

DEVELOPMENT AND EVALUATION OF A WEB FRIENDLY TELEPHONE SYSTEM

by

DASKALAKIS DIMITRIOS CHRISTOS

Applied Informatics and Multimedia, T.E.I. Of Crete

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF APPLIED INFORMATICS

AND MULTIMEDIA

SCHOOL OF APPLIED TECHNOLOGY

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2016

Approved by:

Assistant Professor

SPYROS PANAGIOTAKIS

i

Left intentionally blank

ii

Copyright

DASKALAKIS DIMITRIOS CHRISTOS

2016

iii

Abstract

In this thesis we exploit the relative maturity of technologies and libraries such as

WebRTC, JsSIP and Asterisk in order to achieve enhanced communications abilities. We enable

the browser to accept and make calls, without the need of any extra software needing to be installed

from both mobile and standard PC devices. Also we developed a way to make one click,

preconfigured calls catering to the needs of modern enterprise users and also a fully-fledged web

based SIP phone. Those calls are cryptographically secured between browsers. The calls, as we

have demonstrated, can be directed to a land line as well, if desired. Also by gathering live statistics

provided by the browser and the asterisk server, we have determined the objective perceived call

quality score (MOS).

Keywords: WebRTC, communications, click to call button, SIP, asterisk

iv

Table of Contents

Left intentionally blank .. i

Copyright .. ii

Abstract .. iii

Table of Contents ... iv

List of Figures .. viii

List of Tables .. x

Abbreviation Index .. xi

Acknowledgements .. xiii

Motivation .. xiv

Challenges .. xiv

1 Introduction .. 1

1.1 VOIP ... 1

1.2 VoIP Protocols .. 3

1.2.1 SDP ... 3

1.2.2 RTP ... 4

1.2.3 RTCP... 5

1.2.4 SIP ... 6

1.3 Private Branch Exchange (PBX) .. 15

1.3.1 What is a PBX ... 15

1.3.2 Functions of a PBX ... 15

1.4 A bit of telephone history ... 16

1.5 Goals and Objectives of this thesis ... 18

1.6 The Potential of this technology ... 18

1.7 The need for web browser based communications ... 19

1.7.1 Why web browser based communications .. 19

1.7.2 Unified Communications .. 19

2 WebRTC .. 20

2.1 What is WebRTC? .. 20

v

2.2 Benefits from WebRTC .. 21

2.3 WebRTC APIs .. 22

2.3.1 GetUserMedia API.. 22

2.3.2 PeerConnection API.. 23

2.3.3 Data channel.. 24

2.3.4 RTCNinja API .. 25

2.4 WebRTC Signaling ... 26

2.4.1 Introduction to WebRTC Signaling .. 26

2.4.2 Information exchanged during signaling .. 27

2.4.3 WebRTC has to have Directory Services ... 27

2.4.4 JSON over Multiple Transports .. 28

2.4.5 JSEP protocol .. 28

2.4.6 Web Sockets.. 29

2.5 WebRTC Security ... 30

2.5.1 Trust Model ... 30

2.5.2 Same Origin Policy ... 31

2.5.3 Permissions Models .. 31

2.5.4 Permissions API .. 31

2.5.5 Communications Security ... 32

2.5.6 Web Security Issues .. 32

2.5.7 IP Location Privacy... 32

2.5.8 Communications Security: Implementation ... 33

2.6 WebRTC handling NAT and Firewall Traversal .. 33

2.6.1 The different types of NAT ... 33

2.6.2 The Problem of NAT and Firewalls in VoIP .. 34

2.6.3 WebRTC connectivity .. 35

2.6.4 ICE – The NAT traversal solution for VoIP ... 36

2.6.5 Trickle ICE.. 37

2.6.6 STUN .. 38

2.6.7 TURN .. 39

vi

2.6.8 Other ways to traverse NAT for VoIP purposes apart from ICE 42

3 Connecting Sip and Browser together ... 44

3.1 Integration of WebRTC with SIP ... 44

3.2 The JsSIP framework .. 46

3.3 JsSIP framework API explanation .. 48

4 Call Quality and Quality of Experience ... 50

4.1 Perceived call Quality ... 50

4.1.1 Subjective quality tests ... 52

4.1.2 E-model - Objective voice quality measurement .. 53

4.2 Problems that are affecting VoIP performance ... 56

4.2.1 Call Quality Problems ... 57

4.3 Measuring VoIP Performance... 61

4.4 WebRTC's Statistics API .. 62

5 Design and Implementation ... 64

5.1 Design and Choices we made ... 64

5.1.1 The HTML and JavaScript hosting server .. 64

5.1.2 Chosen JavaScript libraries ... 64

5.1.3 Environment .. 64

5.1.4 VM and host machine setup .. 65

5.1.5 Cryptography settings used ... 67

5.2 Implementation ... 67

5.2.1 The SIP registar and PBX server .. 67

5.2.2 Click to Call Button .. 73

5.2.3 Caller Id Scraped from the web –Reverse find of caller ID 75

5.2.4 WebRTC supported Web Phone ... 77

6 Evaluation of WebRTC – to - SIP calls ... 80

6.1 Testing we have done.. 80

6.2 Statistics Gathering code... 82

6.2.1 Real Time Gathering ... 82

6.2.2 Post Call Statistics Gathering.. 85

vii

6.3 MOS measuring code .. 86

6.3.1 Real time measurement ... 86

6.3.2 Post call measurements ... 88

6.4 Security related evaluation .. 89

7 Conclusion and Possible use cases .. 90

7.1 Possible use cases ... 90

7.2 Conclusions ... 91

References ... 93

viii

List of Figures

Figure 1: A typical VoIP setup ... 3

Figure 2: SIP Successful Call Setup ... 10

Figure 3: SIP Presence Example ... 11

Figure 4: SIP Registration and Notification Example .. 13

Figure 5: Data flow diagram of the WebRTC architecture ... 20

Figure 6: WebRTC Web Triangle... 21

Figure 7: Part of the GUI permission user input ... 32

Figure 8: Typical WebRTC session .. 36

Figure 9: ICE connections .. 36

Figure 10: Trickle ICE data flow .. 38

Figure 11: Stun server – client message exchanges .. 39

Figure 12: Turn server – client message and media exchanges .. 40

Figure 13: Nat Traversal techniques ... 43

Figure 14: Integration of WebRTC with SIP .. 44

Figure 15: List of browsers that support WebSockets .. 48

Figure 16: Simple factors that affect perceived call quality ... 51

Figure 17: Measuring MOS with calibration factor .. 52

Figure 18: Relation between R-Value and MOS-CQE ... 55

Figure 19: Potential Issues .. 57

Figure 20: Packet Loss and Jitter .. 58

Figure 21: Effect of Delay to MOS on Conversational Quality ... 59

Figure 22: Causes of Echo .. 59

Figure 23: Causes of Delay ... 60

Figure 24: Cisco BYE message .. 62

Figure 25: VM settings ... 66

Figure 26: FreePBX main console .. 68

Figure 27: Thesis Servers and the connectivity to the world .. 69

Figure 28: HTML part of the click 2 call button .. 74

ix

Figure 29: Part of the Custom Context created for the click to call button 75

Figure 30: The asterisk CID Lookup settings page .. 77

Figure 31: WebRTC demo application showing also statistics .. 78

Figure 32: How the constituent parts of the implementation work together 79

Figure 33: Screenshot of the CDR report we made for accessing post call stats.......................... 86

Figure 34: MOS measuring code .. 87

Figure 35: Screenshot of the live MOS score ... 87

Figure 36: Post call statistics in the asterisk CDR .. 89

Figure 37: Example from social networking site that would benefit from a Click to Call button 91

x

List of Tables

Table 1: Functions of a modern VoIP PBX .. 16

Table 2: Transmission modes comparison table ... 24

Table 3: Voice Quality Measurement Type comparison .. 51

Table 4: Relation among R-value, MOS-CQE and user satisfaction .. 55

Table 5: SIP peer settings example ... 70

Table 6: Part of the scrapper code that lifts the Name that it found ... 76

Table 7: Part of the code that does the greeklish translation .. 76

Table 8: Voice Quality Measures ... 80

xi

Abbreviation Index

API Application Programming Interface

PBX Private Branch Exchange

CA Certification Authority

CSS Cascading Styling Sheet

DOM Document Object Model

DTLS Datagram Transport Layer Security

FXO Foreign eXchange Office interface

FXS Foreign eXchange Subscriber interface

HTML HyperText Markup Language

HTML5 HyperText Markup Language5

HTTP HyperText Transfer Protocol

HTTPS Hypertext Transfer Protocol over Secure Socket Layer.

ICE Interactive Connectivity Establishment.

IETF Internet Engineering Task Force

IP Internet Protocol.

JS JavaScript

JSEP Javascript Session Establishment Protocol

MPBX Multimedia Private Branch Exchange.

NAT Network Address Translation

P2P PeerToPeer.

P2P PeertoPeer

PBX Private Branch Exchange.

PHP PHP: Hypertext Preprocessor.

POTS Plain Old Telephone Service

PSTN Public Switched Telephone Network.

 IVR Interactive Voice Response

QoS Quality of Service.

xii

RTC RealTime Communication

RTP RealTime Protocol

SCTP Stream Control Transmission Protocol

SDP Session Description Protocol

SIP Session Initiation Protocol

SRTP Secure Real Time Protocol

STUN Session Traversal Utilities for NAT

TCP Transmission Control Protocol

TURN Traversal Using Relays around NAT

UA User Agent.

UAC User Agent Client.

UAS User Agent Server.

UCP User Control Panel

UDP User Datagram Protocol

UI User Interface.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

VM Virtual Machine.

VoIP Voice over Internet Protocol.

VP8 Video compression format

QoE Quality of Experience

QoS Quality Of Service

W3C World Wide Web Consortium.

W3C World Wide Web Consortium

WebRTC Web RealTime Communication

WebSocket Protocol that supports bidirectional communication over a single TCP

connection

XMPP Extensible Messaging and Presence Protocol

xiii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Spyros

Panagiotakis for the continuous support of my MSc study and related research, for his patience,

motivation, and immense knowledge. His guidance helped me in all the time of research and

writing of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Malamos

Athanasios and Dr. Kostas Vasilakis for their insightful comments and encouragement, but also

for the hard question which incented me to widen my research from various perspectives.

 My sincere thanks also go to Dr. Athanasios Malamos who provided me an opportunity

to join their team, and who gave access to the laboratory and research facilities.

I thank my fellow labmates in for the stimulating discussions, for the sleepless nights we

were working together before deadlines, and for all the fun we have had in the last two years. Also

I need to thank Mr. Adamantios Aretakis for helping me in various ways with my life.

Last but not the least, I would like to thank my wife and family: my parents and to my brother for

supporting me throughout writing this thesis and my life in general.

xiv

Motivation

 As our world becomes more and more interconnected we strive for more access and ease

of use regarding our communications. Devices and technologies these days enable this to be

exceptionally true. Mobile phones have reached computing power well above a PC would have a

decade ago and 4G networks make high speed affordable internet within reach. Even more so,

web browsers have evolved from a static forum to get information to fully fledged bidirectional

and programmable communications platforms. With technologies such as HTML5[1] and

WebRTC[2] the boundaries and difficulties for multiplatform and multi device have become

almost nonexistent. Thus the motivation of this thesis is to explore those emerging technologies

and to evaluate them.

Challenges

There were numerous challenges concerning this thesis. The main categories were research

related and implementation related.

As research challenges are concerned, WebRTC is a technology new to the web and not

scandalized entirely. There are a lot of articles and how to written about it but they are not all

exactly relevant as references, mainly because of different browsers have slightly different

implementations on WebRTC and some of the implementation keeps changing with the updates

of the browser, or if the browser is a beta or a nightly version. Moreover, there is not a lot of many

open sourced projects and community to support SIP on the web, although it is gaining on this

aspect fast!

There is no direct implementation between SIP and WebRTC in the commercial market.

The two open source frameworks we used is sipml5 and JsSIP. The later was chosen after some

initial testing. There is no plethora of references and documentation that could be helpful during

development. We had to understand and developed the system and all the protocols involved and

the fundamentals about SIP protocol, which is a very tedious protocol to understand fully

WebRTC implementation in JavaScript, unknown to me prior to this thesis. In order to implement

the thesis service based on SIP and WebRTC it required a lot of time on programming prototypes

and evaluate the solutions in a very time consuming try and fail methodology. The JavaScript

xv

programing was a big learning experience alone. Also the asterisk server, while known to me from

previous work it posed a very big challenge to implement the security the WebRTC imposes (https,

SRTP, WSS). As troubleshooting goes, analyzing traffic with wireshark is a nightmare.

Furthermore, there were many design cases that we had to consider during the development

because the thesis requirements.

1

1 Introduction

1.1 VOIP

Stands for "Voice over Internet Protocol," and is often pronounced "VoIP." VoIP is

basically a telephone connection over the Internet. The data is sent digitally, using the Internet

Protocol (IP) instead of analog telephone lines. This allows people to talk to one another long-

distance and around the world without having to pay long distance or international phone charges.

In order to use VoIP, you need a computer, an Internet connection, and VoIP software or hardware.

You also need either a microphone, analog telephone adapter, or VoIP telephone. Many VoIP

programs allow you to use a basic microphone and speaker setup. Analog telephone adapters allow

you to use regular phones with your computer or router. IP phones are another option that connect

directly to a router via Ethernet or wirelessly. These phones have all the necessary software for

VoIP built in and therefore do not require a computer. VoIP is also referred to as IP telephony,

Internet telephony, and digital phone.

Protocols used by Voice over IP have been implemented in various ways using both

proprietary protocols and protocols based on open standards. Examples of the VoIP protocols are:

H.323, Media Gateway Control Protocol (MGCP), Session Initiation Protocol (SIP), H.248, Real-

time Transport Protocol (RTP), Real-time Transport Control Protocol (RTCP), Secure Real-time

Transport Protocol (SRTP), Session Description Protocol (SDP), Inter-Asterisk eXchange (IAX),

Jingle XMPP VoIP extensions, Skype protocol, TeamSpeak.

Because of the bandwidth efficiency and low costs that VoIP technology can provide,

businesses are migrating from traditional copper-wire telephone systems to VoIP systems to

reduce their monthly phone costs. In 2008, 80% of all new Private branch exchange (PBX) lines

installed internationally were VoIP.

VoIP solutions aimed at businesses have evolved into unified communications services

that treat all communications—phone calls, faxes, voice mail, e-mail, Web conferences, and

more—as discrete units that can all be delivered via any means and to any handset, including cell

phones. Two kinds of competitors are competing in this space: one set is focused on VoIP for

medium to large enterprises, while another is targeting the small-to-medium business (SMB)

market.

2

VoIP allows both voice and data communications to be run over a single network, which

can significantly reduce infrastructure costs.

The prices of extensions on VoIP are lower than for PBX and key systems. VoIP switches

may run on commodity hardware, such as personal computers. Rather than closed architectures,

these devices rely on standard interfaces.

VoIP devices have simple, intuitive user interfaces, so users can often make simple system

configuration changes. Dual-mode phones enable users to continue their conversations as they

move between an outside cellular service and an internal Wi-Fi network, so that it is no longer

necessary to carry both a desktop phone and a cellphone. Maintenance becomes simpler as there

are fewer devices to oversee.

VoIP can be a benefit for reducing communication and infrastructure costs. Some

examples include:

• The ability to transmit more than one telephone call over a single broadband

connection.

• Secure calls using standardized protocols (such as Secure Real-time Transport

Protocol). Most of the difficulties of creating a secure telephone connection over

traditional phone lines, such as digitizing and digital transmission, are already in

place with VoIP. It is only necessary to encrypt and authenticate the existing data

stream.

• Utilized existing network infrastructure to minimize the operating cost.

• Routing phone calls over existing data networks to avoid the need for separate

voice and data networks.

• Eliminating the need of hiring personnel to greet and distribute incoming calls with

the use of a Virtual PBX

3

Figure 1: A typical VoIP setup

1.2 VoIP Protocols

In this section we discuss the critical protocols VoIP uses to enable communication in real

world scenarios.

1.2.1 SDP

Session Description Protocol (SDP) [3] is a standard for describing the multimedia content

of the connection such as encryption, formats, codecs, resolution, etc. so that both peers can

understand each other once the data is transferring. This is the metadata describing the content and

not the media content itself.

Here is a typical SDP message:

 v=0

 o=alice 2846524526 2890853526 IN IP4 host.com

 s=

4

 c=IN IP4 host.com

 t=0 0

 m=audio 49170 RTP/AVP 0

 a=rtpmap:0 PCMU/8000

 m=video 51372 RTP/AVP 31

 a=rtpmap:31 H261/90000

 m=video 53000 RTP/AVP 32

 a=rtpmap:32 MPV/90000

SDP is never used alone, but along with protocols like SIP and RTCP.

1.2.2 RTP

RTP RFC 3550 RTP provides end-to-end network transport functions suitable for

applications transmitting real-time data, such as audio, video or simulation data, over multicast or

unicast network services. RTP does not address resource reservation and does not guarantee

quality-of-service for real-time services. RTP combines its data transport with a control protocol

(RTCP), which makes it possible to monitor data delivery for large multicast networks. Monitoring

allows the receiver to detect if there is any packet loss and to compensate for any delay jitter. Both

protocols work independently of the underlying Transport layer and Network layer protocols.

Information in the RTP header tells the receiver how to reconstruct the data and describes how the

codec bit stream are packetized. As a rule, RTP runs on top of the User Datagram Protocol (UDP),

although it can use other transport protocols. Both the Session Initiation Protocol (SIP) and H.323

use RTP. RTP components include: a sequence number, which is used to detect lost packets;

payload identification, which describes the specific media encoding so that it can be changed if it

has to adapt to a variation in bandwidth; frameindication, which marks the beginning and end of

each frame; source identification, which identifies the originator of the frame; and intramedia

synchronization, which uses timestamps to detect different delay jitter within a single stream and

compensate for it. Compressed RTP (CRTP), specified in RFC 2509 [4], was developed to

decrease the size of the IP, UDP, and RTP headers. However, it was designed to work with reliable

and fast point-to-point links. In less than optimal circumstances, where there may be long delays,

packet loss, and out-of-sequence packets, CRTP doesn't function well for Voice over IP

5

applications. Another adaptation, Enhanced CRPT (ECRPT), was defined in a subsequent Internet

Draft document to overcome that problem.

1.2.3 RTCP

The Real Time Streaming Protocol (RTCP), [5] is a protocol that works in the application

level and has to control the delivery of real time data, such as video and audio. Sources can be for

instance live data streams or stored clips. This protocol controls numerous data delivery sessions,

provides a mean for choosing delivery transports such as UDP, multicast UDP or TCP, and

provides a means for choosing delivery mechanisms based upon RTP. Its job is not to deliver

streams itself. In other words, we can see RTCP as a remote control for multimedia servers. Also

by the W3C document [6] the RTCP packets contain statistical information about the streams they

are controlling and also they may be multiplexed with the RTP packets. The packets Statistical

flags that would be interesting for us are. In practice they are not mandatory to implement.

• SSRC (synchronization source identifier)

• NTP timestamp

• RTP timestamp

• sender's packet count

• sender's octet count (payload not including headers)

• fraction lost

• cumulative number of packets lost

• extended highest sequence number received

• interarival jitter

6

1.2.4 SIP

The protocol that has prevailed over the years for VoIP use is SIP. The Session Initiation

Protocol (SIP) as we can see defined in RFC 3261 [7] is an application signaling protocol for

setting up modifying and then terminating real-time calls - sessions between participants over an

IP connection. SIP supports a plethora of single-media or multi-media session, including

teleconferencing. SIP is the signaling protocol that enables one party to place a call to another

party and to negotiate the parameters of a multimedia session. The actual audio, video, or other

multimedia content is exchanged between session participants using an appropriate transport

protocol. In many cases, the transport protocol to use is the Real-Time Transport Protocol (RTP).

Directory access and lookup protocols are also needed.

The key driving force behind SIP is to enable Internet telephony. SIP is the typical IP

signaling mechanism for voice and multimedia calling services. SIP supports five facets of

establishing and terminating multimedia communications:

• User location: Users can move to other locations and access their telephony or other

application features from remote locations.

• User availability: This step involves determination of the willingness of the called party to

engage in communications.

• User capabilities: In this step, the media and media parameters to be used are determined.

• Session setup: Point-to-point and multiparty calls are set up, with agreed session

parameters.

• Session management: This step includes transfer and termination of sessions, modifying

session parameters, and invoking services.

SIP employs design elements developed for earlier protocols. SIP is based on an HTTP-like

request/response transaction model. Each transaction consists of a client request that invokes a

particular method, or function, on the server and at least one response. SIP uses most of the header

fields, encoding rules, and status codes of HTTP. This provides a readable text-based format for

displaying information. SIP incorporates the use of a Session Description Protocol (SDP), which

defines session content using a set of types similar to those used in Multipurpose Internet Mail

Extensions (MIME).

7

1.2.4.1 SIP Components and Protocols

A system using SIP can be viewed as consisting of components defined on two dimensions:

client/server and individual network elements. RFC 3261 defines client and server as follows:

• Client: A client is any network element that sends SIP requests and receives SIP responses.

Clients may or may not interact directly with a human user. User agent clients and proxies

are clients.

• Server: A server is a network element that receives requests in order to service them and

sends back responses to those requests. Examples of servers are proxies, user agent servers,

redirect servers, and registrars.

The individual elements of a standard SIP configuration include the following:

 User Agent: The user agent resides in every SIP end station. It acts in two roles:

• User Agent Client (UAC): Issues SIP requests

• User Agent Server (UAS): Receives SIP requests and generates a response that accepts,

rejects, or redirects the request

• Redirect Server: The redirect server is used during session initiation to determine the

address of the called device. The redirect server returns this information to the calling

device, directing the UAC to contact an alternate Universal Resource Identifier (URI). A

URI is a generic identifier used to name any resource on the Internet. The URL used for

Web addresses is a type of URI as we see in RFC 2396 [8].

• Proxy Server: The proxy server is an intermediary entity that acts as both a server and a

client for the purpose of making requests on behalf of other clients. A proxy server

primarily plays the role of routing, meaning that its job is to ensure that a request is sent to

another entity closer to the targeted user. Proxies are also useful for enforcing policy (for

example, making sure a user is allowed to make a call). A proxy interprets, and, if

necessary, rewrites specific parts of a request message before forwarding it.

8

• Registrar: A registrar is a server that accepts REGISTER requests and places the

information it receives (the SIP address and associated IP address of the registering device)

in those requests into the location service for the domain it handles.

• Location Service: A location service is used by a SIP redirect or proxy server to obtain

information about a callee's possible location(s). For this purpose, the location service

maintains a database of SIP-address/ IP-address mappings.

The various servers are defined in RFC 3261 [7] as logical devices. They may be implemented as

separate servers configured on the Internet or they may be combined into a single application that

resides in a physical server.

Figure 4: SIP Components and Protocols

Figure 1 shows how some of the SIP components relate to one another and the protocols that are

employed. A user agent acting as a client (in this case UAC Alice) uses SIP to set up a session

with a user agent that acts as a server (in this case UAS Bob). The session initiation dialogue uses

9

SIP and involves one or more proxy servers to forward requests and responses between the two

user agents. The user agents also make use of the SDP, which is used to describe the media session.

The proxy servers may also act as redirect servers as needed. If redirection is done, a proxy

server needs to consult the location service database, which may or may not be collocated with a

proxy server. The communication between the proxy server and the location service is beyond the

scope of the SIP standard. The Domain Name System (DNS) is also an important part of SIP

operation. Typically, a UAC makes a request using the domain name of the UAS, rather than an

IP address. A proxy server needs to consult a DNS server to find a proxy server for the target

domain.

SIP often runs on top of the User Datagram Protocol (UDP) for performance reasons, and provides

its own reliability mechanisms, but may also use TCP. If a secure, encrypted transport mechanism

is desired, SIP messages may alternatively be carried over the Transport Layer Security (TLS)

protocol.

Associated with SIP is the SDP, defined in RFC 2327 [9]. SIP is used to invite one or more

participants to a session, while the SDP-encoded body of the SIP message contains information

about what media encodings (for example, voice, video) the parties can and will use. After this

information is exchanged and acknowledged, all participants are aware of the participants' IP

addresses, available transmission capacity, and media type. Then, data transmission begins, using

an appropriate transport protocol. Typically, the RTP is used. Throughout the session, participants

can make changes to session parameters, such as new media types or new parties to the session,

using SIP messages.

1.2.4.2 Examples of Operation

The SIP specification is quite complex; the main document, RFC 3261[7], is 269 pages long. To

give some feel for its operation, we present a few examples.

Figure 4 shows a successful attempt by user Alice to establish a session with user Bob, whose URI

is bob@biloxi.com. Alice's UAC is configured to communicate with a proxy server (the outbound

server) in its domain and begins by sending an INVITE message to the proxy server that indicates

10

its desire to invite Bob's UAS into a session (1); the server acknowledges the request (2). Although

Bob's UAS is identified by its URI, the outbound proxy server needs to account for the possibility

that Bob is not currently available or that Bob has moved. Accordingly, the outbound proxy server

should forward the INVITE request to the proxy server that is responsible for the domain

biloxi.com. The outbound proxy thus consults a local DNS server to obtain the IP address of the

biloxi.com proxy server (3), by asking for the DNS SRV resource record that contains information

on the proxy server for biloxi.com

.

Figure 2: SIP Successful Call Setup

The DNS server responds (4) with the IP address of the biloxi.com proxy server (the inbound

server). Alice's proxy server can now forward the INVITE message to the inbound proxy server

(5), which acknowledges the message (6). The inbound proxy server now consults a location

11

server to determine Bob's location Bob (7), and the location server responds with Bob's location,

indicating that Bob is signed in, and therefore available for SIP messages (8).

The proxy server can now send the INVITE message on to Bob (9). A ringing response is

sent from Bob back to Alice (10, 11, 12) while the UAS at Bob is alerting the local media

application (for example, telephony). When the media application accepts the call, Bob's UAS

sends back an OK response to Alice (13, 14, 15). Finally, Alice's UAC sends an acknowledgement

message to Bob's UAS to confirm the reception of the final response (16). In this example, the

ACK is sent directly from Alice to Bob, bypassing the two proxies. This occurs because the

endpoints have learned each other's address from the INVITE/200 (OK) exchange, which was not

known when the initial INVITE was sent. The media session has now begun, and Alice and Bob

can exchange data over one or more RTP connections.

 Figure 3: SIP Presence Example

12

The next example (Figure 4) makes use of two message types that are not yet part of the SIP

standard but that are documented in RFC 2848 [10] and are likely to be incorporated in a later

revision of SIP. These message types support telephony applications. Suppose that in the

preceding example, Alice was informed that Bob was not available. Alice's UAC can then issue a

SUBSCRIBE message (1), indicating that it wants to be informed when Bob is available.

This request is forwarded through the two proxies in our example to a PINT (Public Switched

Telephone Network [PSTN]-Internet Networking) server (2, 3). A PINT server acts as a gateway

between an IP network from which comes a request to place a telephone call and a telephone

network that executes the call by connecting to the destination telephone. In this example, we

assume that the PINT server logic is collocated with the location service. It could also be the case

that Bob is attached to the Internet rather than a PSTN, in which case the equivalent of PINT logic

is needed to handle SUBSCRIBE requests. In this example, we assume the latter and assume that

the PINT functionality is implemented in the location service. In any case, the location service

authorizes subscription by returning an OK message (4), which is passed back to Alice (5, 6). The

location service then immediately sends a NOTIFY message with Bob's current status of not

signed in (7, 8, 9), which Alice's UAC acknowledges (10, 11, 12).

Figure 6 continues the example of Figure 5. Bob signs on by sending a REGISTER message to

the proxy in its domain (1). The proxy updates the database at the location service to reflect

registration (2). The update is confirmed to the proxy (3), which confirms the registration to Bob

(4). The PINT functionality learns of Bob's new status from the location server (here we assume

that they are collocated) and sends a NOTIFY message containing Bob's new status (5), which is

forwarded to Alice (6, 7). Alice's UAC acknowledges receipt of the notification (8, 9, 10).

13

Figure 4: SIP Registration and Notification Example

14

1.2.4.3 SIP Messages

As was mentioned, SIP is a text-based protocol with a syntax similar to that of HTTP. There are

two different types of SIP messages, requests and responses. The format difference between the

two types of messages is seen in the first line. The first line of a request has a method, defining

the nature of the request and a Request-URI, indicating where the request should be sent. The first

line of a response has a response code. All messages include a header, consisting of a number of

lines, each line beginning with a header label. A message can also contain a body such as an SDP

media description. For SIP requests, RFC 3261 defines the following methods:

 REGISTER: Used by a user agent to notify a SIP configuration of its current IP address

and the URLs for which it would like to receive calls

 INVITE: Used to establish a media session between user agents

 ACK: Confirms reliable message exchanges

 CANCEL: Terminates a pending request, but does not undo a completed call

 BYE: Terminates a session between two users in a conference

 OPTIONS: Solicits information about the capabilities of the callee, but does not set up a

call

15

1.3 Private Branch Exchange (PBX)

1.3.1 What is a PBX

A PBX (Private Branch Exchange) is a system that connects telephone extensions to the Public

Switched Telephone Network and provides internal communication for a business. An IP PBX is

a PBX with Internet Protocol connectivity and may provide additional audio, video, or instant

messaging communication utilizing the TCP/IP protocol stack.

VoIP gateways can be combined with traditional PBX functionality to allow businesses to use

their managed intranet to help reduce long distance expenses and take advantage of the benefits

of a single network for voice and data (converged network). An IP PBX may also provide CTI

features.

An IP PBX can exist as a physical hardware device or in software.

1.3.2 Functions of a PBX

Functionally, the PBX performs four main call processing duties:

• Establishing connections (circuits) between the telephone sets of two users (e.g. mapping

a dialed number to a physical phone, ensuring the phone isn't already busy)

• Maintaining such connections as long as the users require them (i.e. channeling voice

signals between the users)

• Disconnecting those connections as per the user's requirement

• Providing information for accounting purposes (e.g. metering calls)

In addition to these basic functions, PBXs offer many other calling features and capabilities, with

different manufacturers providing different features in an effort to differentiate their products.

Common capabilities include (manufacturers may have a different name for each capability):

16

Table 1: Functions of a modern VoIP PBX

• Auto attendant

• Auto dialing

• Automated directory services (where

callers can be routed to a given employee

by keying or speaking the letters of the

employee's name)

• Automatic call distributor

• Automatic ring back

• Busy override

• Call blocking

• Call forwarding on busy or absence

• Call logging

• Call park

• Call pick-up

• Call transfer

• Call waiting

• Camp-on

• Conference call

• Custom greetings

• Customized abbreviated dialing (Speed

dialing)

• Direct inward dialing (DID)

• Direct inward system access (DISA) (the

ability to access internal features from an

outside telephone line)

• Do not disturb (DND)

• Follow-me, also known as find-me:

Determines the routing of incoming calls.

The exchange is configured with a list of

numbers for a person. When a call is

received for that person, the exchange

routes it to each number on the list in turn

until either the call is answered or the list is

exhausted (at which point the call may be

routed to a voice mail system).

• Interactive voice response

• Local Connection: Another useful attribute

of a hosted PBX is the ability to have a

local number in cities in which you are not

physically present. This service essentially

lets you create a virtual office presence

anywhere in the world.

• Music on hold

• Night service

• Public address voice paging

• Shared message boxes (where a department

can have a shared voicemail box)

• Voice mail

• Voice message broadcasting

• Welcome message

1.4 A bit of telephone history

There was a time when switchboard operators had to operate company switchboards

manually using cords. As automated switches and electronic switching systems gradually replaced

the manual systems, the terms private automatic branch exchange (PABX) and private manual

branch exchange (PMBX) differentiated them. Solid-state digital systems were sometimes

referred to as electronic private automatic branch exchanges (EPABX). As of 2016, the term PBX

is by far the most widely recognized. The acronym now applies to all types of complex, in-house

telephony switching systems.

17

Two significant developments during the 1990s led to new types of PBX systems. One was

the massive growth of data networks and increased public understanding of packet switching.

Companies needed packet-switched networks for data, so using them for telephone calls proved

tempting, and the availability of the Internet as a global delivery-system made packet-switched

communications even more attractive. These factors led to the development of the voice over IP

PBX, or IP-PBX.

The other trend involved the idea of focusing on core competence. PBX services had always

been hard to arrange for smaller companies, and many companies realized that handling their own

telephony was not their core competence. These considerations gave rise to the concept of the

hosted PBX. In wireline telephony, the original hosted PBX was the Centrex service provided by

telcos since the 1960s; later competitive offerings evolved into the modern competitive local

exchange carrier. In voice over IP, hosted solutions are easier to implement as the PBX may be

located at and managed by any telephone service provider, connecting to the individual extensions

via the Internet. The upstream provider no longer needs to run direct, local leased lines to the

served premises. once the advent of Internet telephony (Voice over IP) technologies, PBX

development has tended toward the IP PBX, which uses the Internet Protocol to carry calls. Most

modern PBXs support VoIP. ISDN PBX systems also replaced some traditional PBXs in the

1990s, as ISDN offers features such as conference calling, call forwarding, and programmable

caller ID. As of 2015 ISDN is being phased out by most major telecommunication carriers

throughout Europe in favor of all-IP networks, with some expecting complete migration by 2025.

Originally having started as an organization's manual switchboard or attendant console operated

by a telephone operator or just simply the operator, PBXs have evolved into VoIP centers that are

hosted by the operators or even manufacturers.

Even though VoIP is considered the future of telephony, the circuit switched network remains

the core of communications, and the existing PBX systems are competitive in services with

modern IP systems. Five distinct scenarios exist:

• Hosted/virtual PBX (hosted and circuit-switched) or traditional Centrex

• IP Centrex or hosted/virtual IP (hosted and packet-switched)

• IP PBX (private and packet-switched)

• Mobile PBX solution (mobile phones replacing or used in combination with fixed

phones)

18

• PBX (private and circuit-switched)

For the option to call from IP network to the circuit-switched PSTN (SS7/ISUP), the hosted

solutions include interconnecting media gateways.

1.5 Goals and Objectives of this thesis

The goal of this thesis is to make a web based skype out like communication system that it

will be served as a service and not as a software. Meaning that in order to communicate there will

be no need to install anything. Just point the browser in the URL and ‘as magic’ the user will have

a full-fledged communications platform. Also we will demonstrate how to connect a web page to

the plain old telephone network, the difficulties and complexity this approach has and the potential

to be a market changer! Also we will explore and implement ideas that companies can use for the

costumers to reach them with, literally, a click of a mouse.

Also we will see various ways to get an estimate of the call quality and attempt to do the

same with our implementation.

1.6 The Potential of this technology

Imagine how scared communications providers were when skype surpassed a hundred

million users in the few years after its 2003 launch. Telecommunications companies large enough

to be a country were scared of losing their bread and butter. WebRTC is part of an open protocol,

open source, open standards response to ‘Skype like applications’ and the Internet's version of Too

Big To Fail. It has the potential to change the paradigm of the world communications in a degree

not easily imaged. The fact that it is breaking the monopoly held over by Microsoft and Google

telephone ‘web services’ is enough to understand the stakes. Also the fact that it is inherently

secure at least in the transport layer is of course a very big deal by itself. For these reasons

WebRTC is a disruptive innovation because it creates a new market and value, displacing market

leaders – such as an early example would be telephony as we know it was a disruptive innovation

for telegraphy.

19

1.7 The need for web browser based communications

1.7.1 Why web browser based communications

Currently, a web browser has become the primary tool for user access to information. The

web based technology originally had a very limited functionality, orientated on request response

model and transmission of text data over HTTP protocol. An increase of end user communications

has inevitably led to the need for implementation of communications in the browser. Also

development of technologies for fast data transfer has resulted in an immense improvement of

quality of communications through the internet and in particular the transition from text based

communication to voice based communications and then to video based communications. Such

communications in the browser have made possible by the several technologies. The use of various

web browser plug-ins, such as Adobe Flash, as well as further implementation of direct support

for streaming data by WebRTC. As our world becomes more and more interconnected we strive

for more access and ease of use regarding our communications. Devices and technologies these

days enable this to be exceptionally true. Mobile phones have reached computing power well

above a PC would have a decade ago and 4G networks make high speed affordable internet within

reach.

1.7.2 Unified Communications

This thesis is a small brick of the so called unified communications framework. This strives

for a user to have a single reference to be contacted from for all his communications needs and

not multiple as the current day to day person has. For example, instead for having a landline a

mobile phone and a home phone, a fax machine and email account and different ways to

differentiate between them, the user would have a simple way to give his credentials to someone

and that someone would have been able to contact him regardless location and situation.

20

2 WebRTC

2.1 What is WebRTC?

The WebRTC initiative is a project supported by Google, Mozilla and Opera, amongst

others. It is actively developed and maintained and its goal is to provide peer to peer RTC (Real

Time Communications) in the web browser. One of the most desired use cases is the ability for

audio and video conferences inside the browser without any plugin, which will be enabled by

WebRTC. Other applications inside the browser depending on a real time communication like

financial monitoring, peer to peer networks, games or device monitoring will also benefit from it.

WebRTC enables peer to peer communication but WebRTC has to have servers for clients to

exchange data in order to coordinate communication (signaling) and to find ways to work over

network address translators (NATs) and firewalls. Bellow we can see a data flow diagram of how

WebRTC architecture is laid out.

Figure 5: Data flow diagram of the WebRTC architecture

21

In Figure 6 we can see the data path and overal way two peers will be exchanging data. It

is quite similar to the VoIP signaling model discussed in SIP in page 6. This is why signaling

transportation mechanisms are out of the scope of the WebRTC project. Any well-known protocol

can be used for signaling for as WebRTC cares. So the WebRTC capable device signals that wants

to communicate with a peer. Then throught intermidiaries a path is established and then the media

flow begins, throught the peers, not involving the apps if not nessesarry. This model has a lot of

benefits as we will se in the next chapter.

Figure 6: WebRTC Web Triangle

2.2 Benefits from WebRTC

WebRTC makes possible all kinds of real time communication with audio, video and text

between users by utilizing the devices browser. Using WebRTC has different benefits for different

market segments. For the end users it has two major advantages. Firstly, is ease of use. Real time

communication is supported without the need for additional applications or plugins and it is

provided through comprehensive APIs. The second one is security. WebRTC makes mandatory

the usage of encryption for both the media and the signaling. Therefore, WebRTC provides a

higher security level than most currently public commercial telephony systems.

For enterprises WebRTC can provide a lot of benefits including at least without the need

for special applications cost savings on the costs of toll free telephone number for call centers and

also to enrich communication. Enhance the communication to users and employers without the

22

need to have and deploy special applications and servers. Also uninterrupted communication: Hold

the customers on the web site and at the same time start a video call with customer. In the mean

time you are securing the communications with the customers as well as the employees that are in

the home office and-or remote offices using state of the art encryption standards.

2.3 WebRTC APIs

2.3.1 GetUserMedia API

WebRTC applications use the GetUserMedia API [11] is present to allow access to media

streams that come from local devices such as video cameras and microphones. The

MediaDevices.getUserMedia() method prompts for permission to use one video and/or one audio

input devices. If the user provides the permission, then it returns a promise object with the resulting

MediaStream object or objects (audio and video or just audio). If the user denies that permission,

or a media device is not available, then it is rejected as a PermissionDeniedError or

NotFoundError. We can see the textbook example of the getUserMedia function below:

var p = navigator.mediaDevices.getUserMedia(constraints);

p.then(function(mediaStream) [

 var video = document.querySelector('video');

 video.src = window.URL.createObjectURL(mediaStream);

 video.onloadedmetadata = function(e) [

 // Do something with the video here if needed.];]);

p.catch(function(err) [console.log(err.name);]);

We can see that the getUserMedia function has is a MediaStreamConstaints (underscored

code) object which has two inputs: video and audio and the description of the media types that are

requested. If the browser fails or cannot find all the media tracks with the types that meet the

constraints then it returns a promise with NotFoundError. As an example below we request both

audio and video without any requirements:

23

[audio: true, video: true]

While the specifications about the user's cameras and microphones are inaccessible to the

browser for privacy reasons but we can request the camera and microphone for capabilities as

needed using additional constraints. The following is a constraint for 1280x720 camera resolution:

Constraints = [audio: true, video: [width: [min: 1280], height: [min: 720

]]

The browser will try to make this work, but also may return another resolution if an exact match

does not exist or the user sets it otherwise. To require a certain capability, we can use the keywords

such as min, max, or exact.

2.3.2 PeerConnection API

WebRTC needs an API to provide the networking support to transfer all that media and

data we want to the other peers The PeerConnection API as it is called has the methods and

mechanisms that enable this transfer, at the same time it also handles all the signaling messages.

Also SDP messages are sent to provide media and NAT reversal negotiation between two different

endpoints prior to establish data transmission. This protocol is used in a modified version that

allows for the usage of multiple media descriptions over a single set of Interactive Connectivity

Establishment (ICE) [12]. This feature is described as Bundle [13] and can be used along with the

existing SDP Offer/Answer mechanism to negotiate the different media on any given session.

Thus by using Bundled SDP we multiplex all the traffic using a one single port, so the media, data

and monitoring messages are sent over just one port. On the other side, signaling is not

standardized as we see in “Error! Not a valid bookmark self-reference.” and has to be provided

by the developer.

24

2.3.3 Data channel

So, someone could ask, we have AJAX, Server Sent Events and WebSocket. Why do we

need yet another communication channel? WebSocket has bi-directionality, but all these

technologies are designed for data transfer to and from a server. RTCDataChannel takes a different

approach on this issue. That is because it works with the RTCPeerConnection API, which uses

peer to peer connectivity. This has the advantage of lower latency because there are no

intermediary server in the loop so fewer hops. And RTCDataChannel uses SCTP (Stream Control

Transmission Protocol), allowing configurable delivery semantics like out-of-order delivery and

retransmit configuration. RTCDataChannel is available with SCTP support, in Chrome, Opera and

Firefox for both desktop and Android.

The RTCDataChannel API supports a flexible set of data types. The API is designed to

mimic WebSocket exactly, and RTCDataChannel supports strings as well as some of the binary

types in JavaScript such as Blob, ArrayBuffer and ArrayBufferView. These types can be helpful

when working with file transfer and multiplayer gaming.

RTCDataChannel can work in either unreliable mode (analogous to User Datagram

Protocol or UDP) or reliable mode (analogous to Transmission Control Protocol or TCP). The two

modes have a simple distinction:

• Reliable mode guarantees the transmission of messages and also the order in which they

are delivered. This takes extra overhead, thus potentially making this mode slower.

• Unreliable mode does not guarantee every message will get to the other side nor what

order they get there. This removes the overhead, allowing this mode to work much faster.

Table 2: Transmission modes comparison table

 TCP UDP SCTP

Flow control yes no yes

Reliability reliable unreliable configurable

Delivery ordered unordered configurable

Transmission byte-oriented message-oriented message-oriented

Congestion control yes no yes

Performance for both modes is about the same when there are no packet losses. However,

in reliable mode a lost packet will cause other packets to get blocked behind it, and the lost packet

25

might be stale by the time it is retransmitted and arrives. It is, of course, possible to use multiple

data channels within the same application, each with their own (un)reliable semantics.

2.3.4 RTCNinja API

WebRTC API wrapper to deal with different browsers transparently, as we see in

eventually this library shouldn't be needed. We only have to wait until W3C group in charge

finishes the specification and the different browsers implement it correctly

The main API calls and classes and functions for RTCNinja are:

• rtcninja.hasWebRTC()

o Returns true if the browser supports WebRTC.

• rtcninja.getUserMedia(constraints, successCallback, errorCallback)

function

o Provides a wrapper over the native navigator.(webkit|moz)getUserMedia()

function. As a feature, if WebRTC is not supported this function fires the given

errorCallback instead of throwing an error

• rtcninja.RTCPeerConnection class

o Provides access to the rtcninja.RTCPeerConnection class, which wrappes a native

(webkit|moz)RTCPeerConnection.

• rtcninja.RTCSessionDescription class

o Wrapper for the native RTCSessionDescription class.

• rtcninja.RTCIceCandidate class

o Wrapper for the native RTCIceCandidate class.

• rtcninja.MediaStreamTrack class

o Wrapper for the native MediaStreamTrack class.

rtcninja.attachMediaStream(element, stream) function

o Sets the given stream (of type MediaStream) as the source of the <video> or

<audio> element pointed by element. Returns the element itself.

rtcninja.closeMediaStream(stream) function

26

o Closes the given stream (of type MediaStream).

rtcninja.canRenegotiate attribute

Boolean indicating whether SDP renegotiation is properly supported by the current WebRTC

engine.

2.4 WebRTC Signaling

2.4.1 Introduction to WebRTC Signaling

Signaling is the process of sending control information between two points that want to

communicate in order to make agreements and to determine the communication protocols, media

codecs and method of data transfer, encryption as well as any required routing information. But

the most important thing to know about the signaling process for WebRTC: it is not defined in the

specification.

You may wonder why is something as fundamental to the process of establishing a

WebRTC connection left out of the WebRTC specification. Since the two devices have no way to

directly contact each other, how the specification will predict every possible use case for

WebRTC? It makes more sense to let the programmer select a signaling technology and protocol.

To be more accurate, if a developer already has a working method in place for connecting

two devices, it is not practical for them to have to use another one even if it is defined by the

specification, just to have WebRTC. Since WebRTC doesn’t live on its own, there is likely other

connectivity in play, so it makes sense to avoid adding additional connection channels for

signaling if an existing system can be used.

To continue in order to exchange signaling data, you can choose amongst a plethora of

different signaling protocols. You can send JSON objects over a WebSocket connection. You can

use XMPP or SIP or you could use XMLHttpRequest over HTTPS with polling and/or any other

combination of technologies you can come think of. You could even use email as the signaling

channel as well.

It’s also worth taking into account that the channel for doing the signaling doesn’t even

need to be over the network. One end point can output a data object that can be printed out,

physically carried to another end point, entered into that end point, and a response then output by

27

that device to be returned by car, and so forth, until the WebRTC peer connection is established.

It'd be very high time to establish a connection but it could be done. It is called out of channel

authentication.

2.4.2 Information exchanged during signaling

There are three basic types of data that need to be exchanged during the signaling phase:

• Control messages are used to set up, open and close the channel, and to handle any errors.

• Information needed in order to establish the connection: the IP address and port number

are needed by the end devices to be able to talk to one another.

• Media capability negotiation: find out what codecs and media formats can the end devices

understand? These need to be agreed upon before the WebRTC session can begin.

When the signaling phase has been successfully completed we start can the true process of

opening the WebRTC peer connection.

Also it's worth noting that the signaling server does not have to understand or do anything

with the signaling data between the two peers during signaling. The signaling server is in a way a

relay: a common point of reference on which both sides connect to having that their signaling data

can be transmitted through it. The server doesn't need to interact to this information in any way.

Which signaling to use for WebRTC is a controversial topic. It is mainly dichotomies in

two groups each with its advantages:

2.4.3 WebRTC has to have Directory Services

One element native WebRTC does not have is a directory service. A DS is necessary so

that WebRTC users can find each other or so that they may interact with someone who is on a

plain old telephone or a mobile phone. There are cases that directory services will be provided by

interfacing with a web site’s authentication system or with an existing enterprise class directory.

Directory information can then be passed down to the browser GUI, allowing users to find and

communicate with each other.

Another scenario would be a customer service web site that has an interface to a help desk.

In this scenario, the user who is browsing the website does not have to authenticate, only the

28

contact center agent has to authenticate. The application service then can automatically create the

correlation between the probable customer and a contact center agent. This communication can be

a direct WebRTC to WebRTC session, or it can be a WebRTC - to - POTS session, depending

upon what WebRTC capabilities the call center has.

2.4.4 JSON over Multiple Transports

The most intuitive for WebRTC applications to do signaling is the transmission of JSON objects

over the best available bidirectional transport — WebSocket, or, some combination of COMET

like mechanisms. This, for one, is the approach adopted by Google in the early and currently most

popular applications.

2.4.5 JSEP protocol

JavaScript Session Establishment Protocol (JSEP) [14] is in draft state . WebRTC call

setup has in general the full specification and control of the media plane, but the signaling is up to

the application to be handled as desired. Hence, WebRTC signaling may use different protocols,

such as the existing SIP or Jingle call signaling protocols, or a custom one. In this approach, the

important information that needs to be exchanged is the multimedia session description, which has

the transport and media configuration information needed to establish the media connection.

 The various browsers also have challenges that pose problems for signaling. One of these

is that the user may reload the web page. If the browser is in charge of the signaling state, this will

have as consequence the loss of the call. But if, the state can be stored at the server, and pushed

back to the new page, the call can be resumed with just a small interruption.

 With these things in mind, JavaScript Session Establishment Protocol (JSEP) allows for

full control of the signaling state machine from JavaScript. This mechanism effectively removes

the browser almost completely from the core signaling flow and the only interface needed is a way

for the application to give in the local and remote session descriptions negotiated by whatever

signaling mechanism is used, and a way to interact with the ICE state machine.

The way JSEP handles session descriptions is simple and straightforward. Whenever an

offer/answer is needed, the side that starts the connection, creates an offer by calling a

29

createOffer() API. The application then can modify that offer, and then uses it to set up its local

configuration by the setLocalDescription() API. The offer then can be sent to the remote side over

any transport mechanism like WebSockets. Upon receipt of that offer, the remote party installs it

using the setRemoteDescription() API.

 When the call is accepted, the callee uses the createAnswer() API to generate an answer,

applies it using setLocalDescription(), and sends the answer back to the initiator over the signaling

channel. When the offerer gets that answer, it installs it using setRemoteDescription(), and initial

setup is complete. This process can be repeated for additional offer/answer exchanges.

 As far as ICE [12] is concerned, JSEP separates the ICE state from the overall signaling

state, because only the browser has the available knowledge of candidates and other transport

information. Also in protocols that decouple session descriptions from transport, such as Jingle

[15], the transport information can be sent separately. In the protocols that don't, such as SIP [7],

the information can be used in the aggregated form. Sending transport information separately can

allow for faster ICE and DTLS startup, since the necessary roundtrips can occur while waiting for

the remote side to accept the session.

 Through its abstraction of signaling, the JSEP approach does require the application to be

aware of the signaling process, while the application does not need to understand the contents of

session. So, JSEP needs a JavaScript library that hides this complexity from the application

developer. This library would implement a given signaling protocol along with its state and

serialization code, presenting a higher level call-oriented interface to the application developer.

For example, this library could easily adapt the JSEP API into the API that was proposed for the

ROAP signaling protocol [16], which would perform a ROAP call setup under the covers,

interacting with the application only when it needs a signaling message to be sent. This will allow

JSEP to provide greater control for the experienced developer without having any additional

complexity on the novice developer.

2.4.6 Web Sockets

The Web Sockets API[17] is a specification maintained by the W3C Working Group.

Browsers typically only supported client pull mechanisms, and server push mechanisms was not

directly provided to web developers. This was a major drawback, as servers were not able to just

send date to clients when they had any updated information. There are been several workarounds

30

in achieving server push mechanisms but not a ‘real’ solution. Some practices of abusing the HTTP

protocol such as long polling have been thought of in RFC 6202[18]. The HTML5 WebSocket

API is the first standardization that aims to help browsers implement a common mechanism of

server push pull. The WebSocket protocol[19] has been designed for bidirectional communication

and it is done by using a single Transmission Control Protocol (TCP) connection, avoiding in

essence to create a new TCP connection every time the server or client want to communicate with

each other. WebSockets is protocol, and is treated as a HTTP upgrade during the handshake

procedure. Just like HTTP, it works on the default port 80, and for secure connection it on port

443 which is based on the Transport Layer Security (TLS) protocol [20]. Unlike most of the

HTML5 APIs, the WebSockets API requires support from the server as well. Hence it is not

enough if the browser alone implements the WebSockets. There are a number of server side

implementations of the Web Socket protocol in most of the well-known languages like C sharp,

Python, Java and even JavaScript. It, might be a bit surprising to know that JavaScript is used

outside the browser, however this has been around for some time now (in fact it has been available

soon after JavaScript was released for the browser in 1994). Node.js3 is one recent notable

example of a server-side implementation of JavaScript.

2.5 WebRTC Security

Lessons that we have learned all those years from communication protocols – networking

and social engineering the teams that developed the WebRTC have come up with a set of

guidelines for the implementations in the various browsers. Those are not followed by all the

browsers and are open to some interpretation but at least we see that there is a convergence within

the community in most aspects of this, admittedly very important subject.

2.5.1 Trust Model

The first and foremost thing in the WebRTC security model is the browser as also stated by

RFC draft[21]. The browser acts as the Trusted Computing Base (TCB) and is the only piece of

the system user can really trust. Its job is to enforce user's desired security policies and to

implement all the cryptography with whatever this implies. Also to authenticated entities such as

• Identity providers

31

• Other users (when cryptographically verified)

• Calling services (known origin)

• Sometimes network elements with the right topology (e.g., behind our firewall)

Authenticated does not mean trusted! But authentication is the basis of trust decisions

2.5.2 Same Origin Policy

The resources that are accessible need to be isolated. Scripts are allowed to make HTTP

requests but those requests are not allowed to be made to any other server but only to the same

origin from whence the script came [22]. Web Sockets provide an escape from this restriction.

The same origin policy (SOP) prevents server from making attacks on another server using

the user's browser, which protects both the user and the server B. In general, same origin policy

forces scripts from each site to run in their own sandboxes.

2.5.3 Permissions Models

Because no one wants to be seen or heard from his webcam without positive consent, one-

time camera and or microphone access is always asked from the user. A permanent camera and or

microphone access or user based permissions are not mandatory in this model. Data channels in

the other hand may be created without any user consent. So consent for device access is mainly a

matter of protecting the user's privacy from pernicious sites.

2.5.4 Permissions API

Browsers have to provide a mechanism to distinguish permissions type such as a new

PeerConnection or getUserMedia and to display different UIs for each permissions level. Also it

has to provide a mechanism to renounce any media stream access. It must make a site to commit

not to observe your data and all this has to be implemented in a trusted UI. The Permissions UI

has to clearly indicate when the camera/microphone are in use all the times and it should stop

camera and microphone access when UI indicator is being masked, e.g. from a window overlap.

Also the UI can provide a distinctive UI when user's identities are directly verifiable.

32

Figure 7: Part of the GUI permission user input

2.5.5 Communications Security

This is a problem all too known from the SIP world. For obvious reasons, it has to be

possible for the communicating parties to establish a communications channel which is secure

against message recovery and message modification. This has to be provided for both data and

media (voice/video). Technology for providing this are, SRTP [23], DTLS [24] and DTLS

SRTP[25]. It is paramount to understand that unlike a standard SIP proxy, the calling browser

controls the channel between the communicating endpoints and also the application running on

the user's browser.

2.5.6 Web Security Issues

Browsers must treat HTTP and HTTPS origins as different permissions domains. Mixed

content must not be treated as if it were from the HTTPS origin. Furthermore, there is the question

of where JS libraries come from. Are they trusted and by whom, so to be a continuation to the trust

chain. The standard thing to do is to download from a CDN, like so

 <script

crc="http://ajax.googleapis.com/ajax/libs/jquery/1.7.0/jquery.min.js">

 At minimum then, you want a HTTPS connection (not all CDNs do this) so the CDN is now

inside a security boundary.

2.5.7 IP Location Privacy

An unwanted side effect of the ICE behavior is that the other peer learns the other peers IP address,

which in turn leaks location information. This has privacy concerns and consequences in some

33

circumstances. The API has to allow suppression of ICE negotiation until the user accepts the

session. It also must provide a mechanism to do TURN only candidates and perhaps to allow

conversion to ICE candidates once peer identity is verified.

2.5.8 Communications Security: Implementation

Of course being in essence an all-around communication solution, WebRTC team is not

going to leave some key factors in their own. There are RFCs that state minimums in those key

components and functions of the APIs. We will list the ones we feel are the major ones: i) The

browser must support a baseline audio and video codec. ii) It must be possible to protect streams

and data from wiretapping [26, 27]. iii) The browser must encrypt, authenticate and integrity

protect streams and media and data on a per IP packet basis, and must drop incoming media and

data packets that fail the per IP packet integrity check. iv) Also the browser has to have a way to

support for cryptographically binding streams and data security keys to the user identity [28].

2.6 WebRTC handling NAT and Firewall Traversal

2.6.1 The different types of NAT

There are four types of NATs in today’s infrastructure, presented below in order from least

restrictive to most restrictive (i is for internal, e is for external and “Any” means the port number

doesn’t matter):

Full cone type NAT: is once an internal address (iAddress:iPort) is mapped to an external address

(eAddress:ePort), any packets from iAddress:iPort will be sent through eAddress:ePort. Any

external host can send packets to iAddress:iPort by sending packets to eAddress:ePort.

Address restricted cone type NAT: is once an internal address (iAddress:iPort) is mapped to an

external address (eAddress:ePort), any packets from iAddress:iPort will be sent through

eAddress:ePort. An external host (hAddress:any) can send packets to iAddress:iPort by sending

packets to eAddress:ePort only if iAddress:iPort has previously sent a packet to hAddress:any.

34

Port restricted cone: (like addressrestricted cone, but the restriction includes port numbers) cone

type NAT is once an internal address (iAddress:iPort) is mapped to an external address

(eAddress:ePort), any packets from iAddress:iPort will be sent through eAddress:ePort. An

external host (hAddress:hPort) can send packets to iAddress:iPort by sending packets to

eAddress:ePort only if iAddress:iPort has previously sent a packet to hAddress:hPort.

Symmetric cone type NAT: they are often “enterprise” NATs that are hiding more devices than

an average situation would require. Thus, their presence is significant and must be worked around.

Symmetric NATs has each request from the same internal IP address and port to a specific

destination IP address and port is mapped to a unique external source IP address and port. If the

same internal host sends a packet even with the same source address and port but to a different

destination, then a different mapping is used. Only an external host that has received a packet from

an internal host can send a packet back.

The techniques needed in order to establish a direct connection between peers become

more challenging as the NATed networks between them become more restrictive. In the worst

case, a relay with a public IP address is needed in order to exchange packets between peers.

2.6.2 The Problem of NAT and Firewalls in VoIP

So, Network address translators (NATs) are common devices that effectively hide private

networks behind public IP addresses, mostly to conserve IP namespace but also for a limited

security. This has the implication that when an IP phone is located behind NAT the phone’s

inability to correctly understand the network environment and the NAT devices inability to

understand the nature of the connection tried to be established or a combination of the two, results

in a problematic situation. To further develop the problem, connections can be initiated from the

private network to the Internet, but not the other way around. The situation is made worse by the

fact that SIP controls separate media streams and thus transports addresses. Many firewalls only

allow connections to be initiated from the private network, thus having the same effect as NATs.

Also, firewalls commonly deny access to port numbers associated with VoIP. Some even inspect

35

the packet contents to identify and drop VoIP traffic. Result: VoIP users behind NATs and

firewalls do not benefit from the end to end connectivity necessary for VoIP.

2.6.3 WebRTC connectivity

Offer/Answer and Signal Channel and Ice candidates are used in order to make connections

for WebRTC. Unfortunately, WebRTC can’t create connections without some sort of intermediate

in the middle. This would be the the Signal Channel. It’s any sort of channel of communication to

exchange the necessary information before setting up a connection, whether by post card, email

or even a pigeon.

Peer A who will be the initiator of the connection, will create an Offer. They will then transmit

this offer to Peer B. Peer B will receive the Offer from the signal channel and create an Answer.

They will then send this back to Peer A. As well as exchanging information about the media, peers

must exchange information about the network configuration and connections they have. This is

known as an ICE candidate and it has information about the available methods the peer is able to

communicate (directly or through a TURN server).

36

Figure 8: Typical WebRTC session

Figure 9: ICE connections

2.6.4 ICE – The NAT traversal solution for VoIP

Interactive Connectivity Establishment (ICE) [12, 29] is a very helpful framework to allow

your web browser to connect with peers and coordinate to determine the best communication path

between them. It provides a structured mechanism to acquire the optimal communication path for

every two given peers. Session Initiation Protocol (SIP) uses extensions that are defined to enable

the use of ICE protocol for setting up a call between two hosts.

There are many reasons why a connection from a Peer to another Peer won’t work as we

will see in “The Problem of NAT and Firewalls in VoIP”. It needs to bypass firewalls that would

otherwise prevent you from opening connections and give you a unique address if like most

situations your device does not have a public IP address, and relay the given data through a server

if your router doesn’t allow you to directly connect with the end users. ICE uses some of the

following techniques described in “WebRTC connectivity” to achieve this.

37

2.6.5 Trickle ICE

The Interactive Connectivity Establishment (ICE) protocol [12] as we saw above, gathers,

candidates it prioritizing them and chooses default ones and finally exchanges them with the

remote end device making pairs. Once all of the above has been done, and only then, all the parties

ca select the pair of candidates that will be used for the session.

While the above sequence has the advantage of being very straightforward to implement

and debug once done, it is also rather lengthy. That is because gathering candidates often involves

things like asking STUN [30] servers and then discovering UPnP devices and allocating candidates

at TURN [31] servers. And of course all of these is a big delay and very noticeable time and while

it can be run in parallel, they still need to go along with the “pacing requirements” from [12],

which is likely contribute to delays even more. So to make things worse some or all of the above

has to also be completed by the remote device as well. Both of them must then perform

connectivity checks and only then would they be ready to begin data transmission. No need to say

again, all of the above will sometimes lead to lengthy session establishment and it degrades user

experience.

So the purpose of trickle ICE is to define another ‘mode’ of operation for ICE, where the

candidates can be sent and received incrementally. This would allow ICE users to exchange host

and candidates’ information as soon as a session has been initiated. Connectivity checks for a

stream would also start as the first candidates for that stream are available.

Trickle ICE allows for limiting the amount of time of the establishment of connection in

cases where connectivity is confirmed for the first exchanged candidates. Even when this is not

the case, harvesting candidates for both agents and connectivity checks all in a parallel fashion

allows to considerably reduce ICE processing times.

38

Figure 10: Trickle ICE data flow

2.6.6 STUN

STUN [30] stands for Session Traversal Utilities for NAT (acronym within an acronym)

and is a set of methods to allow a host to find out its public IP address if it is located behind a

NAT. This is a critical step in order to acquire the true public IP address, NAT address and of

course the port number that the NAT has allocated for the application's (UDP) User Datagram

Protocol connections to the remote hosts. For this protocol to work it requires assistance from a

STUN server located on the public side of the NAT. It uses both TCP and UDP and for some

secure applications TLS can be used also. UDP is by far the most common.

Keep in mind that STUN is not implemented in all of VoIP solutions and is not a NAT

traversal solution. It can be used in order to discover candidate address – port mappings to help

other protocols (ICE for instance) to determine and establish a 2-way communication path.

The method is that the client will send a request to a STUN server on the public internet who will

reply with the client’s public address and with the information if the client is accessible behind the

router’s NAT.

39

Firewall Firewall

STUN servers

Who am I?

PEER ALICE

You are

IP: 201.152.101.2 Port:10151

PEER BOB

Who am I?

You are

IP: 201.152.101.2 Port:10151

MEDIA

Figure 11: Stun server – client message exchanges

2.6.7 TURN

STUN provides a way to traverse a NAT which can be useful for receiving packets from a peer.

However, if an address is obtained by STUN may not be usable by all peers. This address work

depending on the topological arrangement of the network. So to conclude, STUN by itself is not

able to provide a complete solution for NAT traversal because some routers that are using NAT

employ a restriction that is called ‘Symmetric NAT’. So this means the router will only accept

connections from peers you have previously connected to them.

So to combat this we there is TURN [31] which stands for Traversal Using Relays around

NAT. TURN offers better results with symmetric NAT than STUN does. But a complete solution

needs a way by which a client can obtain an address from which it can connect and receive media

40

streams from any agent which can send packets to the public Internet. This can only be achieved

by relaying the information through a server that resides on the public side of the Internet. To

further elaborate, Traversal Using Relay NAT (TURN) is a protocol that makes it possible for a

client to obtain IP addresses and ports from such a relay. This obviously comes with an overhead

so it is only used if there are no other way.

While TURN always provides connectivity to a client, it is a resource intensive task for

the provider of the TURN server. It is therefore a last resort to use TURN. It also adds a significant

delay for real time applications, the server must remain available for the duration of the call and

also for the time being is only implemented for IPv4 and UDP.

Firewall Firewall

STUN servers

PEER ALICE

You are

IP: 201.152.101.2 Port:10151

PEER BOB

You are

IP: 159.12.131.6 Port:30510

BEHIND SYMETRIC NAT

TURN serverMEDIA
MEDIA

Figure 12: Turn server – client message and media exchanges

41

42

2.6.8 Other ways to traverse NAT for VoIP purposes apart from ICE

Port Forwarding: SIP devices behind NAT use ports that you may need to set to be forwarded:

• The main SIP connection port – usually this is port 5060 and/or 5061. The

protocol is nearly always UDP

• The RTP media port or ports – often 10000 to 20000 UDP protocol.

One to one NAT: One to one NAT does not require any port address translation. If the VoIP phone

specifies in the SIP INVITE that it will be listening for RTP on Port 15001 then you set up the

NAT router to forward Port 15001 to that VoIP phone. This should work provided the external IP

address is also implementing one to one NAT or another effective NAT traversal technique.

VPN: VPNs can be used not only to secure further the already safe enough (see WebRTC Security

section) communication but also to completely bypass all NAT problems, since all the traffic

would be tunneled from HTTPS port 433, which all firewalls and routers understand and do not

touch. The downside is that VPN is an expensive process because it decodes – encodes data and

adds to the latency of the system.

SIP aware firewalls and NAT devices: Strike the problem in the place it starts from. Some

firewalls are SIP aware. They are configured to inspect packets and substitute the IP addresses

and/or port numbers in the SIP messages to match the IP address and/or port number it is opened

on the external interface of the firewall.

43

Figure 13: Nat Traversal techniques

44

3 Connecting Sip and Browser together

3.1 Integration of WebRTC with SIP

The Session Initiation Protocol (SIP) [7] is a crucial communication technology of the last

decade. SIP brought new and standardized control mechanisms. This allows the transformation of

IP networks into real multimedia communication platforms, which are now able to provide real-

time communication and presence services. Wider acceptance of SIP by the internet community

and telecommunication and ISP providers then has started the process of network convergence.

The network convergence provides us with better and seamless integration of computer

communication services with communication services of legacy telecommunication networks

(telephone and mobile). SIP allows to integrate and mix together different kind of communication

services into a new· kind of communication environment. The communication environment is

usually accessible through feature rich terminals and computer applications.

Figure 14 illustrates the basic data paths and nodes in order a WebRTC-to-SIP connection

to be established. In this scenario a webpage in a browser tries to communicate with a standard IP

phone. So through JSEP a browser sends a call request to the WebRTC server, which in turn, via

SIP, transfers the signaling to the Media Gateway of the VoIP network. When all the ICE paths

have been determined and the best path has been chosen then the media path is created and so

voice/video communications can commence.

Figure 14: Integration of WebRTC with SIP

45

It was obvious from the start [32] that web was lacking the integration with telephony and

only cumbersome and difficult proprietary technologies where available. WebRTC as was

mentioned earlier, does not exactly need the SIP. but it requires a kind of signaling mechanism.

The choice is up to JavaScript WebRTC application programmers. However, building a WebRTC

communication environment with respects to already built “legacy” SIP systems, open an issue of

WebRTC and SIP interworking. Solving issues brings the opportunity integrate SIP and WebRTC

and create a kind of integrated communication environment, which allows initiate a real-time

multimedia connection directly from a web browser through a WebRTC application interface.

Such WebRTC application, together with backend server communication entities, allows initiate

browser-to-browser as well as RTC sessions from browser to a SIP phone, communicator or legacy

PSTN, mobile phones. The WebRTC application, which is a JavaScript based application, is easily

integrated into any kind of web pages, web based e-learning LMS systems and etc. The whole

communication environment can be easily customized following user requirements and needs

using other programming APIs (HTTP or SIP APIs),

In order to be able to integrate WebRTC and SIP we need to solve several issues regarding

of interworking at the media and the signaling plane. Each of planes expects different approaches.

From the signaling point of view there are proposed two categories of WebRTC-SIP interworking

scenarios; translation at a gateway or implementing SIP in WS JavaScript APIs [33], Here

proposed and working solution is focusing on the second option, where the SIP signaling

functionalities are provided through SIP WS API.

The interworking at the media plane brings several main issues as for example the media

codec selection for audio/video media streams, management of media path (NAT and Firewalls),

questions of different techniques of encryption and exchange of encryption keys[34],

Having a situation that you need asynchronous communication between the browser and

an PBX the communication and in order to overcome the need for application specific signaling

the telecommunications industry proposes a standardized approach based on the tunneling of SIP

over WebSocket. SIP transports for UDP, TCP, TLS and SCTP already exist. By making the

existing infrastructure accessible over WebSocket the service providers will be able to open their

network to the web.

46

Parsing SIP messages in JavaScript is suboptimal but nonetheless open source frameworks

such as sipML5 [35] and JsSIP [36] have shown that it is doable. The issues of such an approach

are of different nature. Also relying just on WebSocket as a transport protocol is going to be a big

obstacle for those environments where HTTP middle boxes such as corporate proxies or load

balancers do not work with it. On the other hand, the SIP protocol is not designed and cannot

easily adapt to make use of the Trickle ICE optimization, which as we discussed in “Trickle ICE”

below, for minimizing connection establishment time. It is quite common that it can lead to delays

intolerable for the end user.

To elaborate, the delays with standard ICE connectivity happen when the endpoint is

configured with a few network interfaces that cannot reach the STUN and TURN servers and thus

wait for the timeout of the connection. This is even more prevalent with portable devices such as

smart phones that can simultaneously connect to 3G/4G Wi-Fi networks, but also sometimes with

laptops running VPN or are simply configured with non-reachable IPv6 address.

Finally, we need a WebRTC client with encoded WebSocket and SIP features. These

functionalities provide JavaScript libraries. There are two widespread used libraries, JsSIP [36]

and sipML5 [35]. There are also others, but less used JS libraries as for example QoffeSIP and

SIP-Js. Looking through the web there are several freely available WebRTC SIP clients, aka web

browser RTC applications.

3.2 The JsSIP framework

JsSIP [36] is a simple to use JavaScript library which leverages latest developments in SIP

[7] and WebRTC [2] to provide a fully featured SIP endpoint in any website. WebRTC enables

Real-Time Communications (RTC) audio/video capabilities in Web browsers and other devices

such as smartphones and that is where JsSIP stands on for its success. It provides the programmer

with a very good library for developing WebRTC SIP based communication systems. It provides

the SIP signaling obfuscation, in order to make it so simple that even someone who does not

understand SIP can make it work. Also, it provides the shim for the getUserMedia() functions of

the browser API.

47

With JsSIP any website can get Real Time Communications features using audio, video

and more with just a few lines of code. As in the web page of the project we can see that version

2.0.x has already a plethora of features:

• Support for SIP over WebSocket transport.

• Enables Audio/video calls, instant messaging and presence.

• It is lightweight!

• It is 100% JavaScript-based from the ground up.

• Offers an easy to use, powerful user API.

• Works with OverSIP, Kamailio and Asterisk servers.

Also it supports the following SIP standards:

• RFC 3261 “SIP: Session Initiation Protocol”

• RFC 3311 “SIP UPDATE Method”

• RFC 3326 “The Reason Header Field for SIP”

• RFC 3327 “SIP Extension Header Field for Registering Non-Adjacent Contacts”

(Path header)

• RFC 3428 “SIP Extension for Instant Messaging” (MESSAGE method)

• RFC 3515 “The SIP Refer Method”

• RFC 3891 “The SIP Replaces Header”

• RFC 4028 “Session Timers in SIP”

• RFC 5589 “The SIP Call Control – Transfer”

• RFC 5626 “Managing Client-Initiated Connections in SIP” (Outbound mechanism)

• RFC 5954 “Essential Correction for IPv6 ABNF and URI Comparison in RFC

3261”

• RFC 6026 “Correct Transaction Handling for 2xx Responses to SIP INVITE

Requests”

• RFC 7118 “The WebSocket Protocol as a Transport for SIP”

At signaling plane (SIP protocol), JsSIP runs in any WebSocket capable browser. Figure

14 illustrates a screenshot of web page caniuse.com [37]. As we can see all major browsers support

currently WebSockets.

48

Figure 15: List of browsers that support WebSockets

3.3 JsSIP framework API explanation

In this section we will attempt to go through the API and the main and mote notable sections

of the JsSIP.js use. We will avoid putting code examples in this part as we will explain the code

in a different section of the thesis.

So in this JavaScript implementation of the SIP protocol there are 3 modules.

1. The rather uninteresting JsSIP module that only has one getter function and that is

the version number

2. The JsSIP.debug module that you set it to enable in the start of the script and then

“forget about it”

3. And the JsSIP.rtcninja module that provides the WebRTC API wrapper to deal with

different browsers in a manageable way as we saw in the chosen JavaScript

libraries section.

There are 9 Classes in the JsJIP API. The JsSIP.UA (User Agent) class in which there

must be put initialization parameters. The mandatory parameters are the URI of the server and the

URL of the web socket server. After that you can call the instance methods. The first method

49

typically to do first is start(), which registers with the server and initializes everything. Other

important method is the call(target, options) method which makes an outgoing multimedia

call. Also very important are the callback events that let the user execute functions for a given

stimulus. Notably a connected event, disconnected call accepted, newRTCSession event etc.

The JsSIP.RTCSession class represents a WebRTC media session. It is the most heavily

programed section of JsSIP and has a lot of functions and events. Examples of method

implemented in this class are mute(), sendDTMF() and terminate(). The events callback in

this class are numerus and mostly are

The class JsSIP.Registrator class manages the UA registration procedures and also you can

put extra custom headers in the SIP if you so need.

The JsSIP.Message class is for a SIP based instant messaging system. It implements all the

functions you would expect from a messaging API such as sent(), and accept() and if the

message is incoming or outgoing.

The JsSIP.OutgoingRequest class sets the SIP request to be sent. Attributes include the

call_id and from and to information.

The JsSIP.IncomingMessage class is the corresponding of the OutgoingRequest class, just

for the incoming messages. Below we can see the part that JsSIP and RTCninja play in the browser

and the interconnectivity between them. Also the way JsSIP connects to asterisk and finally to the

outside POTS world.

50

4 Call Quality and Quality of Experience

4.1 Perceived call Quality

IP networks are best effort service and do not guarantee to pass information from one point

to another or the do it in a timely fashion. This impairs the connection and packet loss, delay and

jitter take their toll to the end to end perceived speech quality. There are QoS mechanisms and

controls in the application level have been developed to minimize the effects of these problems

and maximize the call quality. But in any way, considering a number of different and

heterogeneous network scenarios is there any way we measure their effectiveness under certain

conditions? Unlike Quality of Service (QoS) which is a somewhat well understood and

established, Quality of Experience (QoE) is still a very active area of research. By the way, what

really is voice quality? Defining a metric for voice quality is difficult because considering a good

voice quality for one user may be just mediocre for other users, particularly in another culture or

country that has linguistic and cultural differences [38, 39] . Voice quality is made up of two

factors: subjective such as expectation and conversational effort and objective like hardware,

software and particular network conditions and traffic. To sum up voice quality measurement is

classified into two categories: subjective and objective.

51

Table 3: Voice Quality Measurement Type comparison

Voice Quality Measurement Type comparisons

Subjective Type Objective Type

Time consumption
Very long consumption - 5 minutes

per participant
Short

Accuracy and Reliability High Medium - high

Management skill
High Low

Endeavor requirement High Low

Special test facilities

requirement
Soundproof room(s)

An objective measurement tool

Automatic acquisition of

measurement
No Yes

Collaboration

requirement

High

20-50 participants
Low

Cost
High

(for paying for participants and to

prepare test facilities like a sound

proof room

High for commercial tools low for

standard tool. e.g. E- model

Perceived Quality?

Device induced noise

Acoustic Echo

Codec quantization loss

Network Packet Loss

Delay

Ambient Noise

More delay

Route Flapping

Congestion - Jitter

Link Failures

Codec decoder Distortion

LAN Congestion

NAT -ICE induced delay

Acoustic Echo

Noise

Figure 16: Simple factors that affect perceived call quality

52

4.1.1 Subjective quality tests

There are several challenges for evaluating performance of multimedia systems. Video

streaming and VoIP traffic are mostly determined and or evaluated using a group of users at the

endpoint while using the services. So subjective voice quality measurement is to quantize users

perceptual call quality in telecommunications in subjective way.

It has been said by others in [39-43] that subjective voice quality measurements are the most true

method. Absolute category rating (ACR) is the prevailing subjective method, while it has been

stated in [44] that the conversation tests are one of the recommended methods by ITU-T [45, 46]

because it can reach maximum realism covering loss and delay effects. Subjective quality

measurement and or evaluation is very important because it is necessary to calibrate

measurements, as shown in Figure 17 that is adopted from [47].

Figure 17: Measuring MOS with calibration factor

53

4.1.2 E-model - Objective voice quality measurement

A tool which will be used to predict subjective quality of a conversational speech quality

is the ITU-T E-model. The E-Model was originally developed by ETSI [48] as a transmission

planning tool, and then standardized by the ITU as G.107 [49] and recommended by the

Telecommunications Industry Association [50] as “a tool which will estimate the end-to-end voice

quality, taking the IP telephony parameters and impairments into account”. This methodology puts

together individual impairments (loss, delay, echo, codec type, noise, etc.) owing to each the

signal’s properties and therefore the network characteristics into one R-rating. The transmission

rating issue R will he within the vary from zero to one hundred: high values of R during a range

of 90 > R > 100 ought to be taken as excellent quality, whereas a lower value of R indicates a

lower quality. Everything below fifty is clearly unacceptable and everything above ninety-four.15

is unobtainable in narrowband telephony. The main output of the E-model is that the transmission

rating factor R. based on this factor, one will simply predict however AN “average user” would

rate a VoIP decision victimization subjective MOS scores. The generally-accepted limit for high-

quality voice connection delay is 150 ms and 400 ms as a most tolerable limit. If the mouth-to-ear

delay exceeds outlined bounds it noticeably disrupts interactive communication. As delays rise

over this figure, talkers and listeners become un-synchronized, and sometimes they speak at the

same time, or each wait for the other to talk. This condition is often known as, talker overlap.

though overall speech quality is acceptable, holding such a conversation will be annoying. ITU-T

recommendation G.114 [51] offers the following conclusions:

• small delays (10-15 ms) don't seem to be annoying for users and no echo

cancellation is needed.

• delays up to one hundred fifty ms need echo control however don't compromise the

effective interaction between users

• if the delays are within the range 200 ms to 400 ms, the effectiveness of the

interaction is lower however will be still acceptable

• if the delay is beyond 400 ms, interactive voice communication is troublesome or

not possible and conversational rules are needed (as “over” indicators)

54

Talker and listener echo each contribute significantly to perceived speech quality in VoIP

telephony. As a general rule, the perceived quality decreases with increasing delay and/or

increasing level of the received echo signal however listener echo will be neglected if there's

sufficient control of the speaker echo. The degree of annoyance of speaker echo depends on the

amount of difference between the first voice and the received echo signal. This level difference is

characterized by the so called “Talker Echo Loudness Rating” (TELR). Anyway, ITU-T

Recommendation G.131 [52] provides helpful info concerning speaker echo as a parameter by

itself.

In the literature there are several methods for producing objective voice quality

measurement [53] stats. However, the E-model is the most popular non-intrusive measurement

method which is consistent with the IEEEXplore statistics from 2010 to April 2016 which shows

the found results of 3921 [54]. This evidence shows that the E-model is in the main research

direction for VoIP quality measurements[55].

The output of the E-model is a 100-point scale called R-value that is related to over twenty

parameters but can be obtained from calculation using (1), before mapping into MOS, which is a

5-point scale [49], using (2)

where R is R-value, where

Ro: is the basic signal-to-noise ratio, including noise sources such as room noise and circuit noise.

Is: is the signal impairment factor which is a combination of all impairments which occur more or

less with the voice signal simultaneously.

Id: is the delay impairment factor that caused by delay.

Ie: is the affective equipment factor that caused by codecs.

A: is the advantage factor that allows for compensation of impairment factors when there are other

advantages of access to the user.

and MOS-CQE is the MOS - estimated conversational quality [56].

The characteristic of R-value can also be represented as in Figure 18, whereas

55

Table 4 shows MOS-CQE equivalence[49] .

Figure 18: Relation between R-Value and MOS-CQE

Table 4: Relation among R-value, MOS-CQE and user satisfaction

R-value (lower limit) MOS-CQE (lower limit) User satisfaction

90 4.34 Very satisfied

80 4.03 Satisfied

70 3.60 Some users dissatisfied

60 3.10 Many users dissatisfied

50 2.58 Nearly all users dissatisfied

Although the E-model has been updated several times, ITU-T stated that it has not been

verified by surveys or laboratory tests for the whole and very large number of possible

combinations of input parameters [49]. It is consistent with the statements in [57, 58] that the

development of the E-model is not successfully completed because the current version of the E-

model does not reflect reality and pointed that the SG12 group failed to address significant factors

(e.g., codec tandeming). Therefore, the improvement, and enhancement versions of the E-model

have been issued as in [58-60].

Attempting to solve this QoE (Quality of Experience) problem, subjective tests were

conceived for evaluating the perceived voice quality. It was called The Mean Opinion Score

56

(MOS). This test is a widely accepted benchmark for quantifying and quality rating purposes. In

MOS tests procedures, callers rate the call quality in a scale from 1 (low quality) up to 5 (excellent

quality). The number of listeners have to be enough in order to have a representative average score.

This has the problem that subjective MOS tests are very time consuming, very expensive and do

not allow for real time measurements [5, 61] In the present, methods for measuring MOS

objectively are developed. As we saw earlier, one of them, the ITUT G.107 [61, 62]defines the E-

model. This is a computational model that put together important parameters that affect a call into

a factor that can be converted mathematically into a MOS scale. The (RTCPXR) Real Time

Control Protocol – Extended Report, defined in RFC 3611 [63], proposes a scheme to exchange

voice quality data given by the E-Model calculation. Further, the P.VTQ is being worked on by

ITUT as a new VoIP voice quality measurement standard.

4.2 Problems that are affecting VoIP performance

57

4.2.1 Call Quality Problems

There are a number of reason that a typical VoIP call will not be optimal and of a quality

we expect from a point to point network such as the plain telephone system. That is because the

IP network is a best effort one, meaning that there are no guaranties for data being timely or orderly

passed through the network, or that will arrive at all for that matter. Then is the codec and

quantization losses from the sound being encoded to a digital format and the way the audio is

presented to the listener that play a role as [64] states, the time delay between the speaker speaking

and the listener receiving the communication. Also echo imported from devices and noise levels

from the ambient room conditions play a major role in perceived audio quality. We will elaborate

below those reasons that degrade audio quality.

Figure 19: Potential Issues

58

4.2.1.1 Effects of Jitter

One of the most dreaded networking problem that effects RTC is network jitter or packet

interarival time. This is caused first and foremost by the network route flapping between routes or

from a congested network. As a countermeasure there are jitter buffers that will absorb low levels

of jitter. But high levels of jitter will make packets being discarded and will cause the adaptive

jitter buffer to get bigger thus increasing delay but reducing discards. If any packets arrive to late

are discarded by the jitter buffer and are regarded as “discarded”. Below we see an illustration of

how a jitter buffer holds packets. The effect of the jitter discarded packets makes the audio come

out as distorted and its pitch also usually changes.

Figure 20: Packet Loss and Jitter

4.2.1.2 Loss and Discard

Packet loss is most often associated with high network congestion. Thus jitter is almost

always due to congestion and leads to packets being discarded. So packet loss and discarded

packets often come together. Other factors may apply such as duplex mismatch and link failures.

4.2.1.3 Effects and Interaction of echo and delay

Echo is the effect that you hear your voice back at your earphone. Its causes are mainly

within the caller’s phone. An amount of the speaker sound enters the microphone (acoustic

59

feedback) and transmitted to the other end which is perceived as echo. Echo with a bit of delay

makes the call sound like a tunnel. For echo to be a problem, it needs to be loud and to have a

delay from the original noise. Echo with over 60mS delay is noticeable by humans. VoIP systems

do introduce a lot of milliseconds of latency into the call, and the more network hops the data go

through or the greater the network congestion, the bigger the latency is. As we see below the level

of echo above 55dB SNR is good and below 25dB or below is perceived as bad. We can also see

the effect of RTT in this plot.

Figure 21: Effect of Delay to MOS on Conversational Quality

Figure 22: Causes of Echo

60

Figure 23: Causes of Delay

The problem of revising network layer delay variations to application layer loss and delay

is addressed within the new ITU-T Recommendation G.1020, Packets that arrive with various

impairments (delays, jitter, and errors) are processed by the applying of transforms interference

into different impairments i.e. packet loss and extra delay by means of de-jitter. Packets with delay

variation within the “white” range square measure accommodated, whereas packets with larger

delay variation (in the “black” range) are discarded. during this method of transport layer delay

variation can be mapped to application layer delay and packet loss. in order to compensate for

jitter the best delay for the de-jitter buffer ought to be equal to the entire variable delay on the

connection. sadly, it's not possible to find an optimal, fixed de-jitter buffer size once network

conditions vary in time. Therefore, de-jitter buffers with dynamic size allocation, so called

“adaptive playout buffers”, are more appropriate. A nice de-jitter buffer ought to keep the

buffering time as small as doable whereas minimizing the amount of voice packets that arrive too

late to be played out. These 2 conflicting goals have led to numerous playout algorithms that

calculate playout deadlines. A basic trade-off exists between buffering delay and packet loss. This

trade-off is decided by the size of the de-jitter buffer. a bigger de-jitter buffer will accommodate

packets with larger delay variation; thus fewer packets would be lost, at the expense of larger

overall delay. Similarly, a smaller de-jitter buffer can produce less overall delay, however cause a

bigger fraction of packets to be discarded by the terminal, therefore increasing the general loss.

61

Generally, a decent playout algorithm ought to be able to minimize both: buffering time and late

packet loss and so improve the loss/delay trade-off.

4.2.1.4 Noise

Noise is any interfering sound in a call. Noise in the call can be due to low signal level or

from bad equipment and from the proses of encoding (quantization noise). Also noise is considered

environmental noise, just as a fan inside a room. As a service provider we need to distinguish

between room noise that it is nothing we can do and Network/equipment/circuit noise. VoIP only

solutions have very little noise compared to plain old telephone systems or hybrid solutions.

4.3 Measuring VoIP Performance

The evaluation of the quality of VoIP calls is a very difficult task. It is mostly performed

by the statistical analysis of the satisfaction of real people. So because this is highly impractical

we need a pseudo-subjective quality method to see the performance of VoIP telephony. To

extrapolate the effects of various QoS parameters like end-to-end delay, packet loss in VoIP

system as we discussed above. As we see in literature there aren't many methods to get a MOS

rating and analysis of perceived voice quality in VoIP. The determination of Subjective

measurement methods is a difficult thing to do. Subjective measurements of QoS are carried out

by use of a group of people [65, 66]. As we can see a test phrase is recorded and then users listen

to it under controlled conditions within special rooms, with background noise and other factors

due to the surrounding environment, which are kept under control for test executions. Some

examples of those are: hearing test, conversation assessment test, an interview and a survey test.

There are disadvantages to this type of test mainly due to expense and are not implemented a lot

in practice because of the large number of test subjects are needed. The obtained results are of

statistical significance only when large numbers of people are participating.

The existing listening tests make possible the subjective assessment of speech. The goal

of those tests is to evaluate the performance of the individual algorithms under different

conditions. Some of the known hearing tests are as follows: ACR (absolute category rating) and

DCR (degradation category rating) and CCR (comparison category rating).

62

The assessments of the quality related parameters are possible with the BYE message in

the Cisco ecosystem mainly[67]. In Figure 23 for clarification we see JI = jitter, PL= Packets Loss,

etc. as [67] explains.

Figure 24: Cisco BYE message

4.4 WebRTC's Statistics API

WebRTC traffic is transported via best-effort IP based networks, which are by design

susceptible to network congestion. A congestion in the network increases latency and packets may

be dropped to mitigate the congestion, burst losses and long delays affect the quality of the media

stream, and as such lowering the user experience at the receiving end. To make sure WebRTC

calls can be offered at the best possible quality, the standard includes a real-time statistics API [6].

Someone can access the provided WebRTC statistics simply opening the WebRTC-internals

page in the browser when making the call or using the getStats() API call. The getStats() API

provides information as follows:

• Sender media capture statistics: media generation, typically frame rate, frame size, clock

rate of the media source, the name of the codec, etc.

• Sender RTP statistics: media sender, typically packets sent, bytes sent, round-trip-time,

etc.

63

• Receiver RTP statistics: media receiver, typically packets received, bytes received, packets

discarded, packets lost, jitter, etc

• Receiver media: render statistics media rendering, typically frames lost, frames discarded,

frames rendered, playout delay, etc.

• Datachannel metrics: messages and bytes sent and received on a particular datachannel.

• Interface metrics: metrics related to the active transport candidates. For example, if the

network interface changes from a WiFi to 3G/LTE on a mobile device, or vice-versa. The

active interface also carries the network related metrics: bytes, packets, sent or received on

that interface, and the RTT.

• Certificate stats: shows the certificate related information, for example, the fingerprint and

current algorithm.

The most influential and critical statistic is frame inter-arrival latency, or jitter: as frames are

generated and sent periodically, it is reasonable to expect them to arrive periodically. Due to the

presence of other traffic in the network, the packets may not only arrive out of order, but also

arrive at varying intervals. In an audio call this may cause the syllables to elongate or be abruptly

cut-off. If video is involved, this may result in loss of lip synchronization (audio and video are out

of sync). Another very important statistic is packet losses and packet discards: packets may be lost

in the network. Communication applications require fluidity; this means that the frames need to

be decoded in time to preserve interactivity. Hence, frames that do not arrive in time to be decoded

are often discarded even before decoding. In both cases, the decoder needs to compensate for the

missing packet, either by applying concealment or just decoding as is. This may cause pixilation

or a black screen for video and in audio speech may appear to skip. For example, the endpoint can

parse the output of the getStats() query result for the inbound RTP statistics to get jitter, packets

Loss, and packets Discarded.

There are also some security considerations such as stats identifiers may expose personally

identifiable information, for example the IP addresses of the participating endpoints when a TURN

relay is not used.

64

5 Design and Implementation

5.1 Design and Choices we made

5.1.1 The HTML and JavaScript hosting server

A Simple Apache server was used to host the HTML5 pages and JavaScript to the clients.

Although we had to secure it and make an HTTPS certificate available for him.

5.1.2 Chosen JavaScript libraries

I had first tried the SIPml5 JS API with some success. But upon further testing we

concluded that the ICE was not working properly and the error messages were far too cryptic for

me to solve so we gave up on it. Afterwards we used JsSIP and from there on this is a main API

that we used. JsSIP has a bit more community and the SIPml5 is obviously targeted to become

part of a commercial program. JsSIP uses WebSocket as SIP transport [68]. By default then

RTCNinja was the RTC wrapper API to deal with different browsers as transparently as possible,

although it is not a promises ready wrapper as stated in W3C Working Draft 1.0 [69]. Adapter.js

was used as a shim to insulate the rest of the JavaScript code from spec changes and prefix

differences. For example, Chrome uses webkitGetUserMedia() and Firefox uses for the exact

same call mozGetUserMedia().

5.1.3 Environment

The following software, was used for the implementation:

• Execution Environment

o Oracle VirtualBox v5.0.14

o CentOS 7

o Apache 2.4.18

o Firefox Nightly with firefly add on

o Google Chrome devbuild

o PHP 7

• Mobile execution environment

65

o Simulated Android phone

o Iocean 8core 64bit device. 5.1 android version

� Firefox beta for android

• Development Tools

o Java Development Kit (JDK) 8

o Netbeans 8.1

o Notepad++

o Putty

o WinSCP

• JavaScript Libraries

o Adapter.js

o JsSIP.js

o rtcNinja.js

o jQuery.js

5.1.4 VM and host machine setup

The VM software that was used is an Oracle VirtualBox v5.0.14 and the allocation of

resources was as high as my machine would go. The specs are:

• 10GB RAM 1800Mhz

• 4 cores Intel i5 @ 4.3Ghz over clocked, water-cooled

• Installed over and SSD 500MB read/500MB write

• Gigabit Ethernet LAN connection

• 1Mbps upload speed and 12Mbps Download WAN speeds

66

Figure 25: VM settings

67

5.1.5 Cryptography settings used

As RFC 5763 [21] and RFC draft [25] state, there MUST be no weak link or plain text

transport for signaling and media. Thus the apache server has to offer https and the web socket

server must offer Web Socket Secure transmission and Asterisk has to offer SRTP. In order to

achieve this, we created my own CA so we can sign certificates. The method we used to create the

CA is by invoking openSSL library. Then we generated the additional certificates for the HTTPS

server the WSS server and another one for the asterisk server and also we set the settings for the

SIP extensions to use cryptography and not to allow plain traffic to pass through (transport mode

= WSS only and Enable Encryption option was set to SRTP only). This was also done to the web

socket server. Then we went forward and installed my CA as a root authority in my machines and

mobile phone so it would seem as a legitimate self-signed certificate. This is a very important step

because supposedly my web apps would not work unless there where under secure conditions. In

practice this was true for Chrome but not so for Firefox, but soon it will be. Also for our needs we

have made an OpenVPN VPN tunnel. The home router was used in conjunction with OpenWRT

in order to make the VPN work, simulating what an enterprise would do.

5.2 Implementation

5.2.1 The SIP registar and PBX server

Asterisk was chosen to be the PBX server that would create the backbone of this

implementation and would bring all the multiprotocol technologies required for this thesis to come

together. Asterisk is an open source framework that powers IP PBX systems, VoIP gateways,

conference servers and many other hybrid solutions. Asterisk abstracts some of the complexities

of the protocols used and marries together the POTS (plain old telephone system) with the VoIP

world. We could think no better alternative than using Asterisk. The distribution we went with is

FreePBX which has a strong community and a good bug reporting feature and does not cost

anything compared to other installations [70].

68

Figure 26: FreePBX main console

5.2.1.1 Connecting to the plain old telephone system

For the purpose of demo and exploration we purchased a SIP landline number 28210 8007.

The emergency 122 100 166) numbers were assigned to Chania city from the company we bought

the number from and we made this line an emergency line in asterisk settings.

For the outgoing settings, the dial pattern assigned to the Asterisk server for this outbound

route was a rather simple NXXXXXXXXX and a ZXX where N matches any digit from 29, X

matches any digit from 09 and Z matches any digit from 19. This ensured no calls were made

abroad and in high toll numbers.

Calls incoming to this line where greeted from an Interactive Voice Response (IVR) asking

to put the extension number or to dial a number for doing an echo test. Also the CID lookup Source

was set for the web Scrapper called id we made and we have explained thoroughly in “Web

Scraper Special PHP Caller ID identification” above.

69

Apache

Static Content

Asterisk

Asterisk

Core Dahdi

Channels

T1 - ISDN – FXO – FXS – IAX – SIP Trunk
Firewall

Web Socket

Module

STUN servers

VIVA NUMBER

2821800797

Desktop and mobile phone browsers Outside World and Plain Old Telephone

Network

Home IP phones and FXS phones

Figure 27: Thesis Servers and the connectivity to the world

70

5.2.1.2 Firewall and Intrusion detection

There is an expectation that when you have open ports to the outside world, people will try

to hack you. We had more than 1000 SIP requests per hour after we let ports 5060 and 5061 open

to the outside world. Script kiddies were attacking those ports and it was becoming hard for me to

follow the logs of asterisk because of the clutter. we implemented firewall rules according to

common sense and responsive firewall rules. Any incoming VoIP connection attempts that would

be otherwise rejected are not blocked by the responsive model but instead allowed a very limited

amount of registration attempts. If the registration attempt is successful, the remote host is then

added to a 'Known Good' zone, that has permission to use that protocol, and is further more granted

access to User Control Panel, if UCP is enabled. If the incoming connection attempts are shown

to be invalid, then the traffic from that machine will be dropped for a short period of time. If

attempts to authenticate from a particular IP continue without success, the attacking host will be

blocked for 24 hours.

As intrusion detection goes Fail2ban is enabled and configured on the VM. Fail2ban

screens attempts to compromise the system and logs them. If the attempts exceed the Max Retry

limit, the remote IP is blocked from accessing the system for the length of Ban Time. It will also

send email alerts when malicious connect attempts happen.

5.2.1.3 SIP extensions and SIP configuration

For the purposes if demo and experimentation we had made 4 sip extensions on the server.

Namely 100 and 200 was the JsSIP extension and where configured as such. 300 and 400 where

extensions configured to run of softphones. The important bit is extensions 100 and 200. They

were configured as follows in the sip.conf file they are practically identical. The important bits are

in bold letters.

Table 5: SIP peer settings example

[100]

deny=0.0.0.0/0.0.0.0

secret=notShownHere

dtmfmode=rfc2833

canreinvite=no

71

context=frominternal

host=dynamic

trustrpid=yes

sendrpid=no

type=friend

nat=yes

port=5060

qualify=yes

qualifyfreq=60

transport=wss

avpf=yes

force_avp=yes

icesupport=yes

encryption=yes

namedcallgroup=

namedpickupgroup=

dial=SIP/100

mailbox=100@default

permit=0.0.0.0/0.0.0.0

callerid=From JsSIP <100>

callcounter=yes

faxdetect=no

cc_monitor_policy=generic

dtlsenable=yes

dtlsverify=yes

dtlscertfile=/etc/asterisk/keys/default.pem

dtlscafile=/etc/asterisk/keys/ca.crt

dtlssetup=actpass

dtlsrekey=1

DTLS and SRTP had to be enabled and certificates issued for the WebRTC project to work

correctly in the majority of the browsers (see Communications Security in page 32).

The SIPp SIP stack was used because we had problems making WSS work with JsSIP.

Although it is in the process to be deprecated we found that it works a lot more stable as well.

72

5.2.1.4 Asterisk support of RFC 3327

So asterisk does not implement path mechanism RFC 3327. In the sip protocol he

REGISTER function is used to associate a temporary contact address with an address of a record.

This contact is typically in the form of a (URI) Uniform Resource Identifier, such as Contact:

<sip:alice@gmail.com> and is typically dynamic and associated with the IP address or hostname

of the SIP User Agent (UA). The problem is that network topology may have one or more SIP

proxies between the UA and the registrar, such that any request traveling from the user's home

network to the registered UA must traverse these proxies. The REGISTER method does not give

us a mechanism to discover and record this sequence of proxies in the registrar for future use.

In short this allows discovery for intermediate proxies during SIP registration and in subsequent

requests. Note that RFC 3327 recommends that the registrar support S/MIME, and attach a signed

S/MIME of the response, which Asterisk does not currently support.

 The click to call button has to have a sip password and alias but it has to be an anonymous

and for that we can sent a <random>.invalid URI to asterisk, which asterisk won’t agree very well

to. Thus for the purposes of this thesis we have enabled the hack-uri-to-ip option that JsSIP offers.

73

5.2.2 Click to Call Button

5.2.2.1 Button design and CSS manipulation

For the implementation of the click to call button the HTML design and CSS format was

actually drown inspiration from similar use cases. CSS classes where used to define different

colors for the click2call button. Below we see the different states that the button can be in.

• default State (WS connected or call terminated)

• dialing phase (call progress)

• answered (call accepted)

• Any type of error (call failed, WS disconnected, global error)

The CSS code that made that work is directly embedded in the js file in var js

On JsSIP events, the behavior was programmed as follows.

• The html button CSS class was changed so it would represent the current state of

the call

• WS connection callback was attempted.

• Call generation callback was issued.

For example the accepted JsSIP case was programed as follows:

 case 'progress':

 jQuery(this.dom).removeClass().addClass('callbtn callbtndialing');

 jQuery(this.dom).text(this.label_dialling);

74

 this.setOnClick('terminate', session);

 break;

And to reset the button after a call was terminated:

case 'ended':

 jQuery(this.dom).removeClass().addClass('callbtn callbtndefault');

 jQuery(this.dom).text(this.label_default);

 this.setOnClick('call', session);

 break;

5.2.2.2 Basic click to call button setup

The basic setup starts with the code to insert the click to call button in the web page. Since

it is a button after all you enclose it in <button></button> tags and in between you enter the default

label of this button, e.g. “Click to contact Sales”. Then the standard class definition for the CSS

purposes, and which text to display during operations to let the user know what is happening

(dialing, connecting…) and for localization purposes. Also the destination of the call is set to the

“call to” parameter. After that the three must have, non-optional parameters that JsSIP asks, the

web socket server location, the SIP URI assigned to the button and the password to connect to it.

Because the password is plaintext (!) in asterisk we HAVE to make a custom context for that

extension, in our example 100, that prohibits all activities except to call the extension(s) this button

is supposed to reach. It is not a trivial think to do in an asterisk server and requires experience.

Figure 28: HTML part of the click 2 call button

75

Figure 29: Part of the Custom Context created for the click to call button

5.2.2.3 Initialization of the button

As the page loads, first we enable the JsSIP debug option, in order to have console

messages and a ‘view’ of the inner workings of this library. Then there is a check that the dowser

supports A WebRTC and B WebSocket. If not the script end here. Then because we do not want

to do a SIP register as soon as the web page loads but only later, if the user presses the button we

disable the register parameter of JsSIP. Then we inject the config we have prepared to a UA (User

Agent) which is associated to a SIP user account.

To end the initialization, the click methods for the button are bounded and the JsSIP UA

event callback definitions are set. The only callbacks required for the click to call button are

onConnect() and onDisconet().

5.2.3 Caller Id Scraped from the web –Reverse find of caller ID

As we were exploring the features of asterisk we noticed that there is not a similar

application to the, very useful for me, GreekCallerID app we had in my android phone. It seemed

that we could not do without it. This application would go to whitepages.gr xrisosodigos.gr and

other places, so it would find out who is calling you in real time.

I made essentially a plugin PHP page for asterisk, a mere webpage that after asterisk would

give it a phone number this page would go and scrape xo.gr and ote.gr to find the caller’s name,

if it existed. If it would, the PHP script would ‘translate it’ to greeklish so even non Unicode IP

phones would have no problem to understand it. If it would not find a result it would just return a

76

blank page. We used the curl library in order to scrape the data of the internet. Below we see the

part of the code that will search the phone number and scrape it of the ote.gr webpage.

Table 6: Part of the scrapper code that lifts the Name that it found

 if ($scraped_data=="")[

 $scraped_page =

curl("http://11888.ote.gr/web/guest/listnames?_wpType=number&_wpPhone=".

$_GET["phone"]);

 $scraped_data = scrape_between($scraped_page, "",

"");

]

Table 7: Part of the code that does the greeklish translation

function greeklish($Name)

[$greek = array('α', 'ά', 'Ά', 'Α', 'β', 'Β', 'γ', 'Γ', 'δ', 'Δ', 'ε', 'έ',

'Ε', 'Έ', 'ζ', 'Ζ', 'η', 'ή', 'Η', 'θ', 'Θ', 'ι', 'ί', 'ϊ', 'ΐ', 'Ι', 'Ί', 'κ',

'Κ', 'λ', 'Λ', 'μ', 'Μ', 'ν', 'Ν', …).

$english array('a', 'a', 'A', 'A', 'b', 'B', 'g', 'G', 'd', 'D', 'e', 'e', 'E',

'E', 'z', 'Z', 'i', 'i', 'I', 'th', 'Th', 'i', 'i', 'i', 'i', 'I', 'I', 'k',

'K', 'l', 'L', 'm', 'M', 'n', 'N', ….)

$string = str_replace($greek, $english, $Name);

return $string;

And the corresponding ‘bridge’ between my PHP code and asterisk. The local Apache

server is responsible of executing the PHP code.

77

Figure 30: The asterisk CID Lookup settings page

5.2.4 WebRTC supported Web Phone

For demonstration purposes, this user interface simulates a real phone that someone would

expect to have in front of him together with its functions. Additionally, we can see that there is a

get statistics button that will show all the available statistics the browser has to offer. Limitations

exist, such as not having the possibility to have re-invites, needed for hold function to work. GUI

interface is courtesy from the JsSIP project. Additional code and functions where added in order

to make it work with our implementation and also to add support for statistics gathering.

78

Figure 31: WebRTC demo application showing also statistics

79

Apache

Static Content

Asterisk

Asterisk

Core

SIP Channel

RTP Engine

Signaling - Control

SRTP Media

Dahdi

Channels

T1 - ISDN – FXO – FXS – IAX – SIP Trunk

HTML5 and Web RTC capable Browser

Jssip.js

SRTP - SDP

Browser Agnostic

WebRTC implementation

(RTC Ninja)

HTTPS

HTML 5

Canvas for

showing live video

Outside World and Plain Old Telephone

Network

WebRTC Gateway

Firewall

Firewall

STUN servers

Web Socket

Module

SRTP - SDP

Who am I requests

SIP Over WSS
getUserMedia API

TURN server

 Figure 32: How the constituent parts of the implementation work together

80

6 Evaluation of WebRTC – to - SIP calls

As found in bibliography [47, 66, 71, 72] the major players in the quality aspect of a VOIP call

are jitter and Delay, which is round trip time divided by two. Accepted values are delay up to

100ms and jitter between 0 and 20ms. In all other scenarios the quality degradation is audible by

a human.

Table 8: Voice Quality Measures

Network parameter Good Acceptable Poor

Delay (ms) 0-100 101-300 >300

Jitter (ms) 0-20 21-50 >50

6.1 Testing we have done

In order to evaluate the good working order of the system we have tried many possible

scenarios that could come up in a real world situation. The following calls were made to and from

the PBX box. If the call was an incoming to the PBX it would be diverted to an echo application

most of the time, so we could also have an audible estimation of the delay between the machine

and the caller.

Landline POTS based tests

• to internal sip extension, both soft phone and WebRTC

• to echo application

• to extension thought VPN, both soft phone and WebRTC

• to extension on mobile phones browser (Firefox)

Internal based tests

• Lan extension to External WAN extension.

• to another LAN extension, both soft phone and WebRTC

• External LAN extension to Internal Lan extension

• Extensions to landline

81

• All the above with conference.

VPN based tests

• to internal, both soft phone and WebRTC

• to external extension, both soft phone and WebRTC

And last WAN to WAN extensions, both soft phone and WebRTC phones.

There is no need to test combined scenarios, e.g. external POTS device to External

WebRTC, (even that we have made tests) because this kind of test just combines 2 successful other

kind of tests.

We have concluded that the system works wonderfully and there is no significant wait for

the calls as there are being established.

82

6.2 Statistics Gathering code

6.2.1 Real Time Gathering

In order to collect all the statistics the WebRTC has gathered through RTCP[6] packets

we have to use the API that is provided from the browser. To begin we made a simple <div> in

the HTML we needed to show all the gathered stats. That code is as follows:

 <section id="statistics">

 <div id="senderStats"></div>

 <div id="receiverStats"></div>

 </section>

This section will be the placeholder for the JavaScript to anchor the viewable statistics for

demonstration purposes and it kind of simulates the ‘Statisticsfor nerds” section YouTube has.

 Afterwards to the .js file the variables are initialized

var senderStatsDiv = document.querySelector('div#senderStats');

var receiverStatsDiv = document.querySelector('div#receiverStats');

var bitrateDiv = document.querySelector('div#bitrate');

var peerDiv = document.querySelector('div#peer');

var bytesPrev;

var timestampPrev;

 The function to be called to display the statisticsis called

invokeGetStatistics(remotePeerConnection) and the parameter remotePeerConnection is the

RTPConnection object that we need to get the statistics from. Then we check if the object is not

null and that it has streams attached to it by doing the following if (remotePeerConnection &&

remotePeerConnection.getRemoteStreams() [0]). If this test passed we extract the raw

results by:

remotePeerConnection.getStats(null, function(results) [

 var statsString = dumpStats(results);

 The dumpStats function prettifies and makes the results human readable by the following

Code:

function dumpStats(results) [

 var statsString = '';

 Object.keys(results).forEach(function(key, index) [

 var res = results[key];

 statsString += '<h3>Report ';

83

 statsString += index;

 statsString += '</h3>\n';

 statsString += 'time ' + res.timestamp + '
\n';

 statsString += 'type ' + res.type + '
\n';

 Object.keys(res).forEach(function(k) [

 if (k !== 'timestamp' && k !== 'type') [

 statsString += k + ': ' + res[k] + '
\n';

]

]);

]);

 return statsString;

]

 Keep in mind that for demo purposes the types localcandidate remotecandidate

googCandidatePair candidatepair are not shown to the HTML page due to them being too lengthy

and not critical for our purpose.

 Then we resume on calculating some thinks that the browser won’t give us for free.

That is the:

 IP of the user we are trying to connect to by figuring out the candidate pair:

 Object.keys(results).forEach(function(result) [

 var report = results[result];

 if (report.type === 'candidatepair' && report.selected ||

 report.type === 'googCandidatePair' &&

 report.googActiveConnection === 'true') [

 activeCandidatePair = report;

]

]);

 if (activeCandidatePair && activeCandidatePair.remoteCandidateId) [

 Object.keys(results).forEach(function(result) [

 var report = results[result];

 if (report.type === 'remotecandidate' &&

 report.id === activeCandidatePair.remoteCandidateId) [

 remoteCandidate = report;

]

]);

]

 if (remoteCandidate && remoteCandidate.ipAddress &&

84

 remoteCandidate.portNumber) [

 peerDiv.innerHTML = 'Connected to: ' +

 remoteCandidate.ipAddress +

 ':' + remoteCandidate.portNumber;

]

And the bitrate of the video stream if any

 if (report.type === 'inboundrtp' && report.mediaType === 'video') [

 // firefox calculates the bitrate for us

 // https://bugzilla.mozilla.org/show_bug.cgi?id=951496

 bitrate = Math.floor(report.bitrateMean / 1024);

] else if (report.type === 'ssrc' && report.bytesReceived &&

 report.googFrameHeightReceived) [

 // chrome does not so we need to do it ourselves

 var bytes = report.bytesReceived;

 if (timestampPrev) [

 bitrate = 8 * (bytes - bytesPrev) / (now - timestampPrev);

 bitrate = Math.floor(bitrate);

]

 bytesPrev = bytes;

 timestampPrev = now;

]

 if (bitrate) [

 bitrate += ' kbits/sec';

 bitrateDiv.innerHTML = 'Bitrate: ' + bitrate;

]

Below we can see how this looks like in the browser

Receiver stats

Report 0

time 1460899983181.84

type inboundrtp

id: inbound_rtp_audio_0

isRemote: false

mediaType: audio

ssrc: 669552950

bytesReceived: 18748

jitter: 0

85

packetsLost: 0

packetsReceived: 109

Report 1

time 1460899983181.84

type inboundrtp

id: inbound_rtp_video_1

bitrateMean: 228103.6363636363

bitrateStdDev: 46229.211831626824

framerateMean: 6.787878787878789

framerateStdDev: 2.628337594023741

isRemote: false

mediaType: video

ssrc: 1263900901

bytesReceived: 1945623

discardedPackets: 0

jitter: 0.361

packetsLost: 0

packetsReceived: 2569

Report 2

time 1460899983181.84

type outboundrtp

id: outbound_rtp_video_1

6.2.2 Post Call Statistics Gathering

Also we have found a way to store for after call analysis many important data in the CDR

directory of asterisk, per call basis. The info we were able to take was the following:

• Packets Sent

• Packets Received

• Local RX Packet Loss

• Local TX Packet Loss

• Local RX Jitter

• Local TX Jitter

• Local Jitter Max

86

• Local Jitter Min

• Local Jitter Norm Dev

• Local Jitter Std Dev

Figure 33: Screenshot of the CDR report we made for accessing post call stats

6.3 MOS measuring code

6.3.1 Real time measurement

The hard work done by the statistics gathering code and the collected data has to be

converted to useful information for the end users, e.g. for assessing the subjective quality of calls

during the call time. To this end, we have made use of a simplified E-model measuring system.

As previously mentioned at “Evaluation of WebRTC – to - SIP calls” in chapter 6 drawing from

literature, we have extrapolated a simplified way of determining a live MOS. In Figure 34 we can

see a color coded code snippet that calculates the simplified MOS in real time using simply the

measured RTT of a call. Figure 35 illustrates a call with the associated MOS calculation.

87

Figure 34: MOS measuring code

Figure 35: Screenshot of the live MOS score

88

6.3.2 Post call measurements

Saved in the CDR we can calculate the MOS by accessing the data stored in there as we

discussed in 6.3.2 “Post call measurements”. Using these data, we can apply many derivatives of

the E-model and calculate the end MOS score for the whole call. This approach gives us currently

more options than the real time calculation we saw above. We set as quality rules: Packet loss

should be below 0.5% and jitter < 5 ms, and RTT (measurement for latency) < 200 ms or less. The

code that does this calculation follows. Figure 36 depicts the resulted calculation for a call.

exten => s,n,Set(LOST_LOCAL_TOT=${MATH(${CUT(RTPAUDIOQOSLOSS,\;,1):5] /

${CUT(RTPAUDIOQOSLOSS,\;,2):9],float)])

exten => s,n,Set(LOST_REMOTE_TOT=${MATH(${CUT(RTPAUDIOQOSLOSSBRIDGED,\;,1):5]

/ ${CUT(RTPAUDIOQOSLOSSBRIDGED,\;,2):9],float)])

and the stats reported by other end:

exten => s,n,Set(JITTER_REP_LOCAL_AVG=${MATH(${CUT(RTPAUDIOQOSJITTER,\;,7):19]

/ 1000)])

exten =>

s,n,Set(JITTER_REP_REMOTE_AVG=${MATH(${CUT(RTPAUDIOQOSJITTERBRIDGED,\;,7):19]

/ 1000)])

exten =>

s,n,Set(CDR(userfield)=${CDR(userfield)]&lost_remote:${LOST_REMOTE_TOT]&lost_

local:${LOST_LOCAL_TOT]&format_native=${FORMAT_NATIVE])

exten =>

s,n,Set(CDR(userfield)=${CDR(userfield)]&jitter_remote:${JITTER_RX_REMOTE_AVG

]&jitter_local:${JITTER_RX_LOCAL_AVG])

exten =>

s,n,Set(CDR(userfield)=${CDR(userfield)]&jitter_rep_remote:${JITTER_REP_REMOT

E_AVG]&jitter_rep_local:${JITTER_REP_LOCAL_AVG])

exten =>

s,n,Set(CDR(userfield)=${CDR(userfield)]&rtt_remote:${RTT_REMOTE_AVG]&rtt_loc

al:${RTT_LOCAL_AVG])

exten =>

s,n,Set(LOST_REMOTE=${MATH(${CHANNEL(rtpqos,audio,remote_lostpackets)] /

${CHANNEL(rtpqos,audio,remote_count)],float)])

exten => s,n,Set(LOST_LOCAL=${MATH(${CHANNEL(rtpqos,audio,local_lostpackets)]

/ ${CHANNEL(rtpqos,audio,local_count)],float)])

89

exten => s,n,Set(JITTER_REMOTE=${CHANNEL(rtpqos,audio,remote_jitter)])

exten => s,n,Set(JITTER_LOCAL=${CHANNEL(rtpqos,audio,local_jitter)])

exten => s,n,Set(CDR(userfield)=${CDR(userfield)]&lost_remote

 ${LOST_REMOTE]&lost_local:${LOST_LOCAL]&format_native=${FORMAT_NATIVE])

exten => s,n,Set(CDR(userfield)=${CDR(userfield)]&jitter_remote

${JITTER_REMOTE]&jitter_local:${JITTER_LOCAL]&rtt:${CHANNEL(rtpqos,audio,rtt)

])

Figure 36: Post call statistics in the asterisk CDR

6.4 Security related evaluation

Due to the tests we were making, we had left ports 5060 – 5061 exposed to the internet.

This has the result that script kiddies where trying to brute force various extensions. They did not

once try to attack an actual existing extension (e.g. 100@myip) but seemingly random sip

extension, like 9999 or 1234 with passwords that resembled classic brute attacks (aaaa then going

aaab etc). Fortunately, the fail to ban application installed in the distribution took care of them, as

we discussed above and banned them for a period of time after 3 failed login attempts. Nonetheless

my inbox got flooded with banned IP reports. For the duration of the attack (about 1 day) we

received more than 200 mails. The system was not compromised and thus we experienced why

there is a need to hide a PBX behind a SIP proxy.

90

7 Conclusion and Possible use cases

7.1 Possible use cases

• Click to call for support from customer facing website

o A user is using his/her mobile device and browses a company’s Website when they

come across a button to request customer services. As for example it could be an

online shopping Website which offers an online shop assistant to help with

products or the ordering-payment process.

o To elaborate the customer clicks the customer services link which establishes a

video or audio call with the customer services person at the facility. In this case,

the mobile device uses WebRTC -based video call and the call center has a

WebRTC client on a desktop computer. During this video call, the customer service

person can send technical details and specifications for a product to the caller, or

even demonstrate how the product is used.

o Alternatively, consider the case on which someone is involved in vehicular

accident and they call report the incident to their insurance company. They call the

insurance company through their VoLTE client, but the Insurance Company has

WebRTC clients deployed on tablets for each call center agent. In the process of

this call, the insurance company wants to view the damage done, and the user

switch to a video call and thus resolve problems faster.

• Click to call from enterprise directory web page

• Social Networking integration

o In this scenario, some friends are using a social site and communicate through a

feature enabling RTC based on WebRTC. The various friends of this call are using

a number of different devices capable of supporting a Web browser, such as a Smart

TV, tablet, smartphone and laptop.

• Click to call me” URL in email signature

• Desktop sharing, collaboration

o TeamViewer like

• Existing Collaboration Apps

o Backboard

91

• Multiparty video calls

o In this scenario the users can use plugin-less conference call facilities leveraging

WebRTC technology. Customers can access, via a WebRTC client, a conference

service without downloading a plugin. Also consider some customers may prefer

to access the conference from their mobile devices which support communication

services like WebRTC.

• Bit Torrent like apps directly from the browser

• interactive TV

• Web Notification All the necessary application notification will be display through the

browser web notification message

Figure 37: Example from social networking site that would benefit from a Click to Call

button

7.2 Conclusions

WebRTC is becoming a pervasive and disruptive technology, for sure. Any device with a

Chrome, Firefox, Opera are already WebRTC available and in working order. Many mobile

applications developers are also using the WebRTC to voice and video enable their applications

and enhance interoperability with existing services. The WebRTC service ecosystem can be fully

integrated it with existing video, voice, and texting services.

It is important to understand in the meantime that while the WebRTC standard is still being

tweaked and that not everyone agrees on the codecs WebRTC should use, the audio part of the

WebRTC standard is solid and stable. For that reason alone, organizations can start creating

92

WebRTC-enabled applications with confidence. In environments where the enterprises have

control over what type of browser the user has, video applications can also work very well as well.

All around this is a very promising technology, waiting to change a lot about the way we do

communications as we stated in the introduction.

Concerning the thesis, we conclude that the goals have been met and the journey of this thesis

93

References

1. Hickson, I., The HTML5 Draft Standard. Web Hypertext Application Technology Working

Group. 2010.

2. Bergkvist, A., et al., WebRTC 1.0: Real-time Communication Between Browsers. W3C

Editor’s Draft, W3C. 2012. https://www.w3.org/TR/webrtc/

3. Handley, M., RFC 4566 Session Description Protocol (SDP).

http://www.ietf.org/rfc/rfc4566.txt

4. Engan, M., et al., RFC 2509: IP header compression over PPP. 1999, RFC 2509, February,

Tech. Rep.

5. Schulzrinne, H., RFC 2326 Real time streaming protocol (RTSP). 1998.

http://tools.ietf.org/html/rfc2326.txt

6. Harald Alvestrand, G., W3C Identifiers for WebRTC's Statistics API. October 2015.

7. Rosenberg, J., et al., RFC 3261: SIP: session initiation protocol. 2003, IETF, Tech. Rep.,

2002.[Online]. Available: www. ietf. org/rfc/rfc3261. txt.

8. Berners-Lee, T., R. Fielding, and L. Masinter, RFC 2396: Uniform resource identifiers

(URI): Generic syntax. Status: DRAFT STANDARD, 1998.

9. Conroy, S.P.a.L., RFC 2848: The PINT Service Protocol: Extensions to SIP and SDP for

IP Access to Telephone Call Services. June 2000.

10. Handley, M. and V. Jacobson, RFC 2327. SDP: session description protocol, 1998. 10.

11. Burnett, D. and A. Narayanan, Media capture and streams. World Wide Web Consortium

WD WD-mediacapturestreams-20120628, 2012.

12. Rosenberg, J., RFC 5245 Interactive Connectivity Establishment (ICE).

https://tools.ietf.org/html/rfc5245

13. Holmberg, C., H. Alvestrand, and C. Jennings, Multiplexing Negotiation Using Session

Description Protocol (SDP) Port Numbers. draft-ietf-mmusic-sdp-bundle-negotiation-00

(work in progress), 2012.

14. J. Uberti, C.J., Google, Cisco, Javascript Session Establishment Protocol (JSEP) Internet-

Draft. 2013.

15. Saint-Andre, P., Jingle: Jabber does multimedia. IEEE MultiMedia, 2007. 14(1): p. 90-94.

16. Jennings, C., RTCWeb Offer/Answer Protocol (ROAP) draft-jennings-rtcweb-signaling-

01. Network Group, Internet Draft expired on May, 2012. 2.

17. Hickson, I., The WebSocket API- W3C Working Draft. May 2012.

18. Loreto, S., RFC 6202 nown Issues and Best Practices for the Use of Long Polling and

Streaming in Bidirectional HTTP. April 2011. https://tools.ietf.org/html/rfc6202

19. Fette, I., RFC 6455 The WebSocket Protocol.

20. Rescorla, E., RFC 2818 HTTP Over TLS. Updated by RFC 5785 Defining Well-Known

Uniform Resource Identifiers (URIs).

21. Rescorla, E., Security Considerations for WebRTC. https://tools.ietf.org/html/draft-ietf-

rtcweb-security-08

22. Barth, A., The Web Origin Concept. https://www.ietf.org/rfc/rfc6454.txt

23. Baugher, M., RFC 3711 The Secure Real-time Transport Protocol (SRTP).

https://tools.ietf.org/html/rfc3711

24. Rescorla, E., RFC 4347 Datagram Transport Layer Security (DTLS).

https://tools.ietf.org/html/rfc4347

94

25. Fischl, J., RFC 5763 Framework for Establishing a Secure Real-time Transport Protocol

(SRTP) Security Context Using Datagram Transport Layer Security (DTLS).

https://tools.ietf.org/html/rfc5763

26. Farrell, S. and H. Tschofenig, Pervasive monitoring is an attack. 2014.

27. IESG, I., IETF Policy on Wiretapping. 2000, RFC 2804, May.

28. Wing, D., et al., RFC 5479 Requirements and analysis of media security management

protocols. 2009.

29. Rosenberg, J., RFC 6544 TCP Candidates with Interactive Connectivity Establishment

(ICE). https://tools.ietf.org/html/rfc6544

30. Rosenberg, J., RFC 5389 Session Traversal Utilities for NAT (STUN).

https://tools.ietf.org/html/rfc5389

31. Mahy, R., RFC 5766 Traversal Using Relays around NAT (TURN).

https://tools.ietf.org/html/rfc5766

32. Dorgham, S., Next-Gen Open Service Solutions over IP (N-GOSSIP)—Area for SIP

Enhancements. Internet Citation, XP002235858.

33. Singh, K. and V. Krishnaswamy, A case for SIP in Javascript. IEEE communications

magazine, 2013. 51(4): p. 28-33.

34. Bertin, E., et al. WebRTC, the day after. in Procs. 17th International Conference on

Intelligence in Next Generation Networks, ICIN. 2013.

35. sipMPL5 - HTML5 SIP client. Available from:

https://www.doubango.org/sipml5/index.html.

36. jsSIP - The Javascript SIP library. Available from: http://jssip.net/.

37. caniuse.com. Can I use Web Sockets? 2016; Available from:

http://caniuse.com/#feat=websockets

38. Labs, A., Avaya IP Voice Quality Network Requirement. 2009.

http://downloads.avaya.com/css/P8/documents/100018203

39. Mahdi, A.E. and D. Picovici, Advances in voice quality measurement in modern

telecommunications. Digital Signal Processing, 2009. 19(1): p. 79-103.

40. Narbutt, M. and M. Davis, Assessing the quality of VoIP transmission affected by playout

buffer scheme. 2005.

41. Ding, L., et al., Non-intrusive single-ended speech quality assessment in VoIP. Speech

communication, 2007. 49(6): p. 477-489.

42. Goudarzi, M., Evaluation of voice quality in 3G mobile networks. 2008, University of

Plymouth.

43. Al-Akhras, M., et al., Non-intrusive speech quality prediction in VoIP networks using a

neural network approach. Neurocomputing, 2009. 72(10): p. 2595-2608.

44. Daengsi, T., et al. A study of VoIP quality evaluation: User perception of voice quality

from G. 729, G. 711 and G. 722. in Consumer Communications and Networking

Conference (CCNC), 2012 IEEE. 2012. IEEE.

45. Union, I.T., ITU-T Recommendation P. 800: Methods for subjective determination of

transmission quality. 1996, August.

46. Rec, I., ITU-T Recommendation P.805 Subjective evaluation of conversational quality.

Intl. Telecom. Union, 2007.

47. Dymarski, P., S. Kula, and T.N. Huy, QoS conditions for VoIP and VoD. Journal of

Telecommunications and Information Technology, 2011: p. 29-37.

95

48. Johannesson, N.O., The ETSI computation model: a tool for transmission planning of

telephone networks. Communications Magazine, IEEE, 1997. 35(1): p. 70-79.

49. Bergstra, J. and C. Middelburg, G.107 The E-model, a Computational Model for Use in

Transmission Planning. ITU-T Recommendation G, 2006. 107.

50. Association, T.I., Voice quality recommendations for IP telephony. TIA/EIA

Telecommunications Systems Bulletin, TSB116, 2001.

51. Time, O.-W.T., ITU-T Recommendation G. 114. ITU-T May, 2000.

52. Rec, I., G. 131,“. Talker echo and its control, 2003.

53. Daengsi, T., et al., Comparison of perceptual voice quality of VoIP provided by G. 711

and G. 729 using conversation-opinion tests. IJCIM, 2012. 20(1): p. 21-26.

54. Xplore, I. E-model Seach result count. 2106; Available from:

http://ieeexplore.ieee.org/search/searchresult.jsp?queryText%3DE-

model&addRange=2010_2016_Publication_Year&pageNumber=1&resultAction=REFI

NE.

55. Karapantazis, S. and F.-N. Pavlidou, VoIP: A comprehensive survey on a promising

technology. Computer Networks, 2009. 53(12): p. 2050-2090.

56. Rec, I., P. 800.1, Mean opinion score (MOS) terminology. International

Telecommunication Union, Geneva, 2006.

57. Voznak, M., E-model modification for case of cascade codecs arrangement. system, 2011.

1: p. 10.

58. Vozňák, M., Non-intrusive speech quality assessment in simplified E-Model. 2012.

59. Assem, H., et al. Monitoring VoIP call quality using improved simplified E-model. in

Computing, networking and communications (ICNC), 2013 international conference on.

2013. IEEE.

60. Ren, J., et al. Enhancement to E-model on standard deviation of packet delay. in

Information Sciences and Interaction Sciences (ICIS), 2010 3rd International Conference

on. 2010. IEEE.

61. Botta, A., A. Pescapé, and G. Ventre. On the statistics of qos parameters over

heterogeneous networks. in IFIP Networking 2006 Workshop Towards the QoS Internet

(To-QoS’2006). 2006.

62. Assem, H., et al. Online estimation of VVoIP Quality-of-Experience via network

emulation. in Signals and Systems Conference (ISSC 2013), 24th IET Irish. 2013. IET.

63. Ott, J., I. Curcio, and V. Singh, RTP Control Protocol (RTCP) Extended Report (XR) for

RLE of Discarded Packets. 2014.

64. Hines, A., et al. Perceived Audio Quality for Streaming Stereo Music. in Proceedings of

the ACM International Conference on Multimedia. 2014. ACM.

65. Lakaniemi, A., J. Rosti, and V.I. Räisänen. Subjective VoIP speech quality evaluation

based on network measurements. in Communications, 2001. ICC 2001. IEEE International

Conference on. 2001. IEEE.

66. Koumaras, H., F. Liberal, and L. Sun, PQoS assessment methods for multimedia services.

Chapter contribution in" Wireless Multimedia: Quality of Service and Solutions", Editors

Dr. Nikki Cranley, Dr. Liam Murphy, IGI Global Pub.(Under Publication), 2008.

67. Cisco, Reporting End-of-Call Statistics in SIP BYE Message. 2008.

http://www.cisco.com/c/en/us/td/docs/ios/ios_xe/voice_cube_-

_ent/configuration/guide/vb_11099_xe.pdf

96

68. Castillo, I.B., RFC 7118 The WebSocket Protocol as a Transport for the Session Initiation

Protocol (SIP). https://tools.ietf.org/html/rfc7118

69. WebRTC 1.0: Real-time Communication Between Browsers - Interface Definition section.

10 February 2015; Available from: https://www.w3.org/TR/2015/WD-webrtc-

20150210/#interface-definition.

70. Gareiss, R. The True Cost of Voice Over IP 2009; Available from:

http://www.webtorials.com/main/resource/papers/avaya/paper14/True_Cost_VoIP.pdf.

71. Carvalho, L., et al. An E-model implementation for speech quality evaluation in VoIP

systems. in Proceedings of the 10th IEEE Symposium on Computers and Communications.

2005. IEEE Computer Society.

72. Sun, L. and E.C. Ifeachor. Perceived speech quality prediction for voice over IP-based

networks. in Communications, 2002. ICC 2002. IEEE International Conference on. 2002.

IEEE.

