
Technological Educational Institute of Crete
Department of Informatics Engineering

Master Thesis

Hardware-assisted Workload Dispatching in
Heterogeneous Dataflow Architectures

Author:

Othon Tomoutzoglou

Supervisor:

Dr. George Kornaros

A thesis submitted in fulfillment of the requirements

for the degree of Master of Science

March 21, 2017

https://www.teicrete.gr/en
https://www.epp.teicrete.gr/en
otto_sta@hotmail.com
kornaros@ie.teicrete.gr

iii

Declaration of Authorship

I, Othon Tomoutzoglou, declare that this thesis titled, “Hardware-assisted Workload Dispatching

in Heterogeneous Dataflow Architectures” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this

University.

• Where any part of this thesis has previously been submitted for a degree or any other quali-

fication at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the exception

of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

v

“In its essence, technology is something that man does not control. . . ”

Martin Heidegger

vi

Abstract

In the scope of this thesis, hardware and software mechanisms have been developed for optimizing

system-level performance of heterogeneous system architectures in terms of communication with

accelerators. These innovative mechanisms have been designed and developed as a standalone

solution that is easily integrated within existing and future system architectures. This thesis

presents the results of the integration of the workload dispatching mechanism in a proof-of-concept

platform, demonstrating its exploitability and flexibility. More precisely, the hardware platform

consists of a cluster of host CPU cores (either symmetric or asymmetric, as in the case of an ARM

big.LITTLE architecture) and of different off-chip heterogeneous computational nodes, that are

located in a Xilinx Virtex-7 FPGA.

vii

Acknowledgements

I would first like to thank my thesis advisor Dr. George Kornaros of the Department of Informatics

Engineeringat Technological Educational Institute of Crete. I would also like to thank my colleague

who was involved in the implementation for this research project Dimitrios Bakoyannis.

The research leading to the results of this work has received funding from the European Union

(EU) FP7 project SAVE under contract FP7-ICT-2013-10 No 610996.

Thank you.

https://www.epp.teicrete.gr/en
https://www.epp.teicrete.gr/en
https://www.teicrete.gr/en

viii

Contents

Declaration of Authorship iii

Abstract vi

Acknowledgements vii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Thesis Structure . 4

2 Background 5

2.1 Heterogeneous Systems Architecture Applications . 5

2.1.1 Industrial Innovations . 6

2.1.2 Academic Innovations . 7

3 Architecture 8

3.1 Overall Architecture . 8

3.2 Unified Heterogeneous Systems Architecture . 9

3.2.1 General Purpose Packet Processing Unit . 14

GPPU Memory Mapped Interface . 16

Packets BRAM . 18

Packets DMA Engine . 19

Dispatcher . 19

ix

Active Jobs BRAM . 20

Scheduler . 21

3.3 Hardware Support for Acceleration and Dynamic Adaptation 21

3.4 System Memory Management . 22

3.4.1 General Address Translation Table . 22

3.4.2 System Memory Management using GATT 23

3.5 Software Library . 24

3.5.1 AQLSM Queues Buffers Management . 25

3.5.2 AQLSM Data Buffers Management . 25

SMPart Data Buffers . 25

STM Data Buffers . 26

3.5.3 Host System - GPPU Synchronization . 27

3.5.4 UHSA Technology Drivers . 31

GPPU User Space Drivers . 31

Page Translation Driver . 31

Legacy Acceleration Driver . 32

3.5.5 UHSA Programming Support . 32

Initialization and Component Discovery . 32

Queues and AQL packets . 34

Signals and packet launch . 37

3.6 UHSA Workload Offloading Example . 41

4 Results and Analysis 43

4.1 Evaluation objectives . 43

4.2 Test Platform Overview . 44

4.3 FPGA Designs . 46

4.3.1 Legacy Mode . 46

4.3.2 UHSA Mode . 47

x

4.4 System Performance . 47

4.4.1 Image Processing Use Case Results . 48

Scalability . 49

4.4.2 Matrix Multiplication Use Case Results . 50

Scalability . 51

5 Conclusions and Future Work 53

5.1 Conclusions . 53

5.2 Future Work . 54

xi

List of Figures

3.1 UHSA enabled system abstracted overview. 9

3.2 UHSA technology architecture. 10

3.3 Computation kernel offloading in a legacy system. 11

3.4 Offloading process using the UHSA technology. 12

3.5 Dispatching kernels to accelerators utilizing the GPPU through user-level accessible
circular queues. Outline of queue context. 15

3.6 Dispatcher FSM. Words written in capitals refers to GPPU registers as described in
table 3.1. 19

3.7 Organization integrating a device VA translation core (GATT). 22

3.8 UHSA technology software stack. 24

3.9 Locks Benchmarking, on ARM Cortex A53 650MHz. 29

3.10 Locks Benchmarking, on ARM Cortex A57 600MHz. 30

3.11 Locks Benchmarking, on ARM Cortex A57 1.15GHz. 30

4.1 ARM JUNO r1 Physical Organization Overview. 45

4.2 ARM JUNO r1 and Logic Tile Physical Organization. Legacy case. 46

4.3 ARM JUNO r1 and Logic Tile Physical Organization. UHSA technology case. . . . 47

4.4 Latency and jobs per second average concerning offload of 4 kernels to hardware
accelerator, for every of the described modes. 49

4.5 Performance gain of UHSA technology over a legacy system when offloading kernels
for sobel filtering on FHD images; both memory access modes are depicted. 50

4.6 Latency and jobs per second; Matrix multiplication 15 kernels offloaded to hardware
accelerator, utilizing every described mode. 51

xii

4.7 Performance gain of UHSA technology over a legacy system when offloading kernels
for 60x60 matrices multiplication; both memory access modes are depicted. 52

xiii

List of Tables

3.1 GPPU IF registers summary . 17

3.1 GPPU IF registers summary . 18

3.2 Race conditions in a PUMA-enhanced system . 28

4.1 UHSA technology performance gain over legacy system; sobel filtering on FHD images. 48

4.2 UHSA technology performance gain over legacy system; 60x60 matrices multiplication. 50

xiv

List of Abbreviations

ADP ARM Development Platform
AMBA Advanced Microcontroller Bus Architecture
API Application Programming Iinterface
AQLSM Architect-ed Queuing Language-aware System Manager
AXI Advanced eXtensible Interface
CMA Contiguous Memory Allocator
CPU Central Processing Unit
DDR Double Data Rate
DMA Direct Memory Access
FSM Finate State Machine
GAC Geometric Algebra Computing
GPPU Generic Packet Processing Unit
HW HardWare
HBS High Speed Bus
HLS High Level Synthesis
HPC High Performance Computing
HSA Heterogeneous System Architecture
IF InterFace
I/O Input / Output
MMU Memory Management Unit
NoC Network on Chip
PA Physical Address
OpenCL Open Computing Language
PTSU Pages Translation and Scheduling Unit
UHSA Uunified Heterogeneous Systems Architecture
SMP Symmetric MultiProcessing
SW SoftWare
TLX Thin Links
VA Virtual Address

1

Chapter 1

Introduction

1.1 Motivation

Heterogeneous computing comprises at least one host Central Processing Unit (CPU) cores and one

or more heterogeneous computation nodes that use different types of on-chip and off-chip processing

elements such as graphic processing units, reconfigurable processing units, or programmable and

not programmable hardware accelerators. These heterogeneous systems are now widely used in

many computing markets, including cell-phones, tablets, personal computers, imaging processing

and game consoles.

By using heterogeneous system architectures is possible to improve the performance/power trade-

off with respect to exploiting homogeneous solutions. The strategy is to offload on the most

appropriate specific node of computation the computational kernels to be executed, to achieve

the required performance while optimizing the use of resources. Indeed, the management and

exploitation of these heterogeneous system architectures are characterized by a higher complexity.

To fully exploit the capabilities of parallel execution units included in different computation is-

lands, the designers must re-architect computer systems to tightly integrate the disparate compute

elements on a platform into an evolved central processor while providing a programming path that

does not require fundamental changes for software developers.

Even though specialized graphic accelerators such as GPUs have been leveraged in various domains

2 Chapter 1. Introduction

of general-purpose GPU (GPGPU) processing to facilitate data-parallel compute-intensive appli-

cations, resource management is usually supported at the operating-system level and in particular

a device driver supports communication between CPU and GPU which usually are not tailored to

support multi-tasking environments, but accelerate one particular high-performance application in

the system or provide fairness among applications. These particular device drivers traditionally

impose significant latencies since they perform copies from/to user space to/from kernel space and

on top they disregard the asynchronous and non pre-emptive nature of accelerator, such as GPU,

processing.

1.2 Contributions

In the scope of this thesis, there have been developed hardware and software solutions for opti-

mizing system-level performance of heterogeneous system architectures operating in Unix based

OS environments. Such innovative technologies have been designed and developed as stand-alone

solutions to be easily integrated within existing and future system architectures. While the various

technologies have been demonstrated, and documented elsewhere, this thesis presents the results of

the integration of the above-mentioned solutions in a proof-of-concept platform, demonstrating the

exploitability and flexibility of the contributed technologies. More precisely, the hardware platform

consists of a cluster of host CPU cores (either symmetric or asymmetric, as in the case of an ARM

big.LITTLE architecture), and of different off-chip heterogeneous computational nodes that are

located in a Xilinx Virtex-7 FPGA.

In order to manage such heterogeneous hardware architecture, legacy communication mechanisms

(hardware and software) need to be optimized in terms of performance improvement and energy

consumption. This document describes a novel technology, called Generic Packet Processor Unit

(GPPU) infrastructure, for offloading (i.e dispatching) computation kernels from the host processor

to the heterogeneous computation nodes in a more efficient manner. The GPPU infrastructure is

composed by the Generic Packet Processor Unit (GPPU) hardware module and a software run-

time library. These components are necessary to allow to schedule work among the computational

1.2. Contributions 3

nodes, in a smart and efficient way in term of removing operating system overhead, and program-

ming complexity. Given the distributed memory address space for all system processing cores,

the GPPU infrastructure features specific mechanisms to optimize the data and code transmission

on the communication infrastructure of a heterogeneous system architecture involving processors,

accelerator devices and memories.

Accordingly the Amdahl’s law, the maximum achievable speed-up of a program is limited by the

serial its part. The continuously increasing of the parallelization degree in a program contributes

significantly to the reduction of the serial part. Therefore, more and more the synchronization and

communication has a negative impact on the final speedup since they belong to the serial fraction.

In such a GPPU reduce the overall communication and synchronization overhead.

The optimizations that this work focus on are:

• utilizing user-level offloading to computation islands that reside off-chip.

• enhancing the dispatching process with particular hardware-assisted scheduling

The envisioned communication infrastructure is enhanced by the General Packet Processor Unit

(GPPU) which supports a hardware-assisted mechanism allowing user applications to fast and ease

offload computation kernels towards computation islands;

Moreover the envisioned system assumes applications that are launched on the host CPU (or

cluster of CPUs) and intermittently offload to an accelerator. Sharing opportunities arise due to

two reasons. First, a job might have completed an offload and is running on the host CPU leaving

the accelerator free. Second, a job’s offload may not be using all of the cores on the accelerator,

or a number of accelerators which are attached as sub-nodes to a GPPU, allowing another job to

potentially use the free accelerator cores.

The GPPU infrastructure facilitates the realization of system decisions and in particular of the

scheduler; the scheduler can be either the programmer or the OS orchestrator, which must evaluate

when an offloaded computation will outperform one that is local by forecasting the local cost (exe-

cution time and energy consumption for computing locally) and remote cost for computing remotely

and transmission time for the input/output of the computation to/from the remote accelerator.

4 Chapter 1. Introduction

1.3 Thesis Structure

For the convenience of the reader, a quick overview of the topic of the reports chapters will be

provided.

• Chapter 2: Background presents related works.

• Chapter 3: Architecture gives a description of the hardware and software infrastructure

that has been developed, as an optimized option against legacy workload offloading.

• Chapter 4: Results and Analysis depicts the actual platform that the developed technol-

ogy got implemented and describes the system performance. The chapter will also provide

our analysis of the results.

• Chapter 5: Conclusions and Future Work provides concluding remarks and a summary

of this work. Also presents how our implementation can be further improved.

5

Chapter 2

Background

2.1 Heterogeneous Systems Architecture Applications

Applications in heterogeneous architectures take advantage of hardware accelerators and GPUs,

by offloading computations, intensive portions of their execution to the hardware accelerator, pro-

grammable or not, or to the GPU. These offloaded computation tasks are referred in this paper as

kernels in order to distinguish from OS kernel that is central part of an operating system.

When the CPU dispatches a task to the hardware accelerator or GPU, it is usually necessary to pass

through an OS service and an OS kernel driver before finally reaching the final target, which causes

non-negligible performance degradation. The data to be used when offloading a computation must

be moved from the memory of the Host CPU to the memory of the accelerator device. Only at this

stage, data can be used by the accelerator or by the GPU. This is usually implemented by a DMA

transfer in which the application requests a transfer via a runtime communication library provided

by the SoC manufacturer. This operation requires a pointer to data (i.e., a virtual address) and a

size in bytes, as well as one or more destination addresses depending on the size of the buffer to be

transferred. Once the memory region that starts at this virtual address (UserVA) is ready for the

transfer, the OS kernel driver can be executed. Then, the OS kernel translates the userVA to an

OS kernel virtual address (kernelVA), which in general has a different value. Only at this stage the

OS driver can translate the kernelVA to a list of physical pages (PA) and make sure they are ready

to be transferred by pinning the memory. The OS kernel driver uses the list of physical pages to

program the devices DMA engine(s). After the kernel has been executed by the accelerator, the

6 Chapter 2. Background

processed data must be moved back to the host memory following the same ping-pong of buffers.

This ping-pong of buffers introduces significant performance penalty due to intermediate copies.

In this direction, technologies mainly targeting GPU such as GPUDirect RDMA emerge, attempt-

ing to enable a direct path to speed up data transfer between the GPU and a third- party peer

device using standard features of PCI Express [1]. These types of mechanisms are used to improve

performance and maintain more efficient data transfer. However, RDMA includes some disadvan-

tages due to inconsistent updating of information between CPU and GPU. Without a technique

called pinning, elements of memory systems can get corrupted in RDMA-enabled setups.

Hardware support for optimizing different ISA-based heterogeneous systems is also proposed in a

variety of contexts,by accelerator management to mitigate memory latencies during data transfer

[2], or by optimizing intranode communication using DMA assistance [3]. By sharing the virtual

address space of CPU and accelerators, researchers have proposed a user-level library, GMAC, to

make heterogeneous systems easier to program while reducing performance penalties [4] [5]. It is

not though guaranteed to successfully map the accelerators memory to the same range of virtual

memory address space. This work describes a novel infrastructure through utilizing a unified

address space among host processors with different ISA and hardware accelerators and combining

of hardware support with user-level queuing targeting SoCs with no IOMMU.

2.1.1 Industrial Innovations

In industry, the Coherent Accelerator Processor Interface (CAPI) on POWER8 systems is presented

to provide a high-performance solution for the implementation of client-specific computation-heavy

algorithms on FPGAs [6]. Freescale semiconductors, introduce the Multi Accelerator Platform

Engine for Baseband (MAPLE-B) consists of a programmable-system-interface (PSIF) that is a

programmable controller with DMA capabilities and signal-processing accelerators attached using

an internal interface [7]. Intel, has developed QuickAssist Technology, which allows these compute-

intensive workloads to be offloaded from the CPU to hardware accelerators, which as she claims are

more efficient in terms of cost and power than general purpose CPUs for these specific workloads

[8].

2.1. Heterogeneous Systems Architecture Applications 7

Cutting edge GPUs offer methods to minimize latencies by featuring a-synchronism. Tesla GPUs

utilize one execution engine and two copy engines, enabling to concurrently perform a kernel exe-

cution and memory transfers in the background (two-way host-to-device and device-to-host), under

the condition that no explicit nor implicit synchronization occurs. Kepler GPUs moved from pro-

cessing in master-slave fashion (CPU to GPU) to a self-feeding model (dynamic parallelism) where

the GPU can generate work (new grids) for itself [9].

2.1.2 Academic Innovations

Researchers have proposed dynamically aggregating asynchronously produced fine-grain work into

coarser-grain tasks leveraging the GPUs control processor to manage those queues [10]. Optionally,

engineers develop hardware-assisted direct memory access (DMA) and the I/O read and write

access methods along with on-chip microcontrollers inside the GPU to offer effective solutions in

terms of reducing the data transfer latency for concurrent data streams; Fujii et al. [11] showed

that direct I/O operations are faster than using DMA controllers for small data transfers. Also

Researchers have proposed single CPU thread to assist in prefetching data for many GPU threads

[12].

Wen et al. has presented an OpenCL task scheduling scheme which schedules multiple programs

across CPUs/GPUs heterogeneous platform by using a speedup predictor and runtime input data

size to schedule tasks [13]. The proposed approach focused on maximizing the system throughput

by employing a speedup classifier for OpenCL kernels; at the same time they consider not to

significantly increase the average application turnaround time.

8

Chapter 3

Architecture

This chapter gives a description of both hardware and software components, the combination

of which, enables compute-intensive workloads to be dispatched from the CPU core or cores, to

dedicated hardware accelerators. We call the technology that arises, Unified Heterogeneous

Systems Architecture. UHSA takes advantage of cutting edge technologies like Heterogeneous

System Architecture (HSA) [14] and Geometric Algebra Computing (GAC) [15], in order to of-

fload workloads seamlessly and transparently, achieving optimal system performance and CPU

utilization, with minimal integration effort for applications and frameworks.

3.1 Overall Architecture

This section gives an outline of the developed UHSA technology. Figure 3.1 depicts a high level

view of a UHSA enabled system. On the one hand there is a CPU cluster, with its local memory,

its MMU and system’s memory, as seen in almost every legacy architecture. On the other hand, we

can see the hardware, a black box so far that enables UHSA technology, and an array of hardware

accelerators. The main features that we can see in figure 3.1 are:

• The main memory is shared between all the components.

• Host CPU accesses the memory using a virtual address space, through the MMU.

• UHSA components and accelerators access the memory using a virtual address space.

3.2. Unified Heterogeneous Systems Architecture 9

Main Memory

CPU

Memory

CPU

Memory

CPU

Memory

HW
Accelerator

HW
Accelerator

HW
Accelerator

MMU

UHSA
Technology

Figure 3.1: UHSA enabled system abstracted overview.

3.2 Unified Heterogeneous Systems Architecture

The cornerstone of UHSA architecture, is the General Purpose Packet Processing Unit (GPPU) that

in combination with Architect-ed Queuing Language-aware System Manager (AQLSM) runtime

library, which is analyzed in chapter 3.5, enables the workload dispatching to be treated in a

packet based fashion, which equips developers with the ability to program hardware accelerators

in a unifying, transparent and low complexity way.

UHSA technology components are associated with multiple AQL queues, no matter the physical

amount of the available acceleration hardware. Thus by pushing workload kernels in queues it

is feasible to virtualize the hardware and also provide both asynchronous and synchronous inter-

facing. As a matter of fact, a synchronous IF has been implemented on top of an asynchronous

implementation. This design pattern as described in [16] is called “half-sync/half-async”. Figure

3.2 depicts the UHSA architecture and its discrete parts, which will be described in more detail

over the next subsections.

10 Chapter 3. Architecture

GPPU

PACKET
DMA

PACKET
BRAM

Memory Mapped
Control Interface

Dispatcher

PACKET
BRAM

Memory Mapped
Control Interface

Dispatcher

Active Jobs
BRAM

PART 0

PART 1

...

PART 7

PART 0

PART 1

...

PART 7

Active Jobs
BRAM

PART 0

PART 1

...

PART 7

Host CPU

Scheduler

Accelerators
program IF

Accelerators
DMA-engines

Sy
st

e
m

’s
 M

ai
n

M

em
o

ry

PTSUPTSUGATTPTSUPTSUGATT

Figure 3.2: UHSA technology architecture.

The GPPU hardware introduces to the heterogeneous systems the necessary technology to make

a step forward our vision of future a multiscale heterogeneous system . We distinguish multiscale

from multicore by the fact that the system benefit is gained not by being able to utilize the many

cores, but by being able to scale the application up to make use of available islands of computation

present in the system. In this vision this work is not going to address the general problem of how

best one can segment a particular application for parallel execution. In fact, the distribution of work

across multiple available islands of computation is considered to be managed by the programmer.

However, our approach makes the programmers life easier by providing a consistent runtime frame-

work to help the efficient management of the usage of computation resources. The basic underlying

principle of multiscale system is simplicity and efficiency. The simplicity is introduced by a common

runtime environment, where applications can be easily retargeted to different version of platforms,

ranging from consumer devices to HPC. This allows the programmer to focus on their program

without needing to explicitly manage the specificity of different platforms, while at the same time

3.2. Unified Heterogeneous Systems Architecture 11

efficiency is introduced by removing the traditional software overheads. Figure 3.3 illustrates the

different computation steps necessary when we are offloading a computation kernel (application)

from the main host processor toward an accelerator (HW IP) located in a computation island.

Figure 3.3: Computation kernel offloading in a legacy system.

In a vision towards a multiscale system, this work going to remove all the unnecessary steps as

illustrated in the figure 3.4 below. This is possible by the GPPU that enables an application

to offload computation kernels from application user space toward computation islands, bypassing

most of copy/map operations performed by OS. In addition, it enables computation kernels executed

in the computation islands to work on the same virtual address space of the application.

GPPU is a clean-slate NoC extension that enables computation kernels to be executed directly into

a specialized high-performance, energy-efficient processing unit included in a computation island.

The GPPU also exposes new capabilities directly to the application, allowing more effective use of

available specialized computation islands, including the usage of specific mode such as low-energy

computation modes.

12 Chapter 3. Architecture

Figure 3.4: Offloading process using the UHSA technology.

To make efficient use of such a service provided by the GPPU, it is important the ability to

instantiate the GPPUs services in user space. Nowadays, when host CPU comes to dispatching

computation kernels to the GPU, on-chip HW accelerators or off-chip accelerators connected by

PCIe has to interact with specific OS service. As matter of the fact, the OS service, requires specific

OS Kernel driver to complete the off-loading process. Swapping from user space to kernel space

causes a not negligible performance degradation and power consumption especially if the call is

requested by applications running at higher level on the software stack such as OpenCL.

When an application wants to launch a kernel in a computation island, it does so by placing a

GPPU packet in a queue owned by the computation island. A packet is a memory buffer encoding

a single GPPU command. There are different types of packets; the one used for dispatching a

kernel is named Dispatch packet. All the packets types have a well-defined binary structure and

they occupy 64 bytes of storage and share a common header. The packet structure is known to

the application via well-defined types specified in the header file called AQLSM.h and a to the

GPPU hardware implementation. This is a key GPPU feature that enables applications to launch

a packet in a specific agent executed in Computation Island by simply placing it in one of its

hardware queues. The GGPU manages several runtime-allocated queues via a packet processor.

3.2. Unified Heterogeneous Systems Architecture 13

The packet processor of the GPPU tracks which packets in the buffer have to be processed. When

it has been informed by the application that a new packet has been enqueued, the GPPU is able to

process it because the packet format is standard and the packet contents are self-contained they

include all the necessary information to run a command. In the case of the dispatch packet the

GPPU perform the kernel offloading. The GPPU is a hardware unit that is aware of the different

packet formats.

With GPPU it is possible that an application running within a VM in the host CPU can offload

computation kernels by placing kernels references onto a specific GPPU packet that are enqueued

in specialized hardware queues. Finally, the GPPU can dequeue the packet and dispatch these

kernels toward a specific computation island. In order to realize this mechanism the AQLSM

runtime library is used. The AQLSM Runtime aims to be a very thin layer that abstracts the

bare minimum GPPU features and allows for composition and support for different higher-level

functionality that various programming models and languages can in turn be built on top of. The

core layer aims to be a portable target to the host to interface with the hardware queues and to

launch computation kernels to the available agents in computation islands.

The AQLSM runtime specification has been implemented in C and few parts in assembler. The

AQLSM runtime API is divided in several functional sub-libraries that targets specific functionality.

These functional sub-libraries are:

• Runtime initialization and shutdown.

• System and Agent information.

• Signals and synchronization.

• Architected dispatch.

• Memory management.

• Error Handling.

Thus, instead of dispatching computation kernels from the host CPU to the computation island via

a OS kernel driver that would require user mode to kernel mode switching which itself is a costly

operation, as well virtual address translations, with the GPPU infrastructure the application can

14 Chapter 3. Architecture

directly dispatch computation kernels toward a specific computation island without going through

a mediator. Moreover, it allows the computation island to spawn tasks itself for other agents or

host CPU.

3.2.1 General Purpose Packet Processing Unit

This section discusses the system-level architecture of the General Packet Processor Unit.The GPPU

consists of the subunits which perform the tasks that are decomposed as follows:

• Context allocation and deallocation

• User queue analysis through managing the contents.

• Scheduling of the appropriate queue packet according to its status.

• Dispatching of the queue packet to an available accelerator.

• Notifying the host upon job completion.

The key functionality of the GPPU, is its ability to process AQL packets, extract the information

encapsulated in them, from now on called jobs, and then program an available accelerator able

to handle the requested task. The packets are placed in queues implemented as circular buffers.

The GPPU, currently supports up to sixteen (16) queues, with maximum capacity of 64 packets.

Including what said and the fact that GPPU is a hardware component, the host CPU is freed from

any packet processing, accelerators configuration and management, thus being available to manage

other tasks.

The GPPU supports user level access, to command user level queues. These queues are allocated

at runtime and they are accessible by applications running on Host CPU, at user level, using the

provided virtual memory address space. Each queue contains packets (commands), as defined in [14]

chapter 4.2.6 Architected Queuing Language (AQL packets), and they are allocated and deallocated

by applications through AQLSM runtime infrastructure. Queues are semi-opaque objects: there

is a visible part that is represented by the queue context and the circular buffer and the invisible

part, which contains the read and write indexes as illustrated in figure 3.5. The circular buffer can

3.2. Unified Heterogeneous Systems Architecture 15

be directly accessed by the application while the read and write indexes of the queue can be only

accessed using the AQLSM runtime.

Host CPU

App1 App2

Host CPU

App1 App2

GPPU Accelerator

GATT

System Memory ...

Queues VA Translation Table Kernel Job & Data

System Memory ...

Queues VA Translation Table Kernel Job & Data

Write IndexWrite Index

DoorBell

Read Index

A

B C

Read Index
Write Index

queueType

queueFeatures

baseAddress

doorbellSignal

queueSize

serviceQueue

queueID

queueType

queueFeatures

baseAddress

doorbellSignal

queueSize

serviceQueue

queueID

Figure 3.5: Dispatching kernels to accelerators utilizing the GPPU through
user-level accessible circular queues. Outline of queue context.

A user-level queue is a shared memory space between Host CPU (saveHSA Agent) and GPPU that

is used to implement one-way communication from the Host CPU to the GPPU. Both, Host CPU

and GPPU have to maintain an internal state able to read and write to the command buffer in

a consistent way. Intra-node communication to achieve a complete offload operation involves the

launch, active and completion phases.

The Host CPU needs to initialize specific contexts in the GPPU in order to configure the communi-

cation protocol parameters. A user application is then allowed to enqueue command packets to the

ring buffer queue using the Packet ID info. In fact, a new Packet ID info can be obtained calling

the GPPU runtime using a specific API. Thus, by acquiring the new packet ID an application can

calculate the virtual address (userspace VA) to find the available packet within the ring buffer.

16 Chapter 3. Architecture

Using the userspace VA the packet can be populated according to the predefined AQL format in-

cluding parameters and pointers to the workset (data of the kernel) that need to offload. Finally,

the application creates a signal to monitor the task completion and notifies the GPPU that the

packet is ready to be processed via a doorbell. The doorbell signaling allows each application that

offloads packets to notify the GPPU of packets that are ready waiting to be served. Signals can be

actually considered shared memory locations containing an integer. The GPPU will dispatch all

packets from a circular queue until a barrier packet is identified.

Queue activation by the host makes the GPPU aware of the queue context to be initialized and

managed (figure 3.5). Since the hardware accelerator requires access to the physical address space of

the application, an I/O MMU is needed. Optionally the GPPU runtime can translate the userspace

VAs related to the kernel job and kernel arguments (workset) to PA addresses. Essentially, it gets

the PA from the kernel VA using the OS service. Once the kernel and workset addresses are

built, they are encapsulated into the dispatch packet. During the GPPU dispatch phase, when the

doorbell has been received, the PA of the AQL packet is obtained using the base address and the

readIndex.

Next, we describe the functionality of every GPPU’s discrete subunit, as seen in figure 3.2, in more

detail.

GPPU Memory Mapped Interface

The memory mapped interface, consists of sixty seven (67) 32-bit registers with little- endian for-

mat that provides a developer with the ability to communicate, initialize and command the GPPU.

Table 3.1 shows the registers in offset order from the base memory address. Registers with the

same functionality have been omitted for practical seasons, and only the first and last of the same

group are recorded; in such cases the offset of every next register, always equals to: current offset

+ 4.

3.2. Unified Heterogeneous Systems Architecture 17

Table 3.1: GPPU IF registers summary

Offset Name Type Reset Width Description

0x000 DOORBELL_QUEUE0 RW 0x0 32 Any non zero value, notifies

the GPPU to process queue

0. Queue 0 should have been

activated before writing this

register.

.

0x03C DOORBELL_QUEUE15 RW 0x0 32 Any non zero value, notifies

the GPPU to process queue

15. Queue 15 should have

been activated before writing

this register.

0x040 WRITE_PTR_QUEUE0 RW 0x0 32 Queue 0 write pointer,

GPPU’s copy. Initialized by

AQLSM to 0x0.

0x044 READ_PTR_QUEUE0 RW 0x0 32 Queue 0 read pointer,

GPPU’s copy. Initialized by

AQLSM to 0x0.

.

0x0B8 WRITE_PTR_QUEUE15 RW 0x0 32 Queue 15 write pointer,

GPPU’s copy. Initialized by

AQLSM to 0x0.

0x0BC READ_PTR_QUEUE15 RW 0x0 32 Queue 15 read pointer,

GPPU’s copy. Initialized by

AQLSM to 0x0.

Table continued on next page

18 Chapter 3. Architecture

Table 3.1: GPPU IF registers summary

Offset Name Type Reset Width Description

0x0C0 SIZE_QUEUE0 RW 0x0 32 Queue 0 size. Values [1...64]

.

0x0FC SIZE_QUEUE15 RW 0x0 32 Queue 15 size. Values [1...64]

0x100 GPPU_START RW 0x0 32 Value 0x1 triggers GPPU to

start operate. Should set all

the rest registers first. Reset

Value triggers GPPU to stop

operate.

0x104 QUEUES_BASE_ADDR RW 0x0 32 Holds the base physical ad-

dress that queues are written

in system’s main memory.

0x108 ACTIVE_QUEUES RW 0x0 32 Holds the status of the

queues, in a bitwise perspec-

tive. Bit[0] refers to queue 0,

bit[1] refers to queue 1 and

so on .Value 0x1 means active

and 0x0 inactive.

Packets BRAM

The packets BRAM is used for storing, local to the GPPU, packets of active queues that have been

written to system’s main memory by user a application. The maximum capacity of the BRAM is

64KB and this arises from the formula:

max capacity = max queues * max queue size * packet size = 16 * 64 * 64 = 65536 Bytes.

3.2. Unified Heterogeneous Systems Architecture 19

Packets DMA Engine

The packets DMA is used for copying queues packets from system’s main memory to packets

BRAM, in a fast manner.

Dispatcher

The dispatcher is responsible for tracking the GPPU’s registers, and orchestrating both the packets

DMA engine and the scheduler. The queue are served using a simple round robin algorithm. Figure

3.6 is an FSM that depicts an abstracted view of its functionality.

TrackingTracking

IdleIdle

GPPU_START = 0GPPU_START = 0

GPPU_START = 1

reset

DMA fetch
pkt/s

DMA fetch
pkt/sDOORBELL_QUEUEx

Notify
dispatcher

Notify
dispatcher

Update
READ_PTR_QU

EUEx

Update
READ_PTR_QU

EUEx

GPPU_START = 0

DMA send
pkt/s

DMA send
pkt/s

Scheduler signals
packet/s job done

Figure 3.6: Dispatcher FSM. Words written in capitals refers to GPPU
registers as described in table 3.1.

20 Chapter 3. Architecture

The above FSM diagram, with more implementation details, can be described as follows:

• After a system reset the dispatcher enters and stays in idle state, until the value of GPPU_START

register changes to 0x1.

• The dispatcher enters tracking state and polls the DOORBELL_QUEUE[0-15] registers, as

well as being ready to receive signals from the scheduler.

• If any of the DOORBELL_QUEUEx register value is updated to 0x1:

– Programs the DMA to fetch packet/s, from the appropriate queue. Since the queues are

implemented as circular buffers, the amount of packets to fetch is calculated as follows:

Pseudo-code:

If READ_PTR_QUEUEx > WRITE_PTR_QUEUEx then

packets_amount = SIZE_QUEUEx - READ_PTR_QUEUEx + \

WRITE_PTR_QUEUEx

else

packets_amount = WRITE_PTR_QUEUEx - READ_PTR_QUEUEx

– Notifies scheduler about the pending to serve packets.

– Enters in tracking state.

• If the scheduler sends a signal about served jobs:

– Dispatcher, updates the appropriate packets.

– Programs the DMA to send them back to the system’s main memory.

– Updates the READ_PTR_QUEUEx register value.

– Enters in tracking state.

Active Jobs BRAM

The active jobs BRAM is being used the GPPU’s scheduler, in order to store information about

accelerators state, pending and finished jobs. Also the BRAM is used for mapping the jobs with a

specific queue and packet, from which arose.

3.3. Hardware Support for Acceleration and Dynamic Adaptation 21

Scheduler

The GPPU scheduler is responsible for processing the fetched packets, programming an available

and capable of doing the job accelerator and the GATT which will be described in chapter 3.4.1.

When a job is done, it notifies the dispatcher in order to sent back to the main system memory the

completed packet. In case of error it notifies the dispatcher accordingly.

3.3 Hardware Support for Acceleration and Dynamic Adaptation

Hardware accelerators are developed to support :

• Matrix multiplication operations using DMA streaming interfaces.

• Sobel edge detection image filtering using DMA streaming interfaces.

We see in [17] that in comparison NEON technology is investigated which is based on single instruc-

tion, multiple data (SIMD) operations in ARMv7 processors, which implement the advanced SIMD

architecture extensions tightly coupled to the processor. From a hardware perspective, NEON is a

separate hardware unit on Cortex-A series processors, together with a vector floating point (VFP)

unit. In order to enable NEON technology the application is compiled by activating:

-mcpu=cortex-a9 -mfpu=neon -ftree-vectorize -mvectorize-with-neon-quad -mfloat-abi=softfp -ffast-

math.

For a matrix multiplication with 30x30 sized operands they collected statistics through the PMU

(hardware performance counters) and it results in an average IPC of 1.29. In comparison the

same operations through using a hardware matrix multiplier that retrieves the data from the

system memory in a DMA streaming fashion delivers an average IPC of 3.44. However, to take

advantage of this benefit, dispatching kernels computations to these hardware accelerators must be

done in an efficient way, removing traditional operating system latencies, i.e. by using the GPPU

infrastructure.

22 Chapter 3. Architecture

3.4 System Memory Management

3.4.1 General Address Translation Table

Modern operating systems, uses virtual address space and pages of 4KB, as usual, to access the

memory. One of the characteristics of these pages is that they may be not contiguous in memory.

So for example, an 8KB page aligned buffer is stored in memory in two different pages and which

are most possibly non contiguous.The GATT (figure 3.7) has been designed to handle situations,

like the one described above.

HW Accelerator

CPU

GPPU

User App

Pages-
Buffers

GATT

RAM

VA

AQLSM
Queues

Tail

Head

Queues
Partition

OS

Partition

QN Q0 Q1

Figure 3.7: Organization integrating a device VA translation core (GATT).

In combination with a kernel driver and AQLSM, the GATT can fetch from the system memory

pinned pages translations and program the accelerators accordingly. GATT can operate in two

modes: 1. non-page mode and 2. page mode. The first mode is used when the data are stored

in memory contiguously, therefore an accelerator’s DMA has to be programmed only once. The

second is used when the data are stored in pages and non contiguously, so an accelerator’s DMA

has to be programmed in a per page perspective. There is one restriction in the second mode, that

is the pages translations have to be written in a contiguous address space in memory.

3.4. System Memory Management 23

3.4.2 System Memory Management using GATT

Generally applications issue a malloc() call to creates a buffer object that is made available in its

own virtual address space as a contiguous memory area. However, if its size exceeds the system

page size it may span physical memory pages that are not contiguous (for instance in the context

of 4K UHDTV (2160p), which is 3840 pixels wide by 2160 pixels tall (8.29 megapixels), with 3x12

bits/pixel, 37,324,800 are required, or 9113 pages of 4KB each). Even though it is preferable to use

physically contiguous pages in memory both for cache related and memory access latency reasons

this is not possible when a user-level application makes malloc() calls.

In the scope of the developed method, the user application uses AQLSM API to discover the physical

addresses of the space allocated after such a malloc() system call. In addition, this particular driver

must handle cache effects. If these is no HW to provide cache coherency, the memory space allocated

with a malloc() , must be non-cacheable, or must be flushed before giving control to a hardware

accelerator.

In order to address have contiguous buffers the I/O MMU block is generally used. The I/O MMU

enables the usage of virtual addresses by translating shared data between host processors and

computation islands. As matter of the fact, a dual stage I/O MMU, such as the ARM SMMU,

can resolve this problem by translating VAs to PAs in hardware. Thus I/O MMU will allow the

computation island to access the contiguous area allocated by the application in user space. The

main drawbacks in using the I/O MMU is performace degradation due to the translations.

The GPPU, both the hardware and software GPPU components ensure user level access to appli-

cations and the agents running in the computation islands. Therefore GPPU enables to manage

contiguous buffers allocated in user space by the computation islands. This is implemented via the

GATT that is a mechanism which offers a contiguous view of the system memory to a Hardware

Accelerator as described in section 3.4.1. In other words it provides an intermediate layer between

the Hardware Accelerator that issues accesses to a virtual address space which is remapped to

the paged system memory, an arbitrary (scattered) subset of the system’s memory pages. The

Hardware Accelerator/Device sees a consecutive address space. The GPPU communicates both

with the Device to assign a job and with the GATT to configure it for the lifetime of this job. The

24 Chapter 3. Architecture

GPPU itself can access directly a queue using its physical base-address plus the packet offset and

the GATT to initialize the context for the current offload operation. In its simplest, low complexity

and low-cost version the GATT support a single context, thus serializing subsequent operations.

3.5 Software Library

This section introduces the main concepts of the GPPU programming model by outlining how they

are exposed in the runtime API referred hereafter AQL aware system manager (AQLSM). Also

presents the steps that are needed to launch a compute kernel.Figure 3.8 illustrates on overview of

the developed software stack.

User Application

AQLSM Runtime

AQLSM
API

User I/O Driver
Pages Translation

Driver

UHSA
 API

UHSA Technology IF

UHSA-enabled
Computation Islands

Memory
Management

Unit

MMU
API

Figure 3.8: UHSA technology software stack.

3.5. Software Library 25

3.5.1 AQLSM Queues Buffers Management

During the system’s boot time, the infrastructure reserves a partition in systems memory for

managing the queues buffers. In this way, it is ensured that it will not be in use by the host OS.

When the AQLSM is initialized that reserved partition, becomes available by a mmap() system call.

The use of mmap() also ensures that the VA returned corresponds to physically contiguous address

space. Hereafter, the AQLSM can export the VA of a queue requested by a user application, by

simply adding the appropriate offset to the base returned VA. The offset is calculated with the

following simple formula:

offset = base_VA + (queue_id * Q_MAX_PKTS), where queue_ID is the queues serial number

from zero to the maximum available queues minus one, and Q_MAX_PKTS is the predefined

maximum amount of packets a queue can have.

3.5.2 AQLSM Data Buffers Management

There are two different approaches for the data buffers management by AQLSM:

• The System Memory Partition (SMPart) data buffer technique.

• The SysTem Memory (STM) data buffer technique.

SMPart Data Buffers

During the system’s boot time, the infrastructure reserves a partition in systems memory for

managing the data buffers. In this way, it is ensure that it will not be in use by the host OS.

When the AQLSM is initialized that reserved partition, becomes available by a mmap() system

call. The use of mmap() also ensures that the VA returned corresponds to physically contiguous

address space. Hereafter, the AQLSM can export the VA of a queue’s data buffer requested by a

user application, by simply adding the appropriate offset to the base returned VA. The offset is

calculated with the following simple formula:

offset = base_VA + (queue_id * (QUEUE_MAX_DATA)), where queue_ID is the queues serial

26 Chapter 3. Architecture

number from zero to the maximum available queues minus one, and QUEUE_MAX_DATA is the

predefined maximum amount of data buffer, in bytes, a queue can have.

This approach is distinguished by it simplicity and the fact that data is physically contiguous, thus

the accesses by devices may be faster. On the other hand, the maximum amount of data buffer for

serving a queue is limited by a predefined value, and no extra allocation may occur, no matter the

available unused memory space.

STM Data Buffers

This data buffers management approach, uses the default system memory allocation scheme that

the OS provides. When a user application request a data buffer from AQLSM, it is undertaking

the subsequent:

• Allocate a data buffer of the requested size, aligned to page, using a system call.

• Request the pages translation for the buffer, from a kernel driver (chapter 3.5.4).

• Returns to user, the VA of the allocated data buffer , and the PA of the buffer’s pages

translation list. This buffer’s pages translation list is stored in a contiguous memory space,

using the system’s contiguous memory allocator (CMA).

This approach, can provide the application with a variable size of data buffers, as long as the

system has available free memory. The disadvantages are: 1. the data buffers have to be pinned in

memory in order to prevent any swapping in different regions of the same memory or even worse

in region of an other memory (e.g. a disk drive), 2. the translation of the buffer introduces extra

delay and all the caching effects from the MMU’s translation lookaside buffer. Of course AQLSM

provides the ability, of freeing any allocated data buffers, by unpinning the pages from the memory,

deallocating the space for the pages translation and the exported to user buffers.

3.5. Software Library 27

3.5.3 Host System - GPPU Synchronization

In order to achieve correct and efficient operation of a UHSA-enabled heterogeneous SoC, synchro-

nization operations are required due to multiple initiators acting on the shared resources. Syn-

chronization is applied both due to the developed GPPU components (hardware and software) and

due to the programmers barriers and flag synchronizations implemented in the user code. Hence

synchronization solutions are employed for the following cases.

• A user application requests a queue of type SINGLE; the system must ensure that no con-

current requests for a SINGLE queue will be satisfied with the same queue ID.

• The GPPU serves the last valid packet of a queue and needs to reset the status of the doorbell

signal; if a user application launches a new job the doorbell signal must be set to a consistent

state.

• Shared queues: since the AQLSM runs in a distributed fashion when multiple applications

share one queue the AQLSM need to synchronize the service of these applications. For

instance, no application must get the same write pointer. A more strict rule is hereby called

sequential offload, which states that in order submission of jobs must be guaranteed by the

AQLSM, in order for the GPPU to avoid “bubbles” when advancing the read pointer to serve

the next ready packet.

In summary, the following race conditions, summarized in table 3.2, need atomic access with sup-

port of synchronization primitives. In total three potential cases can be raised, while two different

locks are employed hereafter, since it is impossible for cases one and two to occur concurrently and

access the same locations. For performance reasons case 3 can be expanded to isolate operations

that can occur concurrently in different queues of type MULTI; in this the number of L2 locks must

be scaled to the number of queues of type MULTI that are supported in the system.

28 Chapter 3. Architecture

Table 3.2: Race conditions in a PUMA-enhanced system

Lock Case Comment

L1 User Apps request a new queue ID Queue availability is a bit map maintained

inside the GPPU

L2 User Apps destroy a queue upon exit and

App request a new queue

Avoid false queue allocation

L3 User Apps request a write pointer for a

MULTI Queue

Avoid contention for the same packet

AQLSM takes the form of a library that is linked together with the user application either statically,

or as a shared library named libAQLSM.so that is loaded by the application when it starts (in

a GNU glibc-based system). Race conditions are considered during the AQLSM runtime since

different applications can concurrently issue requests for shared objects, such as access to the

data structure of available queues, or the write pointers of a shared circular buffer. Since these

objects reside in shared system memory and the AQLSM runtime consists of multiple concurrent

instances, synchronization primitives are required for mutual exclusion and signaling. We utilized

the inherent support of ARMv8 specific instructions for atomic operations, using shared variables

between multiple applications. The following inlined assembly code enables the lock and unlock of

a mutex (shared variable) in user space.

Userspace Mutex Lock

1 /* Atomically load *ptr , if ’0’, atomically store ’1’,
2 *aka lock. Else exit .*/
3 __asm (" ldaxr %x[old_val],[%x[ptr]]\n"
4 "cbnz %x[old_val], 1f\n"
5 "stlxr %w[error] , %x[lock], [%x[ptr]]\n"
6 "1:\n"
7 : [error]"=&r" (error)
8 : [old_val]"r" (old_val),[ptr]"r" (ptr),[lock]"r" (0x1)
9 : "cc", " memory "

10);

3.5. Software Library 29

Userspace Mutex Unlock

1 /* Atomically load *ptr , if ’1’, atomically store ’0’,
2 *aka release lock. Else exit .*/
3 __asm (" ldaxr %x[old_val], [%x[ptr]]\n"
4 "cmp %x[old_val], #1\n"
5 "bne 2f\n"
6 "stlxr %w[error] , %x[unlock], [%x[ptr]]\n"
7 "2:\n"
8 :[error]"=&r" (error)
9 :[old_val]"r" (old_val),[ptr]"r" (ptr),[unlock]"r" (0x0)

10 :" cc", " memory "
11);

We compared our implementation with two of the locking mechanisms that linux kernel already

provides. Figures 3.9, 3.10 and 3.11 depictes the performance of different locking solutions on ARM

big.little (big: 2 cores A-57, little: 4 cores A-53) architecture, and the maximum and minimum

operating frequencies regarding the big core.

Figure 3.9: Locks Benchmarking, on ARM Cortex A53 650MHz.

30 Chapter 3. Architecture

Figure 3.10: Locks Benchmarking, on ARM Cortex A57 600MHz.

Figure 3.11: Locks Benchmarking, on ARM Cortex A57 1.15GHz.

3.5. Software Library 31

3.5.4 UHSA Technology Drivers

At the lowest level of the AQLSLM runtime exists the I/O model used in Linux. The GPPU uses

the alternative linux I/O model known as UIO drivers that directly maps the GPPU memory to a

user space address range. In the context, user space applications have direct access to the GPPU

memory, which includes configuration registers and AQL queues and other structures. All accesses

by the application to the assigned address range, ends up to direct access of the GPPU memory.

Also a kernel space driver has been developed, which provides the translation (VA to PA) of user

space allocated buffers, in order to give the ability of accessing the system’s main memory it I/O

MMU-less environments. Finally a kernel driver has been developed in order to emulate a legacy

acceleration scheme and be able to compare its performance with UHSA technology.

GPPU User Space Drivers

GPPU as mentioned uses the standard Linux UIO (User I/O) framework for developing the AQLSM

API. The UIO framework defines a small kernel space component that performs a key task that

is indicate device memory regions to user space. The kernel space UIO component then exposes

the device via a set of sysfs entries like /dev/uioXX, which are declared and enumerated with the

appropriate entries in the device tree. The device tree is a data structure for describing hardware,

which originated from Open Firmware. The AQLSM API searches for these entries, reads the

device address ranges and maps them to user space memory.

Page Translation Driver

The developed pages translation driver, provides the AQLSM with the ability of accessing the

system’s main memory it I/O MMU-less environments. The communication with the driver is

established though the ioctl() command infrastructure. The driver supports two commands, trans-

late buffer pages and release buffer pages. When a translate buffer pages is issued, the driver pines

in memory and translates the buffer’s pages, generates an ordered list of their PAs and stores them

in a contiguous memory space with the services of the contiguous memory allocator (CMA) and

32 Chapter 3. Architecture

returns to the caller the PA of that list. When a release buffer pages is issued, the driver un-pines

from memory the translated buffers and deallocates the space where the list was previously stored.

Finally the driver has the ability to clear the system’s cache if the system does not provide any

cache coherence between the CPUs and external devices.

Legacy Acceleration Driver

The developed legacy acceleration driver, has the ability to communicate directly with the hardware

acceleration devices, and offload task to them. This is achieved with the following steps:

• Allocate two contiguous data buffers in kernel space using the system’s CMA. One for the

source data and one for the results.

• Copy the caller’s source data buffer from user to kernel (allocated in the previous step) space.

• Program the acceleration hardware accordingly. Note that the driver is aware of the buffer’s,

allocated in the first step, physical address.

• Poll the acceleration device upon caller’s request, to find out if the offloaded task has finished.

• When the offloaded task has finished, copies the results data from kernel to user space and

frees the allocated, in the first step, buffers.

3.5.5 UHSA Programming Support

This section introduces the main concepts behind the GPPU programming model by outlining how

they are exposed in the runtime API. This document also shows the steps that are needed to launch

a compute kernel.

Initialization and Component Discovery

Any SAVE application must initialize the AQLSM before invoking any other API:

aqlsm_init ();

3.5. Software Library 33

The next step is to find the accelerator where to launch the compute kernel. In Save a regular

on-chip or off chip accelerator is called an agent, and if the agent can run compute kernels then

it is also a component. Agents and components are represented in the AQLSM API using opaque

handles of type aqlsm_agent_t.

The AQLSM API exposes the set of available agents via aqlsm_iterate_agents. This function

receives a callback and a buffer from the application; the callback is invoked once per agent un-

less it returns a special “break” value or an error. In this case, the callback queries an agent

attribute (AQLSM_AGENT_INFO_FEATURE) in order to determine whether the agent is also

a component. If this is the case, the component is stored in the buffer and the iteration ends:

aqlsm_agent_t component ;
aqlsm_iterate_agents (get_component , & component);

where the aqlsm_agent_t is defined as:

typedef uint64_t aqlsm_agent_t ;

and the application-provided callback get_component is:

aqlsm_status_t get_component (hqlsm_agent_t agent , void* data ,
aqlsm_agent_info_t attribute) {

uint32_t features = 0;
aqlsm_agent_get_info (agent , attribute , & features);
if (features & AQLSM_AGENT_FEATURE_DISPATCH) {

// Store component in the application - provided buffer and return
aqlsm_agent_t * ret = (aqlsm_agent_t *) data;
*ret = agent ;
return AQLSM_STATUS_INFO_BREAK ;

}
// Keep iterating
return AQLSM_STATUS_SUCCESS ;

}

where the aqlsm_agent_get_info() returns the query to features variable and the attribute is

defined as:

typedef enum {
AQLSM_AGENT_INFO_NAME ,

34 Chapter 3. Architecture

AQLSM_AGENT_INFO_VENDOR_NAME ,
AQLSM_AGENT_INFO_FEATURE ,
AQLSM_AGENT_INFO_QUEUES_MAX ,
AQLSM_AGENT_INFO_QUEUE_MAX_SIZE ,
AQLSM_AGENT_INFO_QUEUE_TYPE ,
AQLSM_AGENT_NEXT_NODE ,
AQLSM_AGENT_NEXT_SUBNODE ,
AQLSM_AGENT_INFO_DEVICE ,
AQLSM_AGENT_INFO_CACHE_SIZE

} aqlsm_agent_info_t ;

The AQLSM API represents agents using opaque handles of type aqlsm_agent_t. The application

can traverse the list of agents that are available in the system using aqlsm_iterate_agents, and

query agentspecific attributes using aqlsm_agent_get_info. Examples of agent attributes include:

name, type of backing device (CPU, HW accelerator,GPPU, Programmable accelerator, IO), and

supported queue types. If an agent supports Dispatch packets, then it is also a component (supports

the AQL). The application might inspect the AQLSM_AGENT_INFO_FEATURE attribute in

order to determine if the agent is a component. Components expose a rich set of attributes related

to kernel dispatches.

Queues and AQL packets

When an application wants to launch a kernel in a component, it does so by placing an AQL packet

in a queue owned by the component. A packet is a memory buffer encoding a single command.

There are different types of packets; the one used for dispatching a kernel is named Dispatch packet.

The packet structure is known to the application, but also to the hardware, and is well defined as

follows:

typedef uint64_t aqlsm_signal_t ;

typedef struct aqlsm_packet_header_s {
aqlsm_packet_type_t type : 8;
uint16_t barrier : 1;
aqlsm_fence_scope_t acquire_fence_scope : 2;
aqlsm_fence_scope_t release_fence_scope : 2;
uint16_t reserved : 3;

} __attribute__ ((packed , aligned (1))) aqlsm_packet_header_t ;

3.5. Software Library 35

typedef struct dispatch_agent_packet_s {
aqlsm_packet_header_t header ;
uint16_t dimensions : 2;
uint16_t reserved : 14;
uint16_t workgroup_size_x ;
uint16_t workgroup_size_y ;
uint16_t workgroup_size_z ;
uint16_t reserved2 ;
uint32_t grid_size_x ;
uint32_t grid_size_y ;
uint32_t grid_size_z ;
uint32_t private_segment_size ;
uint32_t group_segment_size ;
uint64_t kernel_object_address ;
uint64_t kernarg_address ;
uint64_t reserved3 ;
aqlsm_signal_t completion_signal ;

} __attribute__ ((packed , aligned (1))) aqlsm_dispatch_packet_t ;

Also the queue structure is defined as follows:

typedef struct aqlsm_queue_pointers_s {
uint32_t read_pointer ;
uint32_t write_pointer ;
} aqlsm_queue_pointers_t ;

typedef struct aqlsm_queue_s {
aqlsm_queue_type_t type;
uint32_t features ;
uint64_t virtual_address ;
aqlsm_signal_t doorbell_signal ;
uint32_t size;
uint32_t id;
aqlsm_agent_t agent;
aqlsm_queue_pointers_t pointers ;
volatile uint64_t base_adress ;
volatile uint8_t * data_virtual_address ;
uint64_t data_physical_address ;
uint64_t service_queue ;
} aqlsm_queue_t ;

This is a key GPPU feature that enables applications to launch a packet in a specific agent by

simply placing it in one of its queues. The formula to calculate the address in memory to place the

packet is: queue->base_address + (AQL packet size) * ((packet ID) % queue->size). The GGPU

includes several runtime-allocated queues that contains a packet buffer and a packet processor. The

36 Chapter 3. Architecture

packet processor (dispatcher) of the GPPU tracks which packets in the buffer have already been

processed. When it has been informed by the application that a new packet has been enqueued,

the GPPU is able to process it because the packet format is standard and the packet contents

are self-contained they include all the necessary information to run a command. The GPPU is a

hardware unit that is aware of the different packet formats.

After introducing the basic concepts related to packets and queues, we can go back to our example

and create a queue in the component using aqlsm_queue_create. The queue creation can be

configured in multiple ways. In the snippet below the application indicates that the queue should

be able to hold 64 packets.

aqlsm_queue_t * queue;
aqlsm_queue_create (component , 64, QUEUE_TYPE_SINGLE , NULL ,NULL ,& queue);

The next step is to ask the AQLSM to return a write pointer for the acquired queue that is the

packet_id. The caller should also parse the amount of packets that wants to utilize and a pointer

which shall include information about the available slots at the current moment:

packet_id = aqlsm_queue_add_write_index_relaxed (queue , packets_amount ,
& available_slots);

The next step is for the application to acquire and initialize the source and destination data buffers.

If the application is going to utilize the queue’s preserved buffer for source and destination data

(SMPart), the base VA and size of the buffer information, is encapsulated in the aqlsm_queue_t

structure,created during the queue creation. If the application is going to utilize system managed

buffer, the PA of the translated buffer’s list should be encapsulated in the packet, so the GATT

(chapter 3.4.1) can operate properly. This is done with the following function calls:

// allocate data
aqlsm_allocate_data_buffer (aqlsm_queue_t *queue , uint32_t buffer_size ,

void ** acquired_buffer ,
uint64_t * pages_physical_address);

The next step is to create a packet and push it into the newly created queue. Packets are not

created using an AQLSM function. Instead, the application can directly access the packet buffer

3.5. Software Library 37

of any queue and setup a kernel dispatch by simply filling all the fields mandated by the Agent

packet format (type aqlsm_dispatch_packet_t). The location of the packet buffer is available in

the base_address field of any queue:

aqlsm_dispatch_packet_t * dispatch_packet =
(aqlsm_dispatch_packet_t *) queue -> base_address ;

// Configure dispatch dimensions : use a total of 256 work -items
dispatch_packet -> dimensions = 1;
dispatch_packet -> grid_size_x = 256;
// Configuration of the rest of the Dispatch packet
// is omitted for simplicity

Signals and packet launch

The Dispatch packet is not launched until the application informs the GPPU that there is new

offload work available. The notification is divided in two parts:

• The type field in the packet header must be atomically set to the appropriate value using a

release memory ordering. This ensures that the modifications to the rest of the packet listed

before are globally visible before or at the same time the desired packet type is visible. One

possible implementation of the atomic storage (in GCC) is:

__atomic_store_n ((uint8_t *) & dispatch_packet ->header ,
(uint8_t) AQLSM_PACKET_TYPE_DISPATCH ,

__ATOMIC_RELEASE);

where the specified address is that of the header field, and not type, because the C standard

disallows taking the address of a bit-field. The above function is wrapped in the following

function:

void packet_type_store_release (aqlsm_packet_header_t * header ,
aqlsm_packet_type_t type);

• The buffer index where the packet has been written (in the example, zero) must be stored in

the doorbell signal of the queue.

38 Chapter 3. Architecture

The available values for the packet header are defined as follows:

typedef enum {
AQLSM_PACKET_TYPE_ALWAYS_RESERVED = 0,
AQLSM_PACKET_TYPE_INVALID = 1,
AQLSM_PACKET_TYPE_DISPATCH = 2,
AQLSM_PACKET_TYPE_BARRIER = 3,
AQLSM_PACKET_TYPE_AGENT_DISPATCH = 4

} aqlsm_packet_type_t ;

where only AQLSM_PACKET_TYPE_DISPATCH and AQLSM_PACKET_TYPE_BARRIER

are currently supported.

A signal is a runtime-allocated, opaque object used for communication between agents in a system

that includes GPPUs. Signals are similar to shared memory locations containing an integer. Agents

can atomically store a new integer value in a signal, atomically read the current value of the signal,

etc. using AQLSM functions. Signals are the preferred communication mechanism in a system

because signal operations usually perform better (in terms of power or speed) than their shared

memory counterparts.

The AQLSM API uses opaque signal handlers of type aqlsm_signal_t to represent signals. A

signal carries an integer value of type aqlsm_signal_value_t that can be accessed or condition-

ally waited upon through an API call. The value occupies four or eight bytes depending on the

machine model (small or large, respectively) being used. The application creates a signal using

aqlsm_signal_create. Modifying the value of a signal is equivalent to sending the signal. In addi-

tion to the regular update (store) of a signal value, an application can perform atomic operations

such as add, subtract, or compare-and-swap.. When the runtime creates a queue, it also automati-

cally creates a doorbell signal that must be used by the application to communicate with the packet

processor and inform it of the index of the packet ready to be consumed. The doorbell signal is

contained in the doorbell_signal field of the queue. The value of a signal can be updated using

hsa_signal_store_release:

aqlsm_signal_store_release (queue , packet_id , signal);

After submission, a packet can be in one of the following five states:

3.5. Software Library 39

• In queue

The GPPU has not started to parse the current packet. The transition to the launch state

only occurs after all the preceding packets have completed their execution if the barrier bit is

set in the header. If the bit is not set, the transition occurs after the preceding packets have

finished their launch phase. In other words, while the packet processor is required to launch

any consecutive two packets in order, it is not required to complete them in order unless the

barrier bit of the second packet is set.

• Launch

The packet is being parsed by the GPPU, but it did not start executing. This phase finalizes

by applying an acquire memory fence with the scope indicated by the acquire_fence_scope

header field. Memory fences.

If an error is detected during launch, the queue transitions to the error state and the event

callback associated with the queue (if present) is invoked. The runtime passes a status code

to the callback that indicates the source of the problem. The following status codes might be

returned:

– AQLSM_STATUS_ERROR_INVALID_PACKET_FORMAT

Malformed AQL packet. This could happen if,for example, the packet header type is

invalid.

– AQLSM_STATUS_ERROR_OUT_OF_RESOURCES

The GPPU is unable to allocate the resources required by the launch. This could happen

if, for example, a Dispatch packet requests more private memory than the size of the

private memory declared by the corresponding component.

• Active

The execution of the packet has started. If an error is detected during this phase, the queue

transitions to the error state, a release fence is applied to the packet with the scope indicated

by the release_fence_scope header field, and the completion signal (if present) is assigned a

negative value. There is no invocation of the callback associated with the queue. If no error

is detected, the transition to the complete state happens when the associated task finishes

40 Chapter 3. Architecture

(in the case of Dispatch and Agent Dispatch packets), or when the dependencies are satisfied

(in the case of a Barrier packet).

• Complete

A memory release fence is applied with the scope indicated by the release_fence_scope header

field, and the completion signal (if present) decremented.

• Error An error was encountered during the launch or active phases. No further packets

will be launched on the queue. The queue cannot be recovered, but only inactivated or

destroyed. If the application passes the queue as an argument to any AQLSM function other

than aqlsm_queue_inactivate or aqlsm_queue_destroy, the behavior is undefined.

After the GPPU has been notified, the execution of the kernel may start asynchronously at any

moment and the application could simultaneously write more packets to launch other kernels in

the same queue. The application could simultaneously write more packets to launch other kernels

in the same queue.

If the application wants to get informed about the launched packets state, this can be achieved

with the following function call:

aqlsm_signal_wait_acquire (queue , max_time_to_wait_in_ms);

The final steps before an application exits, should be signal and queue destroy, with the following

function calls:

aqlsm_signal_destroy (signal);
aqlsm_queue_destroy (queue);
aqlsm_shutdown ();

For the full implementation in C and assembler code for arm64 architectures, of the AQLSM

runtime, you are encouraged to contact us at form of our labs site at: http://isca.teicrete.gr

or my supervisors, George Kornaros, email address kornaros@ie.teicrete.gr

http://isca.teicrete.gr
kornaros@ie.teicrete.gr

3.6. UHSA Workload Offloading Example 41

3.6 UHSA Workload Offloading Example

This example, illustrates how packet IDs are reserved (invocation of aqlsm_queue_add_write_index_relaxed),

and how the application can wait for a packet to be complete (invocation of aqlsm_signal_wait_acquire).

The application creates a signal with an initial value of 1, sets the completion signal of the Dispatch

packet to be the newly created signal, and after notifying the packet processor it waits for the signal

value to become zero. The decrement is performed by the packet processor, and indicates that the

kernel has finished.

1 int main () {
2 // Initialize the runtime
3 aqlsm_init ();
4
5 // Retrieve the component
6 aqlsm_agent_t component ;
7 aqlsm_iterate_agents (get_component , & component);
8
9 // Create a queue in the component . The queue can hold 4 packets ,

and has no callback or service queue associated with it
10 aqlsm_queue_t * queue;
11 aqlsm_queue_create (component , 4, AQLSM_QUEUE_TYPE_SINGLE , NULL , NULL

, &queue);
12
13 // Request a packet ID from the queue. Since no packets have been

enqueued yet , the expected ID is zero
14 uint64_t packet_id = aqlsm_queue_add_write_index_relaxed (queue , 1);
15
16 // Calculate the virtual address where to place the packet
17 aqlsm_dispatch_packet_t * dispatch_packet = (aqlsm_dispatch_packet_t

*) queue -> base_address + packet_id ;
18 // Populate fields in Dispatch packet , except for the completion

signal and the header type initialize_packet (dispatch_packet ,
...);

19
20 // Create a signal with an initial value of one to monitor the task

completion
21 aqlsm_signal_t signal ;
22 aqlsm_signal_create (1, 0, NULL , & signal);
23 dispatch_packet -> completion_signal = signal ;
24
25 // Notify to the GPPU the queue that the packet is ready to be

processed

42 Chapter 3. Architecture

26 packet_type_store_release (& dispatch_packet ->header ,
AQLSM_PACKET_TYPE_DISPATCH);

27 aqlsm_signal_store_release (queue , packet_id , signal);
28
29 // Wait for the task to finish (max 500 ms), which is the same as

waiting for the value of the completion signal of the launched
packet to become zero

30 while (aqlsm_signal_wait_acquire (queue , 500) != 0);
31
32 // Done! The kernel has completed . Time to cleanup resources and

leave
33
34 aqlsm_signal_destroy (signal);
35 aqlsm_queue_destroy (queue);
36 aqlsm_shut_down ();
37 return 0;
38 }

As shown in the above example the GPPU infrastructure allows a programmer to write applica-

tions that seamlessly integrate different computing units removing today hurdles such as different

memory spaces between CPU and heterogeneous computation islands. In particular, the GPPU

infrastructure provides the capacity to:

• Remove the programmability barrier.

• Reduce the communication latency.

• Open the programming platform to dynamic adaptivity.

43

Chapter 4

Results and Analysis

In this chapter will describe t objective to demonstrate the UHSA technology benefits for embedded

systems and HPC supporting CPU and off-chip hardware accelerators.

4.1 Evaluation objectives

The main goal of this validation platform is the performance evaluation of the UHSA technology

for dispatching kernels from the processor to off-chip hardware accelerator in embedded UHSA-

enabled systems. In particular, the platform is a Linux SMP running on ARMv8-based Juno-R1

ARM Development Platform (ADP), extended with a LogicTile FPGA board, which hosts the

accelerators and UHSA technology hardware. In contrast with traditional offloading of kernels

through the aid of kernel-space drivers the goal of using a UHSA-enabled system is the reduction

of these latencies and variance and on top to provide differentiated and runtime adaptive service

levels while dispatching tasks.

The application scenarios involve two use cases: Sobel edge detection image filtering and matrix

multiplication. The hardware accelerators are implemented on RTL and mapped on the LogicTile

FPGA board target to accelerate these particular applications accordingly. Notice that the goals

of this proof-of-concept platform do not involve to show the optimum performance of the hardware

implementation of the system, but to address the objectives mentioned above, that are related to

the validation of the developed UHSA technology, analysis of their advantages and underpinning

the ideal matching application domain.

44 Chapter 4. Results and Analysis

The challenge that is addressed by the UHSA technology is to optimize kernels offloading that is

hindered by the large and unpredictable overheads of launching kernels and of handling data buffers

in two different domains: kernel and user space.

4.2 Test Platform Overview

Specificities of Juno r1 ARM Development Platform SoC (Juno r1 SoC)

• Dual-core Cortex-A57 cluster: 2MB L2 cache. NEON and FPU. Underdrive: 600MHz.

Nominal: 900MHz. Overdrive: 1.15GHz.

• Quad-core Cortex-A53 cluster: 1MB L2 cache. NEON and FPU. Underdrive: 650MHz.

Nominal: Not supported. Overdrive Not supported.

LogicTile

The logic tile, is ARM LogicTile Express 20MG, which uses the largest Xilinx Virtex 7 device

FPGA (XC7V2000T-1FLG1925CES9937)

Platform SoC LogicTile Interconnect

Thin Links AXI master and slave interfaces to the LogicTile site. At the default clock frequency

of 61.5MHz, the operating bit rates are:

• Master interface: 68Mbps in the forward direction and 78Mbps in the reverse direction.

• Slave interface: 246Mbps in the forward direction and 305Mbps in the reverse direction.

Figure 4.1 shows the physical organization of the components in the ARM development platform

(ADP) along with the memory partitions that are provided by the manufacturer. The HW accel-

erators and the GPPU infrastructure (HW and SW components) address:

• The memory map used in the Juno R1 ADP, i.e. the 40-bit addressing and the non-contiguous

memory partitions.

4.2. Test Platform Overview 45

• The CCI-400 specificities of accessing the SoC by cache-coherent or non-coherent transactions,

and control of CCI-400 functionality and features.

• 64-bit user-level and kernel-space drivers in support of the new developed UHSA components.

JUNO Soc

Programmable Logic

0x0A_0000_0000

0x08_8000_0000

0x01_0000_0000

0x00_8000_0000

ARM Big.Little

Cortex-A57

Core 1 Core 2

L2 cache

Cortex-A57

Core 1 Core 2

L2 cache

Cortex-A53

Core 3 Core 4

L2 cache

Core 1 Core 2

Cortex-A53

Core 3 Core 4

L2 cache

Core 1 Core 2

ARM Big.Little

Cortex-A57

Core 1 Core 2

L2 cache

Cortex-A53

Core 3 Core 4

L2 cache

Core 1 Core 2

CoreLink CCI-400
Cache Coherent Interconnect

DDR System

Memory

2 GB Partition

6GB Partition

Figure 4.1: ARM JUNO r1 Physical Organization Overview.

Operating System Support

On top of the JUNO SoC, operates a version 4.7 linux kernel provided by linaro arm landing teams.

The git URL used for cloning the kernel sources is the following:

https://git.linaro.org/landing-teams/working/arm/kernel-release.git

and more specifically the one with tag: latest-armlt-20160809 is the one checked out. Moreover

an extra patch was applied because the default kernel configuration only provide 4MB of contigu-

ous memory space. By changing the MAX_ZONEORDER setting in Kconfig file from 11 to 13,

kernels CMA can allocate up to 16MB of contiguous memory space. The maximum contiguous

space is calculated according to the formula: 2MAX_ZONE_ORDER ∗ PAGE_SIZE, where the

PAGE_SIZE in our case is 4KB.

https://git.linaro.org/landing-teams/working/arm/kernel-release.git

46 Chapter 4. Results and Analysis

4.3 FPGA Designs

The FPGA comes with two different configurations based on the use cases. The first one is based

on the legacy and the second on the UHSA-enabled way of dispatching compute kernels. Next we

will describe the memory access policies of the two different implementations mentioned before.

4.3.1 Legacy Mode

Figure 4.2, depicts the FGPA design implementation which aims to the legacy mode kernels dis-

patching. offloading system.

Programmable Logic

HW ACC0
(Matrix

Multiplier) D
M

A

Programmable Logic

HW ACC0
(Matrix

Multiplier) D
M

A

Cortex-A57
cluster
L2 Cache

Cortex-A57
cluster
L2 Cache

Cortex-A53
cluster
L2 Cache

Cortex-A53
cluster
L2 Cache

Cortex-A53
cluster
L2 Cache

Cortex-A57
cluster
L2 Cache

Cortex-A53
cluster
L2 Cache

JUNO r1 ADP SoC

 Dynamic
Memory

Controller
D

D
R3

L
PH

Y

C
ac

h
e

C
oh

er
e

nt
 In

te
rc

o
n

n
ec

t

Linux
Kernel
v4.7

System Memory

612MB
System

1GB
Reserved

6GB

System

412MB
CMA

System Memory

612MB
System

1GB
Reserved

6GB

System

412MB
CMA Kernel space data

System Memory

612MB
System

1GB
Reserved

6GB

System

412MB
CMA Kernel space data

A
XI

4
-I

n
te

rc
on

n
ec

t
A

XI
4

-I
n

te
rc

on
n

ec
t

A
XI

 T
O

 T
H

IN
 L

IN
K

S
B

R
ID

G
E

A
XI

4
-I

n
te

rc
on

n
ec

t

A
XI

 T
O

 T
H

IN
 L

IN
K

S
B

R
ID

G
E

Page0

Page1

PageN

HW ACC0
(Sobel Filter) D

M
A

HW ACC0
(Sobel Filter) D

M
A

Figure 4.2: ARM JUNO r1 and Logic Tile Physical Organization. Legacy
case.

The key concept in this mode is that source data have to be copied from user to kernel space in order

to be visible to the accelerators and for the same reason the results data from the kernel to user

space.The user space data are located in memory arranged in pages, which may not be contiguous.

Kernel space data are stored in CMA’s reserved partition, contiguously. Data accesses are coherent

between the CPUs and the programmable logic thanks to the cache coherent interconnect, which

provides snoop to the CPUs caches.

4.4. System Performance 47

4.3.2 UHSA Mode

Figure 4.3, depicts the FGPA design implementation which aims to the UHSA-enabled mode kernels

dispatching.

Programmable Logic

System Memory

612MB
System

1GB
AQLSM

6GB

System

412MB
CMA

System Memory

612MB
System

1GB
AQLSM

6GB

System

412MB
CMA

Page translations

Page0

Page1

PageN

AQLSM Queues

UHSA Technology

GPPU

GATT

A
XI

4
-I

n
te

rc
on

n
ec

ts
 N

et
w

o
rk

A
XI

 T
O

 T
H

IN
 L

IN
K

S
B

R
ID

G
E

A
XI

4
-I

n
te

rc
on

n
ec

ts
 N

et
w

o
rk

A
XI

 T
O

 T
H

IN
 L

IN
K

S
B

R
ID

G
E

Cortex-A57
cluster
L2 Cache

Cortex-A57
cluster
L2 Cache

Cortex-A53
cluster
L2 Cache

Cortex-A53
cluster
L2 Cache

Cortex-A53
cluster
L2 Cache

Cortex-A57
cluster
L2 Cache

Cortex-A53
cluster
L2 Cache

JUNO r1 ADP SoC

 Dynamic
Memory

Controller

D
D

R3
L

PH
Y

C
ac

h
e

C
oh

er
e

nt
 In

te
rc

o
n

n
ec

t

Linux
Kernel
v4.7Cortex-A57

cluster
L2 Cache

Cortex-A53
cluster
L2 Cache

JUNO r1 ADP SoC

 Dynamic
Memory

Controller

D
D

R3
L

PH
Y

C
ac

h
e

C
oh

er
e

nt
 In

te
rc

o
n

n
ec

t

Linux
Kernel
v4.7

HW ACC0
(Matrix

Multiplier) D
M

A

HW ACC0
(Sobel Filter) D

M
A

HW ACC0
(Sobel Filter) D

M
A

GATTGATT

AQLSM Data

Figure 4.3: ARM JUNO r1 and Logic Tile Physical Organization. UHSA
technology case.

In this mode there are two possible ways for the accelerators to access the source and results data

buffers:

• Directly to the AQLSM data partition, as described in section 3.5.2 SMPart Data Buffers.

Data buffers are contiguous and cache coherent.

• Directly from the user pages managed by the OS, as described in sections 3.5.2 STM Data

Buffers and 3.4.2 System Memory Management using GATT. Data buffers are not contiguous

and cache coherent.

4.4 System Performance

This section will provide information about system performance concerning all the possibles modes:

legacy, UHSA STM and UHSA SMP. Also these modes will be tested when the user application

48 Chapter 4. Results and Analysis

executes separately at A-53 and A-57 CPU clusters. Furthermore the A-57 will be tested in

performance (1.15GHz) and powersave (550MHz) modes. Finally the user applications are single

threaded.

4.4.1 Image Processing Use Case Results

The image processing concerns, sobel edge detection on full high definition images. The images are

stored in systems disk drive as static BMP files and the user application, in any case, loads them

in system’s DDR memory using legacy methods. The lack of DMA engines usage introduce a large

amount of latency that in cases which UHSA technology predominates the legacy mode, makes the

gain ratio to seem to be smaller. For example if the one case produces 1 second total latency and

the other 0.9 second, the gain ration is 10%; given the fact that the image loading latency in both

cases is equal to let’s say 0.5 second and if a DMA engine usage would drop this latency to 0.2

seconds. Thus the new total latencies would be 0.7 and 0.6 seconds and the gain ratio 14,3%.

Table 4.1: UHSA technology performance gain over legacy system; sobel
filtering on FHD images.

UHSA mode CPU Performance Gain %

STM Cortex A53 17,1

STM Cortex A57 (1.15GHz) 24,2

STM Cortex A57 (550MHz) 17,5

SMP Cortex A53 18,8

SMP Cortex A57 (1.15GHz) 26,9

SMP Cortex A57 (550MHz) 19,9

For each of the tested modes statistical results are derived from a sample size of 100 runs. As we

can see in figure 4.4, both of the UHSA technology approaches (STM and SMP) outperforms the

legacy mode. Table 4.1 describes the latency gain of UHSA technology over a legacy system.

4.4. System Performance 49

Figure 4.4: Latency and jobs per second average concerning offload of 4
kernels to hardware accelerator, for every of the described modes.

Scalability

Over the next test we evaluate the performance of the UHSA architecture as we scale out the

computational kernels. Since the UHSA technology is designed for scalable data computation, our

goal in this section is to analyze the scalability of the dataflow architecture for large volumes of

data. The results collected are based a newer version of sobel edge detection HW IP, so the results

may differ; but not in any ways the UHSA components remain the same. Also during this test the

collected results comes only from the A-53 CPU cluster, operating at 600MHz (i.e. little core).

Figure 4.5 describes the performance gain of UHSA technology over the a legacy system, as the

workload scales. For every job the accelerator processes 7,9MB of data and totally 15.8MB needs

to be transfered from/to the FPGA to/from the system’s DDR. What is noticeable, is that the

more the data the more the performance gain, which means that the copies from user to kernel and

the lack of scheduling during heavy workloads, they really costs the system’s performance.

50 Chapter 4. Results and Analysis

Figure 4.5: Performance gain of UHSA technology over a legacy system
when offloading kernels for sobel filtering on FHD images; both memory

access modes are depicted.

4.4.2 Matrix Multiplication Use Case Results

The matrix multiplication use case is applied on 60x60 matrices of integers. The matrices are

buffers in system’s DDR memory and are initialized by the user application, in runtime with

random numbers.

Table 4.2: UHSA technology performance gain over legacy system; 60x60
matrices multiplication.

UHSA mode CPU Performance Gain %

STM Cortex A53 23,9

STM Cortex A57 (1.15GHz) 6,5

STM Cortex A57 (550MHz) 17,8

SMP Cortex A53 36,7

SMP Cortex A57 (1.15GHz) 21,3

SMP Cortex A57 (550MHz) 31,8

4.4. System Performance 51

For each of the tested modes statistical results are derived from a sample size of 200 runs. As we

can see in figure 4.6, both of the UHSA technology approaches (STM and SMP) outperforms the

legacy mode. Table 4.2 describes the latency gain of UHSA technology over a legacy system, which

in some cases can reach the 36,7%.

Figure 4.6: Latency and jobs per second; Matrix multiplication 15 kernels
offloaded to hardware accelerator, utilizing every described mode.

Scalability

Over the next test we evaluate the performance of the UHSA architecture as we scale out the

computational kernels. Since the UHSA technology is designed for scalable data computation, our

goal in this section is to analyze the scalability of the dataflow architecture for little volumes of

data. During this test the collected results comes only from the A-53 CPU cluster, operating at

600MHz (i.e. little core).

Figure 4.7 describes the performance gain of UHSA technology over the a legacy system, as the

workload scales. For every job the accelerator processes approximately 28KB of data and totally

42KB needs to be transfered from/to the FPGA to/from the system’s DDR. What is noticeable,

is that the more the data the more the performance gain, which means that the copies from

52 Chapter 4. Results and Analysis

user to kernel and the lack of scheduling during heavy workloads, they really costs the system’s

performance.

Figure 4.7: Performance gain of UHSA technology over a legacy system
when offloading kernels for 60x60 matrices multiplication; both memory

access modes are depicted.

The average gain is 24,2% for the SMP mode for data accessing, and for the STM 22,3%. We

can also notice that during the STM mode, at least 90 jobs have to be dispatched in order for the

gain to reach its average. This phenomenon occurs because of the fact that in STM version the

application may reuse the translated buffers witch are pinned in systems memory. On the other

hand during the legacy version we cannot avoid the copies from/to user and kernel spaces. If this

technique was not used, the gain would be constant at around 18% as we can see in figure 4.7 and

the 11 jobs offload. This comparatively greater gap in performance gain between the two modes for

accessing the memory developed for UHSA technology, makes us infer that the per page perspective

of accessing the data buffers and whatever implied (e.g. pages translation), has some drawbacks

when we have to deal with fine grained and small amount of jobs.

53

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we have managed to build heterogeneous data flow architecture between a CPU

clustered network, called UHSA. Its main contributions are the following:

• A packet based communication infrastructure between the host and heterogeneous hardware,

off-chip, accelerators in order to efficiently offload computational kernels.

• The reduction of communication latency and programming complexities.

• A hardware based workload scheduling mechanism.

• A unifying memory access infrastructure between the host system and the accelerators.

• The capability to access the operating system’s virtual address in I/O MMU-less system

architectures.

Last but not least, two kind of accelerator were developed in C++ code and synthesized with Xilinx

HLS tool, for verification purposes.

The developed UHSA technology comes with two different modes for accessing the system’s memory.

Both approaches proved to be more efficient than the legacy and in some use cases the performance

gain reached the value of 37,7%. When a user application wants to offload fine grained computa-

tional kernels the SMP method for data buffers management is preferable against the STM method;

is based on the fact that, as seen, pages translations are really costly in such occasions, jeopardizing

54 Chapter 5. Conclusions and Future Work

the UHSA technology benefits, and the provided data partition reserved by AQLSM is fair enough.

On the other hand, when a user application wants to bind large amounts of data (more than the

AQLSM natively can provide) the STM method constitutes the best choice, since in cooperation

with the OS memory manager the buffers may be dynamically allocated, take advantage of whole

available memory, and also as already proved in tests the performance does not differ much of the

SMP method.

5.2 Future Work

The following extensions can be considered for future work:

• GPPU scheduler

Only a simple round robin scheduler is developed in the current version. It can be later

extended so that it can use alternative scheduling algorithms. In this way there will be the

possibility of evaluating the system under variable workload and scheduling patterns. Also

provide a dynamically adaptive scheduling selection based on runtime collected performance

statistics.

• GPPU dispatcher

Develop a scheduler able of executing code that is located in system’s memory. If this had

been achieved, new UHSA-enabled accelerators or communication protocol updates will be

able to be plugged in the system’s infrastructure at runtime.

• Accelerators

Develop accelerators able to leverage the system’s maximum bandwidth, in order to be able

to test the system to its limits. Alternatively a FPGA design that utilizes a larger amount

of the current accelerators may be developed.

• Software

Optimization of the AQLSM runtime library is crucial. Also develop a multi-threaded and

multi-processes environment, in order to be able to test the system under such situations

which are extensively found in modern OS environments.

55

Bibliography

[1] NVIDIA. (2014). Developing a linux kernel module using rdma for gpudirect, [Online]. Avail-

able: http://docs.nvidia.com.

[2] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman, “Architecture support for

accelerator-rich cmps”, in DAC Design Automation Conference 2012, 2012, pp. 843–849. doi:

10.1145/2228360.2228512.

[3] F. Ji, A. M. Aji, J. Dinan, D. Buntinas, P. Balaji, R. Thakur, W. c. Feng, and X. Ma,

“Dma-assisted, intranode communication in gpu accelerated systems”, in 2012 IEEE 14th

International Conference on High Performance Computing and Communication 2012 IEEE

9th International Conference on Embedded Software and Systems, 2012, pp. 461–468. doi:

10.1109/HPCC.2012.69.

[4] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-m. W. Hwu, “An asymmet-

ric distributed shared memory model for heterogeneous parallel systems”, in Proceedings of

the Fifteenth Edition of ASPLOS on Architectural Support for Programming Languages and

Operating Systems, ser. ASPLOS XV, Pittsburgh, Pennsylvania, USA: ACM, 2010, pp. 347–

358, isbn: 978-1-60558-839-1. doi: 10.1145/1736020.1736059. [Online]. Available: http:

//doi.acm.org/10.1145/1736020.1736059.

[5] “Gmac-2: Easy and efficient programming for cuda-based systems”, NVIDIA GPU Tech Con-

ference GTC. [Online]. Available: http://ccoe.ac.upc.edu/projects.

[6] B. Wile. (2014). Coherent accelerator processor interface (capi) for power8 systems, whitepa-

per, [Online]. Available: https://www-304.ibm.com/webapp/set2/sas/f/capi/CAPI_

POWER8.pdf.

[7] Freescale. (2009). Maple hardware accelerator and sc3850 dsp core, [Online]. Available: https:

//www.nxp.com/files-static/training_pdf/vFTF09_AN149.pdf.

http://docs.nvidia.com
https://doi.org/10.1145/2228360.2228512
https://doi.org/10.1109/HPCC.2012.69
https://doi.org/10.1145/1736020.1736059
http://doi.acm.org/10.1145/1736020.1736059
http://doi.acm.org/10.1145/1736020.1736059
http://ccoe.ac.upc.edu/projects
https://www-304.ibm.com/webapp/set2/sas/f/capi/CAPI_POWER8.pdf
https://www-304.ibm.com/webapp/set2/sas/f/capi/CAPI_POWER8.pdf
https://www.nxp.com/files-static/training_pdf/vFTF09_AN149.pdf
https://www.nxp.com/files-static/training_pdf/vFTF09_AN149.pdf

56 Bibliography

[8] Intel. (2015). Programming intel quickassist technology hardware accelerators for optimal

performance, whitepaper, [Online]. Available: http://www.intel.com/content/www/us/

en/embedded/technology/quickassist/documentation.html.

[9] NVIDIA. (2012). Nvidia?s next generation cudatm compute architecture: Kepler tm gk110,

whitepaper, [Online]. Available: https://www.nvidia.com/content/PDF/kepler/NVIDIA-

Kepler-GK110-Architecture-Whitepaper.pdf.

[10] M. S. Orr, B. M. Beckmann, S. K. Reinhardt, and D. A. Wood, “Fine-grain task aggregation

and coordination on gpus”, in Proceeding of the 41st Annual International Symposium on

Computer Architecuture, ser. ISCA ’14, Minneapolis, Minnesota, USA: IEEE Press, 2014,

pp. 181–192, isbn: 978-1-4799-4394-4. [Online]. Available: http://dl.acm.org/citation.

cfm?id=2665671.2665701.

[11] Y. Fujii, T. Azumi, N. Nishio, S. Kato, and M. Edahiro, “Data transfer matters for gpu

computing”, in 2013 International Conference on Parallel and Distributed Systems, 2013,

pp. 275–282. doi: 10.1109/ICPADS.2013.47.

[12] Y. Yang, P. Xiang, M. Mantor, and H. Zhou, “Cpu-assisted gpgpu on fused cpu-gpu archi-

tectures”, in IEEE International Symposium on High-Performance Comp Architecture, 2012,

pp. 1–12. doi: 10.1109/HPCA.2012.6168948.

[13] Y. Wen, Z. Wang, and M. F. P. O’Boyle, “Smart multi-task scheduling for opencl programs

on cpu/gpu heterogeneous platforms”, in 2014 21st International Conference on High Per-

formance Computing (HiPC), 2014, pp. 1–10. doi: 10.1109/HiPC.2014.7116910.

[14] W. W. Hwu, Heterogeneous System Architecture: A New Compute Platform Infrastructure.

Morgan Kaufmann; 1 edition (December 18, 2015), Dec. 2015, isbn: 0128003863.

[15] D. Hildenbrand, Foundations of Geometric Algebra Computing. Springer; 1st ed. 2013, Corr.

2nd printing 2013 edition (June 17, 2013), 2013, isbn: 3642317936.

[16] D. C. Schmidt and C. D. Cranor, “Half-sync/half-async: An architectural pattern for efficient

and well-structured concurrent i/o”, 1996. [Online]. Available: http://www.cs.wustl.edu/

~schmidt/PDF/PLoP-95.pdf.

http://www.intel.com/content/www/us/en/embedded/technology/quickassist/documentation.html
http://www.intel.com/content/www/us/en/embedded/technology/quickassist/documentation.html
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://dl.acm.org/citation.cfm?id=2665671.2665701
http://dl.acm.org/citation.cfm?id=2665671.2665701
https://doi.org/10.1109/ICPADS.2013.47
https://doi.org/10.1109/HPCA.2012.6168948
https://doi.org/10.1109/HiPC.2014.7116910
http://www.cs.wustl.edu/~schmidt/PDF/PLoP-95.pdf
http://www.cs.wustl.edu/~schmidt/PDF/PLoP-95.pdf

Bibliography 57

[17] O. Tomoutzoglou, D. Bakoyannis, G. Komaros, and M. Coppola, “Efficient communication

in heterogeneous socs with unified address space”, in 2016 11th International Symposium

on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2016, pp. 1–6. doi:

10.1109/ReCoSoC.2016.7533904.

https://doi.org/10.1109/ReCoSoC.2016.7533904

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contributions
	Thesis Structure

	Background
	Heterogeneous Systems Architecture Applications
	Industrial Innovations
	Academic Innovations

	Architecture
	Overall Architecture
	Unified Heterogeneous Systems Architecture
	General Purpose Packet Processing Unit
	GPPU Memory Mapped Interface
	Packets BRAM
	Packets DMA Engine
	Dispatcher
	Active Jobs BRAM
	Scheduler

	Hardware Support for Acceleration and Dynamic Adaptation
	System Memory Management
	General Address Translation Table
	System Memory Management using GATT

	Software Library
	AQLSM Queues Buffers Management
	AQLSM Data Buffers Management
	SMPart Data Buffers
	STM Data Buffers

	Host System - GPPU Synchronization
	UHSA Technology Drivers
	GPPU User Space Drivers
	Page Translation Driver
	Legacy Acceleration Driver

	UHSA Programming Support
	Initialization and Component Discovery
	Queues and AQL packets
	Signals and packet launch

	UHSA Workload Offloading Example

	Results and Analysis
	Evaluation objectives
	Test Platform Overview
	FPGA Designs
	Legacy Mode
	UHSA Mode

	System Performance
	Image Processing Use Case Results
	Scalability

	Matrix Multiplication Use Case Results
	Scalability

	Conclusions and Future Work
	Conclusions
	Future Work

