
1

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης

Σχολή τεχνολογικών εφαρμογών

Τμήμα Μηχανικών Πληροφορικής

Πτυχιακή Εργασία

Τίτλος: Εργαλείο για την αντιμετώπιση του προβλήματος

διακλάδωσης που συνδυάζεται σε χρονικές και χωρικές βάσεις

δεδομένων.

(A tool for addressing the ramification problem combined in

temporal and spatial databases.)

Φοιτητής: Λυκάκης Παύλος

Α.Μ: 3847

Επιβλέπων καθηγητής: Παπαδάκης Νίκος

ΗΡΑΚΛΕΙΟ

2017

2

A tool for addressing the ramification problem combined in

temporal and spatial databases.

Lykakis Pavlos

Department of Informatics Engineering,

Technological educational institute of Crete,

Greece, September 2017.

 Likakis@hotmail.com

Table of Contents
1. Introduction .. 5

1.1 Spatial database .. 5

1.2 Temporal database ... 5

2. The ramification problem in conventional database. ... 6

2.1 Basic terminology in situation calculus .. 7

2.2 The ramification problem combined in spatial databases and temporal databases. .. 8

3. Scenario ... 9

3.1 Solution: .. 9

3.2 Oracle – Database ... 10

3.3 Java .. 11

3.3.1 Main GUI .. 12

3.3.2 Insert Object .. 12

3.3.3 Connected Objects ... 13

3.3.4 Extend Period ... 13

3.3.5 Move Object ... 13

3.3.6 CheckDb .. 13

3.3.7 Open Map ... 13

4. Functions ... 14

4.1) Bounding Box Contains Point .. 14

4.2) Polygon Contains Point ... 15

4.3) Polygon Contains Polygon ... 16

4.4) Edges intersect ... 16

4.5) Polygon Intersect Polygon ... 18

4.6) Polygon Overlaps polygon ... 19

4.7) Move Polygon .. 20

3

4.8) Move only .. 20

4.9) Count steps to move.. 21

4.10) Resolve Over lap .. 23

4.11) Check DB .. 24

4.12) RemoveOverLap .. 26

4.13) getPoint .. 26

4.14) countPolygons ... 27

4.15) Class MyCanvas and Paint ... 28

5. Complexity and Evaluation results ... 29

5.1) Complexity ... 29

5.1.1) The complexity of countSteps: ... 29

5.1.2) The complexity of ResolveOverlap: ... 29

5.1.3) The complexity of CheckDb: ... 30

5.2) Evaluation results .. 30

5.2.1) Simple tests... 30

5.2.2) Complex tests ... 32

6. Conclusions ... 34

Table of images

Fig. 1 .. 6

Fig. 2 .. 8

Fig. 3 .. 9

Fig. 4 .. 11

Fig. 5 .. 12

Fig. 6 .. 12

Fig. 7 .. 13

Fig. 8 .. 13

Fig. 9 .. 13

Fig. 10 .. 18

Fig. 11 .. 24

Diagram 1 .. 30

Diagram 2 .. 30

Diagram 3 .. 31

file:///C:/Users/Scaner/Downloads/ΑναφοραΠτυχιακης1line%20(1).docx%23_Toc493494261
file:///C:/Users/Scaner/Downloads/ΑναφοραΠτυχιακης1line%20(1).docx%23_Toc493494262
file:///C:/Users/Scaner/Downloads/ΑναφοραΠτυχιακης1line%20(1).docx%23_Toc493494263
file:///C:/Users/Scaner/Downloads/ΑναφοραΠτυχιακης1line%20(1).docx%23_Toc493494264
file:///C:/Users/Scaner/Downloads/ΑναφοραΠτυχιακης1line%20(1).docx%23_Toc493494265
file:///C:/Users/Scaner/Downloads/ΑναφοραΠτυχιακης1line%20(1).docx%23_Toc493494267
file:///C:/Users/Scaner/Downloads/ΑναφοραΠτυχιακης1line%20(1).docx%23_Toc493494268
file:///C:/Users/Scaner/Downloads/ΑναφοραΠτυχιακης1line%20(1).docx%23_Toc493494269

4

List of tables

Table 1 .. 10

Table 2 .. 10

Table 3 .. 10

Table 4 .. 10

Table 5 .. 23

Table 6 .. 29

Table 7 .. 32

Table 8 .. 32

Table 9 .. 33

Table 10 .. 33

5

A tool for addressing the ramification problem combined in

temporal and spatial databases.

Abstract

In this paper, we study the ramification problem, both in the setting of geographic

databases and setting of chronicle databases. The ramification problems in spatial-temporal

databases are complex and multifaceted problems and no satisfactory solution has been

proposed as of yet. The ramification problem is concerned with the indirect consequences of

an action when integrity constraints exists. As integrity constraints we define criteria which

must be satisfied in every transmission at the database. Thus, any change in database have

both direct and indirect effects. If that is the case some indirect effects may generated in order

to keep intact the integrity constraints. Subsequently we present a tool used in a scenario

which uses integrity constraints in order to manage data and keep the database consistent. By

producing the appropriate Java and SQL commands we came up to a satisfactory solution.

1. Introduction

1.1 Spatial database
A Spatial database is used to store and query data that represents objects in a

geometric space. These objects can be most simple geometric objects such as points, lines and

polygons. Although there are spatial databases that handle more complex shapes such as 3D

objects, linear networks and topological overages. [32]

In order to be able to handle many types of geometrical shapes, the operators

introduce the concept of the bounding box. The bounding box encircle any kind of shape in

order to provide some comparable properties in these shapes. For example, if a polygon

overlaps with another polygon, in order to avoid unnecessary time and computing power to

check, we compare only the bounding box of each polygon. If there is not overlap, there is no

need to check between polygons.

1.2 Temporal database
 A temporal database is used to store data relating to time instances. Usually there are

three temporal aspects:

a) Valid time is a chronically period in which a fact I true.

b) Transaction time is a chronically period where a fact stored in the database and was known

for this period.

c) Bitemporal data the previous attributes can be combined and form the bitemporal data.[33]

In this paper we will examine the first one, valid time. We will use the valid time to check

integrity constraints in a database that uses time and space.

6

2. The ramification problem in conventional database.
The ramification problem is a hard and infamous and ever present problems in databases. In

order to explain the problem in a better way we will use an example. In a simple circuit we

will present a scenario which has two conditions described as switches and one result

described as a lamp. The integrity constrains that will needed are the follow:

ups (s1) AND ups(s2) = log in (1)

⌐ ups (s1) = ⌐ log in (2)

⌐ ups (s2) = ⌐ log in (3)

 The scenario [34] is a simple scenario of log in an account. In order to login, needs

both Username (s1) and password (s2) to be correct, that’s described at the first (1) constraint.

In the second (2) constraint it’s described that if the username is wrong the login is not true.

In the third (3) constraint it is described if the password is wrong then login is not true. Action

toggle switch change the current state of a switch as follows:

 If up(s), toggle switch(s) ⌐up(s)

 If ⌐up(s), toggle switch(s) up(s)

Fig. 1

These propositions describe the direct effects may appear in a case of toggle of the switches

.In order to keep the database consists we need to satisfice these integrity constraints. Assume

that there is a case where S = {⌐up (s1), up (s2), ⌐login}, all integrity constraints are kept

intact. Now in a case where toggle switch (S1) true (means username is correct), has a direct

effect. Assume then that is the case S1 = {up (s1), up (s2), ⌐login}, in the current case there is

an inconsistency. There is a violation of the first integrity constrains and in order to maintain

the circuit consistent we have two options:

 S2 = {up (s1), up (s2), login}

 S3 = {up (s1), ⌐up (s2), ⌐login}

 These two situations are consistent because there is no violation of any integrity

constraint. In the S2 case, we have toggle switch (s1) and the username is no longer wrong

and login is true. In the S3 case, we have toggle switch (s2) and the password is incorrect.

Both cases happen in order to keep the database consistent and not as a direct effects. The

reasonable conclusion is that login is true. We must determine which could be the indirect

effects of the action in order to infer this conclusion. We can see that because there are

7

integrity constraints the indirect effects exists. Briefly the main subject when we see the

ramification problem is the description of the indirect effects of an action. In the past have

been made many related research try to address the ramification problem based on the event

calculus and [1].

 2.1 Basic terminology in situation calculus
 In order to understand more easily the next sections we will represent some basic

terminology.

 Fluents: All predicates and functions when their true value changes from a state to other

state.

 Situation: A sequence of actions that bring in a possible evolution of the world.

 Action: A change to values of some fluents.

 Consistent: When there is no violation in any integrity constrain in a specific situation.

 An action may change a situation and bring in another situation as a result.

 Do: With the binary do (A, S) we declare the situation that will outcome from an action A in

the situation S.

 When some conditions are satisfied an action may proceed and we use for these

preconditions terms described before. The Poss (a binary predicate) reveals whether a

precondition holds. An action A can proceed in the situation S when Poss (A, S) is true.

 Betwixt the proposed solutions the simplest ones are using a minimal change

approach [2] [3]. Such solutions suggest that while an action happens in a situation S one

needs to find the consistent situation S’, then S’ has the fewer changes from the situation S.

As a sample consider the modeling of a simple circuit. Hypothesize a situation S = {⌐up (s1),

up (s2), ⌐login}. The action toggle switch(s1) changes the circuit to S’ = {up (s1), up (s2),

⌐login}, which situation is inconsistent. In the current case there are two situations which are

consistent: S1 = {up (s1), up (s2), login} and S2 = {up (s1), ⌐up (s2), ⌐login}. Its logical that

login is true, because toggle switch(S2) the second proposal is not. As a result (indirect effect)

of upping a switch, login is true, but it is not consistent downing one switch as an indirect

effect of upping another. Thus, we prefer the situation S1 over the S2. Also in this case both

solutions are equally close to the first S situation, so even if we approach the minimal change

we can’t choose one than the other. The previous problem can be solved based on the

categorization of fluents [4] [5] [6]. The categorization of fluents divined into primary and

secondary. In the first category a fluent can change as a direct effect of an action. Contrary, at

the second category a fluent can only change as a indirect effect of an action. After an action

occurs, we take the situation with the fewer changes in primary fluents. In the previous

example we have as primary flutent the Fs = {login} an as secondary fluents the Fp = {up(s1),

up(s2)}. We chose the S1 situation because there are not any changes in its primary fluents.

However, this categorization of fluents can only solve the ramification problem if the fluents

can be categorized. Generally, it’s not adequate this kind of solution when the same fluents

are primary for some actions and secondary for other actions.

 Also there is a solution that is using causal relationships [7][8][9]. Every causal

relationship has two parts. The first part it’s called context and declares a relationship

between an action and the effect that action creates. It contains one fluent formula and either

if it’s true or false, we have this causal formative relationship. The second part called cause of

the effect part or latter part and is the result of an indirect effect of an action. The form of a

causal relationship is:

e causes r if Φ ,

8

The meaning of each symbol, e: action, r: result of the effect, Φ: fluent formula depending on

the context.

 Other solutions to the ramification problem

[4][5][6][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][3

0][31][32][33][34] rely on the idea that actions have effects only on the next situation. Also

they rely on the persistence of fluents.

2.2 The ramification problem combined in spatial databases and temporal

databases.
The ramification problem is concerned with the indirect consequences of an action when

integrity constraints exists. As integrity constraints we define criteria which must be satisfied

in every transmission at the database. Thus, any change in database have both direct and

indirect effects. If that is the case some indirect effects may generated in order to keep intact

the integrity constraints.

In this case we present the ramification problem in an example with geographical and

time integrity constraints Fig.1, Fig.2. We suppose that database stores two shapes, (a square

with solid outline and a shape with dashed outline) that they have two interdepended

properties. First a time period and second a not overlap property. The second property is true

while the current time(t) is between the times period start and end. This two properties are

actually the integrity constraints. At the corners of each shape are shown the coordinates (x,

y) of the points that is connected. In this two figures we can see two different cases.

Case 1: The square holds the second property (Not overlap) for a time period 1/7/2017

till 1/9/2017, which mean is true in the present 1/8/2017. At time t1, we store in database a

second shape (with dashed outline) which happens to overlap the first shape. In time t2, there

is a function checkDB which checks, if the first shape holds the not overlap property and

then, moves the second shape to the nearest place where there is no overlap, nine units to the

right.

Fig. 2

9

Case 2: In this case, the time period of not overlap property has expired. That means after the

time t1 where we store the second shape, at t2 the function checkDB doesn’t change

anything.

Fig. 3

In order to understand better this example we will introduce a scenario and a solution.

3. Scenario

A virtual space rental room rents space for a specific period of time. Each object in its field

has two properties (Integrity constraints):

1) Not overlapped by another object.

2) If necessary, the client may have close to his object and connected objects.

When the rental period expires, the items lose the 1st property, with the result that other

objects can overwhelm them, thus virtually they do not get any room.

 If a client then wants to renew the rental for a further period, its objects get the

NotOverLap property again, check if they overlap another object or get overlapped by it and

moves it to the nearest location.

* Of course, the second property still holds before, so if it is necessary moves all the

connected objects together.

3.1 Solution:
a) The objects will be imported from the center, then a check will take place a function

checkDB(). The ID of every object that is being inserted will be shown to user.

b) The property connected can be given either after the objects have been imported or at the time

they are imported.

c) There will be a function checkDB which will be activate after every action (move, Open

Map, insert Object, extend period, connect objects). It will check for violation of integrity

constraints (Overlap and

Expired periods) and it will keep the

database consistent.

Additional Comments:

 In order to put every object at the center we add +350 at x axis and +200 at y axis.

 The distance of every step is 4 (int by=4), it used in functions countSteps and

resolveOverlap.

10

3.2 Oracle – Database
The tables we will need:

 Polygons

A table that holds information about the objects. The data that is needed is:

ID (a unique ID of each object),

serial (a unique number for each point),

point_X (coordinate in X axis), point_Y (coordinate in Y axis).

 ValidPeriod

A table that holds information about the valid period of each object.

ID(a unique ID of each object),

timeStart (a timestamp that determines the start of valid time)

timeEnd (a timestamp that determines the end of valid time)

 Connected

 A table that holds information about the connected objects.

 ID (the id of the current object)

 ConnectPol (the id of the object that is connected to the current object)

E.g. If object No.1 is connected to object No.2 it’s defined as this: 1|2 and 2|1.

 NotOverLap
Table 4

A table that holds information about the objects that have the 1
st
 property is valid.

ID (the id of the objects that holds the 1
st
 property).

ID serial point_X point_Y Table 1

ID timeStart timeEnd Table 2

ID ConnectedPol Table 3

ID

11

3.3 Java
 The following diagram shows some basic steps that our program uses.

 Fig. 4

12

3.3.1 Main GUI

Fig. 5

 This is the central panel that a user

controls the database. From this panel the

user can :

 Insert new objects (Insert Object)

 He can connect them (Connect Objects)

 He can extent a valid period of an object.(

Extent Period)

 He can open a map of the objects (Open

Map)

 He can move objects. (Move Polu)

 He can manually check for overlaps and

expired periods and keep the database

consistent, even if this function run after

every action. (checkDB)

3.3.2 Insert Object

In this frame the user can insert

new objects. He imports each point of the

shape he wants with the button Add point.

 Then he adds the valid period of

this object and press Add Object. This

object now has been inserted in the

database.

 If the user wants can connect a

object to the last he inserted with the

button Add.

 Every object is added to the table

polygons, and its valid period at the table

ValidPeriod. Also every object is added to

the NotOverLap table so it holds the

notOverlap constraint.

Fig. 6

13

3.3.3 Connected Objects

 In this frame the user can connect

objects that are already in the database.

After he presses add, the IDs of the objects

are added to the connected table.

3.3.4 Extend Period

In this frame the user can extend a

valid period of an object. After he changes

the period, a check takes place that sees if

this object holds the property notOverLap

(means its id exists at NotOverLap table)

if not, it adds the id to the NotOverLap

table.

3.3.5 Move Object

In this frame an object can be

moved manually by the user.

3.3.6 CheckDb
 Is a function that is called after an

action or manually from the central panel

(see more at functions).

 It checks from the ValidsPeriod table if

there are objects with expired periods, if

that’s true it removes them from the

NotOverLap table.

 It checks if there is any overlap, if that’s

true it calls the function ResolveOverlap

(see more at functions).

3.3.7 Open Map

Size (1000,700) – Java provides a class

Canvas, and a function paint which we

used to draw the shapes. More for this

functions you can see below at functions.

Fig. 7

Fig. 8

Fig. 10

Fig 9

14

4. Functions
4.1) Bounding Box Contains

Point

This algorithm is used to check

whether there is a point of another

polygon in the bounding box of the

current polygon. In the case this is true,

we can proceed to check if there is an

overlap, if this case is not true, there is

no point to check if there is an overlap.

public int

BoundingBoxContainsPoint(int poly1,

int poly2) {

 conn = JavaConnectDb.ConnectDb();

 Statement stmt = null;

 Statement stmt2 = null;

 int minX = 0, maxX = 0, minY = 0,

maxY = 0, polX = 0, polY = 0;

 String query = "select * from

polygons where ID=" + poly1 + " ";

 String query2 = "select * from

polygons where ID=" + poly2 + " ";

 int j = 0;

 1.) try {

 stmt = conn.createStatement();

 ResultSet rs =

stmt.executeQuery(query);

 1.1) while (rs.next()) {

 if (j == 0) {

 maxX = minX = rs.getInt(3);

 maxY = minY = rs.getInt(4);

 j = 1;

 } else {

 polX = rs.getInt(3);

 polY = rs.getInt(4);

 if (minX > polX) {minX =

polX;}

 if (maxX < polX) {maxX =

polX; }

 if (minY > polY) {minY =

polY; }

 if (maxY < polY) { maxY =

polY;}

 }

 }

 } catch (Exception e)

{JOptionPane.showMessageDialog(null,

e); }

 2.) try {

 int pointX = 0, pointY = 0;

 stmt2 = conn.createStatement();

 ResultSet rs2 =

stmt.executeQuery(query2);

 while (rs2.next()) {

 pointX = rs2.getInt(3);

 pointY = rs2.getInt(4);

 2.1) if (pointX >= minX && pointX

<= maxX && pointY >= minY &&

pointY <= maxY) {

 return 1; } }

 stmt2.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 return 0;

 }

Parameters:

 Poly1: the id of the current

polygon

 Poly2: the id of the polygon that is

inspected if it has any of its point in the

current’s bounding box.

 Point: the serial number of the

poly2 points.

Return:

 1: if there is a point of poly2 in the

bounding box of the current poly1.

 0: if the 1 is false.

Steps:

1) In a try-catch we obtain from the database

the points of poly1 in order to find the

bounding box.

1.1) First we determinate the minimum-

maximum points of the poly1, in that way

we know the “corners” of x and y

coordinate of its bounding box.

2) In a try-catch we obtain from the database

the points of poly2 in order to find if there

is any of them, inside the bounding box of

poly1.

2.1) In this “if” statement we check if each of

the points of poly2 is inside of the

15

bounding box by compare it with the

minimum and maximum values of poly1.

If its true returns 1, else returns 0.

4.2) Polygon Contains Point
This function is used to check

whether there is a point of a polygon,

inside another polygon. It uses the

algorithm BoundingBoxContainsPoint

first to see if there is any point inside the

bounding box, if not there is no reason to

use this function.

Parameters:

 Poly1: The id of the current

polygon

 Poly2: The id of the second

polygon that is inspected if it has its point

in the current poly1.

 Point: The serial number of the

poly2 points.

Return:

 1: if poly1 contains the current

point.

 0: if the 1 is false.

public int PolygonContainsPoint(int

poly1, int poly2, int point) {

 1.) if

(BoundingBoxContainsPoint(poly1,

poly2) == 0) {

 return 0; }

 conn = JavaConnectDb.ConnectDb();

 Statement stmt = null;

 Statement stmt2 = null;

 Statement stmt3 = null;

 String query = "select point_x,point_y

from polygons where ID=" + poly1 + " ";

 String query2 = "select

point_x,point_y from polygons where

ID=" + poly2 + " AND serial=" + point + "

";

 int test1 = 0, test2 = 0, pX = 0, pY =

0, hits = 0, lastX = 0, lastY = 0, curX = 0,

curY = 0, leftX = 0;

 2.) try {

 stmt = conn.createStatement();

 ResultSet rs =

stmt.executeQuery(query);

 while (rs.next()) {

 lastX = rs.getInt(1);

 lastY = rs.getInt(2);

 }

 stmt.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

}

3.) try {

 stmt2 = conn.createStatement();

 ResultSet rs2 =

stmt2.executeQuery(query2);

 while (rs2.next()) {

 pX = rs2.getInt(1);

 pY = rs2.getInt(2);

 }

 stmt2.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

}

 4.) try {

 stmt3 = conn.createStatement();

 ResultSet rs3 =

stmt3.executeQuery(query);

 while (rs3.next()) {

 curX = rs3.getInt(1);

 curY = rs3.getInt(2);

 if (curY == lastY) {

 lastX = curX;

 lastY = curY;

 }

 5.) if (curX < lastX) {

 if (pX >= lastX) {

 lastX = curX;

 lastY = curY;

 }

 leftX = curX;

 } else {

 if (pX >= curX) {

 lastX = curX;

 lastY = curY;

 }

 leftX = lastX;

 }

 if (curY < lastY) {

 if (pY < curY || pY >= lastY)

{

 lastX = curX;

 lastY = curY;

 }

16

 if (pX < leftX) {

 hits++;

 lastX = curX;

 lastY = curY;

 }

 test1 = pX - curX;

 test2 = pY - curY;

 } else {

 if (pY < lastY || pY >= curY)

{

 lastX = curX;

 lastY = curY;

 }

 if (pX < leftX) {

 hits++;

 lastX = curX;

 lastY = curY;

 }

 test1 = pX - lastX;

 test2 = pY - lastY;

 }

 if (((lastY - curY)) != 0) {

 if ((lastX - curX) != 0) {

 if (test1 < (test2 / (lastY -

curY) * (lastX - curX))) {

 hits++;

 }

 }

 }

 }

 stmt3.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 6.) if (hits != 0) {return 1;

 } else {return 0;

 }

 }

Steps:

1) Runs the BoundingBoxContainsPoint

function to see if there is any point in

bounding box, if not returns 0.

2) Gets the last point of poly1 from database.

3) Gets the given point of poly2 from

database.

4) Get each point of poly1

5) Checks each coordinate point of poly1 to

see if pol1, contains the given point, if

that’s true, hits increased by 1.

6) If hit!=0 returns 1, else returns 0.

4.3) Polygon Contains Polygon
This function uses the previous

function to determinate whether a given

polygon contains or it’s contained by

another polygon. To do that is enough to

check only the first point of each polygon.

Parameters:

 Poly1: the id of the polygon one.

 Poly2: the id of the polygon two.

Returns:

 1: if poly1 contains or is contained

by poly2

 0:if the 1 is false.

public int PolygonContainsPolygon(int

poly1, int poly2) {

 1.) if (PolygonContainsPoint(poly1,

poly2, 0) ==1) {

 return 1;

 }

 2.) if (PolygonContainsPoint(poly2,

poly1, 0) == 1) {

 return 1;

 }

 3.) return 0;

 }

Steps:

1) The function uses the previous function to

check if poly1 contains poly2, if that’s true

returns 1.

2) The function uses the previous function to

check if poly2 contains poly1, if that’s true

returns 1.

3) Otherwise returns 0.

4.4) Edges intersect
This function checks whether two

given edges are intersecting or not. The

edges are determinate by four points: first

edge = point_1, point_2, second

second edge = point_3, point_4.

Parameters:

 Poly1: the id of the first polygon.

 Poly2: the id of the second

polygon.

17

 Point1: the first point of poly1

edge’s.

 Point2: the second point of poly1

edge’s.

 Point3: the first point of poly2

edge’s .

 Point4: the second point of poly2

edge’s.

Returns:

 1: if the two given edges intersect

 0: if 1 is false.

public int edgesIntersect(int poly1, int

point1, int point2, int poly2, int point3,

int point4) {

 conn = JavaConnectDb.ConnectDb();

 int changed = 0;

 int x1 = 0, y1 = 0, x2 = 0, y2 = 0, x3

= 0, y3 = 0, x4 = 0, y4 = 0;

 int left1X = 0, left1Y = 0, right1X =

0, right1Y = 0;

 int left2X = 0, left2Y = 0, right2X =

0, right2Y = 0;

 int tmpY = 0, tmpX = 0;

 Statement stmt = null;

 Statement stmt2 = null;

 Statement stmt3 = null;

 Statement stmt4 = null;

 String query = "select

point_x,point_y from polygons where

ID=" + poly1 + " AND serial=" + point1 +

" ";

 String query2 = "select

point_x,point_y from polygons where

ID=" + poly1 + " AND serial=" + point2 +

" ";

 String query3 = "select

point_x,point_y from polygons where

ID=" + poly2 + " AND serial=" + point3

+ " ";

 String query4 = "select

point_x,point_y from polygons where

ID=" + poly2 + " AND serial=" + point4 +

" ";

1.) try {

 stmt = conn.createStatement();

 ResultSet rs =

stmt.executeQuery(query);

 while (rs.next()) {

 x1 = rs.getInt(1);

 y1 = rs.getInt(2);

 }

 stmt.close();

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 try {

 stmt2 = conn.createStatement();

 ResultSet rs2 =

stmt2.executeQuery(query2);

 while (rs2.next()) {

 x2 = rs2.getInt(1);

 y2 = rs2.getInt(2);

 }

 stmt2.close();

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 try {

 stmt3 = conn.createStatement();

 ResultSet rs3 =

stmt3.executeQuery(query3);

 while (rs3.next()) {

 x3 = rs3.getInt(1);

 y3 = rs3.getInt(2);

 }

 stmt3.close();

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 try {

 stmt4 = conn.createStatement();

 ResultSet rs4 =

stmt4.executeQuery(query4);

 while (rs4.next()) {

 x4 = rs4.getInt(1);

 y4 = rs4.getInt(2);

 }

 stmt4.close();

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

2.) if (x1 <= x2) {

 left1X = x1;

 left1Y = y1;

 right1X = x2;

 right1Y = y2;

 } else {

18

 left1X = x2;

 left1Y = y2;

 right1X = x1;

 right1Y = y1;

 }

3.) if (x3 <= x4) {

 left2X = x3;

 left2Y = y3;

 right2X = x4;

 right2Y = y4;

 } else {

 left2X = x4;

 left2Y = y4;

 right2X = x3;

 right2Y = y3;

 }

4.) if (left1X > left2X) {

 tmpX = left1X;

 left1X = left2X;

 left2X = tmpX;

 tmpX = right1X;

 right1X = right2X;

 right2X = tmpX;

 tmpY = left1Y;

 left1Y = left2Y;

 left2Y = tmpY;

 tmpY = right1Y;

 right1Y = right2Y;

 right2Y = tmpY;

 }

 5.) if (left1X < left2X && right1X >

left2X) {

 if (left1Y <= left2Y && right1Y >

left2Y) {

 return 1;

 }

 if (left1Y >= left2Y && right1Y <

left2Y) {

 return 1;

 }

 }

 return 0;

 }

Steps:

1) In the first step the function gets the

coordinates of the points from the

database.

2) Finds the left point of the first edge

3) Finds the left point of the second edge

4) Checks which of the points is most left, if

it’s the second, then the variables swaps.

5) Checks if the two edges cross each other,

in that case returns 1, else returns 0.

In this image we can understand

better how the fifth step works. First we

check if the left2X is between the points

of first edge (black), then we check if the

left1Y <= left2Y && right1Y > left2Y.

Then checks if the left1Y >= left2Y &&

right1Y < left2Y, which in this case is

true.

4.5) Polygon Intersect Polygon
This function decide if two given

polygons have edges that intersects. It uses

the previews function for each edge of the

first polygon with each edge of the second

polygon.

Parameters:

 Poly1: The id of the first polygon

 Poly2: The id of the second

polygon

Return:

 1: if there is two edge of each

polygon that intersect.

 0: if 1 is false.

public int PolygonIntersectsPolygon(int

poly1, int poly2) {

 conn = JavaConnectDb.ConnectDb();

 Statement stmt = null;

 Statement stmt2 = null;

 Statement stmt3 = null;

 Statement stmt4 = null;

Fig. 11

19

 String query = "select serial from

polygons where ID=" + poly1 + " ";

 String query3 = "select serial from

polygons where ID=" + poly2 + " ";

 int point1 = 0, point2 = 0, point3 = 0,

point4 =0;

1.)

 try {

 stmt = conn.createStatement();

 ResultSet rs =

stmt.executeQuery(query);

 while (rs.next()) {

 point1 = rs.getInt(1);

 }

 stmt.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 try {

 stmt2 = conn.createStatement();

 ResultSet rs2 =

stmt2.executeQuery(query);

 while (rs2.next()) {

 point2 = rs2.getInt(1);

 try {

 stmt3 =

conn.createStatement();

 ResultSet rs3 =

stmt3.executeQuery(query3);

 while (rs3.next()) {

 point3 = rs3.getInt(1);

 }

 stmt3.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null,e);

 }

 try {

 stmt4 =

conn.createStatement();

 ResultSet rs4 =

stmt4.executeQuery(query3);

 while (rs4.next()) {

 point4 = rs4.getInt(1);

 2.) if (edgesIntersect(poly1,

point1, point2, poly2, point3, point4) ==

1) {

 return 1;

 }

 3.) point3 = point4;

 }

 stmt4.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null,e);

 }

 4.) point1 = point2;

 }

 stmt2.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }
 5.) return 0;

 }

Steps:

1) In the first step we take from the database

each point.

2) In the second step, while we take the last

point we use the function “edges

intersect”, to see if any of given edges

(from points) are intersecting.

3) Then we change points to the next edge

4) Again change points to check the next

edge

5) End of function, if there wasn’t any

intersect returns 0.

4.6) Polygon Overlaps polygon
This function uses the previews function

and the function: “polygon Contains

polygon” to check two given polygons if

there is an overlap.

Parameters:

 Poly1: The id of the first polygon.

 Poly2: The id of the second

polygon.

Returns:

 1: if the given polygons overlap.

 0: if 1 is false.

public int PolygonsOverlapsPolygon(int

poly1, int poly2) {

1.) if (PolygonIntersectsPolygon(poly1,

poly2)==1) {

 return 1;

20

 }

2.) if (PolygonContainsPolygon(poly1,

poly2) == 1) {

 return 1;

 }

3.) return 0;

 }

Steps:

1) In the first step it uses the function

“polygon intersect polygon” to check if

any edges are intersect. If that’s true

returns 1.

2) In the second it uses the function “polygon

contains polygon” to check if the second

polygon contains the first. If that’s true

returns 1.

3) If neither 1 or 2 are true, the function

returns 0.

4.7) Move Polygon
This function moves a polygon. It takes

the id, the distance of X coordinate and Y

coordinate and move each point of the

current polygon to this direction. It also,

moves a connected polygon to the current

polygon, to the same direction. It is also

use the Function: “Move only”.

Parameters:

 Id: The id of the given polygon.

 moveX: The distance in the X axis

 moveY: The diastance in the Y

axis

public void MovePolygon(int id, int

moveX, int moveY) {

 conn = JavaConnectDb.ConnectDb();

 Statement stmt = null;

 String query = "select connectpol

from connected where ID=" + id + " ";

 int curPol = 0;

 MoveOnly(id, moveX, moveY);

 try {

 stmt = conn.createStatement();

 ResultSet rs =

stmt.executeQuery(query);

 1.) while (rs.next()) {

 curPol = rs.getInt(1);

 2.) MoveOnly(curPol, moveX,

moveY);

 }

 stmt.close();

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 }

Steps:

1) In the first step moves the current polygon

to the given direction.

2) In the second step it takes from the table

connected each polygon that’s is

connected to the given.
3) For each of connected polygon it uses the

“move only” to move it to the same

direction.

4.8) Move only
It’s a simple assistant the previews

function that updates the given polygon’s

points in the database.

Parameters:

 Id: The id of the given polygon.

 moveX: The distance in the X

axis

 moveY: The diastance in the Y

axis

public void MoveOnly(int id, int moveX,

int moveY) {

 conn = JavaConnectDb.ConnectDb();

 try {

 1.) String sql = "update polygons set

POINT_X

=POINT_X+?,POINT_Y=POINT_Y+?

where id=?";

 pst = (OraclePreparedStatement)

conn.prepareStatement(sql);

 pst.setInt(1, moveX);

 pst.setInt(2, moveY);

 pst.setInt(3, id);

 pst.executeUpdate();

 pst.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 }

Steps:

1) In the first and the only step, the function

uses an sql statement that updates each

point X and Y. It takes the previews values

and adds the given moveX and moveY.

21

4.9) Count steps to move
This function is used to count the

distance (in Steps, each step=4) that’s is

needed to move a polygon to avoid

overlap with another polygon. It uses the

id of the current polygon and the direction

and moves the polygon until there is no

overlap. It may be the most important

function in this project.

Parameters:

 Id: The id of the given polygon.

 moveX: the direction in X axis (-

1,0,1)

 moveY: The direction in Y axis(-

1,0,1)

public int countStepsToMove(int id, int

moveX, int moveY) {

 int steps = 0, curPol = 0;

 int size = 0, changed = 0;

 int by = 4;

 boolean sec = false;

 conn = JavaConnectDb.ConnectDb();

 Statement stmt = null;

 Statement stmt2 = null;

 String query = "select id from

notOverlap";

 String query2 = "select connectpol

from connected where ID=" + id + "";

 ArrayList<Integer> ConnectedPols =

new ArrayList();

 try {

 stmt2 = conn.createStatement();

 ResultSet rs2 =

stmt2.executeQuery(query2);

 while (rs2.next()) {

 1)

ConnectedPols.add(rs2.getInt(1));

 }

 stmt2.close();

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 steps++;

 MovePolygon(id, moveX * steps,

moveY * steps);
 try {

 stmt = conn.createStatement();

 ResultSet rs =

stmt.executeQuery(query);

2)while (rs.next()) {

 curPol = rs.getInt(1);

2.1) if (id != curPol) {

2.2) if (ConnectedPols.size() != 0) {

 for (int i = 0;

i<ConnectedPols.size(); i++) {

 if (ConnectedPols.get(i)

!= curPol) {

2.3) while ((PolygonsOverlapsPolygon(id,

curPol) != 0) ||

(PolygonsOverlapsPolygon(ConnectedPol

s.get(i), curPol) != 0)) {

 if (moveX == 0) {

 if (moveY < 0) {

 MovePolygon(id, 0, -by);}

 if (moveY > 0) {

MovePolygon(id, 0, by);}

 }

 if (moveY == 0) {

 if (moveX < 0) {

 MovePolygon(id, -by, 0);

 }

 if (moveX > 0) {

 MovePolygon(id, by, 0); }

 }

if (moveY != 0 && moveX != 0) {

 if (moveX < 0 && moveY > 0) {

 MovePolygon(id, -by, by);

 }

 if (moveX < 0 && moveY < 0)

{

 MovePolygon(id, -by, -by);

 }

 if (moveX > 0 && moveY < 0) {

 MovePolygon(id, by, -by);

 }

 if (moveX > 0 && moveY > 0) {

 MovePolygon(id, by, by);

 }

 }

 steps++;

 }

 }

 }

 } else {

2.4) while ((PolygonsOverlapsPolygon(id,

curPol) != 0)) {

 if (moveX == 0) {

22

 if (moveY < 0) {

 MovePolygon(id, 0, -by);

 }

 if (moveY > 0) {

 MovePolygon(id, 0, by);

 }

 }

 if (moveY == 0) {

 if (moveX < 0) {

 MovePolygon(id, -by, 0);

 }

 if (moveX > 0) {

 MovePolygon(id, by, 0);

 }

 }

 if (moveY != 0 && moveX != 0) {

 if (moveX < 0 && moveY > 0) {

 MovePolygon(id, -by, by);

 }

 if (moveX < 0 && moveY < 0)

{

 MovePolygon(id, -by, -by);

 }

 if (moveX > 0 && moveY < 0) {

 MovePolygon(id, by, -by);

 }

 if (moveX > 0 && moveY > 0) {

 MovePolygon(id, by, by);

 }

 }

 steps++;

 }

 }

 }

 }

3) if (moveX == 0 && moveY == -1) {

 MovePolygon(id, 0, -3);

 }

 if (moveX == 1 && moveY == -

1){

 MovePolygon(id, 3, -3);

 }

 if (moveX == 1 && moveY == 0) {

 MovePolygon(id, 3, 0);

 }

 if (moveX == 1 && moveY == 1) {

 MovePolygon(id, 3, 3);

 }

 if (moveX == 0 && moveY == 1)

{

 MovePolygon(id, 0, 3);

 }

 if (moveX == -1 && moveY == 1)

{

 MovePolygon(id, -3, 3);

 }

 if (moveX == -1 && moveY == 0)

{

 MovePolygon(id, -3, 0);

 }

 if (moveX == -1 && moveY == -

1) {

 MovePolygon(id, -3, -3);

 }

 stmt.close();

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

4) for (int i = 0; i < steps; i++) {

 if (moveX == 0) {

 if (moveY < 0) {

 MovePolygon(id, 0, by);

 }

 if (moveY > 0) {

 MovePolygon(id, 0, -by);

 }

 }

 if (moveY == 0) {

 if (moveX < 0) {

 MovePolygon(id, by, 0);

 }

 if (moveX > 0) {

 MovePolygon(id, -by, 0);

 }

 }

 if (moveY != 0 && moveX != 0) {

 if (moveX < 0 && moveY > 0)

{

 MovePolygon(id, by, -by);

 }

 if (moveX < 0 && moveY < 0)

{

 MovePolygon(id, by, by);

 }

 if (moveX > 0 && moveY < 0)

{

 MovePolygon(id, -by, by);

 }

 if (moveX > 0 && moveY > 0)

{

 MovePolygon(id, -by, -by);

23

 }

 }

 }

 return steps;

 }

Steps:

1) First we make an array list

(ConnectedPols) with the IDs of the

polygons that are connected to the current

polygon. While we move it and check for

over lap, we also check the connected

polygon.

2) Then we check each polygon if over laps

with the current and it’s connected

polygons.

2.1 Pass if current polygon id = id (from

table polygons).

2.2 If there are not connected polygons

(ConnectedPol=0) then function only

checks the current polygon for overlap.

2.3 If there are connected polygons, we

check each of them for over lap with any

other polygon.

2.4 Function only checks the current

polygon for overlap.

3) Because each time polygon moves by 4,

when it needs to move back, there is a gap

of 3 distance, so we need to cover it up

that, or the “count to steps” will be not

accurate. This problem is explained below

with an example of a point.

Direction X Y

X=0 Y= 0 200 111

X=0 Y=-1 200 114

X=1 Y=-1 197 117

X=1 Y=0 194 117

X=1 Y=1 191 114

X=0 Y=1 191 111

X=-1 Y=1 194 108

X=-1 Y=0 197 108

X=-1 Y=-1 200 111
Table 5

4) After the correction the function moves

back the polygon the returns the steps.

4.10) Resolve Over lap
This function uses the “count steps to

move” function and find’s the smallest

distance to move an polygon so that

doesn’t over laps another polygon.

Parameters:

 Id: The id of the polygon that over

laps another polygon

public void ResolveOverLap(int id)

throws InterruptedException {

 int steps = 0, minSteps, bestX, bestY;

 int by = 4;

 1) minSteps = countStepsToMove(id,

0, -1);

 bestX = 0;

 bestY = -1;

 System.out.println("0 -1 : " +

minSteps);

 steps = countStepsToMove(id, 1, -1);

 2) if (steps < minSteps) {

 minSteps = steps;

 bestX = 1;

 bestY = -1;

 }

 steps = countStepsToMove(id, 1, 0);

 if (steps < minSteps) {

 minSteps = steps;

 bestX = 1;

 bestY = 0;

 }

 steps = countStepsToMove(id, 1, 1);

 if (steps < minSteps) {

 minSteps = steps;

 bestX = 1;

 bestY = 1;

 }

 steps = countStepsToMove(id, 0, 1);

 if (steps < minSteps) {

 minSteps = steps;

 bestX = 0;

 bestY = 1;

 }

 steps = countStepsToMove(id, -1, 1);

 if (steps < minSteps) {

 minSteps = steps;

 bestX = -1;

 bestY = 1;

 }

24

 steps = countStepsToMove(id, -1, 0);

 if (steps < minSteps) {

 minSteps = steps;

 bestX = -1;

 bestY = 0;

 }

 steps = countStepsToMove(id, -1, -1);

 if (steps < minSteps) {

 minSteps = steps;

 bestX = -1;

 bestY = -1;

 }

 3) for (int i = 0; i < minSteps ; i++) {

 if (bestX == 0) {

 if (bestY < 0) {

 MovePolygon(id, 0, -by);

 }

 if (bestY > 0) {

 MovePolygon(id, 0, by);

 }

 }

 if (bestY == 0) {

 if (bestX < 0) {

 MovePolygon(id, -by, 0);

 }

 if (bestX > 0) {

 MovePolygon(id, by, 0);

 }

 }

 if (bestY != 0 && bestX != 0) {

 if (bestX < 0 && bestY > 0) {

 MovePolygon(id, -by, by);

 }

 if (bestX < 0 && bestY < 0) {

 MovePolygon(id, -by, -by);

 }

 if (bestX > 0 && bestY < 0) {

 MovePolygon(id, by, -by);

 }

 if (bestX > 0 && bestY > 0) {

 MovePolygon(id, by, by);

 }

 }

 }
 }

Steps:

1) At the first step the function defines as the

shortest path the direction x=0, y=-1 and a

distance that takes from “count steps to

move”.

2) After that, the function try all the other

directons (1,-1)(1,0)(1,1)(0,1)(-1,1)(-1,0)(-

1,-1) to find the shortest distance that is

needed to resolve the overlap, with the

help of “count steps to move” function.

3) At the and, it moves the polygon in the

shortest path. Step by step, the polygon

moves by 4(int by = 4) each time for

“minSteps” times.

4.11) Check DB

Fig. 12

This function is used after every action to

check every integrity constraint and keep

the database intact. In order to do that, first

check if the periods are valid, then check

for overlaps, if there is overlap, it uses the

previous function resolve overlap. It

doesn’t takes parameters because it uses

25

all the data from the database. In the end

shows a window with the number of

resolves that took place.

public void checkDB() throws

InterruptedException {

1) ArrayList<Integer> NotOverLap = new

ArrayList();

 ArrayList<Integer> polugons = new

ArrayList();

 conn = JavaConnectDb.ConnectDb();

 Statement stmt = null;

 Statement stmt2 = null;

 Statement stmt3 = null;

2) //-------Checks Valids Periods ----------

String query3 = "select

timestart,timeend,id from validperiod";

 //Get id of all NotOverLap

 try {

 stmt = conn.createStatement();

 ResultSet rs =

stmt.executeQuery(query3);

 while (rs.next()) {

 String str_date =

rs.getString(1).substring(0, 10);

 String str_end =

rs.getString(2).substring(0, 10);

 //From string to date

 DateFormat formatter;

 formatter = new

SimpleDateFormat("yyyy-MM-dd");

 java.util.Date date =

formatter.parse(str_date);

 java.sql.Date sqlDateStart = new

java.sql.Date(date.getTime());

 //From string to date

 DateFormat formatter2;

 formatter2 = new

SimpleDateFormat("yyyy-MM-dd");

 java.util.Date date2 =

formatter2.parse(str_end);

 java.sql.Date sqlDateEnd = new

java.sql.Date(date2.getTime());

 //Create LoacalDay

 LocalDate todayDate =

LocalDate.now();

 LocalDate startDate =

date.toInstant().atZone(ZoneId.systemDef

ault()).toLocalDate();

 LocalDate endDate =

date2.toInstant().atZone(ZoneId.systemDe

fault()).toLocalDate();

 if (todayDate.isAfter(startDate)

&& todayDate.isBefore(endDate)) {

 } else {

 removeOverLap(rs.getInt(3));

 }

 }

 stmt.close();

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

3) //-------checks for overlap---

 String query = "select ID from

notoverlap";

 String query2 = "select ID from

polygons";

 //Get id of all NotOverLap

 try {

 stmt3 = conn.createStatement();

 ResultSet rs3 =

stmt3.executeQuery(query);

 while (rs3.next()) {

 NotOverLap.add(rs3.getInt(1));

 }

 stmt3.close();

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 //Get id of all polugons

 try {

 stmt2 = conn.createStatement();

 ResultSet rs2 =

stmt2.executeQuery(query2);

 while (rs2.next()) {

 polugons.add(rs2.getInt(1));

 }

 stmt2.close();

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 //Get 1 ID of each polu

26

 Set<Integer> hs = new HashSet<>();

 hs.addAll(polugons);

 polugons.clear();

 polugons.addAll(hs);

 //Get 1 ID of NotOverlap polu

 Set<Integer> hs2 = new HashSet<>();

 hs2.addAll(NotOverLap);

 NotOverLap.clear();

 NotOverLap.addAll(hs2);

 int resolves = 0;

 Draw2DObjects app2 = new

Draw2DObjects();

 //Ckecks

 for (int i = 0; i < NotOverLap.size();

i++) {

 for (int j = 0; j < polugons.size();

j++) {

 if (polugons.get(j) !=

NotOverLap.get(i) &&

app2.BoundingBoxContainsPoint(polugon

s.get(j), NotOverLap.get(i)) == 1) {

 if (polugons.get(j) !=

NotOverLap.get(i) &&

app2.PolygonsOverlapsPolygon(polugons.

get(j), NotOverLap.get(i)) == 1) {

app2.ResolveOverLap(polugons.get(j));

 resolves++;

 }

 }

 }

 }

JOptionPane.showMessageDialog(this,

"Finish with :" + resolves + " resolves",

"Message",

JOptionPane.INFORMATION_MESSAG

E);

 }
Steps:

1) First we define two arraylists, one with the

polygons that holds the not overlap

property, and one with all polygons. Also

we establish a connection with database.

2) Then we extract from the table Valid

Periods the periods that is true the not

overlap property. If we found a period that

has expire we remove with the function

RemovOverLap the current polygon from

the NotOverLap table. It’s important to

do this check first, and then check for

overlaps, because we need to keep the

Valid Periods table updated.

3) After that we can now check for overlaps.

We extract from the database, all the

polygons, and the polygons that holds the

not overlap property and check each of

them for overlap. At the begging there is a

check so the polygons we compare are not

the same, then we use the

BoundingBoxContainsPoint function, if it

is true, we also use the

PolygonsOverlapsPolygon if this is also

true, means there is overlap between the

current two polygons and needs the

resolveOverlap function.

4.12) RemoveOverLap
A simple function used by the previous

one to remove from the NotOverLap table,

polygons that have expired in the period.

 Parameters:

 Id : the id of the polygon

that has expired and needs to be removed.

void removeOverLap(int id) throws

SQLException {

 conn = JavaConnectDb.ConnectDb();

1) String update2 = "Delete from

NOTOVERLAP where ID= ?";

 try {

 pst = (OraclePreparedStatement)

conn.prepareStatement(update2);

 pst.setInt(1, id);

 pst.execute();

 pst.close();

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 }

Steps:

1) We use a query that deletes from the

notOverlap table the given ID

4.13) getPoint
A simple function that extracts from the

database the points of the objects. It gets

as a parameter a char which specify if it is

an X or a Y point. It returns a table with

27

the coordinates of all X or Y. We use this

function to draw the shapes.

 Parameters:

 Id: The id of the current polygon.

 Point: A char that defines if it’s a

X or Y point

public int[] getPoint(int id, char point) {

 conn = JavaConnectDb.ConnectDb();

 int[] x = null;

 Statement stmt = null;

 Statement stmt2 = null;

 String query = "select point_" + point

+ " from polygons where ID=" + id + " ";

 int i = 0;

 int count = 0;

 try {

 stmt2 = conn.createStatement();

 ResultSet rs2 =

stmt2.executeQuery(query);

 1) while (rs2.next()) {

 count++;

 }

 stmt2.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 x = new int[count];

 for (int j = 0; j < count; j++) {

 String query2 = "select point_" +

point + " from polygons where ID=" + id +

" AND serial =" + j + " ";

 try {

 stmt = conn.createStatement();

 ResultSet rs =

stmt.executeQuery(query2);

 while (rs.next()) {

 2) x[i] = rs.getInt(1);

 i++;

 }

 stmt.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 }

 3) return x;

 }

Steps:

1) In the first step we count the points of the

current polygon.

2) In the second step we add each X or Y

coordinate in a table

3) In the last step we return the table.

4.14) countPolygons
A simple function that finds all the

objects that exist in the database. It uses a

simple find max algorithm because the

id’s of the objects are auto increment.

public int countPolygons() {

 conn = JavaConnectDb.ConnectDb();

 Statement stmt = null;

 int curr = 0;

 int max = 0;

 String query = "select ID from

polygons";

 try {

 stmt = conn.createStatement();

 ResultSet rs =

stmt.executeQuery(query);

 while (rs.next()) {

 curr = rs.getInt(1);

 1) if (curr > max) {

 max = curr;

 }

 }

 stmt.close();

 Thread.sleep(1);

 } catch (Exception e) {

JOptionPane.showMessageDialog(null, e);

 }

 return max;

 }

Steps:

1) We check each id from the table polygons

and we find the biggest one. That’s the

number of the polygons.

28

4.15) Class MyCanvas and Paint
In order to draw the polygons, we

used a function that is provide from java

for 2D graphics. This function takes a

shape (polygon) and connects each point

this shape have.

First we use an array list to add all

the polygons:

for (int i = 1; i <= countPolygons(); i++) {

 k.add(new Polygon(getPoint(i, 'X'),

getPoint(i, 'Y'), getPoint(i, 'Y').length));

 }

As we see the class shape provides a

constructor for the shape polygon. It gets

as parameters: a table with all X

coordinates, a table with all Y coordinates

and the number of the coordinates.

Then we use the function paint from

the class MyCanvas that extends Canvas.

class MyCanvas extends Canvas {

public void paint(Graphics graphics) {

Graphics2D g = (Graphics2D) graphics;

 for (int i = 0; i < k.size(); ++i) {

g.draw(k.get(i));

 }

 }

 }

As we can see it takes each shape from

the k arraylist and draws it.

29

5. Complexity and Evaluation results

5.1) Complexity
Functions Complexity

BoundingBoxContains O(n)

polygonContainsPoint O(n)

polygonContainsPolygon O(n)

edgesIntersect O(n)

polygonIntersectsPolygon 2n
2
+n = O(n

2
)

polygonOverlapsPolygon 2n
2
+n+n = O(n

2
)

MovePolygon O(n)

moveOnly O(1)

countStepsToMove O(n
4
)

resolveOverlap O(n
4
)

checkDb O(n
6
)

Table 6

 Above we chose to describe the complexity of most important functions

5.1.1) The complexity of countSteps:
16 while()

24 Move polygon(n)

28 while(){

32 for(){

34 while(PolygonsOverlapsPolygon(2n
2
+n)+ PolygonsOverlapsPolygon(2n

2
+n)){

 Move polygon(n)

 }

 }

67 while(PolygonsOverlapsPolygon){

 70 Move polygon(n)

 }

131 for()

More specific, at row 16 and 24 we have n*n=n
2
= O(n

2
)

At row 28-70 we have n*(n*(2n
2
+n)+(2n

2
+n)) = 2n

4
+n

3
+2n

3
+n

2
= n

4
+ n

3
 = O(n

4
)

At row 131 we have O(n). So the complexity of countsteps is O(n
4
).

5.1.2) The complexity of ResolveOverlap:
7 * CountSteps(n

4
)

 50 for(){

 movePolygon

 The function countSteps() is called seven times, so we have 7* n
4
+n

2
 = O(n

4
).

30

 5.1.3) The complexity of CheckDb:
14 while()

51 while()

63 while()

86 for(){

87 for(){

88 BoundingBoxContainsPoint (n)

89 PolygonsOverlapsPolygon (2n
2
+n)

90 ResolveOverLap (n
4
)

More specific, we have n+n+n*(n*(n+2n
2
+n +n

4
)) = 4*n+n*(2n

2
+2n

3
+n

5
)

= 4*n+ 2n
3
+2n

4
+ n

6
 = n

6
 = O(n

6
)

5.2) Evaluation results
 In order to have a general view of the tool which we presented we will present some

tests and results we found. These tests have been made in a PC with AMD Phenom II X4 965

(3.4 GHz) CPU and 4 GB DD3 RAM. These test examines the different effects of each

parameter and even the different effects when combined parameters are changed. Parameters

as number of points, range between points, connected objects etc.

5.2.1) Simple tests
Indicatively we run some simple tests where we increase each time resolves of overlaps,

range of polygons, connected polygons. More specific:

Test1

 We made a 50*50 square, and each time we add another one on top of that. At the

beginning there was one overlap, so one resolve was needed, the second one on the first. Each

time we add another one on top, so the second time was two objects on top of the first so two

resolves was needed.

Test2

 In the second test we will examine a paradigm there is one resolve for overlap each

0

2000

4000

6000

8000

10000

12000

1 3 5 10 20 30

Ex
ec

u
ti

o
n

 T
im

e(
in

 s
ec

o
n

d
s)

Resolves

Execution time for resolves of overlaps

Execution time for resolves of overlaps

Diagram 1

Diagram 2

0

5000

10000

15000

20000

25000

30000

35000

50 100 300 1000 3000 5000 7000 10000 20000

Ex
ec

u
ti

o
n

 T
im

e(
in

 s
ec

o
n

d
s)

each square side

Execution time for different range between points

Execution time for different range between points

31

time, but different range between the points. This paradigm also uses squares as test objects.

Test 3

 In the third test we will examine a paradigm where there is one resolve overlap,

squares 100*100, and each time we increase the connected objects to the object we move.

0

200

400

600

800

1000

1200

1400

1600

2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 T
im

e(
in

 s
ec

o
n

d
s)

Resolves

Execution time for different connected objects

Execution time for different connected objects

Diagram 3

32

5.2.2) Complex tests
 In order to make better conclusions, we run some test that are more complex, where

each time we increase two parameters, as : range between points and connected objects(1),

number of points and connected objects(2), range between points and number of

points(3). We also made one test with three parameters increased each time: with number of

points, range of points and connected objects (4).

 Test1

 Above we see a chart with three lines, each one describes:

Line Resolves Number of

Points

Range between

points

Connected

polygons

(1) 1 4 +50 each time +1 each time

(2) 1 +4 each time +50 each time 0

(3) 1 +4 each time 100 +1 each time

Table 7

Diagram 4

Line K1 K2 K3 K4 K5

(1) Range: 50

Points: 4

Connected: 2

Range: 100

Points: 4

Connected: 3

Range: 150

Points: 4

Connected: 4

Range: 200

Points: 4

Connected: 5

Range: 250

Points: 4

Connected: 6

(2) Range: 50

Points: 4

Connected: 0

Range: 100

Points: 8

Connected: 0

Range: 150

Points: 12

Connected: 0

Range: 200

Points: 16

Connected: 0

Range: 250

Points: 20

Connected: 0

(3) Range: 100

Points: 4

Connected: 2

Range: 100

Points: 8

Connected: 3

Range: 100

Points: 12

Connected: 4

Range: 100

Points: 16

Connected: 5

Range: 100

Points: 20

Connected: 6
Table 8

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

k1 k2 k3 k4 k5

Ex
ec

u
ti

o
n

 T
im

e(
in

 s
ec

o
n

d
s)

Complex test1

line (1) line (2) line (3)

33

 Test2

 As we see from the test1, the more complex the parameters we increased, the more

time the program need to do the resolve. So in this test2, we will increase all three parameters

to see the results. In order to see the difference, we also show the line (3).

Line Resolves Number of

Points

Range between

points

Connected

polygons

(4) 1 +4 each time +50 each time +1 each time

Table 9

Diagram 5

Line K1 K2 K3 K4 K5

(3) Range: 100

Points: 4

Connected: 2

Range: 100

Points: 8

Connected: 3

Range: 100

Points: 12

Connected: 4

Range: 100

Points: 16

Connected: 5

Range: 100

Points: 20

Connected: 6

(4) Range: 50

Points: 4

Connected: 2

Range: 100

Points: 8

Connected: 3

Range: 150

Points:12

Connected: 4

Range: 200

Points: 16

Connected: 5

Range: 250

Points: 20

Connected: 6
Table 10

0

5000

10000

15000

20000

25000

30000

k1 k2 k3 k4 k5

Complex test2

line (3) line (4)

34

6. Conclusions
 As main sources in this paper we used two papers [35] [36], we also used the main

idea of the algorithms that are provided at [35] and we adjusted them to our needs. In this

paper we tried to combine integrity constraints of a database that are refer to space and time.

As we seen from the results, the more integrity constraints we have to satisfy, the more

complex and time consuming the program gets.

 The ramification problems in spatial-temporal databases are complex and

multifaceted problems and no satisfactory solution has been proposed as of yet .First of all,

the ramification problems can only be addressed in a specific and logical row as we saw in the

paradigm. That means we can’t use parallel algorithms and the solutions can’t be fast. Even

so the solution we came up isn’t fully satisfactory, because in each case we should predict all

the changes that can or cannot happen, either in the future or in the past. Also we can face the

problem in each kind of database only separately.

 In this paper we studied the ramification problem in a spatial-temporal database.

More specifically we proposed a scenario and a solution with a tool, where in order to keep

consistent a database we placed integrity constraints. The key ideas of our approach are:

 To analyze the problem in relational spatial-temporal database.

 To create algorithms and functions in order to locate and delete inconsistencies.

 To use dynamic rules in order to restrict the direct effects of an action, and static rules to

restrict the indirect effects of actions.

 To develop a system which implement the solution in Java and SQL for relational databases.

35

Bibliography:

[1] J.McCarthy and P.J. hayes. Some philosophical problem and the standpoint of artificial

intelligence, 1969.

[2] M. Winslett, Reasoning about action using a possible models approach. Proceedings of

AAAAI-88, pp, 89-93, Saint Paul ,MN ,August 1988.

[3] M. Ginsberg and D. Smith. Reasoning about action I: A possible worlds approach.

Artificial Intelligence, 35:165-195, 1988.

[4] V. Lifshitz. Frames in the space of situations, Artificial Intelligence, 46:365-376,

Cambrige, MA, 1991.

[5] V. Lifshitz. Towards a metatheory of action. In J.F Allen, R. Fikes, and E. Sandewall,

editors, Proceedings of the International Conference on Principles of Knowledge

Representation and reasoning, pages 376-386, Cambridge, MA, 1991.

[6] V. Lifshitz. Towards a metatheory of action. Proceedings of KR’91, pp. 376-386,

Cambridge, MA, 1991.

[7] N. McCain and H. Turner. A causal theory of ramifications and qualifications.

Proceedings of IJCAI-95, pp.1978-1984, Montreal, Canada, August 1995.

[8] E. Marakakis, C. Kounali, K. Vassilakis, A Method for Removing Unused Argument from

Logic Programs, Proceeding of the 10
th
 IASTED International Conference on Artificial

Intelligence and Soft Computing, ASC 2006, pages 197-202, August 28-30, 2006, Palma de

Mallorca, Spain, ISBN 0-88986-4, ISSSN 1482-7913.

[9] Antonis Kakas and Rob Miller, A simple Declarative Language for Describing Narratives

with Actions, The Journal of Logic Programming, Vol 31(1-3) (Special Issue on Reasoning

abot Action and Change), pages 157-200, Elsevier, 1997.

[10]Marc Deneckerand Eugenia Ternovska. Inductive situation calculus, Artificial

Intelligence archive Volume 171, Issue 5-6, pages: 332-360, April 2007.

[11] Edmund Clarke, Jeannete Wing, Formal Mehtods: state of the Art and Future Directions,

ACM Computing Surveys, Vol. 28, No. 4, December 1996, pp.626-643.

[12] Dimitris Plexousakis, John Mylopoulos. Accommodating Integrity Constraints During

Database Design. Proceedings of EDBT 1996, pp.497-513, Avignon, France, 1996.

[13] C. Elkan. Reasoning about action in first order logic. Proceedings of the conference of

the Canadian Society of Computational Studies in Intelligence (CSCSI), pp. 221-227,

Vancouver, May1992.

[14] J. McCarthy and P.J. Hayes. Some philophical problem from the standpoint of artificial

intelligence. In B. Meltzer and D. Mitchie , editors, Machine Intelligence 5, pp.463-502.

American Elsevier, 1969.

[15] A. Fusaoka. Situation Calculus on a Dense Flow of Time, Proceedings of AAAI-96, pp.

663-638, 1996.

[16] A.C. Kakas, R.S. Miller and F. Toni, E-RES: Reasoning about actions, Events and

observations, in Proceedings of LPNMR2001, pp. 254-266, Springer Verlag, 2001.

36

[17] R.A. Kowalski. Database updates in the event calculus. Journal of Logic Programming,

1992.

[18] Nikos Papadakis, Dimitris Plexousakis. Action Theories in Temporal Databases.

Proceeding of the 8
th
 Panhellenic Conference of Informatics, pp.254-264, Cyprus, Nov. 2001.

 [19] Rob Miller and Murray Shanahan. The Event Calculus in Classical Logic-Alternative

Axiomatisations. Linkping Electronic Articles in Computer and Information Science, 5(16),

1999.

[20] Nikos Papadakis, Dimitris Plexousakis, “The Ramification and Qualification Problem in

Temporal Databases”, 2th PanHellenic Conference on Artificial Intelligent, p. 18-30 LNAI

2308 April 2002, Thessalonica, Greece.

[21] Nikos Papadakis, Dimitris Plexousakis. Action with Duration and Constraints: The

ramification problem in Temporal Databases. 14
th
 IEEE ICTAI, 2002, Washington D.C.

[22]J. Pinto. Temporal Reasoning in the Situation Calculus. Ph.D. thesis, Dept. of Computer

Science, Univ. of Toronto, Jan. 1994.

[23] Nikos Papadakis, Dimitris Plexousakis. Action with Duration and Constraints: The

ramification problem in Temporal Databases. International Journal of Artificial Intelligent

Tools(IJAIT) pp. 315-353, volume 12, Number 3, September 2004.

[24] R. Reiter. Knowledge in Action Logical Foundations for Specifying and Implementing

Dynamical Systems. MIT Press, Cambridge 2001.

[25] R. Reiter. Natural Actions, Concurrency and Continuous Time in the Situation Calculus,

KR 96, pages 2-13, 1996.

[26] M. Thielscher. Ramification and causality. Artifical Intelligence, 89(1-2), pp: 317-364,

1997.

[27] M. Thielscher. Reasoning about actions: Steady versus stabilizing state constraints.

Artifical Intelligence, 104:339-355, 1988.

[28] Chen, J. and P. Gong, practical GIS: Building and Maintaining a Successful GIS, Science

Press, Beijing, p.186, 1998.

[29] J. Pinto and R. Reiter. Temporal Reasoning in Logic Programming: A case for the

Situation Calculus, Proceeding of the 10
th
 Int. Conf. on Logic Programming, Budapest,

Hungary, June 21-24, 1993.

[30] Peter Lindsay, A Survey of Mechanical Support for Formal Reasoning, Software

Engineering Journal, Vol. 3, No. 1, January 1988, pp.3-27.

[31] Koubarakis M. Skiadopoulos S., “Querying temporal and spatial constraint networks in

PTIME”, Department of Electronic and Computer Engineering, Technical University of

Crete, Artificial Intelligence Volume 123, Issues 1-2, October 2000, Pages 223-263.

[32]Spatial database Available: https://en.wikipedia.org/wiki/Spatial_database

[33]Temporal database Available: https://en.wikipedia.org/wiki/Temporal_database

[34]Paul Kefalas, “Spatio-temporal Reasoning in XML Databases Including integrity

constraints”, Aristotel University of Thessaloniki computer science department,

,Greece,January 2011, Pages 11-13.

https://en.wikipedia.org/wiki/Spatial_database
https://en.wikipedia.org/wiki/Temporal_database

37

[35]Nikos Papadakis, Yiannis Christodoulou, “A tool for addressing the ramification problem

in spatial databases: A solution implemented in SQL”, Department of sciences, Technological

Educational Institute of Crete, Greece, 2009.

[36] Nikos Papadakis, Dimitris Plexousakis, Grigoris Antoniou, Myron papadakis, Katerina

Boutsika, “A tool for addressing the ramification problem in temporal databases”,

Technological Educational Institute of Crete, Greece, 2007.

