
TECHNOLOGICAL EDUCATIONAL 

INSTITUTE OF CRETE 

 
School of Applied Technology 

Department of Informatics Engineering 

 

Thesis 

 

Title: Indoor Location and Tracking 

 

Giannantonakis Ioannis 

Logothetis Ilias 

  

            Advisor: Papadourakis George 

 

 



 

1       

 

ABSTRACT 

 

The purpose of this thesis is the designing and development of a security system that can help a company 

and its workers with a variety of capabilities such as indoor location tracking and communication with a 

security supervisor. 

That security system consists of 2 web pages for the administration of the maps and the employees’ 

registration. There is another web page that only the security manager uses which allows the 

communication with an employee and, with his approval, the location tracking system that is meant for 

guiding. It also consists of 2 Android applications, one for the employees and the second one for the 

visitors. Lastly there is the backend system that manages all the data the websites provide making the 

communication of the websites with the applications feasible. 

 



 

2       

 

ΣΥΝΟΨΗ 

 

Ο σκοπός της παρούσας πτυχιακής είναι ο σχεδιασμός και η ανάπτυξη ενός συστήματος ασφαλείας το 

οποίο θα μπορεί να βοηθήσει μια εταιρεία και τους εργαζομένους σε αυτή με δυνατότητες όπως ο 

εντοπισμός θέσης σε κλειστό χώρο και η επικοινωνία με τον υπεύθυνο ασφαλείας. 

Αυτό το σύστημα ασφαλείας εμπεριέχει 2 ιστοσελίδες για την διαχείριση των χαρτών και των εγγραφών 

των εργαζομένων. Υπάρχει άλλη μία ιστοσελίδα όπου την διαχειρίζεται ο υπεύθυνος ασφαλείας η οποία 

καθιστά δυνατή την επικοινωνία του με τους εργαζόμενους και, κατόπιν συγκατάθεσης του εργαζόμενου, 

την γνωστοποίηση της τοποθεσίας του για καθοδήγηση. Επιπλέον αποτελείται από 2 Android εφαρμογές 

εκ των οποίων η μία απευθύνεται στους εργαζόμενους και η 2
η
 στους επισκέπτες. Τέλος υπάρχει ένα 

σύστημα (backend) το οποίο διαχειρίζεται όλες τις πληροφορίες που προσφέρουν οι σελίδες καθιστώντας 

έτσι εφικτή την “επικοινωνία” των ιστοσελίδων με τις εφαρμογές. 

 



 

3       

 

ACKNOWLEDGEMENTS 

 

We would like to thank our professor Dr. George Papadourakis for the opportunity he gave us to 

participate in this project as well as his guidance and advices during it.   

Also we would like to thank our friends in the Technological Institute of Crete for supporting us mentally 

in the procedure of this Thesis. 

Finally we would like to thank the students and the professors of the Blended AIM 2017 for the great 

experience of working with such a team on a big project for a company. 



 

4       

 

DEDICATION 

 

Giannantonakis Ioannis:  

This thesis is dedicated to my parents who helped me all these years.  

To the friends that supported me mentally. 

 

Logothetis Ilias: 

This thesis is dedicated to my family that supported me all these years and without them it would not be 

possible to complete it. 

Also to all my friends that helped and encouraged me throughout  the project. 

 

  



 

5       

 



 

6       

 

Table of Contents 
 

ABSTRACT .................................................................................................................................................. 1 

ΣΥΝΟΨΗ ........................................................................................................................................................ 2 

ACKNOWLEDGEMENTS ................................................................................................................................. 3 

DEDICATION .................................................................................................................................................. 4 

Table of figures ............................................................................................................................................. 8 

Table of pictures ........................................................................................................................................... 9 

CHAPTER 1: INTRODUCTION ............................................................................................................... 10 

1.1 Summary ........................................................................................................................................... 10 

1.2 Motive ............................................................................................................................................... 10 

1.3 Blended Aim ...................................................................................................................................... 11 

1.3.1 How Blended AIM works ............................................................................................................ 11 

CHAPTER 2: FUNDAMENTALS ..................................................................................................................... 12 

2.1 Analysis and Development Methods ................................................................................................ 12 

2.1.1 Nexus Scrum .............................................................................................................................. 12 

2.1.2 Microsoft TFS ............................................................................................................................. 13 

CHAPTER 3: WORK PLAN ............................................................................................................................. 14 

3.1 State of the Art .................................................................................................................................. 14 

3.2 Technologies ..................................................................................................................................... 15 

3.2.1 WebSockets ................................................................................................................................ 15 

3.2.2 Android....................................................................................................................................... 16 

3.2.3 Java ............................................................................................................................................. 17 

3.2.4 Rest API ...................................................................................................................................... 18 

3.2.5 Retrofit ....................................................................................................................................... 19 



 

7       

 

3.2.6 Estimote Beacons ....................................................................................................................... 19 

3.2.7 AngularJS .................................................................................................................................... 20 

3.2.8 PostgreSQL ................................................................................................................................. 20 

3.2.9 Entity Framework ....................................................................................................................... 21 

3.2.10 SvgPanZoom library ................................................................................................................. 23 

3.2.11 Materialize library .................................................................................................................... 23 

3.2.12 Design Patterns ........................................................................................................................ 24 

CHAPTER 4: MAIN PART .............................................................................................................................. 25 

4.1 Problem Analysis ............................................................................................................................... 25 

4.1.1 Problem description ................................................................................................................... 25 

4.1.2 System Requirements ................................................................................................................ 26 

4.2 Implementation ................................................................................................................................ 29 

4.2.1 Project Implementation ............................................................................................................. 29 

4.2.2 Detailed Android Implementation ............................................................................................. 30 

4.2.2.1 User Interface Design .......................................................................................................... 34 

4.2.2.2 Rest API ............................................................................................................................... 43 

4.2.2.3 WebSockets ......................................................................................................................... 45 

4.2.2.4 Activities .............................................................................................................................. 48 

4.2.2.5 Fragments ........................................................................................................................... 49 

4.2.2.6 Beacons ............................................................................................................................... 50 

4.2.2.7 AppStatusApplication class ................................................................................................. 52 

4.3 Manual .............................................................................................................................................. 54 

CHAPTER 5: RESULTS ................................................................................................................................... 69 

5.1 Conclusion ......................................................................................................................................... 69 

5.2 Future work and extensions ............................................................................................................. 70 



 

8       

 

REFERENCES ................................................................................................................................................ 73 

Table of figures 
 

SPRINTS TABLE 1 .............................................................................................................................................................. 26 

SPRINTS TABLE 2 .............................................................................................................................................................. 27 

SPRINTS TABLE 3 .............................................................................................................................................................. 27 

SPRINTS TABLE 4 .............................................................................................................................................................. 27 

SPRINTS TABLE 5 .............................................................................................................................................................. 27 

SPRINTS TABLE 6 .............................................................................................................................................................. 28 

SPRINTS TABLE 7 .............................................................................................................................................................. 28 

SPRINTS TABLE 8 .............................................................................................................................................................. 29 

 

ANDROID USER STORY 1 .................................................................................................................................................... 30 

ANDROID USER STORY 2 .................................................................................................................................................... 30 

ANDROID USER STORY 3 .................................................................................................................................................... 31 

ANDROID USER STORY 4 .................................................................................................................................................... 31 

ANDROID USER STORY 5 .................................................................................................................................................... 32 

ANDROID USER STORY 6 .................................................................................................................................................... 32 

ANDROID USER STORY 7 .................................................................................................................................................... 32 

ANDROID USER STORY 8 .................................................................................................................................................... 33 

ANDROID USER STORY 9 .................................................................................................................................................... 33 

ANDROID USER STORY 10 .................................................................................................................................................. 33 

ANDROID USER STORY 11 .................................................................................................................................................. 34 

  

 



 

9       

 

Table of pictures 
 

PICTURE 1, THUMBS UP .................................................................................................................................................... 36 

PICTURE 2, CHAT LAYOUT .................................................................................................................................................. 38 

PICTURE 3, SIDE MENU UPPER PART ..................................................................................................................................... 39 

PICTURE 4, SIDE MENU ...................................................................................................................................................... 40 

PICTURE 5, BOTTOM NAVIGATION MENU .............................................................................................................................. 41 

PICTURE 6, CHAIN OF RESPONSIBILITY UML .......................................................................................................................... 47 

PICTURE 7, OBSERVER PATTERN UML .................................................................................................................................. 51 

PICTURE 8, MANUAL, LOGIN SCREEN .................................................................................................................................... 55 

PICTURE 9, MANUAL, TRACKING SCREEN .............................................................................................................................. 56 

PICTURE 10, MANUAL, ACTIVATED TRACKING SCREEN ............................................................................................................. 57 

PICTURE 11, MANUAL, EMERGENCY SITUATION SCREEN .......................................................................................................... 58 

PICTURE 12, MANUAL, CHAT SCREEN ................................................................................................................................... 59 

PICTURE 13, MANUAL, CHAT WITH AUDIO SCREEN ................................................................................................................. 60 

PICTURE 14, MANUAL, SIDE MENU ...................................................................................................................................... 61 

PICTURE 15, MANUAL, SUPERVISOR WEBSITE, WORKER TAB .................................................................................................... 62 

PICTURE 16, MANUAL, SUPERVISOR WEBSITE, ROUTE TAB ....................................................................................................... 63 

PICTURE 17, MANUAL, SUPERVISOR WEBSITE, CHAT WITH AN EMPLOYEE .................................................................................... 64 

PICTURE 18, MANUAL, SUPERVISOR WEBSITE, EMERGENCY ...................................................................................................... 65 

PICTURE 19, MANUAL, MAP EDITOR WEBSITE ....................................................................................................................... 66 

PICTURE 20, MANUAL, MAP EDITOR WEBSITE, IMAGE IMPORT .................................................................................................. 67 

PICTURE 21, MANUAL, MAP EDITOR WEBSITE, FACILITIES DISPLAY ............................................................................................. 68 

  



 

10       

 

 

CHAPTER 1: INTRODUCTION 

1.1 Summary 

 

This thesis is part of an international Erasmus+ project named Blended-AIM (Academic International 

Mobility), where students from Educational Institutes around Europe formed a team to develop an 

application requested by a company. The goal was to design and develop an application that will allow a 

security supervisor to track, guide and communicate with a company’s employees to make everyone feel 

safer as well as to help with building directions. 

To achieve that our team was split further into a backend team, a frontend team, an android team, a design 

team and a business team. In the backend technologies like Visual Studio IDE, C#, PostrgreSQL, vtortola 

library for the WebSockets, Npgsql and Entity Framework were used. 

In the frontend technologies like AngularJS, NPM and Bower package managers and Jenkins server were 

used. 

In the android team technologies like WebSockets, Rest API, Java, Android and Estimote beacons API. 

The project was hosted at a TFS (Team Foundation Server) server from where the android application and 

the frontend could communicate with the backend services. 

 

1.2 Motive 

 

Nowadays many companies are hosted altogether in huge compounds where each company rents a 

number of buildings that might not be physically connected and even if they are, the traverse from a room 

to another might pose a challenge for visitors or newcomers. Furthermore, what happens in an emergency 

situation? How fast can the employees evacuate the building? What if someone is trapped in a room or 

even worse if he fainted?  

That’s where Gabriel kicks in. Gabriel is an Android application that can help a supervisor track, guide 

and communicate with the employees of a company from his computer. Also through a website the 

company can configure and edit the building maps allowing them to expand or even add new floors and 

rooms. Finally, the employee management (add/delete/edit) is also done through another website. 

 

 

 



 

11       

 

1.3 Blended Aim 

 

Blended AIM (Academic International Mobility) is an Erasmus+ funded project made to promote 

students’ employability and support companies hosting internships. Every year 10 educational institutes 

from European countries, like Portugal, Greece, Belgium, United Kingdom, Germany, Iraq, Austria and 

Italy send up to 2 students each to form a team. The purpose of that is to support the students develop soft 

skills in an international environment by means of blended mobility. 

At this moment, a student’s professional career depends on mobility and demands certain intercultural 

skills. However, most institutes don’t have courses that provide international exposure. Blended mobility 

helps the students adapt and learn but it’s hardly considered, let alone used, a solution to international 

mobility’s problems. 

Blended Aim sets the foundation to promote and test blended mobility by providing the resources, 

training, supporting tools and information to the students and the companies that host internships. 

For that reason Praxis was created. Praxis is a consortium of higher education institutions, companies, 

associations, research labs and chambers of commerce, all committed to enhance a student’s or a 

company’s Project/Internship experience and to promote innovation in the field. 

1.3.1 How Blended AIM works 

 

Every year at its beginning students from 10 educational institutes (2 from each) gather to take up on a 

project given from a company. That project is considered as a course and each student gets ECTS after 

the project’s completion. The students are from different study fields such as computer informatics, 

graphic design and business management so that the project can be completed. The project is usually 

product that helps solve some of the company’s problems. During the time of the entire project there are 

two important meetings. In the first one the students meet with each other, their professors and the 

company’s representatives to discuss how to approach the project and how to work on it effectively. In 

the second one the students present the product to the teachers and the company’s representatives and 

after that they get appraised by the teachers. During the time between the two meetings the students 

perform online meetings to showcase their work and discuss with each other their ongoing work and the 

problems that they may be facing. 

 



 

12       

 

CHAPTER 2: FUNDAMENTALS  

 

2.1 Analysis and Development Methods 

 

2.1.1 Nexus Scrum 

 

Software development is a complex and challenging work to do on its own. Even companies face 

difficulties in the development section and these difficulties set them back on their work load. Scrum 

framework can help but it is not enough on its own. To get a step further Nexus framework is required as 

well. 

Nexus is a framework, based on the principles of Scrum and the Agile Manifesto, that helps the 

developers by minimizing cross-team dependencies and integration issues. It was developed by Ken 

Schwaber, the co-creator of Scrum and founder of Scrum.org, in 2015. Nexus framework is an extension 

to the Scrum framework and it uses an iterative and incremental approach to scaling software and product 

development. It allows multiple Scrum teams, that work on a product, to unify as a single larger team. 

Nexus framework consists of 3-9 scrum teams that work on the same product backlog for the successful 

development of a product. The main goal is the identification of cross-team issues and making sure that 

integration tools are understood and used. Integration team is a new feature in the Nexus framework and it 

is the team that is accountable for the successful integration of all work created by all the Scrum Teams in 

a Nexus. It consists of a Product Owner, a Scrum master and few team members of each scrum team in a 

nexus. 

Each scrum team needs to be represented by a team member. Then the representatives meet to identify, 

resolve in-Sprint dependencies and set the goals that they want to achieve in each Sprint. These steps 

explain the “Nexus Sprint Planning” term which is crucial in a Nexus framework.  

Furthermore, Nexus Daily Scrums help the teams to plan correctly their next steps by inspecting the 

integrated work. Nexus Daily Scrum is a brief meeting between the Scrum teams’ members. Not 

everyone has to attend but each team’s representative must. 

 

 

 

   



 

13       

 

2.1.2 Microsoft TFS 

 

Team Foundation Server (TFS) is an integrated server suite of developer tools, released by Microsoft, that 

provide source code management, requirements management, reporting, project management, automated 

builds, testing and release management capabilities. It covers the entire application lifecycle and can be 

used as a back-end to numerous Integrated Development Environments. 

The source code management can be achieved either with Team Foundation Version Control or with Git. 

Team Foundation Version Control is a control system that allows teams to store any type of artifact 

within its repository. It uses two types of workspaces when working with client tools, the Server 

Workspaces and the Local Workspaces. Server workspaces allow developers to lock files for check- out 

and provide notifications to the other developers that files are being edited. Local workspaces allow 

developers to edit the files, as long as they are on his local machine, without checking out before working 

on them. Git support was added on TFS with the release of TFS 2013 based on the libgit2 library. 

Because of that, any Git client can be used natively with TFS.  

TFS consists of a data warehouse which is a relational database and a SQL Server Analysis Services data 

cube. Both of these sources are available for reporting through SQL Server Reporting Services when this 

option is installed allowing for reports that cover Build information, Test results and progress, project 

management, agile reports and bug data. Also with the release of TFS 2013 a new feature called “light-

weight reporting” was introduced. This feature allows the creation of real-time reports based on query 

results that do not rely on the warehouse or cube. 

TFS also includes a build server application called Team Build that consists of MSBuild and Windows 

Workflow Foundation (WF). MSBuild is a declarative XML language and WF is a Microsoft technology 

that controls the overall flow of the build process. Team Build has the ability to report on the changes in 

each build as well as test results. Combined with the testing tools, testers then get an integrated view of 

what code was changed in each build, but also which bugs, PBIs and other work changed from build to 

build. 

TFS also offers a tool which helps with the project management called Release Management. The Release 

Management capabilities give teams the ability to perform a controlled, workflow (provided by Windows 

Workflow Foundation) driven release to Developer, Test and Production environments and provides 

dashboards for monitoring the progress of one or more releases.  



 

14       

 

CHAPTER 3: WORK PLAN 

 

3.1 State of the Art 

 

Whether the end goal is customer engagement, improved productivity or risk mitigation, businesses 

need accurate indoor location information. The signals from the satellites are attenuated and scattered 

by roofs, walls and other objects rendering the use of GPS systems inadvisable so what technology 

should a company strive for? There are various technologies that can be used for indoor location like 

Beacons, Wi-Fi, RFID and even light. The best solution would be a combination of those mentioned 

above but that is usually more complex and less cost efficient for companies. So as a simple pick the 

solution of beacons stands out ahead of the competition. 

Beacons use low energy Bluetooth technology to broadcast signals with information such as its unique 

identification number. They can’t store and broadcast larger amount of information so these IDs can be 

mapped to certain areas of the company’s buildings by the developers of the indoor location system 

application or an administrator. These maps are usually stored during the installation of the application 

on the device so that when it detects the signal of a beacon it can map its own position. With an 

effective range of up to 50 meters (at this moment) beacons can be used as proximity checkpoints for 

mapping a building. Achieving an accurate position is possible by using more beacons to compute the 

device’s position by applying the method of triangulation. 

   

 

 

 

 

 

 

 

 

 



 

15       

 

3.2 Technologies 

 

For this project technologies like WebSockets, Rest API, Java, Android, Angular, Entity Framework, 

PostrgreSQL, Estimote and several Design Patterns were used. Bellow, information on the above-

mentioned technologies are given.  

 

3.2.1 WebSockets 

 

A WebSocket represents a persistent long-held bi-directional real-time TCP socket connection between a 

client and a server allowing full duplex messages to be instantly distributed independently with little 

overhead resulting in a very low latency connection. 

WebSockets establish a TCP-style connection through a HTTP request to the desired server which the 

server should accept, through a response, after the authentication and authorization of the client 

(handshake). After that the connection remains intact unless redeployment is needed (usually because of 

workload redistribution). 

Also, cross-domain communication has been considered from day one and is dealt with within the 

connection handshake thus allowing the use of services such as Push and Comet offering a massively 

scalable real-time platform that can be used by any website, desktop or mobile application. 

They are preferred by developers because of their ability to deliver downstream (server to client) 

messages fast and without the unnecessary headers of HTTP requests/responses but as all modern 

technologies there are some cons. One of the most significant problems is that if a connection stays up for 

too long something might “kill” it, making the retransmission of data from the server or the client harder 

and time consuming. 

 

 

 

  

 

 

 

 

 



 

16       

 

3.2.2 Android 

 

Android is an open source mobile operating system based on the Linux kernel and designed for touch 

screen mobile devices. Android was initially developed by Android Inc. which Google bought in 2005. 

As of May 2017, Android has 2 billion monthly active users and the largest installed base of any mobile 

operating system.  

Its open source is what attracted many developers but more importantly technology companies that 

require a low-cost and customizable operating system for their high-tech devices. By having such a huge 

development community, the variety of applications, tutorials on development, development tools and 

supported programming languages is increasing. 

Applications are developed using the Android Software Development Kit (SDK) and usually the Java 

programming language through the Android Studio or Eclipse Integrated Development Environments 

(IDEs).  

 



 

17       

 

3.2.3 Java 

 

Java is a powerful class-based and object-oriented computer programming language that was developed 

by James Gosling for Sun Microsystems which was acquired by Oracle Corporation. Java is one of the 

most popular programming languages in use especially for client-server web applications, with a reported 

9 million users. It was based on C/C++ syntax design which application developers found familiar. 

Originally it was designed for interactive television but it was too advanced for the digital cable television 

at the time (1991).  

Java’s major goal is portability which is accomplished by compiling the Java code to Java bytecode 

instead of machine code. Java bytecode instructions are analogous to machine code, but they are intended 

to be executed by a virtual machine written specifically for the host hardware. Because Java bytecode 

runs on any platform that supports a Java Virtual Machine the term “write once, run anywhere” was 

introduced to application developers. 

After the acquisition of Sun Microsystems by Oracle Corporation on January 27, 2010 the Java platform 

implementation was split into two different distributions. The Java Runtime Environment (JRE) which 

contains the parts of the Java SE platform required to run Java programs, and the Java Development Kit 

(JDK) which is intended for software developers and includes developments tools such as the Java 

complier, Javadoc and a debugger. 

As mentioned Java is an object-oriented programming language. That means that the memory 

management gets more difficult for the programmers due to pointer references. For example, if the 

programmer holds the reference to an object that no longer exists or is needed then a “null pointer 

exception” error is thrown. To solve these problems Java is accompanied by Automatic Garbage 

Collectors that keep the memory up to date by managing the pointers of the created objects. That is the 

reason why Java does not support C/C++ style pointer usage. 

Java is used for the development of Android applications through Android Studio or Eclipse IDEs but the 

Java bytecode runs on its own virtual machine, optimized for low memory devices. 

 



 

18       

 

3.2.4 Rest API 

 

The term Representational state transfer (REST) REST was defined by Roy Fielding in his 2000 PhD 

dissertation “Architectural Styles and the Design of Network-based Software Architectures”. REST is a 

way of providing web services between computer systems over the Internet. RESTful web services allow 

the manipulation of Web resources by using a predefined set of stateless operations. Other web services 

such as SOAP expose their sets of operations and that is why REST web services are preferred at the 

moment. 

In a RESTful web service by using the HTTP verbs GET, POST, PUT, DELETE we get responses from 

the resource provider that are usually in XML, HTML, JSON or some other defined format. REST 

systems aim for fast performance, reliability, and the ability to grow, by re-using components that can be 

managed and updated without affecting the system as a whole, even while it is running. 

There are six constraints that define a RESTful system. By operating within these constraints, the service 

gains performance, scalability, simplicity, modifiability, visibility, portability and reliability. These 

constraints are: 

 Client-server architecture 

    By separating the user interface concerns from the data storage concerns, there is an    

    improvement in the portability of the user interface across multiple platforms and improve 

    scalability by simplifying the server components. 

 Statelessness 

    Each request from any client contains all the information necessary to service the request,  

    and session state is held in the client.  

 Cacheability 

    Responses must therefore, implicitly or explicitly, define themselves as cacheable or not to  

    prevent clients from reusing stale or inappropriate data in response to further requests.  

 Layered system 

    A client cannot ordinarily tell whether it is connected directly to the end server, or to an 

    intermediary along the way. Intermediary servers may improve system scalability by 

    enabling load balancing and by providing shared caches. 

 Code on demand 

    Servers can temporarily extend or customize the functionality of a client by transferring  

    executable code. 

 Uniform interface 

   Decoupling the architecture enables each part to evolve independently. 

 



 

19       

 

3.2.5 Retrofit 

 

Retrofit is a library for REST client for Android or Java in general, developed by Square. Retrofit 

provides a framework for authenticating and interacting with APIs and sending network requests with 

OkHttp. The response that usually contains JSON or XML files, is handled easily by parsing it into a 

Plain Old Java Object. For the parsing to be done the definition of those objects must be defined as 

classes according to the response. 

In the past, Retrofit relied on the Gson library to serialize and deserialize JSON data but with the release 

of Retrofit 2 there are more parsers for processing network response data such as Moshi and Protobuf. 

Although, if a user wants to manually create new Java classes for resources he should use the Gson 

library. 

 

3.2.6 Estimote Beacons 

 

Estimote Beacons are developed by Apple on top of Bluetooth Smart technology, allowing for location 

tracking application development. They work by broadcasting packets of data, containing their beacon ID 

and information such as signal strength and battery level so that the phone knows which beacon it detects 

and how far it is. It also broadcasts two more values (major and minor) that allow further spatial 

information such as rooms or other areas of interest. These values can be modified manually by the user. 

Estimote SDK can be used for proximity or indoor location applications. The device that runs that 

application can distinguish the signals that are being constantly sent from the beacons and estimate its 

location in a known area. 

 



 

20       

 

3.2.7 AngularJS 

 

AngularJS is a JavaScript framework that lets you extend HTML vocabulary for your application. The 

resulting environment is extraordinarily expressive, readable, and quick to develop. It is fully extensible 

and works well with other libraries.  

AngularJS uses data binding which allows the updating of the view whenever the model changes, as well 

as the updating of the model whenever the view changes, thus eliminating the DOM manipulation. 

Models are plain old JavaScript objects making the code easy to test, maintain and reuse. It also supports 

deep linking so that users can bookmark and email links to locations within the app. Client-side form 

validation is also supported by AngularJS as it lets you declare the validation rules of the form without 

having to write JavaScript code.  

Dependency injection is a core to AngularJS. This means that there is no need for a main() method in the 

application and that any component that doesn’t fit the user’s needs can easily be replaced. AngularJS 

was designed to be testable so it encourages behavior-view separation and takes full advantage of 

dependency injection. 

 

3.2.8 PostgreSQL 

 

PostgreSQL (Postrgres) is an object-relational database management system that focuses or extensibility. 

It was an evolution of the project Ingres at the University of California, Berkeley lead by Michael 

Stonebraker. On 1996 its name was changed to PostgreSQL from Postgres95 to reflect its support for 

SQL. At this time PostgreSQL is the most advanced and features-rich open-source database management 

system. 

The concurrency is dealt through a system known as multiversion concurrency control (MVCC) that 

allows changes to be made without being visible to other transactions until the changes are committed. 

This ensures that PostgreSQL remains ACID-compliant (atomicity, consistency, isolation, durability). 

PostgreSQL includes binary and synchronous replication. Binary replication replicates nodes 

asynchronously, with the ability to run read-only queries against these replicated nodes, allowing better 

efficiency in splitting the read traffic among multiple nodes. Synchronous replication ensures that, for 

each write transaction, the master waits until at least one replica node has written the data to its 

transaction log. This can be useful for workloads that do not require such guarantees but it has some 

negative effect on performance due to the requirement of the confirmation of the transaction reaching the 

synchronous standby. 

 



 

21       

 

It also includes support for regular B-tree and hash indexes, and four index access methods: generalized 

search trees (GiST), generalized inverted indexes (GIN), Space-Partitioned GiST (SP-GiST) and Block 

Range Indexes (BRIN). Complex queries are dealt by using multiple indexes together to create temporary 

in-memory bitmap index operations. User-defined index methods can also be created but it is a complex 

process. 

The data types supported by PostgreSQL vary and include data types such as Boolean, Dates, Bit strings, 

Composite, HStore, Arrays up to 1 GB, Geometric primitives JSON and a faster binary JSONB. In 

addition to these the users can create their own data types which can usually be made fully indexable via 

PostgreSQL’s indexing infrastractures. 

 

3.2.9 Entity Framework  

 

The Entity Framework is an open source object-relational mapping framework that was included in .NET 

framework until the release of Entity Framework version 6 with which it separated from .NET 

framework. 

With the Entity Framework, the developers can work on a higher level of abstraction when they deal with 

data stored in databases, and can create and maintain data-oriented application with less code than in 

traditional applications.  

The architecture of Entity Framework, from the bottom up, consists of the following: 

 Data source specific providers. 

    The database that the framework interfaces. 

 Map provider. 

    It translates the Entity SQL command tree into a query in the native SQL of the interfaced 

   database. 

 EDM parser and view mapping. 

    It creates views, from the relational schema, of the data and aggregates information from  

    multiple tables in order to aggregate them into an entity and splits an update to an entity into 

    multiple updates to whichever table(s) contributed to that entity. 

 Query and update pipeline. 

    It converts queries to canonical command trees which are then converted into store-specific  

   queries by the map provider. 

 Metadata services. 

    They handle all metadata related to entities, relationships and mappings. 

 

 



 

22       

 

 Transactions. 

    Integration of transactional capabilities of the underlying store.  

 Conceptual layer API. 

    The runtime that exposes the programming model for coding against the conceptual schema by  

    following the ADO.NET pattern. 

 Disconnected components. 

    They locally cache datasets and entity sets for use. 

 Embedded database. 

    A lightweight database for client-side caching and querying of relational data. 

 Design tools. 

    Tools, such as Mapping Designer, that simplify the mapping of a conceptual schema to a  

     relational schema and specify which properties of an entity type correspond to which table in 

     the database. 

 Programming layer. 

    Services that expose the EDM as programming constructs which can be consumed by  

    programming languages (Object services, Web services). 

 High-level services. 

    Services which work on entities rather than relational data. 

Entities represent the individual instances of the objects to which the information pertains. Entity types 

define the class an entity belongs to and also defines what properties an entity will have. Also, all entity 

types belong to a namespace and have a unique EntityKey property that identifies each instance. 

Entity SQL queries are parsed into a command tree, segregating the query across multiple tables, which is 

handed over to the EntityClient provider. The EntityClient then converts the command tree into an SQL 

query in the native flavor of the database, which after the execution of that query returns an Entity SQL 

ResultSet. 

 

 



 

23       

 

3.2.10 SvgPanZoom library 

 

This is a library that adds pan and zoom features to Scalable Vector Graphic (SVG) images. Four tools 

accompany that library:  

 Pan. 

    A tool which allows the user to drag an image around within the viewer.  

 Zoom 

    The user can scale the image either with a point click or by selecting a region to zoom the 

    specified area. 

 None 

    The user can interact with SVG child elements and trigger events in contrast to the above-

mentioned tools where he cannot interact with SVG child elements. 

 Auto  

    The user can perform all of the above-mentioned actions on the SVG child elements. 

 

3.2.11 Materialize library 

 

Materialize is a responsive front-end framework based on Material Design design language developed by 

Google in November 8, 2015. It provides default stylings, refined animations and transitions making the 

life of a developer easier. Additionally, a single underlying responsive system across all platforms allows 

for a more unified user experience. 

The Designer and Google’s Vice President of Design Matias Duarte stated: “unlike real paper, our digital 

material can expand and reform intelligently. Material has physical surfaces and edges. Seams and 

shadows provide meaning about what you can touch.” Material Design makes more liberal use of grid-

based layouts, responsive animations and transitions, padding, and depth effects such as lighting and 

shadows. 

 

 

 

 

 

 



 

24       

 

3.2.12 Design Patterns  

 

Design patterns are general reusable solutions on commonly occurring problem in software design. They 

can be described as formal best practices that can be used from a programmer on designing an application 

or system to solve problems or to prevent them. Design patterns gained popularity in computer science by 

the book “Design Patterns: Elements of Reusable Object-Oriented Software” that published in 1994 by 

the “Gang of 4”. 

Design patterns can help to speed up the development process and make the code more readable to those 

familiar with them. To use them requires consideration of issues that might occur later, so by using them 

it will help to prevent the problems. On every application, a design pattern must be programmed from 

start. Patterns usually show relations and interactions between classes or objects, without specifying the 

final application classes. They often described using UMLs so the relations and interactions can be easily 

understandable by developers. 

Design patterns were originally grouped into three categories: creational patterns, behavioral patterns and 

structural patterns. They were 23 in number, but new patterns are presented by the years, having a result 

of new categories such as the architectural design pattern that may be applied at the architecture level of 

the software such as the Model–View–Controller pattern.  



 

25       

 

CHAPTER 4: MAIN PART 
 

4.1 Problem Analysis 

 

Trilogis is an Italian computer company, innovative, dynamic and constantly growing. Trilogis has been 

founded in 2006 by Gianni Rangoni, Nicola Giuliani and Massimo Barozzi. The name Trilogis comes 

from the combination of the words “trilogia” (trilogy) and the acronym “GIS” (Geographic Information 

System). Trilogis is specialized in advanced solutions in the fields of geography and computer science 

and in the management and tracking of people and equipment both outdoor and indoor. In close 

collaboration with the customer, Trilogis models and customizes geographical and information systems, 

as needed, with the expertise in many business contexts. 

Despite its relatively recent foundation, Trilogis accomplished and participated in many projects in 

collaboration with companies, universities, research institutions and government agencies. Some of these 

projects are Mepi, MoPAL, iCore, Centric, Seneca, giCASES and i-locate. 

One of Trilogis’ most recent projects and the “progenitor” of the project analyzed in this thesis is the i-

locate project. The goal of i-locate is to simplify the life of users by helping them to navigate inside 

buildings to reach their destination and by providing any other supportive information available using 

their smartphone. I-locate also provides indoor tracking of objects and portable equipment for their 

management and maintenance. 

 

4.1.1 Problem description 

 

During the first meeting in Rovereto the Project manager of the company addressed a huge problem for 

companies by staging a story. The story’s main subject was the injury of an employee in a factory. The 

incapability of the medical team knowing his location did cost them 2 hours of searching, risking the 

employee’s life. That incident inspired Trilogis to act by assigning on Blended AIM 2017 team the 

development of a security system that supports indoor position tracking and communication. 

Trilogis also decided to expand their field of interests to not just employees but also the visitors of a 

company’s buildings. So, the Blended AIM team was called to make another application for the guidance 

of the visitors through the company’s buildings. 

 

 

 



 

26       

 

4.1.2 System Requirements 

 

To complete the project that was given the students had to decompose the main task into simpler and 

shorter ones that could be handled more effectively. The basic need for the project was a site, an android 

application and the backend services. The site would allow a security supervisor to manage the building 

maps, the employees and the communication with them. The android application would be the 

employee’s tool to navigate through the building safely and communicate with the supervisor in cases of 

emergency. The backend services would take care of data storage and manipulation thus allowing the 

correct connection of the site with the android application. 

For better workflow management and easier achievable tasks, the students split the components into two 

additional sites and one additional application to scale down the work load of each individual task. So, the 

final decomposition consisted of 3 web pages (one for the map editing, one for employee management 

and one that would be used by the security supervisor), 2 android applications (one for usage by the 

employees and one for visitors) and the backend services. 

Dummy users were created to give the notion of personalization and to help with the user stories 

separation. These users were Gabriel (the security supervisor), Joe (the employee), Maria (the employee 

manager) and the map editor. For these users, user stories were created in each sprint as upcoming goals. 

 

 

Sprint 1 

As Gabriel, I want to send pings to Joe. 

As Gabriel, I want to know Joe’s last known approximate position. 

As Gabriel, I want to modify Joe’s routes. 

As Gabriel, I want to get alerted if Joe is off course. 

Sprints Table 1 

   

 

 

 

 



 

27       

 

Sprint 2 

As Gabriel, I want to get alerted if Joe does not clear a checkpoint on time. 

As Gabriel, I want to modify Joe’s routes. 

Sprints Table 2 

 

Sprint 3 

As Maria, I want Joe’s application to collect information from the beacons and notify me if a beacon is 

running low on battery. 

As Joe, I want to be able to send text messages to Gabriel. 

Sprints Table 3 

 

Sprint 4 

As the map editor, I want to be able to snap to the grid and change the grid size. 

As the map editor, I want to be able to create rooms. 

As Gabriel, I want to be able to send text messages to Joe. 

Sprints Table 4 

 

Sprint 5 

As Gabriel, I want to be able to configure the list of predefined ping messages. 

As Gabriel, I want quick access to emergency procedures when an alert is triggered. 

As Gabriel, I want to be able to call emergency services directly from the interface. 

Sprints Table 5 

 

 

 

 



 

28       

 

Sprint 6 

As Joe, I want to be notified if Bluetooth on my device is off. 

As Joe, I want to be allowed to change my user password whenever I want. 

As Joe, I want to be able to delay my estimated time of arrival. 

As Joe, I want my mobile phone to monitor inactivity periods. 

As Joe, I want to have a visual reminder that I am being tracked. 

As Joe, I want to call Gabriel directly from within the application. 

Sprints Table 6 

 

Sprint 7 

As Gabriel, I want to modify Joe’s route. 

As the map editor, I want to be able to delete walls/objects. 

As Joe, I want to answer to Gabriel’s ping. 

As Joe, I want to get information about the nearest exit. 

Sprints Table 7 

 

Sprint 8 

As Maria, I want to be able to review the accepted user agreements. 

As Maria, I want to be able to create new accounts/profiles and assign roles. 

As Gabriel, I want the mobile application to track Joe’s progress through the route. 

As Gabriel, I want to get notified if Joe disables the tracking feature on his mobile application. 

As Joe, I want to be able to accept the usage agreements the first time I use the application. 

As Joe, I want the mobile application to track my progress through the route. 

As Joe, I want to trigger the start of a new round from the mobile application. 

As Gabriel, I want to know Joe’s estimated time of arrival. 



 

29       

 

As Gabriel, I want to have access to basic information about Joe. 

As Gabriel, I want to set Joe’s route duration (approximately). 

As Gabriel, I want to be able to delay Joe’s estimated time of arrival. 

As Gabriel, I want to receive Joe’s inactivity alerts. 

As Gabriel, I want to be notified when Joe delays the estimated time of arrival. 

As Gabriel, I want to be notified if Joe appears offline. 

As Gabriel, I want to be notified if Joe’s phone is running low on battery. 

As the map editor, I want to be able to snap to a segment. 

As the map editor, I want to be able to draw doors/stairs. 

As the map editor, I want to be able to edit existing walls/rooms. 

Sprints Table 8 

 

4.2 Implementation 

4.2.1 Project Implementation 

 

In Blended AIM 2017 participated 20 students from universities in Germany, Portugal, Greece, Austria, 

Belgium, Slovenia, Scotland and Iraq. At first, they had to get acquainted with each other and also with 

the Scrum framework that they would use for the agile software development. Following the Nexus 

Scrum, they rearranged the initial team into separate smaller ones consisting of the design team, the 

frontend team, the backend team, the android application team, the business team and the integration 

team. The rearrangement was done according to the students’ educational field. The first Sprint took place 

in Rovereto, Italy (Trilogis company headquarters) and it went mostly smooth after resolving some issues 

on the technologies that would be used and on the final product. After that meeting each student returned 

to his country and that made the project management a lot harder. Each Monday night the students 

discussed about the upcoming week’s user stories and what was needed to accomplish them. Also, every 

Thursday night a sprint review meeting was held were every student had to present the work that was 

done.  

The whole project was divided in 8 sprints, one every two weeks, until its completion. There was daily 

communication between the students through the Slack application. Meetings were hosted on the Adobe 

Connect that was provided by the University of Paderborn (as a trial version). That type of 

communication posed many problems such as very long meetings, no clarification on the tasks, adobe 



 

30       

 

plug-ins not being able to identify some microphones and the scrum master being unable to keep 

everyone under control. 

All the user stories were held in the Microsoft Team Foundation Server 2015. Every scrum team had its 

own user stories and each user story had its own tasks. In the end of each Sprint the product owner had to 

assign new user stories for the upcoming Sprint. When a user story wasn’t complete for the Sprint it was 

transferred to the next Sprint marked as delayed.  

The last Sprint took place in Graz, Austria (in FH Joanneum University) where the final presentation of 

the product would take place. During the last week of the last Sprint students worked together again to 

finalize their work, fix existing bugs and problems. Demo runs were prepared by mapping specific places 

in the building to make sure that every feature of the application was presented and preserve the certainty 

of a smooth run. Also voice covers were created by each student to create an inspiring speech about the 

product. At the end of the product presentation the students’ work was evaluated by the company 

representatives and the professors. The students also were rated for their participation by each other.  

4.2.2 Detailed Android Implementation 

 

The students of TEI of Crete were assigned with the development of the Android application so bellow a 

further explanation of the user stories concerning the application is shown. Furthermore, some of the code 

as well as certain techniques that were used for the completion of the application will be explained. 

 

As Joe, I want to be able to send text messages to Gabriel. 

1. Send text messages through WebSockets. 

2. UI for the chat. 

A new activity/fragment was created for the chat. 

New WebSocket message type was created. 

New Json deserializer was created. 

Android User Story 1 

 

As Joe, I want to be notified if the Bluetooth on my device is off. 

1. Check Bluetooth connectivity and state. 

2. Notify the user if the Bluetooth is off or not 

supported. 

Through the Android API we check if the 

Bluetooth is supported and if it is we then check its 

state. 

Then we notify the user with a notification or an 

alert box. 

Android User Story 2 

 

 



 

31       

 

 

As Joe, I want to answer to Gabriel’s ping. 

1. Display a ping message on screen and push 

notifications. 

2. Send back a ping reply using WebSockets. 

3. UI for messages. 

4. UI for Joe emergency messages. 

5. Implement a flashlight alert. 

6. Implement a vibration alert. 

7. Implement a sound alert. 

8. Understand WebSocket and Json. 

9. Implement the simple SOS WebSocket 

emergency message and the Json deserializer. 

10. Implement the WebSocket message for each 

emergency type. 

11. Send emergency messages using the 

WebSockets. 

A folder that holds all notification types such as 

flashlight, vibration and sound was created.  

WebSockets were implemented.  

Custom message types were created, one for each 

emergency message, for sending through 

WebSockets. 

Json deserializers for each message type were 

implemented. 

User Interface to display the messages. 

User Interface to allow Joe to answer to a message.  

Android User Story 3 

 

As Joe, I want to be able to accept the usage agreements the first time I use the application. 

1. Create UI for usage agreements. 

2. Run this activity after the application is installed. 

3. Check for new license agreements every time the 

application starts. 

4. Save the user that accepted the user agreements 

on a given day at a given time. 

A new activity for the User Interface of the usage 

agreements was created. 

After login check if the user has accepted the latest 

usage agreements. 

If not start the activity of the usage agreements so 

that the user can read and accept them. 

If the user accepts send on the backend the day and 

the time that the user accepted the terms. 

Android User Story 4 

 

As Joe, I want the mobile application to track my progress through the route. 

1. UI to start the route. 

2. Beacon listener. 

3. REST request to load route, checkpoints and 

associated beacon data. 

4. REST request to send the last beacon passed. 

5. Implement the REST API controller that handles 

A new activity/ fragment for the User Interface was 

created. 

Implemented beacon listener classes. 

Implemented the REST requests to handle these 

tasks. 

Implemented the classes that the REST calls 



 

32       

 

the getting and posting of routes and checkpoints. 

6. Implement the REST API controller that handles 

the last beacon passed in the route. 

7. Implement the route domain entity. 

8. Implement the checkpoint domain entity. 

9. Implement the checkpoint route and beacon 

classes. 

10. UI showing progression through the route 

(beacon passed and the next). 

required. 

Implemented the classes on the backend. 

Implemented the REST API handlers on the 

backend. 

Android User Story 5 

 

As Joe, I want to trigger the start of a new route from the mobile application. 

1. Send a REST request to trigger a new route. 

2. UI to start a shift. 

3. Send a REST request to trigger the start of a new 

shift. 

4. Refactor the code of the main activity so it won’t 

go back to the main page if a bearer token is 

already on system. 

5. Check if the application goes to the background. 

6. Check if the application comes back to the front. 

7. Implement REST API controller to allow basic 

CRUD for a route. 

8. Implement the domain entity Route. 

9. Implement the domain entity Shift. 

10. UI to show the completed Routes. 

11. REST request to fetch the Route history. 

The Shift starts automatically when the user logs 

in. 

Log in and main activity were refactored to support 

the changes. 

New REST calls were created. 

A new class was created to check if the application 

goes to the back or to the front. 

On the backend all the CRUD (Create, Read, 

Update, Delete) for the route were created. 

On the backend the Route and Shift entities 

(classes) were created. 

A new activity to show the completed Routes was 

created. 

 

Android User Story 6 

 

As Joe, I want to be allowed to change my user password whenever I want to (in-app). 

1. UI for the password change. 

2. Check if the old password was given correctly by 

the user. 

3. Send the new password to the backend. 

A new Activity for the User Interface was created. 

The user is prompted to type his old password. 

On success he is prompted to type a new password 

twice for the evaluation. 

The new password is sent to the backend to be 

saved in the database. 

 

Android User Story 7 



 

33       

 

 

As Joe, I want to be able to delay my estimated time of arrival. 

1. New button for the delay. 

2. New WebSocket message type. 

3. Send the delay message through WebSockets. 

A new button was created on the Route 

activity/fragment. 

A new WebSocket message type for the delay was 

created. 

A new Json deserializer was created. 

A new WebSocket message type for the delay was 

created on the backend. 

A new Json deserializer was created on the 

backend. 

On button click a delay message is sent. 

Android User Story 8 

 

As Joe, I want my mobile phone to monitor inactivity periods. 

1. Check if the user uses the application. 

2. Check if the user is moving. 

3. Alert if inactivity period is detected. 

4. New WebSocket message type. 

5. Send alert message through WebSockets. 

Detect touch events and accelerometer. 

Pop-up alert with sound/flashlight/vibration to 

check if the user is alright. 

If not answered in a given time an alert message is 

sent through WebSockets. 

New WebSocket message type was created both on 

Android and on the backend. 

New Json deserializer was created both on Android 

and on the backend. 

Android User Story 9 

 

As Joe, I want to have a visual reminder that I am being tracked. 

1. UI for the tracking reminder. 

2. Alert box that shows that the tracking is on. 

A User Interface with animation, when the tracking 

is on, was created. 

On tracking activation an alert box reminds the user 

that he’s being tracked. 

Android User Story 10 

 

 



 

34       

 

As Joe, I want to call Gabriel directly from within the application. 

1. Emergency button for phone call. 

2. Android permissions for the direct call. 

A new button was added to call a predefined 

number. 

Android permissions were added to allow a direct 

call through an application. 

Android User Story 11 

 

 

 

4.2.2.1 User Interface Design 

At first the design was made by following the demo that was created at Rovereto by the design team. The 

login functions were built on top of that first design. The prototypes of the emergency and chat functions 

were also added. Even though it was functional, the other teams requested the use of more colors. So, the 

second approach was given influenced by material design standards. The application felt like an 

entertainment application and not one used by employees for their work. Also, the tracking interface was 

not sufficient for the team’s needs. The application’s performance was found to be worse than expected 

due to the use of cut images from the files of the design team.  

A third release of the design was necessary to rectify the issues mentioned above and to improve the looks 

of the application. The new design was a mix of the first and second ones with revised colors and a new 

text font called Montserrat. Following the Google design standards, a menu bar was added on the left side 

with the default menu button. All the icons and logos were defined as Scalable Vector Graphics (SVG) 

files to relieve the workload and achieve better performance. As a last change, a new application logo was 

created by the design team. 

Every part consisting the design was placed under the resources folder which is auto generated by 

Android Studio IDE. The resources folder consists of sub-folders also auto generated by Android Studio. 

These folders help to organize the structure of the project by separating the parts that compose the 

application, according to their purpose. These folders are: 

 Drawable. 

    This folder contains graphic components that can be drawn to the screen. They can be 

    retrieved with API calls such as getDrawable(int), or applied to another XML resource with 

    attributes such as android:drawable.  

 Layout. 

    In this folder the activity and fragment layouts are generated. 

 



 

35       

 

 Mipmap. 

    This folder contains all the images that are used by the application. Every image loaded in this  

    folder is set in 5 different dimensions to match every phone or tablet display size. 

 Values. 

    In the Values folder general information about the application’s design is being kept. It 

    consists of more sub-folders:  

o Colors. 

    In this folder a value is assigned to a desired name that will be used to define the 

    application’s main color. For example:  

<color name="gabrielBlue">#0000ff</color> 

 

o Dimens. 

    In this folder values are assigned to desired names that will be used for certain 

    dimension variables. For example: 

<dimen name="activity_horizontal_margin">16dp</dimen> 

<dimen name="activity_vertical_margin">16dp</dimen>     
o Strings. 

    In this folder every text is saved as a string value for correct text management. For 

    example: 

<string name="navigation_drawer_open">Open navigation drawer</string> 

<string name="navigation_drawer_close">Close navigation drawer</string> 

o Styles. 

    In this folder styles and names for them as well as their values are defined. For 

    example: 

<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar"> 

 

    <item name="colorPrimary">@color/gabrielBlue</item> 

    <item name="colorPrimaryDark">@color/gabrielBlue</item> 

    <item name="colorAccent">@color/gabrielBlue</item> 

 

</style> 

 

 

 

 

 

 

 



 

36       

 

Under the Drawable folder the SVG files were placed for proper display. An SVG file consists of code 

similar to the following:  

 

<?xml version="1.0" encoding="utf-8"?> 

<vector xmlns:android="http://schemas.android.com/apk/res/android" 

    android:viewportWidth="258" 

    android:viewportHeight="258" 

    android:width="258dp" 

    android:height="258dp"> 

    <path 

        android:pathData="M129 5c33.1 0 64.3 12.9 87.7 36.3 23.4 23.4 36.3 54.6 36.3 87.7 0 

33.1 -12.9 64.3 -36.3 87.7C193.3 240.1 162.1 253 129 253 95.9 253 64.7 240.1 41.3 216.7 

17.9 193.3 5 162.1 5 129 5 95.9 17.9 64.7 41.3 41.3 64.7 17.9 95.9 5 129 5m0 -5C57.8 0 0 

57.8 0 129 0 200.2 57.8 258 129 258 200.2 258 258 200.2 258 129 258 57.8 200.2 0 129 0l0 

0z" 

        android:fillColor="#303030" /> 

    <path 

        android:pathData="M102.1 169.2l-19.6 0c-0.4 0 -0.8 -0.4 -0.8 -0.8l0 -50.7c0 -0.4 

0.4 -0.8 0.8 -0.8l19.7 0c0.4 0 0.8 0.4 0.8 0.8l0 50.7c-0.1 0.4 -0.4 0.8 -0.9 0.8l0 0zm0 0" 

        android:fillColor="#303030" /> 

    <path 

        android:pathData="M137.9 79.5c-5.8 -4.2 -13.7 -1.8 -14 -1.7 -0.8 0.2 -1.3 1 -1.3 

1.8l0 17.4c0 5.9 -2.8 11 -8.4 14.9 -4.3 3.1 -8.7 4.3 -8.8 4.4 0 0 -0.1 0 -0.1 0l-1 0.3c-0.6 

-1 -1.7 -1.7 -3 -1.7l-18.1 0c-1.9 0 -3.4 1.6 -3.4 3.4l0 49.1c0 1.9 1.6 3.4 3.4 3.4l18.1 

0c1.6 0 3 -1.1 3.3 -2.7 2.4 2.6 5.9 4.2 9.7 4.2l42.8 0c9.1 0 14.9 -4.8 15.9 -13.1l5.5 -

34.7c0.8 -5 -1.3 -10.1 -5.3 -13 -2.3 -1.6 -4.9 -2.5 -7.7 -2.5l-22.3 0 0 -15.9c0.2 -6.4 -1.7 

-11 -5.3 -13.6l0 0zm-36.8 87.8l-17.6 0 0 -48.6 17.6 0 0 48.6zM165.6 113c2 0 3.9 0.6 5.6 1.8 

2.9 2.1 4.3 5.8 3.8 9.4l-5.4 34.8 0 0.1c-1 8.1 -7.2 9.8 -12.3 9.8l-42.8 0c-5.3 0 -9.6 -4.3 

-9.6 -9.6l0 -38.8 1.7 -0.6c0.6 -0.2 5.1 -1.6 9.8 -4.8 6.6 -4.7 10 -10.9 10 -18l0 -16.1c2.1 

-0.4 6.4 -0.8 9.5 1.4 2.6 1.9 3.9 5.5 3.9 10.6l0 18.1c0 1 0.8 1.9 1.9 1.9l23.9 0 0 0zm0 0" 

        android:fillColor="#303030" /> 

</vector> 

 

 

The described data paths are used to create the following image. 

 

Picture 1, Thumbs Up 

 

 

 

 

 



 

37       

 

 

Shapes can be defined under the Drawable folder like the following shape that is being used to decorate 

layout components. 

Shape example: 

<?xml version="1.0" encoding="utf-8"?> 

<shape xmlns:android="http://schemas.android.com/apk/res/android"> 

    <solid android:color="@color/gabrielIncomingMsg"/> 

    <stroke 

        android:width="0dip" 

        android:color="#dddddd" /> 

    <corners android:radius="10dip" /> 

    <padding 

        android:bottom="0dip" 

        android:left="0dip" 

        android:right="0dip" 

        android:top="0dip" /> 

</shape> 

 

Layout example that uses the shape above as a background: 

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" 

    android:layout_width="match_parent" 

    android:layout_height="wrap_content"> 

 

    <LinearLayout 

        android:layout_width="wrap_content" 

        android:layout_height="wrap_content" 

        android:layout_alignParentLeft="true" 

        android:layout_marginLeft="5dp" 

        android:background="@drawable/msg_incoming" 

        android:orientation="horizontal"> 

 

        <TextView 

            android:id="@+id/txt_msg_gabriel" 

            android:layout_width="wrap_content" 

            android:layout_height="wrap_content" 

            android:maxWidth="300dp" 

            android:padding="12dp" 

            android:textSize="18dp" 

            android:textColor="@color/gabrielBlack" /> 

 

    </LinearLayout> 

 

</RelativeLayout> 

 

 

 

 

Above Layout as it is shown on display: 



 

38       

 

 

Picture 2, Chat Layout 

 

The light-colored casing (empty at its initial phase) is used to wrap the messages and can expand 

according to the message’s length and height.  

The above images show the “incoming messages” layout implementation. The same implementation 

applies for the outgoing messages with a right orientation and a different background color for the casing.  

 

 

A new Resource type folder was added to the Resources folder named Menu. This folder was used to 

define two application menus, a side menu and a bottom one.  

A Menu Resource type code example: 

<menu> 

    <item 

        android:id="@+id/nav_changePassword" 

 

        android:icon="@drawable/ic_edit" 

 

        android:title="@string/change_password" /> 

 

    <item 

        android:id="@+id/nav_endShift" 

        android:icon="@drawable/ic_logout" 

        android:title="@string/end_shift" /> 

 

</menu> 

 

The above menu definitions are then called in the according layout files as shown below, first for the side 

menu layout and then for the additional navigation items.  

 

The side menu’s Navigation Layout: 



 

39       

 

<android.support.design.widget.NavigationView 

    android:id="@+id/nav_view" 

    android:layout_width="wrap_content" 

    android:layout_height="match_parent" 

    android:layout_gravity="start" 

    android:fitsSystemWindows="true" 

    app:headerLayout="@layout/navigation_layout" 

    app:menu="@menu/activity_main_drawer" /> 

 

 

 

 

The appearance of the upper part of the side menu was defined separately: 

 

 

 

Picture 3, Side menu upper part 

 

 

 

 

The appearance of the side menu: 



 

40       

 

 

 

Picture 4, Side menu 

 

 

Bottom Navigation View for the additional items: 

 

<android.support.design.widget.BottomNavigationView 

    android:id="@+id/navigation" 

    android:layout_width="match_parent" 

    android:layout_height="60dp" 

    android:layout_gravity="bottom" 

    app:itemIconTint="@drawable/selector_navigation" 

    app:itemTextColor="@drawable/selector_navigation" 

    app:menu="@menu/bottom_nav_items" /> 

 

 

The appearance of the bottom menu: 



 

41       

 

 

 

Picture 5, Bottom navigation menu 

 

The checked items from the above menu change appearance according to the selector_navigation file that 

is shown below: 

<?xml version="1.0" encoding="utf-8"?> 

<selector xmlns:android="http://schemas.android.com/apk/res/android"> 

    <item android:state_checked="true" android:color="@color/gabrielRed" /> 

    <item android:color="@android:color/tab_indicator_text"  /> 

</selector> 

 

Having built the components that would mostly be used on the application’s layouts the implementation 

of those layouts took place. The application consists of 4 activities and 3 fragments, which means that the 

creation of 7 layouts was needed. The activities are: 



 

42       

 

 The activity_login.  

    In this layout, there are 2 images with the logo of the application, 2 text fields for the username 

    and the password, a checkbox for the “remember me” feature and a button for the login. 

 The activity_main. 

    In this layout the layouts of the menus (side and bottom navigation) are contained. On top of 

    that the layout of the fragment that is in use is shown accordingly. 

    These fragments are: 

o The fragment_home. 

    This is the main fragment of the application and it is used to display the tracking. 

    When the tracking is on a circle animation is shown and when it is off the animation 

    stops. There is also a button to start the route. When the route starts the next 

    checkpoint and a delay button are visible. On the top left corner, the last checkpoint is 

    shown regardless of the route state.   

o The fragment_emergency. 

    This fragment is used to display 6 emergency buttons each for a predefined emergency 

    situation and an extra button for a direct call to the security supervisor. 

o The fragment_message. 

    This fragment is used to display the messages sent and received. It has a list view to 

    display the messages, a type box where the user can type his message and send it. This 

    type box is a separate layout that contains an edit text field and an image view used as 

    a button. Finally, there are 2 buttons for quick response messages (thumbs up and 

    thumbs down).  

 The activity_password. 

    In this layout there are 3 text fields, one for the old password another for the new password and 

    the last one for the confirmation of the new password. There is also a button for the password 

    change and an image with the application logo. 

 The activity_usage_agreements. 

    In this layout there is an image with the application logo and name, a text view for the display 

    of the usage agreements, a button for the acceptance and one for the decline of the usage 

    agreements. 

 

 

 

 

 

 



 

43       

 

4.2.2.2 Rest API 

 

In the Rest API folder is the implementation of the Rest API services for the application. It was split into 

3 classes each class for a specific purpose. 

The first class, the AuthorizationRequestInterceptor is there to provide information about the user. It 

holds the bearer Token, that is a Json WebToken provided from the backend when the user logs in 

successfully. The token is the identifier of the user for then backend when calls on it are made. The Class 

implements the interceptor interface from okhhtp3 and must override its method intercept. This method 

has a return value type of “response”. In that method, the token is checked and if there isn’t an empty 

token (that means that the user has successfully logged in) then it is added to the header of the request that 

will make the call.  

The snippet of the code is shown below. 

 

@Override 

public Response intercept(Chain chain) throws IOException { 

    if(BearerToken!=null){ 

        Request request = chain.request().newBuilder() 

                .addHeader("Authorization","Bearer "+BearerToken).build(); 

        return  chain.proceed(request); 

    } 

 

    return chain.proceed(chain.request()); 

} 

 

 

The second class, is the RestController. In that class, the information needed for the calls is set. Firstly, 

the BASE_URL is set to the url that the calls will be made. After that, in the class constructor, a gson 

object is setup to use it as a custom converter on the calls. It contains the date format, as well as a 

deserializer that is another custom-made class to use it on the gson object. Then a custom setup call for 

call instances will be made. All these setups will be used by the Retrofit builder that is implemented at 

that point. Finally, we instantiate the gabrielRestApiService to the restAdapter that is made so that it can 

create the calls. 

 

 

 

 

 

 



 

44       

 

 

Gson gson  = new GsonBuilder() 

        .setDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSSSS") 

        .registerTypeAdapter(JsonMessageWrapper.MessageType.class,new 

JsonMessageWrapperMessageTypeDeserializer()) 

        .create(); 

OkHttpClient.Builder httpClientBuilder = new OkHttpClient.Builder(); 

httpClientBuilder.addInterceptor(new AuthorizationRequestInterceptor()); 

httpClientBuilder.connectTimeout(30, TimeUnit.SECONDS); 

OkHttpClient client = httpClientBuilder.build(); 

Retrofit restAdapter = new Retrofit.Builder() 

        .baseUrl(BASE_URL) 

        .addConverterFactory(GsonConverterFactory.create(gson)) 

        .addConverterFactory(ScalarsConverterFactory.create()) 

        .client(client) 

        .build(); 

 

In the end of the class a GET function is implemented so the retrieval of the REST function will be easier 

to be made. 

 

The third class is the interface that holds the REST services. In that interface named 

GabrielRestApiService all the services/calls that are used on the application, are held. First, we set the 

headers for the calls and after that all the calls. A code snippet will be given that will show the log in / log 

out calls and the headers. 

 

@Headers({ 

        "Content-Type: application/json", 

        "Accept: application/json" 

}) 

@POST("Auth/PostLogin") 

public Call<String> login(@Body LoginDto login); 

 

@POST("Auth/PostLogout") 

public Call<Void> logout(); 

 

To give the headers, the @Headers is used so it can identify that these are headers. 

For the log in and out the @POST is used followed by (“example”), is the “path” of the desired service. 

On the next line the functions are implemented, on login there is a return value of String assigned inside 

the tag <> and void for logout. The login function has a @Body annotation also, which means that 

information is needed to be passed to the backend so it can respond back with a proper answer. This 

information is given by a class that the backend handles. 

 

 

 



 

45       

 

 

 

4.2.2.3 WebSockets 

 

 

The WebSocketController contains the functionality of the WebSockets to be used in the application. In 

that class, the WebSockets can be started and stopped. It also contains the instantiation of them, as well as 

the function to send data through WebSockets. In the instantiation method if an instance already exists it 

gets returned else a new instance is created. In start method, a new WebSocketImpl object is created. 

In the WebSocketImpl class is the implementation of the WebSockets in the application. Firstly the Uri, 

that the WebSockets will connect, is given. Then a string tag to map the possible exceptions during the 

development of the application is provided. The default constructor of the class is defined. There is also a 

“connect” method which creates a WebSocket with the given Uri, adds the necessary listeners and finally 

connects. A “reconnect” method was created to allow the reconnection to the server in case of a 

disconnection. A “get connection” method was created to return the existing connection. A “disconnect” 

method was created to allow the disconnection of the WebSocket from the server. An inner class named 

“SocketListener” was created which extends the WebSocketAdapter class and overrides the onConnected, 

onTextMessage, onError, onDisconnected, onUnexpectedError, onPongFrame and onPingFrame 

methods. In these methods the “behavior” of a WebSocket is formed for each situation represented by the 

methods. 

In the WebSocketMessages folder the chain of responsibility pattern is used so the code would be more 

efficient, easily reusable and expandable. As the name suggests, the chain of responsibility pattern creates 

a chain of receiver objects for a request. This pattern decouples sender and receiver of a request based on 

type of request. This pattern comes under behavioral patterns. 

In this pattern, normally each receiver contains reference to another receiver. If one object cannot handle 

the request then it passes the same to the next receiver and so on. 

A Chain of Responsibility Pattern says that just "avoid coupling the sender of a request to its receiver 

by giving multiple objects a chance to handle the request".  

In other words, we can say that normally each receiver contains reference of another receiver. If one 

object cannot handle the request then it passes the same to the next receiver and so on. 

 

Advantages 

 It reduces the coupling. 

 It adds flexibility while assigning the responsibilities to objects. 



 

46       

 

 It allows a set of classes to act as one; events produced in one class can be sent to other handler 

classes with the help of composition.  

 

Usability  

 When more than one object can handle a request and the handler is unknown. 

 When the group of objects that can handle the request must be specified in dynamic way. 

 

Rules of Thumb 

 Chain of Responsibility, Command, Mediator, and Observer, address how you can decouple 

senders and receivers, but with different trade-offs. Chain of Responsibility passes a sender 

request along a chain of potential receivers. 

 Chain of Responsibility can use Command to represent requests as objects. 

 Chain of Responsibility is often applied in conjunction with Composite. There, a component's 

parent can act as its successor. 

 

As the UML below shows the basic form of the pattern there are these steps that must be followed for its 

implementation: 

 

1. The base class maintains a "next" pointer. 

2. Each derived class implements its contribution for handling the request. 

3. If the request needs to be "passed on", then the derived class "calls back" to the base class, which 

delegates to the "next" pointer. 

4. The client (or some third party) creates and links the chain (which may include a link from the 

last node to the root node). 

5. The client "launches and leaves" each request with the root of the chain. 

6. Recursive delegation produces the illusion of magic. 

 

 

 

 

 



 

47       

 

 

 

UML example of Chain of Responsibility design pattern 

 

Picture 6, Chain of Responsibility UML 

 

 An abstract class is implemented named JsonMessageDeserializer, after that, various implementations of 

that class are set, one for every message on the application through WebSockets. To hold the data of the 

messages an interface called IMessage helps once every different message has different data in it. So, for 

every message an implementation to hold its data was created, all these classes were implementing the 

IMessage interface. Finally, in the JsonMessageWrapper class the chain of responsibility pattern is 

finished. In the getMessageDeserializer method all the deserializers are instantiated and after that, using 

the setNextDeserializer method from JsonMessageDeserializer abstract class, the deserializers are 

chained. 

In the JsonMessageWrapper class an enum value named MessageType was set too. This value holds all 

the different message types so they can be indicated on setType and identified to get deserialized 

properly. Different seters and geters were implemented in this class so all the data that is needed can be 

known.  



 

48       

 

The InitCommsMessage class contains information about the user that sends a message. This class is used 

to allow the backend to decide correctly where the message should be delivered. For example if an 

application user sends a message, then the backend has to decide to which site the message should go.  

 

4.2.2.4 Activities 

1. Login Activity 

In the Login Activity the user has to type his credentials to log in. Using the shared preferences 

provided by the Google API the “Remember me” functionality was implemented allowing the 

user to save the credentials for the next log in as an xml file in the application’s data file. In this 

activity, the most recent license agreement acceptance is also checked. If the user did accept the 

application continues as normal else he is redirected the LicenseAgreement Activity. After the log 

in and before the application steps to the next activity a toast will be shown reminding that the 

application will track the user’s position. 

2. LicenseAgreement Activity 

These days the terms of use and license agreements are mandatory for every official application. 

The license agreements contain rules that the user has to abide by and certain personal 

information permissions that it will require from the user. The activity LicenseAgreement was 

made to be shown right after the installation of the application, or if there is an update on them, so 

that the user can decide whether to use the application by accepting or not.  

If the user accepts the terms of use his choice is stored in the database with a REST call to the 

backend and if he declines the application does not continue. 

3. Password Activity 

In this activity the user is prompted to type his old password, a new password and a confirmation 

for the new password. Then, if the new password matches the confirmation, a REST call is made 

to send the old password and the new one to the backend. Then the backend replies accordingly if 

the replacement was successful or not. If it was successful a message is shown and then the user 

is redirected to the main activity. 

4. Main Activity 

This activity encapsulates the layouts of the fragments that are being used and takes care of the 

navigation between them.  

 

 

 

 

 



 

49       

 

 

 

 

4.2.2.5 Fragments 

 

1. Emergency Fragment 

For each emergency situation a different message is being sent through WebSockets as the 

example shown below: 

 

    SOSFireMessage message = new SOSFireMessage(); 

    JsonMessageWrapper wrapper = new JsonMessageWrapper(); 

    Gson jsonConverter = new Gson(); 

    String jsonMessage = jsonConverter.toJson(message); 

    wrapper.setType(JsonMessageWrapper.MessageType.SOS_FIRE_NOTIFICATION); 

    wrapper.setDeliverToUsers(null); 

    wrapper.setJsonPayload(jsonMessage); 

    wrapper.setBearerToken_Username(AuthorizationRequestInterceptor.BearerToken); 

    wrapper.setFrom("Client"); 

    WebSocketController.Instance().sendJsonData(jsonConverter.toJson(wrapper)); 

 

First the type of the situation is identified depending on the button the user pressed and the message 

gets converted to a json string. Then the Json wrapper sets the data that is required to send the 

message and then that message is sent through the WebSockets to the site that the supervisor is using. 

In the Emergency fragment, there is also a direct call button that uses the code below: 

 

buttonEmergencyCall.setOnClickListener(new View.OnClickListener() { 

    @Override 

    public void onClick(View v) { 

        try { 

            String uri = "tel:0123456789"; 

            Intent emergencyCall = new Intent(Intent.ACTION_CALL, Uri.parse(uri)); 

            startActivity(emergencyCall); 

        }catch(Exception e){ 

            Toast.makeText(getActivity().getBaseContext(), R.string.call_failure, 

                    Toast.LENGTH_LONG).show(); 

            e.printStackTrace(); 

        } 

    } 

}); 

 

When the button is pressed the ACTION_CALL intent is launched. The ACTION_CALL intent is 

provided by Google API and allows the dial of an explicit phone number that can be predefined. 

2. Home Fragment 

This is the main fragment of the application and it is used to display the tracking. When the 

tracking feature is turned on an activation message is sent through the WebSockets to the 



 

50       

 

supervisor’s site, a rest call is made to the backend and a function is called to activate the beacon 

listener. Also, the Bluetooth turns on after prompting the user for permission to allow its use. If 

the tracking is turned off the Bluetooth turns off, a deactivation message is sent through 

WebSockets to the site, a rest call is made to the backend, and a function is called to deactivate 

the beacon listener. Then a runnable is created to update the route’s checkpoint names that are 

being displayed on the interface. 

Home fragment also contains the “start route” button. If the button is used a request is sent to the 

backend which then replies with a route. Then the application checks the response and if it is null, 

which means that there is no route, an appropriate message is shown and the button gets disabled. 

If the response is not null the contained data are assigned to a route type object (REST API 

DTO).    

3. Messages Fragment 

This is the fragment where the chat feature was implemented. It uses WebSockets to send text 

messages and predefined quick responses. Two inner classes are also contained, the 

LoadMessages class and the AddMessages class. The first one loads the previously sent messages 

and by filtering them it displays only the desired ones. The latter adds the messages to a chat 

Adapter. The chat Adapter was necessarily implemented to allow the display of the messages on 

the ListView of the fragment. A chat message type object is created which contains the content of 

the message, the date and the sender. The Adapter checks the sender and the content and 

“chooses” the correct layout to display the message. For example, if a user sends a message the 

outgoing layout is used which aligns the message to the right with a grey background. Also, if a 

quick response message is sent, an image is displayed rather than the content of the message.  

 

4.2.2.6 Beacons 

 

To implement the classes needed for the use of beacons the Design Pattern Observer – Observable was 

used. Observer pattern is used when there is one-to-many relationship between objects such as if one 

object is modified, its dependent objects are to be notified automatically. Observer pattern falls under 

behavioral pattern category. Java has implemented the observer pattern components to help the 

programmers by shorting the code. 

Advantages 

 Supports the principle to strive for loosely coupled designs between objects that interact. 

 Allows the programmer to send data to many other objects in a very efficient manner. 

 No modification is needed to be done to the subject to add new observers. 

 The programmer can add and remove observers at any time. 

 



 

51       

 

Usability 

 When the change of a state in one object must be reflected in another object without keeping the 

objects tight coupled. 

 When the framework we are writing needs to be enhanced in future with new observers with 

minimal changes. 

 

Usage examples 

 Model View Controller Pattern. The Observer pattern is used in the model view controller (MVC) 

architectural pattern. In MVC this pattern is used to decouple the model from the view. View 

represents the Observer and the model is the Observable object. 

 Event Management. This is one of the domains where the Observer pattern is extensively used. 

Swing and .Net are extensively using the Observer pattern for implementing the events 

mechanism. 

 

 

Picture 7, Observer pattern UML 

 



 

52       

 

 

 

 

 

In the ‘Beacons’ folder the beacon listener was implemented which consists of two classes, the 

BeaconDetector class and the BeaconController class. The first one extends the Observable class and 

implements the BeaconManager.RangingListener from which the onBeaconDiscovered method is 

overridden. This method checks if a beacon is detected nearby and if there is one it notifies the Observers 

of this class. 

@Override 

public void onBeaconsDiscovered(Region beaconRegion, List<Beacon> list) { 

    if(list.size()>0) { 

        Beacon bm = list.get(0); 

        this.setChanged(); 

        this.notifyObservers(bm); 

    } 

 

The latter extends the Observable class and implements the Observer interface. In the class constructor, 

the values that are shown below are initialized. These values are necessary for the use of the Estimote 

API.  

public BeaconController(BeaconManager manager){ 

    this.beaconManager = manager; 

    this.detector = new BeaconDetector(); 

    this.detector.addObserver(this); 

    this.beaconManager.setRangingListener(this.detector); 

    this.region = new Region("ranged region", null, null, null); 

    Assert.assertTrue(oneInstance); 

    oneInstance = false; 

} 

 

Then methods to get and set the instance of this class and methods called in the home fragment, to 

activate or deactivate the beacon listener, were implemented. 

 

4.2.2.7 AppStatusApplication class 

 

This class extends the Application class of the Android API which maintains the global application state 

and implements the Application.ActivityLifecycleCallbacks, ComponentCallbacks2, Observer and 

SensorEventListener interfaces. The Application class offers the ability to update the application based on 

the changes in that class. That helps the developers immensely because the updates of the application’s 

tasks are applied independently of the application’s current state or current activity. 

The ActivityLifecycleCallbacks and the ComponentCallbacks2 interfaces give access to the activity 



 

53       

 

callback methods. This way the current state of the application is determined at any time. More precisely 

these callbacks were used to know when the application is in use or not, when it is sent to the background 

or to the foreground and when it gets destroyed.  

In the OnCreate method several initializations take place. One of these is the initialization of the adapter 

that allows the connection with the device’s Bluetooth. Another is that of the internet state and of the 

broadcaster that notifies when the internet state changes. Then an Intent filter is created to distinguish 

under which conditions the internet state changes and a receiver is registered. A sensor manager is created 

to allow the access to accelerometer and register a listener to it. Another broadcast receiver is registered to 

check if the device’s screen is off. Activity lifecycle callbacks are then registered and finally a beacon 

controller is initialized.  

As this class controls the whole application functions are implemented to discriminate the currently used 

activity. These functions are crucial for the alert notifications which require the activity that is under use 

at that moment. Also for the safety of the user the inactivity periods are tracked with the use of a timer. If 

an inactivity period is detected an alert box pops up using the flashlight and sound notifications to check 

up on the user and prompt him to assure his safety with the push of a button. If a button is not pressed in a 

given time window an alert will be shown in the supervisor’s site. If the “Not Ok” button is pressed the 

user get redirected to the emergency fragment to choose an emergency situation. If the “Ok” button is 

pressed the inactivity timer is reset and the alert dialog closes. 

In the overridden method onSensorChanged, the values of the accelerometer get filtered to lower its 

sensitivity and trigger only on major movements because the accelerometer detects movement even when 

the device is still. 

The final functionality of the Application class is to update the backend, the site and the UI of this 

application with the detected beacons if and when it is needed. If a new beacon is detected while the 

tracking is on information about its identity and battery level are sent to the website through WebSockets 

regardless of the current route. If there is an active route with active remaining checkpoints and the 

nearest beacon is the same with the beacon that represents the first checkpoint of the route, a REST call is 

made to clarify that the mentioned checkpoint was cleared. Then if that checkpoint is also the last, the 

route ends and appropriate actions take place else the next checkpoint is pushed on the list of beacons to 

check. The passed checkpoint as well as the next checkpoint, if there is one, are shown through a 

notification if the user is not in the home fragment of the application. 

 

 

 

 

 

 

 



 

54       

 

 

 

 

4.3 Manual 

 

Below is a presentation of Gabriel’s core features. 

 

The first contact of the user with the mobile application is through the Login screen. As shown below the 

user is prompted to type the credentials provided by the company. For ease of use a “Remember Me” 

checkbox was added.   

 



 

55       

 

 

Picture 8, Manual, Login screen 

After a successful Login the user gets redirected to the Tracking page which is the main Activity of the 

mobile application. Initially the tracking feature is disabled. To activate it the user can click on the 

animated circle. In the top left corner there is a button for the side menu of the application and at the 

bottom there is the application navigation menu. Informations regarding the checkpoints are displayed 

above the animated circle. 

 



 

56       

 

 

Picture 9, Manual, Tracking Screen 

 

 

This image shows the tracking feature and the routing are set to active. An additional field appears which 

displays the name of the next checkpoint if there is one.  Also a delay button was added so the user can 

inform the supervisor about time delays. To remind the user that the tracking is active the colors of the 

circle and the button were changed and an animation was set to the circle. 

 



 

57       

 

 

Picture 10, Manual, Activated tracking screen 



 

58       

 

This is the second page of the Android application. In this page there are emergency buttons, each for a 

different emergency situation. By pressing any of these buttons a message will be sent to the supervisor 

website indicating the emergency situation. There is also an Emergency Call button which allows the 

user to make a direct call to a predefined number. 

 

 

Picture 11, Manual, Emergency situation screen 

 

 

 

 

 



 

59       

 

This is the chat section of the Android Application. The user is provided with a text box to type the 

messages. Also quick response buttons were added for additional ease of use.  

 

 

Picture 12, Manual, Chat screen 

 

 

 

 

 

 



 

60       

 

This is a version of the chat messages which was not released. An audio message is available with the 

push of the microphone button. The message has duration of up to thirty seconds and is sent to the 

website.  

 

 

Picture 13, Manual, Chat with Audio screen 

 

 

 

 

 

 



 

61       

 

This is the side menu of the application. It allows the redirection of the user to the other pages of the 

application as well as the management of his password and the log out option. Also information about the 

user such as image and name are displayed on the top section of the menu. 

 

 

Picture 14, Manual, Side menu 

 

 



 

62       

 

This is a page of the supervisor’s website. In this page the employees that are logged in are displayed. The 

supervisor can view details and what routes are assigned on each employee. There is an option to change 

to the route management page and also with the selection of an employee the supervisor can open a chat 

box with that employee. 

 

 

 

Picture 15, Manual, Supervisor website, Worker Tab 



 

63       

 

This is the route management page of the supervisor’s website. A new route can be created with the push 

of a button and then assigned to employee/s. The supervisor can also edit and delete the already existing 

routes. 

 

 

 

Picture 16, Manual, Supervisor website, Route Tab 



 

64       

 

This is the chat that appears when the supervisor selects an employee.  

 

 

 

Picture 17, Manual, Supervisor website, chat with an employee 

 



 

65       

 

This is the emergency alert box that the supervisor gets when an employee triggers an emergency button. 

This will also pop up if the inactivity alert is triggered. The supervisor is prompted to choose an action, 

either proceed to emergency procedures or proceed to investigate the situation. Through the emergency 

procedures the supervisor can contact the appropriate security services. Through the investigate button the 

supervisor can view the emergency situation that was triggered. 

 

  

 

Picture 18, Manual, Supervisor website, emergency 



 

66       

 

This is the map editor website. In this website a user can create a map or modify an existing one. For 

easier use the user is provided with tools that help on the creation or modification of a map. Some of these 

tools are: Zoom in/out, set size, floor selection if the map has more than one floor, door insertion and a 

wall drawer. 

 

 

 

Picture 19, Manual, Map editor website 



 

67       

 

Another feature of the editor website is the ability to import an image to the editor allowing the user to 

draw the building on top of this image. This feature is helpful because it facilitates the procedure of the 

map drawing as the user can see directly the map as a guide.  

 

 

 

Picture 20, Manual, Map editor website, image import 



 

68       

 

After its creation the facility’s map can be displayed in the facilities section of the editor website. In this 

page the user can edit, copy and delete an existing facility. 

 

 

 

Picture 21, Manual, Map editor website, facilities display 



 

69       

 

CHAPTER 5: RESULTS 

 

5.1 Conclusion 

 

This thesis was attained within the Blended Aim project. Through Blended Aim Students across Europe 

were assigned with the development of a product meant to keep a company’s employees safe. This 

product was appointed by Trilogis, an Italian company specialized in advanced solutions in the fields of 

geography and computer science. The outcome of the project was a product named Gabriel which consists 

of two Android applications, three websites and the backend services. 

Gabriel was designed to help companies manage the safety of their employees during their work shifts. 

As companies grow in size, accidents also grow in numbers and severity. The important part of accidents 

is to manage it quickly but in order to do so the accident has to be acknowledged fast. To achieve that, 

Gabriel features direct communication between an employee and a security supervisor. The supervisor 

has access to the employee’s health record and with his discretion the position as well. With safety as its 

main goal, Gabriel is a tool for every company and every employee that strives for safety in his 

workplace.  

Τhe opportunity to work and collaborate with students from different educational institutes and fields of 

study was a great experience and practice. As the project was split into smaller parts the separation of the 

students into sub-teams was required. The students shared their thoughts, worries, issues, solutions, 

knowledge and different points of view on a subject as one team. This served as a learning ground for the 

students who were not familiar with each other’s field of study, thus providing a better and more complete 

understanding of their areas of expertise. It also improved the perception of how to approach a problem 

more efficiently. Though it might seem imaginary, basic intercommunication and efficient work flow is 

sometimes difficult for people of different countries because of contrasting habits and work procedures. 

Communication and better understanding was developed further due to the intercultural background of 

the team. 

By developing this project the students acquired more knowledge and experience. Through the usage of 

new technologies, which are considered state of the art in the field of informatics engineering, they 

became familiar and more comfortable using such technologies. Technologies like WebSockets, REST 

services and beacons keep rising by the day in the software development section. The combination of the 

above – mentioned with Android Application development is a significant foundation for a successful 

career. 

 

 

 

 



 

70       

 

 

5.2 Future work and extensions 

 

Gabriel security system is at its first release version and it fulfills the goals for which it was developed. 

More features will be added to complement and improve the already existing ones.  

 

Upcoming features 

 

 

Audio messages in the chat of the application. 

Audio recording and transmission services were 

implemented in the application and the backend 

but not used. 

 

 

Audio playback in the websites. 

A media player needs to be implemented to play 

the received audio messages.  

 

 

Route and checkpoint management. 

This feature will allow the user to browse the 

routes assigned to him and modify them if there is 

an issue. 

 

 

Route scheduling in the backend. 

Implement a scheduling system to properly save 

the routes in the database. 

 

 

Improved backend security. 

Hyper Text Transfer Protocol Secure (HTTPS) and 

WebSocket Secure (WSS) can be used to secure 

the connection between the client and the server 

without risking the loss of data. 

A security but also a performance improvement 

would be the limitation of what REST calls a user is 

allowed to make and how the backend responds. 

(A simple user cannot make a REST call that 



 

71       

 

returns information about other users). 

 

Worker tasks. 

This will allow the supervisor to assign “special” 

tasks at any moment that might come up for the 

employee’s shift.  

 

 

Accept worker task and task management. 

From the mobile application the employee can get 

notifications for the worker tasks. The details of 

the tasks can be viewed before accepting or 

declining the task. If the employee accepts the task 

a new option will be available to notify the 

supervisor when the task is finished.  

 

 

More languages. 

More languages will be added in all the websites 

and the application so that the user can choose. 

 

 

Nearest exits and points of interest.  

This feature will allow the supervisor to add points 

of interest such as nearest exits by modifying the 

map.  

 

Visitor Application. 

The visitor application was a bonus feature to 

allow navigation in a company’s premises. Though 

it is working properly it can be improved. These 

improvements could include a revised navigation 

display and more navigation options for the user.  

Future Work  

 



 

72       

 



 

73       

 

REFERENCES 

 

[1] Wikipedia-WebSockets 

<https://en.wikipedia.org/wiki/WebSocket> 

[2] What are WebSockets? 

<https://www.twilio.com/docs/glossary/what-are-websockets> 

[3] Wikipedia-Android 

<https://en.wikipedia.org/wiki/Android_(operating_system)> 

[4] Representational state transfer 

<https://en.wikipedia.org/wiki/Representational_state_transfer> 

[5] Praxis 

<http://www.praxisnetwork.eu/> 

[6] Retrofit 2 

<http://square.github.io/> 

[7] GitHub-Retrofit 

<Consuming APIs with Retrofit · codepath/android_guides Wiki · GitHub> 

[8] What is an iBeacon 

<http://developer.estimote.com/ibeacon/> 

[9] Estimote Beacons 

<https://estimote.com/?gclid=CjwKCAjw2s_MBRA5EiwAmWIaczKsjeShK-

zdEdZpiIiPBH5xdS6AuC3gFlPZyuJSvBSGLu3necV9fBoCZukQAvD_BwE> 

[10] AngularJS 

<https://angularjs.org/> 

[11] Wikipedia-PostgreSQL 

<https://en.wikipedia.org/wiki/PostgreSQL> 

[12] Wikipedia-Entity Framework 

<https://en.wikipedia.org/wiki/Entity_Framework> 

[13] Scrum 

<https://www.scrum.org/> 

[14] Wikipedia-Team Foundation Server 

<https://en.wikipedia.org/wiki/Team_Foundation_Server> 

https://en.wikipedia.org/wiki/WebSocket
https://www.twilio.com/docs/glossary/what-are-websockets
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.praxisnetwork.eu/
http://square.github.io/
https://github.com/codepath/android_guides/wiki/Consuming-APIs-with-Retrofit
http://developer.estimote.com/ibeacon/
https://estimote.com/?gclid=CjwKCAjw2s_MBRA5EiwAmWIaczKsjeShK-zdEdZpiIiPBH5xdS6AuC3gFlPZyuJSvBSGLu3necV9fBoCZukQAvD_BwE
https://estimote.com/?gclid=CjwKCAjw2s_MBRA5EiwAmWIaczKsjeShK-zdEdZpiIiPBH5xdS6AuC3gFlPZyuJSvBSGLu3necV9fBoCZukQAvD_BwE
https://angularjs.org/
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/Entity_Framework
https://www.scrum.org/
https://en.wikipedia.org/wiki/Team_Foundation_Server


 

74       

 

[15] Microsoft TFS 

<https://www.visualstudio.com/tfs/> 

[16] Indoor location technologies 

<https://lighthouse.io/indoor-location-technologies-compared/> 

[17] Trilogis 

<http://www.trilogis.it/?lang=en> 

[18] Tutorialspoint-Design Patterns 

<https://www.tutorialspoint.com/design_pattern/chain_of_responsibility_pattern.htm> 

[19] Chain of Responsibility Pattern 

<https://sourcemaking.com/design_patterns/chain_of_responsibility> 

[20] Javatpoint-Chain of Responsibility Pattern 

<https://www.javatpoint.com/chain-of-responsibility-pattern> 

[21] JWT.io-Json Web Token 

<https://jwt.io/introduction/> 

[22] Wikipedia-Json Web Token 

<https://en.wikipedia.org/wiki/JSON_Web_Token> 

[23] Developer.android Menu 

<https://developer.android.com/guide/topics/resources/menu-resource.html> 

[24] Wikipedia-Material Design 

<https://en.wikipedia.org/wiki/Material_Design> 

[25] Materialize 

<http://materializecss.com/> 

[26] Svg-pan-zoom 

<https://www.npmjs.com/package/react-svg-pan-zoom> 

[27] Wikipedia-Observer pattern 

<https://en.wikipedia.org/wiki/Observer_pattern> 

[28] Tutorialspoint-Observer pattern 

<https://www.tutorialspoint.com/design_pattern/observer_pattern.htm> 

[29] Oodesign-Observer pattern 

<http://www.oodesign.com/observer-pattern.html> 

[30] Oracle Java 

<https://www.oracle.com/java/index.html> 

 

https://www.visualstudio.com/tfs/
https://lighthouse.io/indoor-location-technologies-compared/
http://www.trilogis.it/?lang=en
https://www.tutorialspoint.com/design_pattern/chain_of_responsibility_pattern.htm
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://www.javatpoint.com/chain-of-responsibility-pattern
https://jwt.io/introduction/
https://en.wikipedia.org/wiki/JSON_Web_Token
https://developer.android.com/guide/topics/resources/menu-resource.html
https://en.wikipedia.org/wiki/Material_Design
http://materializecss.com/
https://www.npmjs.com/package/react-svg-pan-zoom
https://en.wikipedia.org/wiki/Observer_pattern
https://www.tutorialspoint.com/design_pattern/observer_pattern.htm
http://www.oodesign.com/observer-pattern.html
https://www.oracle.com/java/index.html

