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Abstract 

This thesis consists of two parts. 

The first part presents an overview of the literature and the proposals that exist in 

general, with which techniques work, what properties each one has, the pros and cons 

of each method, what problems they are facing and how these systems are evaluated. 

Each algorithm is presented along with examples from the real world. 

At the end of the first part of the thesis is an extensive description as well as results 

from an experiment based on the SCoR algorithm, an algorithm constructed to produce 

optimal recommendations based on the modified Vivaldi algorithm. 

The second part is about community detection systems in social media. This has to do 

with systems that, based on some “relationships” of the end-users of a social network, 

discover the "hidden" community of users hidden behind these explicit relationships. 

There is a description of how such a community can be formed at the graph level, 

depending on the logic of the algorithm that is required to discover this graph. 

We present the available techniques that are used by the various approaches. In 

addition, the best-known algorithms of the field are presented with results from 

experiments that have been performed and the advantages and disadvantages are 

presented for each case. 

At the end of the second part, we present the results of the experiment of the SCCD 

algorithm, which is again based on the Vivaldi algorithm and performs accurate 

community detection. 
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Περίληψη 

Η εργασία αυτή αποτελείται από δύο σκέλη.  

Το πρώτο σκέλος έχει να κάνει με τα συστήματα συστάσεως που υπάρχουν γενικά, τις 

τεχνικές στις οποίες βασίζονται, τις ιδιότητες έχει το καθένα, τα υπέρ και τα κατά της 

κάθε μεθόδου, τα προβλήματα που καλούνται να αντιμετωπίσουν καθώς και τους 

τρόπους με τους οποίους αυτά τα συστήματα αξιολογούνται. Γίνεται μια παρουσίαση 

κάθε καταγεγραμμένης τεχνικής – αλγορίθμου και γίνεται αναφορά σε συγκεκριμένα 

παραδείγματα από τον πραγματικό κόσμο. 

Στο τέλος του πρώτου σκέλους υπάρχει εκτενής περιγραφή του αλγορίθμου SCoR 

καθώς και τα αποτελέσματα των πειραμάτων που έγιναν με βάση τον SCoR, έναν 

αλγόριθμο που κατασκευάστηκε για να παράγει βέλτιστες συστάσεις δεδομένων και 

βασίζεται στον τροποποιημένο αλγόριθμο Vivaldi. 

Το δεύτερο σκέλος αυτής της μεταπτυχιακής εργασίας έχει να κάνει με τα συστήματα 

αναγνώρισης κοινοτήτων στα μέσα κοινωνικής δικτύωσης. Εστιάζει σε συστήματα τα 

οποία με βάση κάποιες επιλογές των τελικών χρηστών ενός κοινωνικού δικτύου, 

έρχονται να ανακαλύψουν τις «κρυφές» κοινότητες των χρηστών όπως αυτές 

διαμορφώνονται από τις «κοινές» επιλογές των χρηστών. Γίνεται μια περιγραφή για το 

πως μπορούν να σχηματιστούν αυτές οι κοινότητες σε επίπεδο γράφων, ανάλογα με τη 

λογική του αλγορίθμου ο οποίος καλείται να τις εντοπίσει.  

Παρουσιάζονται οι διαθέσιμες τεχνικές που μπορούν να χρησιμοποιηθούν από τους 

διάφορους αλγορίθμους. Επιπλέον παρουσιάζονται οι πιο γνωστοί αλγόριθμοι του 

χώρου με αποτελέσματα από πειράματα που έχουν γίνει και αποτυπώνονται τα υπέρ 

και τα κατά της κάθε περίπτωσης.  

Στο τέλος του δεύτερου σκέλους γίνεται παρουσίαση των αποτελεσμάτων του 

πειράματος του αλγορίθμου SCCD ο οποίος είναι πάλι βασισμένος στον 

τροποποιημένο αλγόριθμο του Vivaldi. 

Λέξεις κλειδιά 

Συστήματα Αναγνώρισης Κοινοτήτων, Συστήματα Συστάσεως, Κοινωνικά Δίκτυα, 

Δυναμικοί Γράφοι, Φιλτράρισμα Δεδομένων, Συνθετικές Συντεταγμένες, Vivaldi, 

SCoR, SCCD 

  



 

6 

 

Περιεχόμενα 

Statement of Originality ................................................................................................. 2 

Acknowledgements ........................................................................................................ 3 

Abstract .......................................................................................................................... 4 

Keywords ....................................................................................................................... 4 

Περίληψη ....................................................................................................................... 5 

Λέξεις κλειδιά ................................................................................................................ 5 

List of Tables ................................................................................................................. 8 

List of Figures ................................................................................................................ 9 

List of Equations .......................................................................................................... 10 

Chapter 1: Recommender Systems .............................................................................. 11 

1.1 Recommender systems....................................................................................... 12 

1.2 Recommender System Properties ...................................................................... 15 

1.3 Major Challenges ............................................................................................... 19 

1.4 Recommendation Evaluation Metrics ................................................................ 20 

1.5 Contend Based Recommender Systems............................................................. 21 

1.6 Collaborative Filtering Recommender Systems ................................................ 24 

1.7 Hybrid Approaches ............................................................................................ 31 

Chapter 2: Presentation of Recommender Systems ..................................................... 34 

2.1 Tapestry (1992): The Precursor ......................................................................... 35 

2.2 GroupLens (1994): The Collaborative Filtering Approach ............................... 35 

2.3 MovieLens (1997) .............................................................................................. 36 

2.4 Amazon.com (2003) .......................................................................................... 37 

2.5 MORE (2006): Hybrid Recommendation by Switch......................................... 38 

2.6 YouTube (2010) ................................................................................................. 39 

2.7 Recommendation on Twitter: Twittomender (2010) ......................................... 40 

2.8 Real Applications ............................................................................................... 40 

2.9 SCoR: A Novel Recommender System ............................................................. 41 

Chapter 3: Community Detection ................................................................................ 47 

3.1 Definition of Community Detection .................................................................. 48 

3.2 Community Detection in Social Networks ........................................................ 48 

3.2 Networks Properties ........................................................................................... 56 



 

7 

 

Chapter 4: Community Detection Algorithms ............................................................. 58 

4.1 Community Detection Algorithms ..................................................................... 59 

4.2 Detecting Overlapping Communities ................................................................ 63 

4.3 Experimental Results ......................................................................................... 70 

Chapter 5: Conclusions and Future Work .................................................................... 71 

5.1 Conclusions ........................................................................................................ 72 

5.2 Future Work ....................................................................................................... 73 

References .................................................................................................................... 74 

 

  



 

8 

 

List of Tables 

Table 1 - Overview of collaborative filtering techniques ............................................ 27 

Table 2 - Recommendations per website ..................................................................... 41 

Table 3 - RMSE of the ten recommender systems for the four datasets ...................... 45 

Table 4 - Testing Datasets............................................................................................ 70 

Table 5 - Obtained Results of testing datasets ............................................................. 70  

  



 

9 

 

List of Figures 

Figure 1 - An example of user-item matrix ................................................................. 25 

Figure 2. An example of user-item matrix ................................................................... 25 

Figure 3. MovieLens is still available at: http://movielens.umn.edu/ .......................... 36 

Figure 4. Amazon.com's item-to-item contextual recommendation to anonymous user

...................................................................................................................................... 37 

Figure 5. Architecture of MORE ................................................................................. 38 

Figure 6. Personalized recommendation with YouTube .............................................. 39 

Figure 7. The RANK of the ten systems computed for the four datasets .................... 45 

Figure 8. The community structure of a simple graph consisting of three communities

...................................................................................................................................... 49 

Figure 9. A labeled graph with six vertices and sever edges ....................................... 50 

Figure 10. A simple directed acyclic graph. ................................................................ 50 

Figure 11 - Oriented network ....................................................................................... 51 

Figure 12. A digraph with vertices labeled (indegree, outdegree) ............................... 51 

Figure 13. A multigraph with multiple edges (dashed) and several loops (dotted) ..... 52 

Figure 14. A simple weighted network. ....................................................................... 52 

Figure 15. A regular graph ........................................................................................... 53 

Figure 16. Table of basic complete networks with K<=8 ............................................ 54 

Figure 17 Algorithm 1 The position estimation algorithm. ......................................... 66 

Figure 18 - Community scenario ................................................................................. 68 

Figure 19 Algorithm 2: Pruning intra-community edges ............................................. 70 

  

file:///C:/Users/vcharal.SOFTCON/Google%20Drive/MSc/Πτυχιακή-Χαραλαμπάκης/Thesis-Charalabakis-final-3.docx%23_Toc521434988
file:///C:/Users/vcharal.SOFTCON/Google%20Drive/MSc/Πτυχιακή-Χαραλαμπάκης/Thesis-Charalabakis-final-3.docx%23_Toc521434990
file:///C:/Users/vcharal.SOFTCON/Google%20Drive/MSc/Πτυχιακή-Χαραλαμπάκης/Thesis-Charalabakis-final-3.docx%23_Toc521434991
file:///C:/Users/vcharal.SOFTCON/Google%20Drive/MSc/Πτυχιακή-Χαραλαμπάκης/Thesis-Charalabakis-final-3.docx%23_Toc521435000


 

10 

 

 List of Equations 

Equation 1 - RMSE metric ........................................................................................... 20 

Equation 2 - MAE metric ............................................................................................. 21 

Equation 3 - value of ratings user u gives to item i ..................................................... 27 

Equation 4 - value of ratings user u gives to item i example 1 .................................... 27 

Equation 5 value of ratings user u gives to item i example 2 ...................................... 28 

Equation 6 value of ratings user u gives to item i example 3 ...................................... 28 

Equation 7 normalizing factor ..................................................................................... 28 

Equation 8 - Pearson correlation similarity of two users x, y ...................................... 28 

Equation 9 - cosine-similarity between two users x and y ........................................... 28 

Equation 10 - the distance dd(u, i) ............................................................................... 43 

Equation 11 - Node distance between two nodes x and y ............................................ 64 

 



 

11 

 

Chapter 1: Recommender 

Systems 

  

 

Contents 

1.1 Recommender Systems 

1.2 Recommender System Properties 

1.3 Major Challenges 

1.4 Recommendation evaluation metrics 

1.5 Content Based Recommender Systems 

1.6 Collaborative Filtering Recommender Systems 

1.7 Hybrid approaches 



 

12 

 

1.1 Recommender systems 

The growth of the internet gives people the ability to access large volume of 

information. Electronic commerce sites, like E-bay and Amazon have millions of items 

to choose from, music sites like Spotify, contain millions of songs and these days most 

people are connected to some sort of social media.  

It can be hard to find what you’re looking for with this huge amount of information. To 

solve this problem, companies began to form and create systems that are able to filter 

out unwanted content and recommend content / products that someone would be eager 

to watch / buy with high probability.  

These systems are called Recommender or Recommendation Systems. Over time, these 

systems are becoming more accurate in making predictions. There is a big variety of 

types of recommendation systems as well as different ways to implement them. 

The abundance of information available on the Web and in Digital Libraries, in 

combination with their dynamic and heterogeneous nature, has determined a rapidly 

increasing difficulty in finding what we want when we need it and, in a manner, which 

best meets our requirements. As a consequence, the role of user modeling and 

personalized information access is becoming crucial: users need personalized support 

in sifting through large amounts of available information, according to their interests 

and tastes. Many information sources embody recommender systems as a way of 

personalizing their content for users. [1] 

• Recommender systems have the effect of guiding users -in a personalized way- 

to find interesting or useful objects in a large space of possible options.  

• Recommendation systems use as input a person’s interests in order to generate 

a list of recommended items for the individual person [2]. 

• The goal of a recommender system is to generate meaningful recommendations 

to a collection of users for items or products that might interest them [2]. 

Before the widespread use of computers and internet, people relied on traditional stores 

to purchase the items they needed. But traditional stores have a limited amount of space 

and, therefore, are able only to carry a limited amount of goods. The decision of what 

goods to carry would simply be based on what was selling at the time or by store owner's 

preference. This meant there was a small selection from which customers could choose. 

[3] 
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However, this changed when the widespread use of computers and internet came 

around. Sites like Amazon and E-bay became popular, and they could store a nearly 

infinite number of items on their virtual shelves. This created some problems, however. 

With so many options, online customers had a difficult time finding the items they 

would want; because online stores want to sell as many items as they can, they needed 

to find a way to filter out the user's unwanted items. Online stores had the additional 

goal of showing items to customers that they would want to purchase which, if done 

successfully, would drive up store sales.  

These factors inspired the demand of companies / organizations to create 

recommendation systems. 

Classification 

Recommender systems are usually classified according to their approach to rate/predict 

user preference values. Recommender systems are usually classified into the following 

categories, based on how recommendations are made: 

• Content-based: User should be recommended with items similar to those ones 

that the same user preferred in the past 

• Collaborative filtering: User should be recommended with items that people 

with similar tastes and preferences with him, liked / chose in the past 

• Hybrid approaches: These methods combine collaborative filtering and 

content-based methods. [4] 

In addition to recommender systems that predict the absolute values of ratings that 

individual users would give to the yet unseen items, there has been work done on 

preference-based filtering, i.e., predicting the relative preferences of users. For 

example, in a movie recommendation application, preference-based filtering techniques 

would focus on predicting the correct relative order of the movies, rather than their 

individual ratings [5]. 

Techniques 

There are several techniques used in recommendations systems. Below some of them 

are summarized. 

Association rules: Association rule mining is one of the most popular data mining 

methods and it is used widely for marketing reasons. This class of algorithms extracts 
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rules that predict the occurrence of an item based on the presence of other items in a 

transaction. 

Bayesian classifiers: Bayesian classifiers consider all features and classes of a learning 

problem as random, continuous or discrete variables. Using conditional probabilities 

and the Bayes' Theorem, the goal of a Bayesian classifier is to maximize the posterior 

probability of the class of any item to classify given data. Using ratings as classes with 

discrete values, a Bayesian classifier can be applied to real-valued rating data. [6] 

The naïve Bayesian approach assumes that the features (the users, or the items) are 

independent given a class, the class being for instance a rating taking a discrete value. 

With this simplification, the probability of the class given all features can be computed 

very efficiently. 

Neural networks approaches: Neural Networks (NN) approaches (or Artificial Neural 

Networks) are very common in machine learning, signal processing and data mining 

applications. Many Artificial Neural Networks exist, the most famous class being the 

multilayer perceptron using the backpropagation algorithm. Neural Networks are not 

often used in recommender systems. [7] 

There might be several reasons:  

• Classical large neural networks in high dimensional problems are known to 

learn (converge) very slowly.  

• For classification tasks in content-based systems, maybe there is no need to 

complex non-linear classifiers.  

• NN have a black box effect, that is to say the output of a NN cannot easily be 

interpreted. 

K-Nearest Neighbor approaches: K-Nearest Neighbor (KNN) approaches, also called 

memory-based approaches, are a mainstream in the recommendation system field. They 

generalize the association rule principles to compare either items or users globally, on 

binary or real-valued data. They are well adapted to the core functions of 

recommenders. They can easily be adapted for regression so they can provide ranking 

and rating predictions. They are also well-suited for item-to-item recommendation.  

Their only weakness is the lack of scalability when the number of objects to compare 

during the KNN search increases. The exact algorithm is intrinsically quadratic: the 

time to build the model is proportional to the square of the number of objects to 

compare. [5] 
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Matrix factorization: As the Netflix Prize competition has demonstrated, matrix 

factorization models are superior to classic nearest-neighbor techniques for producing 

product recommendations, allowing the incorporation of additional information such as 

implicit feedback, temporal effects, and confidence levels. [8] 

Other techniques: Several techniques used in the Information Retrieval domain are 

also often used in Recommender Systems when items can be represented by text 

documents. 

1.2 Recommender System Properties 

This section points out a range of properties that are commonly considered when 

deciding which recommendation approach to select. As different applications have 

different needs, the designer of the system must decide on the important properties to 

measure for the concrete application at hand. Several of the properties present a traded-

off, the most obvious example perhaps is the decline in accuracy when other properties 

(e.g. diversity) are improved. It is important to understand and evaluate these trade-offs 

and their effect on the overall performance. [9] 

User Preference: We need to choose one out of a set of candidate algorithms, an 

obvious option is to run a user study (within subjects) and ask the participants to choose 

one of the systems. This evaluation does not restrict the subjects to specific properties, 

and it is generally easier for humans to make such judgments than to give scores for the 

experience. [9] 

Prediction Accuracy: Prediction accuracy is by far the most discussed property in the 

recommendation system literature. At the base of the vast majority of recommender 

systems lie a prediction engine. This engine may predict user opinions over items (e.g. 

ratings of movies) or the probability of usage (e.g. purchase).  

A basic assumption in a recommender system is that a system that provides more 

accurate predictions will be preferred by the user. Thus, many researchers set out to 

find algorithms that provide better predictions. 

Prediction accuracy is typically independent of the user interface and can thus be 

measured in an offline experiment. Measuring prediction accuracy in a user study 

measures the accuracy given a recommendation. This is a different concept from the 

prediction of user behavior without recommendations and is closer to the true accuracy 

in the real system. [9] 
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Coverage: As the prediction accuracy of a recommendation system, especially in 

collaborative filtering systems, in many cases grows with the amount of data, some 

algorithms may provide recommendations with high quality, but only for a small 

portion of the items where they have huge amounts of data. The term coverage can refer 

to several distinct properties of the system that we discuss below. [9] 

Confidence: Confidence in the recommendation can be defined as the system’s trust in 

its recommendations or predictions. Collaborative filtering recommenders tend to 

improve their accuracy as the amount of data over items grows. Similarly, the 

confidence in the predicted property typically also grows with the amount of data.  

In many cases the user can benefit from observing these confidence scores. When the 

system reports a low confidence in a recommended item, the user may tend to further 

research the item before making a decision. For example, if a system recommends a 

movie with very high confidence, and another movie with the same rating but a lower 

confidence, the user may add the first movie immediately to the watching queue but 

may further read the plot synopsis for the second movie, and perhaps a few movie 

reviews before deciding to watch it. [9] 

Trust: While confidence is the system trust in its ratings, with the term “trust” we refer 

to the user’s trust in the system recommendations. For example, it may be beneficial 

for the system to recommend a few items that the user already knows and likes. This 

way, even though the user gains no value from this recommendation, she observes that 

the system provides reasonable recommendations, which may increase her trust in the 

system recommendations for unknown items. Another common way of enhancing trust 

in the system is to explain the recommendations that the system provides.  

Trust in the systems is also called the credibility of the system. If we do not restrict 

ourselves to a single method of gaining trust, such as the one suggested above, the 

obvious method for evaluating user trust is by asking users whether the system 

recommendations are reasonable. [9] 

Novelty:  Novel recommendations are recommendations for items that the user did not 

know about. 

In applications that require novel recommendation, an obvious and easy to implement 

approach is to filter out items that the user already rated or used. [9] 

Serendipity: Serendipity is a measure of how surprising the successful 

recommendations are. For example, if the user has rated positively many movies where 

a certain star actor appears, recommending the new movie of that actor may be novel, 
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because the user may not know of it, but is hardly surprising. Of course, random 

recommendations may be very surprising, and we therefore need to balance serendipity 

with accuracy.  

One can think of serendipity as the amount of relevant information that is new to the 

user in a recommendation. For example, if following a successful movie 

recommendation, the user learns of a new actor that she likes, this can be considered as 

serendipitous. In information retrieval, where novelty typically refers to the new 

information contained in the document (and is thus close to our definition of 

serendipity), Zhang et al. [63] suggested to manually label pairs of documents as 

redundant. Then, they compared algorithms on avoiding recommending redundant 

documents. 

One can also think of serendipity as deviation from the “natural” prediction. That is, 

given a prediction engine that has a high accuracy, the recommendations that it issues 

are “obvious”. Therefore, we will give higher serendipity scores to successful 

recommendations that the prediction engine would deem unlikely. [9] 

Diversity: Diversity is generally defined as the opposite of similarity. In some cases, 

suggesting a set of similar items may not be as useful for the user, because it may take 

longer to explore the range of items. Consider for example a recommendation for a 

vacation, where the system should recommend vacation packages. Presenting a list with 

five recommendations, all for the same location, varying only on the choice of hotel, or 

the selection of attraction, may not be as useful as suggesting five different locations. 

The user can view the various recommended locations and request more details on a 

subset of the locations that are appropriate to her. [9] 

Utility: Many e-commerce websites employ a recommendation system in order to 

improve their revenue by, e.g., enhancing cross-sell. In such cases the recommendation 

engine can be judged by the revenue that it generates for the website. In general, we 

can define various types of utility functions that the recommender tries to optimize. For 

such recommenders, measuring the utility, or the expected utility of the 

recommendations may be more significant than measuring the accuracy of 

recommendations. It is also possible to view many of the other properties, such as 

diversity or serendipity, as different types of utility functions, over single items or over 

lists. [9] 

Risk: In some cases, a recommendation may be associated with a potential risk. For 

example, when recommending stocks for purchase, users may wish to be risk-averse, 
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preferring stocks that have a lower expected growth, but also a lower risk of collapsing. 

On the other hand, users may be risk-seeking, preferring stocks that have a potentially 

high, even if less likely, profit. [9] 

Robustness: Robustness is the stability of the recommendation in the presence of fake 

information, typically inserted on purpose in order to influence the recommendations. 

As more people rely on recommender systems to guide them through the item space, 

influencing the system to change the rating of an item may be profitable to an interested 

party. [9] 

Privacy: In a collaborative filtering system, a user willingly discloses his preferences 

over items to the system in the hope of getting useful recommendations. However, it is 

important for most users that their preferences stay private, that is, that no third party 

can use the recommendation system to learn something about the preferences of a 

specific user. 

It is generally considered inappropriate for a recommendation system to disclose private 

information even for a single user. For this reason analysis of privacy tends to focus on 

a worst case scenario, illustrating theoretical cases under which user’s private 

information may be revealed. [9] 

Adaptivity: Real recommendation systems may operate in a setting where the item 

collection changes rapidly, or where trends in interest over items may shift. Perhaps the 

most obvious example of such systems is the recommendation of news items or related 

stories in online newspapers. In this scenario stories may be interesting only over a 

short period of time, afterwards becoming outdated. When an unexpected news event 

occurs, such as the tsunami disaster, people become interested in articles that may not 

have been interesting otherwise, such as a relatively old article explaining the tsunami 

phenomenon. [9] 

Scalability: As recommender systems are designed to help users navigate in large 

collections of items, one of the goals of the designers of such systems is to scale up to 

real data sets. As such, it is often the case that algorithms trade other properties, such 

as accuracy or coverage, for providing rapid results even for huge data sets consisting 

of millions of items. [9] 
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1.3 Major Challenges 

Researchers in the field of recommender systems face several challenges which pose 

danger for the use and performance of their algorithms. Here we mention only the major 

ones: 

Data sparsity: Since the pool of available items is often exceedingly large (major online 

bookstores offer several millions of books, for example), overlap between two users is 

often very small or none. Further, even when the average number of evaluations per 

user/item are high, they are distributed among the users/items very unevenly and hence 

majority of users/items may have expressed/received only a few ratings. So, an 

effective recommender algorithm must take the data sparsity into account. 

Scalability: While the data is mostly sparse, for major sites it includes millions of users 

and items. It is therefore essential to consider the computational cost issues and search 

for recommender algorithms that are either little demanding or easy to parallelize (or 

both). Another possible solution is based on using incremental versions of the 

algorithms where, as the data grows, recommendations are not recomputed globally 

(using the whole data) but incrementally (by slightly adjusting previous 

recommendations according to the newly arrived data). 

Cold start: When new users enter the system, there is usually insufficient information 

to produce recommendation for them. The usual solutions of this problem are based on 

using hybrid recommender techniques combining content and collaborative data and 

sometimes they are accompanied by asking for some base information (such as age, 

location and preferred genres) from the users. Another way is to identify individual 

users in different web services. 

Diversity vs. accuracy: When the task is to recommend items, which are likely to be 

appreciated by a particular user, it is usually most effective to recommend popular and 

highly rated items. Such recommendation, however, has very little value for the users 

because popular objects are easy to find (often they are even hard to avoid) without a 

recommender system. A good list of recommended items hence should contain also less 

obvious items that are unlikely to be reached by the users themselves. Approaches to 

this problem include direct enhancement of the recommendation list’s diversity and the 

use of hybrid recommendation methods. 

Vulnerability to attacks: Due to their importance in e-commerce applications, 

recommender systems are likely targets of malicious attacks trying to unjustly promote 
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or inhibit some items. There is a wide scale of tools preventing this kind of behavior, 

ranging from blocking the malicious evaluations from entering the system to 

sophisticated resistant recommendation technique. However, this is not an easy task 

since the strategies of attackers also get more and more advanced as the developing of 

preventing tools. 

The value of time: While real users have interests with widely diverse time scales (for 

example, short term interests related to a planned trip and long-term interests related to 

the place of living or political preferences), most recommendation algorithms neglect 

the time stamps of evaluations. It is an ongoing line of research whether and how value 

of old opinions should decay with time and what are the typical temporary patterns in 

user evaluations and item relevance. [10] 

1.4 Recommendation Evaluation Metrics 

The evaluation of recommender systems is often done in terms of accuracy, that is to 

say, of predictive performance for the task of rating prediction. This implies a dataset 

of user ratings on items, usually in the form of user's rating logs. As in a classical 

machine learning test protocol, the predicted scores on the items and the actual notes 

on the items are compared. Several measures are employed, the most famous being the 

Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE).  

Rating-based metrics:  

The Root Mean Squared Error, RMSE, is perhaps the most popular metric used in 

evaluating accuracy of predicted ratings. The system generates predicted ratings �̂�ui for 

a test set T of user-item pairs (u, i) for which the true ratings �̂�ui are known. 

Typically, �̂�ui are known because they are hidden in an offline experiment, or because 

they were obtained through a user study or online experiment.: 

The RMSE between the predicted and actual ratings is given by: 

 

Equation 1 - RMSE metric 

Mean Absolute Error (MAE) is a popular alternative, given by: 
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Equation 2 - MAE metric 

Compared to MAE, RMSE disproportionably penalizes large errors, so that, given a 

test set with four hidden items RMSE would prefer a system that makes an error of 2 

on three ratings and 0 on the fourth to one that makes an error of 3 on one rating and 0 

on all three others, while MAE would prefer the second system. 

1.5 Contend Based Recommender Systems 

Content-based filtering methods are based on a description of the item and a profile of 

the user’s preference. In a content-based recommender system, keywords are used to 

describe the items; besides, a user profile is built to indicate the type of item this user 

likes. In other words, these algorithms try to recommend items that are similar to those 

that a user liked in the past (or is examining in the present). In particular, various 

candidate items are compared with items previously rated by the user and the best-

matching items are recommended. This approach has its roots in information retrieval 

and information filtering research. 

To abstract the features of the items in the system, an item presentation algorithm is 

applied. A widely used algorithm is the TFIDF [11] representation (also called vector 

space representation). 

To create user profile, the system mostly focuses on two types of information: 

1. A model of the user's preference.  

2. A history of the user's interaction with the recommender system. 

Basically, these methods use an item profile (i.e. a set of discrete attributes and features) 

characterizing the item within the system. The system creates a content-based profile 

of users based on a weighted vector of item features. The weights denote the importance 

of each feature to the user and can be computed from individually rated content vectors 

using a variety of techniques. Simple approaches use the average values of the rated 

item vector while other sophisticated methods use machine learning techniques such as 

Bayesian Classifiers, cluster analysis, decision trees, and artificial neural networks in 

order to estimate the probability that the user is going to like the item. Direct feedback 
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from a user, usually in the form of a like or dislike button, can be used to assign higher 

or lower weights on the importance of certain attributes. 

A key issue with content-based filtering is whether the system is able to learn user 

preferences from user's actions regarding one content source and use them across other 

content types. When the system is limited to recommending content of the same type 

as the user is already using, the value from the recommendation system is significantly 

less than when other content types from other services can be recommended. For 

example, recommending news articles based on browsing of news is useful, but it's 

much more useful when music, videos, products, discussions etc. from different 

services can be recommended based on news browsing. [12] 

The content-based approach to recommendation has its roots in information retrieval 

and information filtering research. Because of the significant and early advancements 

made by the information retrieval and filtering communities and because of the 

importance of several text-based applications, many current content-based systems 

focus on recommending items containing textual information, such as documents, Web 

sites (URLs), and Usenet news messages. The improvement over the traditional 

information retrieval approaches comes from the use of user profiles that contain 

information about users’ tastes, preferences, and needs. The profiling information can 

be elicited from users explicitly, e.g., through questionnaires, or implicitly—learned 

from their transactional behavior over time. [5] 

Pros and cons of content-based filtering systems  

The content-based methods allow overcoming some limitations of the collaborative 

filtering:  

• They can provide recommendations for a new item even if no rating is available 

for it; 

• They can manage situations where different users do not share identical items, 

but only similar items according to their intrinsic characteristics (metadata).  

However, the content-based filtering methods require rich descriptions of items and 

well-built and well-informed user profiles. These ideal cases are rare in real 

applications. This dependence on the quality and structure of data is the main weakness 

of methods based on content. Since it is difficult in many areas, to obtain structured and 

complete descriptions of the items, content-based methods have mainly been applied to 
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catalogs of textual information, such as documents, pages, websites, or message 

forums. Another weak point of content-based methods is their tendency to recommend 

items very similar to items already seen and rated by users, a phenomenon called 

overspecialization. The “help to discover” aspect, and the originality of the 

recommendations, are strongly reduced as compared to collaborative filtering. On the 

other hand, the fact that users can get recommendations without sharing their profile 

ensures their privacy. 

Content-based approaches appear symmetrical and complementary methods to 

collaborative filtering. Where collaborative methods involve centralized data on 

thousands of users, content-based approaches generally require usages of only one user. 

Where collaborative filtering is content-agnostic (i.e. independent to the items' 

metadata), content-based approaches will be effective only for catalogs of items 

represented by rich metadata. The complementary of content-based methods to 

collaborative methods made them good candidates to hybridization techniques 

Disadvantages 

In the content-based approach, the system must be capable of matching the 

characteristics of an item against relevant features in the user's profile. In order to do 

this, it must first construct a sufficiently-detailed model of the user's tastes and 

preferences through preference elicitation. This may be done either explicitly (by 

querying the user) or implicitly (by observing the user's behavior). In both cases, the 

cold start problem would imply that the user has to dedicate an amount of effort using 

the system in its 'dumb' state – contributing to the construction of their user profile – 

before the system can start providing any intelligent recommendations. 

In the collaborative filtering approach, the recommender system would identify users 

who share the same preferences (e.g. rating patterns) with the active user, and propose 

items which the like-minded users favored (and the active user has not yet seen). Due 

to the cold start problem, this approach would fail to consider items which no-one in 

the community has rated previously. 

The cold start problem is also exhibited by interface agents. Since such an agent 

typically learn the user's preferences implicitly by observing patterns in the user's 

behavior – “watching over the shoulder” – it would take time before the agent may 

perform any adaptations personalized to the user. Even then, its assistance would be 

limited to activities which it has formerly observed the user engaging in 
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Limitations and Extensions 

Although there are different approaches to learning a model of the user’s interest with 

content-based recommendation, no content-based recommendation system can give 

good recommendations if the content does not contain enough information to 

distinguish items the user likes from items the user doesn’t like. In recommending some 

items, e.g., jokes or poems, there often isn’t enough information in the word frequency 

to model the user’s interests. While it would be possible to tell a lawyer joke from a 

chicken joke based upon word frequencies, it would be difficult to distinguish a funny 

lawyer joke from other lawyer jokes. As a consequence, other recommendation 

technologies, such as collaborative recommenders, should be used in such situations.  

In some situations, e.g., recommending movies, restaurants, or television programs, 

there is some structured information (e.g., the genre of the movie as well as actors and 

directors) that can be used by a content-based system. However, this information might 

be supplemented by the opinions of other users. A final usage of content in 

recommendations is worth noting. Simple content-based rules may be used to filter the 

results of other methods such as collaborative filtering. For example, even if it is the 

case that people who buy dolls also buy adult videos, it might be important not to 

recommend adult items in a particular application. Similarly, although not strictly 

content-based, some systems might not recommend items that are out of stock. [13] 

1.6 Collaborative Filtering Recommender Systems 

The fundamental assumption of Collaborative Filtering is that if users X and Y rate n 

items similarly, or exhibit similar behavior (e.g., buying, watching, listening), and 

hence will rate or act on other items similarly [14]. 

Collaborative Filtering techniques use a database of preferences for items by users to 

predict additional topics or products a new user might like. In a typical Collaborative 

Filtering scenario, there is a list of m users {u1, u2,..., um} and a list of n items {i1, i2,..., 

in}, and each user, ui, has a list of items, Iui, which the user has rated, or about which 

their preferences have been inferred through their behaviors. The ratings can either be 

explicit indications, and so forth, on a 1–5 scale, or implicit indications, such as 

purchases or click-throughs [14]. 

Alice: (like) Shrek, Snow White, (dislike) Superman 

Bob: (like) Snow White, Superman, (dislike) spiderman 
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Chris: (like) spiderman, (dislike) Snow white 

Tony: (like) Shrek, (dislike) Spiderman 

Figure 1 - An example of user-item matrix 

 Shrek Snow White Spider-man Super-man 

Alice Like Like  Dislike 

Bob  Like Dislike Like 

Chris  Dislike Like  

Tony Like  Dislike ? 

 

Figure 2. An example of user-item matrix 

Collaborative filtering (CF) is a technique used by some recommender systems. CF has 

two senses, a narrow one and a more general one. In general, collaborative filtering is 

the process of filtering for information or patterns using techniques involving 

collaboration among multiple agents, viewpoints, data sources, etc. Applications of 

collaborative filtering typically involve very large data sets. CF methods have been 

applied to many different kinds of data including: sensing and monitoring data, such as 

in mineral exploration, environmental sensing over large areas or multiple sensors; 

financial data, such as financial service institutions that integrate many financial 

sources; or in electronic commerce and web applications where the focus is on user 

data, etc. The remainder of this discussion focuses on collaborative filtering for user 

data, although some of the methods and approaches may apply to the other major 

applications as well. 

In the newer, narrower sense, collaborative filtering is a method of making automatic 

predictions (filtering) about the interests of a user by collecting preferences 

or taste information from many users (collaborating). The underlying assumption of the 

collaborative filtering approach is that if a person A has the same opinion as a 

person B on an issue, A is more likely to have B's opinion on a different issue x than to 

have the opinion on x of a person chosen randomly. For example, a collaborative 

filtering recommendation system for television tastes could make predictions about 

which television show a user should like given a partial list of that user's tastes (likes 

or dislikes). Note that these predictions are specific to the user, but use information 

gleaned from many users. This differs from the simpler approach of giving 

an average (non-specific) score for each item of interest, for example based on its 

number of votes [12].  
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Methodology 

CF systems have many forms, but many common systems can be reduced to two steps: 

1. Look for users who share the same rating patterns with the active user (the user 

whom the prediction is for). 

2. Use the ratings from those like-minded users found in step 1 to calculate a 

prediction for the active user 

This falls under the category of user-based CF. A specific application of this is the user-

based Nearest Neighbor algorithm. 

Alternatively, item-based collaborative filtering invented by Amazon.com (users who 

bought x also bought y), proceeds in an item-centric manner: 

• Build an item-item matrix determining relationships between pairs of items 

• Infer the tastes of the current user by examining the matrix and matching that 

user's data 

Another form of CF can be based on implicit observations of normal user behavior (as 

opposed to the artificial behavior imposed by a rating task). These systems observe 

what a user has done together with what all users have done (what music they have 

listened to, what items they have bought) and use that data to predict the user's behavior 

in the future, or to predict how a user might like to behave given the chance. These 

predictions then have to be filtered through business logic to determine how they might 

affect the actions of a business system. For example, it is not useful to offer to sell 

somebody a particular album of music if they already have demonstrated that they own 

that music. 

Relying on a scoring or rating system which is averaged across all users ignores specific 

demands of a user and is particularly poor in tasks where there is large variation in 

interest (as in the recommendation of music). However, there are other methods to 

combat information explosion, such as web search and data clustering 
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Memory-based Collaborative Filtering 

This mechanism uses user rating data to compute similarity between users or items. 

This is used for making recommendations. This was the earlier mechanism and is used 

in many commercial systems. It is easy to implement and is effective. Typical examples 

of this mechanism are neighborhood-based CF and item-based/user-based top-N 

recommendations [3]. For example, in user-based approaches, the value of ratings user 

u gives to item i is calculated as an aggregation of some similar users rating to the item: 

𝑟𝑢,𝑖 =  agg𝑟𝑢′∈𝑈 𝑟𝑢′ ,𝑖  

Equation 3 - value of ratings user u gives to item i 

where U denotes the set of top N users that are most similar to user u who rated item i. 

Some examples of the aggregation function include: 

𝑟
𝑢,𝑖= 

1
𝑁

 ∑ 𝑟𝑢′,𝑖

𝑢′∈𝑈

 

Equation 4 - value of ratings user u gives to item i example 1 

Table 1 - Overview of collaborative filtering techniques 

CF categories Representative techniques Main advantages Main shortcomings 

Memory-based CF 

*Neighbor-based CF (item-

based/user-based CF 

algorithms with Pearson/vector 

cosine correlation) 

*Item-based/user-based top-N 

recommendations 

*easy implementation 

*new data can be added easily 

and incrementally 

*need not consider the content 

of the items being 

recommended 

*scale well with co-rated items 

*are dependent on human 

ratings 

*performance decrease when 

data are sparse 

*cannot recommend for new 

users and items 

*have limited scalability for 

large datasets 

Model-based CF 

*Bayesian belief nets CF 

*clustering CF 

*MDP-based CF 

*latent semantic CF 

*sparse factor analysis 

*CF using dimensionality 

reduction techniques, for 

example, SVD, PCA 

*better address the sparsity, 

scalability and other problems 

*improve prediction 

performance 

*give an intuitive rationale for 

recommendations 

*expensive model-building 

*have trade-off between 

prediction performance and 

scalability 

*lose useful information for 

dimensionality reduction 

techniques 

Hybrid recommenders 

*content-based CF 

recommender, for example, 

Fαb 

*Content-boosted CF 

*hybrid CF combining 

memory-based and model-

based CF algorithms, for 

example, Personality 

Diagnosis 

*overcome limitations of CF 

and content-based or other 

recommenders 

*improve prediction 

performance 

*overcome CF problems such 

as sparsity and gray sheep 

*have increased complexity 

and expense for 

implementation 

*need external information that 

usually not available 
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𝑟𝑢,𝑖 =  𝑘 ∑ simil(𝑢, 𝑢′)𝑟𝑢′,𝑖

𝑢′∈𝑈

 

Equation 5 value of ratings user u gives to item i example 2 

 

𝑟𝑢,𝑖 =  𝑟𝑢 + 𝑘 ∑ simil(𝑢, 𝑢′)(𝑟𝑢′,𝑖  −  𝑟𝑢′  )

𝑢′∈𝑈

 

Equation 6 value of ratings user u gives to item i example 3 

 

where k is a normalizing factor defined as     

𝑘 = 1/ ∑ |simil(𝑢, 𝑢′)|

𝑢′∈𝑈

 

Equation 7 normalizing factor 

and �̅�i is the average rating of user u for all the items rated by that user. 

The neighborhood-based algorithm calculates the similarity between two users or 

items, produces a prediction for the user taking the weighted average of all the ratings. 

Similarity computation between items or users is an important part of this approach. 

Multiple mechanisms such as Pearson correlation and vector cosine-based similarity 

are used for this. 

The Pearson correlation similarity of two users x, y is defined as 

simil(𝑥, 𝑦) =
∑ (𝑟𝑥,𝑖 − 𝑟�̅�)(𝑟𝑦,𝑖 − 𝑟�̅�)𝑖∈𝐼𝑥𝑦

√∑ (𝑟𝑥,𝑖 − 𝑟�̅�)𝑖∈𝐼𝑥𝑦

2
 ∑ (𝑟𝑦,𝑖 − 𝑟�̅�)𝑖∈𝐼𝑥𝑦

2
 

Equation 8 - Pearson correlation similarity of two users x, y 

where Ixy is the set of items rated by both user x and user y. 

The cosine-based approach defines the cosine-similarity between two users x and y as: 

simil(x, y) =  cos(�⃗�, �⃗�) =
�⃗� ∙ �⃗�

‖�⃗�‖ × ‖�⃗�‖
=

∑ 𝑟𝑥,𝑖𝑟𝑦,𝑖𝑖∈𝐼𝑥𝑦

√∑ 𝑟𝑥,𝑖
2

𝑖∈𝐼𝑥 √∑ 𝑟𝑦,𝑖
2

𝑖∈𝐼𝑦

 

Equation 9 - cosine-similarity between two users x and y 
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The user based top-N recommendation algorithm identifies the k most similar users to 

an active user using similarity-based vector model. After the k most similar users are 

found, their corresponding user-item matrices are aggregated to identify the set of items 

to be recommended. A popular method to find the similar users is the locality-sensitive 

hashing, which implements the nearest neighbor mechanism in linear time. 

The advantages with this approach include: the explain ability of the results, which is 

an important aspect of recommendation systems; it is easy to create and use; new data 

can be added easily and incrementally; it need not consider the content of the items 

being recommended; and the mechanism scales well with co-rated items. 

There are several disadvantages with this approach. Firstly, it depends on human 

ratings. Secondly, its performance decreases when data gets sparse, which is frequent 

with web related items. This prevents the scalability of this approach and has problems 

with large datasets. Although it can efficiently handle new users because it relies on a 

data structure, adding new items becomes more complicated since that representation 

usually relies on a specific vector space. That would require to include the new item 

and re-insert all the elements in the structure. 

Model-based Collaborative Filtering 

Models are developed using data mining, machine learning algorithms to find 

patterns based on training data. These are used to make predictions for real data. There 

are many model-based CF algorithms. These include Bayesian networks, clustering 

models, latent semantic models such as singular value decomposition, probabilistic 

latent semantic analysis, Multiple Multiplicative Factor, Latent Dirichlet allocation and 

markov decision process-based models. [15] 

 

This approach has a more holistic goal to uncover latent factors that explain observed 

ratings. Most of the models are based on creating a classification or clustering technique 

to identify the user based on the test set. The number of the parameters can be reduced 

based on types of principal component analysis. 

 

There are several advantages with this paradigm. It handles the sparsity better than 

memory-based ones. This helps with scalability with large data sets. It improves the 

prediction performance. It gives an intuitive rationale for the recommendations. 



 

30 

 

The disadvantages with this approach are in the expensive model building. One needs 

to have a tradeoff between prediction performance and scalability. One can lose useful 

information due to reduction models. A number of models have difficulty explaining 

the predictions. 

 

Hybrid approaches 

A number of applications combines the memory-based and the model-based CF 

algorithms. These overcome the limitations of native CF approaches. It improves the 

prediction performance. Importantly, it overcomes the CF problems such as sparsity 

and loss of information. However, they have increased complexity and are expensive 

to implement. Usually most of the commercial recommender systems are hybrid, for 

example, Google news recommender system. [12] 

 

Disadvantages 

A CF system does not necessarily succeed in automatically matching content to 

one's preferences. Unless the platform achieves unusually good diversity and 

independence of opinions, one point of view will always dominate another in a 

particular community. As in the personalized recommendation scenario, the 

introduction of new users or new items can cause the cold start problem, as there will 

be insufficient data on these new entries for the collaborative filtering to work 

accurately. In order to make appropriate recommendations for a new user, the system 

must first learn the user's preferences by analyzing past voting or rating activities. The 

CF system requires a substantial number of users to rate a new item before that item 

can be recommended. 

Challenges of collaborative filtering 

Synonyms: Synonyms refers to the tendency of a number of the same or very similar 

items to have different names or entries. Most recommender systems are unable to 

discover this latent association and thus treat these products differently. 

For example, the seemingly different items “children movie” and “children film” are 

actually referring to the same item. Indeed, the degree of variability in descriptive term 

usage is greater than commonly suspected. The prevalence of synonyms decreases the 

recommendation performance of CF systems. Topic Modeling (like the Latent Dirichlet 
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Allocation technique) could solve this by grouping different words belonging to the 

same topic. 

Grey sheep: Grey sheep refers to the users whose opinions do not consistently agree or 

disagree with any group of people and thus do not benefit from collaborative 

filtering. Black sheep are the opposite group whose idiosyncratic tastes make 

recommendations nearly impossible. Although this is a failure of the recommender 

system, non-electronic recommenders also have great problems in these cases, so black 

sheep is an acceptable failure. 

 

Shilling attacks: In a recommendation system where everyone can give the ratings, 

people may give lots of positive ratings for their own items and negative ratings for 

their competitors. It is often necessary for the collaborative filtering systems to 

introduce precautions to discourage such kind of manipulations. 

 

Diversity and the Long Tail: Collaborative filters are expected to increase diversity 

because they help us discover new products. Some algorithms, however, may 

unintentionally do the opposite. Because collaborative filters recommend products 

based on past sales or ratings, they cannot usually recommend products with limited 

historical data. This can create a rich-get-richer effect for popular products, akin 

to positive feedback. [12] 

1.7 Hybrid Approaches 

Recent research has demonstrated that a hybrid approach, combining collaborative 

filtering and content-based filtering could be more effective in some cases. Hybrid 

approaches can be implemented in several ways: by making content-based and 

collaborative-based predictions separately and then combining them; by adding 

content-based capabilities to a collaborative-based approach (and vice versa); or by 

unifying the approaches into one model. Several studies empirically compare the 

performance of the hybrid with the pure collaborative and content-based methods and 

demonstrate that the hybrid methods can provide more accurate recommendations than 

pure approaches. These methods can also be used to overcome some of the common 

problems in recommender systems such as cold start and the sparsity problem. 

Netflix is a good example of hybrid systems. They make recommendations by 

comparing the watching and searching habits of similar users (i.e. collaborative 
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filtering) as well as by offering movies that share characteristics with films that a user 

has rated highly (content-based filtering). 

A hybrid recommender system is one that combines multiple techniques together to 

achieve some synergy between them. 

 

Collaborative: The system generates recommendations using only information about 

rating profiles for different users. Collaborative systems locate peer users with a rating 

history similar to the current user and generate recommendations using this 

neighborhood. [16] 

 

Content-based: The system generates recommendations from two sources: the features 

associated with products and the ratings that a user has given them. Content-based 

recommenders treat recommendation as a user-specific classification problem and learn 

a classifier for the user's likes and dislikes based on product features. 

 

Demographic: A demographic recommender provides recommendations based on a 

demographic profile of the user. Recommended products can be produced for different 

demographic niches, by combining the ratings of users in those niches. 

 

Knowledge-based: A knowledge-based recommender suggests products based on 

inferences about a user’s needs and preferences. This knowledge will sometimes 

contain explicit functional knowledge about how certain product features meet user 

needs. 

The term hybrid recommender system is used here to describe any recommender system 

that combines multiple recommendation techniques together to produce its output. 

There is no reason why several different techniques of the same type could not be 

hybridized, for example, two different content-based recommenders could work 

together, and a number of projects have investigated this type of hybrid: NewsDude, 

which uses both naive Bayes and kNN classifiers in its news recommendations is just 

one example. 

  



 

33 

 

Seven hybridization techniques:  

• Weighted: The score of different recommendation components are combined 

numerically. 

• Switching: The system chooses among recommendation components and 

applies the selected one. 

• Mixed: Recommendations from different recommenders are presented together. 

• Feature Combination: Features derived from different knowledge sources are 

combined together and given to a single recommendation algorithm. 

• Feature Augmentation: One recommendation technique is used to compute a 

feature or set of features, which is then part of the input to the next technique. 

• Cascade: Recommenders are given strict priority, with the lower priority ones 

breaking ties in the scoring of the higher ones. 

• Meta-level: One recommendation technique is applied and produces some sort 

of model, which is then the input used by the next technique. 
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Chapter 2: Presentation of 

Recommender Systems 
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This section presents some representative recommender systems, collaborative, 

thematic and hybrid. The dates in parentheses refer to the years of publication of 

reference articles, not necessarily the date of implementation in a case of an operational 

system.  

2.1 Tapestry (1992): The Precursor 

Tapestry, is often presented as the first recommendation system to be called 

collaborative. It is based on the work of Goldberg [17]. Tapestry allowed a flow of 

electronic documents to be recommended, to a user group at Xerox PARC. It was 

actually a hybrid system in the sense that access to documents may be made by the 

content of the documents but also on the basis of annotations made by other users on 

these same documents. The system consisted of several modules including: a database 

of documents and annotations on these documents, a system to read, navigate and 

annotate documents, the filtering system based on a query language similar to SQL. 

The requests and the associated language were a major limitation of the system which 

made it difficult to use. Users had to create queries to retrieve documents. These queries 

were based on documents or annotations. The requests were then stored and 

periodically re-executed. It was possible to formulate queries like "give me messages 

talking about New York and annotated at least 20 times in the past 2 weeks". More than 

the collaborative aspect, it is the hybrid aspect of Tapestry (access to content data and 

usage data on their contents) which was the most significant. For the collaborative 

feature, in fact, the system did not offer an automatic process to analyze the usages 

performed: users had to explicitly query the uses of other users. It is more a precursor 

of the automatic recommenders than an automatic recommender. [18] 

2.2 GroupLens (1994): The Collaborative Filtering Approach  

GroupLens made recommendations of newsgroup messages and was developed at the 

University of Minnesota [19].  GroupLens worked on a principle similar to Tapestry: a 

group of users annotate documents, in a simplified way: First, annotations have been 

reduced to a rating of interest for each document. Second, the query language, the main 

difficulty of Tapestry, was replaced by an automatic score prediction feature, calculated 

from the correlation of ratings from users. [20] 

GroupLens validated the principle of collaborative filtering on a large scale, but also 

confirmed its weaknesses such as the cold start problem: the system was not capable of 

making good predictions before a certain critical mass of users. This could deter early 
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users to become involved in the system. GroupLens was the first article introducing the 

term "collaborative filtering". The GroupLens system was based on a method of K-

nearest neighbors on users. The Pearson coefficient was used as the measure of 

similarity between the users. 

GroupLens is often considered as the founder of the collaborative filtering approach.  

2.3 MovieLens (1997) 

A reference website and a reference database MovieLens and MovieLens Unplugged 

are recommender systems from GroupLens, a research team from the Department of 

Computer Science of the University of Minnesota. The team has applied its 

collaborative filtering techniques to movie recommendation. MovieLens is a Web 

service of movie recommendation for scientific research. It is based on the oldest works 

of GroupLens. We can register on this site via a pseudonym. We are then invited to rate 

a number of films from a broad catalog. MovieLens asked, for example to rate at least 

20 movies before making recommendations. MovieLens' logs of ratings are publicly 

available on Internet. Long before the 2006-2009 Netflix's challenge, the MovieLens 

 

Figure 3. MovieLens is still available at: http://movielens.umn.edu/ 
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database was the main source of experimental data to study the algorithms for 

collaborative filtering. 

2.4 Amazon.com (2003) 

Scalable item-to-item collaborative filtering recommendation, Amazon, is an example 

of successful recommendation engine's technology. This technology is the basis of the 

marketing strategy of the website. The main function used is based collaborative item-

to-item contextual recommendations, this was introduced very early on the site (late 

90's). It is based on the logs of purchases and corresponds to the calculation of a 

similarity matrix of items with an optimized algorithm to scale with the imposing 

volumes handled by Amazon. Amazon popularized the famous feature "people who 

bought this item also bought these items". [21] 

An example of the interface provided by Amazon for item-to-item contextual 

recommendation is given below. Amazon may now be classified as a hybrid system as 

a recommendation features based on some metadata (genre, author) also works in push 

mode with personalized web page and e-mailing. 

 

Figure 4. Amazon.com's item-to-item contextual recommendation to anonymous user 

Amazon's main innovations are:  

• To have designed a high scalability recommender system 
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• To have built its entire marketing strategy on a recommender engine, 

intelligently integrating the recommendation functions into its website.  

2.5 MORE (2006): Hybrid Recommendation by Switch  

MORE [22] is a movie recommendation system prototype, using a switch-based 

hybridization. The switch mode between a collaborative and thematic system uses the 

size of the user's profile. MORE was only evaluated by simulation. It was evaluated on 

the MovieLens database (1 million ratings, ~6000 users, ~3700 movies). An acquisition 

of thematic information was made on the IMDd database (International Movie 

Database, www.imdb.com): the information of genre, actors, director and keywords 

were joined to the titles of movies. MORE uses a K-nearest neighbor model, applied 

on users in the collaborative system, or applied on items in the content-based system. 

In the case of the collaborative system, the chosen similarity function is the Pearson 

coefficient applied to the vector of ratings of users, and users can be considered 

neighbors of a target user u if and only if their similarity with u is positive. In the case 

of the thematic system, the similarity between items is the cosine of the vectors of 

characteristics of the items. Two types of hybridization were tested.  

The system works in a collaborative mode by default because this method is considered 

the most efficient. In the first type of hybridization, called the "substitute" hybrid 

method, the system switches to the thematic filtering when a user has less than K=5 

reliable neighbors (according to a similarity threshold). In the second type of 

hybridization, called " switching" hybrid 

method, the system switches to the thematic 

filtering if a user has less than S=40 ratings 

(threshold chosen empirically).  

The authors have not done extensive testing 

with different parameters K and S but noted 

that with the tested values the substitute hybrid 

method increased both the predictive 

performance (MAE) and overall coverage. 

Coverage is the percentage of items in the 

catalog that can be analyzed to return a score. 

The substitute and switching hybridization 

modes are the main particularities of MORE. 
 

Figure 5. Architecture of MORE 
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(MAE) and overall coverage. Coverage is the percentage of items in the catalog that 

can be analyzed to return a score. 

2.6 YouTube (2010)  

YouTube (www.youtube.com) is a famous online video website community. The 

recommendation system of YouTube [23] provides contextual and personalized 

recommendations. The system makes recommendations but does not score the items: 

This is a Top-N-Recommendation, if one chose a typology based on functionality. The 

YouTube’s data typically represents a high scalability issue: it has more than one billion 

videos, most without metadata, and users are multi-million daily. YouTube’s 

recommender system is based on association rules for short periods of navigation of 

each user (usually 24 hours).  

The very high scalability on very sparse data, and the optimization techniques to 

address these issues, are the main particularities of YouTube's recommender. 

  

 

Figure 6. Personalized recommendation with YouTube 

file:///G:/Google%20Drive/MSc/Πτυχιακή-Χαραλαμπάκης/www.youtube.com
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2.7 Recommendation on Twitter: Twittomender (2010)  

Twitter is a recent real time service on the Internet, enabling a community of users to 

post and follow short text messages based on SMS and limited to 140 characters. A 

message issued by a user on Twitter is called a tweet.  

Twitter is considered as a real time micro-blogging social network using personal 

textual content generation. Users can explicitly designate the other users they wish to 

listen to tweets. 

The proposed recommendation system [24] is called Twittomender and uses the Twitter 

API to access to user data. Twittomender recommends to users of Twitter other users 

to follow, therefore followees, based on their tweets and the social graph in Twitter. 

The system uses both content analysis of the tweets and collaborative analysis.  

Twittomender performs a profiling of each user taking into account his tweets, its 

followees and its followers. The recommendation system is based on an open source 

search engine, Lucene, that indexes the tweets. Tweets, as users replace traditional 

documents in this framework.  

The main innovations of Twittomender are:  

• Carrying out the recommendation in the context of social networks for instant 

communication (micro-blogging),  

• Using a search engine as support to the recommendation, for thematic and 

collaborative profiling, using document terms, itemIDs and userIDs at the same 

time.  

2.8 Real Applications 

Thanks to the ever-decreasing costs of data storage and processing, recommender 

systems gradually spread to most areas of our lives. Sellers carefully watch our 

purchases to recommend us other goods and enhance their sales, social web sites 

analyze our contacts to help us connect with new friends and get hooked with the site, 

and online radio stations remember skipped songs to serve us better in the future. In 

general, whenever there is plenty of diverse products and customers are not alike, 

personalized recommendation may help to deliver the right content to the right person.  

A recommender system may hence have significant impact on a company’s revenues: 

for example, 60% of DVDs rented by Netflix are selected based on personalized 

recommendations. Recommender systems not only help decide which products to offer 

to an individual customer, they also increase cross-sell by suggesting additional 
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products to the customers and improve consumer loyalty because consumers tend to 

return to the sites that best serve their needs. 

Since no recommendation method serves best all customers, major sites are usually 

equipped with several distinct recommendation techniques ranging from simple 

popularity-based recommendations to sophisticated techniques many of which we shall 

encounter in the following sections. Further, new companies emerge (see, for example, 

string.com) which aim at collecting all sorts of user behavior (ranging from pages 

visited on the web and music listened on a personal player to ‘‘liking’’ or purchasing 

items) and using it to provide personalized recommendations of different goods or 

services. [10] 

Site What is recommended 

Amazon 

Facebook 

WeFollow 

MovieLens 

Nanocrowd 

Jinni 

Findory 

Digg 

Zite 

Meehive 

Netflix 

CDNOW 

eHarmony 

Chemistry 

True.com 

Perfectmatch 

CareerBuilder 

Monster 

Pandora 

Mufin 

StumbleUpon 

Books/other products 

Friends 

Friends 

Movies 

Movies 

Movies 

News 

News 

News 

News 

DVDs 

CDs/DVDs 

Dates 

Dates 

Dates 

Dates 

Jobs 

Jobs 

Music 

Music 

Web sites 
Table 2 - Recommendations per website 

2.9 SCoR: A Novel Recommender System 

Based on the Vivaldi [25] algorithm, SCoR [26] is a Synthetic Coordinate based 

Recommender System, that assigns synthetic coordinates to nodes (users and items), so 

that the distance between a user and an item provides an accurate prediction of the 

user’s preference for that item.  

The goal of the algorithm is to calculate unknown recommendations that accurately 

predict the preference of user u for item i, when u has not yet rated i, based on the 

indirect knowledge of existing user-item ratings. The results of the algorithm’s 
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evaluation, shows that SCoR outperforms the most popular algorithmic techniques in 

the field, approaches like matrix factorization and collaborative filtering. 

Beside the evaluation results and the recommendation system proposed, SCoR can give 

extra annotations of the user and item datasets based on an analysis of the nodes 

positions in the n-dimensional Euclidean space. SCoR is able to provide the sets of 

users with similar preferences to each other and the sets of items with similar ratings 

from users. Furthermore, SCoR is a parameter free, thus requiring no fine tuning to 

achieve high performance, and is more resistance to the cold-start problem compared 

to other algorithms. 

The detected problem of the SCoR algorithm is that the accuracy is reduced in cases of 

very sparse datasets (i.e. very few users with very few ratings), which is also a problem 

for the Vivaldi algorithm. 

The algorithm 

As mentioned above, the SCoR algorithm is an updated version of Vivaldi [25] 

algorithm. All users and items are placed in a single, multi-dimensional Euclidean 

space. The Vivaldi synthetic coordinates algorithm is then employed to properly place 

them in points in space so that the distance between any user-item pair is directly 

respective to the preference of that user for the specific item. Indirect relationships 

between users who have rated the same item, and items rated by the same user are them 

accurately reflected. The Euclidean distance between a user and an item of unknown 

rating (for that user) is used to make the prediction (recommendation). 

Starting with the input of: 

a) a set of users u ∈ the set U = {1, 2, ..., N} of unique identifiers of users which 

have rated items.  

b) a set of items i ∈ the set I = {1, 2, ..., M} of unique identifiers of items that have 

been rated by users. 

c) the ratings r(u, i) ∈ R denotes the rating (declared preference) of user u for item 

i. 

The first modification of the Vivaldi algorithm is that network nodes are replaced by 

user nodes and item nodes, while latencies are replaced by distances calculated by the 

ratings of users for items. As a result, a bipartite graph is formed, consisting of users 

nodes on one side and items nodes on the other (instead of just network nodes). For 

each (u,i, r(u,i )) triplet, an edge is added between nodes u and i. Each edge is assigned 
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a weight dd(u, i), based on rating r(u, i), which reflects the distance of edge (u, i). A (u, 

i) pair with high r value (high preference of user u for item i) corresponds to an edge 

with small distance and vice versa. 

The smallest rating, minR, is assigned a distance of 100, whereas the highest rating 

maxR is assigned a distance of 0. Given these values, the distance dd(u, i) is calculated 

as follows: 

dd(𝑢, 𝑖) = 100 ∙ (
𝑚𝑎𝑥𝑅 − 𝑟(𝑢, 𝑖)

𝑚𝑎𝑥𝑅 − 𝑚𝑖𝑛𝑅
) 

Equation 10 - the distance dd(u, i) 

where minR, maxR denote the minimum (low preference) and maximum (high 

preference) ratings, respectively. Thus, latency between network nodes in Vivaldi, is 

replaced with the distance calculated by the declared rating between the user and the 

item according to the above equation. Vivaldi then iteratively updates the positions of 

the nodes to satisfy the desired distances for all edges until each node’s position 

stabilizes. 

Ideally, if a user u has rated item i with value r(u, i), then after Vivaldi has converged, 

the distance of nodes u and i should be dd(u, i), calculated according to the above 

equation. 

The second modification of the Vivaldi algorithm is to allow weighted neighbor 

selection, for user, item pairs. As algorithm progresses, not all user-item pairs are 

equally successful in achieving the desired distance. In order to help less successful 

pairs, improve their performance, we make a second execution of the algorithm, this 

time relying more heavily on user- item links that better achieved their desired distance. 

To implement this step, after Vivaldi converges, they assign a weight to each neighbor, 

based on the observed error between their desired distance dd(u, i) and the actual 

distance d(u, i) and the Mean Square Error of the node MSE(u). 

Dataset annotations using SCoR 

Beside from providing a recommendation system, SCoR is able to provide annotations 

of the user and item datasets based on an analysis of the nodes positions in the n-

dimensional Euclidean space. It is able to provide the sets of users with similar 

preferences to each other and the sets of items with similar ratings from users. 
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Using SCoR, the Euclidean distance d(u1, u2) between two user nodes u1, u2 is directly 

related to the absolute difference in their recommendations. When the algorithm 

converges, it holds that the lower the distance of two nodes in the n-dimensional 

Euclidean space, the smaller their recommendation difference. The distance between 

two nodes is equal to the corresponding maximum value of their recommendation 

difference. If the distance between two nodes is low, it means that users u1, u2 have 

similar preferences for any item. Similar analysis can be applied to items. The lower 

the distance between two items, the lower the difference between their ratings. 

Experimental Results 

The SCoR framework is evaluated with well-known, real world datasets in our 

experiments. 

• Netflix prize dataset (smallnetflix) [27] 

• MovieLens dataset (ml) 

• Jester dataset [28] 

• Jester2 dataset [28] 

Each dataset is comprised of two files. A training set which includes the “known” 

ratings and a validation dataset which is the ground truth against which we test the 

predictions of the algorithms. 

To evaluate its performance SCoR is compared with recent recommender algorithms: 

1. ALS [29] 

2. ALS_COORD [30] 

3. BIASSGD [31] 

4. BI- ASSGD2 [31] 

5. RBM [32] 

6. SGD  [33] 

7. SVDPP [31] 

8. P_MEAN [34]  

9. USER-USER algorithm [35] 



 

 

The results of the algorithm evaluation, shows that SCoR outperforms the most popular 

algorithmic techniques in the field, approaches like matrix factorization and collaborative 

filtering. 

Dataset: smallnetflix ml jester jester2 

ALS 1.16 0.964 0.943 1.38 

ALS_COORD 1.14 0.932 0.917 1.30 

BIASSGD 0.958 0.897 0.872 0.909 

BIASSGD2 0.967 0.888 0.861 0.923 

SCoR 0.940 0.875 0.854 0.894 

RBM 0.941 0.900 0.880 0.912 

SGD 0.961 0.898 0.872 0.906 

SVDPP 0.989 0.944 0910 0.953 

P-MEAN 0.950 0.913 0.886 1.025 

USER-USER 0.96 0.905 0.869 1.072 

Table 3 - RMSE of the ten recommender systems for the four datasets 

Figure 7 presents the performance of the ten recommender systems for the four datasets. 

According to this table, SCoR gives the highest performance for all datasets. This table 

summarizes the main results of the experiments. 

 

Figure 7. The RANK of the ten systems computed for the four datasets 

The computation of the RANK [36] metric per algorithm, which is defined as the average order 

in performance of each system over the four datasets, can be used as a metric to summarize the 

algorithms’ performance.  
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𝑅𝐴𝑁𝐾(𝑠) =
∑ 𝑂𝑟𝑑𝑒𝑟(𝑠, 𝑑𝑎𝑡)𝑑𝑎𝑡∈𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠

|𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠|
 

 where Order(s, dat) is the order in performance of system s on the dataset dat, e.g. Datasets 

= {small netflix, ml, jester, jester2} and |Datasets| is the number of datasets.  

According to the RANK definition it holds that the lower the RANK, the better the algorithm 

(Haindl & Mikeš, 2016). According to this experiment SCoR belongs in the first class (top 

performance system), since it clearly outperforms the rest of the systems with RANK = 1. 
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Chapter 3: Community Detection 
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3.1 Definition of Community Detection 

Several different definitions of what is a community exist. However, two of them are the most 

popular among the academic community.  

1. A strong community is defined as a group of nodes for which each node has more 

edges to nodes of the same community than to nodes outside the community. This 

definition is relatively strict, since it does not allow for overlapping communities 

and creates a hierarchical community structure, since the entire graph can be a 

community itself. 

2. A generalized community, is defined as a subgraph in which the sum of all node 

degrees within the community is larger than the sum of all node degrees towards 

the rest of the graph. [37] 

Other definitions are related to the optimization of some ``fitness'' criterion like for example 

the intercommunity edge density, or the intercommunity edge cut. In general, community 

detection is the problem of finding a partition of a graph into subgraphs that maximizes some 

quality criterion which reflects the density of the subgraph(s). [38] 

3.2 Community Detection in Social Networks 

Social Network Analysis is the methodical analysis of social networks. In order to study 

efficiently a social network for the purpose of understanding its dynamics, a simplified and 

abstract model is required. A popular modeling method is to represent a network's objects and 

their relationships by a graph, allowing to use a large set of generic methods provided by the 

field of Discrete Mathematics. [39] 

In this context, individual actors within the network are represented by nodes and the 

relationships formed between them such as friendship or organizational position are 

represented by edges. The use of this specific modeling tool was considered a fail-safe choice 

as the technique had already been successfully applied to a wide range of scientific disciplines 

including mathematics, physics, biology social sciences and criminology. [40] 
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Figure 8. The community structure of a simple graph consisting of three communities 

Basic Network Definitions 

Before we get our hands on the basic problems on social networks we must first focus on a 

series of important preliminaries that concern Graph Theory, including some basic definitions. 

In mathematics and computer science, graphs represent mathematical structures used to model 

pairwise relations between objects from a certain collection. The interconnected objects are 

represented by mathematical abstractions called vertices or nodes which are connected by 

edges. [41] 

Graphs can be implemented in a visual level by a set of dots or circles for the vertices, joined 

by lines that simulate the relations between them. What makes Graphs such a powerful 

mathematical tool is the flexibility they present. Graphs have the ability to adapt to the nature 

of the represented data. This ability to cope with so diverse datasets is based on a variety of 

different Graph definitions. [42] 

Non-Directed Network 

A network whose edges have no orientation is referred as a Non-Directed Network. The 

edge that connects node x to node y is exactly the same with the edge that connects node y to 

node x. It is the simplest and most common type of networks. 
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Figure 9. A labeled graph with six vertices and sever edges 

Directed Network 

A directed network or digraph is an ordered pair D = (V, A). V refers to the set of nodes while 

A refers to a set of ordered pairs of nodes called arcs. An arc a = (x, y) is considered to be 

directed from node x to node y. y is called the head or direct successor, and x is called the tail 

or direct predecessor of the arc. If a path leads from vertex x to vertex y via one or more other 

nodes, y is considered to be successor or reachable from x. A directed graph as described above, 

is considered to be symmetric if for every arc in D, the corresponding inverted arc also exists 

in D. A symmetric loop-less directed graph D = (V, A) is equivalent to a simple undirected 

graph G = (V, E), where the pairs of inverse arcs in A correspond one-to-one with the edges in 

E. As a consequence, the edges in D are twice as many as the edges in G. 

 

 

 

 

 

 

 

 

 

 

Figure 10. A simple directed acyclic graph. 

A stricter variation of this definition is called oriented network. The term refers to a network 

in which no more than one of (x, y) and (y, x) may exist simultaneously.  
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∑ 𝑑𝑒𝑔+(𝑣) = ∑ 𝑑𝑒𝑔−(𝑣) = |𝐴|

𝑣∈𝑉𝑣∈𝑉

 

Figure 11 - Oriented network 

For a node, the number of head endpoints adjacent to a node is called the in-degree of the node 

and the number of tail endpoints is its out-degree. The in-degree is denoted deg- (v) and the 

out-degree as deg+ (v). A vertex with deg- (v) = 0 is called a source, as it is the origin of each 

of its incident edges. Similarly, a vertex with deg+ (v) = 0 is called a sink. 

If for every node v in V deg+ (v) = deg- (v), the graph is called a balanced digraph. 

Regarding its connectivity, a digraph G is called weakly connected if the undirected underlying 

graph obtained by replacing all directed edges of G with undirected edges is a connected graph. 

A digraph is strongly connected if it contains a directed path from u to v and a directed path 

from v to u for every pair of vertices u, v. The strong components are the maximal strongly 

connected sub-graphs. 

 

Figure 12. A digraph with vertices labeled (indegree, outdegree) 

Mixed Network 

A mixed network G is graph in which some edges may be directed and some other may not be 

directed. It can be expressed through an ordered triple G = (V, A, E) with V, A and E are as 

defined earlier. 

Multinetwork 

In discrete mathematics, the term multinetwork refers to a graph that allows the existence of 

multiple edges. Edges are considered to be multiple or parallel, if they have the same tail and 

head creating multiple direct paths between these nodes. Some authors also allow multigraphs 

to have loops, edges that connects a vertex to itself, while others call these pseudo-graphs, 

reserving the term multigraph for the case with no loops. This definition can be combined with 

these of directed or undirected graphs resulting in a hybrid graph. For example in flight booking 
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systems, multigraphs might be used to model the possible flight connections offered by an 

airline. 

 

Figure 13. A multigraph with multiple edges (dashed) and several loops (dotted) 

 

Weighted Network 

Certain applications demand more information to be represented by the graph. In this case a 

real or a rational number which is called weight or cost can be assigned to each edge in order 

to represent, for example, costs, lengths or capacities, etc. depending on the problem at hand. 

Although some authors use the term network as a synonym for a weighted graph, unless stated 

otherwise, a graph is always assumed to be unweighted. Classic problems connected with 

weighted graphs include: 

• Minimum spanning tree 

• Shortest-path problem 

• Max-flow/min-cut theorem 

 

Figure 14. A simple weighted network. 
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Regular Network 

In graph theory, the term regular graph is used to describe a graph where each node has the 

same degree, in other words the same number of neighbors. In case we are dealing with directed 

graphs, another restriction must also be satisfied. The in-degree and out-degree for every vertex 

has to be equal. A regular graph with nodes of k-degree can also be referred as a k-regular 

graph. 

Complete Network 

The term “complete”, sometimes stated as “fully connected”, defines a simple undirected graph 

in which all pairs of two distinct vertices are connected by a unique edge. The complete graph 

on n vertices has n(n - 1)/2 edges, and is denoted by Kn. Another way to see a complete graph 

is as a (k-1) regular graph. One very interesting ascertainment on complete graphs is that the 

only way to disconnect the graph is by removing the complete set of vertices. The complement 

graph of a fully connected graph is an empty graph. Essentially, complete graphs form their 

own maximal cliques. 

 

Figure 15. A regular graph 
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Figure 16. Table of basic complete networks with K<=8 

Walk 

A walk from node x to node y is any sequence of adjacent edges that begins with an edge 

containing x and ends with an edge containing node y. Nodes and edges can be visited several 

times in a walk, as long as these constraints are not violated. 

Trail 

On the other hand, a trail is defined as a walk where the sequence of adjacent edges does not 

contain any edge for more than one times. Though, the same constraint does not apply for 

nodes, so a node can be visited through different edges numerous times. 

Path 

Path is defined as a walk in which neither edges nor nodes are visited more than once. If the 

starting node coincides with the destination node then this path is considered to be a Eulerian 

path. 

Distance 

In network theory, the shortest-path problem is the problem of finding a path between two 

nodes in a graph such that the sum of the weights of its constituent edges is minimized which 

is analogous to the problem of finding the shortest path between two intersections on a road 

map. In this context the graph's vertices correspond to intersections and the edges correspond 
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to road segments, each weighted by the length of its road segment. In a non-weighted network, 

the length of a path corresponds to the minimum hops required in order to reach node y starting 

from node x. On the other hand, in a weighted network, the length of a path is processed by 

summing the weights of the edges it includes, resulting in a slightly different definition of the 

distance. When a node y is not reachable from a node x, their distance is theoretically infinite. 

However, in many situations, this infinite value causes problems, and this distance is then 

considered to be zero. The most important algorithms for solving this problem are: 

• Dijkstra's algorithm 

• Bellman-ford algorithm 

• A* search algorithm 

• Floyd-Warshall algorithm 

• Johnson's algorithm 

• Perturbation theory 

Node Sets 

Dyad and Triad 

Dyad is the smallest set of nodes. It consists of two nodes which can be linked together using 

none, one or multiple edges. Triad on the other hand, as its name betokens concerns group of 

nodes containing three nodes. 

Triangle 

Triangle's cornerstone is the triplet. A triplet consists of three nodes that are connected by either 

two (open triplet) or three (closed triplet) non-directed edges. A triangle consists of three closed 

triplets, one centered on each of the nodes. 

K-Clique 

K-Clique corresponds to a maximally connected subset of nodes. Each node must be connected 

to every other node that participates into the clique. Its size corresponds to the number of nodes 

it contains. 

Component 

A component is a sub-network in which any node is reachable from any other one by a walk. 

Put concisely, it is a maximal connected subgraph. For an undirected network, a component is 

a set of connected nodes with no links with other nodes from the same network. But for directed 

networks, it is less straightforward. A component is said to be strongly connected if there is a 
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directed walk between each pair of nodes. It is called weakly connected if there is at least an 

undirected walk between each pair of nodes. A network with only one component is said to be 

connected. An isolated node (i.e. a node with a degree zero) is a component of its own. [43] 

3.2 Networks Properties 

Homophily and Heterophily 

Homophily refers to the tendency for nodes to connect to other vertices with which they share 

(respectively don't share) common attributes and characteristics. In other words, homophily 

seems to be responsible for emphasizing or even causing the relationships between the nodes. 

For example, in a social network where edges represent friendship connections, it is more likely 

that a user is connected to an equally young person or a user with who shares common interests. 

In literature this property can be also found as assortative mixing. [44] 

Clustering Coefficient 

In network theory clustering coefficient is representing the extent to which nodes of a specific 

network tend to shape clusters. Evidence suggests that in most real-world networks, and in 

particular social networks, nodes tend to create tightly connected groups characterized by a 

relatively high density of ties. Impressively, in real-world networks, this likelihood tends to be 

greater than the average probability of a tie randomly established between two random vertices 

[45].  

Two versions of this metric exist in the literature, depending on their perspective. The global 

perspective definition was designed to give an overall indication of the clustering in the 

network, whereas the measure that follows a local approach gives an indication of the 

embeddedness of single vertices. The global clustering coefficient is based on triplets of nodes 

and is defined as the number of closed triplets over the total number of triplets. This measure 

gives us an indication of the clustering in the whole network and can be applied to both non-

directed and directed networks. [21] 

Small World Property 

Small world property was first introduced by Stanley Milgram and a group of other researchers 

in an effort to examine the average path lengths for social networks of people living in the 

United States. The research proved to be groundbreaking suggesting that human society 

network is characterized by short path lengths. This characteristic is often associated with the 

idea of “the six degrees of separation”. [46] 
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According to the idea everyone is on average approximately six steps away, by way of 

introduction, from any other person in the world, so that a chain of “a friend of a friend” 

statements can be made, on average, to connect any two people in six steps or fewer. As far as 

mathematics are concerned, a small-world network is a graph in which most nodes are not 

neighbors of one another, but most nodes can be reached from every other with a relatively low 

cost. More specifically, a small-world network is defined to be a network where the typical 

distance L between two randomly chosen nodes (the number of hops required) grows 

proportionally to the logarithm of the number of nodes N in the network, that is: 

L x log N 

Network Resilience 

The term signifies the extent to which a network tends to maintain its topological properties 

when changes occur on its structure. By removing a series of edges or nodes, network's 

connectivity is reduced having an important impact on information flow which, when passing 

a critical point can lead to bottlenecks. [47] 
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4.1 Community Detection Algorithms 

Variations appear in the methodology used to identify communities. Certain algorithms follow 

an iterative approach starting by characterizing either the entire network, or each individual 

node as community, and splitting or merging communities, respectively. These methods 

produce a hierarchy of nested communities. By merging or splitting communities, one can build 

a hierarchical tree of community partitions called dendrogram. Several researchers aim to find 

the entire hierarchical community dendrogram, while others try to identify only the optimal 

community partition. [48] More recent approaches aim to identify the community surrounding 

one or more seed nodes. Some researchers aim to discover distinct (non-overlapping) 

communities, while others allow for overlaps. [49] 

Newman's Algorithm 

One of the well-known communities finding algorithms was developed by Girvan Newman 

[50]. This algorithm follows a hierarchical approach based on which communities are detected 

by removing edges iteratively from the graph. An edge that belongs to many shortest paths 

between nodes has high betweenness and has to be removed, because it is more likely to be an 

inter-community edge. By removing gradually edges, the graph is split and its hierarchical 

community structure is revealed. [50] 

The algorithm is computationally intensive, because following the removal of an edge, the 

shortest paths between all pairs of nodes have to be recalculated. It reveals not only individual 

communities, but the entire hierarchical community dendrogram of the graph. An important 

element of the algorithm is the modularity calculation, which is used to evaluate the quality of 

a community partition resulting and also as a termination criterion for the algorithm. 

Although there is a wide range of betweenness measures available, shortest-path betweenness 

is used due to the lower computational cost and the satisfactory results. Shortest-path 

betweenness can be calculated by finding the shortest paths between all pairs of vertices and 

summing up how many of those run along each edge. Experimental results for implementations 

of the algorithm based on different betweenness metrics have shown no significant impact on 

the quality of the community structure output. 

The general form of Newman’s algorithm is as follows: 

1. Calculate betweenness scores for all edges of the network 

2. Find the edge with the highest betweenness value and remove it from the network 
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3. Recalculate betweenness for all remaining edges 

4. Repeat from step (2) 

The output of this process can be represented as a dendrogram depicting the successive splits 

of the network. The detection process can be stopped at any point the output community 

structure is judged to be satisfactory. An accurate way to determine if a network division is 

satisfactory is to use an appropriate evaluation metric. A metric that can carry out this task is 

the modularity metric. Modularity essentially indicates the extent to which a given community 

partition is characterized by high number of intra- community edges compared to inter-

community ones. Essentially, the algorithm proceeds as long as network partitions with higher 

modularity are produced after edge removals. An appropriate modularity threshold is applied 

in order to identity the optimal community structure and the algorithm to terminate. 

CiBC 

Compared to other community detection algorithms applied in various scientific fields, CiBC 

was designed to fulfill the very specific task of identifying Web communities from a web server 

content, in order to improve the performance of CDNs. 

CDN stands for Content Delivery Network [51]. A content delivery network (CDN) is a large 

distributed system of servers deployed in multiple data centers all over the world. The main 

purpose of a CDN is to provide web content to end-users with high availability and high 

performance. CDNs serve a large fraction of the Internet content today, including web objects 

(text, graphics, URLs and scripts), downloadable objects (media files, software, documents), 

applications (e-commerce, portals), live streaming media, on-demand streaming media, and 

social networks more importantly social networks and web 2.0 applications. [52] 

The algorithm is based on a slightly different definition from what is traditionally considered 

as a network community. Usually, a community is defined as a subgraph for which each node 

has more edges to nodes of the same community than to nodes outside the community (strong 

community). A more flexible definition, called generalized community, is the following: a 

community is a subgraph in which the sum of all node degrees within the community is larger 

than the sum of all node degrees towards the rest of the graph. Apart from the capability of 

identifying overlapping communities, CiBC has one more innovative characteristic, its hybrid 

nature, using both local and global graph’s properties in order to accomplish its mission. 

Community detection is performed in three phases, with each phase including further steps. 

[53] 



 

61 

 

In the first phase, the Betweeness Centrality (BC) is calculated for each node of the graph.  

BC is a metric used to measure how “central” a node is in the graph. Last step before 

proceeding with phase two includes the sorting of the nodes of the graph by ascending BC 

value. 

The second phase concentrates on the initialization of the cliques. This is achieved using an 

iterative procedure starting with the nodes with the lowest BC values. Although a high BC 

value may indicate that a node is central within a community, it can also be an indication of a 

node that is central within the graph, connecting different communities. Moreover, if we start 

with a node characterized by a high BC value, it is highly possible to end up with a single 

community that includes all nodes of the graph. In each iteration, if the currently-selected node  

υ is not assigned to any group yet, a new subset of the graph called clique is created. In this 

clique, we include all nodes that belong to the neighborhood of υ . Moreover, we further expand 

this clique using Bounded-BFS with typical depth value √ Ν (where N  is the number of nodes). 

By applying this procedure, after the completion of all iterations, a set of groups (cliques) will 

be created. This fatefully leads to phase three of the algorithm. 

The large number of the created groups raises the need for some sort of minimization, in order 

to get the desired generalized community structure. This task is carried out by merging these 

groups through an iterative process. We define an l × l matrix B, where l refers to the number 

of the groups produced at phase two. Each element B [i, j], with I ≠ j of the matrix corresponds 

to the number of edges that connect directly nodes assigned in group i to nodes assigned in 

group j. On the other hand, each element B [i, j] with i = j corresponds to the number of edges 

internal in group i. In each iteration, the pair of groups with maximum value is 

selected for merging and then the recalculation and repopulation of matrix B is required. The 

process terminates when there is no pair of groups with  

Bridge Bounding 

Bridge Bounding is a local methodology for community detection [53]. The algorithm initiates 

the community detection from a certain seed node and progressively expands the community 

trying to identify bridges, i.e. edges that act as community boundaries. The edge clustering 

coefficient is calculated for each edge, looking at the edge’s neighborhood, and edges are 
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characterized as bridges depending on whether their clustering coefficient exceeds a threshold. 

The method is local, has low complexity and allows the flexibility to detect individual 

communities. Additionally, the entire community structure of a network can be uncovered 

starting the algorithm at various unassigned seed nodes, till all nodes have been assigned to a 

community. [54] 

In order to identify a community around a seed node s the algorithm uses a flooding technique: 

Starting at node s, nodes in the neighborhood of s are gradually attached to the community if 

the following two conditions are satisfied: neighbor v does not belong to any other community 

and the edge connecting s to v is not a bridge (community boundary).  

The term bridge defines an edge connecting two nodes that are members of different 

communities. The steps described above are repeated for every node until no other node can 

be attached to the community. Repeating the same procedure for different nodes, inevitably 

leads to the discovery of the overall community structure of the graph. 

Label RankT 

LabelRankT is an on-line distributed algorithm for detection of communities in large-scale 

dynamic networks through stabilized label propagation. 

It is based on Label propagation, where a set of random nodes is initialized with different labels. 

Iteratively, each node adopts the label of the majority of its neighbors. By allowing for more 

than one label per node, the algorithm is able to detect overlapping communities. During 

subsequent snapshots, this algorithm only needs to update nodes which have been modified 

compared to the previous snapshot, or nodes whose neighbors' label has changed during this 

procedure, making its execution faster. 

LabelRankT [55] can be viewed as a LabelRank [56] with one extra conditional update rule by 

which only nodes involved any change accept the new distribution. LabelRank relies on four 

operators applied to the labels: (i) propagation, (ii) inflation, (iii) cutoff, and (iv) conditional 

update. The data structure that lies in the core of this algorithm is the sparse matrix of label 

distribution. Each node maintains a label distribution locally during the propagation. At the end 

of the algorithm, LabelRank ranks labels in each node. Nodes with the same highest probability 

label form a community. 

LabelRankT only needs to update nodes that are changed between two consecutive snapshots, 

including cases where an existing node adds or deletes links, or a node is removed from or 

newly joins the network. 
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4.2 Detecting Overlapping Communities 

In this Section we shall describe one of the main contributions of this thesis, which is a new 

approach in detecting overlapping communities. The approach is based on SCCD, a recent, 

state-of-the-art algorithm designed and developed by the Technological Educational Institute 

of Crete. In turn, the SCCD [57] algorithm is inspired by Vivaldi. 

Vivaldi 

Vivaldi [58] is a fully decentralized, light-weight, adaptive network coordinate algorithm that 

was initially developed to predict Internet latencies with low error. Vivaldi uses the Euclidian 

coordinate system (in n-dimensional space, where n is a parameter) and the associated distance 

function. Conceptually, Vivaldi simulates a network of physical springs, placing imaginary 

springs between pairs of network nodes. 

Let G = (V, E) denote the given graph comprising a set V of nodes together with a set E of 

edges. Each node x ∈ V participating in Vivaldi maintains its own coordinates p(x) ∈ Wn (the 

position of node x that is a point in the n-dimensional Euclidian space). The Vivaldi method 

consists of the following steps: 

• Initially, all node coordinates are set at the origin. 

• Periodically, each node communicates with another node (randomly selected among a 

small set node of nodes known to it). Each time a node communicates with another 

node, it measures its latency and learns that node’s coordinates. Subsequently, the node 

allows itself to be moved a little by the corresponding imaginary spring connecting 

them (i.e. the positions change a little so as the Euclidian distance of the nodes to better 

match the latency distance). 

• When Vivaldi converges, any two nodes’ Euclidian distance will match their latency 

distance, even though those nodes may never have any communication. 

Unlike other centralized network coordinate approaches, in Vivaldi each node only maintains 

knowledge for a handful of other nodes, making it completely distributed. Each node computes 

and continuously adjusts its coordinates based on measured latencies to a handful of other 

nodes. Finally, Vivaldi does not require any fixed infrastructure as for example landmark 

nodes.  
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SCCD 

As we mentioned, in the core of SCCD lies the spring metaphor which inspired the Vivaldi 

algorithm. Vivaldi uses the spring relaxation metaphor to position the nodes in a virtual space 

(the n-dimensional Euclidean space), so as the Euclidean distance of any two node positions 

approximates the actual distance between those nodes. In the original application of Vivaldi, 

the actual distances were the latencies between Internet hosts. Our algorithm is based on the 

idea that by providing our own, appropriate, definition of distance between nodes, we can use 

Vivaldi to position the nodes in a way as to reflect community membership, i.e. nodes in the 

same community will be placed closer in space than nodes of different communities. In other 

words, nodes belonging to the same community will form natural clusters in space. 

Let C(x), C(y) denote the communities’ sets of two nodes x, y ∈ V, respectively, of a given 

graph. Since two nodes either belong to the same community (C(x) = C(y)) or not, we define 

the initial node distance between two nodes x and y as d(x, y): 

𝑑(𝑥, 𝑦) = {
0, 𝐶(𝑥) = 𝐶(𝑦)

1, 𝐶(𝑥) ≠ 𝐶(𝑦)
 

Equation 11 - Node distance between two nodes x and y 

 

When C(x) = C(y), we have set d(x, y) = 1 in order to normalize the distances in range 

between 0 and 1. Given this definition of distance, we can employ the core part of the Vivaldi 

algorithm to position the nodes appropriately in the n-dimensional Euclidian space (ℜn). As 

one can expect from those dual distances, Vivaldi will position nodes in the same community 

close-by in space, while place nodes of different communities away from each other. This is 

the reason for the dual nature of the distance function, otherwise all nodes, regardless of 

community membership, would gravitate to the same point in space. 

In addition, Vivaldi requires a selection of nodes to probe. Each node calculates a “local” 

set containing nodes of the same community, and a “foreign” set containing nodes of different 

communities. The size of the local set as well as the size of the foreign set of a node equals the 

degree of the node. The perfect construction of these sets depends on the a priori knowledge of 

node community membership, which is the actual problem we are trying to solve. However, 

even though we do not know the community each node belongs to, there are two facts we can 

exploit to make Vivaldi work without this knowledge: 
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• The first is the fact that, by definition, the number of intra-community links of a node 

exceeds the number of its inter-community links. This means that, if we assume that all 

of a node’s neighbors belong to the same community, this assumption will be, mostly, 

correct, which in turn means that even though sometimes the node may move to the 

wrong direction, most of the time it will move to the right direction and thus, will 

eventually acquire an appropriate position in space. Thus, we let the local set L(x) of a 

node x ∈ V, be its “neighbor set”. L(x) = {y ∈ V: x ∼ y}  

The distance from node x to nodes in L(x) is set to 1 according to Equation (11). 

• The second fact we exploit concerns the foreign links. Since we consider all a node’s 

links as local links, we need to find some nodes which most likely do not belong to the 

same community as that node, and therefor will be considered as foreign nodes. This 

can simply be done by randomly selecting a small number of nodes from the entire 

graph. Assuming that the number of communities in the graph is at least three, the 

majority of the nodes in this set will belong to a different community than the node 

itself. These nodes will comprise the “foreign set” F(x) of node x ∈ V: F(x) ⊂ {y ∈ V : 

x ∼ y} (3). The distance from node x to the nodes in F(x) is set to 1 according to Equation 

(11). 
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Algorithm 1: The position estimation algorithm. 

 

Figure 17 Algorithm 1 The position estimation algorithm. 

The pseudo-code of the position estimation algorithm is given in Algorithm 1 and it is described 

hereafter. The function getRandomNumber(0, 1) returns a random number in [0, 1]. Initially, 

each node is placed at a random position in ℜn. Iteratively, each node x ∈ V randomly selects 
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a node from either its L(x) or its F(x) set (see line 8,11 of Algorithm 1). It then uses Vivaldi to 

update its current position using the appropriate distance (i.e. 0 or 1) to the selected node (see 

lines 9, 12 of Algorithm 1). Each node continues this process until it deems its position to have 

stabilized as much as possible (see line 36 of Algorithm 1). This is done by calculating the sum 

of the distances between each two consecutive positions of the node between 40 iterations 

(corresponding to 40 position updates, experiments showed a larger number only slows down 

the algorithm without adding to efficiency). Each node also calculates the distance, in a straight 

line, between the two positions before and after the 40 updates. Should this value be less than 

half the actual traveled distance (the aforementioned sum) for 20 consecutive times, the node 

declares itself to have stabilized. Each node continues, however, to execute the algorithm until 

at least 90% of its “foreign” and “local” sets have also stabilized. If the algorithm has not 

stabilized yet, the 20 oldest distances are removed and the stabilization check will be performed 

again after another 20 position updates. 

Modifying SCCD to detect overlapping communities 

SCCD is a highly accurate community detection algorithm which however only detects distinct 

communities. This means that each node in the resulting partition can be a member of a single 

community. The aim of the approach described here is the proper use of the algorithm in order 

to detect overlapping communities, i.e. communities which “share” members. 

The proposed process can be summarized in the following steps: 

1. Execute SCCD algorithm on the initial graph to identify distinct communities. 

2. Create a new version of the graph where any intra-community (as identified in step 1) 

edges have been removed. 

3. Go to step 1, until no edges are left in the graph, or all detected communities are 

singletons. 

A simple scenario, in order to showcase the reasoning of the above process is shown on the 

following figure: 
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Figure 18 - Community scenario 

In this scenario, the central node belongs both to community 1 and community 2. In addition, 

the node has 2 inter-community edges to nodes which belong to communities in which the 

central node is not a member of. The first pass of the process will identify the central node as 

member of community 1. As such, step 2 of the procedure will prune the graph of all yellow 

colored edges. As a result, in the second pass, the same node will be identified as a member of 

community 2, since in the new graph, the purple edges comprise the majority of that node’s 

neighbor set. 

Appropriate Java code was created to implement step 2. Algorithm 2 shows this source code. 

Algorithm 2: Pruning intra-community edges 

import java.io.BufferedReader; 

import java.io.BufferedWriter; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.util.ArrayList; 

import java.util.Arrays; 

import java.util.HashSet; 
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import java.util.List; 

 

public class PruneIntraEdges { 

    /** 

     * @param args the command line arguments 

     */ 

    public static void main(String[] args) throws FileNotFoundException, 

IOException { 

        String edgesInputFile = args[0]+".txt";     //to arxeio me tis akmes 

        String communitiesInputFile = args[0]+".coms";    //to arxeio me ta 

communities 

        String []temp = args[0].split("\\."); 

        int step = Integer.parseInt(temp[1])+1; 

        String edgesOutputFile = temp[0]+"."+step+".txt";    //to apotelesma 

 

List<HashSet<String>>communities= initCommunitiesList(communitiesInputFile); 

 

        BufferedReader br = new BufferedReader(new FileReader(edgesInputFile)); 

        BufferedWriter bw = new BufferedWriter(new FileWriter(edgesOutputFile)); 

        String line; 

        while ((line = br.readLine()) != null) 

        { 

            String[] nodes = null; 

            if (line.contains("\t")) nodes = line.split("\t"); 

            else nodes = line.split(" "); 

            boolean isForeign = true; 

            for (HashSet<String> community : communities) 

            { 

                if (community.contains(nodes[0]) && community.contains(nodes[1])) 

                { 

                    isForeign = false; 

                    break; 

                } 

            } 

            if (isForeign) bw.append(line + "\n"); 

        } 

        bw.flush(); 

        br.close(); 

        bw.close(); 

    } 

 

    public static List<HashSet<String>> initCommunitiesList(String 

communitiesFile) throws FileNotFoundException, IOException { 

        List<HashSet<String>> communities = new ArrayList<>(); 

        BufferedReader br = new BufferedReader(new FileReader(communitiesFile)); 

        String line; 

        while ((line = br.readLine()) != null) { 

            line = line.trim(); 

            HashSet<String> community = new HashSet<String>(); 

            for (String s : line.split(" ")) 
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                community.add(s); 

            //community.addAll(Arrays.asList(line.split(" "))); 

            communities.add(community); 

        } 

        br.close(); 

        return communities; 

    } 

} 
Figure 19 Algorithm 2: Pruning intra-community edges 

4.3 Experimental Results 

Two datasets were used for the evaluation experiments. Both datasets contain overlapping 

communities. They are both part of the SNAP dataset library. The next table contains statistical 

data for both datasets. 

Name Type Nodes Edges Communities Description 

DBLP  

Undirected, 

Communities 
317,080 1,049,866 13,477 

DBLP 

collaboration 

network 

Amazon 

Undirected, 

Communities 
334,863 925,872 75,149 

Amazon 

product 

network 

Table 4 - Testing Datasets 

In order to evaluate the proposed method, the Modularity metric was used, in order to identify 

the quality of the detected communities on each algorithmic step. The following table presents 

the obtained results on both testing datasets: 

Iteration 

Nr: 

Amazon DBLP 

 Communities Modularity Communities Modularity 

1 2538 0.91791 4005 0.64569 

2 13516 0.98562 3736 0.78212 

3 546 0.99951 1873 0.95238 

4 - - 212 0.99741 

Total: 16600  9826  

Table 5 - Obtained Results of testing datasets 

 

 

https://snap.stanford.edu/data/com-DBLP.html
https://snap.stanford.edu/data/com-Amazon.html
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 5.1 Conclusions 

The purpose of this thesis was two-fold. The first goal was to present a survey of important 

data mining techniques used in social networks, namely community detection and item 

recommendation. A thorough survey of various techniques was presented along with their 

advantages and disadvantages.  

In the context of Recommender Systems, a taxonomy was presented of the categories of the 

various approaches in tackling the problem. The strengths and weaknesses of each approach 

was presented along with the open challenges still present in the field. Finally, a description of 

widely used recommender systems was presented in real-world cases. 

Regarding the field of Community Detection, the thesis presented various structures, 

characteristics and properties of networks where community detection techniques are usually 

applied to. The characteristics and properties are usually used in the various techniques to 

detect the underlying communities. The most popular techniques for detecting communities 

were then presented, covering various approaches in tackling the issue as well as detecting 

communities with different characteristics, such as strong or weak, distinct or overlapping. 

The second goal of the current thesis is to present two recent contributions, one in each field. 

In the field of Recommender Systems, SCoR, a newly proposed algorithm designed in our 

institution was presented. SCoR has been tested on several real datasets with high variability 

in density and size. A comparison was presented against seven state-of-the-art recommender 

systems, proving its effectiveness, stability and higher performance. Under any dataset, SCoR 

is the first in performance. Apart from the high performance and stability of SCoR, other 

advantages of the proposed system compared to the other state-of-the-art algorithms are the 

fact that it does not require any parameter for execution. 

In the field of Community Detection, a community finding algorithm was thoroughly 

presented, which is also based on a custom-tailored version of the Vivaldi network coordinate 

system. The proposed algorithm has been tested on a large number of benchmark graphs with 

known community structure comparing it with several state-of-the-art algorithms, proving its 

effectiveness against all other algorithms. SCCD can accurately detect strong, distinct 

communities in graphs. In addition, the thesis presented a modification to the proposed 

algorithm to enable the detection of overlapping communities. 

. 
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5.2 Future Work 

Regarding SCoR, several directions can be explored regarding various aspects of the 

recommender systems. The system can be improved in order to better handle sparse datasets 

as well as cold-start users. An important axis for future work includes exploring and 

demonstrating the performance of SCoR under dynamic changes in the dataset. The 

convergence ability of the algorithm as new users and/or items arrive into the system should 

be tested under different scenarios. The fact that items tent to arrive in a much faster pace 

compared to users will be evaluated. Another important research direction would be to explore 

the behavior of the system under temporal patterns, as items tend to become very popular for a 

period of time and to fade away subsequently, and users tend to re-rate the same items 

differently. To study these phenomena the temporal characteristics of the datasets should be 

taken into consideration in the performed experiments. Finally, incorporating metadata and 

semantic information in the algorithm could enhance significantly its performance.  

Regarding SCCD, one possible improvement would be the modification of the algorithm in 

order to locate only a single community. It is important to provide the single community 

detection (per node) instead of entire community detection. Another possible extension of the 

proposed scheme is the application in weighted networks that can measure the strength of social 

relationships in social networks. In iterative process of position estimation algorithm, this 

extension can be done by setting the probability of edge selection according to the edge weight, 

so that the strong edges would have higher selection probability corresponding to high-tension 

springs.  
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