
How	to	Intercepting	GSM	
	

by	
	

Grigorakis	Ioannis	
	
	
	
	
	
	
	

A	THESIS	
	
	
	
	

Submitted	in	partial	fulfillment	of	the	requirements	for	the	degree	
	

MASTER	OF	SCIENCE	
	
	
	
	
	
	

DEPARTMENT	OF	INFORMATICS	ENGINNERING	
	

SCHOOL	OF	APPLIED	TECHNOLOGY

TECHNOLOGICAL	EDUCATIONAL	INSTITUTE	OF	CRETE
	
	
	

Semptember	2015	
	
	
	

Approved	by:	
	

Supervisors	
Ass.	Prof.	Harry	Manifavas	

 2

Abstract	

Communication	 security	 is	 a	 great	 issue,	 notably	 in	 our	 day’s	 that	 we	 live	 in	
technologically	advanced	 community .The		GSM	is	a	protocol	that	used		for	digital	
communications	(mobile	phones)	,	used		by	a	lot		of	people	around		the	world.	
																																																																															
										The	most	of	people	have	mobile	phones.		Through,	we	are	not	cognizant	the	
ease	 of	 intercepting	 or	 tracking	 a	mobile	 phone.	 To	 draw	 the	 heed	 of	 a	 wider	
public	to	this	security	issue	,	we	have	to	do	intercepting	and	tracking achievable	
without	spending	a	lot	of	money	for	the	equipment.	In	this	Master	thesis	we	have	
hence	 taken	 a	 software	 radio	 and	 a	 laptop,	 	 put	 it	 	 together	with	 open	 source	
software		applications		to	build		an		GSM	scanner.	

							How	 to	 intercept	 the	GSM	protocol	 is	 not	 a	new	 thing.	However,	 up	 to	date	
this	 usually	 requires	 very	 expensive	 equipment	 which	 may	 not	 be	 available	 to	
everyone.	 Hence,	 in	 this	 thesis	 we	 employ	 a	 software	 radio	 to	 capture	 and	 to	
digitize	GSM	signals	in	combination	with	a	standard	laptop	for	further	processing.	
This	makes	intercepting	feasible	for	students.	

							As	 a	 software	 radio	 that	 captures	 the	 signals	 between	 the	 base	 transceiver	
station	 and	 the	 mobile	 phone,	 we	 have	 used	 a	 Universal	 Software	 Radio	
Peripheral.	On	the	laptop	we	run	GNURadio	and	Airprobe	to	decode	the	digitized	
signals.	The	cost	of	this	setup	is	limited	to	a	few	hundred	Euros.	

We	also	revise	the	main	weaknesses	of	the	GSM	A5	/	1	encryption	enable	building	
Rainbow	 tables	 and	 perform	 widely	 known	 plaintext	 attack	 to	 determine	 the	
encryption	key	and	decrypt	the	encrypted	message	text.	

 3

Σύνοψη	

Η	 ασφάλεια	 είναι	 ένα	 σημαντικό	 ζήτημα,	 ιδιαίτερα	 στη	 σημερινή	 προηγμένη	
τεχνολογικά	 κοινωνία.	 Το	 GSM	 είναι	 ένα	 παγκόσμιο	 πρότυπο	 για	 ψηφιακά	
ασύρματα	 κινητά	 τηλέφωνα,	 που	 χρησιμοποιείται	 σήμερα	 από	 εκατομμύρια	
ανθρώπους	σε	όλο	τον	πλανήτη.	
	
										Οι	 περισσότεροι	 από	μας	φέρουν	πάντα	 κινητά	 τηλέφωνα.	Ωστόσο,	 δεν	
έχουμε	επίγνωση	του	πόσο	εύκολο	είναι	να	υποκλέπτούν	ή	να	παρακολουθούν	
ένα	κινητό	τηλέφωνο.	Για	να	επιστήσoυμε	την	προσοχή	ενός	ευρύτερου	κοινού	
σε	αυτό	το	θέμα	της	ασφάλειας,	θα	πρέπει	να	δείξουμε	πως	μπορεί	να	γίνει	η	
υποκλοπή	και	η	παρακολούθηση	εφικτή	,	με	χαμηλό	προϋπολογισμό	για	αγορά	
εξοπλισμού.	Σε	αυτή	τη	διατριβή,	ως	εκ	τούτου	έχουμε	λάβει	ένα	Software	radio	
και	έναν	φορητό	υπολογιστή,	επίσης	εργαλεία	ανοικτού	κώδικα	λογισμικό	για	
να	δημιουργήσουμε	ένα	σαρωτή		GSM.	
	
Η	 	υποκλοπή	του	GSM	δεν	είναι	κάτι	καινούργιο.	Ωστόσο,	μέχρι	σήμερα	αυτό	
απαιτεί	 συνήθως	 ένα	 πολύ	 απαιτητικό	 εξοπλισμό	 που	 μπορεί	 να	 μην	 είναι	
διαθέσιμος	σε	όλους.	 	Ως	εκ	τούτου,	στην	παρούσα	διατριβή	θα	απασχολεί	με	
ένα	φτηνό	 εξοπλισμό	RTL-SDR	για	 να	συλλάβει	και	 να	ψηφιοποιεί	 τα	σήματα	
GSM	σε	συνδυασμό	με	ένα	φορητό	υπολογιστή	για	περαιτέρω	επεξεργασία.	
	
							Ως	 ένα	 Software	 Radio	 που	 συλλαμβάνει	 τα	 σήματα	 μεταξύ	 του	 σταθμού	
βάσης	 πομποδέκτη	 και	 του	 κινητού	 τηλεφώνου,	 έχουμε	 χρησιμοποιήσει	 ένα	
λεγόμενο	 Software	 Radio	 Peripheral.	 Για	 το	 φορητό	 υπολογιστή	 που	 τρέχει	
GNURadio	και	Airprobe	να	αποκωδικοποιήσει	τα	ψηφιακά	σήματα.	Το	κόστος	
αυτής	της	εγκατάστασης	είναι	περιορισμένο	σε	μερικές	εκατοντάδες	ευρώ.	
	
Μπορούμε	 επίσης	 να	 δείξουμε	 τις	 βασικές	 αδυναμίες	 της	 Α5/	 1	
κρυπτογράφησης	GSM		που	καθιστούν	δυνατή	την	κατασκευή	Rainbow	Τables	
και	να	εκτελέσει		την	ευρέως	γνωστή	plaintext	επίθεση	για	να	προσδιοριστεί	το	
κλειδί	 κρυπτογράφησης	 και	 να	 αποκρυπτογραφήσει	 το	 κρυπτογραφημένο	
μήνυμα	κειμένου	SMS	η	ομιλίας

 4

Acknowledgements	

I	would	like	to	express	my	deep	gratitude	to	Professor	Harry	Manifavas.	
	
I	would	 like	 to	 thank	Χari	Manifava	 ,	my	Family	 ,	my	 friends	 	 	 and	 some	hidden	
heroes	 because	 of	 	 their	 confidence	 and	 their	 faith	 for	 the	 completion	 of	 this	
Master	Thesis.	
	
Last	but	not	least,	All	the	people	of	the	forums	.	
	

 5

Table	of	Contents	

Chapter	1	:	GSM	...	7	

1.1	GSM	Network	..	9	
1.1.1	Short	Brief	About	...	9	
1.1.2	Uplinks/Downlinks	&	Reverse	Forward	..	9	
1.1.3	Frequency	Division	Multiple	Access	(FDMA)	..	10	
1.1.4	Absolute	Radio	Frequency	Channel	Number	(ARFCN)	...	10	
1.1.5	Calculating	Uplink/Downlink	Frequencies	...	11	
1.1.6		International	Mobile	Subscriber	Identity	(IMSI)	..	11	
1.1.7	Mobile	Country	Code	(MCC)	..	12	
1.1.8	Mobile	Network	Code	(MNC)	..	12	
1.1.9	International	Mobile	Equipment	Identity	(IMEI)	...	12	
1.1.10	Type	Allocation	Code	(TAC)	...	13	
1.1.11	Serial	Number	(SNR)	...	13	

1.2	Network	Architecture	..	14	
1.2.1	Mobile	Equipment	(ME)	..	14	
1.2.2		Identity	Module	(SIM)	...	14	
1.2.3		Base	Transceiver	Station	(BTS)	..	14	
1.2.4		Base	Station	Controller	(BSC)	..	15	
1.2.4			Mobile	Switching	Center	(MSC)	...	15	
1.2.5		Gateway	Mobile	Switching	Center	(GMSC)	..	15	
1.2.6			Home	Location	Register	(HLR)	..	16	
1.2.7			Visitor	Location	Register	(VLR)	...	16	
1.2.8			Location	Area	Code	(LAC)	..	16	
1.2.9			Location	Area	Identity	(LAI)	...	16	
1.2.10		Cell	Global	Identification	(CGI)	...	16	
1.2.11	Cell	Global	Identity	...	17	
1.2.12		Equipment	Identity	Register	(EIR)\	..	17	
1.2.13		Authentication	Center	(AuC)	...	17	

Chapter	2:	Spectrum	Analysis	Hardware	..	19	

2.1	Software	Defined	Radio	(SDR)	..	19	
2.1		HackRF		One	..	19	
2.2		USRP	...	21	
2.2.1	USRP1	..	21	
2.2.2	USRP2	..	22	
2.2.3	USRP	Daughter	boards	..	22	
2.3		RTL2832U	Chipset	-	USB	TV	receiver	..	23	

Chapter	3.	Spectrum	Analysis	Software	..	25	
3.1	Gqrx	...	26	
3.2	AirProbe	...	27	
3.3GNU	Radio	..	28	
3.4	ArfcnCalc	-	GSM	frequency	calculation	tool	V.1.0	..	29	
3.5	Kalibrate	Tool	..	31	
3.5	Wireshark	...	33	

Chapter	4.	Analyzing	GSM	With	Airprobe	And	Wireshark	34	
4.1	Install	GNU	Radio	...	35	
4.2	Install	Libosmocore	..	36	
4.3	Install	Airprobe	...	36	

	

 6

Chapter	5	:		A5/1	...	38	
5.1		About	A5/1	..	38	
5.2	Passive	GSM	interception	...	43	

Chapter	6	:	Practical	exercise	on	the	GSM	Encryption	A5/1	49	
6.1	Analyze	The	Capture	File	..	49	
6.2	Finding	Information	to	Crack	the	Key	..	53	
6.3	Decoding	the		channel	..	55	

Chapter	7:	How	to	Decode	Our	Gsm	Traffic	...	59	
7.1	Kc	key	and	TMSI	number	...	59	
7.2	Active	Read	Kc	And	TMSI	From	SIM	..	60	
7.2.1	BlackBerry	Engineering	Screen	...	60	
7.2	Receive	Live	Channel	...	65	
7.3	Capturing	a	cfile	with	the	RTL-SDR	In	Our	Kali	Linux	VM	...	69	
7.4	Use	airprobe	to	send	the	decoded	information	to	wireshark	and	analyze	the	
frames.	..	73	

Chapter	8.	Projects	&	Tools	For	Analyzing	Intercepting	Gsm	Signals	80	
8.1	The	gr-gsm	project	..	80	
8.2	The	Rtl	-tool-kit	Project	..	84	
8.3	The	Pytacle-Alpha2	Project	...	86	

 7

List of Figures
Figure 1 . Downlink And Uplink ... 10	
Figure 2 . GSM BANDS .. 11	
Figure 3 . IMSI Bits ... 12	
Figure 4 . Gsm Arhitecture 1st part 1 ... 15	
Figure 5. Gsm Architecture .. 18	
Figure 8. USRP 2 ... 22	
Figure 9. RTL2832U Chipset - USB TV ... 23	
Figure 10 . Radio FM spectrum using SDR 1 ... 24	
Figure 11. GSM Spectrum using SDR ... 25	
Figure 12 . Gqrx ... 26	
Figure 13 . Gnu-radio develop Environment ... 28	
Figure 14. ArfcnCalc Help Envirment ... 31	
Figure 15 . Kalibrate Band Scan Command .. 32	
Figure 16. Kalibrate Channel Command ... 32	
Figure 17. Wireshark Sniffing Enviroment ... 33	
Figure 18 . Sniffing Packets from UM Air And Analyzed in Wireshark 34	
Figure 20 . Packets On Wireshark ... 37	
Figure 21 . Linear feedback shift registers ... 39	
Figure 22 . A5/1 stream cipher uses 3 LFSRs ... 39	
Figure 23 . Copying Rainbow Tables on Sda3 Partition ... 46	
Figure 24 . Rainbow Tables Copied ... 47	
Figure 25 . Testing Kraken .. 48	
Figure 26 . Decode the Capture File .. 49	
Figure 27 . Decoded Packets in Wireshark .. 50	
Figure 28 . Decoder now only decodes TimeSlot 1 ... 51	
Figure 29 . Encrypted Bursts in vf_call6 ... 51	
Figure 30 . System Information 5 & 6 packets .. 52	
Figure 31 . Informations Of System Information Type 5 .. 53	
Figure 32 . Decode encrypted part of the assigned “SDCCH/8” 55	
Figure 33 . Decode encrypted part of the assigned “SDCCH/8” Wireshark 56	
Figure 34 . Toast Tool .. 57	
Figure 35 . Vlc Playing the speech.au ... 58	
Figure 36 . OMNIKEY® 5321 SIM-card reader .. 61	
Figure 37 . Test Minicom With Samsung Device .. 64	
Figure 38 . Read TMSI and Kc .. 64	
Figure 39 . Sniffing Packets With Rtl-sdr .. 65	
Figure 40 . Captured System Information Type 4 –General Information 66	
Figure 41 . Bin to Cfile .grc File .. 70	
Figure 42 . Gsm.grc ... 71	
Figure 43 . Gsm.grc Generated with Gnu-radio .. 72	
Figure 44 . Dumb.cfile ... 72	
Figure 45 . Available configurations Supported By Airprobe 74	
Figure 46 . Flowchart of the whole process Decoding Sms .. 76	
Figure 47 . Flowchart of the whole process Decoding Voice Call 78	
Figure 48 . Linux Mint 17 VMachine & Gr-gsm project application files 80	
Figure 49 . Test of Gnu-Radio ... 81	
Figure 50 . Commands to run Airprobe_rtlsdr.py .. 82	
Figure 51 . Airpobe Rtlsdr While running and Capturing GSM packets 82	
Figure 52 Airpobe Rtlsdr & GSM packets on Wireshark ... 84	

 8

Figure 53. Rtl-Tool Kit While Running ... 85	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 9

Chapter	1	:	GSM		

1.1	GSM	Network	

1.1.1	Short	Brief	About	

GSM is an acronym that stands for Global System for Mobile Communications. The
original french acronym stands for Groupe Spécial Mobile. It was originally
developed in 1984 as a standard for a mobile telephone system that could be used
across Europe.

GSM is now an international standard for mobile service. It offers high mobility.
Subscribers can easily roam worldwide and access any GSM network.

GSM is a digital cellular network. At the time the standard was developed it offered
much higher capacity than the current analog systems. It also allowed for a more
optimal allocation of the radio spectrum, which therefore allows for a larger number
of subscribers.

GSM offers a number of services including voice communications, Short Message
Service (SMS), fax, voice mail, and other supplemental services such as call
forwarding and caller ID.

Currently there are several bands in use in GSM. 450 MHz, 850 MHZ, 900 MHz,
1800 MHz, and 1900 MHz are the most common ones.

Some bands also have Extended GSM (EGSM) bands added to them, increasing the
amount of spectrum available for each band.

GSM makes use of Frequency Division Multiple Access (FDMA) and Time Division
Multiple Access (TDMA).

*TDMA will be discussed later

1.1.2	Uplinks/Downlinks	&	Reverse	Forward	

GSM allows for use of duplex operation. Each band has a frequency range for the
uplink (cell phone to tower) and a separate range for the downlink (tower to the cell
phone). The uplink is also known as the Reverse and the downlink is also known as
the Forward. In this tutorial, I will use the terms uplink and downlink.

 10

Figure 1 . Downlink And Uplink

1.1.3	Frequency	Division	Multiple	Access	(FDMA)		

GSM divides the allocated spectrum for each band up into individual carrier
frequencies. Carrier separation is 200 khz. This is the FDMA aspect of GSM.

1.1.4	Absolute	Radio	Frequency	Channel	Number	(ARFCN)		

The ARFCN is a number that describes a pair of frequencies, one uplink and one
downlink. The uplink and downlink frequencies each have a bandwidth of 200 kHz.
The uplink and downlink have a specific offset that varies for each band. The offset is
the frequency separation of the uplink from the downlink. Every time the ARFCN
increases, the uplink will increase by 200 and the downlink also increases by 200 khz.
*Note: Although GSM operates in duplex (separate frequencies for transmit and
receive), the mobile station does not transmit and receive at the same time. A switch
is used to toggle the antenna between the transmitter and receiver.
The following table summarizes the frequency ranges, offsets, and ARFCNs for
several popular bands

 11

Figure 2 . GSM BANDS

	

1.1.5	Calculating	Uplink/Downlink	Frequencies	

The following is a way to calculate the uplink and downlink frequencies for some of
the bands, given the band, the ARFCN, and the offset.
GSM 900
Up = 890.0 + (ARFCN * .2)
Down = Up + 45.0
Example :
Given the ARFCN 72, and we know the offset is 45MHz for the GSM900 band:
Up = 890.0 + (72 * .2)
Up = 890.0 + (14.4)
Up = 904.40 MHz
Down = Up + Offset
Down = 904.40 + 45.0
Down = 949.40 MHz
The uplink/downlink pair for GSM900 ARFCN72 is 904.40/949.40 (MHz)

1.1.6	International	Mobile	Subscriber	Identity	(IMSI)	

The IMSI is how the subscriber is identified to the network. It uniquely identifies the
subscriber within the GSM global network. The IMSI is burned into the SIM card
when the subscriber registers with PLMN service provider. The IMSI is composed of
three parts:
Mobile Country Code (MCC)
Mobile Network Code (MNC)
Mobile Subscriber Identification Number (MSIN)

 12

Figure 3 . IMSI Bits

1.1.7	Mobile	Country	Code	(MCC)		

	
This number identifies which country the subscriber's network is in. It has 3 digits.

1.1.8	Mobile	Network	Code	(MNC)		

 This number identifies the home GSM PLMN of the subscriber (Wind, Vodafone,
etc.). It has 2 or 3 digits. Some networks may have more than one MNC allocated to
it.
Mobile Subscriber Identification Number (MSIN) - This number uniquely
identifies a user within the home GSM network.

1.1.9	International	Mobile	Equipment	Identity	(IMEI)	

The IMEI uniquely identifies the Mobile Equipment itself. It is essentially a serial
number that is burned into the phone by the manufacturer. The IMEI is composed of
three parts:
Type Allocation Code (TAC) - 8 digits
Serial Number (SNR) - 6 digits
Spare (SP) - 1 digit

 13

	

1.1.10	Type	Allocation	Code	(TAC)		

This number uniquely identifies the model of a wireless device. It is composed of 8
digits. Under the new system (as of April 2004), the first two digits of a TAC are the
Reporting Body Identifier of the GSMA approved group that allocated this model
type.

1.1.11	Serial	Number	(SNR)		

This number is a manufacturer defined serial number for the
model of wireless device.

1.1.12	Spare	(SP)- This number is a check digit known as a Luhn Check Digit. It is
omitted during transmission within the GSM network.

 14

1.2	Network	Architecture	
	

1.2.1	Mobile	Equipment	(ME)		

This refers to the physical phone itself. The phone must be able to operate on a GSM
network. Older phones operated on a single band only. Newer phones are dual-band,
triple-band, and even quad-band capable. A quad-band phone has the technical
capability to operate on any GSM network worldwide. Each phone is uniquely
identified by the International Mobile Equipment Identity (IMEI) numbers. The
average user does not have the technical ability to change a phone's IMEI Subscriber

1.2.2	Identity	Module	(SIM)		

The SIM is a small smart card that is inserted into the phone and carries information
specific to the subscriber, such as IMSI, TMSI, Ki (used for encryption), Service
Provider Name (SPN), and Local Area Identity (LAI). The SIM can also store phone
numbers (MSISDN) dialed and received, the Kc (used for encryption), phone books,
and data for other applications. A SIM card can be removed from one phone, inserted
into another GSM capable phone and the subscriber will get the same service as
always. Each SIM card is protected by a 4-digit Personal Identification Number
(PIN). In order to unlock a card, the user must enter the PIN. If a PIN is entered
incorrectly three times in a row, the card blocks itself and can not be used. It can only
be unblocked with an 8-digit Personal Unblocking Key (PUK), which is also stored
on the SIM card.

1.2.3	Base	Transceiver	Station	(BTS)		

The BTS is the Mobile Station's access point to the network. It is responsible for
carrying out radio communications between the network and the MS. It handles
speech encoding, encryption, multiplexing (TDMA), and modulation/demodulation of
the radio signals. It is also capable of frequency hopping. A BTS will have between 1
and 16 Transceivers (TRX), depending on the geography and user demand of an area.
Each TRX represents one ARFCN. One BTS usually covers a single 120 degree
sector of an area. Usually a tower with 3 BTSs will accommodate all 360 degrees
around the tower. However, depending on geography and user demand of an area, a
cell may be divided up into one or two sectors, or a cell may be serviced by several
BTSs with redundant sector coverage. A BTS is assigned a Cell Identity. The cell
identity is 16-bit number (double octet) that identifies that cell in a particular Location
Area. The cell identity is part of the Cell Global Identification (CGI), which is
discussed in the section about the Visitor Location Register (VLR). 120 ° Sector The
interface between the MS and the BTS is known as the Um Interface or the Air
Interface.

 15

1.2.4	Base	Station	Controller	(BSC)		

The BSC controls multiple BTSs. It handles allocation of radio channels, frequency
administration, power and signal measurements from the MS, and handovers from
one BTS to another (if both BTSs are controlled by the same BSC). A BSC also
functions as a "funneler". It reduces the number of connections to the Mobile
Switching Center (MSC) and allows for higher capacity connections to the MSC

Figure 4 . Gsm Arhitecture 1st part 1

The interface between the BTS and the BSC is known as the Abis Interface. The Base
Transceiver Station (BTS) and the Base Station Controller (BSC) together make up
the Base Station System (BSS)

1.2.4			Mobile	Switching	Center	(MSC)	

Mobile Switching Center (MSC) - The MSC is the heart of the GSM netowrk. It
handles call routing, call setup, and basic switching functions. An MSC handles
multiple BSCs and also interfaces with other MSC's and registers. It also handles iner-
BSC handoffs as well as coordinates with other MSC's for inter-MSC handoffs. The
interface between the BSC and the MSC is known as the A Interface.

1.2.5	Gateway	Mobile	Switching	Center	(GMSC)	

There is another important type of MSC, called a Gateway Mobile Switching Center
(GMSC). The GMSC functions as a gateway between two networks. If a mobile
subscriber wants to place a call to a regular landline, then the call would have to go
through a GMSC in order to switch to the Public Switched Telephone Network

 16

(PSTN). The interface between two Mobile Switching Centers (MSC) is called the E
Interface

1.2.6			Home	Location	Register	(HLR)		

	
The HLR is a large database that permanently stores data about subscribers. The HLR
maintains subscriber-specific information such as the MSISDN, IMSI, current
location of the MS, roaming restrictions, and subscriber supplemental feautures.
There is logically only one HLR in any given network, but generally speaking each
network has multiple physical HLRs spread out across its network.

1.2.7			Visitor	Location	Register	(VLR)		

The VLR is a database that contains a subset of the information located on the HLR.
It contains similar information as the HLR, but only for subscribers currently in its
Location Area. There is a VLR for every Location Area. The VLR reduces the overall
number of queries to the HLR and thus reduces network traffic. VLRs are often
identified by the Location Area Code (LAC) for the area they service.

1.2.8			Location	Area	Code	(LAC)		

	
A LAC is a fixed-length code (two octets) that identifies a location area within the
network. Each Location Area is serviced by a VLR, so we can think of a Location
Area Code (LAC) being assigned to a VLR.

1.2.9			Location	Area	Identity	(LAI)		

	
An LAI is a globally uniqe number that identifies the country, network provider, and
LAC of any given Location Area, which coincides with a VLR. It is composed of the
Mobile Country Code (MCC), the Mobile Network Code (MNC), and the Location
Area Code (LAC). The MCC and the MNC are the same numbers used when forming
the IMSI.

1.2.10	Cell	Global	Identification	(CGI)	

	
The CGI is a number that uniquely identifies a specific cell within its location area,
Network , and country. The CGI is composed of the MCC, MNC, LAI, and Cell
Identity (CI)

 17

1.2.11	Cell	Global	Identity	

The VLR also has one other very important function: the assignment of a Temporary
Mobile Subscriber Identity (TMSI). TMSIs are assigned by the VLR to a MS as it
comes into its Location Area. TMSIs are unique to a VLR. TMSIs are only allocated
when in cipher mode. The interface between the MSC and the VLR is known as the B
Interface and the interface between the VLR and the HLR is known as the D
Interface. The interface between two VLRs is called the G Interface

1.2.12	Equipment	Identity	Register	(EIR)	

The EIR is a database that keeps tracks of handsets on the network using the IMEI.
There is only one EIR per network. It is composed of three lists. The white list, the
gray list , and the black list. The black list is a list if IMEIs that are to be denied
service by the network for some reason. Reasons include the IMEI being listed as
stolen or cloned or if the handset is malfunctioning or doesn’t have the technical
capabilities to operate on the network. The gray list is a list of IMEIs that are to be
monitored for suspicious activity. This could include handsets that are behaving oddly
or not performing as the network expects it to. The white list is an unpopulated list.
That means if an IMEI is not on the black list or on the gray list, then it is considered
good and is "on the white list". The interface between the MSC and the EIR is called
the F Authentication Center (Auc)

1.2.13		Authentication	Center	(AuC)		

	
The AuC handles the authentication and encryption tasks for the network. The Auc
stores the Ki for each IMSI on the network. It also generates crypto variables such as
the RAND, SRES, and Kc. Although it is not required, the Auc is normally physically
collocated with the HLR There is one last interface that we haven't discussed. The
interface between the HLR and a GMSC is called the C Interface. You will see it in
the full network diagram below. This completes the introduction to the network
architecture of a GSM network. Below you will find a network diagram with all of the
components as well as the names of all of the interfaces. [1]

 18

Figure 5. Gsm Architecture

 19

Chapter	2:	Spectrum	Analysis	Hardware	

2.1	Software	Defined	Radio	(SDR)	

Traditionally radios were a hardware matter. They are often very cheap, but also very
rigid. A radio created for specific transmit and receive frequencies and modulation
schemes will never divert from these, unless it’s hardware is modified. Please note
that the word radio here is used as a generic transceiver using electro-magnetic waves
for transmissions, notspecifically as the device known for the reception of
programmed broadcasts made by radio stations. The main idea behind Software
Defined Radio (SDR), is to create very versatile transceivers by moving a lot of them,
traditionally, hardware functions into the software domain. However a radio can never
be purely software, because you need a way to capture and create the radio waves.
Analog radio waves can be converted to digital samples using a Analog to Digital
Converter (ADC) and vice versa using a Digital to Analog Converter (DAC). The
ideal SDR scheme involves an antenna connected to a computer via an ADC for
receiving and via a DAC for transmitting. All the processing on the signals, like
(de)modulation, is then done in software, but the actual transceiving is done in the
hardware subsystem. This makes for a much more adaptable system, able to for
instance receive GSM signals as well as GPS and also television broadcasts by
only changing something in the software. This ideal scheme however is not
practically viable, because in practice ADCs and DACs are not fast enough to process
a large portion of the spectrum and antennas are designed for specific frequency
bands. This has led to the creation of more extended hardware subsystems for SDRs.
Typically such a hardware subsystem consists of a wide band receiver that shifts a
frequency band to a standard intermediate frequency, which can be sampled by ADCs
and the resulting digital signal can be sent to a computer. Often other common
equipment like amplifiers and band-pass filters are also a part of the hardware
subsystem. One of the most versatile and widely used SDR systems is GNU Radio,
mostly combined with a USRP as the hardware subsystem. [2]

2.1.1	HackRF	One	

One from Great Scott Gadgets is a Software Defined Radio peripheral capable of
transmission or reception of radio signals from 1 MHz to 6 GHz. Designed to enable
test and development of modern and next generation radio technologies, HackRF One
is an open source hardware platform that can be used as a USB peripheral or
programmed for stand-alone operation.

 20

1 MHz to 6 GHz operating frequency
Half-duplex transceiver
Up to 20 million samples per second
8-bit quadrature samples (8-bit I and 8-bit Q)
Compatible with GNU Radio, SDR#, and more
Software-configurable RX and TX gain and baseband filter
Software-controlled antenna port power (50 mA at 3.3 V)
SMA female antenna connector
SMA female clock input and output for synchronization
Convenient buttons for programming
Internal pin headers for expansion
Hi-Speed USB 2.0
USB-powered
Open source hardware
HackRF One has an injection molded plastic enclosure and ships with a micro USB
cable. An antenna is not included. ANT500 is recommended as a starter antenna for
HackRF One.

HackRF One is test equipment for RF systems. It has not been tested for compliance
with regulations governing transmission of radio signals. You are responsible for
using your HackRF One legally. [3]

Figure 6.HackRF ONE

 21

2.2	USRP	

The Universal Software Radio Peripheral (USRP) is designed as a general purpose
hardware subsystem for software defined radio. It is an open-hardware device
developed by Matt Ettus and which can be ordered through his company Ettus
Research [4]. There are currently two types: the USRP1 and the USRP2. Both consist
of a motherboard which contains a Field Programmable Gate Array (FPGA),
Programmable Gain Amplifier (PGA), ADC(s), DAC(s) and a communication port to
connect it to the computer. Daughter boards can be plugged into the USRP
motherboard according to the specific frequency bands needed. These daughter
boards can be hooked up to appropriate antennas. On the receiving path (RX), a
daughterboard captures the required frequency range and sends it through the PGA,
possibly amplifying the signal, towards the ADC. The resulting digital signal is
passed on to the FPGA, where it is transformed into 16 bit I and Q samples . These
are complex samples, with the real part (Q) describing the cosine of the signal, and
the imaginary part describing the sine of the signal plus 90 degrees. One sample is
thus 32 bit long and can be sent to the host computer through the communication port,
for further processing. The FPGA and the host CPU both do some processing on the
signal, and though the exact division of labor can be changed, standard the high speed
general purpose processing, like down and up conversion, decimation, and
interpolation are performed in the FPGA, while waveform-specific processing, such
as modulation and demodulation, are performed at the host CPU.

2.2.1	USRP1	

The USRP1 has four daughterboard slots, two for receiving and two for transmitting.
It contains four 12 bit ADCs (two for every receive board), that have a sampling rate
of 64 Msamples per second. Nyquist’s theorem states that you need a sampling rate of
at least 2 times the frequency you wish to capture in order to be able to reconstruct the
signal . Therefore the USRP1 can capture a bandwidth of 32 MHz at once, for every
receive daughterboard. There are also four 14 bit DACs with a sampling rate of

Figure 7. USRP 1

 22

128Msamples per second making the maximum transmit frequency band 64 MHz
wide. At the heart of the USRP1 lies it’s FPGA, an Altera Cyclone EP1C12. This
FPGA can be programmed using the
Verilog hardware description language. The compiler for this can be downloaded for
free from the Altera website. The communications port is a USB 2.0 chip, with a
practical maximum data throughput of 32 Mbyte/s. Since the analog
signals are processed into 16 bit I and Q channels, this limits the data throughput to 8
Msamples per second.

2.2.2	USRP2	

Figure 8. USRP 2

The USRP2 contains only two daughterboard slots, one transmitter and one receiver
side. It does contain faster and higher resolution ADCs and DACs. Two 14 bit 100
Msamples per second ADCs and two 16-bits 400 Msamples per second
DACs. So it can capture a bandwidth of 50 MHz and transmit on a bandwidth of 200
MHz wide. With respect to the USRP1, the USRP2 also contains a much faster FPGA
(Xilinx Spartan 3-2000) and an ethernet port instead of the USB
connection. The gigabit ethernet port allows for over 3 times higher bandwidth
throughput. The USRP2 is much more costly however; double the price of an USRP1.

2.2.3	USRP	Daughter	boards	

Different frequencies require different antennas and sometimes-different signal
processing, like amplifiers or filtering, to receive or transmit correctly. So in order to
keep the USRPs as general as possible the actual receiving and transmissions
are handled by daughter boards that can be plugged into the USRP motherboard.
These daughter boards are specifically meant for certain frequency bands. Currently
there are thirteen daughter boards available, of which three are interesting in
Relation to GSM signals:
• DBSRX, a 800 MHz to 2.4 GHz Receiver.
•RFX900, 800-1000MHz Transceiver, 200+mW output.

 23

• RFX1800, 1.5-2.1 GHz Transceiver, 100+mW output.

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research
ISSN 2348-120X (online)
The most used GSM frequencies are GSM900 (890.2-959.8 MHz) and GSM1800
(1710.2-1879.8 MHz) in Europe, and
GSM850 (824.0-894.0 MHz) and GSM1900 (1850.0-1990.0 MHz) in America and
Canada. The DBSRX board covers all
these frequencies, but is only a receiver board. In order to actively transmit a RFX
board is needed.[5][6].

2.3	RTL2832U	Chipset	-	USB	TV	receiver	

RTL2832U DVB-T SDR. This reuses very cheap USB TV receivers as SDR
receivers. It is this ultra-low-cost SDR that we are going to have a description here.

Figure 9. RTL2832U Chipset - USB TV

Two key points make ultra-low-cost SDR possible.

Firstly it was discovered that certain chipsets widely used in USB TV receivers had a
much wider tuning range than was needed for TV. The chipsets can also send the
intermediate frequency I and Q samples directly over USB to the host computer.

 24

Secondly it was found that the processing power on normal PCs was sufficient to
perform, in real time, SDR functions on the I and Q samples coming from the USB
receiver.

We bought a dongle based on the RTL2832U+R820T chipset from Ebay for 12.50
Euro.. So what does a cheap USB TV receiver like this provide in terms of
performance? According to this very useful stream of consciousness this chipset can
tune from 24 – 1700 MHz. That covers FM, ham radio and GSM. It uses a 3.57 MHz
intermediate frequency and has a tuning error of perhaps 30 ppm, which is relatively
stable for a particular dongle when it is warm.

The intermediate frequency sampling is 8-bit and around 2MS/s is an achievable
sampling rate. The dynamic range is about 45 dB. My experience is that the biggest
problem is various spurious signals appearing that seem to by primarily due to
interference at the intermediate frequency. There are various homebrew solutions to
improve screening described on the web but I haven’t tried these.

My 1st experiment was using SDR running on Windows. This was easy to install
using lot of information that we found on the web. We just hooked up a few meters of
wire to use as an antenna. I was easily able to scan the FM and air bands to receive
various stations. Once the “Correct IQ” option was checked I was able to receive
sounds. I also looked around 950 MHz and saw what I thought were probably GSM
cells.

Figure 10 . Radio FM spectrum using SDR 1

 25

Figure 11. GSM Spectrum using SDR

Though SDR# is easy to use I think the Windows environment is fairly limited for
SDR [7]

	

	

	

	

 26

Chapter	3.	Spectrum	Analysis	Software	

3.1	Gqrx	

[8] Gqrx is a software defined radio receiver powered by the GNU Radio SDR
framework and the Qt graphical toolkit.

Figure 12 . Gqrx

Gqrx supports many of the SDR hardware available, including Funcube Dongles, Rtl-
sdr, HackRF and USRP devices.

Gqrx is free and hacker friendly software. It comes with source code licensed under
the GNU General Public license allowing anyone to fix and modify it for whatever
use.
The latest stable version of Gqrx is 2.3, it is available for Linux, FreeBSD and Mac
and it offers the following features:

• Discover devices attached to the computer.
• Process I/Q data from the supported devices.
• Change frequency, gain and apply various corrections (frequency, I/Q

balance).
• AM, SSB, FM-N and FM-W (mono and stereo) demodulators.
• Special FM mode for NOAA APT.
• Variable band pass filter.
• AGC, squelch and noise blankers.
• FFT plot and waterfall.
• Record and playback audio to / from WAV file.
• Spectrum analyzer mode where all signal processing is disabled.
• Basic remote control through TCP connection.
• Streaming audio output over UDP

 27

3.2	AirProbe	

AirProbe [9] is the new home of the former GSM-Sniffer project. The goal is to build
an air-interface analysis tool for the GSM (and possible later 3G) mobile phone
standard. The prime motivation is to learn the details of the technology, help people
who develop other open GSM technology (like OpenBTS, OpenMoko
BS11/OpenBSC and others) and demonstrate the insecurity of the current standard.
General information about the project can be found in the Wiki. Source code is in the
git.

Get it using

$ git clone https://github.com/ksnieck/airprobe

Take a look at the Roadmap for current Milestones that need your contribution. Feel
free to generate tickets for these Milestones and work on them.

Structure

AirProbe is divided into three main subprojects: Acquisition, Demodulation and
Analysis.

Acquisition

 The Acquisition module is hardware dependent and contains everything that
has to do with receiving and digitizing the air interface. This is the part that
needs to be rewritten for different receiver hardware, so it should be kept
small and limited to the necessary functions. Most parts should be inherited
from GNURadio, to keep workload limited.

DeModulation

The Demodulation module contains all necessary code to make bits out of the
signal captured by Acquisition. It is in principle hardware independent, but
should be open to use DSPs is desired.

Analysis

This module contains all the protocol parsing and decoding. Wireshark can be
used to handle parts of the visualisation and UI tasks. An important part of the
Analysis module is non-realtime A5DeCryption based on a generic fast CPU.
Realtime or near-realtime A5 dercyption is not a goal of the project. For
purposes of protocol analysis and demonstration of insecurities, non-realtime
decryption is sufficient.

	

 28

3.3	GNU	Radio	

3.3.1	Introduction	

GNU Radio [10] is a free & open-source software development toolkit that provides
signal processing blocks to implement software radios. It can be used with readily-
available low-cost external RF hardware to create software-defined radios, or without
hardware in a simulation-like environment. It is widely used in hobbyist, academic
and commercial environments to support both wireless communications research and
real-world radio systems.

GNU Radio is licensed under the GNU General Public License (GPL) version 3. All
of the code is copyright of the Free Software Foundation.

3.3.2	Using	GNU	

Radio Companion GNU Radio Companion (GRC) is a graphical user interface that
allows you to build GNU Radio flow graphs

Figure 13 . Gnu-radio develop Environment

 29

3.4	ArfcnCalc	-	GSM	frequency	calculation	tool	V.1.0	

Arfcncalc is a program for the calculation of frequencies and channels in GSM-based
mobile networks. It can be calculated the basis of channel numbers uplink and
downlink frequency. It is also possible to determine from a known frequency channel
number a very handy feature when you're sitting on the spectrum analyzer and just
want to know at what channel the observed frequency belongs. Installed in the
Program is also a function with which it is possible to spend a full band plan and any
additional information. Arfcncalc is suitable for the calculation of frequencies and
channel numbers in the bands: GSM450, GSM480, GSM850 GSM900 (P-GSM,
GSM and E-R-GSM) and GSM1800 GSM1900.

To install the tool

1) download and extract http://www.runningserver.com/software/arfcncalc.tar

2) tar -xf arfcncalc.tar

3) cd arfcncalc

4) rm *.o

5) make the install like a linux program

 30

Figure 13. ArfcnCalc Commands

%arfcncalc -a 100 -b 900 –d

On output we can see the frequency of our channel which is 955000000
%arfcncalc -a 100 –v

On output we can see and the Uplink frequency
And if we have the frequency and we want to translate to Arfn

% arfcncalc -f 955000000 –d

	

 31

3.5	Kalibrate	Tool	

Kalibrate [11] (kal) can scan for GSM base stations in a given frequency band and
can use those GSM base stations to calculate the local oscillator frequency
offset. My dongles drift about 8ppm from cold start to warm up after around 40
minutes.

Figure 14. ArfcnCalc Help Envirment

See the list of options below.

We have the 'Kalibrate' files on my virtual machine Linux Mint 16 in the folder
named ‘kalibrate-rtl')

That will give you the:

Frequency correction (ppm)

Where options are:

-s band to scan (GSM850, GSM900, EGSM, DCS, PCS)

-f frequency of nearby GSM base station

-c channel of nearby GSM base station

-b band indicator (GSM850, GSM900, EGSM, DCS, PCS)

-R side A (0) or B (1), defaults to B

-A antenna TX/RX (0) or RX2 (1), defaults to RX2

 32

-g gain as % of range, defaults to 45%

-F FPGA master clock frequency, defaults to 52MHz

-v verbose

-D enable debug messages

-h help

Use this command to find a GSM900 signal in your area.

Figure 15 . Kalibrate Band Scan Command

The search found channel 136 to be the strongest on that antenna. Then, once you
have identified a GSM signal in your area, run calibrate using the command below.

Figure 16. Kalibrate Channel Command

Using channel 100, the 'Frequency correction offset' rounds up to 20 ppm.

For the above command:

GSM Channel 100 (-c 100l)

 33

3.5	Wireshark	

Wireshark [12] is a free and open-source packet analyzer. It is used for network
troubleshooting, analysis, software and communications protocol development, and
education. Originally named Ethereal, the project was renamed Wireshark in May
2006 due to trademark issues.[4]Wireshark is cross-platform, using the GTK+ widget
toolkit in current releases, and Qt in the development version, to implement its user
interface, and using pcap to capture packets; it runs on Linux, OS X, BSD, Solaris,
some other Unix-like operating systems, and Microsoft Windows. There is also a
terminal-based (non-GUI) version called TShark. Wireshark, and the other programs
distributed with it such as TShark, are free software, released under the terms of the
GNU General Public License. Wireshark is very similar to tcpdump, but has a
graphical front-end, plus some integrated sorting and filtering options.Wireshark lets
the user put network interface controllers that support promiscuous mode into that
mode, so they can see all traffic visible on that interface, not just traffic addressed to
one of the interface's configured addresses and broadcast/multicast traffic. However,
when capturing with a packet analyzer in promiscuous mode on a port on a network
switch, not all traffic through the switch is necessarily sent to the port where the
capture is done, so capturing in promiscuous mode is not necessarily sufficient to see
all network traffic. Port mirroring or various network taps extend capture to any point
on the network. Simple passive taps are extremely resistant to tampering[citation
needed].

Figure 17. Wireshark Sniffing Enviroment

If a remote machine captures packets and sends the captured packets to a machine
running Wireshark using the TZSP protocol or the protocol used by OmniPeek,
Wireshark dissects those packets, so it can analyze packets captured on a remote
machine at the time that they are captured.

 34

Chapter	4.	ANALYZING	GSM	WITH	AIRPROBE	AND	
WIRESHARK	

The RTL-SDR software defined radio is been used to analyze cellular phone GSM
spectrum , using Linux based tools Airprobe and Wireshark . This tutorial shows how
I set up these tools for use with the RTL-SDR.

Here is a screenshot showing an example of the type of data you can receive. You can
see the encrypted GSM packet information. You will not be able to see any sensitive
information like voice or text message data since that part is encrypted. Decryption is
not covered in this tutorial.

Figure 18 . Sniffing Packets from UM Air And Analyzed in Wireshark

First, you will need to find out at what frequencies you have GSM signals in your
area. For most of the world, the basic GSM band is 900 MHz, in America it begin
from 850 MHz. If we have an E4000 RTL-SDR, you may also find GSM signals in
1800 MHz band for most of the entire world, and 1900 MHz band for the America
Open up SDRSharp, and scan around the 900 MHz or 850 MHz band for signals that
looks like the waterfall . This is a non-hopping GSM downlink signal. Using NFM, it
will heared something like noise. Note down the strongest GSM frequencies we can
find.

 35

The rest of the tutorial is performed in Linux and we suppose that we have basic
Linux knowledge to use the terminal window. For this Master Thesis we used Kali
Linux in a VMWare session ,Linux Mint 16 64 bit and a third virtual machine
running Linux Mint 17 and the most of the tools are set it up with Pypombs. Note that
virtual box is reported not to work well with the RTL-SDR, as its USB bandwidth
capabilities are poor, so VMWare player should be used.

4.1	Install	GNU	Radio	

There are two ways to install GNU Radio: either by using pre-compiled binary
packages, or manually compiling it from source. The recommended way to install
GNU Radio is via your distribution's package manager, as described in the standard
installation guide. If, however, you need the latest version or are planning to make
changes to the GNU Radio core itself, you will want to install from source.

Note: We have recently begun releasing the 3.7 versions of GNU Radio. This marks a
significant change in both the capabilities and structure of the GNU Radio code. Most
out-of-tree (OOT) projects have been built around the older style API (3.6 or earlier).
Most projects are updating themselves to the new 3.7 to be compatible with the most
current and recommended releases. Some, however, are not. If you are looking to use
an existing OOT project, check to see if it has been updated to the 3.7 API to
determine which version you require.

We are moving to use PyBOMBS as our installation tool for GNU Radio. This will
take care of dependencies and allow you to easily install out-of-tree projects. It is
similar to Python's 'pip' or PHP's 'pear' programs.

This is a new system that is mostly tested on Redhat/Fedora and Debian/Ubuntu. We
welcome bug reports, patches, and help with improving it's capabilities for other
operating systems.

The build-gnuradio is an install script for recent Fedora and Ubuntu systems
provided by Marcus Leech.

Figure 19 . Gsm frequency Spectrum

 36

The build-gnuradio script has a number of options that we can use to install different
versions of GNU Radio. Just running build-gnuradio with no additional options, it
fetches/builds the latest released version from the 3.7 series

4.2	Install	Libosmocore	

This tool is necessary to install it before install AirProbe

4.3	Install	Airprobe	

Airprobe is the tool that will decode the GSM signal. We used multiple tutorials to get
airprobe to install.

Note: The new version 3.7> GNU Radio can not work with AirProbe. we will need to
install GNU Radio 3.6

Install gsmdecode

Install gsm-receiver

Navigate in to to the airprobe/gsm-receiver/src/python directory. First of all we have
to test Airprobe on a sample GSM cfile. Get the sample cfile which we
found from the hyperlik .

https://svn.berlin.ccc.de/projects/airprobe/raw-
attachment/wiki/DeModulation/capture_941.8M_112.cfile

Note: The cfile link is sometimes is dead. We have mirrored the cfile on my ftp
server: ftp://gianniosnet.no-ip.com. Place the cfile in the airprobe/gsm-
receiver/src/python folder.

Now we open wireshark, by typing wireshark into a second terminal window.
Wireshark is already pre-installed in Kali Linux .To other Linux distros like Linux
Mint 16 and Linux Mint 17, we have to install it manually. Since Airprobe capture
data to a UDP port, we must set Wireshark to capture to this. Under Start in
Wireshark , first set the capture interface to lo (loopback), and then press Start. Then
in the filter box, type in gsmtap. This will ensure only airprobe GSM data is been
displayed .

 37

4.4	Run	Capture	Data	

Back in the first terminal that is in the python directory, type in

./go.sh capture_941.8M_112.cfile

If everything installed correctly, you should now be able to see the sample GSM data
in wireshark.[13]

Figure 20 . Packets On Wireshark

	

	

 38

Chapter	5	:		A5/1		

5.1	About	A5/1	

A5/1 is a stream cipher used to provide over-the-air communication privacy in the
GSM cellular telephone standard. It is one of seven algorithms, which were specified
for GSM use. It was initially kept secret, but became public knowledge through leaks
and reverse engineering. A number of serious weaknesses in the cipher have been
identified.

5.1.1	History	and	usage	

A5/1 is used in Europe and the United States. A5/2 was a deliberate weakening of the
algorithm for certain export regions. A5/1 was developed in 1987, when GSM was
not yet considered for use outside Europe, and A5/2 was developed in 1989. Though
both were initially kept secret, the general design was leaked in 1994 and the
algorithms were entirely reverse engineered in 1999 by Marc Briceno from a GSM
telephone. In 2000, around 130 million GSM customers relied on A5/1 to protect the
confidentiality of their voice communications; by 2011, it was 4 billion.

Security researcher Ross Anderson reported in 1994 that "there was a terrific row
between the NATO signal intelligence agencies in the mid-1980s over whether GSM
encryption should be strong or not. The Germans said it should be, as they shared a
long border with the Warsaw Pact; but the other countries didn't feel this way, and the
algorithm as now fielded is a French design."

5.1.2	Description	

The A5/1 stream cipher uses three LFSRs. A register is clocked if its clocking bit
(orange) agrees with one or both of the clocking bits of the other two registers.
A GSM transmission is organised as sequences of bursts. In a typical channel and in
one direction, one burst is sent every 4.615 milliseconds and contains 114 bits
available for information. A5/1 is used to produce for each burst a 114 bit sequence of
keystream which is XORed with the 114 bits prior to modulation. A5/1 is initialized
using a 64-bit key together with a publicly known 22-bit frame number. Older fielded
GSM implementations using Comp128v1 for key generation, had 10 of the key bits
fixed at zero, resulting in an effective key length of 54 bits. This weakness was
rectified with the introduction of Comp 128v2 which yields proper 64 bits keys.
When operating in GPRS / EDGE mode, higher bandwidth radio modulation allows
for larger 348 bits frames, and A5/3 is then used in a stream cipher mode to maintain
confidentiality.

A5/1 is based around a combination of three linear feedback shift registers (LFSRs)
with irregular clocking. The three shift registers are specified as follows:

 39

Figure 21 . Linear feedback shift registers

The bits are indexed with the least significant bit (LSB) as 0.

The registers are clocked in a stop/go fashion using a majority rule. Each register has
an associated clocking bit. At each cycle, the clocking bit of all three registers is
examined and the majority bit is determined. A register is clocked if the clocking bit

Figure 22 . A5/1 stream cipher uses 3 LFSRs

Agrees with the majority bit. Hence at each step at least two or three registers are
clocked, and each register steps with probability 3/4.

Initially, the registers are set to zero. Then for 64 cycles, the 64-bit secret key is
mixed in according to the following scheme: in cycle 0<i<64, the /th key bit is added
to the least significant bit of each register using XOR —

Each register is then clocked.

 40

Similarly, the 22-bits of the frame number are added in 22 cycles. Then the entire
system is clocked using the normal majority clocking mechanism for 100 cycles, with
the output discarded. After this is completed, the cipher is ready to produce two 114
bit sequences of output keystream, first 114 for downlink, last 114 for uplink.

5.1.3	Security	

The message on the screen of a mobile phone with the warning about lack of
ciphering
A number of attacks on A5/1 have been published, and the American National
Security Agency is able to routinely decrypt A5/1 messages according to released
internal documents.

Some attacks require an expensive preprocessing stage after which the cipher can be
broken in minutes or seconds. Until recently, the weaknesses have been passive
attacks using the known plaintext assumption. In 2003, more serious weaknesses were
identified which can be exploited in the ciphertext-only scenario, or by an active
attacker. In 2006 Elad Barkan, Eli Biham and Nathan Keller demonstrated attacks
against A5/1, A5/3, or even GPRS that allow attackers to tap GSM mobile phone
conversations and decrypt them either in real-time, or at any later time.

According to professor Jan Arild Audestad, at the standardization process which
started in 1982, A5/1 was originally proposed to have a key length of 128 bits. At that
time, 128 bits was projected to be secure for at least 15 years. It is now estimated that
128 bits would in fact also still be secure as of 2014. Audestad, Peter van der Arend,
and Thomas Haug says that the British insisted on weaker encryption, with Haug
saying he was told by the British delegate that this was to allow the British secret
service to eavesdrop more easily. The British proposed a key length of 48 bits, while
the West Germans wanted stronger encryption to protect against East German spying,
so the compromise became a key length of 56 bits.

5.1.4	Known-plaintext	attacks	

The first attack on the A5/1 was proposed by Ross Anderson in 1994. Anderson’s
basic idea was to guess the complete content of the registers R1 and R2 and about half
of the register R3. In this way the clocking of all three registers is determined and the
second half of R3 can be computed.

In 1997, Golic presented an attack based on solving sets of linear equations which has
a time complexity of 240.16 (the units are in terms of number of solutions of a system
of linear equations which are required).

In 2000, Alex Biryukov, Adi Shamir and David Wagner showed that A5/1 can be
cryptanalysed in real time using a time-memory tradeoff attack,[6] based on earlier
work by Jovan Golic. One tradeoff allows an attacker to reconstruct the key in one
second from two minutes of known plaintext or in several minutes from two seconds
of known plain text, but he must first complete an expensive preprocessing stage
which requires 248 steps to compute around 300 GB of data. Several tradeoffs

 41

between preprocessing, data requirements, attack time and memory complexity are
possible.

The same year, Eli Biham and Orr Dunkelman also published an attack on A5/1 with
a total work complexity of 239.91 A5/1 clockings given 220.8 bits of known
plaintext. The attack requires 32 GB of data storage after a precomputation stage of
238.

Ekdahl and Johannson published an attack on the initialisation procedure which
breaks A5/1 in a few minutes using two to five minutes of conversation plaintext.This
attack does not require a preprocessing stage. In 2004, Maximov et al. improved this
result to an attack requiring "less than one minute of computations, and a few seconds
of known conversation". The attack was further improved by Elad Barkan and Eli
Biham in 2005.

5.1.5	Attacks	on	A5/1	as	used	in	GSM	

In 2003, Barkan et al. published several attacks on GSM encryption. The first is an
active attack. GSM phones can be convinced to use the much weaker A5/2 cipher
briefly. A5/2 can be broken easily, and the phone uses the same key as for the
stronger A5/1 algorithm. A second attack on A5/1 is outlined, a ciphertext-only time-
memory tradeoff attack which requires a large amount of precomputation.

In 2006, Elad Barkan, Eli Biham, Nathan Keller published the full version of their
2003 paper, with attacks against A5/X Ciphers. The authors claim:

We present a very practical ciphertext-only cryptanalysis of GSM encrypted
communication, and various active attacks on the GSM protocols. These attacks can
even break into GSM networks that use "unbreakable" ciphers. We first describe a
ciphertext-only attack on A5/2 that requires a few dozen milliseconds of encrypted
off-the-air cellular conversation and finds the correct key in less than a second on a
personal computer. We extend this attack to a (more complex) ciphertext-only attack
on A5/1. We then describe new (active) attacks on the protocols of networks that use
A5/1, A5/3, or even GPRS. These attacks exploit flaws in the GSM protocols, and
they work whenever the mobile phone supports a weak cipher such as A5/2. We
emphasize that these attacks are on the protocols, and are thus applicable whenever
the cellular phone supports a weak cipher, for example, they are also applicable for
attacking A5/3 networks using the cryptanalysis of A5/1. Unlike previous attacks on
GSM that require unrealistic information, like long known plaintext periods, our
attacks are very practical and do not require any knowledge of the content of the
conversation. Furthermore, we describe how to fortify the attacks to withstand
reception errors. As a result, our attacks allow attackers to tap conversations and
decrypt them either in real-time, or at any later time.
In 2007 Universities of Bochum and Kiel started a research project to create a
massively parallel FPGA-based cryptographic accelerator COPACOBANA.
COPACOBANA was the first commercially available solution using fast time-
memory trade-off techniques that could be used to attack the popular A5/1 and A5/2
algorithms, used in GSM voice encryption, as well as the Data Encryption Standard

 42

(DES). It also enables brute force attacks against GSM eliminating the need of large
precomputated lookup tables.

In 2008, the group The Hackers Choice launched a project to develop a practical
attack on A5/1. The attack requires the construction of a large look-up table of
approximately 3 terabytes. Together with the scanning capabilities developed as part
of the sister project, the group expected to be able to record any GSM call or SMS
encrypted with A5/1, and within about 3–5 minutes derive the encryption key and
hence listen to the call and read the SMS in clear. But the tables weren't released.[14]

A similar effort, the A5/1 Cracking Project, was announced at the 2009 Black Hat
security conference by cryptographers Karsten Nohl and Sascha Krißler. It created the
look-up tables using Nvidia GPGPUs via a peer-to-peer distributed computing
architecture. Starting in the middle of September 2009, the project ran the equivalent
of 12 Nvidia GeForce GTX 260. According to the authors, the approach can be used
on any cipher with key size up to 64-bits.

In December 2009, the A5/1 Cracking Project attack tables for A5/1 were announced
by Chris Paget and Karsten Nohl. The tables use a combination of compression
techniques, including rainbow tables and distinguished point chains. These tables
constituted only parts of the 2TB completed table, and had been computed during
three months using 40 distributed CUDA nodes, and then published over BitTorrent..
More recently the project has announced a switch to faster ATI Evergreen code,
together with a change in the format of the tables and Frank A. Stevenson announced
breaks of A5/1 using the ATI generated tables.

Documents leaked by Edward Snowden in 2013 states that NSA "can process
encrypted A5/1".[14].

 43

5.2	Passive	GSM	interception		
	
Global System for Mobile Communications (GSM for short) is a suite of protocols
designed for second generation (2G) mobile phone communication, put simply it's
used extensively around the world for making calls on your mobile.GSM comes with
various security features to authenticate users on the network, it uses the SIM of the
caller to authenticate the mobile device with the base station using a pre-shared key
and challenge/response, once authenticated the calls are encrypted with a stream-
cipher typically A5/1 for America and most of Europe, you can read more about A5/1

In previous chapter of our master thesis we show how to get this Kc of our mobile
station (Samsung mobile acting like modem) or to get it , if we have the sim card of
the victim SIM with a Sim card Reader and program SpySimII .This pre share key is
responsible to encrypt our communication on 2G networks

While our thesis aims to show how the interceptors work for decrypt the
communication , it is still no trivial task setting up the tools, like most security work
on GSM the documentation seems to be lacking and help is hard to find. Because of
this we've written the following guide to show how the Kraken work ready and
compiled.

5.2.1	Kraken	

Karsten's latest project (The A5/1 Security Project) announced this month on the 16th
of July the release of 'Kraken'. Kraken is a software toolkit, which uses new
encryption cracking tables to break the cipher used to secure mobile phone
communication. Kraken has the potential to de-cipher a phone call in a matter of
seconds. The Kraken software has been designed to run on inexpensive desktop
computer equipment which brings phone snooping into the hands of the home
computer geek. Kraken has been especially designed to de-cipher the A5/1
cryptographic algorithm. The A5/1 stream cipher was developed in 1987 to encrypt
both voice and signalling data from a mobile telephone. A5/1 in its day was
considered a strong method of keeping mobile phone calls private using 64-bit
encryption, and even a watered down version of the algorithm 'A5/2' was developed
to be exported outside of Europe.

Frank Stevenson, a developer within the A5/1 Security Project made the
announcement of the first release of Kraken: "I have named this beast Kraken, after a
Norse mythological creature capable of eating many things for breakfast. Kraken
feeds of an exclusive diet of A5/1 encrypted data". He also pointed out the following
hardware prerequisites needed to set up Kraken.

When Kraken was in the early stages of development, the GSM Alliance said that the
research is a long way from being a practical attack on GSM. The GSMA said that
they welcomed research, but continued by highlighting that "the theoretical
compromise of GSM network requires the construction of a large look-up table of
approximately 2 Terabytes, which is equivalent to the amount of data contained in a
20 kilometre high pile of books".

 44

The software is regarded as a key step towards eavesdropping on mobile phone
conversations over GSM networks. Since GSM networks are the backbone of 3G (or
3rd Generation of standards for mobile phones and mobile telecommunications
service), even 3G phones can be compromised since when they roll back to GSM
mode when a 3G network is not available.

The A5/1 Security Project have stressed that their main aim is to show how easily the
A5/1 encryption can be cracked. It is anticipated that A5/1 Security Project leader
Karsten Nohl will discuss the hardware and software setup during this years Black
Hat Security Conference.

5.2.2	Minimum	Requirements		

1) Install Linux Machine multicore min 3GB RAM

2) 2TB HD partitions with the The Berlin A5/1 Rainbow table set

3) 2TB HD Without File System

4) GPU support will be added for ATI Radeon HD

5.2.3	Setup		

We can complile & Install kraken like other linux programs setup but is not a easy.
Have a lot patience for doing this

5.2.4	Prepare	Internal	2	TB	HD	

This next step is to create MTHESIS by writing the rainbow tables into a partition on
the INTERNAL drive, they cannot simply be copied on to the drive, they're inserted
inside a partition using a special tool, this is why you need an additional 2Tb of space
on top of the 2Tb INTERNAL drive. First you need to identify which mount name
your 2Tb drive has, this step is crucial because if you get this wrong you'll delete the
partitions on the wrong drive and if you accidentally delete the rainbow tables you'll
be extremely mad.

Open terminal as root and type

umount /dev/sdz

parted /dev/sdz mkpart primary

partprobe /dev/sdz

 45

	

5.2.5	Preparing	tools	for	use	

The tool to insert the tables on to the drive is called TableConvert it's not actually
compiled into the binaries so we need to do that first. Open a terminal window and
browse to the TableConvert

Make TableConvert
Next we need to set up the config file which will point TableConvert to the right
partition to insert the tables into. You need to make a copy of the sample conf file, in
your terminal window type:

cp tables.conf.sample tables.conf

Now open this new tables.conf file for editing and remove the list of example devices
and replace them with your drive and partition, the partition number will be 1,

#Devices: dev/node max_tables
Device: /dev/sdz1 40
#Tables: dev id(advance) offset

The max tables value is set at 40 because there's 40 individual tables and we want
them all on the same drive. Make sure to save changes to this file.

5.2.5	Inserting	the	rainbow	tables	into	the	partition	

Now to start the copy, make sure if you're using a laptop the power cord is in and
nothing will interrupt the copy process, this step takes a long time. In a terminal

window type:

cd kraken_folder/indexes

Now type the following replacing The “folder/Berlin A5/1 Rainbow table set " with
the directory you've stored the rainbow tables.

sudo python Behemoth.py folder/Berlin A5/1 Rainbow table set

info pop up on the screen to tell you what table is currently being copied, you have a
10 hour wait from an internal drive

 46

Figure 23 . Copying Rainbow Tables on Sda3 Partition

5.2.5	Testing	

Lastly we test Kraken, switch to the kraken directory

cd /kraken_folder/kraken/Kraken

Run Kraken and give it the directory where the indexes are stored

./kraken /kraken_folder/kraken/indexes

Now run the test command

Kraken>test

It should run a test string of binary, a reasonable speed from an external drive is about
160 seconds on average, we get about 30 seconds but it depends on your
hardware.[15]

 47

Figure 24 . Rainbow Tables Copied

 48

Figure 25 . Testing Kraken

	

	

	

	

	

	

	

 49

Chapter	6	:	Practical	exercise	on	the	GSM	Encryption	A5/1	 	

6.1	Analyze	The	Capture	File	

Step 1:We have a captured file *.cfile is taken from srlabs because other air captured
traffic from air is illegal and might have problems with the law.

Download this capture file:

ftp://gianniosnet.no-ip.com/
vf_call6_a725_d174_g5_Kc1EF00BAB3BAC7002.cfile.gz

because the link from the original site it doesn’t work

http://reflextor.com/vf_call6_a725_d174_g5_Kc1EF00BAB3BAC7002.cfile.gz

Extract the capture file

Step 2:Start and we listen to your network interface .Use the following capture filter
“port 4729” (Hint :Ctrl + I ,then click Option Lo and enter the capture filter.)
Decode the capture file with the script cd airprobe/gsm-
receiver/src/python/./go_usrp2.sh

Figure 26 . Decode the Capture File

We should see a lot of decoded packets in wireshark

 50

Figure 27 . Decoded Packets in Wireshark

Step 3:Search for an “Immediate Assignment” packet and take a closer look at the
packet. You can see that a SDCCH/8 channel on TimeSlot 1 is assigned to a
subscriber.

Step 4: Keep wireshark running and keep listening. To decode TimeSlot 1 as
“SDCCH/8” pass the parameter “1S” to the decoder

./go_usrp2.sh vf_call6.cfile 174 1S

The decoder now only decodes TimeSlot 1 and ignores TimeSlot 0.Note: Because this
is a USRP2 capture file, “174” has to be used as the decimation rate.

 51

Figure 28 . Decoder now only decodes TimeSlot 1

Step 5: All data on TimeSlot1 which are not encrypted are shown in wireshark. You
should remember that the encryption is enabled after the “Ciphering Mode
Command”. Therefore all data after this command is encrypted and not shown in
wireshark. To see and decode this data we have to find the key Kc.

Figure 29 . Encrypted Bursts in vf_call6

All encrypted bursts are shown in our vf_call6 like this.

 52

“Cx” are the encrypted burst bits, “Px” are the decrypted burst bits and “Sx” are the
keystream bits (encrypted bits XOR decrypted bits). We do not decrypt right now so
the decrypted burst bits are the same as the encrypted burst bits. If x is 1 then this is
the first burst of a frame. The number after Cx, Px or Sx is the GSM frame number,
the second number is the modified frame number as required by the A5/1 algorithm.

Step 6: Now we have to find an encrypted burst where the content of the burst is
known. This step is explained in the next task.

In order to find the Kc we are using the Kraken tool. This tool uses a 2 TB rainbow
table to calculate the key in a reasonable time. But before you can crack the key you
have to find an encrypted burst which you also have in clear text. This step is not as
easy as it might sound because normally you don’t know the clear text. But with some
special information it is possible to guess the clear text.

1. In the last task you decoded timeslot 1 as SDCCH/8. The unencrypted bursts are
shown in wireshark. We are now going to take a closer look at the “System
Information Type 5” message. This message is repeated in given time intervals.
Therefore we know nearly the whole burst as cleartext. Now we only need the
framecount where the same message is transmitted after activation of the encryption.

Figure 30 . System Information 5 & 6 packets

 53

6.2	Finding	Information	to	Crack	the	Key	

You can use this System Information Type 5 message to crack the key. First, you
need to xor the unencrypted “Px” bits for this message with the corresponding
encrypted “Cx” bits for another System Information Type 5 message.

Figure 31 . Information’s Of System Information Type 5

To do so we need to find the unencrypted System Information Type 5 message, which
is displayed in wireshark (Hint: search for the GSM Frame Number). With in the
console, look for the Frame Number. Look at the whole block that contains your
frame number. Your result should consist of four “Cx / Px / Sx” lines (one C1/P1/S1
and three C0/P0/S0;

To make it easier for us , we copy the block into a textfile.(Figure 27.)

You will need the four lines that start with “Cx”.

Unfortunately the “Timing Advance” parameter from the unencrypted message has
changed on the encrypted message from 1 to 0. Therefore you need to correct this
before you can xor the bursts. Johann Betz has created a nice tool to do this. The tool
is called
gsmframecoder1.
To change the Timing Advance parameter you need to change the bit from 1 to 0, e.g.
if you want to change the Timing Advance parameter on
00 01 03 03 49 06 1d 9f 6d 18 10 80 00 00 00 00 … from 1 to 0, you have to do it

 54

like this ./gsmframecoder 00 00 03 03 49 06 1d 9f 6d 18 10 80 00 00 00 00 …
As result you will get four bit streams, denoted as Burst1 to Burst4, which are needed
for the next step.

Then you need to find the encrypted System Information Type 5 message. This
message can be found by adding 204 to the Frame Number. Once you have found the
corresponding---gsmframecoder:

http://www.ks.unifreiburg.de/download/misc/gsmframecoder.tar.gz
message you need to xor the Burst1 bits from the gsmframecoder with the C1 bits
from the encrypted message, Burst2 with the first C0 to Burst4 with the last C0 bits.

You can use

the xor.py script (kraken/Utilities) as follows:

./xor.py first_bits second_bits

(e.g. ./xor.py 00100000000101000…. 01001010001011111…
Result: 01101010001110111…)

3. The next step is to crack one of the xor streams with the kraken tool. Paste the
results to kraken-server to crack the burst:

Just enter the command “crack” followed by the xor’ed key stream (Each crack takes
30 seconds to complete!):

Kraken>Crack
011111011111110100111100110001000000010011100110001010011…

Note: You need to repeat this step with the next xor’ed “BurstX” / “Cx” combination
until you find the correct position on the rainbow table.

A successful output looks like this: Found d5eb21665d2b8f25 @ 13. This means
ad5eb21665d2b8f25 is the key that produces the output at position 37.

4. These numbers can then be fed into the find_kc tool (kraken/Utilities). It needs a
second GSM frame together with the burst data as input to eliminate wrong
candidates for Kc.

./find_kc d5eb21665d2b8f25 13 1332451 1332352 0110101000111011111110…

Here the first number is the key and the second number the position on the rainbow
table found by the last “crack”-step. The third number is the “modified frame
number” from the encrypted burst. The fourth number is the “modified frame
number” from a second encrypted burst (Cx – see output of go_usrp2.sh). The last
number is the xor of this Cx and the corresponding bitstream from gsmframedecode.

 55

 The result should look like this: KC(2): 1e f0 0b ab 3b ac 70 02 *** MATCHED ***

6.3	Decoding	the		channel	

Now you are able to decode the encrypted part of the assigned “SDCCH/8” channel.
Pass the key to the decoder like this:

Step 1 :Open terminal and run

./go_usrp2.sh vf_call6.cfile 174 5T 1EF00BAB3BAC7002

Figure 32 . Decode encrypted part of the assigned “SDCCH/8”

 56

Figure 33 . Decode encrypted part of the assigned “SDCCH/8” Wireshark

Step 2: Now you have a file named speech.au.gsm which contains the audio stream of
the channel

Step 3: Convert the speech.au.gsm audio file with toast2:

The toast tool is a software that converts the GSM files that produce Airprobe to
audio files that can be played with all of audio players such as VLC.Toast is a project
that was developt at the Technical University of Berlin. The research group was
needed a speech compression algorithm to support its multimedia conferencing
experiments. They found what they were looking for in the ETSI specifications of the
Global System for Mobile telecommunication (GSM), Europe's currently most
popular protocol suite for digital cellular phones. (John Scourias' overview of GSM
does a good job introducing the overall architecture; hire him. Another, more recent,
overview of the GSM system (with a list of Web links) comes from Javier Gozàlvez
Sempere.)
The low-level speech compression algorithm of the GSM suite is called GSM 06.10
RPE-LTP (Regular-Pulse Excitation Long-Term Predictor). My colleague Dr. Carsten
Bormann and I have implemented a GSM 06.10 RPE-LTP coder and decoder in C. Its
source code is freely available, and we encourage you to use it, play with it, and
invent new real-time media protocols and algorithms.This tool will be used at the
final steps of the GSM cracking produce to get the final file to listen the decoded and
sniffed voice call.

 57

Page to download it by clicking at the top of the page the link named: “- free
sourcecode“:

http://www.quut.com/gsm/

There are some explanations about what type of audio files are the GSM files
produced by Airprobe and in what type we must convert them to be listened with
VLC player.

I recommend you to read the information in this page for further explanations. Now
we will proceed with the install steps.

Steps to get Toast tool running:

wget http://www.quut.com/gsm/gsm-1.0.13.tar.gz

And build and Install like other linux programs

toast -d speech.au.gsm

Figure 34 . Toast Tool

 58

Step 4: Finally we open the Vlc player and if every set it up correctly we are able to
hear the voice [16][17]

Figure 35 . Vlc Playing the speech.au

 59

Chapter	7:	How	to	Decode	Our	Gsm	Traffic		

7.1	Kc	key	and	TMSI	number	

7.1.1	The	TMSI	number	

Temporary mobile station identities (TMSI) number is allocated within a VLR for
enhancing the system security. A TMSI corresponds to an IMSI uniquely within a
VLR.
The structure of TMSI can be codetermined by the carrier and the equipment
provider.
The principles for TMSI allocation are as follows:
• A TMSI is composed of 4 bytes, which can be 8 hexadecimals.
• The 32 bits of a TMSI cannot be all ones, because an all-one TMSI in a SIM
card indicates an invalid TMSI.

A typical example of TMSI is 60340039.

The TMSI number is the identification that the BTS tower give to every MS (Mobile
Station), which is your mobile device, to identify it and distinguish it from the other
terminals that are connected with the BTS tower.
This TMSI number will be assigned to your device when entering in the area of
coverage of the BTS and the BTS can assign this number for one communication
between your MS and the BTS only or can reuse this number for your MS if you
don’t move from the area of coverage of this BTS. I mean if you make a voice call
and then make another one, the same TMSI number will be used by the BTS tower for
your MS. Sometimes the BTS tower ask the MS for the IMSI number which is unique
for each MS. But the BTS tower try to reduce the transfer of this number by the UM
Interface or Air Interface (Interface between the BTS and the MS) because of
avoiding sniffing the identification number of the MS. Because of this reason is why
it uses the TMSI which is a number which is not always the same and don’t really
identifies the MS at other area coverages or at other connections with the BTS.

7.1.2		Kc	key	(or	cyphering	key):	

The second is the Kc Key, which is a number extracted with the GSM algorithm and
is different for every communication between the BTS and the MS. This number is
the output from the GSM.

Official description: The Kc is the 64-bit ciphering key that is used in the A5
encryption algorithm to encipher and decipher the data that is being transmitted on the
Um interface.

So this Kc key is fundamental to decode the conversation and we have to obtain it

 60

REMARK: It’s important to notice that with all these methods you will only be able
to get your own Kc key and not the others Kc keys, which means that you won’t be
able to crack GSM voice calls or SMS from others. You will only be able to crack
your own voice calls and SMS messages [18]

7.2	Active	Read	Kc	And	TMSI	From	SIM	

How do you get the Kc from a SIM card

7.2.1	BlackBerry	Engineering	Screen	

This is quite an easy catch: pretty much on all of the BlackBerries you can enable the
so called “Engineering Mode” which will simply show you the current Kc. Not much
of fun, but a reliable, good way to do it.

TESTED:NO (as shown by Karsten Nohl for example at BlackHat 2010)
WORKS: YES
	

Now, this one is quite a tricky one, because setting up OsmocomBB already requires
quite an amount of work, but once you have it up and running AND you are lucky
with the cables and the code (which is not usually the case) you can simply run the
mobile app and then use the telnet interface to get the Kc:

1. Upload layer1 to your phone
2. Run mobile -i 127.0.0.1
3. telnet 127.0.0.1 4247

After that simply say:
show subscriber 1
At the top you should see the Kc printed.
TESTED: No
WORKS: PARTIALLY

7.2.3	 Using	a	SIM-card	reader/Smart	Card	Reader	

Some people said on the A51 mailing list that by using a simple SIM card reader they
were able to extract the last used Kc from the card. I am not sure about this, but it
sounds reasonable and the people who wrote about were quite convincing.

We tried this method using 2 cheap Sim-Readers from Ebay for 10 Euros and it didn’t
work for me. I was running SIMspyII and other forensic investigations tools and
didn’t recognize both of devices (We already turned off PIN-code verification for the
card, not sure however how having a PIN code would change the procedure, but I
assume the SIMspyII program has support for PIN-codes).

I tried to find devices that can work with SIMspyII and I find that model Omnikey
CardMan 5321 can work with SIMspyII .

 61

Figure 36 . OMNIKEY® 5321 SIM-card reader

TESTED: NO
WORKS: THE GOOGLE SEARCH SAY YES

7.3.4	AT+CSIM	Command	

This one is the eldest and most well-known command: some phones allow you to use
one of the standard-defined-but-not-always-implemented AT command AT+CSIM
which let’s you to send raw APDUs (=”commands”) to the SIM-card via the modem.
The amount of phones supporting this is very limited, according to some people older
Siemens and Alcatel phones let you do this. Also older iPhone’s (3GS/3G/2G) let you
do this if you are jailbroken (you need to install minicom from Cydia then connect to
the device /dev/tty.debug). Newer iPhone’s don’t really let you do this, iPhone 5
owners – we all are out of luck.

The command you would like to send is something like this:

A Sample run:

AT+CSIM=14,"A0A40000026F20"
+CSIM: 34,"000000096F2004001100BB010200009000"

OK

 62

AT+CSIM=10,"A0B0000009"
+CSIM: 22,"E0940FC09AEFA000009000"

OK

Again, you find the last Kc used here: E0 94 0F C0 9A EF A0 00 and also the key
sequence number: 00 [19]

Problem With Samsung GT-5839i

The approaches for extracting Kc and TMSI I found use AT+CSIM command to issue
raw APDUs. We can't send APDUs to the SIM, because AT-commands like +CSIM
are not supported in Android. It is necessary to modify the RIL to make them work,
which is what Seek for Android does. SIM IO commands in android are issued using
+CRSM, look into reference-ril.c code.

So we looked into +CRSM command to see how it works and what it can do. We use
this command already to obtain the ciphering indicator. We managed to read TMSI
and LAI

Demo:

* 18055A1B TMSI
* 05F5101030 LAI: 50501 4144
* FF current T3212 value (used on phase 1 devices only)
* 00 location update status

176 is for READ Binary, 28542 is decimal representation of EF fileid 0x6F7E. Other
parameters should specify the record number and length of response.

This should read Kc from file 0x6F20,

AT+CRSM=176,28448,0,0,9

Read Kc and TMSI number from my device GT-5839i.
• Process to get these 2 numbers or keys:

First of all I remark that the 2 numbers (TMSI and Kc) are obtained by the same
procedure. This procedure is named AT commands.

AT commands are used to communicate via terminal or user interface to a Modem
and get infromation about this Modem. In this case the Modem will be the Mobile
phone with the android system and the part of the device we want to get access is the
SIM card, which are stored these 2 numbers and where we have to enter after every
voice call or SMS to get these numbers of the last communication between the BTS
and the MS.

 63

For this reason is why we have only been able to get these numbers with a Samsung
android device. The Stock ROMs of the Samsung devices brings the possibility to
communicate through the android device like a Modem. I mean when you connect the
Mobile to the PC via USB, this device will be recognized by the system like a
memory storage (DCIM), like and ADB interface (if you have installed the ADB
software of android) and finally like a Modem that brings you the possibility to
communicate through AT commands like any other Modem to the SIM card of the
Mobile phone and extract the 2 necessary numbers.

It’s important to remark that I’m using a Samsung Galaxy s GT-5938i model and that
we suppose by some comments on different Forums and some google search that all
the Samsung devices have this special option of Modem
ADB (Android Debug Bridge) description: adb are two different applications — one
running on your computer (Windows, Linux or Mac) and one running on your phone.
When your phone is connected, and USB debugging is enabled, you can issue
commands and communicate with the phone using your computer screen and
keyboard.
So ADB is the quickest and most useful way to control your Android device through
your PC by terminal prompt and make it more simple to enter commands that can be
with your device.
Once you have written all of this information the only thing you must know and check
about your Samsung android device is that if it has the Stock ROM. We mean that the
ROM was not changed by a Custom ROM like CyanogenMOD or others. Because the
Stock ROM allows us to access the SIM card like a Modem.

To check out if it’s possible to be recognized like a Modem you have to follow the
next steps.
First you have to enable some settings of the phone before connecting it via USB to
the computer:
Settings –> Aplications –> Unknown sources (enable this option)
Settings –> Aplications –> Development –> USB Debugging (enable this option)
Then you are prepared to catch the USB cable that comes with the device and connect
it to your computer.
It will appear on your mobile a tab that shows that the device is connected through
USB.

In the computer to check if it’s recognized like a Modem, you only have to do a pair
of things.
• Minicom Install (Linux operating system)
This software hasn’t any graphical interface but is really the same than Hyperterminal
in Windows but you have to use it through the terminal prompt.
• Create profile to Minicom 2.7 and test if we can communicate with Sim card

 64

Figure 37 . Test Minicom With Samsung Device

Figure 38 . Read TMSI and Kc

AT+CRSM=176,28542,0,0,1
*First 8 digit is TMSI
AT+CRSM=176,28448,0,0,9
* Here we can identify the KC key hexadecimal number: 84D3************ and the
sequence number: 04 [20]

 65

7.2	Receive	Live	Channel		

To decode a live channel using RTL-SDR type in terminal

./gsm_receive_rtl.py -s 1e6

A window will be showed . We have to tune a known GSM channel that we found
earlier using SDRSharp by entering the known frequency. After this step , just click in
the middle of the GSM channel in the showing window. Within a few seconds some
GSM data should begin to show consecutively in wireshark. Type the command
./gsm_receive_rtl.py -h for information. Use -s flag there to set up the sample rate to
1.0 MSPS, and might work much better than the default value of 1.8 MSPS as we see
that there should be only one GSM high level in the wideband spectrum.

Figure 39 . Sniffing Packets With Rtl-sdr

If we have trouble getting data, but receive many errors like

sch.c:260 ERR: conv_decode 12
then you should calibrate your RTL-SDR stick using the kalibrate-rtl program
Kalibrate-rtl.

 66

Figure 40 . Captured System Information Type 4 –General Information

This first type of messages contains information of the BTS towers (of the system).

A) System Information Types:

Type 1: Channel type = BCCH (But GSM CCCH Info)

LIST of ARFCNs of the cell!!!

RACH control parameters.

Type 2: Channel type = BCCH (But GSM CCCH Info)

Neighbour cell description like LIST of ARFCN’s of the cell.

Neighbour cell description – BCCH frequency list.

Type 3: Channel type = BCCH (But GSM CCCH Info)

Cell identity code decoded, LAI(MCC+MNC+LAC)decoded and some GPRS

information.

Type 4: Channel type = BCCH (But GSM CCCH Info)

LAI(MCC+MNC+LAC) decoded, Cell selection parameters and RACH control

parameters. Some GPRS information too.

 67

Type 2ter: Channel type = BCCH (But GSM CCCH Info)

Neighbour cell description like LIST of ARFCN’s of the cell.

Neighbour cell description – Extended BCCH frequency list.

Typer 2quater: Channel type = BCCH (But GSM CCCH Info)

3G message with information that we don’t take into account in this study. Like 3G

neighbour cell description.

Type 13: Channel type = BCCH (But GSM CCCH Info)

They contain all the important information about GPRS like GPRS Cell options,

GPRS Power Control Parameters.

This second type contains information of the Mobile Station (MS).

B) Paging Request Types:

Type 1: Channel type = CCCH (And GSM CCCH Info)

Mobile Identity 1 number (IMSI)

Page Mode = normal paging (P1)

Channel Needed

Mobile Identity 1 and 2 = TMSI/P-TMSI

Page Mode = normal paging (0)

Channel Needed

And other types of Paging Request Type 1 can carry any combination of MS

identifiers such as TMSI / P-TMSI IMSI of the MS1 and MS2 or IMSI the MS1 and

MS2, etc.

Only the IMSI MS1 or No identity code, etc. Type 2: Channel type = CCCH (And

GSM CCCH Info)

 68

Mobile Identity 1 and 2 = TMSI/P-TMSI i IMSI del Mobile Idnetity 3

Page Mode = normal paging (0)

Channel Needed

Type 3: Channel type = CCCH (And GSM CCCH Info)

Mobile Identity 1, 2 , 3 and 4 = TMSI/P-TMSI (Not decoded)

Page Mode = normal paging (0)

Channel Needed

C) Immediate Assignment: Channel type = CCCH (And GSM CCCH Info)

Time Advance Value

Packet Channel Description (Time Slot)

Page Mode = Extended Paging(1)

 69

7.3	Capturing	a	cfile	with	the	RTL-SDR	In	Our	Kali	Linux	VM	

7.3.1	First	Way	

Use the rtl_sdr tool to sniff all the information of the channel you have found. The

rtl_sdr tool comes with gnuradio and it will catch all the information with the RTL

dongle and save it in a .bin file at the directory that you want to save it.

Example of use:

./rtl_sdr /tmp/rtl_sdr_capture.bin -s 1.0e6 -f 957e6 -g 44.5

So in this case, the tool will save the data into a file

Named: rtl_sdr_capture.bin and placed inside the tmp directory. The -s flag is to

specify the sample rate which seems to be works better than the 1.8e6 which is the

default value. The other settings are the frequency which we want to tune and the

gain.I prefer to decode a live channel that use top_block tool that comes with airprobe

to get the information because this tool seems to be not as efficient as the rtl_sdr that

have a bandwidth of 3.5MHz which is enough to include all the GSM channel with

the frequencies the system can change during the call.

As we know the GSM is a frequency hopping system that will change the transmitter

and receiver frequency in a call following the pattern of ARFCNs received in

the System Information Type 1 frames before setting the call.

Convert the .bin file into a .cfile file with a precompiled gnuradio-companion
scheme.

STEP 1: Convert the .bin file into a .cfile file with a precompiled gnuradio-

companion scheme.

The gnuradio-companion is a tool that comes with gnuradio and it has a graphical

interface. You must download the next

file:http://sdr.osmocom.org/trac/attachment/wiki/rtl-sdr/rtl2832-cfile.grc

After this, open gnuradio-companion by typing it in a terminal prompt:

Sudo gnuradio-companion

 70

And the program will open, the go to the tab open file and search the named: rtl2832-

cfile.grc.

Figure 41 . Bin to Cfile .grc File

Set the file source to the capture.bin file directory where you have saved it with in the
previous STEP 3, and set the file output for a file called capture.cfile which should be
located in the ‘airprobe/gsm-receiver/src/python’ folder. Also, make sure that
‘Repeat’ in the File Source block is set to ‘No’.

Now execute the GRC flow graph by clicking on the icon that looks like grey cogs.

This will create the capture.cfile. The flow chart will not stop by itself when it’s done,

so once the file has been written press the red X icon in GRC to stop the flow chart

running. Because it won’t stop by itself. Then you can close the gnuradio-companion

and delete the .bin file saved in the tmp directory

7.3.1	Seceond	Way	 	

We goanna to use a Gnu-radio Schema Download it from

http://wiki.hackbbs.org/index.php/Gsm_receive_rtl.py

And we have to open it with the Gnu-radio as the same way as before .

Sudo gnuradio-companion name_of_file.grc

 71

Figure 42 . Gsm.grc

As we see in Figure 39. we can sniff any frequency that we want and generate a a

cfile which contains capture traffic on with .cfile gnuradio-companion. We can

change the frequency on pop-up menu.

 72

Figure 43 . Gsm.grc Generated with Gnu-radio

Figure 44 . Dumb.cfile

 73

Open and setup wireshark:

Open another terminal prompt and to open wireshark with sudo privileges:

Sudo wireshark

Note that it’s always better to work with sudo privileges when using airprobe,

wireshark,gnruadio,etc.

Then the wireshark software will open and you must select lo(loopback) and start.

Note that wireshark comes installed in kali linux.

When a window which is capturing is opened go to the filter box and write gsmtap to

see only the GSM frames.

7.4	Use	airprobe	to	send	the	decoded	information	to	wireshark	and	analyze	the	
frames.	

First, we have to decode the signalling frames to know more things about the calls we

are decoding:

./go.sh capture.cfile 64 0B

The 64 is the decimation rate of the RTL-SDR, 0B is the configuration which go.sh is

going to use: 0 means Timeslot 0 (beacon channel), B is the configuration that the cell

uses on the beacon channel. With this we will get information about the system and of

the calls identification numbers TMSI or IMSI (in few cases) .The information that

contains any frame of signalling will be explained in a new thread in the next days.

Decoding an SMS:

Here are all the available configurations that are supported by airprobe:

 74

Figure 45 . Available configurations Supported By Airprobe

As you can see these are the GSM configurations used in the different frames and you

will have to be able to recognize each one to identify if we have to use airprobe

configuration or another to decode the data of your call or SMS.

.

We will assume that we sent a text message to ourself while capturing data.

So now we can see all the messages of the beacon channel, but what are you looking

for in the Wireshark log? It is quite simple: first a “Paging Request” for the TMSI

of the target phone, then a “Ciphering Mode Command”. These are the messages

which point out that a transaction indeed happened.

Now to continue with the flow it is best way trying to decode the scecific cfile but

now giving the key to go.sh:

We will assume that we sent a text message to ourself while capturing data.

So now we can see all the messages of the beacon channel. It is a simple thing: first a

all “Paging Request” for the TMSI of the target phone, then a “Ciphering Mode

Command”. These are the messages which indicate that a transaction actually been

happened.

Now we will go on with the flow it is better way to trying to decode our cfile but now

giving the solution to go.sh:

./go.sh capture.cfile 64 0C KEY //Kc can get it Actively

The kc Key shown how was taken actively on previous chapter of my master thesis.

 75

What we expect to see now? Well, it depends on the network: either there is an

“Immediate Assignment” telling to the mobile phone to go to different timeslot or

you will actually be able to see the text message.

Iinstead of the SMS you find an “Immediate Assignment” message you need to open

it and see which timeslot the phone is being order to and then you need to decode that

timeslot using go.sh. So, for example if it says that the phone needs to go to Timeslot 3

then your command would be:

./go.sh capture.cfile 64 3S KEY

Notice: that we did not only change the Timeslot number from 0 to 3 , but also the

configuration from C to S, because the target phone is now on a Standalone

Dedicated Control Channel (SDCCH), not on the beacon channel so we need to

decode it other way.

It is also worth noting that SMS messages are almost always sent on the Center

Channel not on the Traffic Channel.

Here we can see a flowchart of the whole process to make it easier to understand

(naturally since we can only see the downlink this shows only what happens on the

downlink):

 76

Figure 46 . Flowchart of the whole process Decoding Sms (source

https://ferrancasanovas.wordpress.com/cracking-and-sniffing-gsm-with-rtl-sdr-concept/)

Decoding a Voice call:

Now we were able to decode an SMS let’s get to something a little bit harder:

decoding a voice call!

Well the first step is the same as it was when we decoded a text message: we look at

the beacon channel, Timeslot 0:

./go.sh capture.cfile 64 0C

What do we expect to see? Nothing besides the “Cipher Mode Command” because

we didn’t provide the key, so let’s do that:

 77

./go.sh capture.cfile 64 0C KEY

Logically there needs to be an “Immediate Assignment” command, because the

phone NEEDS to change at least once to a different timeslot to receive voice data (to

a Traffic Channel, Timeslot 1-7). What we saw when decoding the SMS is correct

here too: depending on the network configuration we can see some messages about

the call setup (if it is an incoming call we can even see the caller ID – the phone

number calling our target) then an “Immediate Assignment” (configuration ‘C’ –

combined) or we can only see an “Immediate Assignment” directing the phone to a

Control Channel (just like it happened when receiving an SMS, configuration ‘B’).

Of course if you follow the phone to the Control Channel you will see the call setup

messages (in case of an incoming call) then another “Immediate

Assignment”command, this time directing the phone to a Traffic Channel.

Here is again a flow chart showing the process:

 78

Figure 47 . Flowchart of the whole process Decoding Voice Call (source

https://ferrancasanovas.wordpress.com/cracking-and-sniffing-gsm-with-rtl-sdr-concept/)

Now there is only one question left: how do we decode the traffic channel to actually
get the voice data? Again, it is something that depends on the network: if the network
uses simply Full Rate Speech then you can do the same what has been written
in Srlabs’s tutorial:

./go.sh capture.cfile 64 1T KEY

What does this command do? It decodes Timeslot 1 as a Traffic Channel. We know

what timeslot to decode from the “Immediate Assignment” command message, T

 79

means Full Rate Speech. The command results in a file called “speech.au.gsm”,

which needs to be converted to .au file using ‘toast’:

toast -d speech.au.gsm

The toast tool is a software to convert files and I will explain the setup process of this

software on another thread.

The resulting .au file could be played back using any player, e.g. cvlc (Command

Line VLC):

cvlc speech.au

So we must download and install VLC player too.

If we can not hear anything but beeps and other weird noises then there is a pretty

good chance that the cell is using Enhanced Full Rate Speech instead of simple Full

Rate Speech.

To decode the channel as an Enhanced Full Rate Speech Traffic Channel:

./go.sh capture.cfile 64 1TE KEY

This results in a file called “speech.amr” which could be played back without any

more modifications using for example Commandline VLC:

 cvlc speech.amr

[21] [22]

 80

Chapter	8.	Projects	&	Tools	For	Analyzing	Intercepting	Gsm	
Signals		

In this chapter of our Master Thesis we would want to approach some tools that
have been made in amateur level and are used for the analysis and intercepting
the Gsm Signals . Most of them have many errors at the source code , we should
to correct the code and then to execute.

8.1	The	gr-gsm	project	

Αll the above installation are implemented on VmWare Linux mint machine 17
machine

Figure 48 . Linux Mint 17 VMachine & Gr-gsm project application files

The gr-gsm project is based on the gsm-receiver written by Piotr Krysik (also the
main author of gr-gsm) for the Airprobe project.

The aim is to provide set of tools for receiving information transmitted by GSM
equipment/devices.

Installation

The project is based on GNU Radio signal processing framework and takes advantage
of its great features like stream tagging and message passing. Presence of GNU Radio
is therefore a basic requirement for compilation and installation of gr-gsm.

The easiest way to install gr-gsm is to use pybombs installer (GNU Radio install
management system). Installation with this tool was tested on Ubuntu 14.04 and 14.10
(on 14.10 installation will be much faster as compilation of GNU Radio is not
necessary) and also installed on Linux Mint 17 . For installation of pybombs you will
need git. On Debian based distributions you can get it with:

 81

sudo apt-get install git

Then download pybombs sources using git:

git clone https://github.com/pybombs/pybombs.git
Go into pybombs directory and configure it:
cd pybombs
./pybombs config
As a install prefix enter /usr/local/. The rest of the options can be left as default.
On distributions that have GNU Radio version 3.7.7 and above in standard repository,
GNU Radio can be installed from packages without compilation. To avoid this quite
lengthy process use:
./pybombs config forcebuild ' '

To check GNU Radio version use:
apt-cache policy gnuradio-dev

The key of success is to test the Gnu-Radio if installed correct.

Figure 49 . Test of Gnu-Radio

Then build and install gr-gsm with following command:

sudo ./pybombs install gr-gsm

Pybombs will take care of downloading all of required libraries and for installation of
GNU Radio and building gr-gsm.

At the end create the ~/.gnuradio/config.conf config file so gnuradio-companion can
find custom blocks of gr-gsm:
[grc]
local_blocks_path=/usr/local/share/gnuradio/grc/blocks

Usage
There are many possible applications of gr-gsm. At this moment there is one
application that is ready out of the box. It is improved replacement of the old

 82

Airprobe - the program that lets you receive and decode GSM control messages from
timeslot 0 on the broadcasting channel of a BTS. After installation of gr-gsm there are
two python executables that will be installed:
-airprobe_rtlsdr.py,
-airprobe_file.py.
Airprobe with RTL-SDR input
This program uses cheap RTL-SDR receivers as a source of the signal. It can be
started by running from a terminal:

airprobe_rtlsdr.py

Figure 50 . Commands to run Airprobe_rtlsdr.py

Figure 51 . Airpobe Rtlsdr While running and Capturing GSM packets

We’ll see a spectral display tuned to the frequency that you set in the Python class
constructor previously. Use the slider buttons to begin tuning through the spectrum to
search for a GSM broadcast control channel (BCCH). On the signal display, it’ll show
up as a relatively wide hill prominent among the rest of the noise.

 83

When you’ve tuned to the correct center frequency of the BCCH, you’ll see the
downlink data begin streaming in the same terminal window where you invoked
airprobe. The giveaway will be a string of scrolling hexadecimal “2b” octets. These
are padding octets among the actual system messages passed on the channel
The window of the program contains amplitude spectrum of the signal drawn in real-
time. The central frequency of the signal can be changed by moving fc slider. The
GSM signal has bandwidth of around 200kHz. By looking for constant hills on the
spectrum of such width you can find a GSM broadcasting channel. After setting the fc
slider to a carrier frequency of a broadcasting channel the program should
immediately print content of subsequent messages on the standard output.

If it doesn't happen, set ppm slider into different positions. The slider is responsible
for setting devices clock offset correction. If the clock offset is too large the clock
offset correction algorithm that is implemented in the program won't work. There is
intentionally added upper of allowable clock offset - it was done in order to avoid
adaptation of the algorithm to neighbour channels that would inevitably lead to
instability. You can use the value set later by passing it as argument of the program:

airprobe_rtlsdr.py -p <correction>ls

Airprobe with file input
This program processes files containing complex data - interleaved float IQ samples.
Example of the usage:

airprobe_file.py --samp-rate=1M --fc=940M -i input_file
where:
--samp-rate - sampling frequency of the data stored in the file,
--fc - central frequency of the recorded data - it is needed for frequency offset
correction,
-i - the file containing the complex data.
Analyzing GSM messages in the Wireshark
The Airprobe (file, rtlsdr) application sends GSM messages in GSMTAP format that
was created by Harald Welte to the UDP port number 4729. Wireshark interprets
packets coming on this port as GSM data with GSMTAP header and it is able to
dissect messages.

On Debian like systems *Wireshark can be installed with:

sudo apt-get install wireshark

To start Wireshark straight to analysis of the GSMTAP packets obtained from gr-
gsm's airprobe use following command:

sudo wireshark -k -Y '!icmp && gsmtap' -i lo
The options are broken down as follows:

-k: tells Wireshark to begin capture immediately

-Y: sets a display filter

 84

‘!icmp && gsmtap': only displays GSMTAP formatted messages. GSMTAP is a
pseudo-header that’s not part of any standard protocol and is used to transport GSM
messages over the air inside UDP or IP packets. Radiotap headers perform the same
function in 802.11 traffic.

-i lo: sets the capture interface as the loopback, through which Airprobe is
transmitting the demodulated GSM signal.

Once Wireshark comes up, you’ll see the GSMTAP packets scrolling:
[23]

Figure 52 Airpobe Rtlsdr & GSM packets on Wireshark

8.2	The	Rtl	-tool-kit	Project	

All this code is work in progress as the programmer said on his post to the program.
So if we are not a programmer this might not work out of the box for as. If we are we
should be able to fix errors to work for us . Go to our airprobe fork if we want to use
a more advanced version of this with files

./gsm_receive_rtl_mod.py

 85

Figure 53. Rtl-Tool Kit While Running

Linking Tmsi now implemented for auto mode (Gets del-report timestamps from Sim
card) Manual mode to be implemented next. Also shows Tmsi spammer function to
monitor tmsi's spamming on the BTS. Need to implement filter next to filter out the
Tmsi's that are spamming.
Also added function to see how many unique tmsi's are on the BTS (not showed on
vid).Need to add threading so functions don’t mess up main GUI thread.

Test Your Modem With This

https://github.com/banjaxbanjo/SmsFuzzer

WHAT HARDWARE AND SOFTWARE DO WE NEED

• Linux Mint 17 or whatever runs gr-gsm

• A cheap rtl dongle from ebay

• A usb dongle modem (search ebay for 3g usb dongle) This modem has to be
able to use PDU mode (most do) The Modem we using for demos is Hauwei
E173

• Some phones work as a usb modem, Samsung in particular, I'm using

Samsung GT-5889i running Android V 2.3.6

• Usb modem is more accurate as a tmsi sniffer because it stores the delivery
reports on the sim card and the timestamps are used from these reports. The
phone doesnt do this at the moment so I create one when I send each sms.

WHAT CAN I DO WITH THIS APP?

• We can get Imsi or Tmsi and key of the device connected to your pc.

 86

• We can send silent/flash sms

• We can connect/match tmsi to a mobile number if target is on the same BTS
and in GSM900/2G mode.

BUTTONS

• 2G MODE = puts dongle in 2G mode

• GQRX = runs gqrx

• Get Freq = get currect freq from gqrx and set in the paramaters box for
airprobe/gr-gsm

• KAL = starts kal on option you set from drop down box.

Also have airprobe version which runs with extracted key so you can see data in
wireshark live rather than having to create a bin file then convert it to a *.cfile.

Msg Count = how many sms to send

Sms Send Delay = how many seconds to send each sms

Del Report Delay = stop recording after x amount of seconds the app has time to get
Delivery reports back(not needed for manual mode)

FUTURE CODE

• Start stop app when key changes for airprobe so you have the right key to
decode sms data.

• Create an android app to send sms and create timestamps for people that

haven’t got a modem (not silent sms app just normal sms for a person you
know and want to get tmsi)

• Connect Kraken to get key programmatically (not sure yet if its possible but

would be nice) not live data of course.

• Wait for Poitr/gr-gsm to add decoding block so gr-gsm can be used for
debugging like the airprobe version can with this app with the kc on other
timeslots 2S etc.[24]

8.3	The	Pytacle-Alpha2	Project	

Pytacle Alpha2

Pytacle is a tool inspired by tentacle. It automates the task of sniffing GSM frames of
the air, extracting the key exchange, feeding kraken with the key material and finally

 87

decode/decrypt the voice data. All we need is a USRP (or similar) to capture the GSM
band and a kraken instance with the berlin tables (only about 2TB) [25].

Changes: Support of RTLSDR sticks, possibility to scan for cells around you, and
more.[26]

However with Pytacle this was different: it promised a lot of things to do (“Â It
automates the task of sniffing GSM frames of the air, extracting the key exchange,
feeding kraken with the key material and finally decode/decrypt the voice data. “) but
it failed to achieve anything like that. First of all I looked at the code, which was
surprisingly simple compared to the feature list (for example GSM Analyzer tries to
do around 2/3 of the stuff Pytacle promises and it has a large codebase consisting of
many classes and files) and however we would never judge a program based on its
source code’s size (that would truly be horrible) we were still getting skeptical of the
single .py file containing mostly GUI definitions.

So after we read the approach of Domonkos	Tomcsanyi for source-code we
discovered the same comments:

1. It tries to script together the procedure already known to GSM hackers
(capture stuff, then run it through gsm-receive.py, crack the key, decode the
conversation), so you still need to have all the tools, but Pytacle tries to figure
out a way for you to run them

2. and sadly it doesn’t do very well. It has magic numbers in it hardcoded (“0B”
always for Configuration, “06 3f” for Immediate Assignment) which not seem
to perform well (or to be honest: at all) in my environment.

we actually tried changing the configuration to 0C, which is the way mobile carriers
operate in my country, and fed Pytacle a file with 5 different Immediate Assignments.
It told me “No immediate assignments found, sorry…” and it exited.

So, to come to a conclusion: we really appreciate the effort David put into this script,
but right now it is useless. It goes through the whole GSM cracking procedure, but it
naturally lacks the human intelligence currently needed to distinguish between
different Immediate Assignments, cell configurations etc. so it’s almost always
destined to fail on you. It is possible to create such input files (basically cleaning out
junk from a real-world file, or run a test-network and capture its traffic), which it can
interpret, and work on, but that is not going to help someone who would like to try
stuff on a real network.[27]

 88

Conclusion

In this Master Thesis we try to coverage how the Hackers work for intercepting our
phones simple and with low budget equipment. The Algorith that the GSM uses A5/1
is weakness and not accidental. We have to use our mobile phones with 3G or 4G
signal because it offer more secure communication than GSM

 89

[1]		 "GNURadio,"	Introduction	To	GSM,	[Online].	Available:	
https://gnuradio.org/redmine/projects/gnuradio/wiki/Introduction_To_GSM	

[2]		 Fabian	van	den	Broek	“Catching	and	Understanding	GSM-Signals"	in	Radboud	
University	Nijmegen	,2010	
	

[3]		 "HackRF	One,"	HackRF	One	an	open	source	SDR	platform,	[Online].	Available:	
https://greatscottgadgets.com/hackrf/	.	[Accessed	2	September	2015].	

[4]		 “Ettus	Research”	Ettus	Research		A	National	Instruments	Company	[Online].	
Available:	http://www.ettus.com/	.	[Accessed	2	September	2015].	

[5]		 "Wikipedia,"	Universal	Software	Radio	Peripheral		[Online].	Available:	
https://en.wikipedia.org/wiki/Universal_Software_Radio_Peripheral#cite_ref-9.	
[Accessed	2	September	2015].	

[6]		 Kanaiya Kanzaria1 , Sanjay S.C2 , " ACTIVE GSM MONITORING,"
International Journal of Computer Science and Information Technology
Research , Vol. 2, Issue 2, pp: (484-494), Month: April-June 2014,

[7]		 “LUSHPROJECTS BLOG” Spectrum Analysis and GSM Broadcast Decoding
in 2013 [Online].Available: http://lushprojects.com/blog/2013/11/ [Accessed 2
September 2015].
	

[8]		 “Gqrx SDR," Welcome to gqrx[Online],Avaible : http://gqrx.dk/ [Accessed 2
September 2015].

[9]	

		

“Airprobe“, Welcome to Airprobe [Online]. Available: https://svn.berlin.ccc
.de/projects/airprobe [Accessed 2 September 2015].

[10]		 "GNURadio,"	Welcome	to	Airprobe		,	[Online].	Available:	
http://gnuradio.org/redmine/projects/gnuradio/wiki	[Accessed	2	September	
2015]	

[11]		Kalibrate tool " KALIBRATE-RTL: CALIBRATE #SDR (SDR SHARP)
LINUX/WINDOWS TUTORIAL” , [Online]. Available: http://rtl-
sdr.sceners.org/?tag=kalibrate [Accessed 2015 February 19].

[12]		 "Wikipedia,"	Wireshark		[Online].	Available:	
https://en.wikipedia.org/wiki/Wireshark	[Accessed	2	September	2015].	

[13]		 " RTL-SDR.com,"	RTL-SDR TUTORIAL: ANALYZING GSM WITH
AIRPROBE/GR-GSM AND WIRESHARK,	[Online].	Available:	http://www.rtl-
sdr.com/rtl-sdr-tutorial-analyzing-gsm-with-airprobe-and-wireshark/	[Accessed	
20	February	2015].	

 90

[14]		 "Wikipedia,"	A5/1	[Online].	Available:	
https://en.wikipedia.org/wiki/A5/1[Accessed	2	September	2015].

[15]		 "Frosty Hacks," Passive GSM interception Part 1 [Online]. Available:
http://frostyhacks.blogspot.gr/2015/04/gsm-wtf-bbq.html.[Accessed 2
September 2015].

[16]		 “Airprobe,”	Airprobe	How-To	[Online].	Available:	https://srlabs.de/airprobe-how-
to		.	[Accessed	2	September	2015].	

[17]		 “Nuzlan,”	Practical		exercise	on	the	GSM	encryption	A5/1	[Online].	Available:	
https://lynxnuzlan.wordpress.com/2011/02/23/practical-exercise-on-the-gsm-
encryption-a51	.	[Accessed	2	September	2015].	

[18]		 “Ferran	Casanovas	“	,	Get	Kc	key	and	TMSI	number!	[Online].Available:	
https://ferrancasanovas.wordpress.com/2014/01/28/get-kc-key-and-tmsi-
number/	[Accessed	2	September	2015].	

[19]		 “The	big	Gsm	write-up	how	to	capture	,analyze	and	Crack	Gsm”		How	to	do	get	the	
Kc	from	a	SIM	card	[Online].Available:	http://domonkos.tomcsanyi.net/?p=369	
[Accessed	2	September	2015].	

[20]		 “GitHub,"	Sim	card	File	System	Access	#96	[Online],Avaible	:	
https://github.com/SecUpwN/Android-IMSI-Catcher-Detector/issues/96	
[Accessed	2	September	2015].	

[21]		 “The	big	Gsm	write-up	how	to	capture	,analyze	and	Crack	Gsm”		
https://ferrancasanovas.wordpress.com/cracking-and-sniffing-gsm-with-rtl-sdr-
concept/		[Accessed	2	September	2015].	

[22]		 “Ferran	Casanovas	“	,	Cracking	and	sniffing	GSM	with	a	RTL-SDR		
[Online].Available:	https://ferrancasanovas.wordpress.com/2014/01/28/get-kc-
key-and-tmsi-number/	[Accessed	2	September	2015].	

[23]		 "	Gr-Gsm	,"	The	GrGsm	Project		,	[Online].	Available:	
https://github.com/ptrkrysik/gr-gsm		[Accessed	2	September	2015]	

[24]		
"	RTL-TOOL-PROJECT,	"	banjaxbanjo/rtl_tool_kit	
,	[Online].	Available:	https://github.com/banjaxbanjo/rtl_tool_kit[Accessed	2	
September	2015]	

[25]		 "Insinuator,"	Pytacle	Alpha1	released		[Online].	Available:	
https://www.insinuator.net/2012/10/	[Accessed	2	September	2015].	

[26]		 "Insinuator,"	Pytacle	Alpha2			[Online].	Available:	
https://www.insinuator.net/2013/10/pytacle-alpha2/	[Accessed	2	September	

 91

2015].	

[27]		 "Pytacle,"	Going	My	Way	[Online].	Available:	

http://domonkos.tomcsanyi.net/?p=459	[Accessed	9	September	2015].	

