
TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

SCHOOL OF APPLIED TECHNOLOGY

DEPARTMENT OF INFORMATICS ENGINEERING

Bachelor thesis

Algorithms and processes for progressive graphics
applications

Paschalis Dedousis – R.N.: 2903

Supervisor professor: Dr. Athanasios G. Malamos

Evaluation commission: -

Presentation date: -

Table of Contents

Abstract..v
Σύνοψη..vi
Chapter – 1...7

1.1 - Introduction and previous work...7
1.2 - Problem definition...11
1.3 - Solution Approach...14

Chapter – 2...17
2.1 – Background research...17
2.2 – 3D Models and Polygon Meshes..17
2.3 – X3D’s IndexedFaceSet Node..21
2.4 – More sophisticated mesh data structures..22

2.4.1 – Winged Edge data structure...23
2.4.2 – Half Edge data structure...27
2.4.3 – Lath based data structures..31

2.5 – Level of Detail..33
2.5.1 – Discrete LOD Framework..35
2.5.3 – Continuous LOD Framework..40

2.6 – Delta Compression..43
Chapter – 3...49

3.1 – Implementation...49
3.1.1 – Server overview...49
3.1.2 – Discrete LOD framework UI...51
3.1.3 – Continuous LOD framework UI..54
3.1.4 – Client with MPEG-DASH enabled X3D scene.............................56
3.1.5 – Results in numbers...62

3.2– Summary, conclusions and future work...69
References..71

Table of Figures

 Figure 1: The more the fidelity, the more the cost to transmit..10
 Figure 2: Proposed system overview..15
 Figure 3:..18
 Figure 4: Relationship between vertices, edges and faces. ..19
 Figure 5:..19
 Figure 6:..20
 Figure 7 : (a) is a Vertex-Vertex mesh, (b) is a Face-Vertex mesh....................................21
 Figure 8: A code example of the IndexedFaceSet node..22

ii

 Figure 9: Winged Edge overview...23
 Figure 10: The effects of applying the MKFE and KLFE procedures..............................25
 Figure 11: Half-edge overview [Zcg12]...29
 Figure 12: Illustrated Half-Edge enumerated list of references [BSBK02]......................30
 Figure 13 [JLM03]..31
 Figure 14 [JLM03] The laths form two kinds of loops, a clockwise around a vertex and a
counter-clockwise inside a face...32
 Figure 15 An example of a alpha-blending transition. Taken from [SW08].....................38
 Figure 16: Metamesh’s size [LDSS99]...38
 Figure 17: Example of mesh morphing [LDSS99]...39
 Figure 18: Source to target vertices correspondence (green arrows) and target to source
mesh vertices correspondence (red arrow) [Par05]...39
 Figure 19: The visual discontinuities are marked as yellow lines [Hp96]........................40
 Figure 20 edge collapse and vertex split transformations [Hp96]....................................40
 Figure 21 [PR00]...42
 Figure 22: [LJBA13] cell merge and cell split operations..43
 Figure 23: Git GUI - Visualization of edits of a file...45
 Figure 24: OpenGL commands transmission from master to slave computer [GMBTB11]
..46
 Figure 25: Transformations diagram [RFC3229]...48
 Figure 26: Request example [RFC3229]..48
 Figure 27: The server's package.json file..50
 Figure 28: Web application's first screen..51
 Figure 29: Discrete LOD framework upload screen...52
 Figure 30: Directions screen...53
 Figure 31: Model selection screen..54
 Figure 32: LOD editor..55
 Figure 33: Code that observes and selects the next LOD...57
 Figure 34: Code that requests and applies the LODs..58
 Figure 35: Example of using the player..59
 Figure 36: Client during runtime showing two low LOD models....................................60
 Figure 37: Client during runtime showing two high LOD models...................................61
 Figure 38: Graph of the Bunny’s transmitted bytes using the DLOD framework............62
 Figure 39: Graph of the Suzanne’s transmitted bytes using the DLOD framework.........63
 Figure 40: Graph of the Happy Buddha’s transmitted bytes using the DLOD framework
..64
 Figure 41: Graph of the Dragon’s transmitted bytes using the DLOD framework..........65
 Figure 42: Graph of the Armadillo’s transmitted bytes using the DLOD framework......66
 Figure 43: Graph of average savings of all the tested models using the DLOD framework
..67
 Figure 44: Results table of the Suzanne's model using the CLOD framework................68
 Figure 45: Graph of the Suzanne's transmitted bytes using the CLOD framework.........68

Table of Tables

iii

 Table 1: Results table of the Bunny model using the DLOD framework.........................62
 Table 2: Results table of the Suzanne model using the DLOD framework......................63
 Table 3: Results table of the Happy Buddha’s model using the DLOD framework.........64
 Table 4: Results table of the Dragon’s model using the DLOD framework.....................65
 Table 5: Results table of the Armadillo’s model using the DLOD framework.................66
 Table 6: Average savings of all the tested models using the DLOD framework..............67

iv

Abstract

In previous work an integrated adaptation framework has been proposed for the
Web3D, using the X3D and the MPEG-DASH standards. By fusing those two, one can
deliver multimedia content adaptively in X3D scenes following the HTML5’s plug-in
free mind set. Since then, a problem remains of how to have a good network utilization
when delivering refined or coarser versions of 3D models by only using open and royalty
free web standards and without destroying the X3D’s human readable representation
form.

When transmitting different levels of detail of a 3D model, we need to do it in a
cumulative manner, thus preserving common geometry data. Considering the
programmatically created and the hand crafted level of detail techniques, we need a way
to support those two by offering an integrated solution based on current or emerging web
standards.

Programmatically creating levels of detail, often needs the change of the 3D
model’s data structure. This means that the content provider and the content consumer
must agree for the what and how to implement before runtime, thus driving into case per
case solutions. Also, when following the hand-crafted approach, chances are that there is
common geometry data in-between the levels of detail. So when delivering them as
individual entities will result into poor bandwidth utilization.

To alleviate these issues we will consider a context agnostic approach, namely
delta encoding or delta compression, for transmitting levels of detail of 3D models in a
unified environment.

v

Σύνοψη

Σε προηγούμενη δουλειά έχει προταθεί ένα ολοκληρωμένο σύστημα
προσαρμόσιμου πολυμεσικού υλικού για το Web3D χρησιμοποιώντας τα πρότυπα X3D
και MPEG-DASH. Συνδυάζοντας αυτά τα δύο, μπορούμε να πραγματοποιήσουμε
μετάδοση προσαρμόσιμου πολυμεσικού υλικού σε X3D σκηνές ακολουθώντας μια
λογική η οποία είναι ελεύθερη από αρθρώματα. Ένα πρόβλημα που παραμένει όμως
είναι το πώς μπορούμε να έχουμε μια καλή εκμετάλλευση του δικτύου όταν μεταδίδουμε
διαφορετικά επίπεδα ποιότητας 3Δ γραφικών χρησιμοποιώντας μόνο ανοιχτά πρότυπα
και χωρίς να αλλάξουμε την αναγνώσιμη από ανθρώπους μορφή περιγραφής του X3D.

Όταν μεταδίδουμε διαφορετικά επίπεδα ποιότητας 3Δ γραφικών πρέπει να το
κάνουμε με έναν συσσωρευτικό τρόπο έτσι ώστε να μπορούμε να
επαναχρησιμοποιήσουμε τα κοινά δεδομένα γεωμετρίας. Έχοντας ως βάση την
δημιουργία επιπέδων ποιότητας με προγραμματιστικό τρόπο αλλά και με το χέρι,
χρειαζόμαστε μια ολοκληρωμένη λύση που να μπορεί να υποστηρίξει αυτές τις δύο
διαφορετικές μεθοδολογίες και η οποία θα βασίζεται σε σύγχρονα και αναδυόμενα
πρότυπα.

Ο προγραμματιστικός τρόπος δημιουργίας επιπέδων ποιότητας συνήθως απαιτεί
την αλλαγή της δομής δεδομένων που χρησιμοποιείται για την περιγραφή του 3Δ
μοντέλου. Αυτό σημαίνει πως ο πάροχος και ο καταναλωτής του περιεχομένου πρέπει να
συμφωνήσουν εκ των προτέρων για το τι και το πως θα υλοποιηθεί. Με αυτόν τον τρόπο
οδηγούμαστε σε ανά περίπτωση υλοποιήσεις. Επίσης όταν χρησιμοποιούμε την δεύτερη
μεθοδολογία δημιουργίας επιπέδων ποιότητας, οι πιθανότητες είναι πως θα έχουμε κοινή
πληροφορία μεταξύ των επιπέδων. Οπότε αν μεταδώσουμε τα επίπεδα αυτά ως
ανεξάρτητες οντότητες θα έχουμε χαμηλή εκμετάλλευση του δικτύου.

Για να ξεπεράσουμε τα θέματα αυτά προτείνουμε μια προσέγγιση του
προβλήματος στην οποία το μεταδιδόμενο περιεχόμενο θα μας είναι αδιάφορο. Πιο
συγκεκριμένα, στο ολοκληρωμένο περιβάλλον μετάδοσης 3Δ γραφικών που θα δώσουμε
θα χρησιμοποιήσουμε συμπίεση δέλτα.

vi

Chapter – 1

1.1 - Introduction and previous work

Recent advancements in Web technologies, offer the ability to deliver multimedia
content in a heterogeneous environment of platforms and devices. To achieve this, a great
number of standards has been introduced, although not all of them are implemented on a
large scale or exploited on their full potential.

For many years, multimedia content delivery and interaction over the web was
mostly supported by using proprietary, closed source solutions. The most notable
example is the Adobe’s, Adobe Flash Player, a freeware plug-in that enables audio and
video, as well as vector, raster and 3D graphics support for the web browser. Although
serving it’s purpose well over the years, one of the disadvantages of this approach is that
it breaks interoperability. In the list of HTML elements [WHV14] of the latest HTML
specification there are some interesting elements, at least from the perspective of the
multimedia field, that offer native support of audio, video and graphics in the browser.
Specifically, in the subcategory of embedded content lie the audio and video elements
and in the scripting subcategory lies the canvas element.

Today’s client side scene is formed not only by the well known desktop
computers. New portable devices came into, such as smart phones and tablet computers,
that are connected to the web using wireless and often unreliable connections. In addition
to that they have limited processing power, reliance on battery and limited viewing
capabilities mostly due to their size, the goal of achieving a good QoE becomes even
harder. One of the approaches and sometimes combined with others to alleviate this issue,
adaptive bitrate streaming is used.

Adaptive bitrate streaming is a technique for streaming multimedia content over a
network to the client in an adaptive manner. Meaning that while streaming, the content is
adapted according to the client’s processing power and network bandwidth capabilities.
Some implementations of adaptive bitrate streaming include the Adobe HTTP Dynamic
Streaming, Apple HTTP Live Streaming and the Microsoft Smooth Streaming. None of
them is a standard though, meaning that they fail interoperability wise. To overcome this,
companies like Microsoft, Apple, Netflix and others, participated in the standardization of

7

the MPEG-DASH, an industry oriented, open and international standard. In addition, the
MPEG-DASH delivers content using the HTTP protocol, so content can be delivered
using the already widely used and well adopted HTTP over TCP [IRS11] [SAC11] .

The directions of how an MPEG-DASH client can switch between different
quality media streams are described in an MPD file. The MPD can be obtained usually
via the web and is an XML, human readable file. In fact, in the sense that MPEG-DASH
and HTML5 technologies can be complementing when consuming media content, the
DASH-IF developed a Javascript player for the browser, for supporting adaptive video
capabilities.

X3D is an open, royalty free ISO standard managed by the Web3D Consortium,
that represents 3D graphics in XML format, readable by both humans and computers, that
is supported by stand-alone implementations or browser plug-ins, at least until recently.
To overcome the disadvantages of using browser plug-ins, Behr et al. [BEJZ09]
presented the X3DOM, a DOM based model that gives a seamless integration between
X3D and HTML5 without using plug-ins.

On their first attempt to extend the X3DOM’s adaptation methods, Kapetanakis
et al. in [KPMZ14] provide a mechanism of adaptive HD video inside 3D virtual reality
worlds by merging it with MPEG-DASH. The offered implementation consists of
extending the X3DOM’s MovieTexture element to work with the DASH video player
[GIT14][ML14] .

Although the MPEG-DASH was designed to be primarily used for temporal
content, such as audio and video, it does not explicitly restrict the media type that can be
used. Given that the X3D is an ISO standard and that the model/x3d+xml is a registered

MIME type, 3D models written in X3D should be compatible with the MPEG-DASH.
Based on this, Kapetanakis in his thesis [KK14], extends the previous mechanism in
order to additionally support adaptive 3D model delivery. In his work he also describes
how the 3D models should be treated so they can be successfully included in an MPD
file. As an overview, the 3D models are segmented into levels of detail and can be
sequentially transmitted to the client. Also the client can adapt the 3D model by
requesting the corresponding segment, or level of detail.

This work only suggested the first steps into creating such an adaptation system
and only supported simple cases where only a single 3D model was included into an X3D
scene. Zamploglou et al. in [ZKSMP16] continue the research on the potential of
supporting adaptive streaming of complex X3D scenes, where a plethora of geometries,
audio, image and video textures are included.

8

An issue that remains though, is how to have a good network utilization when
transmitting different segments, or levels of detail, described in the MPD. To give a
solution approach to that, first we have to have an understanding of the term LOD of a
3D model. The first ideas of the LOD were introduced by J. Clark [JHC76] and in a sense
is technique for representing an object with different geometry complexities. The goal of
this technique is to reduce the representation complexity of an object in order to reduce
computation requirements when such resources cannot be met or when the object is
viewed from a far distance. There is no restriction to that the LOD technique can only be
used for the geometry of a model, it can also be applied to shaders and texture maps, but
in this work we are interested in the model’s geometry. A qualitative graphical
representation, describing the fidelity and the geometry complexity relationship, is given
on Figure 1.

There are three basic approaches or frameworks of LOD and these are the
discrete, continuous and view-dependent LODs. In the case of the discrete LOD, the
object is separated into some number of individual models of different fidelity before the
runtime. Usually, those LODs are hand-crafted by a graphics artist(s), if not exported by
some mesh simplification algorithm implementation. Using this approach, gives us the
ability to control of what will be viewed to the user. On the contrary, in the continuous
LOD case, the model is encoded in a data structure such that we can extract the desired
LOD from a continuous spectrum of LODs. This approach gives better granularity and
minimizes the popping effect when changing LOD. Also, the case of the view-dependent
LOD can be considered as an extension of the continuous LOD, in the sense that the
geometry simplification varies in different areas of the model, usually according to the
camera – area distance. Such an example is when viewing a terrain, where areas closer to
the camera have more geometry information than areas that are farther away.

9

10

Figure 1: The more the fidelity, the more the cost to transmit

1.2 - Problem definition

The main goal of this thesis is to give a solution approach that changes, in the
sense of extending the X3D’s already defined nodes, are kept at the most minimal if not
non existent all. Further more, the standard uses a representation form about the vertices
and the edges of the model, that is human readable and we wish to keep it that way. In
addition, we want to support both the discrete and the continuous LOD frameworks in
our solution.

Also, the MPEG-DASH player developer is already occupied with solving
problems such as content adaptation in real time. So it is quite important to offer a simple
API for the delivery of the adaptive models. To achieve this, our solution should support
the two different LOD frameworks in a unified way.

As an X3D client, we will use the X3DOM client that was mentioned above, but
let’s not forget that the X3DOM is only one of the many implementations of the X3D
standard that exist. A reference list of the currently available implementations can be
found in [X3DP16]. This makes it vital that our solution is based on standards and is not
focused only on a single X3D client.

As described in the previous section, continuous LOD frameworks encode the
model in a data structure such that it allows the implementation of some geometry
simplification algorithm and the extraction of the desired LOD. The issue with this
approach is that there are no standard data structures and algorithms that are used among
all implementations. A commonly used one though, is the half edge data structure. In
addition, some of them, encode the model in some binary form, thus destroying the
X3D’s human readable representation form. This could not be a quite bad thing,
considering the gain in performance, but some binary forms are proprietary and not freely
available, so they break the open standard mind set.

The need for using more sophisticated data structures, other than usual X3D’s
indexed face set, comes from the need that these algorithms depend on queries about the
geometry and connectivity of the model. These queries are mostly about the adjacency
and incidence of the building blocks of the model. For example, queries such as which
faces share a particular vertex, or which edges are adjacent. Of course, such information
can be extracted even with the X3D’s indexed face set, but this data structure is not
designed to store any kind of explicit information to satisfy these queries quickly, without

11

having to traverse the model’s geometry and connectivity repeatedly for every single
query during the run time.

In Mauro Figueiredo et al. [FRSV14] a framework that supports interactive
topology queries on 3D models is presented. The given open source implementation,
named TopTri, allows 3D web client applications to make queries about vertex, edge and
face adjacency and incidence on the web server without the need of changing the model’s
data structure that is already used on the client. Instead the web server is responsible for
such operations. Although implemented in the Python scripting language, the web server
is satisfying fast enough to serve those queries even for large models and real time
applications. While testing their proposed framework, Mauro Figueiredo et al. did not use
any kind of continuous LOD algorithm as their test bench. Instead they implemented
algorithms that can identify stalactites in a cave, using the web browser as the client
runtime environment.

The TopTri toolkit, relieves the client from implementing a sophisticated data
structure for continuous LOD, so it seems that is suitable for our needs. A solution
approach for our system for transmitting adaptive 3D models, using that framework, is
not fully investigated yet. Thus we are in a position that we can not give a clear answer
about the level of changes that have to be made to the client, in order to at least support
only the continuous LOD framework.

As for the discrete LOD framework, the geometry and connectivity between
different levels of detail is disjoint. So there is not an obvious or straightforward
approach to support a transmission that is free of redundant geometry information. A first
approach that we considered in order to send only the changes that have to be made to
reconstruct the target mesh, was to use a technique named geomorping or mesh
interpolation or metamorphosis. This technique is widely used where there is the need to
express a smooth transition between two models. For example an animation of an infant
growing up to an adult or the transition between different facial expressions. In particular,
from the perspective of LOD, it is used to eliminate or at least minimize the popping
effect when changing the level of detail.

As in [Par05], there are three main steps that are followed to achieve a multi-
resolution mesh morphing. First we need to find correspondence between the vertices of
the source mesh to the target mesh. Note that vertex to vertex correspondence cannot be
always achieved because the two meshes may have different number of vertices. So we
compromise with some arbitrary point in 3D space near the source – target mesh. The
same step has to be repeated in the opposite direction in order to find the vertices

12

correspondence between the target and the source mesh this time. Finally we merge the
connectivity of the two input meshes in order to produce a new mesh representation that
shares the connectivity of these two meshes. This new mesh representation is often called
the supermesh. Now using the produced supermesh we can bidirectionally interpolate
between the two meshes.

As a rough calculation of the memory size that the supermesh requires, without
considering the memory cost for the connectivity, we have:

Bytes(Geometry(supermesh))= b (N (V s) + N (V t))

Where b is the number of bytes required to store a single vertex, N(Vs) the number of
vertices of the source mesh and N(Vt) the number of vertices of the target mesh. So we
concluded that this size of overhead leads to an unworkable scenario. This led us to leave
the investigation of this solution approach quite early. Even though we did not follow this
path in this thesis, we do not completely reject the probability of a solution based on
morphing between arbitrary and multi-resolution meshes exists.

Talking about the changes that have to made in order to reconstruct the target
mesh, having the current mesh as the reference mesh, we came up with the idea of
applying delta encoding. Delta encoding or delta compression, also known as delta
differencing in its more general description, is a technique for describing a sequence of
input entities in the form of differences between them. By doing that, data that is common
in-between the entities is not repeated, thus reducing the requirements of storage space,
or bandwidth if we are in the case of transmission. An every day example that delta
compression is used is the case of remote file synchronization.

Chun in [Wc12] is dealing with the transmission of 3D models in WebGL scenes
over HTTP for the Google Body project. Having in mind that the GZIP algorithm was
primarily designed for compressing text input, LZ77 phrase matching will most likely fail
with something that is not structured, like in our case lists of vertices and indices. In order
to optimize the model for compression, Chun approaches the vertices and indices data as
signals and uses delta encoding.

Now in the sense that a web resource may change over time and that the new
instance of that resource will most likely be similar with the older one, Mogul et al.
[MDFK97] discuss and quantify the potential benefits of using delta encoding and delta
compression for HTTP responses and their results are encouraging. In K. Psounis’s work
[Pks02] dynamically created web content is separated into base documents, named as
classes, and content responses are sent in the form of deltas. Experimental results of his

13

work show that by using the class-based delta model, bandwidth consumption is reduced
by a factor of 30.

The Chromium [Chr02] project, the descendant of WireGL [WG01] , offers a
framework for scalable cluster rendering. In a sense, the client sends frames of OpenGL
commands to be rendered by a cluster of workstations on its behalf. Gasparello et al. in
[GMBTB11] deal with the distribution of OpenGL command streams over a network by
using their own Chromium-like system as their base framework. In order to have a good
network utilization, they propose the use of in-frame and inter-frame compression. Inter-
frame compression aims on eliminating or at least reduce the redundant data that exist
between consecutively frames. For example and in the case of a scene where there is only
one moving object, lets say the camera, only the translation commands need to be
streamed. They achieve this by using the open-vcdiff tool, an open source
implementation of the VCDIFF delta encoding algorithm and file format.

The RFC 3229 proposed standard as its current state [RFC3229], introduces delta
encoding in HTTP. The RFC 3229 tries to deal with problem of serving slightly and
frequently modified resources for which the client already has one or more older
instances in its cache. Based on the observation that the modification of a resource is
much smaller then the resource itself, this RFC proposes delta encoding to be used in
such cases, avoiding that way of sending redundant bytes on the response.

Although the RFC 3229 works well for same URL responses, it is not suitable for
content that is dynamically created with varying URL query parameters. For example
search results pages. To overcome this limitation, Butler et al. in [BLM16] propose the
SDCH , pronounced as “sandwich” [Li15] , protocol. In their proposal, a dictionary file is
shared between the server and the client, containing strings that have high chances of
appearing in future HTTP responses. If both sides support SDCH and the client does not
have any dictionary from server, or has an outdated version, the latest dictionary file is
sent out of band. If both sides support SDCH and the client has a valid copy of the
dictionary, then the HTTP response is represented as references to strings in the shared
dictionary. The compression scheme is named as SDCH encoding and is VCDIFF based.

1.3 - Solution Approach

Even though there is some work done about data and mostly web page content
transmission over the Internet by using delta encoding, there is no work, at least in our
knowledge, that explicitly covers transmission of 3D models and their levels of detail

14

over HTTP based on this technique. Nevertheless the adoption promise of delta encoded
HTTP responses is quite encouraging.

The main advantage of using this kind of technique, from our point of view, is
that without extending or modifying the X3D standard we can support the discrete and
continuous level of detail frameworks simultaneously. Fulfilling that way the two
promises that were given for offering support of the two different LOD frameworks in a
unified way and keeping the need for changes minimal. In fact, in this work the X3D
standard was kept as is.

We can also fulfill the promise of not altering the human readable representation
form that the X3D uses for describing 3D models. More precisely the IndexedFaceSet
node. Additionally and given that the delta compression is a context agnostic
compression scheme we can also support binary formats and scene assets other than 3D
models, even though this was not our goal.

 Even though we are aware that by implementing a solution that already exists in
the literature of the continuous framework might yield better performance results and
smaller network bandwidth requirements, we follow an ubiquity and interoperability over
performance solution approach. An overview graphical representation of our proposed
solution is given on Figure 2.

15

Figure 2: Proposed system overview

As we can see on Figure 2 and on the client’s side, we have the X3D client using
an MPEG-DASH adaptation mechanism. This adaptation mechanism is responsible for
taking performance metrics and adapting the LOD of the models which are described in
the MPD file. In the case that the desired LOD does not exist on the client, the MPEG-
DASH adaptation mechanism sends the appropriate request to the server using HTTP and
additionally advertises the current LOD that already has and on which the delta patch will
be applied on.

On the server’s side, when that kind of request arrives, the LOD Framework
mechanism extracts the requested LOD. Then the delta between the requesting LOD and
the current LOD that the client already has is computed and sent to the client as an HTTP
response.

Architecture wise, our proposed solution has the advantage of minimal changes
on the web server that serves the scene assets. That is because the LOD Framework
mechanism can be added in the current configuration in the form of a module.

16

Chapter – 2

2.1 – Background research

In this chapter we are going to present the background research that has been
made. First we will make ourselves familiar with what is a 3D model and how it is
represented as a polygon mesh. Next, we will discuss some useful data structures for
storing polygon meshes that we can use to extract the desired fidelity of the 3D model
using the continuous level of detail framework.

In general, the extraction of the desired fidelity is achieved by using a mesh
simplification algorithm that consecutively simplifies the model starting from the original
version until the most coarse version is reached. Then we encode the steps that were
taken in a way such that we can extract the desired level of detail at any given time.

We will also present the small research that has been made about geomorhping.
As mentioned earlier in the previous chapter the geomorphing technique was investigated
as a solution approach for delivering the model’s levels of detail. But the – roughly -
calculated overhead that is required for the transmission is discouraging.

2.2 – 3D Models and Polygon Meshes

A thee dimensional model, or 3D model is a mathematical representation of a
three dimensional surface. These models can be created manually by using a 3D
designing software for example, or by 3D scanning of real world objects. The most
widely representation scheme used for 3D models is the polygon mesh.

The polygon mesh is a mesh of vertices, edges and faces that describe a
polyhedron object. The vertices are points in 3D space that are described by their
coordinates, for example Vn = (xn , yn , zn) . The edges are straight lines that connect two
vertices and can be described as En = (Va , Vb) . Faces are simple convex or concave
polygons. A simple polygon is a polygon that consists of non-intersecting line segments,
or in other words there are no pairs of edges that cross each other. In a convex polygon,
there is no internal angle that exceeds 180o , in a concave polygon there is at least one

17

internal angle that is larger than 180o . In computer graphics, the most used type of faces
is the triangle and more rarely quadrilaterals, faces with four vertices and edges. Figure 3
gives an example of simple and complex polygons. Figure 4 gives a graphical
representation of the relationships between the vertices, edges and faces.

The connectivity or the topology of a mesh refers to how the vertices are
connected in order to form the edges and faces of the mesh. The geometry of a mesh
refers to the coordinates of the vertices. Thus for a given 3D conceptual representation of
an object we can have different meshes with the same geometry and different topology.
Figure 5 gives a graphical representation about the geometry and topology of a mesh.

Meshes can be manifold or non-manifold. A mesh can be considered manifold if
every edge touches only one or two faces and faces that are incident to a vertex form a
closed or an open fan. Also in a non-manifold mesh, adjacent faces can share o single
vertex without sharing an edge. Some mesh simplification algorithms require only
manifold meshes as an input. Figure 6 gives a visual representation about manifold and
non-manifold meshes.

18

Figure 3:

Polygons (a) and (b) are simple polygons.

Polygon (c) is a complex polygon.

Polygon (a) is convex.

Polygon (b) is concave.

The shapes were taken from:

https://en.wikipedia.org/wiki/Convex_polygon#/media/File:Pentagon.svg

https://en.wikipedia.org/wiki/Concave_polygon#/media/File:Simple_polygon.svg

https://en.wikipedia.org/wiki/Complex_polygon#/media/File:Complex_polygon.svg

https://en.wikipedia.org/wiki/Concave_polygon#/media/File:Simple_polygon.svg
https://en.wikipedia.org/wiki/Convex_polygon#/media/File:Pentagon.svg

19

Figure 4: Relationship between vertices, edges and faces. This figure is a
part from https://en.wikipedia.org/wiki/Polygon_mesh#/media/File:Mesh_overview.svg

Figure 5:

In (a) we have same geometry with different topology.

In (b) we have same topology with different geometry.

Imagery taken from: http://www.cs.dartmouth.edu/~cs77/slides/07_meshes.pdf

There are two main representation schemes of polygon meshes that are used,
among others. First we have the explicit vertex list representation, also known as Vertex-
Vertex meshes, where every group of vertices represents a face. The other representation
scheme, also known as Face-Vertex meshes, uses two lists, an indexed list of vertices that
holds their coordinates and a list of vertex indices. Every group of vertex indices
represents a face. The Face-Vertex representation scheme is also used by the X3D to
describe polygon meshes. More precisely, the IndexedFaceSet node is of that type. Figure
7 describes these two representation schemes.

20

Figure 6:

(a): A manifold mesh forming a closed fan.

(b): A manifold forming an open fan.

(c): A non-manifold where two faces share a single vertex and no edge.

Part of the images was taken from:

https://www.cs.mtu.edu/~shene/COURSES/cs3621/SLIDES/Mesh.pdf

2.3 – X3D’s IndexedFaceSet Node

As described in [WX3D], X3D essentially is an XML document, meaning that
every entity that composes a 3D world and its interaction is described in a hierarchy of
nodes in a parent-child relationship. Among the nodes that can represent 3D objects, the
IndexedFaceSet node is used to represent 3D objects in a Face-Vertex manner that was

previously described.

This node, as in [X3DIFS] extends the X3DComposedGeometryNode and uses

groups of vertex indices separated by “-1” in order to form the faces. These indices are 32
bit integers that are defined in the node’s coordIndex attribute field. To define the

vertices, this node uses the Coordinate node as its child node. The Coordinate node as

in [X3DCoo] extends the X3DCoordinateNode and uses its point attribute field to define

3D coordinates.

21

Figure 7 : (a) is a Vertex-Vertex mesh, (b) is a Face-Vertex mesh.

Imagery taken and mixed from: http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/meshes/polygon_meshes.html

2.4 – More sophisticated mesh data structures

Even thought the Vertex-Vertex and Face-Vertex meshes have simple and
straightforward way to represent 3D models, there are some cases where we need to
answer questions about the connectivity of a mesh. These questions are related with the
adjacency and incidence of the vertices, edges and faces of the mesh. For example, which
faces are incident to a given vertex or which faces are incident to a given face or which
edges are adjacent. This kind of queries can be answered using the Vertex-Vertex and
Face-Vertex representation schemes, but because no such explicit information is held
about the connectivity, we have to traverse the whole geometry data many times for every
query. Additionally, we need to be able to make operations on the geometry and
connectivity in order to add or remove vertices and faces of the mesh. The operations of
vertex and face removal are important to mesh simplification algorithms that can reduce
the fidelity of a 3D model. These two reasons led to the creation of other data structures
in order to solve that problem, but with the cost of more memory usage.

There are quite a few mesh data structure that solve that problem, the most used
one though is the half-edge, which is an extension of the winged-edge data structure but
they both work only on oriented and manifold meshes. The main idea of these two data
structures is that for every vertex of the mesh, we hold references or pointers to the other
elements of the mesh.

22

Figure 8: A code example of the IndexedFaceSet node

2.4.1 – Winged Edge data structure

Baumgart in [Bau75] presents the winged-edge data structure. In his work, a
polyhedron consists of four types of nodes. These are the bodies, faces, edges and
vertices. The body node is a head of a ring of faces, a ring of edges and a ring of vertices.
A ring is a doubly linked circular list with a head node.

In this data structure, each face and vertex point to one edge. Each edge points to
two faces and two vertices. Finally each edge points to four edges, two in a clockwise
direction and two in a counter-clockwise direction. The last four pointers form a
conceptual wing and this why this data structure got that name. Figure 9 gives an
illustration of the winged-edge data structure.

23

Figure 9: Winged Edge overview

While standing on the CE and while looking up, we can define the following pointers:

• NFACE: The next face.

• PFACE: The previous face.

• NCCW: The next edge in a counter-clock wise order.

• NCW: The next edge in a clockwise order.

• PCW: The previous edge in a clockwise order.

• PCCW: The previous edge in a counter-clock wise order.

• PVT: The previous vertex.

• NVT: The next vertex.

A sample code implementing the data structure in the C language could be the following:

struct Edge
{

Edge *nccw, *pcw, *ncw, *pccw;
Face *nface, *pface;
Vertex *pvt, *nvt;
// Other edge data

};

struct Face
{

Edge *edge;
// Other face data

};

struct Vertex
{

Edge *edge;
// Other vertex data

};

24

As mentioned above, in order to implement a continuous LOD technique on our
input mesh, we must be able to make operations on the mesh such as face, edge and
vertex insertion and removal. Baumgart in his work besides describing the data structure,
also gives us two reference procedures that we can use. The MKFE procedure, or “Make
Face-Edge”, adds a pair of a face and vertex into the surface topology. The KLFE, or
“Kill Face-Edge” procedure removes a face-vertex pair. Figure 10 [Bau75] gives an
illustration of the effects of applying these two procedures. Below that illustration, the
refined pseudo-code for the two procedures is given.

25

Figure 10: The effects of applying the MKFE and KLFE procedures

26

INTEGER PROCEDURE MAKE_FACE_EDGE (INTEGER V1,V2,FACE);

BEGIN “MAKE_FACE_EDGE”

// CREATE NEW FACE & EDGE
FNEW ← MAKE_FACE(FACE);
ENEW ← MAKE_EDGE(PREVIOUS_EDGE(FACE));

// LINK NEW EDGES TO ITS FACES & VERTICES
PREVIOUS_EDGE(F) ← PREVIOUS_EDGE(FNEW) ← FNEW;
PREVIOUS_FACE(ENEW) ← F;
NEXT_FACE(ENEW) ← FNEW;
PREVIOUS_VERTEX(ENEW) ← V1;
NEXT_VERTEX(ENEW) ← V2;

// GET THE WINGS OF THE NEW EDGE
E2 ← PREVIOUS_EDGE(V1);
DO

E2 ← NEXT_EDGE_CW((E1 ← E2), V1)
UNTIL

NEXT_FACE_CW(E1, V1) = FACE;
E4 ← PREVIOUS_EDGE(V1);
DO

E4 ← NEXT_EDGE_CW((E3 ← E4), V2)
UNTIL

NEXT_FACE_CW(E3, V2) = FACE;

// SCAN CCW FROM V1 REPLACING FACE WITH FNEW;
E ← E2;
IF PREVIOUS_FACE(E) = FACE THEN

PREVIOUS_FACE(E) ← FNEW;
ELSE

NEXT_FACE(E) ← FNEW;

// LINK THE WINGS
WING(E1, ENEW);
WING(E2, ENEW);
WING(E3, ENEW);
WING(E4, ENEW);

RETURN(ENEW);

END;

2.4.2 – Half Edge data structure

The Half-Edge is probably the most widely used data structure when it comes to
computational geometry. As stated in [Zcg12] and we agree with that, the origin of the
current form of the Half-Edge is hard to find. Nevertheless, in order to find out if two
convex polyhedra intersect each other, Muller and Preparata in [MP78] presented the

27

INTEGER PROCEDURE KILL_FACE_EDGE (INTEGER ENEW);

BEGIN “KILL_FACE_EDGE”

// PICKUP ALL THE LINKS OF ENEW
FACE ← PREVIOUS_FACE(ENEW);
FNEW ← NFACE(ENEW);
V1 ← PREVIOUS_VERTEX(ENEW);
V2 ← NEXT_VERTEX(ENEW);
E1 ← PREVIOUS_EDGE_CW(ENEW);
E2 ← NEXT_EDGE_CCW(ENEW);
E3 ← NEXT_EDGE_CW(ENEW);
E4 ← PREVIOUS_EDGE_CCW(ENEW);

// GET ENEW LINKS OUT OF FACE, V1, V2
IF PREVIOUS_EDGE(V1) = ENEW THEN

PREVIOUS_EDGE(V1) ← E1;
IF PREVIOUS_EDGE(V2) = ENEW THEN

PREVIOUS_EDGE(V2) ← E3;
IF PREVIOUS_EDGE(FACE) = ENEW THEN

PREVIOUS_EDGE(FACE) ← E3;

// GET RID OF FNEW APPEARANCES
E ← E2;
DO

IF PREVIOUS_FACE(E) = FNEW THEN
PREVIOUS_FACE(E) ← FACE;

ELSE
NEXT_FACE(E) ← FACE;

UNTIL
E4 = (E ← NEXT_EDGE_CCW(E, FNEW));

// LINK WINGS TOGETHER ABOUT FACE
WING(E2, E1);
WING(E4, E3);
KILL_FACE(FNEW);
KILL_EDGE(ENEW);

RETURN(FACE);

END;

Doubly Connected Edge List as the base data structure of their algorithm, which its logic
is identical.

In the Half-Edge data structure, every edge is split into two parts, the two halves
of the edge, that have opposite directions. Those two parts are called half-edges, hence
the name of the data structure. This data structure does not explicitly describe any edges,
instead the edges are implied by their two half-edges.

Every half-edge points to its opposite twin half-edge. Additionally, every half-
edge stores a target vertex but no origin vertex, as opposed to the edge that has one start
and one end vertex. Given that the mesh is oriented and that twin half-edges look at
opposite directions, if we want to get the origin vertex of a half-edge we need to get the
target vertex of its twin. Also and given that the Half-Edge data structure is oriented
counter-clock wise, the left half-edge always touches a face and the right always touches
its twin. Below there is a sample code in C implementing the Half-edge data structure.
Figure 11 gives an illustration of the data structure. The blue arrow, denoted by h is one
of the edge’s half-edge and the arrow on its right is its twin.

28

struct HalfEdge
{

HalfEdge* heTwin; // The twin half-edge
HalfEdge* heNext; // The next half-edge
HalfEdge* hePrevious; // The previous half-edge, this is optional
Vertex* vTarget; // The target vertex
Face* face; // The bordering face

// Other data
}

struct Vertex
{

HalfEdge* he; // The half-edge that starts from the vertex

// Other data
}

struct Face
{

HalfEdge* he; // One of the half-edges that surrounds the face

// Other data
}

The following enumerated list gives a summary of what the elements of a mesh point to.
Figure 12 gives an illustration of this list.

1. Every vertex points to the one outgoing half-edge.

2. Every face points to one arbitrary half-edge that is inside its boundary. A face can
be surrounded by many half-edges. In the case of a triangular mesh, a face is
surrounded by three half-edges.

3. Every half-edge points to its target vertex.

4. Every half-edge points to its touching face.

5. Every half-edge points to its next half-edge.

6. Every half-edge point to its opposite – twin half-edge.

7. Optionally, every half-edge points to its previous half-edge.

29

Figure 11: Half-edge overview [Zcg12]

The code below is an example of how to find adjacent edges for a given face. The idea is
to race through all the half-edges pointed by the heNext pointer of the previous half-edge
until we meet the half-edge from which we started.

30

Figure 12: Illustrated Half-Edge enumerated list of
references [BSBK02]

HalfEdge* heStart = face→he;
HalfEdge* heRunner = heStart;

do
{

heRunner = heRunner→heNext;

} while (heRunner != heStart);

2.4.3 – Lath based data structures

Assuming that the geometry can be expressed by vertices, Kenneth I. Joy et al. in
[JLM03] present the lath data type. Each lath element can be connected to another lath
element and that body of connections express the topology of the mesh. A single lath can
be identified by using a record of a vertex, an edge and a face. Also, each of the face-
edge, face-vertex, edge-vertex pairs can be associated with a single lath element. Figure
13 gives an illustration of a half-edge mesh representation implemented with the lath data
type.

As we can see, a lath element L holds a reference to a single vertex. The
“companion” field points to the lath Lcomp . The Lcomp lays on the same edge as L and
references the opposite vertex of the edge. Thus an edge can be described as a pair of
laths that have this “companion” relationship. The “vertex_clockwise” field points to the
next lath in a clockwise vertex traversal. Figure 14 shows that the lath’s contiguous
structure forms two kinds of loops, one in a clockwise direction around a vertex and one
in a counter-clockwise direction inside a face.

31

Figure 13 [JLM03]

32

Figure 14 [JLM03] The laths form two kinds of loops, a clockwise around a vertex and a
counter-clockwise inside a face.

The traversal of the mesh elements can be done by using the following operations:

• ec(L): return the L’s edge companion.

• cv(L): return the lath that follows L that is defined in the L’s “vertex_clockwise”
field.

• ccf(L): return the lath that follows L in a counter-clockwise traversal of the face
that L represents.

• cf(L): return the lath that follows L in clockwise traversal of the face.

• ccv(L): return the lath that follows L in counter-clockwise traversal around the L’s
vertex.

2.5 – Level of Detail

The Level Of Detail in applications that use 3D models, such as computer games,
is a technique for representing a 3D model in different levels of fidelity. What this means
for the geometry of a model is that we can reduce or increase the number of vertices. This
can be useful in cases where the available processing power for rendering the model with
a given geometry complexity is insufficient or when the model is placed away from the
camera. For example, a dodecahedron when viewed from a far distance can be perceived
by the human eye as a sphere. For that reason rendering the full geometry of the model
would be a waste of computational resources.

The size of 3D models is increasing day by day. Thus they need more memory for
storage, as well as more computing power to be rendered. Although the computing and
storage capabilities, even in home computing, become noticeably better year by year, the
Internet’s average speed does not keep up with the same pace. This becomes a problem
when 3D models that are above the medium size, need to be transmitted as a Web3D’s
scene assets. In that case and in order the model to be viewed, the user will have to wait
for an undesirably long time until the model is fully loaded.

Nah in [NF03] suggests that the average website user is willing to wait for at most
two seconds until the web content is loaded. As in [Rail16] is suggested that interactive
content has to be delivered in under one second. To achieve this, we can send to the user

33

a coarse version of our model and then gradually refine it. This approach has the
advantage of keeping the user occupied while the full model is loaded, resulting in that
way to a better user experience.

Also and given that the LODs are created by simplifying the input mesh, we need
a way to determine if the simplified output is visually pleasant. As mentioned above,
there are two ways to simplify a mesh. Either by hand or programmatically. In the first
case, we have the opportunity to evaluate the simplified output ourselves but this is not
always the case when taking the second approach.

 As in Garland’s work [Ga99], we need a way to estimate how much similar the
input and output meshes are. One approach is to render the two meshes and then calculate
the differences of the their produced images. This approach has the advantages of
measuring directly the perceptible similarity of the meshes and that not visible details can
be discarded. On the other hand we have to render the meshes from all the possible
viewpoints. Another approach although is to measure the similarity on the geometry
level.

Kapetanakis in [KK14] extends the MPEG-DASH standard in order to support
adaptive 3D models. In general, every asset of the scene is described as an Adaptation
Set. If the asset is separated into different LODs, such as 3D models, these LODs are
described as Representations. The code below is taken as a part from [ML16] and gives
an example of a model and its LODs described in an MPEG-DASH manifesto.

34

2.5.1 – Discrete LOD Framework

In the DLOD framework for every input model, a sequence of gradually coarser
and look alike models is created. These output models are individual entities, meaning
that the geometry and topology might be similar but they are disjoint. This simplification
process is done before runtime. There are mesh simplification algorithms and tools that
give an automatically generated hierarchy of LODs, although sometimes this process is

35

<MPD>

 <BaseURL>http://mclab1.medialab.teicrete.gr:8081</BaseURL>
 <BaseURL>http://localhost:8081</BaseURL>
 <BaseURL>http://alternativeHost:8081</BaseURL>
 <BaseURL>http://alternativeHost2:8081</BaseURL>
 <BaseURL>http://alternativeHost3:8081</BaseURL>
 <BaseURL>http://alternativeHost4:8081</BaseURL>

 <Period id="3d_model">

 <AdaptationSet mimeType="model/x3d+xml" codecs="none" minFrameRate="10">

 <Representation id="6" bandwidth="300000" qualityRanking="4">
 <BaseURL>cat3.x3d</BaseURL>
 </Representation>

 <Representation id="7" bandwidth="500000" qualityRanking="3">
 <BaseURL>cat2.x3d</BaseURL>
 </Representation>

 <Representation id="8" bandwidth="1000000" qualityRanking="2">
 <BaseURL>cat1.x3d</BaseURL>
 </Representation>

 <Representation id="9" bandwidth="2000000" qualityRanking="1">
 <BaseURL>catOrig.x3d</BaseURL>
 </Representation>

 </AdaptationSet>

 </Period>

</MPD>

http://alternativeHost4:8081/

preferred to be made by a human to give a fine tuned result. The video in [Utube16]
shows an example of a handmade mesh simplification process. Some tools that can be
used to automatically generate LODs can found in [ADM16] and [BDM16].

The X3D standard offers the LOD node that enables us to manage a hierarchy of

LOD models in camera-to-object distance manner. Every LOD model is included as a
child node of the LOD node. The selection of which LOD model will be rendered for the

current object-to-camera distance is determined by the range attribute. Bellow we can

find the node’s description as defined in [WX3dL]. A live example along with its source
code can be found in [XfwaL].

The DLOD framework is widely used in 3D games because it is very easy to
implement. All we need to do is to create a hierarchy of LOD models and then render the
most appropriate one. Another advantage is that because the mesh simplification takes
place in an offline preprocess, the runtime is free of any mesh simplification algorithms.
Thus the cost of processing power for this framework is low.

On the other hand and because these LOD models are individual entities, when
transmitting them there will be redundant data in between the LODs. That is because
even though the geometry might be similar there is no obvious way to leverage the in
between similarities to make a cumulative transmission. This is solved by using the
continuous LOD framework, as we will later discuss, because it allows a progressive
transmission which unfortunately comes with a complex implementation and higher
processing power requirements.

36

LOD : X3DGroupingNode {
 MFNode [in] addChildren [X3DChildNode]
 MFNode [in] removeChildren [X3DChildNode]
 MFNode [in,out] children [] [X3DChildNode]
 SFNode [in,out] metadata NULL [X3DMetadataObject]
 SFVec3f [] bboxCenter 0 0 0 (-∞,∞)
 SFVec3f [] bboxSize -1 -1 -1 [0,∞) or −1 −1 −1
 SFVec3f [] center 0 0 0 (-∞,∞)
 MFFloat [] range [] [0,∞) or -1
}

2.5.2 – Level of detail transitions

When using the DLOD framework, the switching between the LODs is abrupt and
easily perceptible by the viewer, giving the sense that the 3D object “pops” when the
camera is moving near or away from it. This visual artifact is called the popping effect. In
order to eliminate it or at least reduce it, we must give a smooth transition between the
start and target LOD models. For that reason, the geomorphing and alpha blending
techniques are used and applied on the mesh level and image level respectively.

In particular in the alpha blending technique, we draw the two LOD models
simultaneously one on top of the other and interpolate the transparency values in a short
period of time. The main disadvantage of alpha blending is that we need to render the two
models at the same time, increasing that way the displayed geometry. This becomes even
a bigger problem when we want to switch to a coarser version in order to free up some
computing resources. Nevertheless, Scherzer and Wimmer in [SW08] represent an
algorithm that renders the two LODs in subsequent frames and in that way we avoid to
simultaneously render those two. Figure 15 gives an illustration of the alpha blending
transition approach.

Another approach of giving a smooth LOD transition is by using morphing or
geomorphing. In general, in the morphing technique, the shape of an object gradually
changes from a starting form to another by interpolating between the two input
geometries. Figure 17 gives an example of mesh morphing. The problem with this kind of
interpolation, is that we need to have a one-to-one vertex correspondence and for that
reason the two interpolating models must have the same number of vertices.

To overcome this limitation, Lee et al. in [LDSS99] present a method of morphing
between multiresolution meshes. As an overview, they reduce the geometry of both input
meshes in order to build the two bijective source-to-target and target-to-source mappings.
These mappings are then realized to as what they call the metamesh, which is the merged
version of the two input meshes. By their estimations although, the size of the metamesh
can reach up to 10 times the size of the larger mesh. This makes it inappropriate for our
problem’s solution. The Figure 16 is an excerpt of their work that shows the metamesh’s
size for four different mesh morphings.

37

38

Figure 15 An example of a alpha-blending transition. Taken from
[SW08]

Figure 16: Metamesh’s size [LDSS99]

The methodology’s main idea that is used in [LDSS99] can also be found in many
other approaches in this research area. In Parus’ work [Par05] we can find a general
description of the steps that we have to follow. First, for every vertex in the source mesh
we need to find a corresponding vertex on the target mesh. Note that because the two
meshes might not have the same number of vertices, some of the source’s vertices will be
mapped to a point somewhere near the area covered by the target mesh. The next step is
the same as the previous one but in the opposite direction. Then the supermesh is
constructed by merging the two input mesh’s topologies. Finally, by using the supermesh
we can bidirectionally interpolate between the meshes. For that reason and at least
intuitively, the size overhead is not appropriate for our needs. Nevertheless, the research
in this area is still active and we do not exclude the chance of a solution approach based
on mesh morphing.

39

Figure 18: Source to target vertices correspondence (green
arrows) and target to source mesh vertices correspondence (red
arrow) [Par05]

Figure 17: Example of mesh morphing [LDSS99]

2.5.3 – Continuous LOD Framework

In the CLOD framework, the model is encoded in a form that it allows us to
extract the desired LOD from a “continuous spectrum” of LODs. Hoppe in [Hp96]
introduces the progressive mesh representation. In the PM form, an input polygon mesh
M is stored as a coarse mesh M0, along with a series of n refinement records. Thus the
sequence M0, M1, … , Mn describes a continuous spectrum of LODs, with Mn as the
original input mesh. For that reason, the PM representation scheme can support
progressive transmission by first sending the base mesh M0 and later the refinement
records.

Hoppe in his work expresses a mesh as a tuple M = (K, V, D, S). Where K and V
describe the connectivity and vertex positions. D and S describe the discrete and scalar
attributes respectively. The attributes D and S are indicative of visual discontinuities in
the mesh’s appearance, Figure 19 illustrates that case.

40

Figure 19: The visual discontinuities are marked as yellow lines
[Hp96]

Figure 20 edge collapse and vertex split transformations
[Hp96]

In order to produce the base mesh M0 a mesh optimization algorithm iterates the
input mesh and at each step an edge is removed. This edge removal transformation

ecol(vs , v t) called as edge collapse, removes the edge by collapsing v t onto v s .

Figure 20 gives an illustration of the edge collapse transformation and as you can see the

incident faces to the edge (v s , v t) are removed as well. In addition, the edge collapse

transformation is invertible. The inverse transformation vsplit (s , l ,r , t A) called as

vertex split adds a new vertex at the position t and two new faces {vs , v t , v l } and

{v t , vs , vr } .

Also, the sequence of edge collapses determines the quality of intermediate
LODs. This depends on the mesh simplification algorithm. For example, an easy to
implement mesh simplification algorithm, is to remove a random edge at each step, but
most likely the result’s visual quality will be very low. Although and because this mesh
simplification algorithm is executed before the run time, Hoppe in his work takes the
approach of investing some time in order to meet a better visual quality.

In a nutshell, there are three steps that we have to follow in order to create a
progressive mesh. First, the mesh simplification algorithm iterates the input mesh and
produces a sequence of edge collapse records. Then the vertex split records are created in
the reverse order of the edge collapse’s records sequence. Finally, we write to a file the

base mesh M 0 along with the vertex split records. Now we can transmit the M 0
and later transmit the vertex split records one by one in order to progressively refine the
mesh until we reach its original form. Furthermore, at each refinement step we can apply
geomorphing to avoid the popping effect.

A technique based on a vertex by vertex refinement scheme offers fine granularity
but it has the disadvantage of imposing a big overhead. Pajarola and Rossignac in [PR00]
propose an alternative approach to Hoppe’s PM representation. In their work, they group
the edge collapses into batches. This results into a batch based mesh refinement scheme
instead of sending the refinement records one by one. Their approach achieves better
compression but compromises with a coarser granularity.

Figure 21 illustrates a comparison between single rate transmission and
progressive transformation approaches. a expresses the time needed to send the coarse
version of the model. The dashed line curve illustrates the case where after a we send
the original model. Note that even though it results in a poor user experience, the overall
loading time is the shortest. Approaches based on PM are illustrated by the grey curve,
we can see that they offer a fine granularity but in the expense of a long loading time.

41

Finally the batch based approach is illustrated by the staircase curve which makes a
compromise between granularity and loading time.

Limber et al. in [LJBA13] introduce the POP buffer method. The model’s
coordinates are mapped to a cluster of nested grids of integer coordinates with different
quantization levels. Then by using a truncation function they can increase of decrease the
grid’s resolution. If the two points of an edge are mapped to the same grid point, then the
edge is degenerate. Figure 22 illustrates the cell merge and cell split operations. The
triangles marked in red will become degenerate on the grid with smaller resolution.
Finally, the triangles are sorted in the reversed order in which they degenerated. They call
this reordered sequence of triangles as the Progressively Ordered Primitive buffer. That
way the progressive transmission in this method is straightforward, all we need to do is to
push to the back the incoming vertices and triangles.

Melax in [Sm98] gives a simple, yet quite effective polygon reduction algorithm.
In fact, we slightly modified a ported version of his implementation to Javascript [Gzz85]
and used it as our CLOD framework on the server side. In his work, the algorithm iterates
the mesh and applies an edge collapse operation until the desired number of vertices is
removed. The vertex pairs that will be collapsed are selected by calculating the edge’s
length multiplied by a curvature term. The information of edge collapses is kept and the
vertices are sorted by the collapsing order and we can use this sequence of collapses to
achieve progressive transmission.

42

Figure 21 [PR00]

2.6 – Delta Compression

Delta compression or delta encoding is a technique for encoding files in the form
of differences. Given the previous and current version of a resource, we can create a
patch file that describes how to change the previous version in order to reconstruct the
current. Suel and Memon in [SM02] give a more formal definition. Consider two files

f new , f old ∈ Σ , where Σ is an alphabet, the client C and the server S and the

case where C has a copy of f old and S has both f old and f new . We need to

compute a delta file f δ such that sizeof (f δ) < sizeof (f new) by which C can

fully reconstruct the f new . From their work, some of the cases where delta compression

is applied are:

• Software Revision Control Systems, where objects are stored in a way that allows
the user to retrieve older versions.

• File system delta compression, where delta compression is applied on the file
system level.

• Software distribution, where software updates are transmitted in the form of
patches.

• Visualize differences between two files.

43

Figure 22: [LJBA13] cell merge and cell split operations

• Improving HTTP performance by exploiting the similarities between web
resources or different versions of the same resource.

An example of using delta compression in software distribution can be found in
[SC12]. This work deals with the distribution of app updates in the Android Market
where for each update the full updated version of the app is downloaded. Instead of that,
they propose the use delta compression and they achieve an average compression of
nearly 50%.

The Git SCM initially saves the objects in its repository in a “loose” object format
and compresses them using zlib, a non delta encoding compression library. After that, Git
packs the objects into a binary file called “packfile”, where delta encoding is used [PGit].
Other SCMs such as Mercurial and Subversion [Mer16] [Sv16] follow different
approaches of how and when to use delta encoding but the goal is the same. As for the
visualization of differences between edits, Figure 23 is a screenshot of our
implementation’s git repository that gives such an example.

Although text based collaborative and version control systems such as SCMs are
fairly mature, in the field of CAD and 3D modeling the development of such systems
with capabilities of the same quality level did not catch up. Nevertheless, Doboš in
[Do15] introduces the 3D Repo, a cloud based version control and collaboration
framework for 3D assets that uses a NoSQL database for data storage and retrieval.
Again, for reducing storage requirements it uses delta compression.

Gumhold et al. in [GGS99] deal with mesh compression. First they quantize the
vertices’ coordinates by splitting each coordinate into four packages of four bits. Then, to
achieve even better compression they use delta encoding on the vertex coordinates.
Hoppe in [Hp96] mentions that the vertex split is a local operation and for that reason it
results to a coherent output where we could use delta encoding. For example, when

splitting the vertex v Si

i into the two new vertices, we can predict their positions and

then use delta encoding to reduce the required storage space. Also, Limper et al. in
[LWSJS13] mention that we should exploit the browser’s existing compression
capabilities by using delta encoding along with GZIP compression.

Gasparello et al. in [GMBTB11] deal with compression schemes of real-time
streaming of OpenGL command sequences. As an overview, the command streaming
system consists of a master computer that sends OpenGL commands to a pool of slave
computers to be rendered on its behalf. The master computer runs a custom device driver

44

that can intercept any OpenGL call and creates a ghost command code. That way the
slave computers can replicate the OpenGL calls. Every intercepted OpenGL call is passed
through a packetizer module that encodes and stores them into a command buffer. Next,
the delta between the current and previous command buffers is produced and then is
compressed with a general purpose compressor. Finally the compressed delta is sent
through the network. Figure 24 gives an illustration of the communication of the master
and slave computers.

45

Figure 23: Git GUI - Visualization of edits of a file

Mogul et al. in [MDFK97] try to quantify the potential benefits of delta encoded
HTTP responses. In their work they sampled HTTP requests whose URL does not include
-practically- any multimedia or binary file extensions. They produced the deltas by using
the UNIX command diff -e , the compressed output of diff -e and vdelta. Also they
mention from previous work that responses with the same URL prefix are similar, thus
making delta encoding effective. In their sampled traces, a fairly big part included URLs
containing the “?” character, which suggests a query operation, so we expect effective
delta encoding because of same URL prefix. Their results show that the size and delay of
HTTP responses is improved when using delta encoding along with data compression.
However, using delta encoding is viable only when the imposed overhead is smaller than
the potential benefits.

46

Figure 24: OpenGL commands transmission from master to slave computer
[GMBTB11]

The main goals of the [RFC3229] proposed standard are to reduce the size of
HTTP responses, be interoperable with HTTP/1.0 and HTTP/1.1 and optional for the
clients and servers. In order to work, it adds optional message headers. The accept
instance manipulation “A-IM” header for the client and the instance manipulations “IM”
header for the server. These headers describe which encoding format they are willing to
use and which were finally used respectively. Also it proposes that delta encoded
responses should be identified with the 226 unassigned code. Figure 25 gives an
illustration of the conceptual sequence of transformations that are applied. Figure 26
gives an example of a client requesting the resource /foo.html of which it has a cached

instance with entity tag “123xyz” and is wiling to accept compressed responses whether
or not they are delta encoded.

In RFC 3229 the delta encoded responses only work when they come from the
same URL, making it that way unsuitable for URLs with varying querying parameters.
The SDCH proposed protocol [BLM16] overcomes this limitation by using a dictionary
file that is shared between the client and the server and contains strings that have high
chances of appearing in subsequent HTTP responses. The client can retrieve the current
dictionary “out of band” and future HTTP responses will include only references to
strings in the dictionary, reducing that way the payload size. This compression scheme is
referred to as the SDCH encoding and is VCDIFF based.

47

48

Figure 25: Transformations diagram [RFC3229]

Figure 26: Request example
[RFC3229]

Chapter – 3

3.1 – Implementation

In this work, we propose that the LODs should be delta encoded in order to
minimize the redundant data and achieve lower payload. On the client side we have the
browser which runs the X3DOM as the X3D player. Also, we implemented a simplistic
MPEG-DASH adaptation mechanism which is responsible for choosing the appropriate
LOD that is available from the given MPD file. This adaptation mechanism is also
responsible for sending the appropriate HTTP request to the server and then apply the
patch data when the response is received. On the server side, we use the LOD Framework
module which can extract the desired LOD. When the LOD is extracted, the server
computes the delta between the extracted LOD and the client’s current LOD and finally
responds with the patch data. The overview of our implementation is illustrated on Figure
2. Also, on the same server we host the web application that allows the user to define
LODs along with their quality rankings and then produce the MPD file. For the
implementation of both the client and server side we used the Javascript language.

3.1.1 – Server overview

For our continuous LOD framework we used and modified a port of [Sm98] from
C++ to Javascript [Gzz85] which is based on the Three.js WebGL framework. As for the
delta encoding implementation, we used the [plvc] in both the client and the server. For
these reasons we chose to implement the server by using the Javascript language and the
Node.js [Node] as the runtime environment. As for the web application framework we
used the Express framework [Expr]. The project’s properties and dependencies are
defined in the package.json file. To install the defined dependencies we called from the

terminal the npm install command and the npm [Npm] package manager installed the
dependencies from its remote registry. Figure 27 shows the server's package.json file.

On the same server we also built and host our web application that allows the user
to define the LODs along with the quality rankings by using either the discrete or

49

continuous LOD framework. After when the quality ranking and LOD pairs are defined,
the server produces the appropriate MPD. As a final step of the web application, we
display to the user the directions of how to use our MPEG-DASH player. Figure 28
shows the first screen of the web application.

50

Figure 27: The server's package.json file

3.1.2 – Discrete LOD framework UI

In this screen the user is able to upload the LOD models from his or her
filesystem and define for each LOD the network bandwidth that it requires. After that, the
screen which contains the directions of how to add the adaptable model into the X3D
scene is displayed. Figure 29 shows the upload screen and Figure 30 shows the directions
screen.

51

Figure 28: Web application's first screen

52

Figure 29: Discrete LOD framework upload screen

53

Figure 30: Directions screen

3.1.3 – Continuous LOD framework UI

First, we show to the user a menu in which he or she can select a model from a
preset list or upload a new one from the filesystem. Then the screen for defining the
desired LODs is presented. The selection of the desired LOD is done by moving the
slider in the bottom. For each desired LOD the user presses the Add range button. When
done, the user presses the Send ranges button. Figure 31 shows model selection screen
and Figure 32 shows the LOD editor screen.

54

Figure 31: Model selection screen

55

Figure 32: LOD editor

3.1.4 – Client with MPEG-DASH enabled X3D scene

For the needs of demonstration, we implemented a simplistic MPEG-DASH
player. Because the implementation of content adaptation mechanisms is not an easy task
and fall out of the scope of this work, the selection of the LOD is made in an ascending
and descending order of the MPD’s available quality rankings in arbitrary time intervals.
The X3D scene author needs to include along with our player, the jQuery [jQ] library and
the vcdiff Javascript implementation [plvc]. Then, the author must add the references of
the adaptive models of the scene to the player by using the DEF attribute. These steps are
described in more detail in the instructions page, an example of which is presented in
Figure 30. The code that changes the LOD of the model is shown in Figure 33. Figure 34
shows the code that constructs the HTTP request by including the current and the
requesting LOD, then when the response is received it applies the patch data. Figure 35
shows an example of a scene where two adaptive models are included. Finally, Figures 36
and 37 are screenshots that were taken from the client’s runtime.

56

57

Figure 33: Code that observes and selects the next LOD

58

Figure 34: Code that requests and applies the LODs

59

Figure 35: Example of using the player

60

Figure 36: Client during runtime showing two low LOD models

61

Figure 37: Client during runtime showing two high LOD models

3.1.5 – Results in numbers

Here we are going to present how many bytes were needed to be transmited for
each LOD. For the DLOD framework we used five of the most widely used 3D models
for testing. More specifically the Bunny, Suzanne, Happy Buddha, Dragon and the
Armadillo models which they were converted into the *.x3d file format. We produced a

hierarchy of six LODs for each model by using the Blender’s decimation tool. The CLOD
was tested with the Suzzane model. Each LOD, for all the models, includes the 30%,
40%, 60%, 70%, 90% and 100% of the model’s faces. Each LOD was delta encoded
using the previous LOD as its source.

62

Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 706571 706571 0 0.00%
40 948511 734841 213670 22.53%
60 1433984 1208851 225133 15.70%
70 1677299 1199230 478069 28.50%
90 2163635 1712420 451215 20.85%

100 2407398 1651024 756374 31.42%

Table 1: Results table of the Bunny model using the DLOD framework

20 30 40 50 60 70 80 90 100 110
0

500000

1000000

1500000

2000000

2500000

3000000

Raw data bytes

Delta encoded bytes

Faces %

B
yt

es

Figure 38: Graph of the Bunny’s transmitted bytes using the DLOD framework

63

Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 9754 9754 0 0.00%
40 12204 8739 3465 28.39%
60 16863 13268 3595 21.32%
70 19000 11155 7845 41.29%
90 23350 15604 7746 33.17%

100 25374 12908 12466 49.13%

Table 2: Results table of the Suzanne model using the DLOD framework

20 30 40 50 60 70 80 90 100 110
0

5000

10000

15000

20000

25000

30000

Raw data bytes

Delta encoded bytes

Faces %

B
yt

es

Figure 39: Graph of the Suzanne’s transmitted bytes using the DLOD framework

64

Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 11766576 11766576 0 0.00%
40 15913259 13706279 2206980 13.87%
60 24209309 22642745 1566564 6.47%
70 28357213 23982883 4374330 15.43%
90 36648112 33496755 3151357 8.60%

100 40790576 32779664 8010912 19.64%

Table 3: Results table of the Happy Buddha’s model using the DLOD framework

20 30 40 50 60 70 80 90 100 110
0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

Raw data bytes

Delta encoded bytes

Faces %

B
yt

es

Figure 40: Graph of the Happy Buddha’s transmitted bytes using the DLOD framework

65

Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 9339862 9339862 0 0.00%
40 12663358 11078500 1584858 12.52%
60 19315641 18044526 1271115 6.58%
70 22641519 18199646 4441873 19.62%
90 29288734 26463757 2824977 9.65%

100 32613082 26035661 6577421 20.17%

Table 4: Results table of the Dragon’s model using the DLOD framework

20 30 40 50 60 70 80 90 100 110
0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

Raw data bytes

Delta encoded bytes

Faces %

B
yt

es

Figure 41: Graph of the Dragon’s transmitted bytes using the DLOD framework

66

Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 3702060 3702060 0 0.00%
40 4957491 4203655 753836 15.21%
60 7490625 6883533 607092 8.10%
70 8848922 6870041 1978881 22.36%
90 11565303 9971772 1593531 13.78%

100 12923294 9733516 3189778 24.68%

Table 5: Results table of the Armadillo’s model using the DLOD framework

20 30 40 50 60 70 80 90 100 110
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

Raw data bytes

Delta encoded bytes

Faces %

B
yt

es

Figure 42: Graph of the Armadillo’s transmitted bytes using the DLOD framework

67

Faces percentage Average difference in %
30 0.00%
40 18.50%
60 11.63%
70 25.44%
90 17.21%

100 29.01%

Table 6: Average savings of all the tested
models using the DLOD framework

20 30 40 50 60 70 80 90 100 110
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Average saving per faces range

Figure 43: Graph of average savings of all the tested models using the DLOD framework

68

Faces percentage Raw data bytes Delta encoded bytes Difference Difference in %
30 147433 147447 -14 -0.90%
40 146821 18136 128685 87.64%
60 144576 34820 109756 75.91%
70 142840 23637 119203 83.45%
90 140572 39709 100863 71.75%

100 139874 27842 112032 80.09%

Figure 44: Results table of the Suzanne's model using the CLOD framework

20 30 40 50 60 70 80 90 100 110
0

20000

40000

60000

80000

100000

120000

140000

160000

Raw data bytes

Delta encoded bytes

Faces %

B
yt

es

Figure 45: Graph of the Suzanne's transmitted bytes using the CLOD framework

3.2– Summary, conclusions and future work

In this work we focused on the transmission of LODs using the discrete and
continuous LOD frameworks. In the first framework each LOD is represented as an
individual 3D model. This means that the geometry is disjoint and we don’t have a
straightforward method for a redundancy free transmission. On the other hand we have
the continuous LOD framework in which a 3D model is encoded in a way that it allows
us to extract the desired LOD on demand. On the down side, there is no standard
encoding scheme that is used among all implementations. To alleviate these issues we
propose the use of delta encoding.

Among its many applications, delta encoding is also used in the RFC 3229 and
the SDCH protocols in order to minimize the payload size of HTTP responses. The work
of [GMBTB11] deals with the size reduction of OpenGL command batches that are
streamed through the network. They use data compression along with delta encoding
which they call as in-frame and inter-frame compression respectively. We believe, at least
in a more abstract level, that their work is close to our solution approach even though
they are dealing with a different kind of problem.

On the server side we created a module that can extract the desired LOD which is
then converted into a form compatible with the X3D’s IndexedFaceSet node and the patch

data are produced by using the client’s current LOD. Then the client produces the target
LOD by applying the patch and updates the scene’s model by using the jQuery’s .attr()

[jQattr] method for the point and coordIndex attributes. The given API for the MPEG-
DASH client developer is fairly simple. To change the current LOD, he or she will just
call the model’s changeLOD method which takes two arguments. The first one is the
requesting quality ranking and the second one is an observer object which is notified if
the LOD update was successful or if it failed.

Delta encoding performs well when the differences between the input files are
small, which we can confirm that by our results. As we can see, the high compression
ratios can be found when we were changing the LOD from the 30% to 40%, from 60% to
70% and from 90% to 100% of the model’s faces. Finally, we got the best compression
ratios when using the CLOD framework. This is because the data in this framework are
homogeneous.

Based on this observation, a possible future research would deal with the
development of a mesh simplification algorithm that produces a delta encoding friendly

69

output. Additionally, we would like to fully investigate the potentials of the SDCH
protocol on the transmission of LODs.

70

References

[WHV14]: WHATWG: Ian Hickson, Google, Inc. W3C: Robin Berjon, W3C, Steve
Faulkner, The Paciello Group, Travis Leithead, Microsoft Corporation, Erika Doyle
Navara, Microsoft Corporation, Edward O'Connor, Apple Inc. Silvia Pfeiffer, HTML5 A
vocabulary and associated APIs for HTML and XHTML, 2014,
https://www.w3.org/TR/html5/Overview.html

[IRS11]: I. Sodagar, "The MPEG-DASH Standard for Multimedia Streaming Over
the Internet," in IEEE MultiMedia, vol. 18, no. 4, pp. 62-67, April 2011.
doi: 10.1109/MMUL.2011.71

[SAC11]: Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. 2011. An
experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP.
In Proceedings of the second annual ACM conference on Multimedia systems (MMSys
'11). ACM, New York, NY, USA, 157-168.
doi=http://dx.doi.org/10.1145/1943552.1943574

[BEJZ09]: Johannes Behr, Peter Eschler, Yvonne Jung, and Michael Zöllner. 2009.
X3DOM: a DOM-based HTML5/X3D integration model. In Proceedings of the 14th
International Conference on 3D Web Technology (Web3D '09), Stephen N. Spencer (Ed.).
ACM, New York, NY, USA, 127-135. doi=http://dx.doi.org/10.1145/1559764.1559784

[KPMZ14]: K. Kapetanakis, S. Panagiotakis, A. G. Malamos and M. Zampoglou,
"Adaptive video streaming on top of Web3D: A bridging technology between X3DOM
and MPEG-DASH," 2014 International Conference on Telecommunications and
Multimedia (TEMU), Heraklion, 2014, pp. 226-231.
doi: 10.1109/TEMU.2014.6917765

[GIT14]: Kostas Kapetanakis, Github pull request #232, url:
https://github.com/x3dom/x3dom/pull/232/files

[ML14]: Multimedia Content Laboratory - X3DOM VR world with MPEG-DASH
videostream, url: http://medialab.teicrete.gr/minipages/dash3d/

[KK14]: Kostas Kapetanakis, WEB-3D REAL-TIME ADAPTATION
FRAMEWORK BASED ON MPEG-DASH, 2014, url:
http://medialab.teicrete.gr/media/thesis/Kapetanakis_thesis.pdf

[ZKSMP16]: M. Zampoglou, K. Kapetanakis, A. Stamoulias, A. G. Malamos, S.
Panagiotakis, “Adaptive streaming of complex Web 3D scenes based on the MPEG-

71

http://medialab.teicrete.gr/media/thesis/Kapetanakis_thesis.pdf
http://medialab.teicrete.gr/minipages/dash3d/
https://github.com/x3dom/x3dom/pull/232/files

DASH standard”, “Multimedia Tools and Applications”, Vol. 75, pp.1-24 , 2016, doi:
10.1007/s11042-016-4255-8

[JHC76]: James H. Clark. 1976. Hierarchical geometric models for visible surface
algorithms. Commun. ACM 19, 10 (October 1976), 547-554.
doi=http://dx.doi.org/10.1145/360349.360354

[X3DP16]: Web3D, Applications, Players and Plugins for X3D / VRML Viewing,
2016, url: http://www.web3d.org/x3d/content/examples/X3dResources.html#Applications

[FRSV14]: Figueiredo, Mauro, José I. Rodrigues, Ivo Silvestre, and Cristina Veiga-
Pires. "A Topological Framework for Interactive Queries on 3D Models in the Web." The
Scientific World Journal 2014

[Par05]: Jindřich Parus, Morphing of Meshes, Technical Report DCSE/TR-2005-
02, 2005, url: http://hdl.handle.net/11025/21597

[Wc12]: Won Chun, WebGL Models: End-to-End, pp 431 – 453, “OpenGL
Insights”, July 2012, CRC Press, ISBN: 978-1439893760, url:
http://www.openglinsights.com

[MDFK97]: Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander
Krishnamurthy. 1997. Potential benefits of delta encoding and data compression for
HTTP. In Proceedings of the ACM SIGCOMM '97 conference on Applications,
technologies, architectures, and protocols for computer communication (SIGCOMM '97),
Martha Steenstrup (Ed.). ACM, New York, NY, USA, 181-194.
doi=http://dx.doi.org/10.1145/263105.263162

[Pks02]: Konstantinos Psounis. 2002. Class-Based Delta-Encoding: A Scalable
Scheme for Caching Dynamic Web Content. In Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCSW '02). IEEE Computer Society,
Washington, DC, USA, 799-805.

[Chr02]: Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern,
Peter D. Kirchner, and James T. Klosowski. 2002. Chromium: a stream-processing
framework for interactive rendering on clusters. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques (SIGGRAPH '02). ACM,
New York, NY, USA, 693-702. doi=http://dx.doi.org/10.1145/566570.566639

[WG01]: Greg Humphreys, Matthew Eldridge, Ian Buck, Gordan Stoll, Matthew
Everett, and Pat Hanrahan. 2001. WireGL: a scalable graphics system for clusters. In
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques (SIGGRAPH '01). ACM, New York, NY, USA, 129-140.
doi=http://dx.doi.org/10.1145/383259.383272

72

http://dx.doi.org/10.1145/383259.383272
http://www.openglinsights.com/
http://www.web3d.org/x3d/content/examples/X3dResources.html#Applications

[GMBTB11]: P. S. Gasparello, G. Marino, F. Bannò, F. Tecchia and M. Bergamasco,
"Real-Time Network Streaming of Dynamic 3D Content with In-frame and Inter-frame
Compression," 2011 IEEE/ACM 15th International Symposium on Distributed
Simulation and Real Time Applications, Salford, 2011, pp. 81-87.
doi: 10.1109/DS-RT.2011.24

[RFC3229]: J. Mogul, B. Krishnamurthy, F. Douglis, A. Feldmann, Y. Goland, A. van
Hoff, D. Hellerstein, RFC 3229 - Delta encoding in HTTP, January 2002, url:
https://tools.ietf.org/html/rfc3229

[BLM16]: Jon Butler, Wei-Hsin Lee, Bryan McQuade, Kenneth Mixter, A Proposal
for Shared Dictionary Compression over HTTP, 2016

[Li15]: Shared Dictionary Compression for HTTP at LinkedIn, 2015,
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin

[WX3D]: What is X3D, 2016, http://www.web3d.org/x3d/what-x3d

[X3DIFS]: Extensible 3D (X3D) - Part 1: Architecture and base components -
Geometry3D component, 2016, http://www.web3d.org/documents/specifications/19775-
1/V3.3/Part01/components/geometry3D.html#IndexedFaceSet

[X3DCoo]: Extensible 3D (X3D) - Part 1: Architecture and base components -
Rendering component, 2016, http://www.web3d.org/documents/specifications/19775-
1/V3.3/Part01/components/rendering.html#Coordinate

[Bau75]: Bruce G. Baumgart. 1975. A polyhedron representation for computer
vision. In Proceedings of the May 19-22, 1975, national computer conference and
exposition (AFIPS '75). ACM, New York, NY, USA, 589-596.
doi=http://dx.doi.org/10.1145/1499949.1500071

[Zcg12]: Chapter 5 - Plane Graphs and the DCEL, Institute of Theoretical
Computer Science, ETH Zurich, http://www.ti.inf.ethz.ch/ew/lehre/CG12/lecture/Chapter
%205.pdf

[MP78]: D.E. Muller, F.P. Preparata, Finding the intersection of two convex
polyhedra, Theoretical Computer Science, Volume 7, Issue 2, 1978, Pages 217-236, ISSN
0304-3975, http://dx.doi.org/10.1016/0304-3975(78)90051-8.
http://www.sciencedirect.com/science/article/pii/0304397578900518

[BSBK02]: M. Botsch S. Steinberg S. Bischoff L. Kobbelt, OpenMesh– a generic and
efficient polygon mesh data structure, 2002

73

http://www.sciencedirect.com/science/article/pii/0304397578900518
http://dx.doi.org/10.1016/0304-3975(78)90051-8
http://www.ti.inf.ethz.ch/ew/lehre/CG12/lecture/Chapter%205.pdf
http://www.ti.inf.ethz.ch/ew/lehre/CG12/lecture/Chapter%205.pdf
http://dx.doi.org/10.1145/1499949.1500071
http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/rendering.html#Coordinate
http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/rendering.html#Coordinate
http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/geometry3D.html#IndexedFaceSet
http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/geometry3D.html#IndexedFaceSet
http://www.web3d.org/x3d/what-x3d
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin
https://tools.ietf.org/html/rfc3229

[JLM03]: Joy KI, Legakis J, Maccracken R (2003) Data Structures for
Multiresolution Representation of Unstructured Meshes. Mathematics and Visualization
Hierarchical and Geometrical Methods in Scientific Visualization 143–170. doi:
10.1007/978-3-642-55787-3_9

[NF03]: Nah, Fiona, "A Study on Tolerable Waiting Time: How Long Are Web
Users Willing to Wait?" (2003). AMCIS 2003 Proceedings. 285.
http://aisel.aisnet.org/amcis2003/285

[Rail16]: Measure Performance with the RAIL Model , 2016, url:
https://developers.google.com/web/fundamentals/performance/rail

[Ga99]: M. Garland, Multiresolution Modeling: Survey and Future Opportunities
in "Eurographics 1999 - STARs. Eurographics Association", doi:10.2312/egst.19991068

[ML16]: Kostas Kapetanakis, MPEG-DASH for X3D Streaming, 2016,
http://mclab1.medialab.teicrete.gr:8081/indexdash.html

[Utube16]: Blender Model Tutorial Polygon Reduction, 2016,
https://www.youtube.com/watch?v=ttU6Gz1W0Xw

[ADM16]: AUTODESK 3DS MAX - Level of Detail Utility, 2016,
https://knowledge.autodesk.com/support/3ds-max/learn-
explore/caas/CloudHelp/cloudhelp/2016/ENU/3DSMax/files/GUID-D112D015-8BE6-
4172-B816-B5432A50F911-htm.html

[BDM16]: Blender - Decimate Modifier, 2016,
https://www.blender.org/manual/modeling/modifiers/generate/decimate.html

[WX3dL]: LOD node definition, 2016,
http://www.web3d.org/documents/specifications/19775-
1/V3.0/Part01/components/navigation.html#LOD

[XfwaL]: Example for LOD node, 2016,
http://x3dgraphics.com/examples/X3dForWebAuthors/Chapter03-
Grouping/LODIndex.html

[SW08]: Daniel Scherzer and Michael Wimmer. 2008. Frame sequential
interpolation for discrete level-of-detail rendering. In Proceedings of the Nineteenth
Eurographics conference on Rendering (EGSR '08). Eurographics Association, Aire-la-
Ville, Switzerland, Switzerland, 1175-1181. doi=http://dx.doi.org/10.1111/j.1467-
8659.2008.01255.x

74

http://dx.doi.org/10.1111/j.1467-8659.2008.01255.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01255.x
http://x3dgraphics.com/examples/X3dForWebAuthors/Chapter03-Grouping/LODIndex.html
http://x3dgraphics.com/examples/X3dForWebAuthors/Chapter03-Grouping/LODIndex.html
http://www.web3d.org/documents/specifications/19775-1/V3.0/Part01/components/navigation.html#LOD
http://www.web3d.org/documents/specifications/19775-1/V3.0/Part01/components/navigation.html#LOD
https://www.blender.org/manual/modeling/modifiers/generate/decimate.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/3DSMax/files/GUID-D112D015-8BE6-4172-B816-B5432A50F911-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/3DSMax/files/GUID-D112D015-8BE6-4172-B816-B5432A50F911-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/3DSMax/files/GUID-D112D015-8BE6-4172-B816-B5432A50F911-htm.html
https://www.youtube.com/watch?v=ttU6Gz1W0Xw
http://mclab1.medialab.teicrete.gr:8081/indexdash.html
https://developers.google.com/web/fundamentals/performance/rail
http://aisel.aisnet.org/amcis2003/285

[LDSS99]: Aaron W. F. Lee, David Dobkin, Wim Sweldens, and Peter Schröder.
1999. Multiresolution mesh morphing. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques (SIGGRAPH '99). ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 343-350.
doi=http://dx.doi.org/10.1145/311535.311586

[Hp96]: Hugues Hoppe. 1996. Progressive meshes. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques (SIGGRAPH '96).
ACM, New York, NY, USA, 99-108. doi=http://dx.doi.org/10.1145/237170.237216

[PR00]: Renato Pajarola and Jarek Rossignac. 2000. Compressed Progressive
Meshes. IEEE Transactions on Visualization and Computer Graphics 6, 1 (January
2000), 79-93. doi=http://dx.doi.org/10.1109/2945.841122

[LJBA13]: Limper, M., Jung, Y., Behr, J. and Alexa, M. (2013), The POP Buffer:
Rapid Progressive Clustering by Geometry Quantization. Computer Graphics Forum, 32:
197–206. doi:10.1111/cgf.12227

[Sm98]: Stan Melax, A Simple, Fast, and Effective Polygon Reduction Algorithm,
1998, http://www.melax.com/gdmag.pdf

[Gzz85]: Joshua Koo - zz85, SimplifyModifier: initial commit, 2016,
https://github.com/mrdoob/three.js/commit/3376a9b00ddb49fac9170b8038b4f34b2770d0
39#diff-06d2b0be8475b2937e3b66e432271390

[SM02]: T. Suel, N. Memon, "Algorithms for Delta Compression and Remote File
Synchronization" in: In Khalid Sayood, Lossless Compression Handbook. Academic
Press, 2002

[SC12]: N. Samteladze and K. Christensen, "DELTA: Delta encoding for less
traffic for apps," 37th Annual IEEE Conference on Local Computer Networks,
Clearwater, FL, 2012, pp. 212-215.
doi: 10.1109/LCN.2012.6423611

[Pgit]: Scott Chacon, Ben Straub, 10.4 Git Internals - Packfiles, 2014, https://git-
scm.com/book/en/v2/Git-Internals-Packfiles

[Mer16]: Bryan O'Sullivan, Mercurial: The Definitive Guide, 2009
Sv16: Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato, Version Control
with Subversion, http://hgbook.red-bean.com/read/

[Do15]: Jozef Doboš, Management and Visualisation of Non-linear History of
Polygonal 3D Models, 2015, http://3drepo.org/projects/management-and-visualisation-
of-non-linear-history-of-polygonal-3d-models/

75

http://3drepo.org/projects/management-and-visualisation-of-non-linear-history-of-polygonal-3d-models/
http://3drepo.org/projects/management-and-visualisation-of-non-linear-history-of-polygonal-3d-models/
http://hgbook.red-bean.com/read/
https://git-scm.com/book/en/v2/Git-Internals-Packfiles
https://git-scm.com/book/en/v2/Git-Internals-Packfiles
https://github.com/mrdoob/three.js/commit/3376a9b00ddb49fac9170b8038b4f34b2770d039#diff-06d2b0be8475b2937e3b66e432271390
https://github.com/mrdoob/three.js/commit/3376a9b00ddb49fac9170b8038b4f34b2770d039#diff-06d2b0be8475b2937e3b66e432271390
http://www.melax.com/gdmag.pdf
http://dx.doi.org/10.1109/2945.841122
http://dx.doi.org/10.1145/237170.237216
http://dx.doi.org/10.1145/311535.311586

[GGS99]: Stefan Gumhold, Stefan Guthe, and Wolfgang Straßer. 1999. Tetrahedral
mesh compression with the cut-border machine. In Proceedings of the conference on
Visualization '99: celebrating ten years (VIS '99). IEEE Computer Society Press, Los
Alamitos, CA, USA, 51-58.

[LWSJS13]: Max Limper, Stefan Wagner, Christian Stein, Yvonne Jung, and André
Stork. 2013. Fast delivery of 3D web content: a case study. In Proceedings of the 18th
International Conference on 3D Web Technology (Web3D '13). ACM, New York, NY,
USA, 11-17. DOI=http://dx.doi.org/10.1145/2466533.2466536

[plvc]: VCDiff Javascript implementation, 2016,
https://github.com/plotnikoff/vcdiff.js

[Node]: Node.js, 2016, https://nodejs.org/en/

[Expr]: Express web application framework, 2016, http://expressjs.com/

[Npm]: npm package manager, 2016, https://www.npmjs.com/

[jQ]: jQuery, 2016, https://jquery.com/

[jQattr]: jQuery .attr(), 2016, http://api.jquery.com/attr/

76

http://api.jquery.com/attr/
https://jquery.com/
https://www.npmjs.com/
http://expressjs.com/
https://nodejs.org/en/
https://github.com/plotnikoff/vcdiff.js
http://dx.doi.org/10.1145/2466533.2466536

