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Abstract 

With the completion of the human genome sequence, attention turned to identifying 

and annotating its functional DNA elements and the interactions among them through 

different phenotypes. Epigenetics is a field of biology that studies these interactions. 

On one hand, an important issue in deciphering the epigenetic code is whether two 

given histone modifications, transcription factors or chromatin modifiers are co-

enriched on the same locus [1]. To resolve these issues, ChIP-seq has been developed, 

where one protein is immunoprecipitated from a chromatin sample, and a second 

protein is subsequently immunoprecipitated from chromatin eluted from the first ChIP 

[1]. On the other hand, analysis of GRN can help in identifying important or core 

regulatory genes (TFs and miRNAs) that play significant role in controlling the 

specificity of gene expression during a biological process [2]. These two keys, can 

unravel the mystery behind diseases and their treatment, and can be a powerful tool 

when combined in software tools in the hands of biologists. The objective of the thesis 

is to explore the effect of ChIP-seq data, coming from specific proteins under specific 

conditions, in functional sub-pathways for specific phenotype. A Shiny application 

combined with R programming language was developed for the download and analysis 

of ChIP-seq data from the ENCODE Experiment ChIP-seq Matrix and the extended 

version of the open source pathway analysis tool MinePath was used for the 

identification and visualization of functional sub-pathways.  

 

Περίληψη 

Με την ραγδαία εξέλιξη της τεχνολογίας και την ολοκλήρωση του προγράμματος 

χαρτογράφησης του Ανθρώπινου Γονιδιώματος δημιουργήθηκε η ανάγκη και οι 

επιστήμονες στράφηκαν στην αναγνώριση των σχέσεων που εκφράζονται ανάμεσα στα 

γενετικά στοιχεία του DNA του ανθρώπινου κυττάρου σε διαφορετικούς φαινότυπους. 

Η Επιγενετική είναι ο κλάδος της Βιολογίας που  μελετά αυτές τις συσχετίσεις στα 

στοιχεία του ανθρώπινου DNA . Η Επιγενετική στις μέρες μας χρησιμοποιεί νέας 

γενιάς τεχνολογίες αλληλούχισης, όπως η ChIP-seq τεχνολογία και τα πειράματα 

ανάλυσης γονιδιακής έκφρασης πραγματοποιούνται με μεγαλύτερο ρυθμό. Η 

ανάπτυξη εφαρμογών web based λογισμικού που χρησιμοποιεί την τεχνολογία ChIP-

seq για την ανάλυση και αποκρυπτογράφηση του ανθρώπινου γονιδιώματος είναι στο 
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επίκεντρο του ενδιαφέροντος των βιοπληροφορικών στην προσπάθεια τους να 

ανακαλύψουν νέες μεθόδους αντιμετώπισης των ασθενειών.  

Από την άλλη μεριά, η ανάλυση των Ρυθμιστικών Δικτύων Γονιδίων μπορεί να 

βοηθήσει στον εντοπισμό σημαντικών ρυθμιστικών γονιδίων (TFs/μεταγραφικοί 

παράγοντες και miRNAs) που παίζουν σημαντικό ρόλο στον έλεγχο της έκφρασης του 

γονιδίου κατά τη διάρκεια μιας βιολογικής διαδικασίας. Αυτά τα δύο κλειδιά, μπορούν 

να ξετυλίξουν το μυστήριο πίσω από τις ασθένειες και τη θεραπεία τους, και μπορεί να 

αποτελέσουν ισχυρό εργαλείο όταν συνδυαστούν με εργαλεία λογισμικού στα χέρια 

των βιολόγων. Ο στόχος της διατριβής είναι η διερεύνηση της επίδρασης των 

δεδομένων ChIP-seq , που προέρχονται από ειδικές πρωτεΐνες κάτω από συγκεκριμένες 

συνθήκες, πάνω σε λειτουργικά υπομονοπάτια για συγκεκριμένους φαινότυπους. Για 

τα πειράματα η βάση δεδομένων που θα χρησιμοποιηθεί είναι ο Experiment ChIP-seq 

Matrix από το ENCODE Project. Για την ανάκτηση και την ανάλυση των δεδομένων 

δημιουργήσαμε μια web-based εφαρμογή υλοποιημένη με Shiny και R που τραβάει 

αυτόματα τα δεδομένα από την βάση βιοδεδομένων του ENCODE. Τέλος το εργαλείο 

ανάλυσης MinePath χρησιμοποιήθηκε για την ταυτοποίηση και την απεικόνιση των 

λειτουργικών υπομονοπατιών αυτών.   
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 Introduction 

Why do some siblings look alike but have different eye color or blood types? How do 

people get old and suffer from different diseases? These are major questions that 

scientists more than half a century try to answer by studying human or other organisms 

through thorough analysis of their Deoxyribonucleic acid, more commonly known as 

DNA, which is a complex molecule that contains all of the information necessary to 

build and maintain an organism. All living organisms have DNA within their cells. In 

fact, nearly every cell in a multicellular organism possesses the full set of DNA required 

for that organism. However, DNA does more than specify the structure and function of 

living things, it also serves as the primary unit of heredity in organisms of all types. In 

other words, whenever organisms reproduce, a portion of their DNA is passed along to 

their offspring. 

Since the first illustration of the double helical model of DNA by Watson and Crick in 

the 1950s, there have been great development in genome research and biotechnology 

that have drastically influenced the disease diagnosis and treatment. Many scientists 

worked together and large collaborative biological projects such as Human Genome 

Project (HGP)1 and ENCODE Project2 that are still in progress, revealed crucial 

biological information of Human Genome. The Human Genome holds an extraordinary 

trove of information about human development, physiology, medicine and evolution 

[3]. A genome is an organism’s complete set of genetic instructions. Each genome 

contains all of the information needed to build that organism and allow it to grow and 

develop. 

A challenge facing researchers today is that of piecing together and analyzing the 

plethora of data currently being generated through these genomics. Many web tools, 

platforms and software have been developed in order to analyze biological interactions 

that takes place in the human cells. At the molecular level in living cells biological 

pathways represent complex biological interactions. Gene regulatory networks (GRNs) 

are one of the major categories for such biological pathways. 

GRNs are logic maps that state in detail the inputs into each cis-regulatory module, so 

that one can see how a given gene is fired off or on at a given time and place [4]. They 

                                                 

1 https://www.encodeproject.org/ 
2 https://www.genome.gov/12011238/an-overview-of-the-human-genome-project/ 
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also provide specifically testable sets of predictions of just what target sites are 

hardwired into the cis-regulatory DNA sequence. The specific linkages constituting 

these networks provide a causal structure function answer to the question of how any 

given aspect of development is ultimately controlled by heritable genomic sequence 

information. The architecture reveals features that can never be appreciated at any other 

level of analysis but that turn out to embody distinguishing and deeply significant 

properties of each control system [4]. Figure 1 shows such a GRN between ADRB2 

(Adrenoceptor Beta 2, a protein coding gen) and cancer-specific genes [5]. 

 

Figure 1: Gene Regulatory Network (GRN) between ADRB2 and cancer-specific 

genes [5] 

 

While the development of new technologies is revolutionizing genome-wide analysis 

and scientists’ abilities to have a better understanding of the biological meaning, 

inferring gene regulatory networks from such data is still a major challenge in systems 

biology [6]. Demand for analyzing very large datasets is increasing, especially with the 

introduction of ChIP-sequencing which is a recent method of Next Generation 

Sequencing (NGS) used to analyze protein interactions with DNA. ChIP-seq combines 

chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to 

identify the cistrome of DNA-associated proteins; i.e. the DNA binding sites of a 

transcription factor. The sites are usually represented in the form of peaks. Sites or 
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binding sites in biochemistry are regions on a protein or a piece of DNA or RNA to 

which molecules form a chemical bond. Large quantities of data generated from ChIP-

seq experiments require effective computational analysis for uncovering biological 

mechanisms. 

Chromatin immunoprecipitation combined with the next-generation DNA sequencing 

technologies (ChIP-seq) becomes a key approach for detecting genome-wide sets of 

genomic sites bound by proteins, such as Transcription Factors (TFs). Several methods 

and open-source tools have been developed to analyze ChIP-seq data.  

1.1 Scope and Objective 

In a biological process specific genes are switched on (activated) or off (repressed). 

Analysis of GRN can help in identifying important or core regulatory genes (TFs and 

miRNAs) that play significant role in controlling the specificity of gene expression 

during a biological process [7].These core regulatory genes are candidates for further 

experimental investigation and potential targets for therapeutic intervention [8] [9]. 

Analysis of GRNs also enables quantitative modeling of gene expression which can be 

used for rational design of molecular approaches to target specific biological processes 

[10] and infer new biology [11]. 

While the analysis of GRNs is well described in bacteria and yeast [2], similar analysis 

in higher organisms such as humans is challenging for a variety of reasons. Firstly, our 

knowledge of regulatory interactions between genes is incomplete, which is further 

complicated by the fact that the interactions may vary across different tissues [2]. 

Secondly, GRNs in higher organisms are highly complex as each regulatory molecule 

has dozens to thousands of targets and correspondingly a gene is usually targeted by 

multiple regulators. There is also cross-regulation and auto-regulation among genes. 

Such multiplicity of interconnections and loops makes the human GRN resemble a 

tangled hairball which is more challenging to analyze than a yeast gene network [12] 

[13]. Lastly, gene expression is regulated at multiple levels in higher organisms and 

thereby transcriptional and post-transcriptional regulations represent only a fraction of 

total regulatory apparatus [14].  

In addition, the advent of NGS has enabled researchers to study biological systems at a 

level never before possible [15]. ChIP-seq has displaced earlier methods to investigate 

Protein-DNA interactions almost entirely. Being able to analyze these interactions 
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genome-wide has increased our understanding of transcription factor biology, 

chromatin modification and transcription. ChIP-seq technology allows high-fidelity 

mapping of different regulators, such as transcription factors (TFs) or epigenetic 

modifications to genomic locations, thus providing a basis for profiling transcriptional 

or epigenetic regulatory relationships. Accurate binding features of these factors on the 

genomic sequences can also be used to identify regulatory modules and reconstruct 

gene regulatory networks (GRNs) [16]. 

So, combining NGS (ChIP-seq) and GRNs can help the biologists to discover gene 

pathways associated with the different expression of genes in different phenotypes and 

help them understand complex biological processes such as cell cycle, cell 

differentiation, cell apoptosis, diseases and other. As a result, through the analysis of a 

disease pathway analysis and by finding TFs that may disrupt pathways that play a key 

role in the specific disease they can discover treatments of those diseases. ChIP-seq can 

provide important insights towards gene regulatory process particularly in combination 

with transcriptomic profiles from expression microarrays or RNA-seq, since ChIP-seq 

can help identify genes directly regulated by the factor [17]. So, how can we combine 

ChIP-seq and GRNs for a powerful approach to further understanding the molecular 

bases of complex diseases? What information of great biological value can we gain by 

analyzing ChIP-seq data and visualizing their Gene Regulatory Networks along with 

equivalent expression data among different phenotypes?   

In this Master Thesis, we try to shed light to these questions by retrieving 

programmatically ChIP-seq peak files from a big genome project, The Encode Project, 

find the genes that are most likely to be expressed when a specific antibody target 

interacts with a specific human cell type, annotate the genes and visualize them in a 

GRN analysis web based tool MinePath [18]. We conducted several tests with specific 

TFs on human cells for specific phenotypes and reported the results. Our work can be 

of great assistance to many scientists in their analysis and research of the interactions 

of the genes in disease pathways or treatments. Information obtained using Next 

Generation Sequencing along with the integration of GRNs  allows researchers to 

identify changes in genes, associations with diseases and phenotypes, and identify 

potential drug targets.  
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1.2 Thesis Overview 

The thesis is organized in seven chapters, as follows:  

 Chapter 1: the current chapter, includes a brief introduction of the topic, 

highlights the scope and the main objectives of this dissertation. 

 Chapter 2: provides the theoretical background for understanding basic 

genetic terms about ChIP-seq technology, GRNs and the statistical terms 

p-value and FDR. 

 Chapter 3: presents an elaborate review of related work in an effort to 

identify, review and analyze the findings of all related studies published 

during the last six years. 

 Chapter 4: explains in detail the technical implementation. In this 

chapter, the application that was developed during this master thesis is 

described in detail along with the libraries and functions from the 

Bioconductor. Moreover, the ENCODE guidelines are presented along 

with the Data Library of the ENCODE Experiment ChIP-seq matrix. 

Lastly, the MinePath, a web-based GRN visualization tool is presented. 

 Chapter 5: presents the validation results for the analysis of specific 

ChIP-seq data and the Gene Regulatory Network that was inferred from 

them. 

 Chapter 6: includes the discussion over the results. 

 Chapter 7: is the last chapter of this thesis and includes the conclusion 

and the possible directions to follow in future work. 

2 Background 

Genomics in the last decade have tremendously developed and a new era has arisen in 

the decryption of the human genome .ChIP-chip was the star of chromatin analysis until 

ChIP-seq came along and stole the limelight. ChIP-seq uses the same chromatin IP 

(ImmunoPrecipitation) procedures as ChIP-chip with the difference that it couples it 

with quantitative next-generation sequencing technology to detect enrichment peaks. 

After the IP sample is generated, it is prepared for sequencing using any of the Next 

Generation Sequencing technologies. Using ChIP-seq technology we can identify 

DNA-interactions with specific proteins or other chromatin polymorphisms and specify 

the TFBSs (Transcription Factor Binding Sites) of them. Identification of transcription 
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regulatory elements in a genome is an actively evolving topic in modern molecular 

biology. The major class of these elements is represented by TFBSs. Modern high-

throughput techniques, such as ChIP-chip ChIP-Seq, allow genome-scale mapping of 

TF occupancy in a given cell type and state [19].  

In addition, Gene Regulatory Networks play crucial role to decipher the human gene 

expression. Drawing Gene Regulatory Networks that connect TFs to their predicted 

target genes can uncover gene modules that implement a particular function. Both 

ChIP-seq and Gene Regulatory Networks can fully reveal biological procedures of great 

significance in medicine, diseases and in general genetics. 

2.1 ChIP-seq 

ChIP-seq is a next generation sequencing technology that combines chromatin 

immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify 

the binding sites of DNA-associated proteins.  

ChIP 

ChIP is a powerful method to selectively enrich for DNA sequences bound by a 

particular protein in living cells. The ChIP process enriches specific crosslinked DNA-

protein complexes using an antibody against the protein of interest. 

Oligonucleotide adaptors are then added to the small stretches of DNA that were bound 

to the protein of interest to enable massively parallel sequencing. 

Sequencing 

After size selection, all the resulting ChIP-DNA fragments are sequenced 

simultaneously using a genome sequencer. A single sequencing run can scan for 

genome-wide associations with high resolution, meaning that features can be located 

precisely on the chromosomes.  

A ChIP-seq analysis is shown in Figure 2. 

https://en.wikipedia.org/wiki/Chromatin_immunoprecipitation
https://en.wikipedia.org/wiki/Chromatin_immunoprecipitation
https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/Binding_site
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Figure 2: Overview of ChIP-seq process3 

2.2 Gene Regulatory Networks 

Gene regulatory networks (GRNs) are logic maps that state in detail the inputs into each 

cis-regulatory module, so that one can see how a given gene is fired off at a given time 

and place [4]. In transcriptional regulation, proteins called transcription factors (TFs) 

regulate the transcription of their target genes to produce messenger RNA (mRNA), 

whereas in post-transcriptional regulation microRNAs (miRNAs) cause degradation 

and repression of target mRNAs. These interactions are represented in a GRN by adding 

edges linking TF or miRNA genes to their target mRNAs. Since these physical 

interactions are fixed, we can represent a GRN as a static network even though 

regulatory interactions occur dynamically in space and time [2].  

The interaction in a GRN could be of many types such as activation, inhibition, 

catalysis, binds to, co-cited [18]. An indicative example of the pathways in cell 

Apoptosis GRN from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database is shown in Figure 3. 

                                                 

3 As retrieved from http://www.news-medical.net/ in 30 of August 2016 

http://www.news-medical.net/
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Figure 3: Apoptosis GRN from KEGG 

2.3 P-Value 

In the analysis of genetic association studies, a parameter of statistical significance, a 

p-value, is used to determine the certainty of an association. A p-value provides the 

probability that a given result from a test is due to chance. Andrea S. Foulkes in his 

book “Applied Statistical Genetics with R: For Population-based Association Studies” 

describes the statistical significance (p-value) in genetic studies thoroughly [20].  

In statistics, if you want to draw conclusions about a null hypothesis H0 (reject or fail 

to reject) based on a p-value, you need to set a predetermined cutoff point where only 

those p-values less than or equal to the cutoff will result in rejecting H0. 

While 0.05 is a very popular cutoff value for rejecting H0, cutoff points and resulting 

decisions can vary, some people use stricter cutoffs, such as 0.01, requiring more 

evidence before rejecting H0, and others may have less strict cutoffs, such as 0.10, 

requiring less evidence. 

If H0 is rejected (that is, the p-value is less than or equal to the predetermined 

significance level), the researcher can say she’s found a statistically significant result. 

A result is statistically significant if it’s too unlikely to have occurred by chance 

assuming H0 is true. If you get a statistically significant result, you have enough 

evidence to reject the claim, H0, and conclude that something different or new is in 
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effect (that is, Ha - Alternative Hypothesis). The significance level can be thought of as 

the highest possible p-value that would reject H0 and declare the results statistically 

significant. Following are the general rules for making a decision about H0 based on a 

p-value: 

 If the p-value is less than or equal to your significance level, then it meets your 

requirements for having enough evidence against H0; you reject H0. 

 If the p-value is greater than your significance level, your data failed to show 

evidence beyond a reasonable doubt; you fail to reject H0. 

However, if you plan to make decisions about H0 by comparing the p-value to your 

significance level, you must decide on your significance level ahead of time.  

So, either you have enough evidence to say it’s false (in which case you reject H0) or 

you don’t have enough evidence to say it’s false (in which case you fail to reject H0). 

As a result of all the above a few guidelines we follow to make a decision (reject or fail 

to reject H0) based on a p-value when our significance level is 0.05 are: 

 If the p-value is less than 0.01 (very small), the results are considered highly 

statistically significant — reject H0. 

 If the p-value is between 0.05 and 0.01 (but not super-close to 0.05), the results are 

considered statistically significant — reject H0. 

 If the p-value is really close to 0.05 (like 0.051 or 0.049), the results should be 

considered marginally significant — the decision could go either way. 

 If the p-value is greater than (but not super-close to) 0.05, the results are considered 

non-significant — you fail to reject H0. 

For example a p-value=0.05 means that 1 in 20 or there is a 5% chance that a result is 

really no different from the null hypothesis. This is valid for one test, in case of 20.000 

tests there will be 1000 potential false positives.  

A false positive error, or in short false positive, commonly called a "false alarm", is a 

result that indicates a given condition has been fulfilled, when it actually has not been 

fulfilled, erroneously a positive effect has been assumed. In the case of “crying wolf” – 

the condition tested for was “is there a wolf near the herd?”. The actual result was that 

there had not been a wolf near the herd. The shepherd wrongly indicated there was one, 

by calling “Wolf, wolf!”. 
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2.4 FDR and Q-Value 

The FDR (False Discovery Rate) or q-value is similar to the well-known p-value, 

except it is a measure of significance in terms of the false discovery rate rather than the 

false positive rate [21]. A nice review of FDR in epigenetics can be found here4. 

False positives 

A positive is a significant result, i.e. the p-value is less than your cut off value, normally 

0.05. A false positive is when you get a significant difference where, in reality, none 

exists. As mentioned above the p-value is the chance that this data could occur given 

no difference actually exists. So, choosing a cut off of 0.05 means there is a 5% chance 

that we make the wrong decision. 

The multiple testing problem 

When we set a p-value threshold of, for example, 0.05, we are saying that there is a 5% 

chance that the result is a false positive. In other words, although we have found a 

statistically significant result, there is, in reality, no difference in the group means. 

While 5% is acceptable for one test, if we do lots of tests on the data, then this 5% can 

result in a large number of false positives. For example, if there are 2000 compounds 

in an experiment and we apply a t-test to each, then we would expect to get 100 (i.e. 

5%) false positives by chance alone. This is known as the multiple testing problem. 

Multiple testing and the False Discovery Rate 

While there are a number of approaches to overcoming the problems due to multiple 

testing, they all attempt to assign an adjusted p-value to each test or reduce the p-value 

threshold from 5% to a more reasonable value. Many traditional techniques such as the 

Bonferroni correction are too conservative in the sense that while they reduce the 

number of false positives, they also reduce the number of true discoveries [22]. The 

False Discovery Rate approach is a more recent development. This approach also 

determines adjusted p-values for each test. However, it controls the number of false 

discoveries in those tests that result in a discovery (i.e. a significant result). Because of 

this, it is less conservative that the Bonferroni approach and has greater ability 

(i.e. power) to find truly significant results. 

Another way to look at the difference is that a p-value of 0.05 implies that 5% of all 

tests will result in false positives. An FDR adjusted p-value (or q-value) of 0.05 implies 

                                                 

4 http://www.stat.cmu.edu/~genovese/talks/hannover1-04.pdf 
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that 5% of significant tests will result in false positives. The latter will result in fewer 

false positives. 

So, q-values are the name given to the adjusted p-values found using an optimized FDR 

approach. The FDR approach is optimized by using characteristics of the p-value 

distribution to produce a list of q-values5. 

In this master thesis, in the peak files that there were no q-values an FDR adjusted p-

value was estimated in the experiments that only p-value was given. We used p.adjust 

R function that takes as a parameter the adjustment method , which in our case is 

BH(Benjamini & Hochberg or its alias "fdr") [23]. All the binding sites were estimated 

using an FDR (or q-value) threshold <0.01. 

All the above can also be reviewed and confirmed in John D. Storey and Robert 

Tibshirani paper [22]. 

3 Literature Review  

Chromatin immunoprecipitation (ChIP) followed by genomic tiling microarray 

hybridization (ChIP-chip) or massively parallel sequencing (ChIP-seq) are two of the 

most widely used approaches for genome-wide identification and characterization of in 

vivo protein-DNA interactions [24].  These two methods are been used by biology 

scientists the last 15 years and each of them has its own advantages and disadvantages. 

On the other hand, GRNs can be used to visualize such interactions.  Gene regulation 

is a general name for a number of sequential processes, the most well-known and 

understood being transcription and translation, which control the level of a gene’s 

expression, and ultimately result with specific quantity of a target protein. A gene 

regulation system consists of genes, cis-elements, and regulators. The regulators are 

most often proteins, called transcription factors, but small molecules, like RNAs and 

metabolites, sometimes also participate in the overall regulation. The interactions and 

binding of regulators to cis-elements in the cis-region of genes controls the level of 

gene expression during transcription. The cis-regions serve to aggregate the input 

signals, mediated by the regulators, and thereby effect a very specific gene expression 

signal. The genes, regulators, and the regulatory connections between them, together 

with an interpretation scheme form gene networks [25]. 

                                                 

5 As retrieved from http://www.nonlinear.com/support/progenesis/comet/faq/v2.0/pq-values.aspx in 

15th of July 2016 

http://www.nonlinear.com/support/progenesis/comet/faq/v2.0/pq-values.aspx
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In the literature, there are many software tools developed for the analysis of ChIP-seq 

data and the analysis of GRNs. There also tools that combine those two but not so 

efficiently from the view of a most coherent, holistic and simple analysis tool to identify 

DNA interactions. 

3.1 ChIP – Chip 

The first studies for ChIP – on- Chip were published in 1999 when a team of scientists 

tried to analyze the distribution of cohesion along budding yeast chromosome III [26]. 

The Chip-on-Chip technique was then applied successfully in the three papers that were 

published in 2000 and 2001 from a group of biology scientists [27] [28] [29]. Many 

more studies were published using this technique of ChIP – Chip to investigate 

interactions between proteins and DNA. Michael J. Buck and Jason D. Lieb, biology 

scientists, describe the ChIP-Chip experimental procedure in their paper in 2004 [30].  

Chip-on-chip analysis combines chromatin immunoprecipitation and DNA microarray 

analysis to identify protein-DNA interactions that occur in living cells. Protein-DNA 

interactions are captured in vivo by chemical crosslinking [31]. Τhere are 8 main steps 

in ChIP-chip analysis. In the first step the protein of interest is cross-linked with its 

DNA binding site. Then the cells are disintegrated using sonication and we get double-

stranded chunks of DNA fragments. In the next step, only the cross-linked DNA with 

the protein of interest is filtered out of the set of DNA fragments, using an antibody 

specific to the protein of interest. The antibodies may be attached to a solid surface or 

some other physical property that allows separation of cross-linked complexes and 

unbound fragments. This procedure is called immunoprecipitation (IP) of the protein. 

This can be done with specific antibody to the native protein. The cross-linking of 

protein of interest-DNA complexes is reversed (usually by heating) and the DNA 

strands are purified. After an amplification and denaturation step, the single-stranded 

DNA fragments are tagged, e.g. Cy5 or Alexa 647. 

Finally, the fragments are saturated on the surface of the DNA microarray. Whenever 

a labeled fragment "finds" a complementary fragment on the array, they will hybridize 

and form again a double-stranded DNA fragment. (Figure 4) shows the ChIP-Chip 

workflow described. 
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Figure 4: ChIP on Chip overview 

Many software tools have been developed for chip-chip analysis such as ChIP-on-Chip 

online (CoCo) [32], Amadeus [33], CATCHprofiles [34],  ChIP-on-chip Analysis Suite 

(CoCAS) [35],TileMap [36], a web-based analysis tool ChIPSeek (for ChIP-Chip and 

ChIP-Seq data analysis) [37], Cis-regulatory Element Annotation System(CEAS, for 

ChIP-Chip and ChIP-Seq data analysis [38]) and many other R packages in 

Bioconductor and algorithms. A ChIP-Chip overview can be found in Lee’s et.al paper 

«Chromatin immunoprecipitation and microarray-based analysis of protein location» 

[39] . 

3.2 ChIP-seq, a next generation sequencing method 

ChIP-seq has become a widely adopted genomic assay in recent years to determine 

binding sites for transcription factors or enrichments for specific histone modifications 

[40]. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) belongs to 

the NGS (Next Generation Sequencing) and is a technique for genome wide profiling 

of DNA-binding proteins, histone modifications, or nucleosomes in living cells [41]. 

Enabled by the tremendous progress in NGS, ChIP-Seq offers higher resolution, less 

noise, and greater coverage than its array-based predecessor ChIP-chip. With the 
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decreasing cost of sequencing, ChIP-Seq has become an indispensable tool for studying 

gene regulation and epigenetic mechanisms [42]. 

Chromatin immunoprecipitation sequencing, or ChIP-seq, combines ChIP with next-

generation sequencing. ChIP-seq protocols have been adapted from ChIP-chip 

methods: proteins are cross-linked to their bound DNA by formaldehyde treatment, 

cells are homogenized, and chromatin is sheared and immunoprecipitated with 

antibody-bound magnetic beads. The immunoprecipitated DNA is then used as the 

input for a next-generation sequencing library prep protocol, where it is sequenced and 

analyzed for DNA binding sites [43]. The outline of the above procedure of ChIP-Seq 

is shown in (Figure 5). 

The above steps come from the biochemistry view, from the view of the bioinformatics 

the main steps in ChIP-seq data analysis(Figure 6 : Work Flow for the computational 

Analysis) are Quality Filtering, Read Mapping, Peak Calling (Detecting Enriched 

regions and Peak Annotation) and Motif Analysis(Finding de novo Motifs, Motif Site 

Prediction and Motif scoring and Annotation) [44] [45]. Many ChIP-Seq Data analysis 

tools have been developed and published since the adoption of the ChIP-seq technology 

for revealing the human genome. Searching the literature we found many tools and 

software that scientists or biology researchers use to analyze and visualize ChIP-seq 

data. There are various ChIP-seq applications that can be categorized according to the 

step or the type of analysis a biologist wants to implement. There are many software 

tools for two of the steps we described above in the ChIP-seq pipeline, the peak calling 

and the motif discovery – e.g. ChIP-seq Peak Finder, BayesPeak, BroadPeak, MACS a 

widely used software tool, Peakzilla, PeakSeq, Bamm, CisFinder, CTF and many 

others, you can find great reviews of them and many others of other categories of ChIP-

seq analysis along with their publications in http://omictools.com/chip-seq-category. 

 

http://omictools.com/chip-seq-category
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Figure 5: Outline of ChIP-seq procedure [43] 

 

Figure 6 : Work Flow for the computational Analysis of ChIP-seq data 
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In his work Sebastian Steinhauser [40], reviewed 14 tools for ChIP-seq data analysis 

that are most often used by the biology researchers and categorized them as shown in 

(Figure 7). 

 

Figure 7: Decision tree indicating the proper choice of tool depending on the data set: 

shape of the signal (sharp peaks or broad enrichments), presence of replicates and 

presence of an external set of regions of interest. They have indicated in dark the 

name of the tools that give good results using default settings, and in gray the tools 

that would require parameter tuning to achieve optimal results: some tools suffer from 

an excessive number of DR (PePr, ODIN-pois), an insufficient number of DR 

(QChIPat, MMDiff, DBChIP) or from an imprecise definition of the DR for sharp 

signal (SICER, diffReps-nb). MultiGPS has been explicitly developed for 

transcription factor ChIP-seq [40] 

Moreover, an excellent and thorough review for the software tools that are available for 

ChIP-seq analysis published in 2012 by Nuno A. Fonseca [46].He summarized many 

of them that are widely used by biology researchers as shown in (Figure 8). In this paper 

Nuno A. Fonseca classified the numerous software tools that map the generated reads 

to a reference sequence. The answer to the question “Which is the best of them” is 

difficult and depends on the scientists goals, the different type of data (e.g. miRNA, 

RNA, ChIP, and bisulfite) to analyze, the speed and accuracy they want to have in their 

experiments. Despite some recent evaluation studies (Bock et al., 2010; Li and Homer, 

2010; Chatterjee et al., 2012) determining the most accurate and fastest mappers for a 

particular application is still difficult [46]. A regularly updated compendium of mappers 

can be found here6 . 

                                                 

6 http://wwwdev.ebi.ac.uk/fg/hts_mappers/ 
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Figure 8: Read length limits are shown in the first two data columns: minimum read 

length (Min. RL) and maximum read length (Max. RL). Unless otherwise stated the 

unit is base pairs, K denotes kilobases (1000 bases), M denotes megabases (1000K 

bases), and * denotes a (unknown) large number. The support for mismatches and 

short indels is presented in the fourth and fifth columns, respectively, including when 

possible the maximum number of allowed mismatches and indels: by default the value 

is in bases; in some cases, the value is presented as a proportion of the read size; or as 

score, meaning that mapper uses a score function. The Gaps column indicates whether 

consecutive insertions or deletions are allowed during alignment. The Alignments 

reported column indicates the alignments reported when a read maps to multiple 

locations: A-all, B-best, R-random, U-unique alignments only (no multi-maps), and S-

user defined number of matches. The Alignment column indicates whether the reads 

are aligned end-to-end (Globally) or not (Locally). The Parallel column indicates 

whether the mapper can be run in parallel and, if yes, how: using an SM or/and a DM 

computer. The QA (Quality awareness) column indicates whether the mapper uses 

read quality information during the mapping. The support for paired reads is indicated 

in the PE column. The Splicing column indicates, for the RNA mappers, whether the 
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detection of splice junctions is made de novo or through user provided libraries (Lib). 

Yes is abbreviated as Y, and No is abbreviated as N. A cell in the table is filled with 

‘—’ when a third-party mapper is used to perform the alignment [46] 

In their work Verfaillie, Imrichova, Janky and Aerts introduced two interesting tools 

iRegulon and iCisTarget. These tools perform regulatory sequence analysis (motif 

discovery) and integrate and mine large collections of existing regulatory data, such as 

ChIP-Seq, DHS-seq, and FAIRE-seq. While iRegulon focuses on sets of co-expressed 

genes, iCisTarget also analyses genomic regions as input [47]. 

Lastly, an evaluation of many of the tools that were reviewed above were selected and 

evaluated by Elizabeth G. Wilbanks and Marc T. Facciotti in their publication 

«Evaluation of Algorithm Performance in ChIP-Seq Peak Detection» depicted in 

(Figure 9) [48]. They measured their sensitivity, accuracy and usability and compared 

their performance. They concluded that eleven ChIP-seq analysis programs of varying 

algorithmic complexity identify protein binding sites from common empirical datasets 

with remarkably similar performance with regards to sensitivity and specificity. They 

also observed a few significant differences between the performances of these programs 

on their simulated datasets at increasing noise thresholds.  

 

Figure 9: ChIP-seq peak calling programs selected for evaluation 
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3.3 Advantages and Disadvantages of ChIP-Chip and ChIP-Seq 

Fueled by rapid development of the second generation high-throughput sequencing 

technologies in the past few years, ChIP-seq has emerged as an attractive alternative to 

ChIP-chip [42]. Both techniques has its own advantages and disadvantages relating to 

cost, bias, data analysis, specificity and significance of the biological results they 

produce.  

ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows 

detection of more peaks and narrower peaks. The set of peaks identified by the two 

technologies can be significantly different, but the extent to which they differ varies 

depending on the factor and the analysis algorithm [24]. Importantly, in “ChIP-chip 

versus ChIP-seq : lessons for experimental design and data analysis” [24] the authors 

found that there is a significant variation among multiple sequencing profiles of input 

DNA libraries and that this variation most likely arises from both differences in 

experimental condition and sequencing depth. Moreover, the advances in NGS 

technologies enable ChIP-seq to be conducted at greater genome coverage at lower 

price, and recover weaker binding events. 

As described in Ho’s et.al review [24] there are major differences between these two 

technologies when compared.  

From the Data Management and genome alignment view, ChIP-chip is a) a relatively 

easy and flexible technology, because one microarray corresponds to less than 1 Gigabit 

data and the coordinates of each probes are known from the beginning, b) more agile 

when it comes to submitting the data in a database, c) easy to store in your computer 

and easy to run different algorithms for analysis. On the other hand, ChIP-seq is a 

relatively hard method because a) raw data and analysis generate approximately more 

than one terrabyte data, b) FTP or HTTP protocols must be developed to submit the 

data to a database, c) large capacity storage servers must be established and the analysis 

must be done with very powerful computers for computing and memory. Moreover, 

there are challenges in data analysis when these two technologies used to identify peaks 

in the same study. A comparison of features for the peaks identification are shown in 

(Figure 10: Comparison of peak identification features with ChIP-chip and ChIP-seq 

analysis). A biological experiment comparison is shown in (Figure 11: Biological 

Experiment Comparison ChIP-chip VS ChIP-seq) from previous studies. Further and 
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more thorough analysis of this biological experiment comparison is presented with 

figures and statistical data in Ho’s et.al study [24].  

 

Figure 10: Comparison of peak identification features with ChIP-chip and ChIP-seq 

analysis 

 

Figure 11: Biological Experiment Comparison ChIP-chip VS ChIP-seq 

One more advantage of ChIP-seq is that this method is independent from hybridization 

artefacts such as dye effects, tiling resolution and the influence of GC-content of the 

oligoprobe. Another advantage is the fact that ChIP-seq is not dependent on a defined 

array-design, for example heterochromatic regions that are generally not represented 

on microarrays. Although ChIP-seq does not also allow the analysis of repetitive 

elements, unique regions within heterochromatin can be analyzed, e.g. to give some 
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information of replication initiation of this part of the chromatin. A major disadvantage 

is that 100–150bp fragments are preferentially sequenced, which enhances the bias 

towards small DNA fragments and is the reason for large complexes and structures not 

being efficiently sequenced [49]. 

To summarize, ChIP-seq brought a new era in genome analysis because it offers high 

resolution, a more distinctive signal especially to noise ratio and a detection of more 

peaks compared to ChIP-chip, along with the ongoing cost reduction ChIP-seq 

technique is becoming more and more dominant in the study of transcriptional 

regulatory pathways and networks. However, because ChIP-seq datasets are massive 

and complex, their analysis requires advanced statistical methods, efficient 

computational algorithms and user-friendly software for processing and visualization. 

Nowadays, ChIP-Seq is increasingly being used and preferred over its predecessor for 

mapping protein–DNA interactions in-vivo on a genome scale. 

3.4 ChIP-Seq Pipeline Steps  

Several studies [50] [45] [44] [51] [52] in the literature describe the pipeline of ChIP-

seq data analysis which can be summarized in the following five key steps: 1) Map the 

reads to a reference genome – the goal in this step is to identify for each short read in 

the dataset, all the locations in a reference genome that show perfect or near perfect 

matches to the read, 2) Background Estimation – in this step all the reads that are 

unrelated to the binding events of interest can be regarded, as «background reads», 

3)Peak Calling – the peak regions and their significance are identified 4) Gene 

Assignment and Peak Annotation – after obtaining a list of peak coordinates, it is 

important to study the biological implications of the protein-DNA bindings and 

associate each peak to its nearest gene and 5) De Novo Motif Analysis – in this last step 

the binding motifs are recovered from the peak sequences as well as from their 

orthologous sequences.  

Lastly, the basic steps of the ChIP–seq assay have been also reviewed elsewhere [51] 

and were summarized for transcription factors and for histone modifications. 

3.5 Methodologies coupling ChIP-seq & Gene regulatory networks 

ChIP-seq is the most direct way to identify the binding sites of a single DNA-binding 

protein or the locations of modified histones [51]. Also, biological networks provide a 
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comprehensive overview of biological systems [53]. They enable better understanding 

of the system and can shed light on the function of genes and other molecular 

compounds. Among other applications, they have been used for discovery and 

prediction of gene interactions, gene functions and disease–gene associations [53]. 

Such biological networks are the GRNs. So, coupling these two together, ChIP-seq 

technology and GRNs can create a very powerful tool in the hands of biologists for the 

decryption of the human genome and the prevention of diseases.  

To mine gene expression data sets effectively, analysis frameworks need to incorporate 

methods that identify intergenic relationships within enriched biologically relevant sub 

pathways [54]. Elucidating gene regulatory network (GRNs) from large scale 

experimental data remains a central challenge in systems biology [55]. The advent of 

high-throughput data generation technologies has allowed researchers to fit theoretical 

models to experimental data on gene-expression profiles. A numerous of GRNs 

applications along with their publications can be found in http://omictools.com/gene-

regulatory-networks-category. 

By searching the literature we found some great projects that provide the 

bioinformaticians with ChIP-seq data from lab experiments and pathway analysis of 

these biological data.  

Firstly, The Human Genome Project, which is an international scientific research 

project with the goal of determining the sequence of chemical base pairs which make 

up human DNA, and of identifying and mapping all of the genes of the human genome 

from both a physical and functional standpoint. It remains the world's largest 

collaborative biological project.  

Secondly, KEGG (Kyoto Encyclopedia of Genes and Genomes), which is a collection 

of databases dealing with genomes, biological pathways, diseases, drugs, and chemical 

substances7. KEGG is utilized for bioinformatics research and education, including data 

analysis in genomics, metagenomics, metabolomics and other omics studies, modeling 

and simulation in systems biology, and translational research in drug development. The 

KEGG biological pathways are represented with GRNs. However, KEGG doesn’t 

analyze recent or any ChIP-seq data for biological experiments. 

Thirdly, the ENCODE (Encyclopedia of DNA Elements) Consortium, which is an 

international collaboration of research groups funded by the National Human Genome 

                                                 

7 http://www.kegg.jp/kegg 
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Research Institute (NHGRI). The goal of ENCODE is to build a comprehensive parts 

list of functional elements in the human genome, including elements that act at the 

protein and RNA levels, and regulatory elements that control cells and circumstances 

in which a gene is active.  

In addition to these, several programs that have been published for the analysis of ChIP-

seq data, they often focus on the peak detection step and are usually not well suited for 

thorough, integrative analysis of the detected peaks and furthermore they do not infer a 

Gene Regulatory Network which its biological significance have already been 

discussed. Currently, there are many software tools implementing different approaches 

to identify TFBSs within ChIP-Seq peaks.  

TEAC, a Topology Enrichment Analysis Framework for detecting activated biological 

sub-pathways requires as input a file with gene expression data and standard pathways 

from KEGG and returns a set of activated ranked sub-pathways. However, it has some 

limitations - it takes only the KEGG pathways and does not extend beyond 

transcriptional analyses of the events underlying yeast cellular responses to nitrogen 

stress [54]. 

Another web-based tool for pathway analysis on ChIP-seq data is rTRM [56], which is 

a web tool for predicting transcriptional regulatory modules for ChIP-seqed 

transcription factors. It requires to choose organism (human or mouse), a transcription 

factor, two files in a specific form with the gene data and some network and plot 

parameters and it returns a gene path as shown in Figure 12: rTRM a web tool for 

transcriptional regulatory modules. 
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Figure 12: rTRM a web tool for transcriptional regulatory modules 

However it doesn’t provide a clear and thorough view of all the biological pathways 

and the interactions between the genes that are expressed in a regulation procedure. 

Moreover, an enriched motifs file from ChIP-seqed regions and already analyzed ChIP-

seq data with the expressed genes, which participate in the regulation given a specific 

transcription factor, is needed.  

CMGRN (Constructing Multilevel Gene Regulatory Networks) [16], an integrative web 

server to unravel hierarchical interactive networks at different regulatory levels. The 

developed method used the Bayesian network modeling to infer causal 

interrelationships among transcription factors or epigenetic modifications by using 

ChIP-seq data. Moreover, CMGRN used Bayesian hierarchical model with Gibbs 

sampling to incorporate binding signals of these regulators and gene expression profile 

together for reconstructing gene regulatory networks.  

Although, CMGRN is an easy-to-use bioinformatics tool to interpret ChIP-seq high-

throughput data, the user has to provide two files with a specific format, regulatory 

signal of TFs, epigenetic modifications or microRNAs file and a gene expression data 

file. A final network exploring interactions of both regulator-regulator and regulator–

gene will be presented to the user (Figure 13). 
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Figure 13: An overview of data-integrated analysis and regulatory network 

construction. The triangle nodes represent TFs (pink), epigenetic regulators (red) and 

cofactors (blue), whereas the V-type nodes represent microRNAs (yellow). Target 

genes were indicated by using the circle nodes [16] 

Wang and Qin in their work [57], enhanced ChIP-Array [58] and created ChIP-Array 

2 which is able to incorporate ChIP-X and transcriptome data, long-range chromatin 

interaction, open chromatin region and histone modification data to construct GRNs 

(Figure 14: Workflow (A) and results (B) of ChIP-Array 2. (A) Direct targets are 

identified by combining ChIP-X and transcriptome data. Interplays between the TF of 

interest and other regulatory factors/target genes are supported by other omics data. 

Then indirect targets are detected by curated ChIP-X data or predicted TFBSs with the 

assistance of other omics data. (B) The results are composed of four parts: the resulting 

GRN shown in CytoscapeWeb, motif enrichment analysis by MEME Suite, functional 

enrichment analysis, and visualization in JBrowse). 
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Figure 14: Workflow (A) and results (B) of ChIP-Array 2. (A) Direct targets are 

identified by combining ChIP-X and transcriptome data. Interplays between the TF of 

interest and other regulatory factors/target genes are supported by other omics data. 

Then indirect targets are detected by curated ChIP-X data or predicted TFBSs with 

the assistance of other omics data. (B) The results are composed of four parts: the 

resulting GRN shown in CytoscapeWeb, motif enrichment analysis by MEME Suite, 

functional enrichment analysis, and visualization in JBrowse 

Although the existing web-based software can predict potential target genes of the 

multiple regulators, they are not able to discover hierarchical organizations formed by 

cross-interactions between the regulators and genes simultaneously. Most programs are 

run from the command line and require variable degrees of data formatting and 

computation expertise to implement and they are very complex [48]. Currently, there 

is a lack of effective web resources to generate the topology of networks controlled by 

the interacting factors at transcriptional, post transcriptional and epigenetic layers [16].  

4 Technical Implementation 

The labor in this Master Thesis is divided into three phases. In the first phase, we 

download programmatically ChIP-seq peak files from the ENCODE ChIP-seq 

Experiment Matrix according to a user’s query and analyze them using Bioconductor’s 

packages for ChIP-seq Analysis. So, we created a user-friendly interface (shinny app) 

in the statistically programming language R using Shiny Studio that gets users selection, 

analyzes the equivalent ChIP-seq peak files obtained from ENCODE Project and 

creates a file which has five (5) columns: the gene id’s (EntrezID), the p-value or the 

q-value equivalent of what is given for each file, the score, the signal value and the gene 

name. EntrezID is the coding system the KEGG database uses for the genes 
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identification. Score denotes indicates how dark the peak will be displayed in a browser 

(0-1000). Signal value is the measurement of overall (usually, average) enrichment for 

the region, which is the average (between replicates) read count over the region. If the 

signal value is high, it means that a lot of chromatin from that region is pulled down by 

the IP and sequenced.  

In detail, the application chooses the optimal IDR (Irreproducible Discovery Rate) 

thresholded peak files (IDR<0.01). There are many file types to choose from the 

ENCODE Experiment ChIP-seq Matrix. For the needs of this work all the peak files 

with format type bed, bed narrowPeak,bed broadPeak, broadPeak and narrowPeak were 

chosen. We choose all the binding sites near TSS and then we obtain peaks within 5kb 

upstream of TSS within the gene because transcription factors are proteins that bind to 

DNA, typically upstream from and close to the transcription start site of a gene, and 

regulate the expression of that gene by activating or inhibiting the transcription 

machinery [59]. We threshold the qvalue of the peaks and we choose only the peaks 

that have FDR or qvalue<0.01 because 1% FDR is the most commonly accepted value 

for peaks of good quality [17]. We map the genes with their corresponded Entrez Id’s 

using EnsDb.Hsapiens.v75 a Bioconductor Mapping Library and we get the selected 

TF’s binding sites in that cell line. We save the mapped genes in a txt file.  

In the second phase of this work, GRN visualization tool called MinePath, its extended 

version was used to accept and analyze ChIP-seq peak data files. The app, also, gives 

the ability to user to find the overlapping peaks of two different peak files. Lastly, in 

the third phase, we conducted many experiments with specific antibody target in a 

human cell type of various cancer phenotype breast cancer, glioma, e.t.c. 

4.1 Bioconductor and R – Shiny Studio 

Bioconductor [60] is a free open source software for bioinformatics, meaning that all 

developers from the scientific community are able to contribute software. It provides 

tools for the analysis and comprehension of high-throughput genomic data. 

Bioconductor uses the statistical programming language R, which facilitates data 

visualization and downstream analysis for the statistically - inclined user, and it has two 

releases each year, 1211 software packages and an active user community. The latest 

version is 3.3.1, which is the version that was used in this master thesis. 
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We developed an application using Bioconductor packages through Shiny8, a web 

application framework for R powered by RStudio. Shiny is an R package which uses a 

reactive programming model to simplify the development of R-

powered web applications. We used RStudio platform to develop the application and 

FORTH Institute’s server to host the application and run it. The application is written 

in R language and it downloads ChIP-seq data from the ENCODE project according to 

the users selection using queries and filters on ENCODE data.  

The data retrieved are described below in Data Library section of this Master Thesis. 

The main functionality of this Shiny application is to analyze a ChIP-seq peak file and 

map the biological data retrieved on the Human Genome reference sequence version 

GRCh38 by using a mapping function. The output of the Shiny application is a file with 

all the genes that form the TFBSs of the specific experiment, which will be visualized 

along with their gene expression data in the extended version of MinePath [18]. An 

overview of the pipeline implemented in this Master Thesis is shown in (Figure 15: 

Diagram of the . We have also added one more functionality in the Shiny application 

that allows the user to intersect two different ChIP-seq file peaks and receive a file with 

all the overlapping peaks between these files for further differential analysis study.  

 

                                                 

8 http://shiny.rstudio.com/ 
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Figure 15: Diagram of the pipeline 

4.2 Libraries and functions  

The most important Libraries and Functions used for the shiny application development 

are described below (Figure 16: Flowchart of Shiny RStudio app R packages): 

1) The ENCODExplorer Library. This package allows user to quickly access ENCODE 

project files metadata and give access to helper functions to query the ENCODE 

rest api, download ENCODE datasets and save the database in SQLite format. A 

reference manual can be downloaded from here9. 

2) The function searchEncode was used from the ENCODExplorer Library and users’ 

choices were passed as input in a query form. Some errors and Null restrictions 

overcame with the use of tryCatch function which provides a mechanism for 

handling unusual conditions, including errors and warnings in R, more can be found 

here10. 

3) The downloadEncode function from the same Library was used to download the 

proper file with the peaks in BED format. 

4) The function annotatePeakInBatch from ChIPpeakAnno Bioconductor package was 

used to annotate peaks by annoGR object in the given range for the list of peaks 

from the BED file already retrieved from ENCODE Project database. We used it to 

obtain the peaks within 5kb distance of TSS, upstream of the gene body. We have 

chosen these genes because the promoters of a gene can be found upstream of the 

gene [61] [62].  

5) The library (TSS.human.NCBI36): This library has TSS Annotation for Human 

Sapiens (NCBI36) obtained from BiomaRt. The TSS.human.NCBI36 exposes an 

annotation database generated from NCBI. It’s the latest and biggest from the view 

of genes updated database11. 

6) The library (org.Hs.eg.db) is an R object that contains mappings between Entrez 

Gene identifiers and GenBank accession numbers. This object is a simple mapping 

of Entrez Gene identifiers12 to all possible GenBank accession numbers. Mappings 

                                                 

9 https://www.bioconductor.org/packages /3.3/bioc/manuals/ENCODExplorer/ 
10 http://www.inside-r.org/r- doc/base/signalCondition 
11 Different annotation knowledge databases in http://ccb.jhu.edu/software/tophat/igenomes.shtml 
12 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene 
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were based on data provided by: Entrez Gene Data13 with a date stamp from the 

source of 14 March 2016. A reference manual can be found here14. 

7) The addGeneIDs function was used to add common IDs to annotated peaks such as 

gene symbol, entrez ID, ensemble gene id and refseq id leveraging organism 

annotation dataset. 

8) The biomaRt library is an R package that enables retrieval of large amounts of data 

in a uniform way without the need to know the underlying database schemas or 

write complex SQL queries. Examples of BioMart databases are 

Ensembl,COSMIC, Uniprot, HGNC, Gramene, Wormbase and dbSNP mapped to 

Ensembl. These major databases give biomaRt users direct access to a diverse set 

of data and enable a wide range of powerful online queries from gene annotation to 

database mining. A reference manual can be downloaded from here15. 

 

Figure 16: Flowchart of Shiny RStudio app R packages 

9) The ChIPpeakAnno package Version 3.5.3 was used from the Shiny application to 

annotate the peak files retrieved from the ENCODE project official site. This package 

provides Batch annotation of the peaks identified from either ChIP-seq, ChIP-chip 

experiments or any experiments resulted in large number of chromosome ranges. The 

                                                 

13 ftp://ftp.ncbi.nlm.nih.gov/gene/DATA 
14 https://bioconductor.org /packages/release/data/annotation/manuals/org.Hs.eg.db/ 
15 https://bioconductor.org/packages/release/bioc/manuals/biomaRt /man/biomaRt.pdf 
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package includes functions to retrieve the sequences around the peak, obtain enriched 

Gene Ontology (GO) terms, and find the nearest gene, exon, miRNA or custom features 

such as most conserved elements and other transcription factor binding sites supplied 

by users. Starting 2.0.5, new functions have been added for finding the peaks with bi-

directional promoters with summary statistics (peaksNearBDP), for summarizing the R 

topics documented: occurrence of motifs in peaks (summarizePatternInPeaks) and for 

adding other IDs to annotated peaks or enrichedGO (addGeneIDs).This package 

leverages the biomaRt, IRanges, Biostrings,BSgenome, GO.db, multtest and stat 

packages [61]. A reference manual can be downloaded from here16. 

4.3 ChIP-seq guidelines and practices of the ENCODE and 

modENCODE consortia 

The ENCODE Consortium has adopted uniform guidelines for the most common 

ENCODE experiments. The guidelines have evolved over time, as technologies have 

changed. The current guidelines are informed by results gathered during the ENCODE 

project17. 

All ChIP-seq experiments were performed at least in duplicate, and were scored against 

an appropriate control designated by the production groups (either input DNA or DNA 

obtained from a control immunoprecipitation). All ENCODE ChIP experiments follow 

guidelines and specific standards. ENCODE guidelines for antibody and 

immunoprecipitation characterization are described in detail in the paper the ENCODE 

Consortium published in 2012 [63]. A quick updated guide can be found here18. 

4.3.1 Replication, sequencing depth, library complexity, and 

reproducibility 

Biological replicate experiments from independent cell cultures, embryo pools, or 

tissue samples are used to assess reproducibility. Initial RNA polymerase II ChIP-seq 

experiments showed that more than two replicates did not significantly improve site 

discovery [64]. Thus, the ENCODE Consortium set as standards that all ChIP 

                                                 

16 https://www.bioconductor.org/packages/3.3/bioc/manuals/ChIPpeakAnno/man/ChIPpeakAnno.pdf  
17 Here http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001046#s5 there is a 

detailed review for the ENCODE Data Analysis 
18https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ChIP_DNase_FAIRE_DNAme_v2_2011

.pdf 

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001046#s5
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measurements would be performed on two independent biological replicates. The IDR 

analysis methodology [65] is used to assess replicate agreement and set thresholds. For 

experiments with poor values for quality metrics, additional replicate(s) have been 

generated. Briefly, ENCODE produces replicate data for most experiments to quantify 

reliability. Biological replicates involve different biological samples, e.g., different 

tissue preparations for cell growth and expansion when cell lines are used. Biological 

replicates are contrasted with technical replicates, for which different sequencing 

libraries are prepared from the same sample, or different sequencing lanes for the same 

library. Reads from different replicates are stored in separate files and should include 

flow cell and lane ID. If multiple lanes are used for the same biological or technical 

replicate, they are stored in the same file (after a QC check to eliminate failed lanes), 

with information on flow cell and lane ID included. For experiments that produce 

paired-end reads, the two reads in each pair are stored in two separate files, with the 

reads in the same order in the two files. 

A few of the ENCODE ChIP experimental design guidelines for replication, sequencing 

depth, library complexity, and reproducibility are [63]: 

Sequencing and library complexity 

For each ChIP-seq point-source library, ENCODE’s goal is to obtain ≥10 million 

uniquely mapping reads per replicate experiment for mammalian genomes, with a 

target NRF (nonredundancy fraction) ≥0.8 for 10 million reads. The corresponding 

objective for modENCODE point-source factors is to obtain ≥2 M uniquely mapped 

reads per replicate, ≥0.8 NRF. The modENCODE target for broad-source ChIP-seq 

in Drosophila is ≥5 million reads, and the ENCODE provisional target for mammalian 

broad-source histone marks is ≥20 million uniquely mapping reads at NRF ≥0.8. The 

distribution of NRF values for all ENCODE data sets is shown in Figure 17. 
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Figure 17: Analysis of ENCODE data sets using the quality control guidelines [63] 

Control libraries 

ENCODE generates and sequences a control ChIP library for each cell type, tissue, or 

embryo collection and sequences the library to the appropriate depth (i.e., at least 

equal to, and preferably greater than, the most deeply sequenced experimental library). 

If cost constraints allow, a control library should be prepared from every chromatin 

preparation and sonication batch, although some circumstances can justify fewer 

control libraries. Importantly, a new control is always performed if the culture 
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conditions, treatments, chromatin shearing protocol, or instrumentation is significantly 

modified. 

Reproducibility 

Experiments are performed at least twice to ensure reproducibility. For ENCODE data 

to pass criteria for submission, concordance is determined from analysis using the IDR 

methodology [63], and a third replicate is performed if the standard is not reached 

(Figure 17, D). Cut-offs for identifying highly reproducible peaks for use in subsequent 

analyses can be determined by IDR (typically using a 1% threshold). 

A practical goal is to maximize site discovery by optimizing immunoprecipitation and 

sequencing deeply, within reasonable expense constraints. For point-source factors in 

mammalian cells, a minimum of 10 million uniquely mapped reads are used by 

ENCODE for each biological replicate (providing a minimum of 20 million uniquely 

mapped reads per factor. For broad areas of enrichment, the appropriate number of 

uniquely mapped reads is currently under investigation, but at least 20 million uniquely 

mapped reads per replicate for mammalian cells is currently being produced for most 

experiments. 

Within ENCODE, a set of data quality thresholds has been established for submission 

of ChIP-seq data sets. These have been constructed based on the historical experiences 

of ENCODE ChIP-seq data production groups with the purpose of balancing data 

quality with practical attainability and are routinely revised. The current standards are 

below and the performance of ENCODE data sets against these thresholds is shown in 

Figure 17. So, A few of ChIP-seq quality assessment guidelines are: 

Cross-correlation analysis 

The current ENCODE practice is to calculate and report NSC and RSC for each 

experiment. For experiments with NSC values below 1.05 and RSC values below 0.8, 

they currently recommend that an additional replicate be attempted or the experiment 

explained in the data submission as adequate based on additional considerations. 

Irreproducible discovery rate (IDR) 

The following guidelines have been established for mammalian cells (optimal 

parameter may differ for other organisms). Biological replicates are performed for each 

ChIP-seq data set and subjected to peak calling. IDR analysis is then performed with a 

1% threshold. For submission to ENCODE, they currently require that the number of 

bound regions identified in an IDR comparison between replicates to be at least 50% 

of the number of regions identified in an IDR comparison between two 



 

[35] 

“pseudoreplicates” generated by pooling and then randomly partitioning all available 

reads from all replicates (Np/Nt < 2). To ensure similar weighting of individual 

replicates for identifying binding regions, they further recommend that the number of 

significant peaks identified using IDR on each individual replicate (obtained by 

partitioning reads into two equal groups for the IDR analysis) be within a factor of 2 

of one another (N1/N2 < 2)( Figure 17). Data sets which fail to meet these criteria may 

still be deposited by ENCODE experimenters, provided that at least three experimental 

replicates have been attempted and a note accompanies these data sets explaining 

which parameters fail to meet the standards and providing any technical information 

that may explain this failure. This guideline is for point source features; metrics are 

still being determined for broad peak analyses. 

Updated information about the performance of ENCODE data sets against these quality 

metrics and tools for determining these metrics will be forthcoming through the 

ENCODE portal19. 

A simpler heuristic for establishing reproducibility was previously used as a standard 

for depositing ENCODE data and was in effect when much of the currently available 

data was submitted. According to this standard, either 80% of the top 40% of the targets 

identified from one replicate using an acceptable scoring method should overlap the list 

of targets from the other replicate, or target lists scored using all available reads from 

each replicate should share more than 75% of targets in common. As with the current 

standards, this was developed based on experience with accumulated ENCODE ChIP-

seq data, even though with a much smaller sample size. 

4.3.2 Peak Calling 

Since every ENCODE dataset is represented by at least two biological replicate 

experiments, a novel measure of consistency and reproducibility of peak calling results 

between replicates, known as the Irreproducible Discovery Rate (IDR), was used to 

determine an optimal number of reproducible peaks. Code and detailed step-by-step 

instructions to call peaks using the IDR method are available20. In general, two peak 

callers were used for the analysis of the enriched regions that were identified from the 

ChIP-seq analysis, SPP caller and MACS [66] peak caller. They used the MACS peak 

                                                 

19 http://encodeproject.org/ENCODE/ 
20 https://sites.google.com/site/anshulkundaje/projects/idr 
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caller to identify regions of enrichment over a wide range of signal strength21. Enriched 

regions were scored on individual replicates, pooled data (reads pooled across 

replicates) and on subsampled pseudoreplicates (obtained by pooling reads from all 

replicates and randomly subsampling, without replacement, two pseudoreplicates with 

half the total number of pooled reads). 

They also, used MACS2 to identify three types of regions of enrichment: (i) narrow 

peaks of contiguous enrichment (narrowPeaks) that pass a Poisson p-value threshold of 

0.01; (ii) broader regions of enrichment (broadPeaks) that pass a Poisson p-value 

threshold of 0.1 (using MACS2’s broad peak mode); (iii) gapped/chained regions of 

enrichment (gappedPeaks) defined as broadPeaks that contain at least one strong 

narrowPeak. 

In order to obtain reliable regions of enrichment, they restricted to enriched regions 

identified using pooled data that were also independently identified in both 

pseudoreplicates. The coverage and conservation analysis only used histone 

modification datasets from the Broad Institute Production group.  They used the 

gappedPeak representation for the histone marks with relatively compact enrichment 

patterns. These include H3K4me3, H3K4me2, H3K4me1, H3K9ac, H3K27ac and 

H2AFZ. 

SPP caller was also used by the labs the ENCODE takes the ChIP-seq data. In brief, the 

SPP peak caller [67] was used with a relaxed peak calling threshold (FDR = 0.9) to 

obtain a large number of peaks (maximum of 300K) that span true signal as well as 

noise (false identifications). The IDR method analyzes a pair of replicates, and 

considers peaks that are present in both replicates to belong to one of two populations: 

a reproducible signal group or an irreproducible noise group. Peaks from the 

reproducible group are expected to show relatively higher ranks (ranked based on signal 

scores) and stronger rank-consistency across the replicates, relative to peaks in the 

irreproducible groups. Based on these assumptions, a two-component probabilistic 

copula-mixture model is used to fit the bivariate peak rank distributions from the pairs 

of replicates. The method adaptively learns the degree of peak-rank consistency in the 

signal component and the proportion of peaks belonging to each component. The model 

can then be used to infer an IDR score for every peak that is found in both replicates. 

The IDR score of a peak represents the expected probability that the peak belongs to 

                                                 

21 https://sites.google.com/site/anshulkundaje/projects/encodehistonemods 
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the noise component, and is based on its ranks in the two replicates. Hence, low IDR 

scores represent high-confidence peaks. An IDR score threshold of 0.02 (2%) was used 

to obtain an optimal peak rank threshold on the replicate peak sets (cross-replicate 

threshold). If a dataset had more than two replicates, all pairs of replicates were 

analyzed using the IDR method. The maximum peak rank threshold across all pairwise 

analyses was used as the final cross-replicate peak rank threshold. Reads from replicate 

datasets were then pooled and SPP was once again used to call peaks on the pooled data 

with a relaxed FDR of 0.9. Pooled-data peaks were once again ranked by signal-score. 

The cross-replicate rank threshold learned from the replicates was used to threshold the 

ranked set of pooled-data peaks. 

Any thresholds based on reproducibility of peak calling between biological replicates 

are bounded by the quality and enrichment of the worst replicate. Valuable signal is lost 

in cases for which a dataset has one replicate that is significantly worse in data quality 

than another replicate. A rescue pipeline was used for such cases in order to balance 

data quality between a set of replicates. Mapped reads were pooled across all replicates 

of a dataset, and then randomly sampled (without replacement) to generate two pseudo-

replicates with equal numbers of reads. This sampling strategy tends to transfer signal 

from stronger replicates to the weaker replicates, thereby balancing cross-replicate data 

quality and sequencing depth. These pseudo-replicates were then processed using the 

IDR method in order to learn a rescue threshold. For datasets with comparable 

replicates (based on independent measures of data quality), the rescue threshold and 

cross-replicate thresholds were found to be very similar. However, for datasets with 

replicates of differing data quality, the rescue thresholds were often higher than the 

cross-replicate thresholds, and were able to capture true peaks that showed statistically 

significant and visually compelling ChIP-seq signal in one replicate but not in the other. 

Ultimately, for each dataset, the best of the cross-replicate and rescue thresholds were 

used to obtain a final consolidated optimal set of peaks. 

All peak sets were then screened against a specially curated empirical blacklist of 

regions in the human genome and peaks overlapping the blacklisted regions were 

discarded22. Briefly, these artifact regions typically show the following characteristics: 

                                                 

22 A Kundaje, Q Li, B Brown, J Rozowsky, A Harmanci, S Wilder, S Batzoglou, I Dunham, M Gerstein, 

E Birney, et al., in prep 
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 Unstructured and extreme artefactual high signal in sequenced input-DNA and 

control datasets, as well as open chromatin datasets irrespective of cell type identity. 

 An extreme ratio of multi-mapping to unique mapping reads from sequencing 

experiments.  

 Overlap with pathological repeat regions such as centromeric, telomeric and 

satellite repeats that often have few unique mappable locations interspersed in 

repeats. 

4.4 MinePath - Pathway Analysis tool 

MinePath23, a web-based platform aiming to facilitate and ease the identification and 

visualization of differentially active paths or subpaths within a GRN, using gene-

expression data. The methodology takes advantage of the topology and the underlying 

regulatory mechanisms of GRNs, including the direction and the type of the engaged 

interactions (e.g. activation/expression, inhibition). Each GRN sub-path is interpreted 

according to Kauffman’s principles and semantics: (i) the network is a directed graph 

with genes (inputs and outputs) being the graph nodes and the edges between them 

representing the causal links between them, i.e., the regulatory reactions(ii) each node 

can be in one of the two states, ‘ON’, the gene is expressed or up-regulated (i.e., the 

respective substance being present) or, ‘OFF’, the gene is not-expressed or targeted 

from a specific gene and (iii) time is viewed as proceeding in discrete steps - at each 

step the new state of a node is a Boolean function of the prior states of the nodes with 

arrows pointing towards it [18].The extended version [68] of MinePath was used as a 

visualization tool for the ChIP-seq data we infer from the Shiny application. 

4.5 ENCODE Data Library  

After a thorough search of ChIP-seq data repositories the ENCODE Project database 

was chosen [69] for many reasons including integrity of data, the ENCODE’s sql 

database that someone can query for mass download of files matching specific criteria 

and the strict guidelines and criteria it has for the data uploaded and published by 

scientists. The Encyclopedia of DNA Elements (ENCODE) Consortium is an 

international collaboration of research groups funded by the NHGRI. The goal of 

                                                 

23 www.minepath.org 
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ENCODE is to build a comprehensive parts list of functional elements in the human 

genome, including elements that act at the protein and RNA levels, and regulatory 

elements that control cells and circumstances in which a gene is active. ENCODE 

investigators employ a variety of assays and methods to identify functional elements. 

The discovery and annotation of gene elements is accomplished primarily by 

sequencing a diverse range of RNA sources, comparative genomics, integrative 

bioinformatics methods, and human curation. Regulatory elements are typically 

investigated through DNA hypersensitivity assays, assays of DNA methylation, and 

immunoprecipitation (IP) of proteins that interact with DNA and RNA, i.e., modified 

histones, transcription factors, chromatin regulators, and RNA-binding proteins, 

followed by sequencing24. 

The files selected for this Master Thesis from ENCODE ChIP-seq Experiment Matrix 

through queries and filters in ENCODE’s database are bed peak files of type broadpeak, 

narrowPeak, bed and bed files produced with optimal IDR values. All these files are 

ChIP-seq data from different cell lines targeted with different antibody target (TF or 

HM). 

4.6 ENCODE ChIP-Seq Experiment Matrix 

The ENCODE Experiment Matrix is a set of web pages that visually summarize the 

types of data produced by the ENCODE project during the first production phase 

(September 2007 until today). The data summarized here is all hosted at UCSC as 

browser tracks and downloadable files. The grid on the main Experiment Matrix page 

shows the number of experiments for each cell type/assay pairing. The ChIP-seq 

Experiment Matrix page provides a more detailed view of the chromatin 

immunoprecipitation experiment subset, showing experiments by cell type and 

antibody target. The companion Experiment Summary page lists the number of 

experiments by assay type alone and may include annotations that are cell-type 

independent (annotations on the reference genome). 

An ENCODE experiment is defined as a biochemical assay and follow-on data analyses 

performed on a single cell type by a single lab. Data from an experiment is typically 

displayed in multiple browser tracks that offer different views of the data (e.g. 

                                                 

24 As retrieved from https://www.encodeproject.org/ on 22nd of May 2016 

javascript:void(window.open(encodeMatrix.pageFor(%22chipMatrix%22,%20encodeMatrix_organism)));
javascript:void(window.open(encodeMatrix.pageFor(%22chipMatrix%22,%20encodeMatrix_organism)));
javascript:void(window.open(encodeMatrix.pageFor(%22dataSummary%22,%20encodeMatrix_organism)));
https://www.encodeproject.org/
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enrichment signal graph, peak calls) and is available for download in multiple file 

formats (e.g. sequence alignments in BAM format, signal graph in bigWig format) that 

support different analysis methods. Data for multiple replicates are included in a single 

experiment. The information above retrieved from the new official site of ENCODE 

Project25 which contains ChIP-seq data from experiments from different research labs. 

For the purpose of this thesis, all the data from the ChIP-seq Experiment matrix, a sub-

matrix of the ENCODE experiment matrix, can be downloaded programmatically with 

the Shiny application we created. The ENCODE ChIP-seq Experiment matrix has 118 

different Human cell lines, 187 transcription factors and 12 Histone modifications. 

Every cell in the matrix is a biological experiment that is conducted in one human cell 

line and an antibody target (Histone Modification or Transcription Factor). 

5 Experimental Validation 

Following the exploratory analysis presented in the previous chapter and in order to 

verify the findings obtained as well as in evaluating the overall accuracy of our 

computational pipeline and its methods, we engaged in a subsequent study, employing 

the required ChIP-seq datasets from Literature, conducting an analysis of the data from 

ENCODE ChIP-seq Experiment Matrix, cross-correlating them and experimenting 

with RNA-seq combined with our ChIP-seq data to infer new knowledge. 

5.1 Validation based on Literature 

Following the technical implementation presented in the previous chapter and in order 

to validate the overall accuracy of our computational pipeline and its methods we 

engaged in several experiments. So, we show how we can use ChIP-seq data from 

specific phenotype and along with their RNA-seq data visualize them and gain insight 

of specific biological interactions that happen during transcription and translation. 

5.1.1 CTCF binding sites in lung cancer cells 

At first, we conducted an experiment to show that the binding sites derived from the 

Shiny application we developed are reliable and can be confirmed. We used the ChIP-

seq peak files from Zheng et al paper [70] of transcription factor CTCF in lung cancer 

                                                 

25 https://www.encodeproject.org/ 

https://www.encodeproject.org/
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cell line A549(adenocarcinomic human alveolar basal epithelial cells). CTCF is an 11 

Zinc Finger Protein that binds different DNA target sequences and proteins. CTCF is a 

chromatin binding factor that plays an essential role in oocyte and preimplantation 

embryo development by activating or repressing transcription. It also, plays a central 

role in multiple complex genomic processes, including transcription, imprinting and 

long-range chromatin interactions and sub-nuclear localization. It seems to act as tumor 

suppressor and plays a critical role in the epigenetic regulation. Among its related 

pathways are Chromatin Regulation / Acetylation and Activated PKN1 stimulates 

transcription of AR (androgen receptor) regulated genes KLK2 and KLK3. Lastly, GO 

annotations related to this gene include transcription factor activity, sequence-specific 

DNA binding and chromatin binding26.  

The authors of the paper in their experiments, identified 54.642 ChIP-seq enriched 

regions of CTCF in A549 cell line. The peaks were called using SPP. The set of peaks 

reproducible were identified based on an irreproducible discovery rate (IDR) of 0.25%. 

We annotated the peaks using a web based tool from Cistrome, called BETA-minus, 

that predict the transcription factors direct target genes. We used David annotation tool 

and we identified 1835 discrete target genes.  

We then implemented our pipeline, for the ChIP-seq data our Shiny app downloaded 

from ENCODE, for CTCF in A549 cell line and found 1943 discrete target genes 

(Figure 18).  

                                                 

26 http://www.genecards.org/cgi-bin/carddisp.pl?gene=CTCF 
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Figure 18 : Validation Experiment for CTCF in A549 

Lastly, we cross-correlated the binding sites identified from DAVID and the binding 

sites we identified using Venny 2.1.0 (a web based tool for drawing venn diagrams) 

(Figure 19). 
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Figure 19 : Venn diagram for overlapping peaks 

We found that 1.441 potential target genes were in common, a quiet respective number 

of overlapping peaks. Our peak calling was done by ENCODE with IDR<0.01 , for that 

reason and many others including difference in knowledge base at the time of mapping, 

different conditions in the lab, different thresholds there is small difference in the peaks 

identified by us and the peaks identified by Gertz. Moreover, different peak callers have 

their own rationality, and are different in positional accuracy of predicted binding sites 

[17].  

The above results prove the reliability of our Shiny application pipeline.  

5.1.2 STAT3 in Glioma  

STAT327 (Signal Transducer And Activator Of Transcription 3 or Acute-Phase 

Response Factor) is a protein coding gene. Diseases associated with STAT3 include is 

autoimmune disease, multisystem, infantile-onset(admio): A disorder characterized by 

early childhood onset of a spectrum of autoimmune manifestations affecting multiple 

organs, including insulin-dependent diabetes mellitus and autoimmune enteropathy or 

celiac disease28. Other features include short stature, non-specific dermatitis, 

hypothyroidism, autoimmune arthritis, and delayed puberty. STAT3 has emerged as a 

                                                 

27 http://www.genecards.org/cgi-bin/carddisp.pl?gene=STAT3 
28 http://www.malacards.org/card/autoimmune_disease_multisystem_infantile_onset 
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key initiator and master regulator of mesenchymal transformation in malignant gliomas 

[71]. Among its related pathways are Endometrial cancer and Adipocytokine signaling 

pathway. GO annotations related to this gene include transcription factor activity, 

sequence-specific DNA binding and sequence-specific DNA binding. Lastly, this 

protein mediates the expression of a variety of genes in response to cell stimuli, and 

thus plays a key role in many cellular processes such as cell growth and apoptosis. It is 

known that STAT3 is involved in the development of multiple tumors [72]. 

Glioma is a type of tumor that starts in the brain or spine. It is called a glioma because 

it arises from glial cells. The most common site of gliomas is the brain [73]. Gliomas 

make up about 30% of all brain and central nervous system tumors and 80% of all 

malignant brain tumors29 [74].  

To prove the biological significance of the pathway analysis of the ChIP-seq data, we 

propose in this master thesis, and that pathway analysis using ChIP-seq data could aid 

researchers to determine the biological relevance of the binding sites over functional 

sub-paths and provide insights for new disease treatments, we studied Koumakis et al 

paper [68] and confirmed the results of their approach by using our pipeline in ChIP-

seq data from CHEA (ChIP Enrichment Analysis) database. 

They visualized the binding sites from ChIP-seq data of CTCF on patients with Glioma 

from Zhang’s et al paper [75] in MinePath, the same visualization tool for pathway 

analysis we used for the purposes of this master thesis, and identified that a specific 

path of glioma patients only can be disrupted. They found a sub-pathway of WNT 

signaling KEGG pathway for glioma samples which starts from gene WNT16, activates 

FZD10 and in turn activates DVL1 which is associated with AXIN1 and with CTNNB1 

activates the hub gene lymphocyte enhancer factor-1 (LEF1) which continue to the 

activation of various proteins and the alternation of cell cycle (Figure 20). Their 

findings were validated from the literature. Xingchun Gao et al [76] and Yanwei Liu et 

al [77] papers validate that the specific sub-path holds for glioma is considered as one 

of the key elements for glioblastoma cell proliferation, migration, invasion, and cancer 

stem-like cell self-renewal. 

                                                 

29 As retrieved from https://en.wikipedia.org/wiki/Glioma#cite_note-1 on September 17 2016 

https://en.wikipedia.org/wiki/Glioma#cite_note-1
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Figure 20 : WNT functional sub-paths and binding sites of STAT3 [68] 

We searched the harmonizome [78] (a collection of processed datasets gathered to serve 

and mine knowledge about genes and proteins) and downloaded the bed peak files with 

the enriched binding regions, of STAT3 in U87 human cells, that Alexander Lachmann 

et al found and delivered in a web based interactive application called ChIP Enrichment 

Analysis (ChEA) [79]. We implemented our pipeline in those peaks and we predicted 

the potential target genes of STAT3.We used the web based Gene Conversion tool 

AbsIDconvert [80] (Absolute Gene ID Conversion Tools) to convert the gene symbols 

of the target genes into Entrez Ids so as to load them in MinePath for analysis. 

Lastly, we ran a pathway analysis in glioma dataset in MinePath. For the feasibility 

study we used a microarray dataset, as in Koumakis et al paper, proposed by [81] for 

glioma and healthy samples. The reference dataset is a merging of two different studies 

using as classes the glioma cases from the GSE4271 [82] (100 samples) versus the 

control cases from the GSE1133 [83] (158 samples). We then chose Wnt signaling 

pathway, the same signaling pathway in Koumakis et al paper, loaded the U87 STAT3 

target genes we found with our pipeline in this pathway and we observed the same 

findings for the gene LEF1 and the sub-pathway it is involved in (Figure 21). 
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Figure 21 : LEF1 in Wnt signaling pathway for ChIP-seq data of U87 cell line 

(glioblastoma) with STAT3 (binding sites from ChEA) 

To conclude, we validated our pipeline analysis and confirmed it with the one in 

Koumakis et al paper by using public microarray expression datasets for glioma and 

the KEGG human GRNs as proof of concept and we identified and confirmed disrupted 

sub-paths due to STAT3 on functional glioma pathways. 

5.1.3 Lung cancer, CTCF and p53 signaling pathway 

Lung cancer, also known as lung carcinoma, is a malignant lung tumor characterized 

by uncontrolled cell growth in tissues of the lung. If left untreated, this growth can 

spread beyond the lung by the process of metastasis into nearby tissue or other parts of 

the body. Most cancers that start in the lung, known as primary lung cancers, 

are carcinomas. The two main types are small-cell lung carcinoma (SCLC) and non-

small-cell lung carcinoma (NSCLC) [84]. 

Resistance to radio- and chemotherapy is a major problem in treatment responses of 

lung cancer. In this disease, biological markers, that can be predictive of response to 

treatment for guiding clinical practice, still need to be validated. Radiotherapy and most 

chemotherapeutic agents directly target DNA and in response to such therapies, p53 

functions as a coordinator of the DNA repair process, cell cycle arrest, and apoptosis. 

Currently there are two approaches undertaken to target p53 and its regulators with an 

overall goal either to activate p53 in cancer cells for killing or to inactivate p53 

temporarily in normal cells for chemoradiation protection [85]. 

Moreover, CTCF is a remarkably versatile, ubiquitous, and highly conserved zinc 

finger (ZF) protein and has been implicated in diverse cellular processes, including 
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transcriptional regulation, alternative splicing, insulation, imprinting, X-chromosome 

inactivation, and higher-order chromatin organization [86]. CTCF regulates the human 

p53 gene through direct interaction with its natural antisense transcript, Wrap53. 

Among the various genomic CTCF target sites is the gene encoding the tumor 

suppressor protein p53. p53 is a sequence-specific transcription factor essential in the 

cellular response to DNA damage and other types of cellular stress [87]. Contingent on 

the level of DNA damage, p53 can initiate signaling pathways toward cell cycle arrest, 

senescence, or apoptosis to avoid oncogenic transformation [87]. 

So, we ran our Shiny application and chose CTCF transcription factor in lung cancer 

cell line. We inserted the binding sites they were derived in MinePath. For the 

feasibility study we chose a dataset for lung cancer (60 samples) and healthy samples 

(60 samples) (GSE19804). We used MinePath over the produced microarray dataset 

(60 lung cancer samples versus 60 healthy samples) and all the human KEGG pathways 

(299 in total). Figure 22 shows the significant pathways for lung cancer versus healthy 

according to MinePath. 

 

Figure 22: Significant Pathways according to MinePath for lung cancer versus 

healthy samples 

Apart from the significant pathways, MinePath provides information for functional sub-

paths for each phenotype. With such a functionality we can identify which are the 

functional sub-paths for lung cancer and what effect could have the binding sites of 

specific ChIP-seq data. For our experiment we used the binding sites of CTCF in A549 

lung cancer cell line we derived from our Shiny application.  

According to MinePath (Figure 22) the most significant pathway for the differentially 

expressed sub-paths based on the gene expression data is the p53 with a p-value less 
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than 10-8. Looking at the p53 pathway (Figure 23) in the MinePath viewer we can 

conclude that p53 pathway is mainly functional for lung cancer samples (green relation 

between genes) as we expected. 

 

Figure 23 : p53 signaling pathway 

A research question would be “What alerted p53 pathway only for lung cancer 

samples?” One of the known cancer related roots, which can alter the p53 pathway, can 

be found in the MAPK signaling pathway, TP53. TP53 gene that plays a key role in 

p53 pathway is expressed in MAPK pathway. The MAPK/ERK pathway (also known 

as the Ras-Raf-MEK-ERK pathway) is a chain of proteins in the cell that 

communicates a signal from a receptor on the surface of the cell to the DNA in the 

nucleus of the cell. When one of the proteins in the pathway is mutated, it can become 

stuck in the "on" or "off" position, which is a necessary step in the development of 

many cancers. Components of the MAPK/ERK pathway were discovered when they 

were found in cancer cells. Drugs that reverse the "on" or "off" switch are being 

investigated as cancer treatments [88].  

As a result, we have chosen MAPK signaling pathway, one of the significant pathways 

according to MinePath and GGEA. In Figure 24 we visualize the functional sub-paths 

for lung cancer and healthy samples along with the binding sites of the CTCF on the 

MAPK signaling pathway.  
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Figure 24 : MAPK functional sub-paths and binding sites of CTCF 

Each node (box) is one protein with grey color being the default color from KEGG. 

The red color in the nodes indicate that the specific protein, gene or gene group is 

affected by the ChIP-seq which in our case it the CTCF ChIP-seq. For the edges (gene 

to gene reactions) we have four different colors: 

 Green indicates functional reaction for the lung cancer samples 

 Red indicates functional reaction for the healthy samples 

 Black indicates relations that are almost always functional for both phenotypes 

(functional in over 90% of the samples for lung cancer and for healthy samples) 

 Grey indicates inactive relations 

 Yellow indicates the association/disassociation relations, which are considered 

physical associations and always hold. 

As we can see from Figure 25 there is a clear path active only for glioma samples (green 

reactions) which starts from TAB2, activates MAP3K7 and in turn activates MAP2K3 

which activates MAPK14, and in turn activates TP53, which continue to the alteration 

of p53 signaling pathway, apoptosis and alteration of the cell cycle. 
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Figure 25 : TAB2-TP53 Sub-path for lung cancer samples 

Given the high p53 mutation frequency in lung cancer which likely impairs some of the 

p53-mediated functions, a role of p53 as a predictive marker for treatment responses 

has been suggested [89]. Thus, p53 becomes the most appealing target for mechanism-

driven anticancer drug discovery [85]. So, having in our disposal the ChIP-seq CTCF 

in lung cancer cell line data we can identify that a specific path can be disrupted since 

tp53 is one of the binding sites of CTCF along with the TAB2 which is the starting 

point of the specific sub-path. As a result, disruption of tp53 could lead to disruption of 

p53 signaling pathway that in turn affects Apoptosis and the cell cycle [87] in pathway 

MAPK pathway that is a pathway that is common among cancers and plays a key role 

in cancer treatment [88]. 

6 Discussion 

High-throughput technologies, such as ChIP-seq, have made the collection of genome-

wide data in cells, tissues and model organisms easier and cheaper. These data allow 

one to investigate biological aspects of cell functionality and to better understand 

previously unexplored disease etiologies. Pathway analysis using ChIP-seq data could 

aid researchers to determine the biological relevance of the binding sites over functional 

sub-paths and provide insights for new disease treatments. We created an application 

that produces ChIP-seq binding sites which when combined with expression data in a 

Gene Regulatory Network visualization tool (MinePath) can give us insight of 

significant biological procedures. So combining the extended version of MinePath, 

which provides a simple mechanism to visualize functional sub-paths in GRNs and the 

binding sites from ChIP-seq data for a specific protein we can visualize the binding 

sites over the functional and non-functional sub-paths. With such a merging a 

researcher can immediately understand the effect of a ChIP-seq for specific phenotype 

and identify at once which functional sub-paths will be affected after this effect [68]. 
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So, the objective of this Master Thesis, to explore the effect of ChIP-seq data, coming 

from specific proteins under specific conditions in functional subpathways for specific 

phenotype (cancer vs. non-cancer) ,visualize these sub-pathways and create new 

significant knowledge for specific biological processes that occur and help scientists to 

gain insight for new disease treatments was met. 

7 Conclusions 

The sole nucleotide sequence of a gene does not explain its functions nor its regulation. 

Gene transcription is specified by DNA structure and by its accessibility to the basal 

transcription machinery [90]. The mechanism of transcriptional regulation of coding 

genes is one of the basic phase in biology dogma in systems biology. Transcriptional 

factors (TFs) are proteins that regulate several target genes by binding DNA motifs at 

the transcriptional level [91] [92]. Some investigators have reported that TFs take part 

in many important biological functions and human diseases, such as cell differentiation, 

proliferation, immune response, apoptosis, cardiac diseases, and tumor development 

[93] [94]. Interpreting the regulation of TFs is helpful for understanding their regulatory 

function in complex biological systems. A physical interaction of TFs, chromatin-

modifying enzymes (histone acetyl/methyl transferases and deacetylases/ 

demethylases) and other accessory proteins with DNA is needed to modulate 

transcription dynamics, determining cell fate [95] . The binding of transcription factor 

proteins (TFs) to DNA promoter regions upstream of gene TSSs is one of the most 

important mechanisms by which gene expression, and thus many cellular processes, are 

controlled. Though in recent years many new kinds of data have become available for 

identifying transcription factor binding sites (TFBSs)- ChIP-seq among them .ChIP-seq 

technology is used primarily for the analysis of the interactions of DNA with 

proteins(TFs, histone or other chromatin-modifying enzymes) and it finds all the 

binding sites of these proteins . Nowadays ChIP-Seq is the gold standard for studying 

TF-chromatin interactions in vivo [19] and in silico.  

On the other hand, biological pathways that represent complex interactions between 

proteins in a molecule in living cells (GRNs) can help biologists to infer new knowledge 

for the biological interactions in a molecular level. The availability of several gene 

expression datasets generated from knock-out cells for one or few TFs has made 

possible to infer GRNs. Reconstructing GRNs using gene expression data has been one 

of the most widely studied problems in the last decade [96]. 
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In addition, there are not general tools that allow comparing the developed methods for 

gene expression prediction and GRN on the same benchmarks. As a result, it is now 

very difficult for biologists to carry on data integration. So as to facilitate biologists in 

such a task we strongly emphasize the need to develop new and intuitive explorative 

tools for the integration of ChIP-seq and RNA-seq data. Moreover, we believe such 

tools should be designed in the spirit of reproducible research [97] to allow 

reproducibility and transparent verification of published results and to improve transfer 

of knowledge [96]. 
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