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Abstract 
 

The goal of this thesis is to exploit lighting as a visual cue for the 

development of a 3D hand tracking system. 

 The proposed method follows the hypothesize and testing paradigm. Under 

this paradigm, the hand pose estimation boils down to comparing the RGB hand 

observation with several rendered hand hypotheses. An objective function calculates 

the discrepancy between the real hand pose and a rendered hand pose. In this 

thesis, we propose to use lighting information and a simple RGB sensor to build the 

objective function. This approach compares favorably with previous state of the art 

methods that require depth sensors and RGB-D observations to build the objective 

function. 

Under the assumption of a known single light source we are able to photo-

realistically render the hand model. To do so we use the principles of the Phong 

reflection model usually used in computer graphics to develop a lighting model. Also, 

an object detection technique able to extract the foreground information of the RGB 

images is developed. Several objective functions with different properties are 

created and tested.  

The experiments showed which lighting objective functions are the most 

efficient and that under certain lighting conditions the use of the lighting information 

can be used to build a robust 3D hand tracking system which overcomes depth 

ambiguities in complex cases were the real hand pose either rotates or the fingers 

are bending. 
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Chapter 1 - Introduction 

1.1. Motivation and aim of the project 
This project is based on visual tracking, the process of estimating the location 

of one or more objects in a video sequence over time using a camera. Visual tracking 

has a variety of uses, some of which are: human-computer interaction, security and 

surveillance, augmented reality, traffic control, medical imaging, and video editing. 

Tracking an object is a time consuming and complex process due to the big amount 

of data and the use of object detection techniques. Especially when the target object 

is moving fast and changes orientation, tracking is very difficult. However, many 

methods have been used to solve this problem. Each of them has its strengths and 

weaknesses. 

The object in this project is the human hand. Tracking articulated objects in 
3D can be a challenging problem. The high dimensionality of the problem, the 
chromatically uniform appearance of the hand and often self-occlusions are some of 
the factors that complicate the process. A specialized hardware or the use of visual 
markers would facilitate the process but at the same time the process would be 
more complex. For this reason, there are many approaches proposed for 3D hand 
tracking considering markerless visual data only. These approaches can be 
categorized in two major components. The appearance based (bottom-up) 
approaches and the model based (top-down) approaches. There are more 
approaches that combine and adapt more elements to improve the performance of 
tracking like the approach used in this project. 

A software that tracks the 3D position, orientation, and full articulation of the 
human hand from markerless visual observations has been created by the Computer 
Vision and Robotics Lab at ICS/FORTH [5]. The visual observations come from an 
RGB-D camera, the Kinect sensor. A model based approach using a Bayesian 
Hierarchical Model Fusion framework (HMF), first proposed by Makris [7], addresses 
the problem of 3D hand tracking. The HMF decomposes the initial problem into 
smaller and simpler problems and efficiently addresses the implications of the high 
dimensionality. We use this HMF approach due to the increased speed and 
robustness in comparison with other methods. The most computationally 
demanding parts of the process have been implemented to run efficiently on a GPU. 

The hand tracker implementation relies mostly on depth information. The 
goal of this thesis is to develop an algorithm that will be able to estimate the pose of 
a human hand but focus on the incorporation of visual information to the system like 
the light intensities in an RGB image, to help recognize the hand pose in cases where 
depth information usually fails. 

 

1.2. Related work 
The work on hand tracking can be divided into two main approaches, the 

model-based approaches and the appearance-based approaches. The model-based 
approaches [6, 8, 20, 21,31] use an articulated 3D hand model which is projected 
into the image and an error function measures the quality of the match. The model 
projection is synthesized on-line and the registration of the model to the image can 
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be done with local optimization around the previous estimate or by filtering.  These 
approaches require model initialization and do not recover easily from a track failure 
but provide accurate estimation of the hand’s pose. Appearance-based approaches 
[26, 27, 28] work directly on the image data and the problem is formulated as a 
classification or regression problem. A set of hand features is labeled with a 
particular hand pose, and a classifier is learnt from training data that is generated 
off-line with a synthetic model, or acquired by a camera from a small set of known 
poses. The advantage of these approaches is that no hand initialization is required. 
Hybrid methods that combine the model-based and appearance-based approaches 
have also been proposed [22, 23, 24,25]. 

In model based approaches the objective (error) function has a determining 
role in the quality of the obtained solutions and the optimization process. The 
objective function in [21] combines fitting terms that measure how well the 
parameters of the hand model represent the observation with prior terms that 
regularize the solution to ensure realistic hand poses. The fitting terms include a 3D 
point cloud alignment that measures the distance between every point in the 
observation’s 3D point cloud to the track model, a 2D silhouette alignment and a 
wrist alignment. Again in [31] the first term of the error function aligns the point 
cloud of the observation (distances) to the sphere hand model, the second term 
forces the model to lie inside the point cloud using penalizing factors as the third 
term which penalizes model self-collision. A sum of Gaussians (SoG) image 
approximation and a 3D SoG hand model based on colors are used in [22] and after 
projecting the 3D SoGs to 2D a color similarity function measures the Euclidean 
distance between their color values. In [23] a GPU-based rendering module renders 
a synthetic depth image and a scoring function measures the L1 discrepancy between 
the synthetic and the input depth images.  A fixed truncation value contributes to 
the discrepancy value for each pixel of the observation and the hand model that 
don’t intersect while pixels that are considered background in both images have zero 
contribution. In [24] an objective function measures the discrepancy between the 
positions of the observation’s and the hand model joints. Also, a clamping distance is 
used for the large distances which produce false high penalties due to noise 
existence. Similarly, in [6,20] the depth differences are clamped within a 
predetermined range and the objective function measures the discrepancy between 
the depth and the skin-colored maps. A penalty is added to the function for invalid 
hand configurations. 

As it is shown in the above paragraph the depth information is usually used 
to evaluate the discrepancy between the observation’s data and the hand model in 
model-based tracking cases. Also, the objective functions apart from the depth term 
they may consist of penalization terms or terms responsible for 2D silhouette 
matching to improve the tracking accuracy. However, using the depth information 
includes many ambiguities when estimating the hand pose. These ambiguities 
usually occur from depth holes incorporated in the depth data. Efforts have been 
made to reduce depth ambiguity by exploiting visual information. The use of texture, 
illumination and shading parameters has been used in few cases like [29] where the 
objective function embodies texture and illumination (shading) elements. The 
illumination it is often seen as a problem but this paper [30] shows how the lighting 
can be used to make pose and shape estimation more robust. This thesis follows the 
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same idea of exploiting the image information and the illumination to develop an 
objective function which uses the light (intensity) differences instead of the depth 
differences to evaluate the discrepancy. The model-based 3D hand tracking system 
in [8] and the principles of its depth based objective function were used to build and 
test our alternative lighting objective function in the effort to eliminate depth holes. 

 

1.3. The Kinect sensor 
Microsoft Kinect (Figure 1.1) it’s a highly innovative combination of cameras, 

microphones and software that turns your body into a video game controller. It was 

first announced and demonstrated as Project Natal in June 2009 and later in 

November 2010 released as a new addition to Microsoft’s Xbox 360 product line. In 

comparison with Nintendo’s Wii there is no need for any physical controller and that 

was a revolutionary difference. Microsoft released the Kinect software development 

kit (SDK) for Windows on June 2011 to allow developers to write Kinecting apps in 

C++, C# or Visual Basic.NET. The SDK provides a set of libraries that someone can add 

to his own programs and games so they can use the sensor. The SDK also contains all 

the drivers needed to link the Kinect to a computer. 

 

 
Figure 1.1: A Kinect sensor. 

The Kinect contains three hardware innovations that work together to enable 

body and voice recognition (Figure 1.2): a color VGA video camera, a depth sensor, 

and a multi-array microphone.  
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Figure 1.2: A Kinect sensor unwrapped. 

The color VGA video camera detects the red, green, and blue components as 

well as body-type and facial features. Microsoft calls this an "RGB camera" referring 

to the color components it detects. The depth sensor consists of an infrared 

projector and a monochrome CMOS sensor with an IR filter. Working together they 

can see the room in 3D regardless of the lighting conditions. Both the video and 

depth sensor cameras have a 640 x 480-pixel resolution and run at 30 FPS. 

The Kinect sensor constantly projects a pattern of infrared dots (Figure 1.3). It 

“knows” what the pattern looks like and how it is drawn. The pattern will change 

upon objects as the dots will change size and position based on how far the objects 

are. Then by analyzing the dot’s reflection (via triangulation) can calculate the 

distance of each point from the sensor and build a 3D map of the room (Figures 1.4 

and 1.5). 

 

 
Figure 1.3: Infrared dots pattern. 
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Figure 1.4: RGB image of a sofa (Left), The same image as the Kinect sensor sees it (Right). 

 
Figure 1.5: Infrared image (Left), The depth map from white “near” to blue “far” (Right). 

There are also four microphones arranged along the bottom of the bar. The 

Kinect uses these microphones to help determine from where in a room a voice is 

coming. When the user speaks to the Kinect sensor, his voice will arrive at each 

microphone at different times, because each microphone is a slightly different 

distance away from the sound source. The voice waveform of the user is extracted 

from the sound signal produced by each microphone (using the timing information) 

and the location of the source in the room is calculated. The Kinect can even work 

out the direction from which the voice is coming for several users. It can then 

remove the unwanted sounds from the signal to make it easier to understand the 

speech content. 
 

In (Figure 1.6) are displayed, the horizontal limits of the Kinect sensor from 

0.8m to 4.0m with a practical range of 1.2m to 3.5m and the vertical limit of 1.8m. 

The horizontal field of view is about 57o and the vertical field of view is 43.5o. A tilt 

motor inside the Kinect sensor provides a vertical tilt range of ±27o.  
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Figure 1.6: Kinect horizontal Field of View (Left), Kinect vertical Field of View (Right). 

 

The Kinect sensor has numerous applications in many field of science. It can 

be used in education through active learning techniques. Healthcare projects use the 

sensor in physical therapy and rehabilitation (e.g. after a stroke), helping the blind to 

navigate (object detection) and the deaf to communicate (sign language translation). 

It can also be used in robotic applications, virtual reality, surveillance or as a 3D 

scanner. 
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Chapter 2 - Background 

2.1. The 3D Hand Tracker 
In this section, the background and operation of the 3D hand tracker used in 

this thesis will be presented. 
 

2.1.1. Particle filters 
Bayes filter is a general probabilistic approach for estimating an unknown 

probability density function (PDF) recursively over time using incoming 
measurements and a mathematical process model [14]. Particle filter is a type of 
Bayes filter and a sequential Monte Carlo (SMC) based technique, which models the 
PDF using a set of discrete points. Particle filters are useful tools for a variety of 
situations like tracking, signal and image processing, smart environments, machine 
learning, artificial intelligence, and other fields [11][12]. 

 

2.1.2. The skinned hand model 
The hand model is a polygon model with a kinematic skeleton based on linear 

blend skinning which is a well-known algorithm for direct skeletal shape deformation 
[19]. This method gives a detailed and highly accurate reproduction of an actual 
hand shape.  

The kinematics of each finger is modeled using four parameters, two for the 
base angles and two for the remaining joints. Bounds on the values of these 
parameters are set based on anatomical studies. The global position of the hand is 
represented by a fixed point on the palm and the global orientation by a quaternion 
representation. The resulting parameterization encodes a 26-DOF hand model with a 
representation of 27 parameters. 

 

 
Figure 2.1: The employed 3D skinned hand model: hand polygonal surface (left) and hand 
kinematics (right). 

 

2.1.3. Hierarchical Model Fusion framework (HMF) 
The hand tracking problem is tackled with a model-based approach using the 

HMF tracking framework [7]. The HMF uses several auxiliary models that can provide 
information for the state of the main model which is to be estimated. In the hand 
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tracking problem, the main model is a full 26-DOF model of the hand configuration. 
Each of the auxiliary models tracks a distinct part of the hand; one is used for the 
palm with 6-DOF for its 3D position and orientation and one for each finger with 4-
DOF for the joint angles. The auxiliary models that we selected have at most 6-DOF 
which is much less than the original 26-DOF. Of course, the main model still has 26-
DOF but since it exploits the information from the auxiliary models the search in its 
high dimensional space is significantly narrowed. 

The framework follows the Bayesian approach for tracking. The goal is to 

recursively estimate the unobserved state tx (at time t) of the model given all the 

observations 1:tz up to that point. This way the received data can be processed 

sequentially and there is no need to store the complete data set or to reprocess 
existing data if new observations become available. Thus, it is required to construct 

the posterior PDF 0: 1:( | z )t tp x at every step. It is assumed that the initial PDF (prior 

probability) 0 0 0( | z ) ( )p x p x . Using the Bayes rule and probability theory the 

solution is  
 

0: 1: 1 0: 1 1: 1
0: 1: 0: 1 1: 1

1: 1

( | , ) ( | , )
( | z ) ( | )

( | )

t t t t t t
t t t t

t t

p z x z p x x z
p x p x z

p z z

  
 



  

Two assumptions were made  
 

0: 1 1: 1 1 0: 1: 1( | , ) ( | ) ( | , ) ( | )t t t t t t t t t tp x x z p x x p z x z p z x     and  

 
and the solution becomes 
 

1
0: 1: 0: 1 1: 1

1: 1

( | ) ( | )
( | z ) ( | )

( | )

t t t t
t t t t

t t

p z x p x x
p x p x z

p z z


 



  

 
The PDF is obtained recursively in two stages: prediction and update. The 

update step uses the latest observations to modify the prediction PDF and is written 
 

1: 1
1:

1: 1

( | ) ( | z )
( | z )

( | )

t t t t
t t

t t

p z x p x
p x

p z z





  

 
The prediction step uses the system model to predict the state PDF forward 

from one measurement time to the next and is written 
 

1: 1 1 1 1: 1 1( | z ) ( | ) ( | )t t t t t t tp x p x x p x z dx       

 
The HMF uses M auxiliary models and the main model so the solution is 

finally expressed 
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0: 1: 0: 1 1: 1 [ ] [ ] [ ]( | z ) ( | ) ( | ) ( | ( ))t t t t t i t i t i t

i

p x p x z p z x p x Pa x    

 
where the observation (measurement) likelihood is proportional to the 

product of individual model likelihoods 
 

[ ](z | ) ( | )t t t i t

i

p x p z x  

and the state transition probability is decomposed as 
 

1 [ ] [ ]( | ) ( | ( ))t t i t i t

i

p x x p x Pa x   

where [ ]( )i tPa x denotes the parent nodes of [ ]i tx . 

In such models, the PDF is difficult to be calculated. A particle filter is used to 
efficiently approximate the posterior.  The posterior is approximated by propagating 
a set of N hypotheses (particles) with associated weights based on the importance 
sampling method. The larger the number of the weighted particles the better the 
representation of the PDF. 

The particles are drawn from the proposal distribution 
 

0: 1: 0: 1 1: 1 [ ] [ ]q( | z ) ( | ) ( | ( ))t t t t i t i t

i

x p x z p x Pa x    

and are weighted by 
 

0: 1:
1 [ ]

0: 1:

( | )
( | )

q( | )

t t
t t t i t

it t

p x z
w w p z x

x z
    

 
The weights are normalized to sum up to one. A resampling step is added so 

that the high weighted particles to be chosen instead of the low weighted particles. 
Thus, given an input of the set of N weighted particles from the previous time step

( ) ( )

[0:M]t 1 1 1{ , }n n N

t nx w   , the output of the algorithm is the current weighted particle set 

( ) ( )

[0:M]t 1{ , }n n N

t nx w  .In the end, the weighted average of the main model particles 

corresponds to the track estimate at each step. 
 

2.1.4. Observation likelihood 
The observation likelihood measures the degree of matching between a 

hypothesis and the observations. The observations z correspond to the RGB-D data 
acquired from the Kinect sensor and the hypotheses x (particles) correspond to 3D 
rendered hand model poses. Each hypothesis is a representation of 27 parameters 
and includes a rendered depth map like the observations. A set of pixels that 
corresponds to the pixels of the hand in the RGB is extracted using image 
segmentation techniques. The set of pixels that are labeled as foreground in both 
(intersection) the observation and a hypothesis is denoted as Pi and the set of pixels 
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that are labeled as foreground in either the observation or the hypothesis is denoted 
as Pu. The ratio of the number of elements of these two sets is denoted as λ: 

Pi

Pu
   

 
The following objective function D(z,x) is then used to evaluate the 

discrepancy between a hypothesis x and the observation z. 
 

, ,min( , )
D(z, x) (1 )

d p d p Mp Pi

M

z x d

d Pi
 




  


 

where zd and xd are the observation depth map and the hypothesis depth 
map respectively. The result of D(z,x) ranges from 0 for a perfect match to 1 for a 
mismatch.  The sum of the absolute depth differences is divided by the number of 
the pixels that intersect (Pi) and the rest of the pixels influence negatively the result. 
Pixels with depth differences above the threshold dM are considered mismatch so 
that they don’t influence an otherwise reasonable fit. They penalize D(z,x) with the 
maximum value the same way a pixel that doesn’t belong in Pi does. 

The observation likelihood function depends on the discrepancy value and is 
defined 

2

2

( , )
(z | x) exp

2 i

D z x
p



 
  

 
 

 

2.1.5. Our contribution 
The thesis contribution to the 3D hand tracker is the creation of a lighting 

objective function that will compute the discrepancy between the rendered 3D 

model poses and the RGB-D observations. Instead of distances we focus on the light 

intensities that the RGB observations involve. In other words, an alternative way of 

calculating the observation likelihood is proposed based on the lighting information 

in the acquired RGB data. An illumination model is developed to find the intensity 

values at each point of a rendered 3D pose. This model follows the principles of the 

Phong reflection model usually used in computer graphics. Then the discrepancy is 

evaluated in a similar way as when the default distance objective function was used. 

Several functions with different properties are tested. 

 

 

2.2. Lighting Models 
This section refers to the lighting models, how we use them and their 

relationship with the lighting objective functions. A brief discussion about the 

lighting of a scene, light-matter interactions and the most common light sources 

used in graphic systems is made. 
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2.2.1. Introduction 
A realistic illuminated scene in graphic systems generally depends on two 

main parameters. The accuracy of the lighting system used for rendering the scene 

and the accuracy of the material properties of the objects in the scene. 

The lighting in graphic systems is a fundamental process and aims to 

accurately calculate the observed brightness of a point in the scene, which is 

illuminated by a set of light sources. A lighting model is based on physics, where 

principles like the conservation of energy and optics are used to produce equations 

that describe how the light is reflected from surfaces [9]. 

 

2.2.2. Light and matter 
Light or visible light is the portion of the electromagnetic spectrum that is 

visible to the human eye and is responsible for the sense of sight. The human eye 

and brain together translate light into color. Everything from the cloths we wear, to 

the pictures we paint revolves around color. The color that we see at a point on an 

object is the result of multiple interactions among light sources and reflective 

surfaces. 

When light hits a surface, it may be absorbed by the material, reflected, or 

transmitted through it. The main physical properties of the light and matter 

interaction in graphic systems can be categorized into three groups: specular 

surfaces, diffuse surfaces, and translucent surfaces as show in (Figure 2.2). 

a) Specular surfaces are mirror like smooth surfaces where the incident light 

ray and the reflected light ray make the same or almost the same angle θi ≈ θr with 

respect to the surface normal. For this reason, specular surfaces appear shiny. 

b) Diffuse surfaces are rough surfaces where the reflected light is scattered 

evenly in all directions. Paper, clothes, skin are all examples of rough surfaces and 

appear dull. 

c) Translucent surfaces allow light to pass through the surface and to emerge 

from another location of the object like water or windows. 

 
Figure 2.2: Light – material interactions: a) Specular surface. b) Diffuse surface. c) Translucent 

surface. 
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2.2.3. Light sources 
Light source is any object that emits light and affects the lighting effects of 

the objects in the scene. A light source may be of any shape and emit light of any 

color. Furthermore, a light source can be an object (e.g. light bulb) that not only 

emits light but reflects light too, as occurs in natural environments. In practice, 

however, it is considered that the light source doesn’t reflect the incident light to 

keep the geometric representation of the light sources simple and the calculation 

complexity low. There are five basic types of sources commonly used: color sources, 

ambient light, point sources, spotlights, and distant light sources. 

 

2.2.3.1. Color Sources 
Color sources usually use the additive primary colors red, green, and blue 

(commonly called RGB) to produce the color components that a human eye can see. 

The RGB color model is very common in computer graphics and each of the three 

colors corresponds to the intensity of red, green, and blue respectively. Light sources 

represented by this color model can be described by the equation  

 

R

G

B

I

I I

I

 
 


 
  

. 

 

2.2.3.2. Ambient light 
Ambient light refers to light sources that provide a uniform illumination in a 

scene. They could be natural sources like the sun and the moon or artificial sources 

used to light a room. Modeling a set of these sources and rendering a scene it’s not 

an easy work to do. To avoid a complex illumination system, we consider a uniform 

lighting where every point in the scene has the same intensity value IA. If the RGB 

color model is embodied to the ambient source, we can derive the equation 

 

AR

A AG
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I

I I

I

 
 


 
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. 

 

2.2.3.3. Point Sources 
Point sources have negligible extent in comparison with other light sources 

because they have the geometry of a mathematical point in the environment. They 

emit light evenly in all directions and if characterized by the RGB color model then 

 

http://www.webopedia.com/TERM/A/RGB_monitor.html
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The intensity of a point source decreases in proportion to the inverse 

square of the distance from the source. Therefore, the intensity of light received at a 

point P from the point source P0 (Figure 2.3) is given by the equation 

 

02

1
P PI I

d
 , 

where d is the distance between the point source P0 and a point P on a 

surface.  

Although, in practice this distance term is usually replaced by 
2 1

0 1 2( )k d k dk    where k0,k1,k2 are constants that can be chosen to modify the 

attenuation of the lighting. So, 

02
0 1 2

1
P PI I

k k d k d


 
. 

 
Figure 2.3: Point source illuminating a surface. 

 

2.2.3.4. Spotlights 
Spotlights are very interesting light sources that can simulate many realistic 

effects. If we limit the light of a point source in a narrow range of angles, a cone is 

formed where the light source is mounted on the top of the cone and only the points 

of the scene inside the angle limits are illuminated. (Figure 2.4) shows a cone whose 

top is at P0, pointing in the direction Is and his width depends on the value of an 

angle θ. A spotlight with θ = 180 it’s an equivalent of a point source. 

 

https://en.wikipedia.org/wiki/Inverse_square
https://en.wikipedia.org/wiki/Inverse_square
https://en.wikipedia.org/wiki/Distance
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Figure 2.4: Spotlight. 

 

 A point in position P and a unit vector vp with starting point the top of the 

cone P0 and terminal point the position P forms an angle ω with a unit vector vs of 

the same direction as Is (Figure 2.5). To determine if the point P is illuminated from 

the spotlight we must compute the cosine of the angle ω between the two unit 

vectors with the dot product. If ω is smaller than the angle θ then it is illuminated. If 

not the light intensity is equal to zero. The equation that describes how spotlights 

illumination system works is 

0
,

0,

P

s

I if

if
I

 

 

  
  

  
, 

where 
1cos ( )p sv v   . 

 
Figure 2.5: A point P inside the angle limits of a spotlight 

 

A realistic spotlight wouldn’t have the same intensity value at each point 

inside the cone. The cosine of an angle φ characterizes the light distribution of the 

cone with the highest intensity value being at the center of it and gradually 

decreasing as we move towards points with larger angles.  Also, if we want the 

intensity to depend on the distance we can add the previous distance term. The final 

equation that describes the light intensity from a spotlight at a given point P as 

before is 

02

0 1 2

cos
,

0,

e

P

s

I if
k k d k d

if

I


 

 

 
 

   
  

, 
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where exponent e determines how rapidly the light intensity drops off 

(Figure 2.6).  

 

 

 
Figure 2.6: Example of a spotlight with consecutively larger value of e. 

 

2.2.3.5. Distant light sources  
Distant light sources refer to light sources that are far from the objects in the 

scene. The sun is a good example in cases like these where the distance between the 

light source and a surface is so large that the light rays from the source can be 

considered parallel to each other as the light rays from the sun to a finite area on the 

earth (Figure 2.7). 

 
Figure 2.7: Parallel rays of a distant light source 

 

The light source we chose to use is a point source. It is simpler than a 

spotlight and it can be described by a point in the 3D space. Thus, the computational 

cost is reduced. 

 

2.2.4. The Phong reflection model 
The Phong reflection model is an approximate local lighting model that 

efficiently renders the reflections in a scene with a very small computational effort.  

A realistic model that describes the way a surface reflects the light is very complex in 

graphic systems but this model has proved to be good alternative of the physical 

reality. 

There are four vectors that Phong model uses to calculate the intensity at 

each point in the environment. These vectors change their directions depending on 
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where the light rays hit the surface and the shape of the surface. In (Figure 2.8) the 

four vectors can be shown. The vector n is the normal at the point P. The l vector is 

in the direction from the point P to the light source (i.e. point source). The vector v is 

in the direction from the point P to the viewer (i.e. the center of the Kinect camera). 

If a light ray from a point source in direction l hits a surface at a point P, the perfectly 

reflected result would be the vector r. 

 

 
Figure 2.8: Vectors used by the Phong model. 

 

In the Phong reflection model the illumination of an object is described 

defining three distinct reflection parameters: ambient reflection, diffuse reflection, 

and specular reflection. 

 

2.2.4.1. Ambient reflection 
Ambient light has the same intensity everywhere in the scene and 

consequently at every point on a surface. A portion of the incident ambient light La is 

reflected and the rest of it is absorbed. The amount reflected depends on the 

ambient reflection coefficient ka. So, the light is given by 

 

ARI k L a a , where 0 1k a  

 

2.2.4.2. Diffuse reflection 
Diffuse reflection is the reflection of light from a surface at many angles and 

it depends both on the material properties and on the position of the light source 

relative to the surface. Diffuse reflection characterizes rough surfaces. An ideal (but 

extremely unlikely) diffuse reflecting surface would reflect light equally in all 

directions. Such a surface is called Lambertian surface and obeys Lambert’s cosine 

law. In computer graphics, Lambertian reflection is often used as a model for diffuse 

reflection due to the low computational cost. The Phong reflection model assumes 

such surfaces when calculating the diffuse reflection. 
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Figure 2.9: Illumination of a diffuse surface when the light direction is vertical to the surface (right) 

and when there is an angle between them (left). 

 

An illuminated diffuse surface as in (Figure 2.9), is brightest when there is no 

angle between the light rays and the surface. If there is an angle θ between them, 

the surface will appear darker because the same amount of light will be spread over 

a larger area. Combining the Lambert’s cosine law with the unit length vectors n 

(surface normal) and l (direction of light from the point source) we have 

 

cos ( )DR d d d dI k L k l n L   , 

 

where kd (0 1)dk  is the diffuse reflection coefficient representing the 

fraction of the incoming diffuse light that is reflected and Ld is the intensity of the 

diffuse component of the light source. If we add the distance term, then 

 

2

0 1 2

( )d
DR d

k l n
I L

k k d k d




 
 

 

2.2.4.3. Specular reflection 
To have a more realistic representation of the lighting on a surface ambient 

and diffuse reflections are not enough. Specular reflection gives the highlights that 

we see on smooth and shiny surfaces when they reflect light. An ideal (mirror like) 

specular reflecting surface would reflect light in the same angle as the incidence 

angle of a light ray. However, in practice, modeling the specular reflection it’s more 

complex because light is not scattered in a symmetric way.  

The Phong reflection model assumes, like in diffuse reflection, a simplified 

approximate specular reflection model which is described by the following equation 

 

cos ( )SR s s s sI k L k r v L  a a
, 
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where ks (0 1)sk  is the specular reflection coefficient representing the 

fraction of the incoming specular light that is reflected and Ls is the intensity of the 

specular component of the light source. As is shown in (Figure 2.10) , r is the unit 

vector that describes the direction of a perfect reflection, v is the unit vector that 

describes the direction of the viewer (i.e. the center of the Kinect camera) and φ is 

the angle between vectors r and v and describes the amount of light that the viewer 

sees. The exponent a is the highlight (shininess) coefficient that describes the extent 

to which the reflected light is focused in the direction of a perfect reflection. 

 
Figure 2.10: Specular reflection vectors and angles. 

 

If we add the distance term then 

2

0 1 2

( )s
SR s

k r v
I L

k k d k d




 

a

 

 

2.2.4.4. The Phong reflection 
The Phong reflection model adds all the individual components IAR, IDR, ISR to 

calculate the final reflectance value 

 

2

0 1 2

1
( ( ) ( ) )PHONG d d s sI k l n L k r v L k L

k k d k d
    

 

a
a a  

 

In case of trichromatic lighting (e.g. RGB color model), each chromatic 

component has its own light intensity and light coefficients apart from the ks 

specular coefficient which is the same for every chromatic component. This happens 

because in specular reflection the reflected light is the light of the source and it 

doesn’t depend on surface. 
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, 2

0 1 2

1
( ( ) ( ) )PHONG R dR dR s sRI k l n L k r v L k L

k k d k d
    

 

a
aR aR  

, 2

0 1 2

1
( ( ) ( ) )PHONG G dG dG s sGI k l n L k r v L k L

k k d k d
    

 

a
aG aG  

, 2

0 1 2

1
( ( ) ( ) )PHONG B dB dB s sBI k l n L k r v L k L

k k d k d
    

 

a
aB aB  

 

2.2.5. Implementation of the Phong reflection model 
The computation of the IPHONG intensity premises the computation of some 

vectors. In this section, it will be shown how these vectors are calculated, so that 

they can be used in our reflection model. 

 

2.2.5.1. Normals and positions 
The rendered 3D hand models include two very important elements which 

also are the main inputs of our lighting model. These elements are: an array with the 

normals and an array with the positions in the 3D space of the rendered hand 

model. 

In geometry, in the three dimensional case a surface normal or simply 

normal, to a surface at a point P is a unit vector that is perpendicular to the tangent 

plane to that surface at P as shown in (Figure 2.11). 

 

 
Figure 2.11: A normal to a surface at a point is the same as a normal to the tangent plane to that 

surface at that point. 

 

A normal vector to a plane specified by 

 

( , , ) 0f x y z ax by cz d      

is given by 
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a

n f b

c

    

where f denotes the gradient. 

The positions refer to the position that each point of the hand model has in 

the 3D space relative to the center of the Kinect camera. 

 
Figure 2.12: The normal vector n passing through a point at (x0,y0,z0) 

 

Thus, we know every normal at each point (position) of the rendered hand 

model (Figure 2.12). The two arrays can be seen in (Figure 2.13). 

 

 
Figure 2.13: Normals (Right image) and Positions (Left image). 

 

2.2.5.2. Lighting vectors and viewer vectors 
We need two more default values that there is no need to be computed. 

These are the viewer’s location in the 3D space which is the center of the Kinect 

camera, viewer = [0,0,0] and the light’s (point) source location in the 3D space 

relative to the center of the Kinect camera, light = [x,y,z]. Now, since we have the 
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position of every point of the hand model, it’s possible to compute the lighting 

vectors for every illuminated point of the hand model. 

 

( , , ) ( , , )i i il light x y z positions x y z   

 

Likewise, we compute the viewer vectors for every illuminated point of the 

hand model. 

(0,0,0) ( , , )i i iv viewer positions x y z   

 

2.2.5.3. Reflection vectors  
We assume that the angle of incidence equals the angle of reflection as in 

(Figure 2.14). Thus,  

cos cosi rl n n r       

 

We can write r as a linear combination of l and n using the coplanar condition 

 

r l n    

 

From the dot product with n, we have 

 

n r l n l n        

 

If all vectors are unit vectors, we get a second condition 

 

2 21 2r r l n         

 

Solving the two equations we get 

 

2( )r l n n l    

 

The final equation gives us the reflection vectors for every illuminated point 

of the hand model. 
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Figure 2.14: Specular reflection vectors. 

 

2.2.5.4. Diffuse reflection θ angles and specular reflection φ angles 
 All the necessary vectors are computed so now what’s left is the 

computation of the angles from which depends the final intensity value IPHONG. The 

best way to find these angles is to use the theory of the dot product for two vectors 

in the 3D space. So, the two equations that have as a result the θ angles needed to 

compute the diffuse reflection term and the φ angles needed to compute the 

specular reflection term are 

 

1 1cos ( ) cos ( )
l n

l n
l n

  
    and 1 1cos ( ) cos ( )

r v
r v

r v
  
    

 

A brief algorithm that shows the intensity value computation of the Phong 

reflection model is shown below. The input data h and w refer to the height and 

width of the image respectively. Also, the vectors that are not unit vectors are 

converted to unit vectors. 

1n l r v     
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Algorithm 1: Brief Phong reflection model algorithm. 

 

( , , )

1.

2.

Input Data: normals,positions,h,w

Light source coords 

  

  Light vectors  calculation. 

  θ angles between light vectors and normals using the dot product.

  

x y z

Diffuse reflection

l

Specular reflecti

3.

  Reflection vectors  calculation.

  Viewer coords (0,0,0) and viewer vectors  calculations.

  φ angles between reflection vectors and viewer vectors using the dot product.

  

  Po

on

r

v

Phong reflection

0 1

.

.

int source intensity  in order to the final values be in a range of 0 to 1.

  Ambient reflection term 

  Radial intensity attenduation term  or the distance term

  Diffuse reflection term 

AR

DR

P

I

RIA

I



 

.

.

  Specular reflection term 

  

Output Data: 

SR

PHONG AR DR SR

PHONG

I

I I I I

I

    

 

2.2.6. Experiments and results 
To verify the efficiency of the Phong reflection model algorithm various tests 

have been made.  

We show again the equation of the Phong reflection model. 

 

2

0 1 2

1
( ( ) ( ) )PHONG d d s sI k l n L k r v L k L

k k d k d
    

 

a
a a  

 

2.2.6.1. Reflection coefficients 
In (Figure 2.15) each image shows the result of the hand model using one 

kind of reflection. From left to right we have the results of the ambient reflection, 

the diffuse reflection, and the specular reflection respectively. For example, we set 

 

1 0d sk k  a, k  

 

if we want only to the diffuse reflection participate. The distance term 

coefficients are set 
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0 1 21 0, k k k    

 

in order, not to influence the result at this point. 

 

 
Figure 2.15: Ambient reflection (left), diffuse reflection (middle) and specular reflection (right). 

 

A combination of the three reflection coefficients is shown in (Figure 2.16) 

and (Figure 2.17). In (Figure 2.16) as the ambient reflection coefficient gets larger the 

average intensity gets larger and the hand model seems to be duller. 

 

 
Figure 2.16: The effect of the ambient reflection. 

 

In (Figure 2.17), when the amount of the diffuse reflection is larger than the 

amount of the specular reflection the lighting seems to be smoother. If the opposite 

happens characteristics of the hand model become sharper and the contrast is 

stronger.  
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Figure 2.17: The effect of the diffuse and specular reflections. 

 

2.2.6.2. Distance term 

The distance term or the radial intensity attenuation term 
2 1

0 1 2( )k d k dk    

is responsible for the intensity reduction while the light travels from the point source 

to a point of the hand model. The three distance constants k0,k1,k2 determine how 

rapidly the light’s intensity will drop off. Although, in (Figure 2.18) for different 

constant values the average intensity has a tremendous difference but there is no 

change in the distribution of light on the hand model. 

 

 
Figure 2.18: The effect of the distance term. 

 

In other chapters, the illumination of the hand model will be compared to the 

illumination of the hand in real images.  
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2.2.6.3. Shininess coefficient 
The shininess coefficient a describes the extent to which the reflected light is 

focused in the direction of a perfect reflection. It is clear (Figure 2.19) that the value 

of this coefficient affects the distribution of light on the hand model as well as the 

average intensity value. The default value where there is no effect is a = 1. If this 

value becomes smaller than the default value, the reflected light is spread and the 

average intensity value is higher. On the other hand, if the value becomes larger the 

reflected light is more focused and the average intensity value is lower. 

 

 
Figure 2.19: The effect of the shininess coefficient. 

 

2.2.6.4. Moving light’s position 
The values of the diffuse and specular reflection coefficients as well as the 

shininess coefficient were arbitrary selected to be 0.5 3d sk k  , a . In the 

experiments of this section the illumination of a hand model will be tested while the 

light’s position is changing in the 3D space.  
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The original size of the images is: height = 480 and width = 640 but the 

images we provide are zoomed to be able to see the details clearer. The initial image 

can be seen in (Figure 2.20) and the red dot represents the initial position of the light 

(point) source. The red dot is placed there to aesthetically understand the light’s 

position. In the 3D space, this red dot has the coordinates of the center of the Kinect 

camera (0,0,0) (Figure 2.21) where we arbitrary selected to place the modeled point 

source. Also, the hand model’s coordinates are approximately 900mm in front of the 

point source. All the distance values are measured in millimeters. 

 
Figure 2.20: Original size of the images (height = 480, width = 640) and the light’s initial position 

(red dot). 
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Figure 2.21: Realistic representation of the Kinect camera center and the hand model. 

 

The point source (red dot) is moving from x = -2400mm to x = +2400mm only 

on the x – axis and from y = -2400mm to y = +2400mm only on the y – axis to take 

the results shown in (Figure 2.22) and (Figure 2.23). When x takes negative values 

(moving left) the dark points on the fingers are formed at the right side of the hand 

model while the left side appears brighter and when x takes positive values (moving 

right) the dark points on the fingers are formed at the left side of the hand model 

while the right side appears brighter. 
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Figure 2.22: Light source: X – axis movement. 

 

In a similar way, when y takes negative values (moving up) we can see that 

the dark points on the fingers are formed at the bottom of the hand model, the 

inside of the palm is also darker and the tips of the fingers appear brighter. When y 

takes positive values (moving down) the bottom of the hand model appears much 

brighter than the inside of the palm. In both cases, it is very clear how much brighter 

the palm seems to be when the light source forms small angles relative to the hand 

model. 
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Figure 2.23: Light source: X – axis movement. 

 

An interesting case is when the point source is moving forward to the hand 

model. (Figure 2.24) shows that at some point the illumination on the hand model 

suddenly drops off. What happens is that the light source is very close to the z value 

of +900mm, overtakes the hand model and then is behind of it. 
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Figure 2.24: Light source: Z – axis movement. 

 

2.2.6.5. Moving hand’s model position 
In the experiments of this section the illumination of a hand model will be 

tested while the hand’s model position is changing relative to the light’s position 

which is fixed at (0,0,0).  

In (Figure 2.25) the fingers of the hand model have been bended. The darker 

spots are formed at the points where the fingers are bended because the angles 

relative to the point source are bigger than before. The tips of the fingers are 

highlighted as they tend to come in the same direction with the light rays. Since the 

fingers are bended enough, the highlights appear on the top of them.  
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Figure 2.25: Finger bending. 

 

The hand model is rotated on the X – axis and Y – axis to get the results in 

(Figure 2.26) and (Figure 2.7 respectively. The points of the hand model that 

correspond to large θ angles appear darker than the others. The highlights are also 

clear where φ angle is small. 
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Figure 2.26: X – axis rotation. 

 

 
Figure 2.27: Y – axis rotation. 

 

The Phong reflection model which we developed has the desirable 

illumination results but its application has yet to be tested.  

The next section refers to the objective functions used to compare the 

illumination of the rendered 3D hand model with the illumination of the RGB 

observation and give as a result value of discrepancy (or dissimilarity) V(O,H) 

between them. 
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2.3. Objective functions 
In the previous section, an algorithm was developed that describes the 

illumination of a rendered 3D hand pose. The information of the normals and the 

positions in the 3D space are used to find the intensity value of every point of the 

rendered 3D hand pose, based on the theory of the Phong reflection model which is 

usually used in computer graphics.  

During the hand tracking process, visual RGB-D data are acquired from the 

Kinect sensor. Each frame includes an RGB image and a Depth image. By extension, it 

includes the information of the intensity and depth values in these images and we 

refer to them as observations. Several rendered 3D hand model instances 

(represented as a vector of 27 parameters), that we call hypotheses, are generated 

from the 3D hand tracker and the best hypothesis that matches the observation’s 

hand must be selected. Several objective functions were developed to compare the 

intensities between each hypothesis and the observation and compute their 

discrepancy value V(O,H) which ranges from 0 (for a perfect match) to 1 (for a 

mismatch). 

 

2.3.1. Introduction 
The observations are acquired from the Kinect camera, the RGB image is 

converted to GRAY and the foreground (pixels of the hand) is extracted using an 

object detection technique. The intensity values of the observation are normalized 

to the same value range with the hypothesis. That would be zero for the lowest 

intensity value and one for highest intensity value. 

Several hypotheses are generated to be compared with the observation. An 

objective function evaluates their discrepancy value V(O,H) and the hypothesis with 

the lowest discrepancy value should be the one which matches better the 

observation. We developed several objective functions, each one with different 

parameters that will be described in the following sections. 

 

2.3.2. RGB-D visual data 
The Kinect sensor provides us with the RGB and Depth images as seen in 

(Figure 2.28). The only light source in the environment is a light bulb placed next to 

the Kinect sensor.  
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Figure 2.28: RGB image (Left), Depth image (Right). 

 

The exact point of the light bulb for this image is (+200mm,+150mm,0mm) 

relative to the center of the Kinect sensor (Figure 2.29). When we simulate the 

illumination on the hypothesis we set the point source at the same position as in 

reality’s light bulb. 

 
Figure 2.29: Realistic representation of the Kinect camera center and the RGB image. 

 

2.3.2.1. RGB to GRAY 
The RGB image is a 3-channel image. That means that at each point we know 

the intensities of Red, Green, and Blue. An illuminated hypothesis is displayed as a 1-
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channel image so the RGB images need to be converted to GRAY, 1-channel images 

so that each observation point corresponds to one intensity value (Figure 2.30). 

 

 
Figure 2.30: GRAY image. 

 

2.3.2.2. Foreground extraction (or background subtraction) 
An object detection technique is used to extract the foreground information. 

The RGB visual data are used only. Our goal here is to detect the pixels that 

correspond to the human hand. 

The human skin has much amount of redness that’s why we chose the red 

channel from the 3-channel RGB image to be used for the foreground extraction. In 

(Figure 2.31) the Red channel is visualized as a RGB image where bluer pixels denote 

that there isn’t much redness at those points and redder pixels denote that there is 

high amount of redness at those points. Also, points that are closer to the Kinect 

sensor may appear even redder. 

 

 
Figure 2.31: Red – channel. 

 



37 
 

Since our hand appeared in the observations is one of the closest objects to 

the Kinect sensor and skinned colored, it appears reddish. An intensity threshold is 

used below which every pixel’s intensity is changed to zero. The remaining pixels 

with intensity above this threshold are labeled with a non-zero value and zero values 

are considered background. The objects in the image are the connected components 

of this image and the 4-Connectivity structure is the structure that we use to identify 

them. All the pixels of an identified object are labeled with the same non-zero value 

but every object is denoted with a different non-zero value.  

The image below explains the thought. The pixels with intensity below the 

given threshold are considered background and they are labeled with a zero value. 

The pixels with intensity above the given threshold are considered foreground. The 

pixels of every different object have the same non-zero value. The yellow object is 

composed from two different objects which are connected (4-Connectivity structure) 

so the pixels of both objects have the same non-zero value. 

 

 
Figure 2.32:Object detection. 

 

The object with the highest probability to consist of the largest number of 

pixels is the human hand. So, we identify the hand in the image by selecting the 

labeled object with the largest number of pixels.  

The result it can be seen in the image below. 
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Figure 2.33: Result after object detection: original (Left), zoomed (Right). 

 

This foreground extraction method in many cases overweighs previous used 

extraction methods based on the depth (distances) information like the default 

extraction method of the 3D hand tracker. The results of both the extraction 

methods are shown in the images below. 
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Figure 2.34: Extraction using the Depth information (Left), extraction using object detection (right). 

 

Extraction using this proposed object detection technique was proved to be 

less noisy than the extraction method based on depths. 

Even though the extraction using the depth information gives noisier results, 

there is another reason that justifies our choice to use the proposed object detection 

technique. Due to limitations that the Kinect sensor has, it is possible in many 

occasions to lose important depth information that corresponds to an inevitably loss 

of useful RGB information during the foreground extraction.  

To be more specific, in a case like the one in (Figure 2.35), the Kinect sensor is 

unable to record the necessary depth information that we need to extract the hand 

pixels from RGB image. That leaves us with a result like the left image of the (Figure 

2.36) where some points of the hand are missing. This doesn’t happen when the 

proposed object detection technique is used like in the right image of the (Figure 

2.36). 
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Figure 2.35: RGB image. 

 

 
Figure 2.36: Extraction using the Depth information (Left), extraction using object detection (right). 

 

2.3.2.3. Normalization 
The intensity values of the observation are ranged from 0 to 255. To compare 

them with the intensity values of a hypothesis ranged from 0 to 1, they are first 

normalized to that same range based on the equation below. 
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( , ) min( )
( , )

max( ) min( )

Gray i j Gray
Gray i j

Gray Gray





 

 

2.3.3. The objective functions and their properties 
Until now the lighting model algorithm, that interprets the illumination on a 

hypothesis, has been presented as well as the way the RGB data are handled to 

extract the foreground information of the hand in an observation. 

The comparison between observation and hypothesis is done pixel-wise. The 

intensisty value of a pixel in the hypothesis’s image is subtracted from the intensity 

value of a pixel with the same coordinates in the observation’s image. The absolute 

difference between them is taken  

 

, , ,i j i j i jd o h   

 

where i and j correspond to the coordinates of a pixel. The intensity 

differences after the subtraction of all the pixels can be seen in (Figure 2.36). Small 

differences appear darker while big differences appear brighter.  

 

 
Figure 2.37: The absolute intensity differences – d. 

 

Two more hypothesis examples can be seen in (Figure 2.38). 
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Figure 2.38: Examples of different hypotheses. 

 

To evaluate the discrepancy value between an observation O and a 

hypothesis H several objective functions were formed each one with different 

parameters and properties. These properties are related to some auxiliary 

parameters which an objective function has with the goal to improve its efficiency. 

The objective functions are separated in three main categories: the category where 

no parameter is used denoted with the capital letter N, the category where the 

percent parameter “r” is used denoted with the capital letter R and the category 

where the mask parameter “m” is used denoted with the capital letter M. Each of 

these categories consists of 7 objective functions. The characteristics of all the 

objective functions are presented next. 

 

2.3.3.1. Sum of absolute (di,j) differences  
In set theory, given two sets A and B, the union is the set that contains 

elements or objects that belong to either A or to B or to both. In the same way, the 

union of an observation with a hypothesis is an image (array) that contains elements 

to either observation or to hypothesis or to both. The number of the pixels of the 

union is denoted as Pu. The discrepancy value V(O,H) is computed when the sum of 

all the absolute differences di,j is divided by the number Pu. 

 

https://en.wikipedia.org/wiki/Set_theory
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,

, ,

, 0
( , )

h w

i j i j

i j

o h

V O H
Pu








 

 

Even if the hypothesis in (Figures 2.37) is a very good match, there are some 

points with big intensity difference di,j that may influence negatively the discrepancy 

value V(O,H). For this reason, a maximum discrepancy threshold “dmax” is set. When 

the di,j value is higher than the dmax then , maxi jd d . That also means that the 

highest difference value is set to dmax. The discrepancy value is given by 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

,

, , max

, 0

max

min( , )

( , )
*Pu

h w

i j i j

i j

o h d

V O H
d








 

 

This function ranges from 0 for a perfect match to 1 for a mismatch. 

 

2.3.3.2. Number of big absolute (di,j) differences  
A small di,j difference means that a point with coordinates (i,j) in both the 

observation and the hypothesis has similar intensity value. As the number of these 

differences gets larger the total discrepancy between observation and hypothesis 

gets lower and the V(O,H) tends to zero. Contrariwise, as the number of big 

differences gets larger the V(O,H) tends to one. 

 An intensity threshold “dbig” above which an intensity difference value is 

considered big is established. The number of these big absolute differences denoted 

as Pb is computed, and divided by the Pu. So, if all the differences are above dbig the 

V(O,H) value is 1. On the other hand, if all the differences are below this dbig the 

V(O,H) value is 0. A good dbig value was found efficient around 0.4. 

The discrepancy value is now given by 

 

( , )
Pb

V O H
Pu

  

 

where 
,

,

0 0
( , )

1

i j big

i j big

V O H
Pu

 
  

  

 if Pb  (All d  < d )

 if Pb  (All d  d )
 

 

The proposed objective functions either use the sum of absolute (di,j) 

differences or the number of big absolute (di,j) differences “Pb”. 
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During the tracking the 3D hand tracker generates several hypotheses. This 

number depends on the user. A large number of hypotheses (e.g. 800) means that 

the chance for a hypothesis to perfectly match the observation gets higher but the 

algorithm’s execution time is slower. A small number of hypotheses (e.g. 200) means 

that the chance for a perfectly matched hypothesis is lower but the algorithm’s 

execution time is faster. Whatever this number, there is a chance, a hypothesis that 

does not match the observation, to have very similar illumination with the 

observation. As the number of these hypotheses gets bigger, there are more chances 

for a wrong hypothesis to be chosen as a match. To avoid problems like this, the 

objective function must be also sensitive to margin matching changes between the 

observation and the hypothesis. This way a hypothesis with different orientation but 

with similar illumination will again have a worse V(O,H) value than a hypothesis with 

an orientation similar to the observation. 

The next two parts refer to the problem of margin matching between the 

observation and the hypothesis. 

 

2.3.3.3. Percent parameter “r” 
The percent parameter “r” is a fraction with a numerator the number of the 

hand pixels of the hypothesis Ph and denominator the number of the hand pixels of 

the observation Po.  

Ph
r

Po
  

 

The Po number in each frame cannot change so the percent parameter for 

each hypothesis depends only on the Ph number. When the Ph number is bigger 

than the Po number, numerator and denominator must switch positions so that the 

percent parameter always tends to 1. So 

 

Ph
Ph Po

Po
r

Po
Ph Po

Ph

 
  

  
 
  

 if  < 

 if  > 
 

 

The advantage of this parameter is that the generated hypotheses tend to 

consist of a similar number of pixels as the observation 

 

( 1)Ph Po r  i.e. . 

 

However, this parameter does not assure that the hypothesis will match the 

observation. It is sensitive when the orientation or the size of the hand is different 
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but when the orientation is very similar, the V(O,H) value mainly depends on the 

luminance difference. This can be explained better while looking the images in 

(Figure 2.39). 

 

 
Figure 2. 39: Hypothesis examples 

 

The percent value of the image in (Figure 2.37), is 0.93r  . In the two upper 

images of (Figure 2.39) it is clear how different the orientation of the hypothesis is 

but despite that the percent value is 0.91r  . This happens because the hypothesis 

has a very similar orientation with the observation. Now in the two lower images of 

(Figure 2.39) again the difference is obvious but the percent value is 0.48r 

because the Ph number was reduced significantly when the orientation changed.  

 

2.3.3.4. Masks and the mask parameter “m” 
A more efficient way to marginally match the hypothesis and the observation 

is by using masks. A mask image is a binary image. The mask image of the 

observation and a hypothesis can be seen in (Figure 2.40). Every hand pixel in both 

images has value equal to 1 and every other pixel’s value is equal to 0.  
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Figure 2.40: Observation mask (Left), Hypothesis mask (Right). 

 

To continue, the hypothesis and the observation image (arrays) are joined to 

find the union pixels, the intersection pixels, and the difference pixels. In left image 

of (Figure 2.41) the red pixels represent the observation pixels that don’t match with 

the hypothesis and the blue pixels represent the hypothesis pixels that don’t match 

with the observation. Summing the number of the red pixels with the blue ones we 

find the total number of the difference pixels Pd. In the right image of (Figure 2.41) 

the red pixels represent the intersection pixels Pi between observation and 

hypothesis. The green pixels represent the difference pixels Pd and summing the 

green pixels with the red ones we find the total number of the union pixels Pu that 

was discussed previously in 2.3.3.1. Sum of absolute (di,j) differences 

 

 
Figure 2.41: Mask differences (Left), Union mask (Right). 

 

The mask parameter that arises from the use of the masks and the three 

numbers Pd, Pi and Pu is symbolized with the letter m and represents the 
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percentage of the intersection pixels Pi in the union of the two masks. The number 

of the intersection pixels is computed by 

 

Pi Pu Pd   

and the percentage m 

 

Pi
m

Pu
  

 

As the number Pi approaches the number Pu the percentage m tends to be 1. 

That means that the hypothesis with the bigger number of intersection pixels fits 

better to the observation.  

The advantage of this parameter is that adds an error to the discrepancy 

value when the hypothesis doesn’t marginally match the orientation of the 

observation. As their orientation’s difference gets bigger the error gets higher too. 

Also, this parameter was found to be more robust than the percent parameter “r”. 

 

2.3.3.5. Intersected pixels, penalty parameter and lighting absence 
So far, the use of the auxiliary parameters “r” and “m” as long as the way an 

objective function computes the discrepancy value were described (either using the 

sum of the differences or the number of big differences). In this section, some 

further properties of the objective functions are discussed. 

An objective function until now, uses all the pixels (Pu) to evaluate the 

discrepancy value V(O,H). An alternative objective function is tested, where only the 

pixels that intersect (Pi) are used in the evaluation of the discrepancy value V(O,H). 

Thus, we have 

 

,

, , max

, 0

max

min( , )

( , ) ( , )
Pi*

h w

i j i j

i j

o h d
Pb

V O H V O H
d Pi





 


 and  

when the sum of absolute differences and the number of big differences are 

used respectively. 
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Figure 2.42: Only the intersected pixels are used. 

 

Moreover, an alternative objective function is tested where a penalty for the 

pixels of the difference Pd is placed. More specifically, we place a penalty equal to 

the value of the dmax to the pixels that don’t intersect (Pd). This way we penalize our 

objective function for every unmatched pixel between the observation and a 

hypothesis. The image below shows the thinking. 

 
,

, , max

, 0

, , max

max

min( , )

( , )
*

  if  

h w

i j i j

i j

i j i j

o h d

V O H d Pd d d
d Pu





   


 

 

 
Figure 2.43: The intensity differences – d with the penalties. 

 

To determine how useful the use of the lighting information really is, the 

objective functions have to be tested and compared with an alternative version of 
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them where the lighting is absent. Two more equations are generated; the first 

corresponds to the objective functions where all the pixels are used (Pu) and the 

second to the objective functions where only the intersected pixels are used (Pi).   

 

( , )
Pd

V O H
Pu

 and ( , )
Pd

V O H
Pi

  

 

 

Since the lighting is absent, the discrepancy value V(O,H) is a subtraction 

result between the two binary masks of the observation and the hypothesis. 

 

 
Figure 2.44: Lighting absence. 

 

2.3.3.6. The objective functions 
To avoid confusion, the generated objective functions that arise from the 

combination of all the elements mentioned in the previous sections, are separated in 

3 categories: N, R, M and their versions are presented below with a unique label. The 

total number of the constructed objective functions is 21. 

 

N No parameter is used 

R Percent parameter “r” is used 

M Mask parameter “m” is used 

 

S = Sum C = Count L = Lighting P = Penalty I = Intersection 
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N Equations 

NS No Lighting 

NSL Lighting 

NSPL Lighting + Penalty 

NSI Intersection No Lighting 

NSIL Intersection Lighting  

NCL Lighting 

NCIL Intersection Lighting 
Table 1: N equations. 
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 {Eq.NS}

{Eq.NSL}

{Eq.NSPL}

{Eq.NSI} 

,
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*
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( , )
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d
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Pb
V O H

Pi




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{Eq.NSIL}

{Eq.NC

    

  

   

L}

{Eq.NCIL}
 

 

R Equations 

RS No Lighting 

RSL Lighting 

RSPL Lighting + Penalty 

RSI Intersection No Lighting 

RSIL Intersection Lighting  

RCL Lighting 

RCIL Intersection Lighting 
Table 2: R equations. 
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M Equations 

MS No Lighting 

MSL Lighting 

MSPL Lighting + Penalty 

MSI Intersection No Lighting 

MSIL Intersection Lighting  

MCL Lighting 

MCIL Intersection Lighting 
Table 3: M equations. 
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Algorithm 2: Brief discrepancy value calculation algorithm. 

 

1.

2.

Masks mask parameter

Percent parameter

Input Data: Observation (GRAY image),Hypothesis (PHONG image),h,w

 and   "m"

  GRAY mask. 

  PHONG mask.

  , ,  and  calculation.

   "r"

  ,  a

Pu Pd Pi m

Po Ph rnd  calculation.

,

max

3.

4.

5.

big

i j

Sum of absolute differences

Number of absolute big differences

The equatio

d

P

s

b

n

  No parameter 

    

  Intensity absolute differences (d array) calculation 

  Threshold 

     

  Threshold 

  Numb  

 

d

er

 

d

: , , , , , ,

: , , , , , ,

: , , , , , ,

NS NSL NSPL NSI NSIL NCL NCIL

RS RSL RSPL RSI RSIL RCL RCIL

MS MSL MSPL MSI MSIL MCL MCIL

       

         

         

equations

Percent parameter " " equations

Mas

r

k parameter " " equatm ions

Output Data: V(O, H),d

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

Chapter 3 - Experiments 

3.1. Offline experiments 
In this section, the efficiency of the objective functions is tested using the 

following setup. An initial rendered hand pose is matched with the segmented hand 

pose of an observation (frame) and follows a specific move consisted of several 

hypotheses. Each hypothesis is compared with the observation using an objective 

function. The discrepancy value V(O,H) of each hypothesis is recorded and a graph is 

created (Discrepancy – Hypothesis) which shows how the discrepancy value changes 

in each hypothesis. The same move is used to create the graph for all the objective 

functions. A single case is characterized by a specific move and includes the graphs of 

all the objective functions for a given observation.  

Then, a simulated hand pose is used as an observation’s hand pose and the 

same move is used to test all the objective functions again. This way we compare the 

hypotheses with an observation which has the same light conditions and foreground. 

Thus, for each case we have the offline experiments using a real observation and the 

offline experiments using a simulated hand pose as an observation. Under the same 

logic, we tested the objective functions in various cases before proceeding to the 

tracking experiments.  

 

Case 1 X-Y axis movement 

Case 2 Y axis rotation (clockwise + counterclockwise) 
Case 3 Y axis rotation 2 (counterclockwise) 

Case 4 X axis rotation (downward) 

Case 5 Bending 

Table 4: Offline experiments cases. 

In the last section of the previous chapter we categorized the objective 

functions in six categories. In each following case, a figure displays the performance 

of every objective function in each category. The performance of an objective 

function in a figure is visualized with a graph and has a specific color. 

• Equations N: NS, NSL, NSPL, NSI, NSIL, NCL, NCIL 

• Equations R: RS, RSL, RSPL, RSI, RSIL, RCL, RCIL 

• Equations M: MS, MSL, MSPL, MSI, MSIL, MCL, MCIL 

 

Objective functions using the “sum of absolute differences” method: the blue 

colored graphs refer to the functions (NS, RS, MS) where the lighting is absent and all 

the pixels are used, the green colored graphs refer to the functions (NSL, RSL, MSL) 
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where the lighting is present and all the pixels are used, the red colored graphs refer 

to the functions (NSPL, RSPL, MSPL) where the penalty parameter and all the pixels 

are used, the black colored graphs refer to the functions (NSI, RSI, MSI) where the 

lighting is absent and only the intersected pixels are used, the magenta colored 

graphs refer to the functions (NSIL, RSIL, MSIL) where the lighting is present and only 

the intersected pixels are used.  

Objective functions using the “number of big absolute differences” method: 

the yellow colored graphs refer to the functions (NCI, RCI, MCI) where the lighting is 

absent and only the intersected pixels are used, the cyan colored graphs refer to the 

functions (NCIL, RCIL, MCIL) where the lighting is present and only the intersected 

pixels are used. 

Also, when the sum of differences is used max 1d  and when the number of 

big differences is used 0.4bigd  . 

The constants of the equation of the Phong reflection model that was 

mentioned in (2.2.4.4. The Phong reflection) can be seen below.
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3.1.1. Case 1: X-Y axis movement 

The RGB image used in the first case can be seen in the image below. 

 
Figure 3.1: RGB image of Case 1. 

 

3.1.1.1. X-Y axis movement 

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis, and their differences are shown in the figures below. 

 

 
Figure 3.2: Observation (Left), initial hypothesis (Middle), and the differences (Right). 

 

The initial hypothesis (pose) is then moved diagonally, in a down - left 

direction in 49 steps. 
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Figure 3.3: Observation (Left), final hypothesis (Middle), and the differences (Right). 

When the lighting information is absent, the comparison is between the 

binary foreground mask of the observation and the binary foreground mask of each 

hypothesis. 

 

 
Figure 3.4: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the lighting is absent. 

 

When the penalty component is used, the pixels that don’t belong to either 

the observation or the hypothesis take the maximum default discrepancy value dmax. 
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Figure 3.5: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the penalty parameter is used. 

The images below show the case where only the intersected pixels between 

the observation and the hypothesis contribute to the computation of the 

discrepancy value V(O,H). 
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Figure 3.6: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when only the intersection pixels are used. 

 

The graph results of the functions can be seen in the following figures. 

 
Figure 3.7: N equations. 
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Figure 3.8: R equations. 

 
Figure 3.9: M equations. 
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The responses of the objective functions suggest that using only the 

intersected pixels don’t improve the efficiency of the objective functions. The NCL, 

RCL, MCL objective functions rise faster than any other response in the 

corresponding figures. This shows that the lighting information may improve the 

efficiency of the objective functions. 

 
Figure 3.10:  NSL, RSL, MSL equations comparison. 
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Figure 3.11:  NCL, RCL, MCL equations comparison. 

Τhe percent parameter “r” and the mask parameter “m” are auxiliary 

parameters. The purpose of their use is to give an additional error to the discrepancy 

value when a hypothesis doesn’t marginally match with the observation. So, what 

we expect is that the two auxiliary parameters will give a sharper increase in the 

graphs while the hypothesis is moving away from its initial state. 

From the two figures above, the mask parameter seems to have the best 

results. 

  

If the light conditions and the foreground where the same for both the 

observation and the hypotheses the graphs would have as a beginning the axis 

origin. There are two reasons why this isn’t happening. The first reason is that the 

observation foreground doesn’t marginally match with the hypothesis foreground. 

There are many pixels around and below the hand that we can’t avoid completely. 

This has a significant impact on the result and also gives additional error to the 

discrepancy value V(O,H). The second reason is that the lighting distribution on the 

observation’s hand pose differs from the lighting distribution on the hypothesis hand 

pose. In the figure below the intensities of the hypothesis are a lot higher than those 

of the observation.  

These are the two major problems that we must front without being able to 

completely avoid. Because of them the objective functions give higher values than 

they should and the discrepancy value contains an error rate. 
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Figure 3.12: Problems display. 

To have more trustworthy results about the efficiency of the objective 

functions we replaced the observation’s hand pose with the initial simulated hand 

pose (hypothesis). The move doesn’t change, the same hypotheses are generated 

but now the light conditions and the foregrounds are similar for both the 

observation and the hypotheses and there is no additional error to the discrepancy 

value V(O,H). 

 

3.1.1.2. Simulated – X-Y axis movement 

The initial rendered hand pose replaces the observation to see how the 

objective functions operate when the light conditions and the foregrounds are 

similar for both the observation and the hypothesis. The hypothesis is moved again 

in 49 steps as in the previous section. Due to the perfect match, the discrepancy 

image at the hypothesis initial state is black. 

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis and their differences are shown in the figures below. 
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Figure 3.13: Observation (Left), initial hypothesis (Middle), and the differences (Right). 

 

 
Figure 3.14: Observation (Left), final hypothesis (Middle), and the differences (Right). 

 

The graph results of the objective functions can be seen in the following 

figures. 
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Figure 3.15: N equations. 

 
Figure 3.16: R equations. 
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Figure 3.17: M equations. 

All the responses of the objective functions now start from zero and the 

comparison between them is easier and more accurate. 

Using only the intersected pixels doesn’t improve the efficiency of the 

objective functions either the lighting is present or absent. In contrast with the 

previous results, when the penalty parameter is included, the performance of the 

NSPL, RSPL, and MSPL objective functions is far better than the others in each figure. 

That suggests that if all the conditions were similar for both the observation and the 

hypotheses, the lighting presence with the penalty parameter gives better results 

than when the lighting is absent. 
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Figure 3.18: NSL, RSL, MSL equations comparison. 

 
Figure 3.19: NCL, RCL, MCL equations comparison. 
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The mask parameter (MSL, MCL) is more efficient than the percent 

parameter (RSL, RCL). In this case, the percent parameter has no influence on the 

discrepancy value since the responses of RSL and RCL coincide with the responses of 

NSL and NCL respectively. The reason is that the number of the pixels of the hand 

model stays the same during the move. 

 

3.1.2. Case 2: Y axis rotation 

The RGB image used in this case can be seen in the image below. 

 
Figure 3.20: RGB image of Case 2. 

 

3.1.2.1. Clockwise Rotation 

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis, and their differences are shown in the figures below. 
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Figure 3.21: Observation (Left), initial hypothesis (Middle), and the differences (Right). 

 

In this case, the initial hypothesis is rotated clockwise in 49 steps. 

 

 
Figure 3.22: Observation (Left), final hypothesis (Middle), and the differences (Right). 

 

The following figures show the cases where a) the lighting is absent, b) the 

penalty parameter is used and c) only the intersection pixels are used. 
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Figure 3.23: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the lighting is absent. 

 

 
Figure 3.24: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the penalty component is used. 
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Figure 3.25: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when only the intersection pixels are used. 

 

The graph results of the objective functions can be seen in the following 

figures. 
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Figure 3.26: N equations. 

 
Figure 3.27: R equations. 
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Figure 3.28: M equations. 

 

The responses of the objective functions which use only the intersected 

pixels rise slower than the others either the lighting is present or absent. So, using 

only the intersected pixels or the penalty parameter doesn’t seem to improve the 

efficiency of the objective functions. There isn’t any lighting objective function to 

obviously have better response than a lighting absent objective function. 
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Figure 3.29: NSL, RSL, MSL equations comparison. 

 
Figure 3.30: NCL, RCL, MCL equations comparison. 
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In this case, RSL and RCL have similar responses with MSL and MCL 

respectively. The use of an auxiliary parameter (mask or percent) improves the 

efficiency of the objective functions. 

 

3.1.2.2. Simulated - Clockwise Rotation 

The initial rendered hand pose replaces the observation to see how the 

objective functions operate when the light conditions and the foregrounds are 

similar for both the observation and the hypothesis. The initial hypothesis is rotated 

again in 49 steps.  

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis and their differences are shown in the figures below. Due to the perfect 

match the initial discrepancy image is black. 

 
Figure 3.31: Observation (Left), initial hypothesis (Middle), and the differences (Right). 

 
Figure 3.32: Observation (Left), final hypothesis (Middle), and the differences (Right). 

 

The graph results can be seen below. 
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Figure 3.33: N equations. 

 

Figure 3.34: R equations. 
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Figure 3.35: M equations. 

 

Using only the intersected pixels doesn’t improve the efficiency of the 

objective functions either the lighting is present or absent. All the responses of the 

objective functions where the lighting is present increase sharper than the responses 

of the objective functions where the lighting is absent. That suggests that when all 

the conditions are similar for both the observation and the hypotheses, the lighting 

presence gives better results than if the lighting was absent and those results can be 

further improved if the penalty parameter is included. The NSPL, RSPL, MSPL 

objective functions are the best in each figure. 
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Figure 3.36: NSL, RSL, MSL equations comparison. 

 
Figure 3.37: NCL, RCL, MCL equations comparison. 
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From the graphs above we can presume that the mask parameter (MSL, MCL) 

overweighs both the percent parameter (RSL, RCL) and the case where no auxiliary 

parameter is used (NSL, NCL). In general, the use of an auxiliary parameter makes 

the responses of the objective functions increase faster. 

 

3.1.2.3. Counter Clockwise Rotation 

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis and their differences are shown in the figures below. 

 
Figure 3.38: Observation (Left), initial hypothesis (Middle), and the differences (Right). 

 

In this case, the initial hypothesis is rotated counter clockwise in 49 steps. 
 

 
Figure 3.39: Observation (Left), final hypothesis (Middle), and the differences (Right). 

 

The following figures show the cases where a) the lighting is absent, b) the 

penalty component is used and c) only the intersection pixels are used. 
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Figure 3.40: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the lighting is absent. 

 

 
Figure 3.41: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the penalty component is used. 
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Figure 3.42: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when only the intersection pixels are used. 

 

The graph results of the objective functions can be seen in the following 

figures. 
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Figure 3.43: N equations. 

 
Figure 3.44: R equations. 
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Figure 3.45: M equations. 

 

All the graphs have lower slopes in comparison with the clockwise rotation 

graphs. The position of the light source may be responsible for this. The lamp for this 

case was placed to the left side of the Kinect sensor so when the hypothesis rotates 

clockwise then it rotates towards the light source and the differences are bigger than 

in the case where the hypothesis rotates counter clockwise towards the shadow.  

Despite this fact, we conclude to the exact same results as in the clockwise 

version. Using only the intersected pixels doesn’t improve the efficiency of the 

objective functions. The lighting element in the objective functions seems to have no 

positive impact to the result. 
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Figure 3.46: NSL, RSL, MSL equations comparison. 

 
Figure 3.47: NCL, RCL, MCL equations comparison. 
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The efficiency of the auxiliary parameters isn’t obvious from the above 

graphs. 

The positive impact of the lighting presence and the auxiliary parameters is 

difficult to be noticed. For such a reason we test the objective functions again when 

the observation and the hypotheses have the same light conditions and similar 

foregrounds. 

 

3.1.2.4. Simulated – Counter Clockwise Rotation 

The initial rendered hand pose replaces the observation to see how the 

objective functions operate when the light conditions and the foregrounds are 

similar for both the observation and the hypothesis. The initial hypothesis is rotated 

again in 49 steps.  

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis, and their differences are shown in the figures below. Due to the perfect 

match, the initial discrepancy image is black. 

 

 
Figure 3.48: Observation (Left), initial hypothesis (Middle), and the differences (Right). 
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Figure 3.49: Observation (Left), final hypothesis (Middle), and the differences (Right). 

 

The graphs of the objective functions can be seen below. 

 
Figure 3.50: N equations. 
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Figure 3.51: R equations. 

 
Figure 3.52: M equations. 
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When all the conditions are similar for both the observation and the 

hypothesis, the lighting presence gives again better results than if the lighting was 

absent and those results can be further improved if the penalty parameter is 

included. Using only the intersected pixels doesn’t improve the efficiency of the 

objective functions either the lighting is present or absent. 

 

 
Figure 3.53: NSL, RSL, MSL equations comparison. 
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Figure 3.54: NCL, RCL, MCL equations comparison. 

 

The mask parameter is the best auxiliary parameter again. 

3.1.3. Case 3: Y axis rotation 2 

The RGB image used in this case can be seen in the image below. 

 
Figure 3.19: RGB image of Case 3 

 

The hand in the RGB image is facing left relative to the Kinect camera. 
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3.1.3.1. Counter Clockwise Rotation 

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis and their differences are shown in the figures below. 

 
Figure 3.55: Observation (Left), initial hypothesis (Middle), and the differences (Right). 

 

Then, the initial hypothesis is rotated counter clockwise in 49 steps. 

 
Figure 3.56: Observation (Left), final hypothesis (Middle), and the differences (Right). 

 

The following figures show the cases where a) the lighting is absent, b) the 

penalty component is used and c) only the intersection pixels are used. 
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Figure 3.57: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the lighting is absent. 

 

 
Figure 3.58: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the penalty component is used. 
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Figure 3.59: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when only the intersection pixels are used. 

The graph results of the objective functions can be seen in the following 

figures. 

 
Figure 3.60: N equations. 
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Figure 3.61: R equations. 

 
Figure 3.62: M equations. 
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Using only the intersected pixels doesn’t seem to improve the efficiency of 

the objective functions either the lighting is present or absent. There is no obvious 

difference between the other graphs in whichever category we look at. All the 

responses are similar and using the lighting information didn’t improve the efficiency 

of the objective functions. 

 
Figure 3.63: NCL, RCL, MCL equations comparison. 



95 
 

 
Figure 3.64: NSL, RSL, MSL equations comparison. 

 

In this case, the percent parameter seems to have an advantage over the 

mask parameter since the RSL and RCL start from a lower point. 

 

3.1.3.2. Simulated – Counter Clockwise Rotation 

The initial rendered hand pose replaces the observation to see how the 

objective functions operate when the light conditions and the foregrounds are 

similar for both the observation and the hypothesis. The initial hypothesis is rotated 

again in 49 steps.  

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis and their differences are shown in the figures below. Due to the perfect 

match the initial discrepancy image is black. 
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Figure 3.65: Observation (Left), initial hypothesis (Middle), and the differences (Right). 

 
Figure 3.66: Observation (Left), final hypothesis (Middle), and the differences (Right). 

 

The graph results of the objective functions can be seen in the following 

figures. 
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Figure 3.67: N equations. 

 
Figure 3.68: R equations. 
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Figure 3.69: M equations. 

When all the conditions are similar for both the observation and the 

hypothesis, the lighting presence gives again better results than if the lighting was 

absent and those results can be further improved if the penalty parameter is 

included. Using only the intersected pixels doesn’t improve the efficiency of the 

objective functions either the lighting is present or absent. 
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Figure 3.70: NCL, RCL, MCL equations comparison. 

 
Figure 3.71: NSL, RSL, MSL equations comparison. 
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The graphs above suggest that the mask parameter enhances the efficiency 

of the functions more than the percent parameter. In general, the use of an auxiliary 

parameter gives positive results as their responses increase faster. 

 

3.1.4. Case 4: X axis rotation 

The RGB image used in this case can be seen in the image below. 

 

 
Figure 3.72: RGB image of Case 4. 

 

3.1.4.1. Downward Rotation 

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis, and their differences are shown in the figures below. 

 
Figure 3.73: Observation (Left), initial hypothesis (Middle), and the differences (Right). 
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Then, the initial hypothesis is rotated downward in 49 steps. 

 
Figure 3.74: Observation (Left), final hypothesis (Middle), and the differences (Right). 

 

The following figures show the cases where a) the lighting is absent, b) the 

penalty component is used and c) only the intersection pixels are used. 

 

 
Figure 3.75: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the lighting is absent. 
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Figure 3.76: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the penalty component is used. 

 

 
Figure 3.77: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when only the intersection pixels are used. 
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The graph results of the functions can be seen in the following figures. 

 
Figure 3.78: N equations. 

 
Figure 3.79: R equations. 
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Figure 3.80: M equations. 

 

The responses of the objective functions which use only the intersected 

pixels are similar or slower than those which use all the pixels to compute the 

discrepancy value regardless of whether the lighting is present or absent. Thus, we 

conclude that using only the intersected pixels or the penalty parameter doesn’t 

improve the efficiency of the objective functions. Once more, there is no obvious 

advantage of an objective function using the lighting information. However, this may 

change in the experiments where the light conditions are the same for both the 

observation and the hypotheses. 
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Figure 3.81: NSL, RSL, MSL equations comparison. 

 
Figure 3.82: NCL, RCL, MCL equations comparison. 
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The use of the auxiliary parameters doesn’t seem to improve the efficiency of 

the objective functions very much. 
 

3.1.4.2. Simulated – Downward Rotation 

The initial rendered hand pose replaces the observation to see how the 

objective functions operate when the light conditions and the foregrounds are 

similar for both the observation and the hypothesis. The initial hypothesis is rotated 

again in 49 steps.  

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis, and their differences are shown in the figures below. Due to the perfect 

match, the initial discrepancy image is black. 

 

 
Figure 3.83: Observation (Left), initial hypothesis (Middle), and the differences (Right). 

 
Figure 3.84: Observation (Left), final hypothesis (Middle), and the differences (Right). 

 

The graph results of the functions can be seen in the following figures. 
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Figure 3.85: N equations. 

 
Figure 3.86: R equations. 
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Figure 3.87: M equations. 

 

Using only the intersected pixels doesn’t improve the efficiency of the 

objective functions either the lighting is present or absent. The graphs that stand out 

are those where the penalty parameter is used. That suggests that if all the 

conditions are similar for both the observation and the hypothesis, the lighting 

presence with the penalty parameter gives better results than when the lighting is 

absent. 
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Figure 3.88: NCL, RCL, MCL equations comparison. 

 
Figure 3.89: NSL, RSL, MSL equations comparison. 
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The mask parameter is obviously the best auxiliary parameter. 

 

3.1.5. Case 5: Bending 

The RGB image used in this case can be seen in the image below. 

 
Figure 3.90: RGB image of Case 5. 

 

3.1.5.1. Bending 

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis, and their differences are shown in the figures below. 

 
Figure 3.91: Observation (Left), initial hypothesis (Middle), and the differences (Right). 

 

Then, the fingers of the initial hypothesis bend in 49 steps. 
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Figure 3.92: Observation (Left), final hypothesis (Middle), and the differences (Right). 

 

The following figures show the cases where a) the lighting is absent, b) the 

penalty component is used and c) only the intersection pixels are used. 

 

 
Figure 3.93: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the lighting is absent. 
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Figure 3.94: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when the penalty component is used. 

 
Figure 3.95: Observation (Left), initial hypothesis (Middle-Up), final hypothesis (Middle-Down), and 

the differences (Right) when only the intersection pixels are used. 
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The graph results of the objective functions can be seen in the following 

figures. 

 
Figure 3.96: N equations. 

 
Figure 3.97: R equations. 
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Figure 3.98: M equations. 

 

The objective functions where the lighting is absent seem to have the best 

responses but there is too much noise in this case and that makes the results 

untrustworthy. The experiments where the light conditions are similar for both the 

observation and the hypotheses are more reliable. 
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Figure 3.99: NSL, RSL, MSL equations comparison. 

 
Figure 3.100: NCL, RCL, MCL equations comparison. 
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Both the mask and the percent parameter improve the efficiency of the 

objective functions. 

 

3.1.5.2. Simulated – Bending 

The initial rendered hand pose replaces the observation to see how the 

objective functions operate when the light conditions and the foregrounds are 

similar for both the observation and the hypothesis. The fingers of the initial 

hypothesis bend again in 49 steps.  

The result after the foreground extraction, the initial hypothesis, the final 

hypothesis, and their differences are shown in the figures below. Due to the perfect 

match, the initial discrepancy image is black. 

 

 
Figure 3.101: Observation (Left), initial hypothesis (Middle), and the differences (Right). 

 

 
Figure 3.102: Observation (Left), final hypothesis (Middle), and the differences (Right). 
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The graph results of the functions can be seen in the following figures. 

 

 
Figure 3.103: N equations. 

 
Figure 3.104: R equations. 
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Figure 3.105: M equations. 

 

The results are much better than before. Using only the intersection pixels 

doesn’t improve the efficiency of the objective functions. The graphs that stand out 

are those where the penalty parameter is used. That suggests that if all the 

conditions are similar for both the observation and the hypothesis, the lighting 

presence with the penalty parameter gives better results than when the lighting is 

absent. 
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Figure 3.106: NCL, RCL, MCL equations comparison. 

 
Figure 3.107: NSL, RSL, MSL equations comparison. 
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The mask parameter is the auxiliary parameter that improves the efficiency 

of the objective functions the most. 

 

3.1.6. Conclusions of the offline experiments 

The offline experiments helped us to form a general view about the efficiency 

of the objective functions: 

• When the light conditions and the foreground between the observation and a 

hypothesis are not similar enough the results may be a lot different from the 

results where these two parameters are similar. However, this is an external 

factor which we cannot avoid, but we needed to test the efficiency of the 

objective functions when the conditions are similar for both the observation 

and the hypotheses to know that the lighting information is a useful element 

to include in our objective functions and that it could improve their efficiency 

under certain circumstances. 

• The mask parameter “m” is an auxiliary parameter that was found to improve 

the efficiency of the objective functions without an auxiliary parameter (N 

equations). Also, the experiments showed that it is better than the percent 

auxiliary parameter “r” which improves the efficiency of the objective 

functions too. 

• Using only the information of the intersected pixels isn’t helpful either the 

lighting information is present or absent. 

• The best objective function using the sum of absolute differences was found 

to be the MSPL objective function with the penalty parameter. The best 

objective function using the number of big absolute differences was found to 

be the MCL objective function. 

• The Figure below shows that the MSPL objective function (black) is the best 

objective function since it increases faster than the MCL objective function 

(blue) in every graph. 

• The simulated offline experiments showed that the lighting information may 

be a useful element and that there is a lot of room for improvement. 

However, it is a requirement the lighting conditions of the hypothesis to be 

simulated very well so that to be similar with the lighting conditions of the 

observation. That means a more complex lighting model is needed, enriched 

with much more information and characteristics of the scene. Another 

requirement is the foreground information of the observation and the 

hypothesis to marginally match as much as possible. A more improved 

foreground extraction method could do this job. 
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Figure 3.108: MSPL and MCL objective functions comparison. 

 

In the next section, the tracking experiments and their results are going to be 

presented. 
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3.2. Tracking experiments 
In this section, the efficiency of the best objective functions is tested in real 

tracking experiments. When the light conditions and the foreground are similar for 

both the observation and the hypotheses, the offline experiments showed that the 

best objective functions are: MSPL (when the sum of absolute differences is used) 

and MCL (when the number of big absolute differences is used). And when the 

lighting is absent, the offline experiments showed that the best objective function is: 

MS (when the sum of differences is used). All the objective functions include the 

mask parameter which was found that improves the efficiency the most. 

The three objective functions mentioned in the previous paragraph, are 

tested in simulated sequence tracking where the light conditions and the 

foreground are similar for both the observation and the hypotheses and in real video 

tracking. Their efficiency is also compared with the efficiency of the default objective 

function which the tracker uses based on the depth information. 

 

3.2.1. Datasets 
The table below shows the characteristics of the simulated sequences that 

were used to test the efficiency of the objective functions. Specifically, for each 

sequence the table shows the position of the light source in the 3D space, the 

number of frames, the intensity threshold used in the foreground extraction below 

which every pixel’s intensity is changed to zero (2.3.2.2. Foreground extraction 

(or background subtraction) and some elements of the move which the hand 

does in the sequence. The objective functions are tested in six different sequences 

using 128 particles and they are tested again in the last four sequences using 256 

particles. The chance a hypothesis has to match the observation gets higher as the 

number of the particles (hypotheses) for each frame is increased. 
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Sequence # Light Pos. (x, y, z) Frames Threshold Movement 

1 (+200, +170, 0) 99 0 Translation 

2 (+200, +170, 0) 99 0 Translation, Bending 

3 (+600, 0, 0) 99 0 
X, Y axis Rotation, 
Bending 

4 (+600, 0, 0) 99 0 
Z axis Rotation, 
Bending 

5 (+600, 0, 0) 99 0 
X axis Rotation, 
Bending 

6 (0, 0, -100) 99 0 
X, Y, Z axis Rotation, 
Bending 

Table 5: Simulated tracking sequences. 

In a similar way, the table below shows the characteristics of the real videos 

that were used to test the efficiency of the objective functions. 

 

Video # Light Pos. (x, y, z) Frames Threshold Movement 

1 (+200, +170, 0) 126 70 Translation, Bending 

2 (+200, +170, 0) 214 60 
X, Z axis Rotation, 
Bending 

3 (+200, +170, 0) 180 60 Bending 

4 (+200, +170, 0) 149 60 Y axis Rotation 

Table 6: Real tracking videos. 
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3.2.2. Simulated sequence tracking 
In this section simulated sequences are used to test the efficiency of the 

objective functions. The light conditions of the scene and the foreground are similar 

for both the observation and the hypothesis. For every sequence, we display some 

snapshots (frames) indicatively and two tables in the end show the average error 

(mm) of each objective function. 

 

3.2.2.1. Simulate sequence tracking – 128 particles 
The following tracking experiments were done using 128 hypotheses 

(particles). 

3.2.2.1.1. Sequence 1 

The observation is moving as the red lines show in the Figure below. The 

orientation doesn’t change during this movement. 

 
Figure 3.109: Sequence 1 observation images. 
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3.2.2.1.1.1. Default objective function 

The default objective function is used. 

 
Figure 3.110: Default objective function images. 

3.2.2.1.1.2. MS objective function 

The MS objective function is used. 

 
Figure 3.111: MS objective function images. 
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3.2.2.1.1.3. MSPL objective function  

The MSPL objective function is used. 

 
Figure 3.112: MSPL objective function images. 

3.2.2.1.1.4. MCL objective function 

The MCL objective function is used. 

 
Figure 3.113: MCL objective function images. 
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3.2.2.1.2. Sequence 2 

The fingers of the observation are bending and then they are straightening 

while the observation is not moving. Then it starts moving to the left and at the 

same time the thumb is bending.   

 
Figure 3.114: Sequence 2 observation images. 
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3.2.2.1.2.1. Default objective function 

The default objective function is used. 

 
Figure 3.115: Default objective function images. 

3.2.2.1.2.2. MS objective function 

The MS objective function is used. 

 
Figure 3.116: MS objective function images. 
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3.2.2.1.2.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.117: MSPL objective function images. 

3.2.2.1.2.4. MCL objective function 

The MCL objective function is used. 

 
Figure 3.118: MCL objective function images. 
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3.2.2.1.3. Sequence 3 

The observation is rotating forward, towards the camera while the fingers are 

bending. Then it is rotating to the right while the fingers are straightening and finally 

is rotating to the left.  

 
Figure 3.119: Sequence 3 observation images. 
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3.2.2.1.3.1. Default objective function 

The default objective function is used. 

 
Figure 3.120: Default objective function images. 

3.2.2.1.3.2. MS objective function 

The MS objective function is used. 

 
Figure 3.121: MS objective function images. 
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3.2.2.1.3.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.122: MSPL objective function images. 

3.2.2.1.3.4. MCL objective function 

The MCL objective function is used. 

 
Figure 3.123: MCL objective function images. 
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3.2.2.1.4. Sequence 4 

In this case, the fingers of the observation are bending forming a fist which is 

rotating to the right and then to the right. At the end, the index and the thumb start 

to straighten to form a “pistol” gesture that is pointing to the left. 

 
Figure 3.124: Sequence 4 observation images. 
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3.2.2.1.4.1. Default objective function 

The default objective function is used. 

 
Figure 3.125: MCL objective function images. 

3.2.2.1.4.2. MS objective function 

The MS objective function is used. 

 
Figure 3.126: MS objective function images. 
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3.2.2.1.4.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.127: MSPL objective function images. 

3.2.2.1.4.4. MCL objective function 

The MCL objective function is used. 

 
Figure 3.128: MCL objective function images. 
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3.2.2.1.5. Sequence 5 

The observation is rotating forward, towards the camera until a certain point. 

The fingers start to bend and then to straighten while the observation is rotating 

back to its initial state. 

 
Figure 3.129: Sequence 5 observation images. 
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3.2.2.1.5.1. Default objective function 

The default objective function is used. 

 
Figure 3.130: Default objective function images. 

3.2.2.1.5.2. MS objective function 

The MS objective function is used. 

 
Figure 3.131: MS objective function images. 
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3.2.2.1.5.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.132: MSPL objective function images. 

3.2.2.1.5.4. MCL objective function 

The MCL objective function is used. 

 
Figure 3.133: MCL objective function images. 



139 
 

3.2.2.1.6. Sequence 6 

The observation is moving forward towards to the camera and at the same 

time is rotating facing to the right. Then it is rotating until the palm is facing to the 

camera and the ring finger is bent. 

 
Figure 3.134: Sequence 6 observation images. 
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3.2.2.1.6.1. Default objective function 

The default objective function is used. 

 
Figure 3.135: Default objective function images. 

3.2.2.1.6.2. MS objective function 

The MS objective function is used. 

 
Figure 3.136: MS objective function images. 
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3.2.2.1.6.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.137: MSPL objective function images. 

3.2.2.1.6.4. MCL objective function 

The MCL objective function is used. 

 
Figure 3.138: MCL objective function images. 
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3.2.2.2. Simulate sequence tracking – 256 particles 
The same sequences that were shown before are going to be tested again 

using 256 (hypotheses) particles this time. The first two sequences (Sequence 1 and 

Sequence 2) where there are no complex moves were not tested. 

3.2.2.2.3. Sequence 3 

The observation is rotating forward, towards the camera while the fingers are 

bending. Then it is rotating to the right while the fingers are straightening and finally 

is rotating to the left.  

 
Figure 3.139: Sequence 3 observation images. 
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3.2.2.2.3.1. Default objective function 

The default objective function is used. 

 
Figure 3.140: Default objective function images. 

3.2.2.2.3.2. MS objective function 

The MS objective function is used. 

 
Figure 3.141: MS objective function images. 
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3.2.2.2.3.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.142: MSPL objective function images. 

3.2.2.2.3.4. MCL objective function 

The MCL objective function is used. 

 
Figure 3.143: MCL objective function images. 
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3.2.2.2.4. Sequence 4 

In this case, the fingers of the observation are bending forming a fist which is 

rotating to the right and then to the right. At the end, the index and the thumb start 

to straighten to form a “pistol” gesture that is pointing to the left. 

 
Figure 3.144: Sequence 4 observation images. 
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3.2.2.2.4.1. Default objective function 

The default objective function is used. 

 
Figure 3.145: Default objective function images. 

3.2.2.2.4.2. MS objective function 

The MS objective function is used. 

 
Figure 3.146: MS objective function images. 
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3.2.2.2.4.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.147: MSPL objective function images. 

3.2.2.2.4.4. MCL objective function 

The MCL objective function is used. 

 
Figure 3.148: MCL objective function images. 
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3.2.2.2.5. Sequence 5 

The observation is rotating forward, towards the camera until a certain point. 

The fingers start to bend and then to straighten while the observation is rotating 

back to its initial state. 

 

 
Figure 3.149: Sequence 5 observation images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



149 
 

3.2.2.2.5.1. Default objective function 

The default objective function is used. 

 
Figure 3.150: Default objective function images. 

3.2.2.2.5.2. MS objective function 

The MS objective function is used. 

 
Figure 3.151: MS objective function images. 
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3.2.2.2.5.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.152: MSPL objective function images. 

3.2.2.2.5.4. MCL objective function 

The MCL objective function is used. 

 
Figure 3.153: MCL objective function images. 
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3.2.2.2.6. Sequence 6 

The observation is moving forward towards to the camera and at the same 

time is rotating facing to the right. Then it is rotating until the palm is facing to the 

camera and the ring finger is bent. 

 
Figure 3.154: Sequence 6 observation images. 
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3.2.2.2.6.1. Default objective function 

The default objective function is used. 

 
Figure 3.155: Default objective function images. 

3.2.2.2.6.2. MS objective function 

The MS objective function is used. 

 
Figure 3.156: MS objective function images. 
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3.2.2.2.6.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.157: MSPL objective function images. 

3.2.2.2.6.4. Objective function MCL 

The MCL objective function is used. 

 
Figure 3.158: MCL objective function images. 
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3.2.2.3. Quantitative results and conclusions of the simulated 

sequence tracking experiments 
The simulated sequence tracking experiments gave us useful knowledge on 

the efficiency of the four objective functions. The two tables below show the 

average error in millimeters of each objective function for 128 and 256 particles.  

 

128 pcls Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Default 37,45 25,17 34,49 32,70 44,71 42,51 

MS 52,15 35,58 38,51 54,08 55,98 65,82 

MSPL 40,15 23,86 35,49 44,37 45,72 57,63 

MCL 45,29 27,43 32,05 39,49 47,63 58,81 
Table 7: Simulated sequence tracking average errors [mm] for 128 particles. 

256 pcls Case 3 Case 4 Case 5 Case 6 

Default 24,88 31,50 38,28 38,57 

MS 35,37 53,02 52,94 71,73 

MSPL 25,43 38,34 36,28 59,80 

MCL 27,20 36,85 43,46 46,19 
Table 8: Simulated sequence tracking average errors [mm] for 256 particles. 

• The results show that the MS objective function where there is no lighting 

has the highest average errors. That means that the lighting information is a 

useful element and reduces the average error when its used (MSPL, MCL). 

• However, the default objective function which uses the depth information 

has the lowest average errors. A more realistic lighting model maybe could 

reduce the average error of the lighting objective functions (MSPL and MCL) 

even more. 

• The use of 256 particles didn’t improve the efficiency in every objective 

function.  

• In the tested sequences, the moves included many translations (X-Y axis), 

rotations (X-Y-Z axis) and bending of the observation’s fingers. The 

experiments showed that the when the lighting information is used the 

tracking is more accurate and robust. 
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3.2.3. Real video tracking 
The experiments in this section are made using real observations acquired 

from the Kinect sensor. The three objective functions (MS, MSPL, MCL) are tested in 

several different instances. Each objective function is tested several times in an 

instance. The default objective function is tested too. The instances are described 

below and some tracking images for each objective function are displayed. 

3.2.3.1. Video 1 

The first video shows a man moving his hand to the left from the camera 

perspective and at the same time bending his fingers to the inside to form a fist. 

Then he starts to straighten his fingers while he is moving his hand back to its initial 

position. 

 
Figure 3.159: Video 1 RGB images. 
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3.2.3.1.1. Default objective function 

The default objective function is used. 

 
Figure 3.160: Default objective function images. 

3.2.3.1.2. MS objective function 

The MS objective function is used. 

 
Figure 3.161: MS objective function images. 
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3.2.3.1.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.162: MSPL objective function images. 

3.2.3.1.4. MCL objective function 

The MCL objective is used. 

 
Figure 3.163: MCL objective function images. 
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3.2.3.2. Video 2 

The second instance shows a man rotating his hand toward the camera and 

down while the fingers are bending forming a “thumb in the middle” gesture. Then 

the thumb is rotated upwards and “in the middle” again. At the end, he is 

straightening his fingers and rotates his hand to its initial state. 

 
Figure 3.164: Video 2 RGB images. 
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3.2.3.2.1. Default objective function 

The default objective function is used. 

 
Figure 3.165: Default objective function images. 

3.2.3.2.2. MS objective function 

The MS objective function is used. 

 
Figure 3.166: MS objective function images. 
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3.2.3.2.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.167: MSPL objective function images. 

3.2.3.2.4. MCL objective function 

The MCL objective function is used. 

 
Figure 3.168: MCL objective function images. 
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3.2.3.3. Video 3 

The third instance shows a man bending his fingers to the inside and then 

gradually straightening them one by one. 

 
Figure 3.169: Video 3 RGB images. 
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3.2.3.3.1. Default objective function 

The default objective function is used. 

 
Figure 3.170: Default objective function images. 

3.2.3.3.2. MS objective function 

The MS objective function is used. 

 
Figure 3.171: MS objective function images. 
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3.2.3.3.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.172: MSPL objective function images. 

3.2.3.3.4. Objective function MCL 

The objective function MCL is used. 

 
Figure 3.173: MCL objective function images. 
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3.2.3.4. Video 4 

The fourth instance shows a man rotating his hand to the left and then to the 

right. 

 
Figure 3.174: Video 4 RGB images. 
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3.2.3.4.1. Default objective function 

The default objective function is used. 

 
Figure 3.175: Default objective function images. 

3.2.3.4.2. MS objective function 

The MS objective function is used. 

 
Figure 3.176: MS objective function images. 



166 
 

3.2.3.4.3. MSPL objective function 

The MSPL objective function is used. 

 
Figure 3.177: MSPL objective function images. 

3.2.3.4.4. Objective function MCL 

The objective function MCL is used. 

 
Figure 3.178: MCL objective function images. 
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3.2.3.5. Conclusions of the real tracking experiments 

The real tracking experiments showed that the default objective function is 

more robust than our three objective functions but in cases like the Video 2 where 

the observation’s hand rotates toward the camera, due to the loss of depth 

information the hand model fails to follow. In general, when one of the three 

objective functions (MS, MSPL, MCL) is used the hand model follows the 

observation’s hand but the matching isn’t always very accurate. There is no obvious 

difference in their efficiency that can be seen in the displayed images to let us 

understand if using the lighting information in real tracking case is useful. The main 

reasons are the fact that the lighting conditions as well as the foreground between 

the observation and the hypotheses are very different.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



168 
 

Chapter 4 – Conclusions and future work 

4.1. Conclusions 
The experiments on the three objective functions (MS, MSPL, MCL) showed 

that the lighting element in a scene is useful and an objective function that uses the 

lighting information to calculate the discrepancy value V(O,H) improves the tracking 

of the hand compared to an objective function that doesn’t include the lighting 

information.  

The default objective function which uses the depth information to extract 

the foreground and calculate the discrepancy value V(O,H) found to have the best 

efficiency and its more stable than the other objective functions. However, there are 

cases where due to depth ambiguities the pose failed to follow the observation. So, 

in cases like these, where the fingers are bending or the observation rotates forward 

towards the camera, the tracking can be improved by using the lighting information 

instead of the depth information. 

The above conclusions came from the results of the simulated sequence 

tracking experiments. The real tracking experiments didn’t give any solid results 

because the illumination of the scene in the RGB images (of the Kinect sensor) is very 

different and much more complex from the illumination of the scene provided by 

our lighting model. Our lighting model is based on the proportions of the ambient 

reflection, the diffuse reflection, and the specular reflection. But the illumination of a 

scene is much more complex. There are factors like the amount of light that is 

absorbed or reflected from the walls in the environment, the amount of light that is 

absorbed by the hand or the rate at which the light intensity attenuates proportional 

to the distance from the light source. Our lighting model includes many of these 

variables but their calculation is very difficult so their values are set in a way that 

doesn’t affect the result. Although, one of the most important factors is the shades 

that may occur while the observation is moving which they cannot be computed and 

adapted to the hypotheses with our algorithm. Another factor is that the foreground 

of the observation does always have the same shape with the foreground of the 

hypotheses and that adds an error to the results. 

As an overall conclusion, we can say that the simulated sequence tracking 

experiments showed that our lighting model is efficient when the lighting conditions 

between the observation and the hypotheses are similar even if it’s not entirely 

realistic. Its further enrichment could make it more realistic and radically increase 

the chances for us to see positive results in the real tracking experiments too.  

 

4.2. Future work 
The lighting model that was developed and tested in this thesis has much 

room for improvement since there are many variables in which someone can focus 

on: 
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• A variable that may have a significant impact to the efficiency of our lighting 

model and the lighting objective functions is the shade variable. There are 

points of the observation that during its movement are shaded. These 

shades are formed when the fingers are bended or the hand is rotated. In 

the figure below some these points can be seen. Our lighting model is not 

able to determine these points. So, during the tracking the corresponding 

shaded areas of the hypotheses may appear brighter than they should be 

and this is a significant error. An algorithm capable to identify the shades of 

the hypotheses (poses) would make our lighting model more realistic, 

improve its efficiency and we might be able to see positive results not only in 

the simulated sequence tracking experiments but also in the real tracking 

experiments. 

 

 
Figure 4.1: Shaded areas. 

 

• Further algorithm improvements could be related to the foreground 

extraction method of the observation to eliminate the points of the hand 

that they are not needed and add some error to the discrepancy value 

V(O,H). Examples of these points can be seen in the images below. Those 

points should be minimized without losing any important information from 

the rest of the hand. This way the observation would marginally match the 

hypotheses better since their shape would be more alike. 
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Figure 4.2: Foreground extraction fail points. 

 

• The computation of variables like the amount of light that is absorbed or 

reflected from the hand depended on the skin color or the rate at which the 

light intensity attenuates proportional to the distance from the light source 

could make the lighting model even more realistic and complex at the same 

time. 
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