

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF
CRETE

ENGINEERING SCHOOL
MSc IN ADVANCED PRODUCTION SYSTEMS

AUTOMATION AND ROBOTICS

MASTER THESIS

Gesture Based Human-Computer
Interaction Using Kinect

VARDAKIS EVANGELOS

R.N.: MTH55

1.

Supervisor
Dr. Makris Alexandros

HERAKLION, CRETE, GREECE
MARCH 2017

The approval of the thesis of the Graduate Program "Advanced Manufacturing Systems, Automation and
Robotics" of TEI of Crete does not necessarily implies acceptance of the author's views on behalf of the

Department

Acknowledgement
This project started in February 2016 and finished in March 2017. This period
includes 2 months of research, 8 months of building the application, 1 month of
experiments and 2 months of writing this thesis.

I would like to thank my supervisor professor Dr. Makris Alexandros for his
guidance and help in the implementation of this project during all this time. My
professor Dr. Drakakis Emmanuel for granting me with a place inside the institute to
work and providing me with a personal computer of the needed specifications. My
professors Dr. Fasoulas Ioannis and Dr. Kavvousanos Emmanuel for providing me
with the kinect sensor. Finally, I would like to especially thank the 23 people who
volunteered to join the experiments of this project.

Abstract
This thesis introduces the design and the implementation of a gesture based human-
computer interaction system which gives to the user the ability to do basic computer
operations without input devices such as computer mouse or keyboard, but by
performing gestures with his hand in the air.

The proposed system is based on the FORTH Hand Tracker (FHT) which models the
human hand and provides real-time information about its pose in 3D space. To
replicate the mouse operation the proposed system uses as input the hand’s position
taken by the FHT and transforms it to a coordinate system aligned with the computer
screen. This way the user can reposition the cursor by moving his hand in front of the
desirable position on the screen. Furthermore the system recognizes several gestures
that are assigned to specific commands that are typically given by standard input
devices (i.e. mouse, keyboard). Gesture recognition is based on features extracted
from the FHT pose and concern distances between individual hand parts, such as
fingertips, in the 3D space. The temporal evolution of the recognized gestures is
modeled using Hidden Markov Models (HMM). Each gesture corresponds to a
different HMM while the optimal HMM/gesture is calculated using the Viterbi
Algorithm. The gestures that the system recognizes correspond to the following
commands: left-right-double click, drag and drop, zoom in and out, volume up and
down.

Experiments with data taken by a group of users in real conditions are showing the
efficiency of the proposed method, with 90% success in the total sample population.

Table of Contents

 Introduction
1.1 Science of Computer Vision ... 7

1.1.1 Technical Information ... 7
1.1.2 Computer Vision Applications .. 8
1.1.3 Tasks and Processing Methods .. 8

1.2 Thesis Goal .. 9

1.3 Related Work .. 10

1.4 Implementation Process in Brief ... 12
Background
2.1 FORTH Hand Tracker .. 14

2.1.1 Hand Model ... 14
2.1.2 Evaluating a Hand Hypothesis / Objective Function ... 15
2.1.3 Optimization using PSO .. 16
2.1.4 Results ... 16

2.2 Kinect Sensor .. 17

2.3 Hidden Markov Model (HMM) ... 19

2.4 Viterbi Algorithm ... 20
Implementation
3.1 Section Structure .. 22

3.2 Camera Calibration .. 23

3.3 Cursor Movement ... 25

3.4 Poses and Gestures ... 25

3.5 Observations .. 28

3.6 Design of HMM ... 30

3.7 Gesture Selection .. 32

3.8 Modes of Operation .. 32
3.8.1 Normal Mode .. 34
3.8.2 Zoom Mode ... 34
3.8.3 Volume Mode .. 35
3.8.4 Calibration Mode ... 36

3.9 User Interface Overview .. 36
3.9.1 Hardware Setup ... 36
3.9.2 Start the Application .. 36
3.9.3 Calibrate the Camera ... 37
3.9.4 Activate Left Click and Double Click ... 38
3.9.5 Activate Right Click .. 38
3.9.6 Activate Grab and Ungrab ... 38
3.9.7 Activate Zoom In and Zoom Out .. 39
3.9.8 Activate Volume Up and Volume Down ... 39
3.9.9 Pause or Quit the Application .. 40

3.9.10 System Requirements ... 40

Experimets
4.1 Experimental Process ... 41

4.2 Results .. 42
Conclusion
5.1 Future Work ... 50

Table of Pictures
Picture 1. Graphical illustration of the proposed method. A Kinect RGB image (a) and the
corresponding depth map (b). The hand is segmented (c) by jointly considering skin color and depth.
The proposed method fits the employed hand model (d) to this observation recovering the hand
articulation (e) __ 14
Picture 2. The employed 3D hand model: (a) hand geometry, (b) hand kinematics _______________ 15
Picture 3. Indicative results on real-world data __ 17
Picture 4. Kinect Sensor __ 18
Picture 5. Kinect Structure __ 18
Picture 6. Depth Map __ 18
Picture 7. HMM Example ___ 20
Picture 8. Camera positioning __ 23
Picture 9. HMM Example ___ 26
Picture 10. Separate points with known geographical position _______________________________ 27
Picture 11. HMMs __ 31
Picture 12. Starting the application ___ 37
Picture 13. Calibration Mode __ 38
Picture 14. Volume Mode ___ 40

Table of Lists
List 1. Implementation process steps ___ 22
List 2. Gestures ___ 26
List 3. Pre-defined Distances ___ 28
List 4. Euclidian Distances __ 28
List 5. Distances Summaries Equations __ 29
List 6. Observations Equations ___ 30
List 7. Viterbi Probabilities List __ 32
List 8. Available functions for each Mode of Operation ____________________________________ 33
List 9. Activation method of each Mode of Operation ______________________________________ 33
List 10. Left Click Results ___ 43
List 11. Right Click Results __ 44
List 12. Grab Results ___ 45
List 13. Zoom Results __ 46
List 14. Volume Results __ 47
List 15. Confusion Matrix ___ 48
List 16. Total Results __ 49

1 Introduction

1.1 Science of Computer Vision
Computer Vision is the scientific field that concerns the extraction of semantic
information from the raw images provided by optical sensors, much like the processes
the human visual system uses to transfer and translate optical data using the human
brain (1). The study of Computer Vision first begun in the late 60s as part of the research
for artificial intelligence systems (AI). Computer Vision can be basically used as an
automated input method for computers (much like a keyboard or a mouse) with major
application in various fields of study such as automation, robotics, medical technology as
well as entertainment field.

1.1.1 Technical Information
Thru Computer Vision a computer processes digital information, such as digital images
or videos (both of which are technically the same since a video is nothing more than a
series of images), captured by a digital camera. Digital information is nothing more than
a sequence of 1’s and 0’s (binary information) therefore computers process a digital
image as pure numerical information which in turn they output in a form that can be
comprehended by the human user thru the use of a graphical user interface (GUI). A
digital grayscale image of dimensions 640x640 pixels is a two-dimensional matrix of 640
rows and 640 columns which in total gives us 409600 cells. Each cell contains different
numerical data which corresponds to a different shade of gray. A color image is
produced using the same principle but there are 3 two-dimensional matrixes of the same
size, where each matrix corresponds to a different color, one for the shades of red, one for
the shades of green and one for the blue color (RGB image). Combining these three colors
allows us to reproduce the entire color palette.

The concept of Computer Vision requires the conversion of information regarding the
color and shape of an object to numerical data that can be processed by a computer.
Something as basic to humans as the color of an object must first be converted into
numerical information so that Computers can process this information and in turn
translate it into the corresponding color. The shape of an object is derived by the patterns

Section

1

- 7 -

of its color scheme. For example, a square is nothing more than the collection of
neighboring pixels that have the same color information and follow the pattern of a
square shape. A computer basically translates these patterns and gains the extra
information regarding the shape of the object. If the distance of an object (shape) from the
camera is known, information regarding the scale can also be derived using similar
principles. Modern methods of Computer Vision can provide the information of the
distance from the camera. Some of them are the laser distance measurement, the
stereoscopic camera and the method used in this project, the structured light depth
sensor [Kinect Sensor]. Knowing the depth of an object we can find out its three
dimensional shape, its size and its position in 3D space.

By using databases of different objects, shapes and colors, a computer recognizes specific
items. Even if the items vary in shapes we can use specific features to recognize the
objects. For example not all the faces have exactly the same shape, but if we have two
items-features looking like eyes, two looking like ears and one which looks like a mouth
and if all these features are placed in a specific manner we can conclude that the item
corresponds to a face.

1.1.2 Computer Vision Applications
Some of the Computer Vision applications include the automatic inspection of
production lines in the Industrial and manufacturing fields and controlling processes in
industry automations and robotic systems. In addition computer vision can be used in
assisting humans in identification tasks, such as medical examinations and detecting
events, such as counting the number of people that have passed in front of a camera.
Computer vision can also be used in modeling objects or environments, such as mapping
and in the navigation of autonomous vehicles or robots. Finally, Computer Vision can be
applied to directly interact with a computer which is the area of study of this
dissertation.

1.1.3 Tasks and Processing Methods
All these aforementioned applications require one or more Computer vision tasks. The
term task refers to the various functions that must be performed in order for the
information to be translated for a computer and in turn be used to initialize the desired
response. In more simplified terms the computer must turn the input information into a
desired output effect. One of these tasks is “Recognition”, such as object recognition,
handwritten digits recognition, face recognition in photo shooting and hand poses
recognition in the case of our study. Another task is “Motion Analysis” which is
processing a sequence of images to estimate the velocity and moving direction of an
object, such as in tracking applications. Other tasks are “Scene Reconstruction”, used in
panoramic photo building and modeling applications and “Image Restoration” which is

- 8 -

used to remove noise or motion blur from images, or even to fill missing parts of an
image.

In order to perform a Task, information must be first acquired from the surroundings
and then processed in order to produce the desired outcome. A typical processing
method in computer Vision systems is as follows. Firstly we have the “Image
Acquisition” which refers to digital information captured by cameras and depth sensor
systems which can be interpreted as 2D or 3D and grayscale or RGB images, depending
on the hardware used and the requirements of a specific application. Secondly, we have
the “Pre-Processing” of the data which refers to the simplification of the information
gathered thru “Image Acquisition” in order to maximize the efficiency of the task by
discarding unnecessary information as well as adding additional information in
corrupted or missing places. For example noise reduction in an image or adding
coordinate information to a transmission. Thirdly, we have the process of “Feature
Extraction” which refers to the recognition of distinct patterns of information such as
lines, edges, corners, blobs and points. After having identified the general information of
an object we use the process of “Detection/Segmentation” with which we can isolate the
desired piece of information and discard the unnecessary bits. Next we have the “High-
level Processing” phase in which all the gathered information is combined to classify and
detect specific objects and extract targeted information from it, such as pose or velocity.
The last step is the “Decision Making” which refers to the way the information is used by
the system and it varies depending on the use and purpose of the application. In the case
of a gesture based human-computer interaction system the “Decision Making” phase
refers to whether or not the computer can recognize a specific gesture and initialize the
desired command that is assigned to the gesture.

1.2 Thesis Goal
This thesis goal is the creation of a Computer Vision application allowing Human-
Computer Interaction (HCI) through hand gesture recognition. The user is able to
operate basic computer functions without the use of touch method devices, such as
mouse, keyboard or touch screen, but by performing gestures in front of a camera.

The proposed approach has several applications: (i) Computer tele-operation. In a
working environment that the employees need freedom of movement it would be useful
to operate a computer from anywhere in a room. Even in our homes, such an application
would make life easier by giving us the ability to operate a computer without being
forced to sit in front of a keyboard. (ii) The restriction of input units and therefore the size
of computers would be reduced considerably. Especially in a company or an industrial
unit that many people use computers, each terminal could have a very small size sensor

- 9 -

as input and a small size projector as the output device. (iii) In virtual reality applications
the user will be able to immerse much more in the virtual world since all the commands
could be input without the use of touch method devices further emulating the way we
move through a space in real life. (iv) In robotics , new ultra-sensitive machines can be
created that will be able to simulate with high accuracy the movement of various human
parts, for example a doctor could operate on a patient with a contagious disease by using
robotic arms from a safe distance . (v) For hygiene reasons in the usage of public
computers such as ATMs and vending machines.

The goal is to add the ability of gesture recognition to the preexisting “FORTH Hand
Tracker” application [FORTH Hand Tracker] which was developed in Federation of
Research and Technology – Hellas (FORTH). The application so far has the ability to
track a human hand in 3D space and to generate visual images of its position and pose
using a 3D hand model.

The developed “Hand Gesture Recognition” application’s basic function will be the
emulation of mouse controls with hand gestures, since thru the use of a mouse most of
the functions of a personal computer can be performed. The movement of the hand
simulates the movement of the mouse while the various mouse buttons will be simulated
by specific gestures while adding some gestures that correspond to commands that
cannot be performed by a mouse (such as zooming in and out). We will even be able to
type using a virtual keyboard on screen giving as even more control over the more
intricate functions of a computer. Of course not all possible commands have been
emulated since the aim is not to create a fully commercial application but a prototype
that can be used as a basis in future research. The commands chosen include some very
basic ones such as the left, the right and the double click mouse button commands, the
drag and drop commands, zoom in and out commands and volume up and down
commands. Extra consideration was given to the gestures chosen as command inputs. To
make the application more practical and user-friendly simple hand gestures are used that
can be performed by everyone despite the shape or size of their hands.

1.3 Related Work
Several papers have been published concerning applications that use Computer Vision
for Human Computer Interaction most of them suggesting that hand gestures are the
ideal input method.

In the published paper (2) an RGB camera is used to recognizing gestures in a single 2D
layer. Each gesture/input method corresponds to a certain number, for example the
closed fist gesture is represented by 0 (zero). By corresponding a different number a

- 10 -

specific hand gesture complex commands can be given by sequencing different hand
gestures one after the other. The application works with numerated choice menus which
are activated by performing the corresponding gesture of the appropriate number. The
computer functions are organized in a form resembling tree branches where, what we
basically have is a series of main menus each leading to series of sub-menus and so on.
The main menu has generic choices where you can choose the category of function you
want to use (for example one of the options corresponds to mouse functions while a
different one corresponds to the system functions of a computer). This method can give
us full control of all the operations of a computer since every command can be inserted
by choosing the appropriate option which can be found in one of the sub-menus.

In the published paper (3) the computer cursor follows the movement of the index
fingertip while the other functions are activated with the thumb. The left click command
is activated by opening the thumb, the double click command by opening the thumb
rapidly twice and finally the right click command is performed by keeping the thumb in
the open position for a few seconds. So the application works by identifying changes
made to the main object, which in this case is a closed fist, and the timing in which these
changes occur.

In the published paper (4) we have a model based hand tracker without depth
information. In order to fully map the correct shape and movement of the hand an
accelerometer is adapted on the hand itself which gives data about the positioning and
rotation of the hand. Once the hand has been calibrated it uses the 2D data from the
camera and the accelerometer data to figure out the hands position in 3D space.

In the case study (5) a Microsoft kinect sensor is used to achieve human/computer
interaction by identifying full body placement and movement in 3D space. They have not
built their own model but they use the one built for the Kinect for human body motion
recognition. They use the information to activate computer functions limited to
slideshow presentations. The functions are limited to cursor movement according to the
hands position and scrolling through the pages of a slideshow by using the other hand.
The Kinect’s human body motion software is also used in (6) published paper where it is
used to fully control the application “Google Earth” by Google. Functions such as
moving forward, backward, left and right on the 3D model of the earth are achieved by
hand movement and Zooming In and Out is done by moving both hands together and
apart respectively. Finally in “street view mode” the user can rotate the field of view of
the observer by performing the gesture of turning a car wheel.

- 11 -

The final published paper (7) is that of for the Foundation for Research and Technology -
Hellas (FORTH) in which two different systems for Human Computer Interaction are
used simultaneously. The first is a 2D hand gestures recognition system using a single
camera and the second is a 3D system using stereoscopic cameras. The hand is not
recognized as a single object but as a series of connected blobs which are distinguished
from the surroundings by isolating the areas exhibiting skin colors properties. The open
fingers are basically nodes that can be detected by any distance since the shape is
evaluated at several scales. Much like the previous studies examined the number of open
fingers corresponds to the activation of different computer functions. In a 2D system both
hands are required for the operation of a computer where one hand corresponds to the
cursor movement and is named pointer hand while the other hand corresponds to the
rest of the functions. Obviously both hands can be used for both functions depending on
the users preferences where specific functions are always assigned to the “pointer hand”
and different function are assigned to the second hand. When all five fingers of the
pointer hand are open the right click command is activated while the same gesture
performed by the second hand activates the hold down left click and by closing any
number of fingers the left click command is simulated. The double click command is
activated by holding three open fingers using the second hand. In a 3D system only one
hand is used for all the functions and movement of the cursor. To activate the left click
command you have to close all the fingers and move your hand closer to camera. When
you move it back to the reference point the left click command is released simulating a
simple left click of a mouse. Similar to the left click command, the right click command is
activated with the same motion but with all five fingers in the open position and the
double click command with three fingers in the open position.

1.4 Implementation Process in Brief
In our case we use the FORTH’s model based hand tracker [FORTH Hand Tracker] to
track the hand’s position and pose in 3D space using a full 26 degrees of freedom (DOF)
hand model. The input method of optical data is Microsoft’s Kinect RGB-D sensor
[Kinect chapter] which is capable of 3D recognition. Using the parameters of the hand
model we track the position of the palm and each fingertip. The cursor follows the palm’s
position and movement. The distances between the palm and each fingertip or between
fingertips are used to recognize the gestures [poses and gestures]. Unlike (2) we do not
rely in the number of fingers closed or exposed but in the use of specific fingers in a
specific manner. For example the Left Click command is activated when specifically the
index fingertip closes in to the palm. In addition, the gestures used are not static poses
that correspond to a specific command but the transition between poses must be detected
for the command to be activated giving the user a more organic and natural feel to the
whole process while making the commands ever more controlled since wrong inputs due
to human error are reduced. We use Hidden Markov Models (HMM) [HMM] to model
the gestures through the transitions between all the intermediate poses performed to

- 12 -

https://www.forth.gr/
https://www.forth.gr/

reach each specific gesture. Additionally a specific algorithm, called the Viterbi
Algorithm [Viterbi Algorithm], is used to determine which gesture is more likely to be
performed depending on the intermediate poses detected raising the accuracy of the
application even further while minimizing the possibility of inputting a wrong
command. Once a defined gesture is detected, the appropriate function is activated by
using the preexisting open source software called “win32api” which is a library for
virtual mouse and keyboard commands. The programming language used is the
“Python” language in coalition with the “Open CV” library which is used for image
processing. The input method for data acquisition is the Kinect Sensor and we use the
“Prime Sense’s Kinect SDK” software to connect the device with a personal computer
(this is required because the device is designed for a video game console and not for PC
applications) and the OpenNI is the software used for image capturing.

- 13 -

2 Background

2.1 FORTH Hand Tracker
The Hand Tracker is an application developed in the Computational Vision and Robotics
lab., Institute of Computer Science, Foundation of Research and Technology – Hellas
(FORTH). It is solving the problem of tracking the 3D position, orientation and full
articulation of a human hand (8) (9). It is tracking the hand without the need of glove or
other marks of observation.

It is a model-based hand tracker that provides a continuum of solutions and it is not
limited to a discrete number of hand poses, but it can track the hand at any position and
rotation of its individual parts. Particle Swarm Optimization (PSO) (10), hypothesize and
testing approach is used. The objective function is based on rendering and comparison
with RGB-D observations. Microsoft kinect [kinect Sensor] is used to provide depth
information.

Picture 1. Graphical illustration of the proposed method. A Kinect RGB image (a) and the
corresponding depth map (b). The hand is segmented (c) by jointly considering skin color and depth.

The proposed method fits the employed hand model (d) to this observation recovering the hand
articulation (e)

2.1.1 Hand Model
The hand pose is described by a 27 parameters vector that encodes the 26 degrees of
freedom (DOF) of a human hand. The three first parameters are the X, Y and Z position

Section

2

- 14 -

of the hand palm in 3D space. The four next parameters are the quaternions which
represent the palms rotation. The other 20 parameters are allocated to 4 for each finger,
and represent its rotation in three points, while the translations between them are
prefixed for the hand model. The hand model is built with cylinders for the fingers,
spheres for the palm and the fingertips and joints between them. Each joint represent a
rotation point and each cylinder the translation between joints.

Picture 2. The employed 3D hand model: (a) hand geometry, (b) hand kinematics

Hand articulation tracking is implementing by estimating the 27 hand model parameters
that minimize the discrepancy between hand hypotheses and the actual observations. To
quantify this discrepancy graphics rendering techniques are employed to produce
comparable skin and depth maps for a given hand pose hypothesis. An objective
function is formulated and a variant of Particle Swarm Optimization (PSO) is employed
to search for the optimal hand configuration, which gives the output parameters for each
frame.

2.1.2 Evaluating a Hand Hypothesis / Objective Function
Having a parametric 3D hand model are estimated the model parameters that are most
compatible to the visual observations. Given a hand pose hypothesis h and a camera
calibration information C, a depth map rd(h,C) is generated by means of rendering. By
comparing this map with the respective observation od is produced a “matched depths”
binary map rm(h,C). This map is compared to the observation os, so that skin colored
pixels that have incompatible depth observations do not positively contribute to the total
score. There are incompatible depth observations when foreground model pixels that are
background in the observations and vice versa.

The discrepancy between the observed skin and depth O is calculated

𝐸(ℎ,𝑂) = 𝐷(𝑂,ℎ,𝐶) + 𝜆𝑘𝐾𝑐(ℎ)

- 15 -

Where λk is a normalization factor and kc adds a penalty to kinematically implausible
hand configurations. The function D is defined as

𝐷(𝑂,ℎ,𝐶) =
∑min (|𝑜𝑑 − 𝑟𝑑| , 𝑑𝑀)
∑(𝑜𝑠 ∪ 𝑟𝑚) + 𝜀

+ 𝜆(1 −
2∑(𝑜𝑠 ∩ 𝑟𝑚)

∑(𝑜𝑠 ∪ 𝑟𝑚) + ∑(𝑜𝑠 ∩ 𝑟𝑚)
)

Where the first term penalizes depth discrepancy and the second penalizes foreground
mask discrepancy. There is a threshold dm that determines the binary value of each pixel
of the rm dependant to the amount it differs between od and rd. A small value ε is added
to avoid division by zero and λ is normalization constant.

2.1.3 Optimization using PSO
Particle Swarm Optimization (PSO) is the algorithm that optimizes an object function
through the evolution of atoms of a population. Every particle holds its current position
in a vector xk and its current velocity in a vector vk. The vector Pk stores the position at
which each particle achieved, up to the current generation k. the vector Gk stores the best
position encountered across all particles of the swarm.

𝑣𝑘+1 = 𝑤(𝑣𝑘 + 𝑐1𝑟1(𝑃𝑘 − 𝑥𝑘) + 𝑐2𝑟2(𝐺𝑘 − 𝑥𝑘))

and

𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑘+1

Knowing the velocity and the position of each particle the FORTH Hand Tracker
estimates the optimum pose of the hand by calculating all the translation and the
rotations of the 26 DOF hand model particles.

At every frame, the estimated hand pose is stored in the 27 parameters vector which can
be encoded to the current hand pose and position. This 27 parameters vector we use to
recognize the gestures the user performs.

2.1.4 Results

Indicative snapshots are shown in Fig. 3. As it can be observed, the estimated hand
model is in very close agreement with the image data, despite the complex hand
articulation and significant self occlusions.

- 16 -

Picture 3. Indicative results on real-world data

2.2 Kinect Sensor
Kinect is a sensor created and first published by Microsoft as a side gaming devise for
Xbox360 gaming console (11) (12). Its category named RGB-D (Red-Green-Blue-Depth)
sensor. It combines several different devices working together. These are an RGB camera,
a depth sensor, four microphones and a motorized tilt. The RGB camera provides a
colorful image and it is used as a simple RGB camera. The difference with Kinect is the
depth sensor that provides depth information for many of the items capture in 2D
camera plane. The depth sensor consists of an infrared projector and an infrared camera.
The infrared camera captures the reflections of the infrared waveform and provides
information for the distance of the reflected items, if they are in capturing range.
Together the RGB camera and the depth sensor are a powerful tool in Computer Vision
science. The RGB image provides information for chromatic characteristics and for the
template of an item. Combined with the distance from them, given from the depth
sensor, can provide the width and the height of the item. Depth sensor provides the
depth so we have the X, Y and Z of an item or a single point of the image in 3D space.
The output of the depth sensor is a grayscale image, called depth map. It is same size
with the RGB image and each pixel scale represents the distance from the camera. The
darker points are closer to the camera. If a point is out of the range and the depth cannot
be measured, the pixel in this point is black. The range that the sensor gives trusty depth
information depends to the operation mode and it is 0.8 to 4 meters for the default mode
and 0.4 to 3 meters for the near mode. Objects in greater distance cannot provide
appropriate infrared reflections for measurement and nearest objects are not in the plane
of view of the two cones of both infrared projector and infrared camera.

- 17 -

Picture 4. Kinect Sensor

Picture 5. Kinect Structure

Picture 6. Depth Map

- 18 -

Although Kinect Sensor was first created for gaming, its low cost and wide availability
raise the interest of many developers to create applications to interact with computers, to
operate robotic systems, to provide help in medical applications, even to help people
with movement or speech difficulties. Its software was in first embedded in Xbox console
and had mostly to do with Skeletal Tracking and Facial expressions recognition. In
February 2012 Microsoft released the Kinect Software Development Kit (SDK) for
Windows for programmers to build their own applications, but many more
programming tools are available. Today there are two versions of Kinect Sensor,
Version1 and Version2 and several more RGB-D sensors from other manufacturers.

2.3 Hidden Markov Model (HMM)
Hand gestures recognition plays a crucial role in our application. The mathematical
model we used to detect these gestures is the Hidden Markov Model (HMM) (13)
(14)(15). HMM is a special occasion of Markov Model. Markov Model is a stochastic
model used to model dynamic systems assuming that the future state depends on the
current state only, not in all state history. The benefit in this in computational systems is
the low need of computing power and the low time of processing. We have not to
process all the state history but only the current state assuming that the current state is
based in the previous and the previous in the state before it and so on. The Hidden
Markov Model is a special occasion of Markov Model used when the state is not
observed directly. It is commonly used in Human Computer Interaction in several
applications such as speech, handwriting, gestures and expressions recognition.

The states of an HMM represent the un-observable internal configuration of the model.
The observations are used to estimate the hidden states. In our case an HMM encodes a
gesture that consists of one or more poses. The states of that HMM represent these hand
poses. The observations in our case are Euclidian distances between specific parts of the
hand. The “thumbs up” pose for example can be observed if the thumb fingertip is over a
threshold away from the palm and all the other fingertips are under a threshold close to
the palm.

For each frame all the distance features needed for each gesture are calculated and give a
probability for each pose. These are called observation or emission probabilities. Each
gesture is modeled as a separate HMM that models the poses of the gesture and the
transition between the poses. The probability of transition between two poses is called
transition probability. For a given frame sequence the posterior probability of each
gesture is calculating using the emission and transition probabilities of the corresponding
HMM. The HMM with the greatest probability represents the optimal gesture.

- 19 -

X — states

y — possible observations

a — transition probabilities

b — emission probabilities

Picture 7. HMM Example

In picture 7 it is an example HMM with 3 states and 4 possible observations. If we
suppose that the previous state was X2 and now we observe the observation y3, the
probabilities of the current state to be X1 or X3 are:

𝑋1𝑝𝑟𝑜𝑏 = 𝑎21 ∗ 𝑏13
𝑋3𝑝𝑟𝑜𝑏 = 𝑎23 ∗ 𝑏33

The state with the greatest probability is the optimal state at the current time.

2.4 Viterbi Algorithm
The Viterbi algorithm (16) is a dynamic programming algorithm which finds the most
likely sequence of hidden states in a sequence of observed events such as Hidden
Markov Models. It has many applications in CDMA and GSM digital cellular, dial-up

- 20 -

modems, satellite communications, wireless Lan transmissions and most recently in
human activity recognition such as speech and gesture recognition. The predicted most
likely sequence of hidden states through Viterbi Algorithm is called Viterbi Path. The
maximum probability of a Viterbi Path is called Viterbi Probability. Viterbi probability is
not always the probability of the optimal state at the current time, but the probability of
the optimal path of states by the moment. The first Viterbi Probability is the probability
produced from the Starting probability for each state and the Observation Probability for
each state. The next Viterbi Probability is the product of the Transition Probability from
each previous state to each current state, the Observation Probability of each current state
and the Viterbi Probability of each previous state. So if at the first time period the state
X1 had greater Viterbi Probability than the state X2, but at the second time period the
total product of the Viterbi Probability of the X1 and the Transmission Probability from
X1 to X3 and the Emission Probability of X3 is greater than the corresponding probability
moving from state X1 to state X3 probability, the new optimal Viterbi Path passes
through X2 and not X1 that had the greatest probability at first time.

V1,st = ObsstStart_Pst

Vt,st = max
prev_st

(ObsstTrans_Pprev_st,stVt−1,prev_st)

Where V is the Viterbi Probability, Obs is the Observation Probability, Start_P is the
Start Probability, Trans_P is the Transition Probability, St is the Current State,

Prev_st is the Previous State and T is the Time in program circles

- 21 -

3 Implementation

3.1 Section Structure
In this section we represent the whole process of the implementation of the Gesture
Human-Computer Interaction (GHCI) application. In the Camera Calibration section we
describe how we calibrate the camera’s coordinate system to the screen’s coordinate
system. Next in Cursor Movement we represent how we succeed the cursor movement
according to the position we point to the screen with our hand. In the Poses and Gestures
section we represent the gestures have been chosen and the poses consist them to interact
with the computer. In Observations section we describe how we estimate when a pose is
performed. In Design of HMM we model the desirable gestures, according to the
transitions between poses. In Gesture Selection we describe how we calculate the
probability of each gesture to been performed and we show how we choose the optimal
gesture. In Modes of Operation we describe how we transit between the modes of
operation and how each computer function is achieved in each one of them. Finally in the
User Interface section we represent how the user operates the application and interacts
with the computer.

In the next list we see the steps of process to interact with the computer.

1 Camera Calibration Calibration from camera to screen

2 Cursor Movement Movement of cursor on hand’s position

3 Poses and Gestures Definition of poses and gestures

4 Observations Observations of poses

5 HMMs Gesture models build

6 Viterbi Algorithm Finding gestures probabilities

7 Gesture Selection Choosing the optimal gesture

8 Computer Function Translation of gestures to computer functions

List 1. Implementation process steps

Section

3

- 22 -

3.2 Camera Calibration
Getting started we have an RGB-D camera operated with Python language GUI. We take
images through GUI’s visualization and the FORTH Hand Tracker attaches a 3D 26DOF
hand model and tracks our hand on these images. The first operation of our application
is that the mouse cursor is moving according to the hand’s position with respect to a
coordinate frame aligned with the computer screen. Due to this, we do the calculations to
transform hand’s position from the camera’s coordinate system to the screen’s coordinate
system.

In our case the camera is set in side position in order to be able to have the screen in its
field of view. The Y axis of the camera has the same orientation with the Y axis of the
screen, while it is translated on screens Z axis. The Camera’s X axis has almost the
orientation of the screen’s Z axis, while the screen’s X axis has almost the orientation of
the camera’s Z axis. It is not necessarily to set the camera in this exactly position but after
many tests we found it the most convenient due to its field of view that concludes the
screen and a big enough area in front of it, in which the user can perform the gestures.

Picture 8. Camera positioning

The hand’s position in the camera’s coordinate system is taken in 3D space through the
tracker’s parameters where the first 3 values, correspond to hand palm’s X, Y and Z
position.

We compute the Rigid Motion transformation (17). To calculate the transformation that
method requires at least 3 3D point correspondences. For that purpose we use the

- 23 -

coordinates of the four screen corners. We suppose the corners’ coordinates in screen’s
system starting from the upper left corner and moving clockwise as below.

a = [0,0,0]

Where w and h are screen′s width and heght
b = [w, 0,0]

c = [w, h, 0]

d = [0, h, 0]

We take the same four coordinates in camera’s system from the coordinates of the index
fingertip when user touches each corner and presses the appropriate key [Calibrate the
Camera]. We name them ac, bc, cc, dc. We calculate the centroids in two systems by
adding the four coordinates and dividing by four.

Screen Centroid =
a + b + c + d

4

Camera Cendroid =
ac + bc + cc + dc

4

Having two sets of points we produce the projection matrix (H matrix) which maps the
vector of response variable values to the vector of fitted values. We subtract each
centroid from each corresponding point and we sum the products of the response values,
in our case the camera points (ac, bc, cc dc) and the equivalent fitted values which are the
screen point values (a, b, c, d), for each point. The result is a 3x3 square matrix we use to
solve the Singular Value Decomposition (SVD). The product of the right-singular vectors
(U) and the left-singular vectors (V) gives us the rotation (R) of the camera coordinate
system from the screen coordinate system. The translation (T) from the camera
coordinate system to the screen coordinate system is the abstract of the product of the
rotation and the camera centroid from the screen centroid.

H = ((ac − CamCent) ∗ (a − ScreenCent)′) + ((bc − CamCent) ∗ (b − ScreenCent)′)
+ ((cc − CamCent) ∗ (c − ScreenCent)′) + ((dc − CamCent) ∗ (d
− ScreenCent)′)

[U, S, V] = svd(H)

R = V ∗ U′

T = −(R ∗ CamCent) + (ScreenCent)

To do the calibration the camera must be in a position watching the screen. We choose a
side position for the camera, so the screen and the space in front of it that the hand will

- 24 -

move, are in the sight of the camera. The left side looking to the screen has been chosen
because it is easier to recognize the gestures when we use the right hand. If the camera
was in a position not watching the screen the transformation and so the camera position
should be prefixed or the user should done it, counting the distances from the camera
center to the screen center, so it would be difficult and time consuming.

3.3 Cursor Movement
Cursor moves on the hand palm’s coordinates which are produced by the FORTH Hand
Tracker. It follows the X and Y position transformed in screens coordinate system. So the
user moves the cursor by showing with his hand the position he wants on the screen. An
alternative would be the cursor to follows the index fingertip’s position for greater
accuracy, but rejected through to relocation of the cursor when user attempts a gesture
that uses the index finger. Besides that, using the PC from the suggested distance of a
half meter, sitting comfortably on your desk chair, it is easier to aim taking the whole
hand as a single point.

Hand’s previous position is hold when hand’s current position taken. They compared,
demanding a relocation over one millimeter in both X and Y axis to fulfill the movement.
This is a threshold used because of a default trembling of the hand model trying to guess
the optimal hand’s position. So cursor movement has an accuracy of one millimeter,
which is good enough for the windows’ icons, buttons and scroll menus. It is not ideal
for designing applications, except if the zoom is big enough to correspond one pixel to
one millimeter. The positioning of the cursor to the coordinates is implemented using
freeware virtual mouse library.

3.4 Poses and Gestures
We have set six different hand poses which used to perform five different gestures that
our application can recognize. Each gesture consists of two poses, one common to all and
one unique for each one. As gesture we set the transition from one specific pose to
another. The first pose consisted in a gesture is called starting pose and it is common to
all gestures. The second pose is the unique pose and we call ending pose. In the picture 8
we see the six poses and at the list 2 we see the five gestures with those pose transitions.

- 25 -

Open Hand Index Down Middle Down

OK! Single-Barrel Pistol Double-Barrel Pistol

Picture 9. HMM Example

Gesture Starting Pose Ending Pose

Left Click Open Hand Index Down

Right Click Open Hand Middle Down

Grab Open Hand OK!

Zoom Open Hand Single-Barrel Pistol

Volume Open Hand Double-Barrel Pistol

List 2. Gestures

To recognize each pose we use auxiliary function for the Hand Tracker which also built
in FORTH, which gives us the 3D coordinates of 21 specific points on the hand model,
two for the palm and four for each finger. The position of each point is shown in picture
9.

- 26 -

Picture 10. Separate points with known geographical position

We use the Euclidian distance between two or more of these spheres to recognize each
hand pose. All poses are described from the distance of each fingertip from the palm, or
from the distance of two fingertips between them or both. Pinky finger has been
exempted from all poses because it is the most possible for the tracker to lose it, so it is
not participate to the gestures. The first pose is the Open Hand where all fingertips are
away from the palm. The Index Down pose is when index fingertip is close to the palm
and all other fingertips are away from the palm. The Middle Down pose is when middle
finger fingertip is close to the palm and all other fingertips are away from the palm. The
OK! pose is when thumb fingertip touches index fingertip and all other fingertips away
from the palm. When ring and middle fingertips are close to the palm and index and
thump are away from each other is the Single-Barrel Pistol pose. When ring fingertip is
close to the palm and middle and index fingertips are away from the palm and the
thump fingertip is the Volume pose. Edges have not been used to recognize poses
because they vary according to hand’s rotation. The method with the distances between
the specific points ensures that the pose is recognized easier at any rotation of the hand.

- 27 -

3.5 Observations
We have pre-defined the ideal distances of interest as follows.

Pre-defined Distances Notation

Index close to the palm dindex−down

Index away from the palm dindex−up

Middle close to the palm dmiddle−down

Middle away from the palm dmiddle−up

Ring close to the palm dring−down

Ring away from the palm dring−up

Thumb close to the palm dthumb−down

Thumb away from the palm dthumb−up

Thumb touches index dthumb−index−t

Thumb away from index dthumb−index−a

Thumb away from middle dthumb−middle−a

List 3. Pre-defined Distances

In every program circle we count the Euclidian distances between points of interest as
follows.

Counted Euclidian distances Notation

Index - Palm euindex−palm

Middle - Palm eumiddle−palm

Ring - Palm euring−palm

Thumb - Palm euthumb−palm

Thumb - Index euthumb−index

Thumb - Middle euthumb−middle

List 4. Euclidian Distances

- 28 -

To observe a pose we sum all the differences of the counted Euclidian distances from the
ideal pre-defined distances, who take place for this pose. Ideally it should be zero but
that is never true, so the pose with the smallest summary of distances is the most likely
pose.

Pose Distances Summary

Open Hand DOH = abs(df−up − euf−palm)

Index Down DID = abs�dindex−down − euindex−palm� + abs(df−up
− euf−palm)

Middle Down DMD = abs�dmiddle−down − eumiddle−palm� + abs(df−up
− euf−palm)

OK! DOK = abs(dthumb−index−t − euthumb−index) + abs(df−up
− euf−palm)

Single-Barrel Pistol DSB = abs(dthumb−index−a − euthumb−index) + abs(df−down
− euf−palm)

Double-Barrel Pistol DDB = abs(dthumb−index−a − euthumb−index)
+ abs(dthumb−middle−a − euthumb−middle)
+ abs(dring−down − euring−palm)

where f is abbreviation for the rest of the �ingers

(except pinky which has been exempted)

List 5. Distances Summaries Equations

We use the exponential function to bring the value which is closer to zero, to be closer to
one, which is the greatest probability for the chance of that pose.

Pose Observation probability

Open Hand
ZOH = e−

DOH
2

2s2

Index Down
ZID = e−

DID
2

2s2

Middle Down
ZMD = e−

DMD
2

2s2

OK!
ZOK = e−

DOK
2

2s2

- 29 -

Single-Barrel Pistol
ZSB = e−

DSB
2

2s2

Double-Barrel Pistol
ZDB = e−

DDB
2

2s2

List 6. Observations Equations

Because of the ideally distances variety in different hand sizes and anatomy, we choose
to use a comparative method to identify the optimal pose. Every program circle each
pose is compared to the Open Hand pose and to all the other poses. The pose with the
greatest probability, is the dominant pose.

We did not count on a single observation, first to avoid instant errors and second to have
an image of the whole gesture, not only the instant pose. So we keep a history of the last
five images and we come to the optimal gestures through the sequence of the observed
poses.

3.6 Design of HMM
The method we use to come out to the optimal gesture through the sequence of the last
five observed poses is the Hidden Markov Models or HMMs. We have simplified as
much as possible the gestures in order to be easily recognized with a prediction method
as HMMs. All the gestures made up of two states that represent the two different poses.
The starting state is common to all gestures and it is the pose of the Open Hand. The
second state is for each gesture the ending pose for this gesture. All the ending states are
clearly different from each other, so we do not have complex HMMs with the same
ending and different paths through middle states. This is giving us the advantage of a
fast and easy recognition with small chance of error. The disadvantage is the limited
number of gestures can be recognized with this method. If we wanted to recognize much
more gestures we should use more complex HMMs with more states.

We have built five different HMMs for the five different gestures we want to be
recognized. The HMMs parameters are the starting state probability, the transition
probability and the observation probability. The observation probability is the observed
probability of each pose at the last five frames, as counted by the Euclidian distances. As
the counted Euclidian distances approach the given distance for each pose, the
exponential function of their differences approaches to one, which is the greatest
probability.

- 30 -

The starting state probability and the transmission probabilities depend on the gesture.
In two first gestures, left click and right click, we want the activated event to happen
while the corresponding finger is moving down and to been completed while the finger
reach the wanted distance. So the starting probabilities are a little bigger for the Left and
Right Click when in Open Hand. Besides that they are the most usual functions, so we
give a better chance the next gesture user wants to perform, when in Open Hand, to be
one of them. At the other three gestures we want to implement the function when the
ending pose has been performed. We want for example to activate Grab when thumb
and index fingers touch each other and not when they moving close to each other. That
also decreases the chance to mistake the Grab with the Left Click gesture, which both of
them demand a down move of the index. The best starting state probability remains the
Open Hand, but it is not such big as in Left and Right Clicks. In addition the starting
state probability for the ending pose is bigger in these three gestures than it is in Left and
Right Clicks. For the same reason the transmission probabilities are a little different for
the same groups of gestures. In Left and Right Clicks the probability to transmit from
Open Hand to Open Hand is a little greater than the other three gestures, that it is
smaller. In Grab there is greater probability to transmit directly to the ending pose,
because we want to activate the event when we are already there. In Zoom and Volume
Mode we give smaller transition probability from the starting to the ending pose because
they are gestures that change the mode of operation so we reduce the chance to activate
them accidentally. In all cases the transmission to ending state is greater than to stay in
Open Hand for a while. In all cases when in ending pose, the probability to remain in
ending pose is much greater and the probability to go back to Open Hand which is
almost zero. For all gestures, when we are in Open Hand again, the gesture has already
been finished. We can see the probabilities by numbers in picture 11.

Picture 11. HMMs

- 31 -

3.7 Gesture Selection
To determine the optimal gesture according to HMMs probabilities and the observation
probabilities we use the Viterbi Algorithm. The Viterbi Algorithm calculates the optimal
sequence of states of an HMM. Since we have two states we are looking for paths that
start from the Starting State and end to the Ending States. This can be happen to more
than one HMM each time. For example when we perform the Grab gesture we have a
path that starts with the Open Hand pose end ends with the OK! pose. At the same time
the Left Click gesture as well has a path of states that starts from the Open Hand pose
and ends with the Index Down pose because actually the index finger is a bit closed in
the OK! pose. If we actually perform the OK! pose after the Open Hand pose, then the
HMM that models the Grab gesture will have a total path with greater probability of that
of the HMM that models the Left Click gesture. So in each program circle we calculate
the Viterbi probabilities for all the HMMs/Gestures holding data from the last five
frames. All these probabilities are kept in a list to compare to each other. The bigger
value defines which is the gesture that the user performs at the moment.

Vleft_click

Vright_click

Vgrab

Vzoom

Vvolume

List 7. Viterbi Probabilities List

Best Probability = max (Viterbi Probability List)

3.8 Modes of Operation
There are four modes of operation for the application. The initial starting mode is the
normal mode. The other three modes are the Zoom Mode, the Volume Mode and the
Calibration Mode. In Normal Mode all five gestures can be recognized. Three of them,
the Left Click, the Right Click and the Grab, spontaneous activate the appropriate
function on computer’s operating system. The other two gestures, the Zoom Mode and
the Volume Mode, change the Mode to the same name Mode of Operation. In the Zoom

- 32 -

Mode and Volume mode no gesture can be recognized, but only functions can be
activated. In total we have eight different functions which can be activated.

Modes of Operation Functions

Normal Mode

Left Click

Double Click

Right Click

Grab/Ungrab

Zoom Mode
Zoom In

Zoom Out

Volume Mode
Volume Up

Volume Down

Calibration Mode -

List 8. Available functions for each Mode of Operation

Some of the functions are activated spontaneous when the corresponding is gesture
performed and some other are a combination of the gesture and its duration or the
gesture and the positioning change of the hand or of parts of it.

functions Activation Method

Left Click Gesture spontaneous

Double Click Gesture + Duration

Right Click Gesture spontaneous

Grab/Ungrab Gesture spontaneous

Zoom In Gesture + Positioning

Zoom Out Gesture + Positioning

Volume Up Gesture + Positioning

Volume Down Gesture + Positioning

List 9. Activation method of each Mode of Operation

- 33 -

3.8.1 Normal Mode
When in normal mode the function Left Click activated spontaneous when the gesture
recognized and a counter starts to increase. After a few seconds if the gesture has not
been changed the function Double Click is activated and the counter turns to zero. Since
then no other function can be activated until the pose turns to Open Hand again. If the
pose turns to Open Hand before the Double Click been activated the counter turns to
zero waiting the Left Click gesture recognition again. For all the activations we use
commands from freeware virtual mouse library. For the activation of the Left Click we
use two commands, the first is the left mouse button down and the second the left mouse
button up. For the Double click we use the commands of the Left Click twice. The
function of the Right Click is activated spontaneous when the gesture been recognized
and no other gesture can be activated before Open Hand been recognized again. For the
activation we use the commands for right mouse button up and down in the row. The
function Grab is activated spontaneous when the gesture been recognized by the virtual
command of the left mouse button down. When the pose returns to Open Hand again
from Grab the Ungrab function is activated by the command of the left mouse button up.
No other function can be activated in the meantime.

3.8.2 Zoom Mode
When the Zoom Mode gesture recognized, a counter starts to increase. If after a few
seconds the gesture has not change, the application enters into the Zoom Mode. The
Zoom Mode is a different mode of operation and no function is activated immediately
when we enter in it. As long as we stay in Zoom Mode none of the five gestures can be
recognized. The only thing considered is the Euclidian distance between thumb and
index fingertips. The other three fingers are no longer tracked down, in order to gain
tracking speed and to spare system recourses. While the distance of the two fingertips
increases the Zoom In command is given. While it decreases Zoom Out command is
given. The process is made to remind the user the Zoom In and Zoom Out method in
touch screens, besides we do not touch any screen but we move our two fingers in the
air. When we first enter in Zoom Mode we keep in a variable the current distance
between the two fingers as the default zoom distance. When the distance changes we
subtract the new current distance from the default distance. If the difference is positive
over a threshold, Zoom In command is given as many times as the difference is bigger
than the threshold. If the difference is negative and bigger than the threshold in absolute
value, Zoom Out command is given as many times as the distance is bigger than the
threshold. At the end of each program circle the default distance is replaced by the
current distance.

- 34 -

Function Number of times activated

Zoom In Zin =
current distance− default distance

threshold

Zoom Out Zout =
default distance− current distance

threshold

The Zoom In and Out functions are activated by using commands from freeware virtual
keyboard library. We simulate the Ctrl+ and Ctrl- method for Zoom In and Out, that
works in many Windows applications including photo viewer and pdf readers. When we
reach the desirable zoom we keep stable the distance between our fingers and we get out
of the Zoom Mode by moving our whole hand 30 cm to the right. When we get out of the
Zoom Mode or any other mode, automatically the application returns to Normal Mode
and all gestures are readable again.

3.8.3 Volume Mode
The Volume Mode works very similar to the Zoom Mode. The gesture of the Volume
Mode does not activate immediately any command on the computer’s operation system,
but enters the application in a different Mode of Operation, where Volume Up and
Volume Down functions can be activated. As in Zoom Mode, when the gesture of the
Volume Mode been recognized a counter starts to increase and if we keep the gesture for
a few seconds, it enters in Volume Mode. In Volume Mode no gestures are recognized.
The user can only turn up or down the volume by moving his hand up or down. When
we first enter in Volume Mode the current geographical position of the hand is set as the
default position. If we move our hand up over a threshold distance, the Volume Up
command is given, as many times as the distance we move is bigger than the threshold
distance. If we move our hand down, we activate the Volume Down command, as many
times as the distance is bigger than the threshold distance. In the end of the program
circle the new position of our hand is set as the new default distance.

Function Number of times activated

Volume Up Vup =
default distance− current distance

threshold

Volume Down Vdown =
current distance− default distance

threshold

- 35 -

So we activate the Volume Up and Down events by changing the position of our hand in
Y axis. None of the fingers are tracked when in Volume Mode in order to spare recourses
and to increase tracking speed. The Volume Up and Down events are activated by the
virtual keyboard library again. This time we simulate the Vol+ and Vol- keys that
advanced computer keyboards feature. In order to exit the Volume Mode we only have
to move again our hand 30 cm to the right and the application returns to Normal Mode.

3.8.4 Calibration Mode
Calibration Mode is an auxiliary mode of operation and it is not activated by any gesture
but from the keyboard. It exists only to help us calibrate the camera to our screen as
described in Calibrate the Camera. When in Calibration Mode no gestures can be
recognized and no functions can be activated.

3.9 User Interface Overview

3.9.1 Hardware Setup
Before we start the application we shall put the Kinect sensor in a position able to see the
computer screen and the area in front of it, where the hand will move and perform the
gestures. The pre-calibrated position of the camera we use is 60 cm away on the left side
of the screen, 10 cm in front of it and on the height of the middle point of the screen.

3.9.2 Start the Application
Starting the application a help video display window appeared, showing us the camera
view and the model hand on it. The model hand is on a prefixed pose and position on the
display. The position is on the middle of the display window and the pose is that of the
Open Hand. The user must put his hand in the margins of the model acting the same
pose to calibrate the model on his hand. When do so, by pressing the key “s” from the
keyboard the application starts. The model follows the hands pose and position and the
user can move the mouse cursor by showing with his hand the desirable position on the
screen.

- 36 -

Picture 12. Starting the application

3.9.3 Calibrate the Camera
If the cursor does not follows hand’s showing position, we must calibrate the camera’s
coordinate system on screen’s coordinate system. The coordinate’s calibration can be
done by the user any time ruining the application. Pressing the key “k” from the
keyboard, the application enters the Calibration Mode. The message “Calibration Mode”
appears on the video display window. In this mode all other operations are disabled and
the user shall touch the four screen corners, starting from the upper left corner and
moving clockwise. Using the index fingertip, when touching the first corner (upper left),
he presses the key “a” from the keyboard and then the keys “b”, “c” and “d” for the
other three corners respectively. Each time the key pressed a message that the corner has
been calibrated is appeared. When all four corners are calibrated, automatically the
program does the transformation and the cursor been attached to the position of the
user’s hand on screen’s 2D plane. Pressing the key “x” the application exits the
Calibration Mode and the main operations are enabled again. Each other program circle
since then the application automatically transforms the hand position from the 3D space
to 2D screen coordinates, due to latest calibration settings. If the camera or the screen has
to change position, a new calibration shall be done.

- 37 -

Picture 13. Calibration Mode

3.9.4 Activate Left Click and Double Click
By performing the Left Click Gesture in Normal Mode the Left Click function is
activated. We know we are in Normal Mode when there is no message says different in
video display window. Staying in the final pose of the Left Click gesture for a while we
activate the Double Click function. After that no other function can be activated until we
return in Open Hand again.

3.9.5 Activate Right Click
By performing the Right Click Gesture in Normal mode the Right Click function is
activated. No other function can be activated until we return in Open Hand pose again.

3.9.6 Activate Grab and Ungrab
By performing the Grab gesture in Normal Mode the Grab function is activated and stays
active as long as we stay in the final pose of the Grab gesture. It works similar to holding
the left click button of the mouse pressed. While do so among others we can select and
move an icon, form a selection window to include multiple selected items or move a
scroll bar. When we return in Open Hand again the Ungrab function is activated, similar

- 38 -

to releasing the mouse left click button. As long as Grab function stays active no other
function can be activated.

3.9.7 Activate Zoom In and Zoom Out
By performing the Zoom gesture the application enters the Zoom Mode. It does not enter
immediately but after a few seconds, due to a different Mode of Operation is activated.
While in Zoom Mode the Zoom In and Zoom Out functions are enabled. The Zoom In
function implements continually by distancing the index and thumb fingertips from each
other. The Zoom Out functions implements continually by approaching the index and
thumb fingertips to each other. Getting familiar with the application the user can
estimate how much he has to distant or to approach his fingertips to activate Zoom In or
Zoom Out functions only once. The method is designed to remind the way Zoom In and
Zoom Out implement in a touch screen. To enter the zoom Mode we have to move our
hand 30 cm to the right.

3.9.8 Activate Volume Up and Volume Down
By performing the Volume gesture the application enters the Volume Mode. Similar to
the Zoom Mode it does not enter the Volume Mode immediately but after a few seconds.
While in Volume Mode the Volume Up and Volume Down functions are enabled. The
Volume Up command is given continually by moving the hand up. The Volume Down
command is given continually by moving the hand down. The starting hand’s position
when user first enters the Volume Mode corresponds to the current Volume level. This
can be any position in the camera’s sight of view, but if we want to Volume Up and we
enter the Volume Mode having our hand to high in the sight of view, we will not be able
to move it up without camera lose it, so we must start from a lower position. Generally it
is made the way that if the volume level is on fifty percent and we enter the Volume
Mode setting our hand in the middle of the screen, we can implement a full Volume Up
and Volume down move. To exit the Volume Mode we have to move our hand 30 cm to
the right.

- 39 -

Picture 14. Volume Mode

3.9.9 Pause or Quit the Application
The application can be paused or un-paused any time while working by pressing the “p”
key from the keyboard. The hand model freezes at its current position and pose which
we must act again before un-pause again. To quit the application we press the key “q”
from the keyboard.

3.9.10 System Requirements
The Gesture Human-Computer Interaction application is built on an Intel i5-3470 CPU
system with 8GB installed RAM and an Nvidia GT-730 GPU. Minimum requirements are
multi-core CPU with at least 1MB of installed RAM and CUDA-enabled GPU with
512MB of GPU RAM or more, supporting OpenGL 3.3 or later. The depth sensor is a
Microsoft’s Kinect for xbox 360. Operational System is Windows 10 pro 64bit with Visual
C++ 64bit Redistributable Packages for Visual Studio 2013 installed. Sensor is installed
using Prime Sense’s Kinect SDK 5.1.6.6 and KinectMod 5.1.2.1 for windows 64bit drivers
and handled with OpenNI 1.5.7.10 for windows 64bit image processing software.
Programming language is Python 2.7.11 64bit.

- 40 -

4 Experiments

4.1 Experimental Process
We tested the gesture based HCI application to a group of volunteers to assess its
performance and functionality. The users were not familiar with the application or
similar applications of HCI through gesture recognition. They had only 15 minutes time
to test the application and then the experiment was started. In total 23 users took place to
the experiments. Each one of them performed 5 times each of the 5 gestures which give
us a total of 25 gestures for each user. Each experiment lasted about 10 minutes.

For the experiments all the mouse and keyboard events were disabled and the detected
gestures were just registered. The information recorded with the registered event was the
type of gesture, such as Left Click, and the time frame it was registered. The experiment
supervisor was registering the actual performed (groundtruth) events. When the test
finishes two lists are populated, one with the “Detected Gestures” recorded by the
application each time a gesture was detected, and one with the “Groundtruth Gestures”
registered by the supervisor each time a gesture was observed. The two lists are
compared and if the type of the detected gesture and the frame it had been recognized
matches with the type and the frame of the groundtruth gesture that been observed, it
considered a successful recognition and the sample registered as True Positive. If the
supervisor observe a gesture and record it but the application does not detect it, the event
registered as False Negative. If the application detects an event that has not been actually
happened, that is recorded as False Positive. So if the gesture event of the one category
does not match in time frame with a gesture event of the same type from the other
category the event is False and considered False Negative if the application does not
detect it or False Positive if it detects it without it had been performed. If two events from
the two different categories match in time but not in the type of the event, the application
has confuses the gesture with another gesture and that is a False Negative for the one
category and a False Positive for the other. If the application does not confuse the gesture
but the event is a single False Negative or a single False Positive, that means that it failed
to detect it in the first case, or that it confused a random hand movement with a gesture
in the second case.

Section

4

- 41 -

Because it is unlikely the observer to press the event key exactly at the same frame that
the application detected it, there is a threshold of five frames before and after that the
events considered matched. If two events match they marked as matched and they
cannot been matched again even if another event of the same gesture is in the frame
threshold. In that case the third event is considered as False Negative if it is from the
Actual Event List or as False Positive if it is from the Detected Event List. All the other
events that remained un-matched are considered as False Negative or False Positive
respectively to the list they belong.

TruePos = TruePos + 1 if(framedetected event
= frameactual event ± 5 and events are of the same gesture)

FalseNeg = Unmatched events from Actual List

FalsePos = Unmatched events from Detected List

When the true and false detections identified the Precision and Recall ratios are
calculated. The Recall rates the mount of success according to how many gestures the
application succeed to identify correctly, while the Precision rates the mount of success
according to how well the application succeed not to been confused with a false
detection.

Precision =
TruePos

TruePos + FalsePos

Recall =
TruePos

TruePos + FalseNeg

4.2 Results
We represent the results of the experiments showing the numbers of the True Positives,
False Negatives and False Positives identifications, as well as the Precision and Recall
ratios for each gesture, in a total population of 575 samples coming out from 23 users,
each one of them performed 5 times each of the 5 gestures. We see the results for each
gesture separately first and later the clustered results are represented. In the first column
we see the absolute numbers of the True Positives, False Negatives and False Positives of
the total population of the 23 users. In the second column we see the worst case while in
the third column we see the best case of each statistic of a single user attempts. The worst
and the best case are the absolute worst and best case for the stat and not the worst or the
best user. In the Left Click for example the user that had 4 False Negatives is not

- 42 -

necessarily the same user that had 3 False Positives. In the last column we see the average
score per user.

In Left Click gesture we had 94 True Positives, 21 False Negatives and 16 False Positives
in the total population of 115 samples. The worst case of True positives was only one to
be found in a single user while the best was all of the 5 recognitions to be correct. The
worst case in False Negatives was 4 out of 5 while the best was no False Negative
Identifications. In the False Positives the worst case of a single user was 3 False Positive
Left Click identifications in the total time of 115 gesture performing attempts and the best
case was no Left Click False Positives during all the experiment process. The average
scores of the 23 users in Left Click gesture is 4.09 True Positives in 5 attempts, 0.91 False
Negatives in 5 attempts and 0.7 False Positives during the whole experiment time. Those
results give us a total 85% of Perception and 82% of Recall ratios.

 Left Click

Stats Sum (of
23 users)

Worst Case
(of a single

user)

Best Case (of
a single user)

Average
(per user)

Samples 115 5 5 5

True
Positives

94 1 5 4.09

False
Negatives

21 4 0 0.91

False
Positives

16 3 0 0.7

Precision - 25% 100% 85%

Recall - 20% 100% 82%

List 10. Left Click Results

The Right Click scores were 109 out of 115 True Positive identifications, 6 False Negative
identifications, while we had 11 False Positive Right Clicks in the total population of the

- 43 -

23 users. The worst case was 3 True Positives, 2 False Negatives and 3 False Positives for
a single user while the best case was 5 True Positives and no Negative or Positive False
for a single user. The average user score was 4.74 out of 5 True Positive recognitions, 0.26
False Negatives and 0.48 False Positive recognitions. The Precision and the Recall ratios
were 92% and 95% respectively.

 Right Click

Stats Sum (of
23 users)

Worst Case
(of a single

user)

Best Case
(of a single

user)

Average
(per user)

Samples 115 5 5 5

True
Positives

109 3 5 4.74

False
Negatives

6 2 0 0.26

False
Positives

11 3 0 0.48

Precision - 57% 100% 92%

Recall - 60% 100% 95%

List 11. Right Click Results

In the Grab gesture we had 113 out of 115 correct identifications, only 2 loses, but we had
54 mistaken identifications. The worst case per user was 4 True Positives, 1 False
Negative and 9 False Positives while the best was 5 True Positives and no False Negative
or False positive identifications. The average score of the 23 users was 4.91 True
Positives, 0.09 False Negatives and 2.35 False Positive identifications. The total score was
77% of Precision and 98% of Recall ratios.

In Grab gesture we notice a big amount of False Positives. This is due, first, to the closing
movement of the index finger that is common to the Left Click gesture as well. The
problem is not too big at the Left Click gesture because index has to almost touch the

- 44 -

palm but in the Grab gesture has to do less distance. If in the middle of the Left Click
gesture the user has his thumb a little raised, depending to the angle camera sees him as
well, the application may confuse it for Grab. However not all the False Positives are
confusions from Left Clicks. Some of them are multiple recognitions in the same
performance of the Grab gesture. If the angle changes while we performing the OK! pose
of the Grab gesture, the tracker may see the two fingers separated for a while and after a
second it sees them touched again, so it counts two Detected gestures in one Actual
gesture. However the Perception ratio is on 77% which is the lowest score of all
Perception and Recall ration in all gestures.

 Grab

Stats Sum (of
23 users)

Worst Case
(of a single

user)

Best Case
(of a single

user)

Average
(per user)

Samples 115 5 5 5

True
Positives

113 4 5 4.91

False
Negatives

2 1 0 0.09

False
Positives

54 9 0 2.35

Precision - 38% 100% 77%

Recall - 75% 100% 98%

List 12. Grab Results

In the Zoom gesture we had 111 out of 115 True Positives, only 4 False Negatives and
only 1 False Positive. The worst score per single user was 4 True Positives, 1 False
Negative and 1 False Positive while the best score was 5 True positives and no False
Negatives or False Positives. The average score per user was 4.83 out of 5 True Positives,

- 45 -

0.17 False Negatives and 0.04 False Positives. The Precision ratio is 99% and the Recall is
97%.

 Zoom

Stats Sum (of
23 users)

Worst Case
(of a single

user)

Best Case
(of a single

user)

Average
(per user)

Samples 115 5 5 5

True
Positives

111 4 5 4.83

False
Negatives

4 1 0 0.17

False
Positives

1 1 0 0.04

Precision - 80% 100% 99%

Recall - 80% 100% 97%

List 13. Zoom Results

The Volume stats were 114 True Positives, 1 False Negative and 7 False Positives in the
total population of samples. The worst score per single user was 4 True Positives, 1 False
Negative and 2 False Positives. The best was 5 True Negatives and no False Negatives or
False Positives. The average score was 4.96 out of 5 True Positives, 0.04 False Negatives
and 0.3 False Positives. The Precision and Recall ratios were 95% and 99% respectively.

- 46 -

 Volume

Stats Sum (of
23 users)

Worst Case
(of a single

user)

Best Case
(of a single

user)

Average
(per user)

Samples 115 5 5 5

True
Positives

114 4 5 4.96

False
Negatives

1 1 0 0.04

False
Positives

7 2 0 0.3

Precision - 71% 100% 95%

Recall - 83% 100% 99%

List 14. Volume Results

The Zoom and the Volume gestures have the greatest scores because they are not been
activated immediately but after a few seconds, as mentioned due to they lead to a
different Mode of Operation. These few seconds give the time to the application to
identify better the gesture avoiding the chance to confuse it instantaneous with some
other gesture.

Generally the total scores are very high in most cases and it is more encouraging that we
had total success per user in the best case at all stats in all of the five gestures, while we
had no total failure in any gesture in the worst case. It is matter of fact that the users have
to gain some familiarity with the application in order to use it properly, especially in
which angle they shall have to their hands for each gesture. It is been observed that the
most users gain this familiarity easily.

In the list 15 we see the Confusion Matrix of the five gestures in the total amount of
gesture attempts of the 23 users. The vertical list to the left contains the actual gestures
that the experiment supervisor saw with his eyes. The horizontal list contains the

- 47 -

detected from the application gestures. As we can see there is not much confusion
between the gestures except from the Left Click gesture that had been confused many
times with the Grab gesture. In addition there are not many failures of no detection at all
of actual gestures. In the other hand there are bigger numbers of no actual gestures that
detected mistaken as a gesture. The biggest problem is in the no gesture detected as Grab
which is partially due to the multiple identifications in a single gesture attempt as we
metioned.

Confusion Matrix

 Detected gesture

 Left

Click
Right
Click Grab Zoom Volume

No
Gesture

Actual
Gesture

Left
Click 94

19

2

Right
Click

109

6

Grab 1

113

1

Zoom

3

111

1

Volume

114 1

No
Gesture 15 8 35 1 7 -

List 15. Confusion Matrix

Collecting the total scores of all users in all gestures we see that we have in the total
population of 575 samples, 541 True Positives, 34 False Negatives and 89 False Positive
Recognitions. The total Precision ratio is 90% and the total Recall Ratio is 94% for all the
experimentation process.

- 48 -

Stats Gestures

 Left
Click

Right
Click

Grab Zoom Volume Total

Samples 115 115 115 115 115 575

True
Positives

94 109 113 111 114 541

False
Negatives

21 6 2 4 1 34

False
Positives

16 11 54 1 7 89

Precision 85% 92% 77% 99% 95% 90%

Recall 82% 95% 98% 97% 995 94%

List 16. Total Results

- 49 -

5 Conclusion
To conclude we use the “FORTH Hand Tracker” to get information about the position of
the human hand in the 3D space, from optical data that they are provided by the Kinect
RGB-D sensor. We use the hand’s position aligned to the computer screen’s coordinate
system to move the cursor in the position the user points on the screen. Furthermore
several gestures are recognized which activate specific computer mouse and keyboard
commands when they performed by the user. The hand gestures are modeled using the
HMM where each gesture represented from a separate HMM. All the gestures are
consisted of hand poses that correspond to the different states of the HMM. The poses
are observed by calculating the Euclidian distances between individual hand parts. The
probability of each gesture modeled as an HMM is calculated with the use of the Viterbi
Algorithm. The gesture with the greatest probability defines which computer function
will be activated. All the commands are categorized among their usage and they are
consisted in three separate Modes of Operation. The mouse commands such as the Left
Click, the Right Click, the Double Click and the Grab and Ungrab commands are
consisted to the Normal Mode, the zoom commands such as the Zoom In and Out
commands are consisted to the Zoom Mode and the volume control commands such as
the Volume Down and Up commands are consisted in the Volume mode. Furthermore
there is one more auxiliary mode for the camera calibration, the Calibration Mode.

The results of the experiments show the efficiency of the application especially if we
consider that all the users had never use the application or similar applications before.
Most of the users found it easy enough to operate the computer with this application,
while they enjoyed the process.

5.1 Future Work
1. Learning method for the different hand types. We noticed that the difficulty in

the use of this application varies among the different hand anatomies and that is
because the thresholds of the Euclidian distances that are used to observe the
gestures, were defined by the application builder’s hand, making people with
much different hand anatomy to find it more difficult to operate the application.

Section

5

- 50 -

This could be solved by the use of some learning method, taking data from many
different hand types, which would gave the ability to the application to change
the thresholds according to the anatomy of the hand of each user.

2. Left hand support. Some of the users were left-handed and they found it a little
harder to manipulate the supported operations with the right hand which is the
only one supported by the application. So another upgrade could be the support
of the left hand as well which the user could be able to choose when he starts the
application.

3. Training method for the HMM design. In this version of the application we set
the transition probabilities for the HMMs empirically because of the lack of
dataset needed for the training method. If we had a dataset of people performing
the wanted gestures, we could train the HMMs to find the best transition
probabilities between their states, in our occasion between the poses.

- 51 -

References
1. https://en.wikipedia.org/wiki/Computer_vision.
2. Ashwini M. Patil, Sneha U. Dudhane, Monika B. Gandhi, Nilesh J. Uke. Cursor Control
System Using Hand Gesture Recognition. International Journal of Advanced Research in Computer and
Communication Engineering. 2013.
3. Park, Hojoon. A Method for Controlling Mouse Movement using a Real-Time Camera. Brown
University, Providence, RI, USA, Department of Computer Science. 2008.
4. Victor Adrian Prisacariu, Ian Reid. 3D hand tracking for human computer interaction. Image and
Vision Computing. 2011.
5. Geovane Griesang, Rafael Peiter, Rolf Fredi Molz. Man-Computer Interaction System Using
Kinect. International Conference on Industrial Engineering and Operations Management. 2013.
6. Maged N Kamel Boulos, Bryan J Blanchard, Cory Walker, Julio Montero, Aalap Tripathy
and Ricardo Gutierrez-Osuna. Web GIS in practice X: a Microsoft Kinect natural user interface for
Google Earth navigation. International Journal of Health Geographics. 2011.
7. Antonis A. Argyros, Manolis Lourakis. Vision-Based Interpretation of Hand Gestures for
Remote Control of a Computer Mouse. European Conference on Computer Vision. 2006.
8. Iason Oikonomidis, Nikolaos Kyriazis, Antonis A. Argyros. Efficient Model-based 3D
Tracking of Hand Articulations using Kinect. British Machine Vision Association. 2011.
9. Alexandros Makris, Nikolaos Kyriazis, Antonis A. Argyros. Hierarchical Particle Filtering for
3D Hand Tracking. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
2015.
10. Kennedy, James. Particle Swarm Optimization. Encyclopedia of machine learning. 2011.
11. Beleboni, Matheus Giovanni Soares. A brief overview of Microsoft Kinect and its applications.
Interactive Mulitmedia Conference, University of Southampton. 2014.
12. Veisali, Eleni. Tele-operation of anthropomorphic robotic hand using optical data. 2016.
13. Lussier, Eric Fosler. Markov Models and Hidden Markov Models. A Brief Tutorial.
INTERNATIONAL COMPUTER SCIENCE INSTITUTE. 1998.
14. Rodrigo Cilla, Miguel A. Patricio, Jesus Garcıa, Antonio Berlanga, Jose M. Molina.
Recognizing Human Activities from Sensors Using Hidden Markov Models Constructed by Feature
Selection Techniques. Algorithms. 2009.
15. https://en.wikipedia.org/wiki/Hidden_Markov_model.
16. https://en.wikipedia.org/wiki/Viterbi_algorithm.
17. Rabinovich, Olga Sorkine-Hornung and Michael. Least-Squares Rigid Motion Using SVD.
Technical notes. 2009.

- 52 -

	1.1 Science of Computer Vision
	1.1.1 Technical Information
	1.1.2 Computer Vision Applications
	1.1.3 Tasks and Processing Methods

	1.2 Thesis Goal
	1.3 Related Work
	1.4 Implementation Process in Brief
	2.1 FORTH Hand Tracker
	2.1.1 Hand Model
	2.1.2 Evaluating a Hand Hypothesis / Objective Function
	2.1.3 Optimization using PSO
	2.1.4 Results

	2.2 Kinect Sensor
	2.3 Hidden Markov Model (HMM)
	2.4 Viterbi Algorithm
	3.1 Section Structure
	3.2 Camera Calibration
	3.3 Cursor Movement
	3.4 Poses and Gestures
	3.5 Observations
	3.6 Design of HMM
	3.7 Gesture Selection
	3.8 Modes of Operation
	3.8.1 Normal Mode
	3.8.2 Zoom Mode
	3.8.3 Volume Mode
	3.8.4 Calibration Mode

	3.9 User Interface Overview
	3.9.1 Hardware Setup
	3.9.2 Start the Application
	3.9.3 Calibrate the Camera
	3.9.4 Activate Left Click and Double Click
	3.9.5 Activate Right Click
	3.9.6 Activate Grab and Ungrab
	3.9.7 Activate Zoom In and Zoom Out
	3.9.8 Activate Volume Up and Volume Down
	3.9.9 Pause or Quit the Application
	3.9.10 System Requirements

	4.1 Experimental Process
	4.2 Results
	5.1 Future Work

