 3,71 / 5 

3,98 
Learnability 4,14 / 5 

Operability 3,86 / 5 

Attractiveness 4,21 / 5 

  

R
el

ia
b

il
it

y
 

Maturity 3,36 / 5 

3,26 Fault tolerance 3,07 / 5 

Recoverability 3,36 / 5 

  

  
  

M
a

in
ta

in
a

b
il

it
y
 Analyzability 4 / 5 

4,05 
Changeability 4,14 / 5 

Stability 4 / 5 

Testability 4,07 / 5 

  

P
o

rt
a

b
il

it
y

 Adaptability 3,86 / 5 

 

3,8 

 

Installability 3,71 / 5 

Conformance 3,93 / 5 

Replaceability 3,71 / 5 

  

Q
u

a
li

ty
 o

f 
u

se
 

Effectiveness 3,43 / 5 

3,55 
Efficiency 3,5 / 5 

Satisfaction 3,57 / 5 

Health and safety risk 3,71 / 5 

SUS 71,5 / 100 

 

The results are shown in Table 2. Values more than three represent to abnormal state of 

the particular software characteristics while values somewhere around 2.5 and 3 are in generally 

safe. Values beneath 2.5 are viewed as high risk. For our situation, all outcomes were evaluated 

with a normal above 3 demonstrating the high quality of the product. The most reduced normal 

score was for the unwavering quality classification (3,26/5) since now and again, blunders show 

up without an appropriate clarification. Also, the viability class has the most astounding normal 

score (4,05) since it is entirely insignificant to redesign an API call, a SPARQL inquiry or a call 

from the interface. 



56 

 

The SUS usability score was 71 on a scale of 0 to 100. In the literature, The average SUS 

score been measured by Sauro et al. [48] as the 62.1 but as a standard that can be characterized 

as “gold” is often used the 68. A SUS score above 68 would be considered above average and 

anything below 68 is below average. This indicating that the Blogs Search engine reaches an 

acceptable level, but that there is still lots of space for improvement in the usability. 

At last, the evaluation brought about important feedback on the present state and in clear 

headings for the future development and deployment. For instance, some minor issues were 

distinguished in the route on the indexed lists and on the requesting of them which were 

rectified. 

  



57 

 

 

Chapter 6 - Conclusion 

Concluding, in this work, it is presented a novel platform allowing registering and 

searching blog articles as Linked Open Data. Besides the SPARQL endpoint, the platform also 

provides APIs which expose the information in public and allow external applications to perform 

CRUD operations on it. All information is represented using an RDF/S ontology for blogs. 

As future work, the creation of a crawler, which is able to automatically insert blog sites 

and articles is being considered. Additionally, within our future plans is to annotate the blog text 

using terms from a refined version of the ontology; resulting in identifying the content of the 

article based on the whole published text available. Blogs will become increasingly popular in 

the following years and feature interesting challenges remained to be investigated in the near 

future. 

  



58 

 

References 

 

[1]  "Wikipedia Article about Blog," [Online]. Available: http://en.wikipedia.org/wiki/Blog. 

[Accessed June 2016]. 

[2]  N. Bansal and N. Koudas, "BlogScope: a system for online analysis of high volume text 

streams," in VLDB '07 Proceedings of the 33rd international conference on Very large data 

bases, Vienna, Austria, 2007.  

[3]  R. Blood, "How blogging software reshapes the online community," Communications of the 

ACM - The Blogosphere, vol. 12, no. 47, pp. 53-55, December 2004.  

[4]  R. Blood, "Weblogs: A history and perspective.," Rebecca's Pocket, 7 September 2000. 

[Online]. Available: http://www.rebeccablood.net/essays/weblog_history.html. [Accessed 

July 2016]. 

[5]  J. Rodzvilla and R. Blood, We've Got Blog: How Weblogs Are Changing Our Culture, 

Basic Books, 2002.  

[6]  B. A. Nardi, D. J. Schiano and M. Gumbrecht, "Blogging as social activity, or, would you 

let 900 million people read your diary?," in CSCW '04 Proceedings of the 2004 ACM 

conference on Computer supported cooperative work, New York, USA, 2004.  

[7]  T. Stauffer, Blog On: Building Online Communities with Web Logs, New York: McGraw-

Hill, 2002.  

[8]  P. Bausch, M. Haughey and M. Hourihan, We Blog: Publishing Online with Weblogs, New 

York: Wiley, 2002.  

[9]  S. C. Herring, I. Kouper, J. C. Paolillo, L. A. Scheidt, M. Tyworth, P. Welsch, E. Wright 

and N. Yu, "Conversations in the Blogosphere: An Analysis "From the Bottom Up"," in 

Proceedings of the 38th Annual Hawaii International Conference on System Sciences, 2005.  

[10]  M. Brandy, "Blogging: personal participation in public knowledge-building on the web," in 

Participating in the knowledge society, Palgrave Macmillan UK, Springer, 2005, pp. 212-

228. 

[11]  C. Barrett, "Anatomy of a Weblog," camworld, 26 January 1999. [Online]. Available: 



59 

 

http://camworld.org/1999/01/26/anatomy-of-a-weblog-2/. [Accessed June 2016]. 

[12]  C. Marlow, "Audience, structure and authority in the weblog community.," in International 

Communication Association Conference, 2007.  

[13]  D. Drezner and H. Farrell, "The power and politics of blogs," in 100th Annual Meeting of 

the American Political Science Association, Chicago, Illinois, USA, 2004.  

[14]  M. Hauskrecht, "CS 2740 Knowledge representation: Semantic Web," [Online]. Available: 

https://people.cs.pitt.edu/~milos/courses/cs2740/Lectures/class16.pdf. [Accessed June 

2016]. 

[15]  L. Ding, T. Finin, A. Joshi, R. Pan, S. R. Cost, Y. Peng, P. Reddivari, V. Doshi and J. 

Sanchs, "Swoogle: a search and metadata engine for the semantic web," in CIKM '04 

Proceedings of the thirteenth ACM international conference on Information and knowledge 

management, New York, USA, 2004.  

[16]  G. Ramanathan, R. McCool and E. Miller, "Semantic Search," in Proceedings of the 12th 

international conference on World Wide Web, Budapest, 2003.  

[17]  F. Arooj, C. Luca and G. Wilson, "User experience and efficiency for semantic search 

engine," in 2014 International Conference on Optimization of Electrical and Electronic 

Equipment (OPTIM), Bran, 2014.  

[18]  "Regator - Curated Blog Search and Discovery," [Online]. Available: http://regator.com/. 

[19]  "Meltwater IceRocket," [Online]. Available: http://www.icerocket.com/. 

[20]  T. Berners-Lee, J. Hendler and O. Lassila, "The semantic web," Scientific american, vol. 5, 

no. 284, pp. 28-37, 2001.  

[21]  P. Wilton, J. Tarling and J. McGinnis, "Storyline Ontology," BBC, 1 May 2013. [Online]. 

Available: http://www.bbc.co.uk/ontologies/storyline. [Accessed June 2016]. 

[22]  J. G. Breslin, S. Decker, A. Harth and U. Bojars, "SIOC: an approach to connect web-based 

communities," International Journal of Web Based Communities, vol. 2, no. 2, pp. 133-142, 

2006.  

[23]  "MerchantCircle," [Online]. Available: http://www.bloglines.com. [Accessed June 2016]. 

[24]  "Technorati," [Online]. Available: http://technorati.com/. [Accessed June 2015]. 

[25]  E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn and G. Tummarello, 



60 

 

"Sindice.com: a document-oriented lookup index for open linked data," International 

Journal of Metadata, Semantics and Ontologies, vol. 1, no. 3, pp. 37-52, 2008.  

[26]  K. R. Page, D. R. C. David and K. Martinez, "REST and Linked Data: a match made for 

domain driven development?," in WS-REST '11 Proceedings of the Second International 

Workshop on RESTful Design, New York, NY, USA, 2011.  

[27]  "Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Regator. [Accessed 25 6 

2016]. 

[28]  "Twingly Blog," [Online]. Available: https://blog.twingly.com/. [Accessed 25 6 2016]. 

[29]  I. Fundulaki, E. Daskalaki, G. Flouris, V. Papakonstantinou and N. Minadakis, "D4.4.1 Use 

Case Analysis and Classification of Choke Points," in LDBC consortium, 2013.  

[30]  R. T. Fielding, "Architectural Styles and the Design of Network-based Software 

Architectures," 2000. 

[31]  X. Feng , J. Shen and Y. Fan, "REST: An alternative to RPC for Web services architecture," 

in Future Information Networks, 2009. ICFIN 2009. First International Conference on, 

Beijing, 2009.  

[32]  N. F. Noy and D. L. McGuinness, "Ontology Development 101: A Guide to Creating Your 

First Ontology," 2001. [Online]. [Accessed June 2016]. 

[33]  "JSON for Linked Data," [Online]. Available: http://json-ld.org/. [Accessed June 2016]. 

[34]  D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduction to Natural 

Language Processing, Computational Linguistics, and Speech Recognition, Pearson 

Education, Inc., 2000.  

[35]  S. Aït-Mokhtar, B. De Bruijn, C. Hagège and P. Rupi, "EURECA Enabling information re-

Use by linking clinical Research and CAre, Deliverable D3.2: Initial prototype for relation 

identification between concepts," 8 July 2013. [Online]. Available: 

http://eurecaproject.eu/files/6514/3516/8469/D3.2_-

_Initial_prototype_for_relation_identification_between_concepts.pdf. [Accessed June 

2016]. 

[36]  Y. Lei, V. Uren and E. Motta, "SemSearch: a search engine for the semantic web," in 

EKAW'06 Proceedings of the 15th international conference on Managing Knowledge in a 



61 

 

World of Networks, Berlin, 2006.  

[37]  "MerchantCircle Bloglines," [Online]. Available: http://www.bloglines.com. [Accessed 

December 2015]. 

[38]  L. Zhang, Q. Liu, J. Zhang, H. Wang, Y. Pan and Y. Yu, "Semplore: An IR Approach to 

Scalable Hybrid Query of Semantic Web Data," The Semantic Web, no. 4825, pp. 652-665, 

2007.  

[39]  M. Melucci, "Vector-Space Model," in Encyclopedia of Database Systems, Springer US, 

2009, pp. 3259-3263. 

[40]  H. Kondylakis, L. Koumakis, M. Psaraki, G. Troullinou, M. Chatzimina, E. Kazantzaki, K. 

Marias and M. Tsiknakis, "Semantically-enabled Personal Medical Information 

Recommender," in International Semantic Web Conference (ISWC), Bethlehem, 

Pennsylvania, 2015.  

[41]  H. Kondylakis, L. Koumakis, S. Rüping, E. Kazantzaki, K. Marias and M. Tsiknakis, 

"PMIR: A Personal Medical Information Recommender," 2014. 

[42]  "Wikipedia article about Virtuoso Universal Server," [Online]. Available: 

http://en.wikipedia.org/wiki/Virtuoso_Universal_Server. . [Accessed June 2016]. 

[43]  "Web Services Architecture - W3C," [Online]. Available: https://www.w3.org/TR/ws-arch/. 

[Accessed June 2016]. 

[44]  "JSON," [Online]. Available: http://www.json.org/. [Accessed June 2016]. 

[45]  "Wikipedia Article about SPARQL," [Online]. Available: 

https://en.wikipedia.org/wiki/SPARQL. [Accessed June 2016]. 

[46]  "1471-2000-IEEE Recommended Practice for Architectural Description for Software-

Intensive Systems.," IEEE Standards Association, 2000. 

[47]  ISO/IEC 25023:2016 Systems and software engineering -- Systems and software Quality 

Requirements and Evaluation (SQuaRE) -- Measurement of system and software product 

quality.  

[48]  R. Likert, "A technique for the measurement of attitudes," in Archives of psychology, 1932.  

[49]  J. Brooke, "SUS-A quick and dirty usability scale," Usability evaluation in industry, vol. 

194, no. 189, pp. 4-7, 1996.  



62 

 

[50]  J. Sauro and J. R. Lewis, "Correlations among prototypical usability metrics: evidence for 

the construct of usability," in CHI '09 Proceedings of the SIGCHI Conference on Human 

Factors in Computing Systems, New York, USA, 2009.  

[51]  J. L. J. Sauro, "Correlations among prototypical usability metrics: evidence for the construct 

of usability, In Proceedings of the SIGCHI Conference on Human Factors in Computing 

Systems," ACM, pp. 1609-1618, 2009.  

 

 

 

 

  



63 

 

Appendix A - API Reference 

Blogs 

Method Name Retrieve all blogs 

Request GET http://83.212.124.52:8080/SemanticWS-1.5/rest/blogs/retrieve/all 

Head Parameters Filter, Ordering 

Query Parameters - 

  

Method Name Retrieve blog by ArticleId 

Request 
GET http://83.212.124.52/SemanticWS-

1.5/rest/blogs/retrieve?ArticleId=[article Id] 

Head Parameters - 

Query Parameters ArticleId 

  

Method Name Retrieve blog by AuthorId 

Request 
GET http://83.212.124.52/SemanticWS-

1.5/rest/blogs/retrieveByAuthor?authorId=[author id] 

Head Parameters - 

Query Parameters AuthorId 

  

Method Name Insert new blog 

Request PUT http://83.212.124.52/SemanticWS-1.5/rest/blogs/insert 

Head Parameters - 

Query Parameters - 

Request Body (JSON) [{ "thumburl": "value", "blog_name": "value", "url": "value"}] 

 



64 

 

Authors 

Method Name Retrieve all authors 

Request GET http://83.212.124.52:8080/SemanticWS-1.5/rest/authors/retrieve/all 

Head Parameters Filter, Ordering 

Query Parameters - 

  

Method Name Retrieve author by ArticleId 

Request 
GET http://83.212.124.52:8080/SemanticWS-

1.5/rest/authors/retrieve?ArticleId=[article Id] 

Head Parameters - 

Query Parameters ArticleId 

  

Method Name Insert new author 

Request PUT http://83.212.124.52:8080/SemanticWS-1.5/rest/authors/insert 

Head Parameters - 

Query Parameters - 

Request Body (JSON) 
[{ "author_fullname": "value", "author_nickname": "value", 

"author_thumb_url": "value", "author_email": "value" }] 

 

 

Articles 

Method Name Retrieve all articles 

Request GET http://83.212.124.52:8080/SemanticWS-1.5/rest/articles/retrieve/all 

Head Parameters Filter, Ordering 

Query Parameters - 

  

Method Name Retrieve article by ArticleId 

Request GET http://83.212.124.52:8080/SemanticWS-1.5/est/articles/retrieve 



65 

 

?ArticleId=[article Id] 

Head Parameters - 

Query Parameters ArticleId 

  

Method Name Insert new article 

Request PUT http://83.212.124.52:8080/SemanticWS-1.5/rest/articles/insert 

Head Parameters - 

Query Parameters - 

Request Body (JSON) 

[{ "article_rating": "value", "article_body": "value", "article_tags": "value", 

"article_url": "value", "article_categories": "value", "article_date_updated": 

"value", "article_title": "value", "article_thump_url": "value", 

"article_date_created": "value", "author" : "Author UUID value", "blog" : 

"Blog UUID value" }] 

 

Comments 

Method Name Retrieve comments by ArticleId 

Request 
GET http://83.212.124.52:8080/SemanticWS-1.5/rest/comments/retrieve 

?ArticleId=[article Id] 

Head Parameters - 

Query Parameters ArticleId 

  



66 

 

Appendix B - Evaluation schema 

The selected sub-characteristics for the evaluation form and their translation into simple 

questions 

M
a

in

ta
in

a

b
il

it
y
 

Analyzability Can faults be easily diagnosed? 

F
u

n
ct

io
n

a
li

ty
 

Suitability Can software perform the tasks required? 

Accurateness Is the result as expected? 

Compliance Is the system compliant with standards? 

  

E
ff

ic
ie

n
cy

 

Time Behavior How quickly does the system respond? 

Resource utilization 
Does the system utilize resources 

efficiently? 

  

 

 

C
o

m
p

a
ti

b
il

it
y

 

Co-existence 
Can the system share resources without 

loss of its functionality?  

Interoperability 
Can the system share information/data 

with other components? 

  

U
sa

b
il

it
y

 

Understandability 
Does the user comprehend how to use the 

system easily? 

Learnability 
Can the user learn to use the system 

easily? 

Operability 
Can the user use the system without much 

effort? 

Attractiveness Does the interface look good? 

  

R
el

ia
b

il
it

y
 

Maturity 
Have most of the faults in the software 

been eliminated over time? 

Fault tolerance Is the software capable of handling errors? 

Recoverability 
Can the software resume working & 

restore lost data after failure? 

  

  
  

S
ec

u
ri

ty
 

Authenticity 
Does the system provide identification 

access wherever is needed? 

Confidentiality 
Are data accessible only to authorized 

users? 

Accountability Can the system trace actions uniquely? 

Integrity 
Does the system prevent unauthorized 

access? 

 

 

 



67 

 

Changeability Can the software be easily modified? 

Stability 
Can the software continue functioning if 

changes are made? 

Testability Can the software be tested easily? 

  

P
o

rt
a

b
il

it
y

 

Adaptability 
Can the software be moved to other 

environments? 

Installability Can the software be installed easily? 

Conformance 
Does the software comply with portability 

standards? 

Replaceability 
Can the software easily replace other 

software? 

  

Q
u

a
li

ty
 o

f 
u

se
 Effectiveness 

How accurate and complete is the 

software for the intended use? 

Efficiency 
How accurate and complete is the 

software for the intended use? 

Satisfaction 
Does the software satisfy the perceived 

achievements of pragmatic goals? 

Health and safety risk 
Can the software harm people in the 

intended contexts of use? 

 

 

 

 


