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Abstract

In previous work an integrated adaptation framework has been proposed for the 
Web3D, using the X3D and the MPEG-DASH standards. By fusing those two, one can 
deliver multimedia content adaptively in X3D scenes following the HTML5’s plug-in 
free mind set. Since then, a problem remains of how to have a good network utilization 
when delivering refined or coarser versions of 3D models by only using open and royalty 
free web standards and without destroying the X3D’s human readable representation 
form.

When transmitting different levels of detail of a 3D model, we need to do it in a 
cumulative manner, thus preserving common geometry data. Considering the 
programmatically created and the hand crafted level of detail techniques, we need a way 
to support those two by offering an integrated solution based on current or emerging web 
standards.

Programmatically creating levels of detail, often needs the change of the 3D 
model’s data structure. This means that the content provider and the content consumer 
must agree for the what and how to implement before runtime, thus driving into case per 
case solutions. Also, when following the hand-crafted approach, chances are that there is 
common geometry data in-between the levels of detail. So when delivering them as 
individual entities will result into poor bandwidth utilization.

To alleviate these issues we will consider a context agnostic approach, namely 
delta encoding or delta compression, for transmitting levels of detail of 3D models in a 
unified environment.
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Σύνοψη

Σε προηγούμενη δουλειά έχει προταθεί ένα ολοκληρωμένο σύστημα 
προσαρμόσιμου πολυμεσικού υλικού για το Web3D χρησιμοποιώντας τα πρότυπα X3D 
και MPEG-DASH. Συνδυάζοντας αυτά τα δύο, μπορούμε να πραγματοποιήσουμε 
μετάδοση προσαρμόσιμου πολυμεσικού υλικού σε X3D σκηνές ακολουθώντας μια 
λογική η οποία είναι ελεύθερη από αρθρώματα. Ένα πρόβλημα που παραμένει όμως 
είναι το πώς μπορούμε να έχουμε μια καλή εκμετάλλευση του δικτύου όταν μεταδίδουμε 
διαφορετικά επίπεδα ποιότητας 3Δ γραφικών χρησιμοποιώντας μόνο ανοιχτά πρότυπα 
και χωρίς να αλλάξουμε την αναγνώσιμη από ανθρώπους μορφή περιγραφής του X3D.

Όταν μεταδίδουμε διαφορετικά επίπεδα ποιότητας 3Δ γραφικών πρέπει να το 
κάνουμε με έναν συσσωρευτικό τρόπο έτσι ώστε να μπορούμε να 
επαναχρησιμοποιήσουμε τα κοινά δεδομένα γεωμετρίας. Έχοντας ως βάση την 
δημιουργία επιπέδων ποιότητας με προγραμματιστικό τρόπο αλλά και με το χέρι, 
χρειαζόμαστε μια ολοκληρωμένη λύση που να μπορεί να υποστηρίξει αυτές τις δύο 
διαφορετικές μεθοδολογίες και η οποία θα βασίζεται σε σύγχρονα και αναδυόμενα 
πρότυπα.

Ο προγραμματιστικός τρόπος δημιουργίας επιπέδων ποιότητας συνήθως απαιτεί 
την αλλαγή της δομής δεδομένων που χρησιμοποιείται για την περιγραφή του 3Δ 
μοντέλου. Αυτό σημαίνει πως ο πάροχος και ο καταναλωτής του περιεχομένου πρέπει να 
συμφωνήσουν εκ των προτέρων για το τι και το πως θα υλοποιηθεί. Με αυτόν τον τρόπο 
οδηγούμαστε σε ανά περίπτωση υλοποιήσεις. Επίσης όταν χρησιμοποιούμε την δεύτερη 
μεθοδολογία δημιουργίας επιπέδων ποιότητας, οι πιθανότητες είναι πως θα έχουμε κοινή 
πληροφορία μεταξύ των επιπέδων. Οπότε αν μεταδώσουμε τα επίπεδα αυτά ως 
ανεξάρτητες οντότητες θα έχουμε χαμηλή εκμετάλλευση του δικτύου.

Για να ξεπεράσουμε τα θέματα αυτά προτείνουμε μια προσέγγιση του 
προβλήματος στην οποία το μεταδιδόμενο περιεχόμενο θα μας είναι αδιάφορο. Πιο 
συγκεκριμένα, στο ολοκληρωμένο περιβάλλον μετάδοσης 3Δ γραφικών που θα δώσουμε 
θα χρησιμοποιήσουμε συμπίεση δέλτα.
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Chapter – 1

1.1 - Introduction and previous work

Recent advancements in Web technologies, offer the ability to deliver multimedia 
content in a heterogeneous environment of platforms and devices. To achieve this, a great
number of standards has been introduced, although not all of them are implemented on a 
large scale or exploited on their full potential.

For many years, multimedia content delivery and interaction over the web was 
mostly supported by using proprietary, closed source solutions. The most notable 
example is the Adobe’s, Adobe Flash Player, a freeware plug-in that enables audio and 
video, as well as vector, raster and 3D graphics support for the web browser. Although 
serving it’s purpose well over the years, one of the disadvantages of this approach is that 
it breaks interoperability. In the list of HTML elements [WHV14] of the latest HTML 
specification there are some interesting elements, at least from the perspective of the 
multimedia field, that offer native support of audio, video and graphics in the browser. 
Specifically, in the subcategory of embedded content lie the audio and video elements 
and in the scripting subcategory lies the canvas element.

Today’s client side scene is formed not only by the well known desktop 
computers. New portable devices came into, such as smart phones and tablet computers, 
that are connected to the web using wireless and often unreliable connections. In addition
to that they have limited processing power, reliance on battery and limited viewing 
capabilities mostly due to their size, the goal of achieving a good QoE becomes even 
harder. One of the approaches and sometimes combined with others to alleviate this issue,
adaptive bitrate streaming is used.

Adaptive bitrate streaming is a technique for streaming multimedia content over a 
network to the client in an adaptive manner. Meaning that while streaming, the content is 
adapted according to the client’s processing power and network bandwidth capabilities. 
Some implementations of adaptive bitrate streaming include the Adobe HTTP Dynamic 
Streaming, Apple HTTP Live Streaming and the Microsoft Smooth Streaming. None of 
them is a standard though, meaning that they fail interoperability wise. To overcome this, 
companies like Microsoft, Apple, Netflix and others, participated in the standardization of
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the MPEG-DASH, an industry oriented, open and international standard. In addition, the 
MPEG-DASH delivers content using the HTTP protocol, so content can be delivered 
using the already widely used and well adopted HTTP over TCP [IRS11] [SAC11] .

The directions of how an MPEG-DASH client can switch between different 
quality media streams are described in an MPD file. The MPD can be obtained usually 
via the web and is an XML, human readable file. In fact, in the sense that MPEG-DASH 
and HTML5 technologies can be complementing when consuming media content, the 
DASH-IF developed a Javascript player for the browser, for supporting adaptive video 
capabilities.

X3D is an open, royalty free ISO standard managed by the Web3D Consortium, 
that represents 3D graphics in XML format, readable by both humans and computers, that
is supported by stand-alone implementations or browser plug-ins, at least until recently. 
To overcome the disadvantages of using browser plug-ins,  Behr et al. [BEJZ09] 
presented the X3DOM, a DOM based model that gives a seamless integration between 
X3D and HTML5 without using plug-ins. 

On their first attempt to extend the X3DOM’s  adaptation methods, Kapetanakis 
et al. in [KPMZ14] provide a mechanism of adaptive HD video inside 3D virtual reality 
worlds by merging it with MPEG-DASH. The offered implementation consists of 
extending the X3DOM’s MovieTexture element to work with the DASH video player
[GIT14][ML14] .

Although the MPEG-DASH was designed to be primarily used for temporal 
content, such as audio and video, it does not explicitly restrict the media type that can be 
used. Given that the X3D is an ISO standard and that the model/x3d+xml is a registered 

MIME type, 3D models written in X3D should be compatible with the MPEG-DASH. 
Based on this, Kapetanakis in his thesis [KK14], extends the previous mechanism in 
order to additionally support adaptive 3D model delivery. In his work he also describes 
how the 3D models should be treated so they can be successfully included  in an MPD 
file. As an overview, the 3D models are segmented into levels of detail and can be 
sequentially transmitted to the client. Also the client can adapt the 3D model by 
requesting the corresponding segment, or level of detail.

This work only suggested the first steps into creating such an adaptation system 
and only supported simple cases where only a single 3D model was included into an X3D
scene. Zamploglou et al. in [ZKSMP16] continue the research on the potential of 
supporting adaptive streaming of complex X3D scenes, where a plethora of geometries, 
audio, image and video textures are included.
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An issue that remains though, is how to have a good network utilization when 
transmitting different segments, or levels of detail, described in the MPD. To give a 
solution approach to that, first we have to have an understanding of the term LOD of a 
3D model. The first ideas of the LOD were introduced by J. Clark [JHC76] and in a sense
is technique for representing an object with different geometry complexities. The goal of 
this technique is to reduce the representation complexity of an object in order to reduce 
computation requirements when such resources cannot be met or when the object is 
viewed from a far distance. There is no restriction to that the LOD technique can only be 
used for the geometry of a model, it can also be applied to shaders and texture maps, but 
in this work we are interested in the model’s geometry. A qualitative graphical 
representation, describing the fidelity and the geometry complexity relationship, is given 
on Figure 1.

There are three basic approaches or frameworks of LOD and these are the 
discrete, continuous and view-dependent LODs. In the case of the discrete LOD, the 
object is separated into some number of individual models of different fidelity before the 
runtime. Usually, those LODs are hand-crafted by a graphics artist(s), if not exported by 
some mesh simplification algorithm implementation. Using this approach, gives us the 
ability to control of what will be viewed to the user. On the contrary, in the continuous 
LOD case, the model is encoded in a data structure such that we can extract the desired 
LOD  from a continuous spectrum of LODs. This approach gives better granularity and 
minimizes the popping effect when changing LOD. Also, the case of the view-dependent 
LOD can be considered as an extension of the continuous LOD, in the sense that the 
geometry simplification varies in different areas of the model, usually according to the 
camera – area distance. Such an example is when viewing a terrain, where areas closer to 
the camera have more geometry information than areas that are farther away.
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Figure 1: The more the fidelity, the more the cost to transmit



1.2 - Problem definition

The main goal of this thesis is to give a solution approach that changes, in the 
sense of extending the X3D’s already defined nodes, are kept at the most minimal if not 
non existent all. Further more, the standard uses a representation form about the vertices 
and the edges of the model, that is human readable and we wish to keep it that way. In 
addition, we want to support both the discrete and the continuous LOD frameworks in 
our solution. 

Also, the MPEG-DASH player developer is already occupied with solving 
problems such as content adaptation in real time. So it is quite important to offer a simple 
API for the delivery of the adaptive models. To achieve this, our solution should support 
the two different LOD frameworks in a unified way.

As an X3D client, we will use the X3DOM client that was mentioned above, but 
let’s not forget that the X3DOM is only one of the many implementations of the X3D 
standard that exist. A reference list of the currently available implementations can be 
found in [X3DP16]. This makes it vital that our solution is based on standards and is not 
focused only on a single X3D client.

As described in the previous section, continuous LOD frameworks encode the 
model in a data structure such that it allows the implementation of some geometry 
simplification algorithm and the extraction of the desired LOD. The issue with this 
approach is that there are no standard data structures and algorithms that are used among 
all implementations. A commonly used one though, is the half edge data structure. In 
addition, some of them, encode the model in some binary form, thus destroying the 
X3D’s human readable representation form. This could not be a quite bad thing, 
considering the gain in performance, but some binary forms are proprietary and not freely
available, so they break the open standard mind set.

The need for using more sophisticated data structures, other than usual X3D’s 
indexed face set, comes from the need that these algorithms depend on queries about the 
geometry and connectivity of the model. These queries are mostly about the adjacency 
and incidence of the building blocks of the model. For example, queries such as which 
faces share a particular vertex, or which edges are adjacent. Of course, such information 
can be extracted even with the X3D’s indexed face set, but this  data structure is not 
designed to store any kind of explicit information to satisfy these queries quickly, without

11



having to traverse the model’s geometry and connectivity repeatedly for every single 
query during the run time.

In Mauro Figueiredo et al. [FRSV14] a framework that supports interactive 
topology queries on  3D models is presented. The given open source implementation, 
named TopTri, allows 3D web client applications to make queries about vertex, edge and 
face adjacency and incidence on the web server without the need of changing the model’s
data structure that is already used on the client. Instead the web server is responsible for 
such operations. Although implemented in the Python scripting language, the web server 
is satisfying fast enough to serve those queries even for large models and real time 
applications. While testing their proposed framework, Mauro Figueiredo et al. did not use
any kind of continuous LOD algorithm as their test bench. Instead they implemented 
algorithms that can identify stalactites in a cave, using the web browser as the client 
runtime environment.

The TopTri toolkit, relieves the client from implementing a sophisticated data 
structure for continuous LOD, so it seems that is suitable for our needs. A solution 
approach for our system for transmitting  adaptive 3D models, using that framework, is 
not fully investigated yet. Thus we are in a position that we can not give a clear answer 
about the level of changes that have to be made to the client, in order to at least support 
only the continuous LOD framework.

As for the discrete LOD framework, the geometry and connectivity between 
different levels of detail  is disjoint. So there is not an obvious or straightforward 
approach to support a transmission that is free of redundant geometry information. A first 
approach that we considered in order to send only the changes that have to be made to 
reconstruct the target mesh, was to use a technique named geomorping or mesh 
interpolation or metamorphosis. This technique is widely used where there is the need to 
express a smooth transition between two models. For example an animation of an infant 
growing up to an adult or the transition between different facial expressions. In particular,
from the perspective of LOD, it is used to eliminate or at least minimize the popping 
effect when changing the level of detail.

As in [Par05], there are three main steps that are followed to achieve a multi-
resolution mesh morphing. First we need to find correspondence between the vertices of 
the source mesh to the target mesh. Note that vertex to vertex correspondence cannot be 
always achieved because the two meshes may have different number of vertices. So we 
compromise with some arbitrary point in 3D space near the source – target mesh. The 
same step has to be repeated in the opposite direction in order to find the vertices 
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correspondence between the target and the source mesh this time. Finally we merge the 
connectivity of the two input meshes in order to produce a new mesh representation that 
shares the connectivity of these two meshes. This new mesh representation is often called
the supermesh. Now using the produced supermesh we can bidirectionally interpolate 
between the two meshes.

As a rough calculation of the memory size that the supermesh requires, without 
considering the memory cost for the connectivity, we have:

Bytes( Geometry(supermesh) )= b ( N (V s) + N (V t) )

Where b is the number of bytes required to store a single vertex, N(Vs) the number of 
vertices of the source mesh and N(Vt) the number of vertices of the target mesh. So we 
concluded that this size of overhead leads to an unworkable scenario. This led us to leave 
the investigation of this solution approach quite early. Even though we did not follow this
path in this thesis, we do not completely reject the probability of a solution based on 
morphing between arbitrary and multi-resolution meshes exists.

Talking about the changes that have to made in order to reconstruct the target 
mesh, having the current mesh as the reference mesh, we came up with the idea of 
applying delta encoding. Delta encoding or delta compression, also known as delta 
differencing in its more general description, is a technique for describing a sequence of 
input entities in the form of differences between them. By doing that, data that is common
in-between the entities is not repeated, thus reducing the requirements of storage space, 
or bandwidth if we are in the case of transmission. An every day example that delta 
compression is used is the case of remote file synchronization.

Chun in [Wc12]  is dealing with the transmission of 3D models in WebGL scenes 
over HTTP for the Google Body project. Having in mind that the GZIP algorithm was 
primarily designed for compressing text input, LZ77 phrase matching will most likely fail
with something that is not structured, like in our case lists of vertices and indices. In order
to optimize the model for compression, Chun approaches the vertices and indices data as 
signals and uses delta encoding.

Now in the sense that a web resource may change over time and that the new 
instance of that resource will most likely be similar with the older one, Mogul et al.
[MDFK97]   discuss and quantify the potential benefits of using delta encoding and delta 
compression for HTTP responses and their results are encouraging. In K. Psounis’s work
[Pks02] dynamically created web content is separated into base documents, named as 
classes, and content responses are sent in the form of deltas. Experimental results of his 
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work show that by using the class-based delta model, bandwidth consumption is reduced 
by a factor of 30. 

The Chromium [Chr02] project, the descendant of WireGL [WG01] , offers a 
framework for scalable cluster rendering. In a sense, the client sends frames of OpenGL 
commands to be rendered by a cluster of workstations on its behalf. Gasparello et al. in
[GMBTB11] deal with the distribution of OpenGL command streams over a network by 
using their own Chromium-like system as their base framework. In order to have a good 
network utilization, they propose the use of in-frame and inter-frame compression. Inter-
frame compression aims on eliminating or at least reduce the redundant data that exist 
between consecutively frames. For example and in the case of a scene where there is only
one moving object, lets say the camera, only the translation commands need to be 
streamed. They achieve this by using the open-vcdiff tool, an open source 
implementation of the VCDIFF delta encoding algorithm and file format.

The RFC 3229 proposed standard as its current state [RFC3229], introduces delta 
encoding in HTTP. The RFC 3229 tries to deal with problem of serving slightly and 
frequently modified resources for which the client already has one or more older 
instances in its cache. Based on the observation that the modification of a resource is 
much smaller then the resource itself, this RFC proposes delta encoding to be used in 
such cases, avoiding that way of sending redundant bytes on the response.

Although the RFC 3229 works well for same URL responses, it is not suitable for 
content that is  dynamically created with varying URL query parameters. For example 
search results pages. To overcome this limitation, Butler et al. in [BLM16] propose the 
SDCH , pronounced as “sandwich” [Li15] , protocol. In their proposal, a dictionary file is
shared between the server and the client, containing strings that have high chances of 
appearing in future HTTP responses. If both sides support SDCH and the client does not 
have any dictionary from server, or has an outdated version, the latest dictionary file is 
sent out of band. If both sides support SDCH and the client has a valid copy of the 
dictionary, then the HTTP response is represented as references to strings in the shared 
dictionary. The compression scheme is named as SDCH encoding and is VCDIFF based.

1.3 - Solution Approach

Even though there is some work done about data and mostly web page content 
transmission over the Internet by using delta encoding, there is no work, at least in our 
knowledge, that explicitly covers transmission of 3D models and their levels of detail 
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over HTTP based on this technique. Nevertheless the adoption promise of delta encoded 
HTTP responses is quite encouraging.

The main advantage of using this kind of technique, from our point of view, is 
that without extending or modifying the X3D standard we can support the discrete and 
continuous level of detail frameworks simultaneously. Fulfilling that way the two 
promises that were given for offering support of the two different LOD frameworks in a 
unified way and keeping the need for changes minimal. In fact, in this work the X3D 
standard was kept as is.

We can also fulfill the promise of not altering the human readable representation 
form that the X3D uses for describing 3D models. More precisely the IndexedFaceSet 
node. Additionally and given that the delta compression is a context agnostic 
compression scheme we can also support binary formats and scene assets other than 3D 
models, even though this was not our goal.

 Even though we are aware that by implementing a solution that already exists in 
the literature of the continuous framework might yield better performance results and 
smaller network bandwidth requirements, we follow an ubiquity and interoperability over
performance solution approach. An overview graphical representation of our proposed 
solution is given on Figure 2.
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Figure 2: Proposed system overview



As we can see on Figure 2 and on the client’s side, we have the X3D client using 
an MPEG-DASH adaptation mechanism. This adaptation mechanism is responsible for 
taking performance metrics and adapting the LOD of the models which are described in 
the MPD file. In the case that the desired LOD does not exist on the client, the MPEG-
DASH adaptation mechanism sends the appropriate request to the server using HTTP and
additionally advertises the current LOD that already has and on which the delta patch will
be applied on.

On the server’s side, when that kind of request arrives, the LOD Framework 
mechanism extracts the requested LOD. Then the delta between the requesting LOD and 
the current LOD that the client already has is computed and sent to the client as an HTTP 
response.

Architecture wise, our proposed solution has the advantage of minimal changes 
on the web server that serves the scene assets. That is because the LOD Framework 
mechanism can be added in the current configuration in the form of a module.
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Chapter – 2

2.1 – Background research

In this chapter we are going to present the background research that has been 
made. First we will make ourselves familiar with what is a 3D model and how it is 
represented as a polygon mesh. Next, we will discuss some useful data structures for 
storing polygon meshes that we can use to extract the desired fidelity of the 3D model 
using the continuous level of detail framework.

In general, the extraction of the desired fidelity is achieved by using a mesh 
simplification algorithm that consecutively simplifies the model starting from the original
version until the most coarse version is reached. Then we encode the steps that were 
taken in a way such that we can extract the desired level of detail at any given time.

We will also present the small research that has been made about geomorhping. 
As mentioned earlier in the previous chapter the geomorphing technique was investigated
as a solution approach for delivering the model’s levels of detail. But the – roughly -  
calculated overhead that is required for the transmission is discouraging.

2.2 – 3D Models and Polygon Meshes

A thee dimensional model, or 3D model is a mathematical representation of a 
three dimensional surface. These models can be created manually by using a 3D 
designing software for example, or by 3D scanning of real world objects. The most 
widely representation scheme used for 3D models is the polygon mesh.

The polygon mesh is a mesh of vertices, edges and faces that describe a 
polyhedron object. The vertices are points in 3D space that are described by their 
coordinates, for example Vn = ( xn , yn , zn ) . The edges are straight lines that connect two 
vertices and can be described as En = ( Va , Vb ) . Faces are simple convex or concave 
polygons. A simple polygon is a polygon that consists of non-intersecting line segments, 
or in other words there are no pairs of edges that cross each other.  In a convex polygon, 
there is no internal angle that exceeds 180o  , in a concave polygon there is at least one 
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internal angle that is larger than 180o . In computer graphics, the most used type of faces 
is the triangle and more rarely quadrilaterals, faces with four vertices and edges.  Figure 3
gives an example of simple and complex polygons. Figure 4 gives a graphical 
representation of the relationships between the vertices, edges and faces.

The connectivity or the topology of a mesh refers to how the vertices are 
connected in order to form the edges and faces of the mesh. The geometry of a mesh 
refers to the coordinates of the vertices. Thus for a given 3D conceptual representation of 
an object we can have different meshes with the same geometry and different topology. 
Figure 5 gives a graphical representation about the geometry and topology of a mesh.

Meshes can be manifold or non-manifold. A mesh can be considered manifold if 
every edge touches only one or two faces and faces that are incident to a vertex form a 
closed or an open fan. Also in a non-manifold mesh, adjacent faces can share o single 
vertex without sharing an edge. Some mesh simplification algorithms require only 
manifold meshes as an input. Figure 6 gives a visual representation about manifold and 
non-manifold meshes.
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Figure 3: 

Polygons (a) and (b) are simple polygons.

Polygon (c) is a complex polygon. 

Polygon (a) is convex.

Polygon (b) is concave.

The shapes were taken from:

https://en.wikipedia.org/wiki/Convex_polygon#/media/File:Pentagon.svg

https://en.wikipedia.org/wiki/Concave_polygon#/media/File:Simple_polygon.svg

https://en.wikipedia.org/wiki/Complex_polygon#/media/File:Complex_polygon.svg

https://en.wikipedia.org/wiki/Concave_polygon#/media/File:Simple_polygon.svg
https://en.wikipedia.org/wiki/Convex_polygon#/media/File:Pentagon.svg
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Figure 4: Relationship between vertices, edges and faces. This figure is a 
part from https://en.wikipedia.org/wiki/Polygon_mesh#/media/File:Mesh_overview.svg

Figure 5:

In (a) we have same geometry with different topology.

In (b) we have same topology with different geometry.

Imagery taken from: http://www.cs.dartmouth.edu/~cs77/slides/07_meshes.pdf



There are two main representation schemes of polygon meshes that are used, 
among others. First we have the explicit vertex list representation, also known as Vertex-
Vertex meshes, where every group of vertices represents a face. The other representation 
scheme, also known as Face-Vertex meshes, uses two lists, an indexed list of vertices that
holds their coordinates and a list of vertex indices. Every group of vertex indices 
represents a face. The Face-Vertex representation scheme is also used by the X3D to 
describe polygon meshes. More precisely, the IndexedFaceSet node is of that type. Figure
7 describes these two representation schemes.
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Figure 6:

(a): A manifold mesh forming a closed fan.

(b): A manifold forming an open fan.

(c): A non-manifold where two faces share a single vertex and no edge.

Part of the images was taken from:

https://www.cs.mtu.edu/~shene/COURSES/cs3621/SLIDES/Mesh.pdf



2.3 – X3D’s IndexedFaceSet Node

As described in [WX3D], X3D essentially is an XML document, meaning that 
every entity that composes a 3D world and its interaction is described in a hierarchy of 
nodes in a parent-child relationship. Among the nodes that can represent 3D objects, the 
IndexedFaceSet node is used to represent 3D objects in a Face-Vertex manner that was 

previously described.

This node, as in [X3DIFS] extends the X3DComposedGeometryNode and uses 

groups of vertex indices separated by “-1” in order to form the faces. These indices are 32
bit integers that are defined in the node’s coordIndex attribute field. To define the 

vertices, this node uses the Coordinate node as its child node. The Coordinate node as 

in [X3DCoo] extends the X3DCoordinateNode and uses its point attribute field to define

3D coordinates.
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Figure 7 : (a) is a Vertex-Vertex mesh, (b) is a Face-Vertex mesh.

Imagery taken and mixed from: http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/meshes/polygon_meshes.html



2.4 – More sophisticated mesh data structures

Even thought the Vertex-Vertex and Face-Vertex meshes have simple and 
straightforward way to represent 3D models, there are some cases where we need to 
answer questions about the connectivity of a mesh. These questions are related with the 
adjacency and incidence of the vertices, edges and faces of the mesh. For example, which
faces are incident to a given vertex or which faces are incident to a given face or which 
edges are adjacent. This kind of queries can be answered using the Vertex-Vertex and 
Face-Vertex representation schemes, but because no such explicit information is held 
about the connectivity, we have to traverse the whole geometry data many times for every
query. Additionally, we need to be able to make operations on the geometry and 
connectivity in order to add or remove vertices and faces of the mesh. The operations of 
vertex and face removal are important to mesh simplification algorithms that can reduce 
the fidelity of a 3D model. These two reasons led to the creation of other data structures 
in order to solve that problem, but with the cost of more memory usage.

There are quite a few mesh data structure that solve that problem, the most used 
one though is the half-edge, which is an extension of the winged-edge data structure but 
they both work only on oriented and manifold meshes. The main idea of these two data 
structures is that for every vertex of the mesh, we hold references or pointers to the other 
elements of the mesh.
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Figure 8: A code example of the IndexedFaceSet node



2.4.1 – Winged Edge data structure

Baumgart in [Bau75]  presents the winged-edge data structure. In his work, a 
polyhedron consists of four types of nodes. These are the bodies, faces, edges and 
vertices. The body node is a head of a ring of faces, a ring of edges and a ring of vertices. 
A ring is a doubly linked circular list with a head node.

In this data structure, each face and vertex point to one edge. Each edge points to 
two faces and two vertices. Finally each edge points to four edges, two in a clockwise 
direction and two in a counter-clockwise direction. The last four pointers form a 
conceptual wing and this why this data structure got that name. Figure 9 gives an 
illustration of the winged-edge data structure.
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Figure 9: Winged Edge overview



While standing on the CE and while looking up, we can define the following pointers:

• NFACE: The next face.

• PFACE: The previous face.

• NCCW: The next edge in a counter-clock wise order.

• NCW: The next edge in a clockwise order.

• PCW: The previous edge in a clockwise order.

• PCCW: The previous edge in a counter-clock wise order.

• PVT: The previous vertex.

• NVT: The next vertex.

A sample code implementing the data structure in the C language could be the following:

struct Edge
{

Edge *nccw, *pcw, *ncw, *pccw;
Face *nface, *pface;
Vertex *pvt, *nvt;
// Other edge data

};

struct Face
{

Edge *edge;
// Other face data

};

struct Vertex
{

Edge *edge;
// Other vertex data

};
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As mentioned above, in order to implement a continuous LOD technique on our 
input mesh, we must be able to make operations on the mesh such as face, edge and 
vertex insertion and removal. Baumgart in his work besides describing the data structure, 
also gives us two reference procedures that we can use. The MKFE procedure, or “Make 
Face-Edge”, adds a pair of a face and vertex into the surface topology. The KLFE, or 
“Kill Face-Edge” procedure removes a face-vertex pair. Figure 10  [Bau75] gives an 
illustration of the effects of applying these two procedures. Below that illustration, the 
refined pseudo-code for the two procedures is given.
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Figure 10: The effects of applying the MKFE and KLFE procedures
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INTEGER PROCEDURE MAKE_FACE_EDGE (INTEGER V1,V2,FACE);

BEGIN “MAKE_FACE_EDGE”

// CREATE NEW FACE & EDGE
FNEW ← MAKE_FACE(FACE);
ENEW ← MAKE_EDGE(PREVIOUS_EDGE(FACE));

// LINK NEW EDGES TO ITS FACES & VERTICES
PREVIOUS_EDGE(F) ← PREVIOUS_EDGE(FNEW) ← FNEW;
PREVIOUS_FACE(ENEW) ← F;
NEXT_FACE(ENEW) ← FNEW;
PREVIOUS_VERTEX(ENEW) ← V1;
NEXT_VERTEX(ENEW) ← V2;

// GET THE WINGS OF THE NEW EDGE
E2 ← PREVIOUS_EDGE(V1);
DO

E2 ← NEXT_EDGE_CW( (E1 ← E2), V1 )
UNTIL

NEXT_FACE_CW(E1, V1) = FACE;
E4 ← PREVIOUS_EDGE(V1);
DO

E4 ← NEXT_EDGE_CW( (E3 ← E4), V2 )
UNTIL

NEXT_FACE_CW(E3, V2) = FACE;

// SCAN CCW FROM V1 REPLACING FACE WITH FNEW;
E ← E2;
IF PREVIOUS_FACE(E) = FACE THEN

PREVIOUS_FACE(E) ← FNEW;
ELSE

NEXT_FACE(E) ← FNEW;

// LINK THE WINGS
WING(E1, ENEW);
WING(E2, ENEW);
WING(E3, ENEW);
WING(E4, ENEW);

RETURN(ENEW);

END;



2.4.2 – Half Edge data structure

The Half-Edge is probably the most widely used data structure when it comes to 
computational geometry. As stated in [Zcg12]  and we agree with that, the origin of the 
current form of the Half-Edge is hard to find. Nevertheless, in order to find out if two 
convex polyhedra intersect each other, Muller and Preparata in [MP78] presented the 
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INTEGER PROCEDURE KILL_FACE_EDGE (INTEGER ENEW);

BEGIN “KILL_FACE_EDGE”

// PICKUP ALL THE LINKS OF ENEW
FACE ← PREVIOUS_FACE(ENEW);
FNEW ← NFACE(ENEW);
V1 ← PREVIOUS_VERTEX(ENEW);
V2 ← NEXT_VERTEX(ENEW);
E1 ← PREVIOUS_EDGE_CW(ENEW);
E2 ← NEXT_EDGE_CCW(ENEW);
E3 ← NEXT_EDGE_CW(ENEW);
E4 ← PREVIOUS_EDGE_CCW(ENEW);

// GET ENEW LINKS OUT OF FACE, V1, V2
IF PREVIOUS_EDGE(V1) = ENEW THEN

PREVIOUS_EDGE(V1) ← E1;
IF PREVIOUS_EDGE(V2) = ENEW THEN

PREVIOUS_EDGE(V2) ← E3;
IF PREVIOUS_EDGE(FACE) = ENEW THEN

PREVIOUS_EDGE(FACE) ← E3;

// GET RID OF FNEW APPEARANCES
E ← E2;
DO

IF PREVIOUS_FACE(E) = FNEW THEN
PREVIOUS_FACE(E) ← FACE;

ELSE
NEXT_FACE(E) ← FACE;

UNTIL
E4 = (E ← NEXT_EDGE_CCW(E, FNEW));

// LINK WINGS TOGETHER ABOUT FACE
WING(E2, E1);
WING(E4, E3);
KILL_FACE(FNEW);
KILL_EDGE(ENEW);

RETURN(FACE);

END;



Doubly Connected Edge List as the base data structure of their algorithm, which its logic 
is identical.

In the Half-Edge data structure, every edge is split into two parts, the two halves 
of the edge, that have opposite directions. Those two parts are called half-edges, hence 
the name of the data structure. This data structure does not explicitly describe any edges, 
instead the edges are implied by their two half-edges.

Every half-edge points to its opposite twin half-edge. Additionally, every half-
edge stores a target vertex but no origin vertex, as opposed to the edge that has one start 
and one end vertex. Given that the mesh is oriented and that twin half-edges look at 
opposite directions, if we want to get the origin vertex of a half-edge we need to get the 
target vertex of its twin. Also and given that the Half-Edge data structure is oriented 
counter-clock wise, the left half-edge always touches a face and the right always touches 
its twin. Below there is a sample code in C implementing the Half-edge data structure. 
Figure 11 gives an illustration of the data structure. The blue arrow, denoted by h is one 
of the edge’s half-edge and the arrow on its right is its twin.
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struct HalfEdge
{

HalfEdge* heTwin;  // The twin half-edge
HalfEdge* heNext;  // The next half-edge
HalfEdge* hePrevious;  // The previous half-edge, this is optional
Vertex*   vTarget; // The target vertex
Face*     face; // The bordering face

// Other data
}

struct Vertex
{

HalfEdge* he; // The half-edge that starts from the vertex

// Other data
}

struct Face
{

HalfEdge* he; // One of the half-edges that surrounds the face

// Other data
}



The following enumerated list gives a summary of what the elements of a mesh point to. 
Figure 12 gives an illustration of this list.

1. Every vertex points to the one outgoing half-edge.

2. Every face points to one arbitrary half-edge that is inside its boundary. A face can 
be surrounded by many half-edges. In the case of a triangular mesh, a face is 
surrounded by three half-edges.

3. Every half-edge points to its target vertex.

4. Every half-edge points to its touching face.

5. Every half-edge points to its next half-edge.

6. Every half-edge point to its opposite – twin half-edge.

7. Optionally, every half-edge points to its previous half-edge.
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Figure 11: Half-edge overview [Zcg12]



 

The code below is an example of how to find adjacent edges for a given face. The idea is 
to race through all the half-edges pointed by the heNext pointer of the previous half-edge 
until we meet the half-edge from which we started.
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Figure 12: Illustrated Half-Edge enumerated list of 
references [BSBK02]

HalfEdge* heStart = face→he;
HalfEdge* heRunner = heStart;

do
{

heRunner = heRunner→heNext;

} while (heRunner != heStart);



2.4.3 – Lath based data structures

Assuming that the geometry can be expressed by vertices, Kenneth I. Joy et al. in
[JLM03] present the lath data type. Each lath element can be connected to another lath 
element and that body of connections express the topology of the mesh. A single lath can 
be identified by using a record of a vertex, an edge and a face. Also, each of the face-
edge, face-vertex, edge-vertex pairs can be associated with a single lath element. Figure 
13 gives an illustration of a half-edge mesh representation implemented with the lath data
type.

As we can see, a lath element L holds a reference to a single vertex. The 
“companion” field points to the lath Lcomp . The Lcomp lays on the same edge as L and 
references the opposite vertex of the edge. Thus an edge can be described as a pair of 
laths that have this “companion” relationship. The “vertex_clockwise” field points to the 
next lath in a clockwise vertex traversal. Figure 14 shows that the lath’s contiguous 
structure forms two kinds of loops, one in a clockwise direction around a vertex and one 
in a counter-clockwise direction inside a face.
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Figure 13 [JLM03]



32

Figure 14 [JLM03] The laths form two kinds of loops, a clockwise around a vertex and a 
counter-clockwise inside a face.



The traversal of the mesh elements can be done by using the following operations:

• ec(L): return the L’s edge companion.

• cv(L): return the lath that follows L that is defined in the L’s “vertex_clockwise” 
field.

• ccf(L): return the lath that follows L in a counter-clockwise traversal of the face 
that L represents.

• cf(L): return the lath that follows L in clockwise traversal of the face.

• ccv(L): return the lath that follows L in counter-clockwise traversal around the L’s
vertex.

2.5 – Level of Detail

The Level Of Detail in applications that use 3D models, such as computer games, 
is a technique for representing a 3D model in different levels of fidelity. What this means 
for the geometry of a model is that we can reduce or increase the number of vertices. This
can be useful in cases where the available processing power for rendering the model with 
a given geometry complexity is insufficient or when the model is placed away from the 
camera. For example, a dodecahedron when viewed from a far distance can be perceived 
by the human eye as a sphere. For that reason rendering the full geometry of the model 
would be a waste of computational resources.

The size of 3D models is increasing day by day. Thus they need more memory for
storage, as well as more computing power to be rendered. Although the computing and 
storage capabilities, even in home computing, become noticeably better year by year, the 
Internet’s average speed does not keep up with the same pace. This becomes a problem 
when 3D models that are above the medium size, need to be transmitted as a Web3D’s 
scene assets. In that case and in order the model to be viewed, the user will have to wait 
for an undesirably long time until the model is fully loaded.

Nah in [NF03] suggests that the average website user is willing to wait for at most
two seconds until the web content is loaded. As in [Rail16] is suggested that interactive 
content has to be delivered in under one second. To achieve this, we can send to the user 
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a coarse version of our model and then gradually refine it. This approach has the 
advantage of keeping the user occupied while the full model is loaded, resulting in that 
way to a better user experience.

Also and given that the LODs are created by simplifying the input mesh, we need 
a way to determine if the simplified output is visually pleasant. As mentioned above, 
there are two ways to simplify a mesh. Either by hand or programmatically. In the first 
case, we have the opportunity to evaluate the simplified output ourselves but this is not 
always the case when taking the second approach.

 As in Garland’s work [Ga99], we need a way to estimate how much similar the 
input and output meshes are. One approach is to render the two meshes and then calculate
the differences of the their produced images. This approach has the advantages of 
measuring directly the perceptible similarity of the meshes and that not visible details can
be discarded. On the other hand we have to render the meshes from all the possible 
viewpoints. Another approach although is to measure the similarity on the geometry 
level.

Kapetanakis in [KK14] extends the MPEG-DASH standard in order to support 
adaptive 3D models. In general, every asset of the scene is described as an Adaptation 
Set. If the asset is separated into different LODs, such as 3D models, these LODs are 
described as Representations. The code below is taken as a part from [ML16] and gives 
an example of a model and its LODs described in an MPEG-DASH manifesto.
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2.5.1 – Discrete LOD Framework

In the DLOD framework for every input model, a sequence of gradually coarser 
and look alike models is created. These output models are individual entities, meaning 
that the geometry and topology might be similar but they are disjoint. This simplification 
process is done before runtime. There are mesh simplification algorithms and tools that 
give an automatically generated hierarchy of LODs, although sometimes this process is 
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<MPD>

    <BaseURL>http://mclab1.medialab.teicrete.gr:8081</BaseURL>
    <BaseURL>http://localhost:8081</BaseURL>
    <BaseURL>http://alternativeHost:8081</BaseURL>
    <BaseURL>http://alternativeHost2:8081</BaseURL>
    <BaseURL>http://alternativeHost3:8081</BaseURL>
    <BaseURL>http://alternativeHost4:8081</BaseURL>

    <Period id="3d_model">
       
        <AdaptationSet mimeType="model/x3d+xml" codecs="none" minFrameRate="10">

            <Representation id="6" bandwidth="300000" qualityRanking="4">
                <BaseURL>cat3.x3d</BaseURL>
            </Representation>

            <Representation id="7" bandwidth="500000" qualityRanking="3">
                <BaseURL>cat2.x3d</BaseURL>
            </Representation>

            <Representation id="8" bandwidth="1000000" qualityRanking="2">
                <BaseURL>cat1.x3d</BaseURL>
            </Representation>

            <Representation id="9" bandwidth="2000000" qualityRanking="1">
                <BaseURL>catOrig.x3d</BaseURL>
            </Representation>

        </AdaptationSet>

    </Period>

</MPD>

http://alternativeHost4:8081/


preferred to be made by a human to give a fine tuned result. The video in [Utube16] 
shows an example of a handmade mesh simplification process. Some tools that can be 
used to automatically generate LODs can found in [ADM16] and [BDM16].

The X3D standard offers the LOD node that enables us to manage a hierarchy of 

LOD models in camera-to-object distance manner. Every LOD model is included as a 
child node of the LOD node. The selection of which LOD model will be rendered for the 

current object-to-camera distance is determined by the range attribute. Bellow we can 

find the node’s description as defined in [WX3dL]. A live example along with its source 
code can be found in [XfwaL]. 

The DLOD framework is widely used in 3D games because it is very easy to 
implement. All we need to do is to create a hierarchy of LOD models and then render the 
most appropriate one. Another advantage is that because the mesh simplification takes 
place in an offline preprocess,  the runtime is free of any mesh simplification algorithms. 
Thus the cost of processing power for this framework is low.

On the other hand and because these LOD models are individual entities, when 
transmitting them there will be redundant data in between the LODs. That is because 
even though the geometry might be similar there is no obvious way to leverage the in 
between similarities to make a cumulative transmission. This is solved by using the 
continuous LOD framework, as we will later discuss, because it allows a progressive 
transmission which unfortunately comes with a complex implementation and higher 
processing power requirements.
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LOD : X3DGroupingNode {
  MFNode  [in]     addChildren             [X3DChildNode]
  MFNode  [in]     removeChildren          [X3DChildNode]
  MFNode  [in,out] children       []       [X3DChildNode]
  SFNode  [in,out] metadata       NULL     [X3DMetadataObject]
  SFVec3f []       bboxCenter     0 0 0    (-∞,∞)
  SFVec3f []       bboxSize       -1 -1 -1 [0,∞) or −1 −1 −1
  SFVec3f []       center         0 0 0    (-∞,∞)
  MFFloat []       range          []       [0,∞) or -1 
}



2.5.2 – Level of detail transitions

When using the DLOD framework, the switching between the LODs is abrupt and
easily perceptible by the viewer, giving the sense that the 3D object “pops” when the 
camera is moving near or away from it. This visual artifact is called the popping effect. In
order to eliminate it or at least reduce it, we must give a smooth transition between the 
start and target LOD models. For that reason, the geomorphing and alpha blending 
techniques are used and applied on the mesh level and image level respectively.

In particular in the alpha blending technique, we draw the two LOD models 
simultaneously one on top of the other and interpolate the transparency values in a short 
period of time. The main disadvantage of alpha blending is that we need to render the two
models at the same time, increasing that way the displayed geometry. This becomes even 
a bigger problem when we want to switch to a coarser version in order to free up some 
computing resources. Nevertheless, Scherzer and Wimmer in [SW08] represent an 
algorithm that renders the two LODs in subsequent frames and in that way we avoid to 
simultaneously render those two. Figure 15 gives an illustration of the alpha blending 
transition approach.

Another approach of giving a smooth LOD transition is by using morphing or 
geomorphing. In general, in the morphing technique, the shape of an object gradually 
changes from a starting form to another by interpolating between the two input 
geometries. Figure 17 gives an example of mesh morphing. The problem with this kind of
interpolation, is that we need to have a one-to-one vertex correspondence and for that 
reason the two interpolating models must have the same number of vertices.

To overcome this limitation, Lee et al. in [LDSS99] present a method of morphing
between multiresolution meshes. As an overview, they reduce the geometry of both input 
meshes in order to build the two bijective source-to-target and target-to-source mappings.
These mappings are then realized to as what they call the metamesh, which is the merged 
version of the two input meshes. By their estimations although, the size of the metamesh 
can reach up to 10 times the size of the larger mesh. This makes it inappropriate for our 
problem’s solution. The Figure 16 is an excerpt of their work that shows the metamesh’s 
size for four different mesh morphings.
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Figure 15 An example of a alpha-blending transition. Taken from
[SW08]

Figure 16: Metamesh’s size [LDSS99]



The methodology’s main idea that is used in [LDSS99] can also be found in many
other approaches in this research area. In Parus’ work [Par05] we can find a general 
description of the steps that we have to follow. First, for every vertex in the source mesh 
we need to find a corresponding vertex on the target mesh. Note that because the two 
meshes might not have the same number of vertices, some of the source’s vertices will be
mapped to a point somewhere near the area covered by the target mesh. The next step is 
the same as the previous one but in the opposite direction. Then the supermesh is 
constructed by merging the two input mesh’s topologies. Finally, by using the supermesh 
we can bidirectionally interpolate between the meshes. For that reason and at least 
intuitively, the size overhead is not appropriate for our needs. Nevertheless, the research 
in this area is still active and we do not exclude the chance of a solution approach based 
on mesh morphing.
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Figure 18: Source to target vertices correspondence (green 
arrows) and target to source mesh vertices correspondence (red 
arrow) [Par05]

Figure 17: Example of mesh morphing [LDSS99]



2.5.3 – Continuous LOD Framework

In the CLOD framework, the model is encoded in a form that it allows us to 
extract the desired LOD from a “continuous spectrum” of LODs. Hoppe in [Hp96] 
introduces the progressive mesh representation. In the PM form, an input polygon mesh 
M is stored as a coarse mesh M0, along with a series of n refinement records. Thus the 
sequence M0, M1, … , Mn describes a continuous spectrum of LODs, with Mn as the 
original input mesh. For that reason, the PM representation scheme can support 
progressive transmission by first sending the base mesh M0 and later the refinement 
records.

Hoppe in his work expresses a mesh as a tuple M = (K, V, D, S). Where K and V 
describe the connectivity and vertex positions. D and S describe the discrete and scalar 
attributes respectively. The attributes D and S are indicative of visual discontinuities in 
the mesh’s appearance, Figure 19 illustrates that case.
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Figure 19: The visual discontinuities are marked as yellow lines
[Hp96]

Figure 20 edge collapse and vertex split transformations
[Hp96]



In order to produce the base mesh M0  a mesh optimization algorithm iterates the 
input mesh and at each step an edge is removed. This edge removal transformation

ecol(vs , v t)  called as edge collapse, removes the edge by collapsing v t  onto v s . 

Figure 20 gives an illustration of the edge collapse transformation and as you can see the 

incident faces to the edge (v s , v t) are removed as well. In addition, the edge collapse 

transformation is invertible. The inverse transformation vsplit (s , l ,r , t A)  called as 

vertex split adds a new vertex at the position t and two new faces {vs , v t , v l } and

{v t , vs , vr } . 

Also, the sequence of edge collapses determines the quality of intermediate 
LODs. This depends on the mesh simplification algorithm. For example, an easy to 
implement mesh simplification algorithm, is to remove a random edge at each step, but 
most likely the result’s visual quality will be very low. Although and because this mesh 
simplification algorithm is executed before the run time, Hoppe in his work takes the 
approach of investing some time in order to meet a better visual quality.

In a nutshell, there are three steps that we have to follow in order to create a 
progressive mesh. First, the mesh simplification algorithm iterates the input mesh and 
produces a sequence of edge collapse records. Then the vertex split records are created in 
the reverse order of the edge collapse’s records sequence. Finally, we write to a file the 

base mesh M 0  along with the vertex split records. Now we can transmit the M 0  
and later transmit the vertex split records one by one in order to progressively refine the 
mesh until we reach its original form. Furthermore, at each refinement step we can apply 
geomorphing to avoid the popping effect.

A technique based on a vertex by vertex refinement scheme offers fine granularity
but it has the disadvantage of imposing a big overhead. Pajarola and Rossignac in [PR00]
propose an alternative approach to Hoppe’s PM representation. In their work, they group 
the edge collapses into batches. This results into a batch based mesh refinement scheme 
instead of sending the refinement records one by one. Their approach achieves better 
compression but compromises with a coarser granularity.

Figure 21 illustrates a comparison between single rate transmission and 
progressive transformation approaches. a expresses the time needed to send the coarse 
version of the model. The dashed line curve illustrates the case where after a we send 
the original model. Note that even though it results in a poor user experience, the overall 
loading time is the shortest. Approaches based on PM are illustrated by the grey curve, 
we can see that they offer a fine granularity but in the expense of a long loading time. 
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Finally the batch based approach is illustrated by the staircase curve which makes a  
compromise between granularity and loading time.

Limber et al. in [LJBA13] introduce the POP buffer method. The model’s 
coordinates are mapped to a cluster of nested grids of integer coordinates with different 
quantization levels.  Then by using a truncation function they can increase of decrease the
grid’s resolution. If the two points of an edge are mapped to the same grid point, then the 
edge is degenerate. Figure 22 illustrates the cell merge and cell split operations. The 
triangles marked in red will become degenerate on the grid with smaller resolution. 
Finally, the triangles are sorted in the reversed order in which they degenerated. They call
this reordered sequence of triangles as the Progressively Ordered Primitive buffer. That 
way the progressive transmission in this method is straightforward, all we need to do is to
push to the back the incoming vertices and triangles.

Melax in [Sm98] gives a simple, yet quite effective polygon reduction algorithm. 
In fact, we slightly modified a ported version of his implementation to Javascript [Gzz85]
and used it as our CLOD framework on the server side. In his work, the algorithm iterates
the mesh and applies an edge collapse operation until the desired number of vertices is 
removed. The vertex pairs that will be collapsed are selected by calculating the edge’s 
length multiplied by a curvature term. The information of edge collapses is kept and the 
vertices are sorted by the collapsing order and we can use this sequence of collapses to 
achieve progressive transmission.
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Figure 21  [PR00]



2.6 – Delta Compression

Delta compression or delta encoding is a technique for encoding files in the form 
of differences. Given the previous and current version of a resource, we can create a 
patch file that describes how to change the previous version in order to reconstruct the 
current. Suel and Memon in [SM02] give a more formal definition. Consider two files

f new , f old ∈ Σ , where Σ is an alphabet, the client C  and the server S and the 

case where C has a copy of f old and  S has both f old and f new . We need to 

compute a delta file f δ such that sizeof ( f δ ) < sizeof ( f new ) by which C can 

fully reconstruct the f new . From their work, some of the cases where delta compression

is applied are:

• Software Revision Control Systems, where objects are stored in a way that allows 
the user to retrieve older versions.

• File system delta compression, where delta compression is applied on the file 
system level.

• Software distribution, where software updates are transmitted in the form of 
patches. 

• Visualize differences between two files.
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Figure 22: [LJBA13] cell merge and cell split operations



• Improving HTTP performance by exploiting the similarities between web 
resources or different versions of the same resource.

An example of using delta compression in software distribution can be found in
[SC12]. This work deals with the distribution of app updates in the Android Market 
where for each update the full updated version of the app is downloaded. Instead of that, 
they propose the use delta compression and they achieve an average compression of 
nearly 50%.

The Git SCM initially saves the objects in its repository in a “loose” object format
and compresses them using zlib, a non delta encoding compression library. After that, Git
packs the objects into a binary file called “packfile”, where delta encoding is used [PGit].
Other SCMs such as Mercurial and Subversion [Mer16] [Sv16] follow different 
approaches of how and when to use delta encoding but the goal is the same. As for the 
visualization of differences between edits, Figure 23 is a screenshot of our 
implementation’s git repository that gives such an example.

Although text based collaborative and version control systems such as SCMs are 
fairly mature, in the field of CAD and 3D modeling the development of such systems 
with capabilities of the same quality level did not catch up. Nevertheless, Doboš in
[Do15] introduces the 3D Repo, a cloud based version control and collaboration 
framework for 3D assets that uses a NoSQL database for data storage and retrieval. 
Again, for reducing storage requirements it uses delta compression.

Gumhold et al. in [GGS99] deal with mesh compression. First they quantize the 
vertices’ coordinates by splitting each coordinate into four packages of four bits. Then, to 
achieve even better compression they use delta encoding on the vertex coordinates. 
Hoppe in [Hp96] mentions that the vertex split is a local operation and for that reason it 
results to a coherent output where we could use delta encoding. For example, when 

splitting the vertex v Si

i into the two new vertices, we can predict their positions and 

then use delta encoding to reduce the required storage space. Also, Limper et al. in
[LWSJS13] mention that we should exploit the browser’s existing compression 
capabilities by using delta encoding along with GZIP compression.

Gasparello et al. in [GMBTB11] deal with compression schemes of real-time 
streaming of OpenGL command sequences. As an overview, the command streaming 
system consists of a master computer that sends OpenGL commands to a pool of slave 
computers to be rendered on its behalf. The master computer runs a custom device driver 
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that can intercept any OpenGL call and creates a ghost command code. That way the 
slave computers can replicate the OpenGL calls. Every intercepted OpenGL call is passed
through a packetizer module that encodes and stores them into a command buffer. Next, 
the delta between the current and previous command buffers is produced and then is 
compressed with a general purpose compressor. Finally the compressed delta is sent 
through the network. Figure 24 gives an illustration of the communication of the master 
and slave computers.

45

Figure 23: Git GUI - Visualization of edits of a file



Mogul et al. in [MDFK97] try to quantify the potential benefits of delta encoded 
HTTP responses. In their work they sampled HTTP requests whose URL does not include
-practically- any multimedia or binary file extensions. They produced the deltas by using 
the UNIX command diff -e , the compressed output of diff -e and vdelta. Also they 
mention from previous work that responses with the same URL prefix are similar, thus 
making delta encoding effective. In their sampled traces, a fairly big part included URLs 
containing the “?” character, which suggests a query operation, so we expect effective 
delta encoding because of same URL prefix. Their results show that the size and delay of 
HTTP responses is improved when using delta encoding along with data compression. 
However, using delta encoding is viable only when the imposed overhead is smaller than 
the potential benefits.
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Figure 24: OpenGL commands transmission from master to slave computer
[GMBTB11]



The main goals of the [RFC3229] proposed standard are to reduce the size of 
HTTP responses, be interoperable with HTTP/1.0 and HTTP/1.1 and optional for the 
clients and servers. In order to work, it adds optional message headers. The accept 
instance manipulation “A-IM” header for the client and the instance manipulations “IM” 
header for the server. These headers describe which encoding format they are willing to 
use and which were finally used respectively. Also it proposes that delta encoded 
responses should be identified with the 226 unassigned code. Figure 25 gives an 
illustration of the conceptual sequence of transformations that are applied. Figure 26 
gives an example of a client requesting the resource /foo.html of which it has a cached 

instance with entity tag “123xyz” and is wiling to accept compressed responses whether 
or not they are delta encoded.

In RFC 3229 the delta encoded responses only work when they come from the 
same URL, making it that way unsuitable for URLs with varying querying parameters. 
The SDCH proposed protocol [BLM16] overcomes this limitation by using a dictionary 
file that is shared between the client and the server and contains strings that have high 
chances of appearing in subsequent HTTP responses. The client can retrieve the current 
dictionary “out of band” and future HTTP responses will include only references to 
strings in the dictionary, reducing that way the payload size. This compression scheme is 
referred to as the SDCH encoding and is VCDIFF based.
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Figure 25: Transformations diagram [RFC3229]

Figure 26: Request example
[RFC3229]



Chapter – 3

3.1 – Implementation

In this work, we propose that the LODs should be delta encoded in order to 
minimize the redundant data and achieve lower payload. On the client side we have the 
browser which runs the X3DOM as the X3D player. Also, we implemented a simplistic 
MPEG-DASH adaptation mechanism which is responsible for choosing the appropriate 
LOD that is available from the given MPD file. This adaptation mechanism is also 
responsible for sending the appropriate HTTP request to the server and then apply the 
patch data when the response is received. On the server side, we use the LOD Framework
module which can extract the desired LOD. When the LOD is extracted, the server 
computes the delta between the extracted LOD and the client’s current LOD and finally 
responds with the patch data. The overview of our implementation is illustrated on Figure
2. Also, on the same server we host the web application that allows the user to define 
LODs along with their quality rankings and then produce the MPD file. For the 
implementation of both the client and server side we used the Javascript language.

3.1.1 – Server overview

For our continuous LOD framework we used and modified a port of [Sm98] from 
C++ to Javascript [Gzz85] which is based on the Three.js WebGL framework. As for the 
delta encoding implementation, we used the [plvc] in both the client and the server. For 
these reasons we chose to implement the server by using the Javascript language and the 
Node.js [Node] as the runtime environment. As for the web application framework we 
used the Express framework [Expr]. The project’s properties and dependencies are 
defined in the package.json file. To install the defined dependencies we called from the 

terminal the npm install command and the npm [Npm] package manager installed the 
dependencies from its remote registry. Figure 27 shows the server's package.json file.

On the same server we also built and host our web application that allows the user
to define the LODs along with the quality rankings by using either the discrete or 

49



continuous LOD framework. After when the quality ranking and LOD pairs are defined, 
the server produces the appropriate MPD. As a final step of the web application, we 
display to the user the directions of how to use our MPEG-DASH player. Figure 28 
shows the first screen of the web application.
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Figure 27: The server's package.json file



3.1.2 – Discrete LOD framework UI

In this screen the user is able to upload the LOD models from his or her 
filesystem and define for each LOD the network bandwidth that it requires. After that, the
screen which contains the directions of how to add the adaptable model into the X3D 
scene is displayed. Figure 29 shows the upload screen and Figure 30 shows the directions
screen.
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Figure 28: Web application's first screen
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Figure 29: Discrete LOD framework upload screen
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Figure 30: Directions screen



3.1.3 – Continuous LOD framework UI

First, we show to the user a menu in which he or she can select a model from a 
preset list or upload a new one from the filesystem. Then the screen for defining the 
desired LODs is presented. The selection of the desired LOD is done by moving the 
slider in the bottom. For each desired LOD the user presses the Add range button. When 
done, the user presses the Send ranges button. Figure 31 shows model selection screen 
and Figure 32 shows the LOD editor screen.
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Figure 31: Model selection screen
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Figure 32: LOD editor



3.1.4 – Client with MPEG-DASH enabled X3D scene

For the needs of demonstration, we implemented a simplistic MPEG-DASH 
player. Because the  implementation of content adaptation mechanisms is not an easy task
and fall out of the scope of this work, the selection of the LOD is made in an ascending 
and descending order of the MPD’s available quality rankings in arbitrary time intervals. 
The X3D scene author needs to include along with our player, the jQuery [jQ] library and
the vcdiff Javascript implementation [plvc]. Then, the author must add the references of 
the adaptive models of the scene to the player by using the DEF attribute. These steps are 
described in more detail in the instructions page, an example of which is presented in 
Figure 30. The code that changes the LOD of the model is shown in Figure 33. Figure 34 
shows the code that constructs the HTTP request by including the current and the 
requesting LOD, then when the response is received it applies the patch data. Figure 35 
shows an example of a scene where two adaptive models are included. Finally, Figures 36
and 37 are screenshots that were taken from the client’s runtime.
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Figure 33: Code that observes and selects the next LOD
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Figure 34: Code that requests and applies the LODs
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Figure 35: Example of using the player
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Figure 36: Client during runtime showing two low LOD models
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Figure 37: Client during runtime showing two high LOD models



3.1.5 – Results in numbers

Here we are going to present how many bytes were needed to be transmited for 
each LOD. For the DLOD framework we used five of the most widely used 3D models 
for testing. More specifically the Bunny, Suzanne, Happy Buddha, Dragon and the 
Armadillo models which they were converted into the *.x3d file format. We produced a 

hierarchy of six LODs for each model by using the Blender’s decimation tool. The CLOD
was tested with the Suzzane model. Each LOD, for all the models, includes the 30%, 
40%, 60%, 70%, 90% and 100% of the model’s faces. Each LOD was delta encoded 
using the previous LOD as its source.
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Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 706571 706571 0 0.00%
40 948511 734841 213670 22.53%
60 1433984 1208851 225133 15.70%
70 1677299 1199230 478069 28.50%
90 2163635 1712420 451215 20.85%

100 2407398 1651024 756374 31.42%

Table 1: Results table of the Bunny model using the DLOD framework
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Figure 38: Graph of the Bunny’s transmitted bytes using the DLOD framework
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Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 9754 9754 0 0.00%
40 12204 8739 3465 28.39%
60 16863 13268 3595 21.32%
70 19000 11155 7845 41.29%
90 23350 15604 7746 33.17%

100 25374 12908 12466 49.13%

Table 2: Results table of the Suzanne model using the DLOD framework
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Figure 39: Graph of  the Suzanne’s transmitted bytes using the DLOD framework
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Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 11766576 11766576 0 0.00%
40 15913259 13706279 2206980 13.87%
60 24209309 22642745 1566564 6.47%
70 28357213 23982883 4374330 15.43%
90 36648112 33496755 3151357 8.60%

100 40790576 32779664 8010912 19.64%

Table 3: Results table of the Happy Buddha’s model using the DLOD framework

20 30 40 50 60 70 80 90 100 110
0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

Raw data bytes

Delta encoded bytes

Faces %

B
yt

es

Figure 40: Graph of  the Happy Buddha’s transmitted bytes using the DLOD framework
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Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 9339862 9339862 0 0.00%
40 12663358 11078500 1584858 12.52%
60 19315641 18044526 1271115 6.58%
70 22641519 18199646 4441873 19.62%
90 29288734 26463757 2824977 9.65%

100 32613082 26035661 6577421 20.17%

Table 4: Results table of the Dragon’s model using the DLOD framework
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Figure 41: Graph of  the Dragon’s transmitted bytes using the DLOD framework
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Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 3702060 3702060 0 0.00%
40 4957491 4203655 753836 15.21%
60 7490625 6883533 607092 8.10%
70 8848922 6870041 1978881 22.36%
90 11565303 9971772 1593531 13.78%

100 12923294 9733516 3189778 24.68%

Table 5: Results table of the Armadillo’s model using the DLOD framework
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Figure 42: Graph of  the Armadillo’s transmitted bytes using the DLOD framework
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Faces percentage Average difference in %
30 0.00%
40 18.50%
60 11.63%
70 25.44%
90 17.21%

100 29.01%

Table 6: Average savings of all the tested 
models using the DLOD framework
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Figure 43: Graph of average savings of all the tested models using the DLOD framework
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Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 147433 147447 -14 -0.90%
40 146821 18136 128685 87.64%
60 144576 34820 109756 75.91%
70 142840 23637 119203 83.45%
90 140572 39709 100863 71.75%

100 139874 27842 112032 80.09%

Figure 44: Results table of the Suzanne's model using the CLOD framework
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Figure 45: Graph of  the Suzanne's transmitted bytes using the CLOD framework



3.2– Summary, conclusions and future work

In this work we focused on the transmission of LODs using the discrete and 
continuous LOD frameworks. In the first framework each LOD is represented as an 
individual 3D model. This means that the geometry is disjoint and we don’t have a 
straightforward method for a redundancy free transmission. On the other hand we have 
the continuous LOD framework in which a 3D model is encoded in a way that it allows 
us to extract the desired LOD on demand. On the down side, there is no standard 
encoding scheme that is used among all implementations. To alleviate these issues we 
propose the use of delta encoding.

Among its many applications, delta encoding is also used in the RFC 3229 and 
the SDCH protocols in order to minimize the payload size of HTTP responses. The work 
of [GMBTB11] deals with the size reduction of OpenGL command batches that are 
streamed through the network. They use data compression along with delta encoding 
which they call as in-frame and inter-frame compression respectively. We believe, at least
in a more abstract level, that their work is close to our solution approach even though 
they are dealing with a different kind of problem.

On the server side we created a module that can extract the desired LOD which is 
then converted into a form compatible with the X3D’s IndexedFaceSet node and the patch

data are produced by using the client’s current LOD. Then the client produces the target 
LOD by applying the patch and updates the scene’s model by using the jQuery’s .attr()

[jQattr] method for the point and coordIndex attributes. The given API for the MPEG-
DASH client developer is fairly simple. To change the current LOD, he or she will just 
call the model’s changeLOD method which takes two arguments. The first one is the 
requesting quality ranking and the second one is an observer object which is notified if 
the LOD update was successful or if it failed.

Delta encoding performs well when the differences between the input files are 
small, which we can confirm that by our results. As we can see, the high compression 
ratios can be found when we were changing the LOD from the 30% to 40%, from 60% to
70% and from 90% to 100% of the model’s faces. Finally, we got the best compression 
ratios when using the CLOD framework. This is because the data in this framework are 
homogeneous.

Based on this observation, a possible future research would deal with the 
development of a mesh simplification algorithm that produces a delta encoding friendly 
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output. Additionally, we would like to fully investigate the potentials of the SDCH 
protocol on the transmission of LODs.
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