
TECHNOLOGICAL EDUCATIONAL

INSTITUTE OF CRETE

School of Applied Technology

Department of Informatics Engineering

Thesis

Title: Application-Website Portal for parents of kids

with epilepsy

Marinakis Ioannis (4244)

Advisor: Papadourakis Georgios

- 2 -

ACKNOWLEDGEMENTS
I would first like to thank my professor and thesis advisor, Dr. Georgios Papadourakis for giving

me the opportunity to participate in Blended Academic International Mobility project and for his

guidance during it. It was a great experience which provided me with many skills that will be

useful in the future.

Also, I would like to thank the students and the professors of the Blended AIM 2018 for the great

experience of working as a team on a big project for a company.

A special thanks to Tim Buckinx founder and CEO of Epihunter, who gave us the opportunity to

work on a special project that, it’s going to make a great impact on many people’s lives.

Finally, I would like to thank the thesis committee members Gareth Owens and Athanasios

Malamos for their valuable input on my thesis.

- 3 -

DEDICATION
This thesis is dedicated to parents and family for their endless love, support and continuous

encouragement throughout my years of study and through the development and writing of this

thesis. This would not have been possible without them.

- 4 -

ABSTRACT
The purpose of this thesis is the designing and development of an application for people that

suffer from epilepsy. People with epilepsy are threatened by social isolation as seizures come

unexpected. In this project, we envision a concept that allows people with epilepsy to go out with

their friends and family safely and without stigmatization. In this Thesis we are going to examine

the case of a kid suffering from epilepsy and our solution is helping both kids and parents to

ensure that their kids can lead to a normal life.

The project consists of 2 hybrid mobile applications, one for the children and another for the

parents. The child’s application, using an EEG headset and a smartphone can detect seizures.

Once a seizure is detected, the child’s application pushes a notification and transmits live video

of the child to the parent’s smartphone. Records of the seizures and the medication are stored on

a cloud database to help doctors with the treatment. Those data are visualized to the associated

doctor via a website, in order to help with the diagnosis and the medication adjustment.

- 5 -

ΣΥΝΟΨΗ
Σθνπόο απηήο ηεο εξγαζίαο είλαη ν ζρεδηαζκόο θαη ε αλάπηπμε κηαο εθαξκνγήο γηα άηνκα πνπ

πάζρνπλ από επηιεςία. Τα άηνκα κε επηιεςία βηώλνπλ θνηλσληθή απνκόλσζε θαζώο νη

επηιεπηηθέο θξίζεηο ζπκβαίλνπλ απξνζδόθεηα. Σε απηό ην project, νξακαηηδόκαζηε κηα

εθαξκνγή ε νπνία ζα επηηξέπεη ζηα άηνκα κε επηιεςία λα βγνπλ έμσ κε ηνπο θίινπο θαη ηελ

νηθνγέλεηά ηνπο κε αζθάιεηα θαη ρσξίο ζηηγκαηηζκό. Σηελ παξνύζα πηπρηαθή ζα εμεηάζνπκε ηελ

πεξίπησζε ελόο παηδηνύ πνπ πάζρεη από επηιεςία, κε ηε ιύζε καο λα βνεζά ηόζν ην παηδί, όζν

θαη ηνπο γνλείο. Δηαζθαιίδνληαο πσο ην παηδί κπνξεί λα έρεη κηα θπζηνινγηθή δσή.

Τν project απνηειείηαη από 2 πβξηδηθέο εθαξκνγέο γηα θηλεηέο ζπζθεπέο, κία γηα ηα παηδηά θαη

κία γηα ηνπο γνλείο. Η εθαξκνγή ησλ παηδηώλ ρξεζηκνπνηόληαο έλα EEG headset ην νπνίν

θαηαγξάθεη ηε δξαζηεξηόηεηα ηνπ εγθέθάινπ θαη έλα smartphone, κπνξεί λα εληνπίζεη

επηιεπηηθέο θξίζεηο. Μόιηο εληνπηζηεί κία επηιεπηηθή θξίζε, ε εθαξκνγή ηνπ παηδηνύ ζηέιλεη κηα

εηδνπνίεζε αιιά θαη δσληαλό βίληεν ζηελ εθαξκνγή ησλ γνλέσλ. Τα δεδνκέλα ησλ επηιεπηηθώλ

θξίζεσλ θαη ησλ θαξκαθεπηηθώλ αγσγώλ, απνζεθεύνληαη ζε κία βάζε δεδνκέλσλ cloud κε

ζθνπό λα βνεζήζνπλ ηνπο εηδηθνύο. Επίζεο, κηα ηζηνζειίδα δίλεη ηε δπλαηόηεηα ζε γνλείο θαη

ηαηξνύο, λα νπηηθνπνηήζνπλ ηα δεδνκέλα ησλ θξίζεσλ, πξνθεηκέλνπ λα βνεζήζνπλ ηνπο εηδηθνύο

κε ηε δηάγλσζε αιιά θαη ηε θαξκαθεπηηθή αγσγή.

- 6 -

- 7 -

Table of Contents

ACKNOWLEDGEMENTS ... - 2 -

DEDICATION .. - 3 -

ABSTRACT .. - 4 -

ΣΥΝΟΨΗ .. - 5 -

Table of figures .. - 9 -

Table of pictures .. - 10 -

CHAPTER 1: INTRODUCTION .. - 11 -

1.1 Summary .. - 11 -

1.2 Motive .. - 11 -

1.3 Blended AIM (Academic International Mobility) .. - 12 -

1.3.1 The history of BlendEd mobility .. - 12 -

CHAPTER 2: FUNDAMENTALS .. - 13 -

2.1 Analysis and Development Methods ... - 13 -

2.1.1 Nexus Scrum .. - 13 -

2.1.2 Trello .. - 13 -

2.1.3 Bitbucket .. - 14 -

2.1.4 Slack ... - 14 -

CHAPTER 3: WORK PLAN ... - 16 -

3.1 State of the Art .. - 16 -

3.2 Technologies .. - 17 -

3.2.1 Node.js ... - 17 -

3.2.2 Angular JS .. - 18 -

3.2.3 Android .. - 18 -

3.2.4 iOS .. - 19 -

3.2.5 Ionic Framework .. - 19 -

3.2.6 npm .. - 20 -

3.2.7 Apache Cordova ... - 20 -

3.2.8 Firebase ... - 21 -

3.2.9 Spring Boot RESTful Web Service (API) .. - 22 -

- 8 -

3.2.10 Apache Maven ... - 23 -

3.2.11 Google Maps API ... - 24 -

3.2.12 Google Cloud functions .. - 24 -

3.2.13 Material design .. - 25 -

3.2.14 Design Patterns ... - 25 -

3.2.15 Java .. - 25 -

CHAPTER 4: MAIN PART ... - 27 -

4.1 Problem Analysis ... - 27 -

4.1.1 Problem Description .. - 27 -

4.1.2 System Requirements .. - 28 -

4.2 Implementation ... - 30 -

4.2.1 Project Implementation ... - 30 -

4.2.2 Detailed Project Implementation .. - 31 -

4.2.2.1 User Interface Design .. - 38 -

4.1.2.2 Firebase ... - 46 -

4.2.2.3 Google Cloud Functions ... - 46 -

4.2.2.4 RestAPI (Spring boot) ... - 48 -

4.2.2.5 ApiRTC ... - 51 -

4.2.2.6 Google Maps API ... - 54 -

4.2.2.7 Activities .. - 55 -

4.2.2.8 Fragments .. - 58 -

4.2.2.9 Modals ... - 60 -

4.2.2.10 App Diagrams .. - 61 -

4.3 Manual .. - 63 -

CHAPTER 5: RESULTS .. - 78 -

5.1 Conclusion.. - 78 -

5.2 Future work and extensions .. - 79 -

- 9 -

Table of figures

Sprints Table 1 .. - 28 -
Sprints Table 2 .. - 28 -
Sprints Table 3 .. - 29 -
Sprints Table 4 .. - 29 -
Sprints Table 5 .. - 29 -
Sprints Table 6 .. - 29 -
Sprints Table 7 .. - 29 -
Sprints Table 8 .. - 29 -

Doctor Sprint Table 1 .. - 30 -

Parent Story 1 .. - 31 -
Parent Story 2 .. - 32 -
Parent Story 3 .. - 32 -
Parent Story 4 .. - 32 -
Parent Story 5 .. - 33 -
Parent Story 6 .. - 34 -
Parent Story 7 .. - 34 -

Child Story 1 ... - 35 -
Child Story 2 ... - 35 -
Child Story 3 ... - 36 -
Child Story 4 ... - 36 -
Child Story 5 ... - 36 -

API Story 1 .. - 37 -
API Story 2 .. - 37 -
API Story 3 .. - 37 -

- 10 -

Table of pictures

Picture 1, Logged Out Side-Menu ... - 41 -
Picture 2, Logged In Side-Menu ... - 41 -
Picture 3, Bottom navigation bar ... - 42 -
Picture 4, Top navigation bar 1 ... - 42 -
Picture 5, Top navigation bar 2 ... - 43 -
Picture 6, Seizure Category Color Codes .. - 44 -
Picture 7, Notification pop-over .. - 45 -
Picture 8, Cloud Messaging... - 47 -
Picture 9, Cloud Function Execution Time ... - 48 -
Picture 10, Project General Diagram ... - 61 -
Picture 11, Extended Use Case Diagram ... - 62 -

Picture 12, Manual, Tutorial 1 ... - 63 -
Picture 13, Manual, Tutorial 2 ... - 63 -

Picture 14, Manual, Tutorial 3 ... - 64 -
Picture 15, Manual, Terms of Service ... - 64 -
Picture 16, Manual, Login ... - 65 -
Picture 17, Manual, Register ... - 65 -
Picture 18, Manual, Logged In Menu .. - 66 -
Picture 19, Manual, Logged Out Menu ... - 66 -
Picture 21, Manual, Top nav-bar ... - 66 -
Picture 20, Manual, Bottom nav-bar ... - 66 -
Picture 22, Manual, Calendar Date-picker .. - 67 -
Picture 23, Manual, Calendar Daily Timeline ... - 68 -
Picture 24, Manual, Seizure Record Details .. - 68 -

Picture 25, Manual, Insert Record Manually... - 69 -
Picture 26, Manual, Record Inserted ... - 69 -

Picture 27, Manual, Medication Reminders .. - 70 -
Picture 28, Manual, Medication Notification .. - 70 -
Picture 29, Manual, Recorded streams .. - 71 -
Picture 30, Manual, Video Player-Details ... - 71 -
Picture 31, Manual, Seizure Notifications ... - 72 -
Picture 32, Manual, Live video-stream ... - 73 -
Picture 33, Manual, Map Location .. - 73 -
Picture 34, Manual, Application Settings .. - 74 -
Picture 35, Manual, Account Settings ... - 74 -
Picture 36, Manual, Doctor Patients List... - 75 -
Picture 37, Manual, Doctor Patient Details ... - 76 -
Picture 38, Manual, Doctor EEG and Video ... - 77 -

file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324882
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324883
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324892
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324894
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324893
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324896
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324895
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324897
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324898
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324899
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324900
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324901
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324902
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324904
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324905
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324907
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324906
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324909
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324908
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324910
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324911
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324913
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324914
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324915
file:///C:/Users/glemn/Desktop/Thesis_BAIM_Ioannis_Marinakis.docx%23_Toc523324916

- 11 -

CHAPTER 1: INTRODUCTION

1.1 Summary

This thesis is part of an international Erasmus+ project named Blended-AIM (Academic

International Mobility), where students from Educational Institutes and Universities around

Europe formed two teams to develop two different applications requested by startup companies.

The goal of my team was to design and develop an application for the parents of children that

suffer from epilepsy. This application is going to notify the parents once a seizure event is

detected. Also, it’s going to help the doctors to make the right adjustments on medication, by

keeping track of the seizure records. To achieve that our team was split further into a

development team, a design team and a business team.

For the back-end development of the app, technologies like Node.js, npm, Angular.JS, Cordova

Plugins and Android Studio were used. As for the front-end we used Ionic Framework, HTML

and CSS. The data from the app were stored to Firebase, Google’s cloud database and the

connection between the app and the database is done by developing a Spring Boot RESTful Web

Service (API) using Java.

The project was hosted in Bitbucket from where all the developers had access to the source code.

1.2 Motive

More than 65 million people around the world have epilepsy and 1 out of 7 people with epilepsy

suffer from absence seizures. "Daddy, you work in digital, can you make a light that turns on

when my brain switches off?" This question from a son to his father led to this new start-up.

Epihunter Classroom using an EEG headset and a mobile device can detect an absence seizure

and turn on the flashlight of the child’s phone. This is very helpful for teachers and parents

because absence seizures are really difficult to notice. With Epihunter Classroom teachers and

parents are now aware of the absence seizures. But is there any room for improvement for the

Epihunter Classroom? Can parents be notified in another way except the flashlight?

That’s where Epigo, our mobile app for the parents, comes in to notify them when an absence

seizure occurs. Parents are now aware of the absence seizures. With this app they can check their

child’s location from their phone and go to help if that’s needed. Also, live video of their child is

streamed to their phone during a seizure. Epigo, sends also reminders to the parents about their

child’s medications. All the seizure events and medications are visualized on a calendar view.

Finally, the recorded data and the video are accessible from the website in order to help the

associated doctors to improve the child’s treatment.

- 12 -

1.3 Blended AIM (Academic International Mobility)

Blended AIM (Academic International Mobility) is an Erasmus+ funded project made to promote

students’ employability and support companies hosting internships. Every year 10 educational

institutes from European countries like Portugal, Greece, Belgium, United Kingdom, Germany,

Iraq and Austria end up to 2 students each to form a team. The purpose of that is to support the

students develop soft skills in an international environment by means of blended mobility.

At this moment, a student’s professional career depends on mobility and demands certain

intercultural skills. However, most institutes don’t have courses that provide international

exposure. Blended mobility helps the students adapt and learn but it’s hardly considered, let alone

used, a solution to international mobility’s problems. Blended Aim sets the foundation to

promote and test blended mobility by providing the resources, training, supporting tools and

information to the students and the companies that host internships. For that reason Praxis was

created. Praxis is a consortium of higher education institutions, companies, associations, research

labs and chambers of commerce, all committed to enhance a student’s or a company’s

Project/Internship experience and to promote innovation in the field.

1.3.1 The history of BlendEd mobility

BlendEd Mobility is the sequel of former collaborations between several European universities.

One of the most valuable predecessors is the MUTW project (Multinational Undergraduate Team

Work - funded by ERASMUS KA2 - 2009). This Erasmus project’s main goal was to strengthen

the students’ communication skills by organizing them in an international, multicultural team. In

the very first phase we simply had an international team of IT students working together on a

common project, collaborating mainly online. As a second step, we extended the student team

with members from other study areas. Next to IT-students, designers got involved, as well as

students from Business Development and Management. The technical outcome was enriched

with design and the resulting product was accompanied by a real business plan. Students learned

to communicate throughout the borders of their own discipline. In between the former MUTW

project (2009-2011) and the new BlendEd Mobility project (2016-2018) we ran several editions

on our own. During this period we extended our goals by involving companies as provider for

real project proposals. With this professional involvement the students get a context which is

international, multicultural, multidisciplinary and professional!

Today some of the partner universities integrated BlendEd mobility as a course unit in their

curricula.

- 13 -

CHAPTER 2: FUNDAMENTALS

2.1 Analysis and Development Methods

2.1.1 Nexus Scrum

Nexus is a framework, based on the principles of Scrum and the Agile Manifesto that helps the

developers by minimizing cross-team dependencies and integration issues. It was developed by

Ken Schwaber, the co-creator of Scrum and founder of Scrum.org, in 2015. Nexus framework is

an extension to the Scrum framework and it uses an iterative and incremental approach to scaling

software and product development. It allows multiple Scrum teams that work on a product, to

unify as a single larger team.

Nexus framework consists of 3-9 scrum teams that work on the same product backlog for the

successful development of a product. The main goal is the identification of cross-team issues and

making sure that integration tools are understood and used. Integration team is a new feature in

the Nexus framework and it is the team that is accountable for the successful integration of all

work created by all the Scrum Teams in a Nexus. It consists of a Product Owner, a Scrum master

and few team members of each scrum team in a nexus.

Each scrum team needs to be represented by a team member. Then the representatives meet to

identify, resolve in-Sprint dependencies and set the goals that they want to achieve in each Sprint.

These steps explain the ―Nexus Sprint Planning‖ term which is crucial in a Nexus framework.

Furthermore, Nexus Daily Scrums help the teams to plan correctly their next steps by inspecting

the integrated work. Nexus Daily Scrum is a brief meeting between the Scrum teams’ members.

Not everyone has to attend but each team’s representative must.

2.1.2 Trello

Trello is a web-based project management application originally made by Fog Creek Software in

2011 that was spun out to form the basis of a separate company in 2014 and later sold to

Atlassian in January 2017.

According to a Fog Creek blog post in January 2012, the client was an extremely thin web layer

which downloads the main app, written in CoffeeScript and compiled to minified JavaScript,

using Backbone.js HTML5 .pushState() and the Mustache templating language. The server side

was built on top of MongoDB, Node.js and a modified version of Socket.io

- 14 -

2.1.3 Bitbucket

 Bitbucket is a web-based version control repository hosting service owned by Atlassian, for

source code and development projects that use either Mercurial (since launch) or Git (since

October 2011) revision control systems. Bitbucket offers both commercial plans and free

accounts. It offers free accounts with an unlimited number of private repositories (which can have

up to five users in the case of free accounts) as of September 2010. Bitbucket integrates with

other Atlassian software like Jira, HipChat, Confluence and Bamboo.

It is similar to GitHub, which primarily uses Git. Bitbucket has traditionally marketed its services

to professional developers with private proprietary software code, especially since being acquired

by Atlassian in 2010. In September 2016, Bitbucket announced it had reached 5 million

developers and 900,000 teams on its platform. Bitbucket has 3 deployment models: Cloud,

Bitbucket Server and Data Center.

2.1.4 Slack

Slack is a cloud-based set of proprietary team collaboration tools and services, founded by

Stewart Butterfield. Slack began as an internal tool used by his company, Tiny Speck, in the

development of Glitch, a now defunct online game. The name is an acronym for "Searchable Log

of All Conversation and Knowledge".

Features

While no longer using an IRC backend, Slack offers a lot of IRC-like features, including

persistent chat rooms (channels) organized by topic, private groups and direct messaging. All

content inside Slack is searchable, including files, conversations, and people. On the free plan,

only the 10,000 most recent messages can be viewed and searched. Users can add emoji buttons

to their messages, which other users can then click on to express their reactions to messages.

Teams

Slack teams allow communities, groups, or teams to join through a specific URL or invitation

sent by a team admin or owner. Although Slack was meant for organizational communication, it

has been slowly turning into a community platform, a function for which users had previously

used message boards or social media such as Facebook or LinkedIn groups. Many of these

communities are categorized by topics which a group of people may be interested in discussing.

Messaging

Public channels allow team members to communicate without the use of email or group SMS

(texting). They are open to everyone in the chat provided they have first been invited to join the

client. Private channels allow for private conversation between smaller sects of the overall group.

These can be used to break up large teams into their own respective projects. Direct messages

allow users to send private messages to a specific user rather than a group of people.[24] Direct

- 15 -

messages can include up to nine people (the originator plus eight people). Once started this direct

message group can be converted to a private channel.

Integrations

Slack integrates with a large number of third-party services and supports community-built

integrations. Major integrations include services such as Google Drive, Trello, Dropbox, Box,

Heroku, IBM Bluemix, Crashlytics, GitHub, Runscope, Zendesk and Zapier. In December 2015,

Slack announced their app directory, consisting of over 150 integrations that users can install. In

March 2018, Slack announced its partnership with the financial and human capital management

firm Workday; Adding to Slack's list of plugins. This integration allows Workday customers to

access features from directly within the Slack interface.

Platforms

Slack provides mobile apps for iOS, Android, and Windows Phone (beta), in addition to their

web browser client and electron desktop clients for macOS, Windows, and Linux (beta). Slack is

also available for the Apple Watch, allowing users to send direct messages, see mentions, and

make simple replies. It was featured on the home screen of the Apple Watch in a 2015

promotional video.

Business model

Slack is a freemium product, whose main paid feature is the ability to search more than 10,000

archived messages. They claim support for an unlimited number of users. However, when

freeCodeCamp attempted to switch its community of over 8,000 users to Slack in 2015, they

experienced many technical issues and were advised by Slack support to limit their channels to

"no more than 1,000 users (ideally more like 500)".

- 16 -

CHAPTER 3: WORK PLAN

3.1 State of the Art

The main goal of this application is to notify the parents when an absence seizure happens. The

EEG headset records continuously the child’s brain activity in real-time and by processing those

data simultaneously on the child’s smartphone, an absence seizure can be detected on the moment

that happens. The absence seizures can be detected, but how can the parents be aware of them?

Light alerts and sound alerts on the child’s smartphone is way to notify the parents, but what

happens when the parents are away from their child? That’s why there is the need of an

application on the parent’s smartphones. By using this application, parents can receive

notifications from their child’s smartphone when a seizure happens.

With Firebase and Google Cloud functions, a notification reaches on parents smartphones almost

in real-time. If the parent opens this notification, live-video of the child is streamed to the parent

smartphone by using Api-RTC, a real-time web communication library. Also, through this

notification, the child’s exact location is pushed on the parent’s smartphone. This location is

displayed on the application using the Google Maps API. Now parents are aware of their child’s

absence seizures and they can go to help their child if that’s needed. This application can also

help doctors with the treatment. The most common question that is asked by the doctors to the

parents is when those absence seizures happened and how much time they lasted. By storing the

absence seizures data, doctors now have an overview of all the absence seizures and make

adjustments on the medication.

- 17 -

3.2 Technologies

During the implementation of this project we used a variety of technologies. For the back-end

development of the app, technologies like Node.js, npm, Angular.JS, Apache Cordova and

Android Studio were used. As for the front-end we used Ionic Framework. Ionic and Angular.JS

are really powerful tools to develop cross platform mobile applications cause from the same

source code you can built applications or Android, iOS and Windows phone. Also, several

Apache Cordova plug-in’s gave more functionalities to the application. The database we used is

Firebase, Google’s latest cloud database and the connection between the app and the database is

done by developing a Spring Boot RESTful Web Service (API) using Java and Maven. Also,

Google’s cloud functions were used and Google Maps API. Several Design Patterns were used,

as for the styling of the app we used mostly Material Design. Bellow, information on the above-

mentioned technologies are given.

3.2.1 Node.js

Node.js is an open-source, cross-platform JavaScript run-time environment that executes

JavaScript code outside the browser. Historically, JavaScript was used primarily for client-side

scripting, in which scripts written in JavaScript are embedded in a webpage's HTML and run

client-side by a JavaScript engine in the user's web browser. Node.js lets developers use

JavaScript to write Command Line tools and for server-side scripting—running scripts server-

side to produce dynamic web page content before the page is sent to the user's web browser.

Consequently, Node.js represents a "JavaScript everywhere" paradigm, unifying web application

development around a single programming language, rather than different languages for server

side and client side scripts.

Though .js is the conventional filename extension for JavaScript code, the name "Node.js" does

not refer to a particular file in this context and is merely the name of the product. Node.js has an

event-driven architecture capable of asynchronous I/O. These design choices aim to optimize

throughput and scalability in web applications with many input/output operations, as well as for

real-time Web applications (e.g., real-time communication programs and browser games).

- 18 -

3.2.2 Angular JS

AngularJS (commonly referred to as "Angular.js" or "AngularJS") is a JavaScript-based open-

source front-end web application framework mainly maintained by Google and by a community

of individuals and corporations to address many of the challenges encountered in developing

single-page applications. The JavaScript components complement Apache Cordova, a framework

used for developing cross-platform mobile apps. It aims to simplify both the development and the

testing of such applications by providing a framework for client-side model–view–controller

(MVC) and model–view–viewmodel (MVVM) architectures, along with components commonly

used in rich Internet applications. In 2014, the original AngularJS team began working on the

Angular application platform.

The AngularJS framework works by first reading the HTML page, which has additional custom

tag attributes embedded into it. Angular interprets those attributes as directives to bind input or

output parts of the page to a model that is represented by standard JavaScript variables. The

values of those JavaScript variables can be manually set within the code, or retrieved from static

or dynamic JSON resources.

According to JavaScript analytics service Libscore, AngularJS is used on the websites of

Wolfram Alpha, NBC, Walgreens, Intel, Sprint, ABC News, and about 12,000 other sites out of 1

million tested in October 2016. AngularJS is currently in the top 100 of the most starred projects

on GitHub

3.2.3 Android

Android is a mobile operating system developed by Google, based on a modified version of the

Linux kernel and other open source software and designed primarily for touchscreen mobile

devices such as smartphones and tablets. In addition, Google has further developed Android TV

for televisions, Android Auto for cars, and Wear OS for wrist watches, each with a specialized

user interface. Variants of Android are also used on game consoles, digital cameras, PCs and

other electronics.

Its open source is what attracted many developers but more importantly technology companies

that require a low-cost and customizable operating system for their high-tech devices. By having

such a huge development community, the variety of applications, tutorials on development,

development tools and supported programming languages is increasing.

Applications are developed using the Android Software Development Kit (SDK) and usually the

Java programming language through the Android Studio or Eclipse Integrated Development

Environments (IDEs).

- 19 -

3.2.4 iOS

iOS (formerly iPhone OS) is a mobile operating system created and developed by Apple Inc.

exclusively for its hardware. It is the operating system that presently powers many of the

company's mobile devices, including the iPhone, iPad, and iPod Touch. It is the second most

popular mobile operating system globally after Android.

Originally unveiled in 2007 for the iPhone, iOS has been extended to support other Apple devices

such as the iPod Touch (September 2007) and the iPad (January 2010). As of January 2017,

Apple's App Store contains more than 2.2 million iOS applications, 1 million of which are native

for iPads. These mobile apps have collectively been downloaded more than 130 billion times.

The iOS user interface is based upon direct manipulation, using multi-touch gestures. Interface

control elements consist of sliders, switches, and buttons. Interaction with the OS includes

gestures such as swipe, tap, pinch, and reverse pinch, all of which have specific definitions within

the context of the iOS operating system and its multi-touch interface. Internal accelerometers are

used by some applications to respond to shaking the device (one common result is the undo

command) or rotating it in three dimensions (one common result is switching between portrait

and landscape mode). Apple has been significantly praised for incorporating thorough

accessibility functions into iOS, enabling users with vision and hearing disabilities to properly

use its products.

3.2.5 Ionic Framework

Ionic is a complete open-source SDK for hybrid mobile app development. The original version

was released in 2013 and built on top of AngularJS and Apache Cordova. The more recent

releases, known as Ionic 3 or simply "Ionic", are built on Angular. Ionic provides tools and

services for developing hybrid mobile apps using Web technologies like CSS, HTML5, and Sass.

Apps can be built with these Web technologies and then distributed through native app stores to

be installed on devices by leveraging Cordova. Ionic was created by Max Lynch, Ben Sperry, and

Adam Bradley of Drifty Co. in 2013. Ionic uses Cordova plugins to gain access to host operating

systems features such as Camera, GPS, Flashlight, etc. Users can build their apps, and they can

then be customized for Android, iOS, Windows, or modern browsers. Ionic allows you to build

and deploy your apps by wrapping around the build tool Cordova with a simplified 'ionic'

command line tool. Ionic includes mobile components, typography, interactive paradigms, and an

extensible base theme. Using Angular, Ionic provides custom components and methods for

interacting with them. One such component, collection repeat, allows users to scroll through a list

of thousands of items without any performance hits. Another component, scroll-view, creates a

scrollable container with which users can interact using a native-influenced delegate system.

- 20 -

3.2.6 npm

npm is a package manager for the JavaScript programming language. It is the default package

manager for the JavaScript runtime environment Node.js. It consists of a command line client,

also called npm, and an online database of public and paid-for private packages, called the npm

registry. The registry is accessed via the client, and the available packages can be browsed and

searched via the npm website. The package manager and the registry are managed by npm, Inc.

npm is included as a recommended feature in Node.js installer. npm consists of a command line

client that interacts with a remote registry. It allows users to consume and distribute JavaScript

modules that are available on the registry. Packages on the registry are in CommonJS format and

include a metadata file in JSON format. Over 477,000 packages are available on the main npm

registry. The registry has no vetting process for submission, which means that packages found

there can be low quality, insecure, or malicious. Instead, npm relies on user reports to take down

packages if they violate policies by being low quality, insecure or malicious. npm exposes

statistics including number of downloads and number of depending packages to assist developers

in judging the quality of packages.

3.2.7 Apache Cordova

Apache Cordova (formerly PhoneGap) is a mobile application development framework originally

created by Nitobi. Adobe Systems purchased Nitobi in 2011, rebranded it as PhoneGap, and later

released an open source version of the software called Apache Cordova. Apache Cordova enables

software programmers to build applications for mobile devices using CSS3, HTML5, and

JavaScript instead of relying on platform-specific APIs like those in Android, iOS, or Windows

Phone. It enables wrapping up of CSS, HTML, and JavaScript code depending upon the platform

of the device. It extends the features of HTML and JavaScript to work with the device. The

resulting applications are hybrid, meaning that they are neither truly native mobile application

(because all layout rendering is done via Web views instead of the platform's native UI

framework) nor purely Web-based (because they are not just Web apps, but are packaged as apps

for distribution and have access to native device APIs). Mixing native and hybrid code snippets

has been possible since version 1.9.The software was previously called just "PhoneGap", then

"Apache Callback". As open-source software, Apache Cordova allows wrappers around it, such

as Appery.io or Intel XDK.PhoneGap is Adobe’s commercial version of Cordova along with its

associated ecosystem. Many other tools and frameworks are also built on top of Cordova,

including Ionic, Monaca, TACO, Onsen UI, Visual Studio, GapDebug, App Builder, Cocoon,

Framework7, Quasar Framework, Evothings Studio, NSB/AppStudio, Mobiscroll, the Intel XDK,

and the Telerik Platform. These tools use Cordova, and not PhoneGap for their core tools.

- 21 -

3.2.8 Firebase

Firebase is a mobile and web application development platform developed by Firebase, Inc. in

2011, then acquired by Google in 2014.

Firebase Cloud Messaging

Formerly known as Google Cloud Messaging (GCM), Firebase Cloud Messaging (FCM) is a

cross-platform solution for messages and notifications for Android, iOS, and web applications,

which currently can be used at no cost.

Firebase Auth

Firebase Auth is a service that can authenticate users using only client-side code. It supports

social login providers Facebook, GitHub, Twitter and Google (and Google Play Games).

Additionally, it includes a user management system whereby developers can enable user

authentication with email and password login stored with Firebase.

Firebase Notifications

Firebase Notifications is a service that enables targeted user notifications for mobile app

developers at no cost.

Cloud Firestore

Cloud Firestore is a flexible, scalable database for mobile, web, and server development from

Firebase and Google Cloud Platform. Like Firebase Real-time Database, it keeps your data in

sync across client apps through real-time listeners and offers offline support for mobile and web

so you can build responsive apps that work regardless of network latency or Internet connectivity.

Cloud Firestore also offers seamless integration with other Firebase and Google Cloud Platform

products, including Cloud Functions.

- 22 -

3.2.9 Spring Boot RESTful Web Service (API)

The Spring Framework is an application framework and inversion of control container for the

Java platform. The framework's core features can be used by any Java application, but there are

extensions for building web applications on top of the Java EE (Enterprise Edition) platform.

Although the framework does not impose any specific programming model, it has become

popular in the Java community as an addition to, or even replacement for the Enterprise

JavaBeans (EJB) model. The Spring Framework is open source.

Remote access framework

Spring's Remote Access framework is an abstraction for working with various RPC (remote

procedure call)-based technologies available on the Java platform both for client connectivity and

marshalling objects on servers. The most important feature offered by this framework is to ease

configuration and usage of these technologies as much as possible by combining inversion of

control and AOP.The framework also provides fault-recovery (automatic reconnection after

connection failure) and some optimizations for client-side use of EJB remote stateless session

beans. Spring provides support for these protocols and products out of the box

 HTTP-based protocols

o Hessian: binary serialization protocol, open-sourced and maintained by CORBA-

based protocols

o RMI (1): method invocations using RMI infrastructure yet specific to Spring

o RMI (2): method invocations using RMI interfaces complying with regular RMI

usage

o RMI-IIOP (CORBA): method invocations using RMI-IIOP/CORBA

 Enterprise JavaBean client integration

o Local EJB stateless session bean connectivity: connecting to local stateless session

beans

o Remote EJB stateless session bean connectivity: connecting to remote stateless

session beans

 SOAP

o Integration with the Apache Axis Web services framework

Apache CXF provides integration with the Spring Framework for RPC-style exporting of objects

on the server side. Both client and server setup for all RPC-style protocols and products

supported by the Spring Remote access framework (except for the Apache Axis support) is

configured in the Spring Core container. There is alternative open-source implementation

(Cluster4Spring) of a remoting subsystem included into Spring Framework that is intended to

support various schemes of remoting (1-1, 1-many, dynamic services discovering)

Spring Boot

- 23 -

Spring Boot is Spring's convention-over-configuration solution for creating stand-alone,

production-grade Spring-based Applications that you can "just run". It is preconfigured with the

Spring's "opinionated view" of the best configuration and use of the Spring platform and third-

party libraries so you can get started with minimum fuss. Most Spring Boot applications need

very little Spring configuration. Features:

 Create stand-alone Spring applications

 Embed Tomcat or Jetty directly (no need to deploy WAR files)

 Provide opinionated 'starter' Project Object Models (POMs) to simplify your Maven

configuration

 Automatically configure Spring whenever possible

 Provide production-ready features such as metrics, health checks and externalized

configuration

 Absolutely no code generation and no requirement for XML configuration

3.2.10 Apache Maven

Maven is a build automation tool used primarily for Java projects. Maven addresses two aspects

of building software: first, it describes how software is built,[clarification needed] and second, it

describes its dependencies. Unlike earlier tools like Apache Ant, it uses conventions for the build

procedure, and only exceptions need to be written down. An XML file describes the software

project being built, its dependencies on other external modules and components, the build order,

directories, and required plug-ins. It comes with pre-defined targets for performing certain well-

defined tasks such as compilation of code and its packaging.

Maven dynamically downloads Java libraries and Maven plug-ins from one or more repositories

such as the Maven 2 Central Repository, and stores them in a local cache. This local cache of

downloaded artifacts can also be updated with artifacts created by local projects. Public

repositories can also be updated.

Maven can also be used to build and manage projects written in C#, Ruby, Scala, and other

languages. The Maven project is hosted by the Apache Software Foundation, where it was

formerly part of the Jakarta Project.

Maven is built using a plugin-based architecture that allows it to make use of any application

controllable through standard input. Theoretically, this would allow anyone to write plugins to

interface with build tools (compilers, unit test tools, etc.) for any other language. In reality,

support and use for languages other than Java has been minimal. Currently a plugin for the .NET

framework exists and is maintained, and a C/C++ native plugin is maintained for Maven 2.

Alternative technologies like Gradle and sbt as build tools do not rely on XML, but keep the key

concepts Maven introduced. With Apache Ivy, a dedicated dependency manager was developed

as well that also supports Maven repositories.

- 24 -

3.2.11 Google Maps API

Google launched the Google Maps API in June 2005 in order to allow developers to integrate

Google Maps into their websites. It was a free service that didn't require an API key until June

2018 (changes went into effect on July 16th), when it was announced that an API key linked to a

Google Cloud account with billing enabled would be required to access the API. The API

currently does not contain ads, but Google states in their terms of use that they reserve the right

to display ads in the future

By using the Google Maps API, it is possible to embed Google Maps into an external website, on

to which site-specific data can be overlaid. Although initially only a JavaScript API, the Maps

API was expanded to include an API for Adobe Flash applications (but this has been deprecated),

a service for retrieving static map images, and web services for performing geocoding, generating

driving directions, and obtaining elevation profiles. Over 1,000,000 web sites use the Google

Maps API, making it the most heavily used web application development API.

The Google Maps API is free for commercial use, provided that the site on which it is being used

is publicly accessible and does not charge for access, and is not generating more than 25,000 map

accesses a day. Sites that do not meet these requirements can purchase the Google Maps API for

Business.

The success of the Google Maps API has spawned a number of competing alternatives, including

the HERE Maps API, Bing Maps Platform, Leaflet and OpenLayers via self-hosting.[citation

needed]. The Yahoo! Maps API is in the process of being shut down.

3.2.12 Google Cloud functions

Cloud Functions lets application developers spin up code on demand in response to events

originating from anywhere. Treat all Google and third-party cloud services as building blocks,

connect and extend them with code, and build applications that scale from zero to planet-scale—

without provisioning or managing a single server.

- 25 -

3.2.13 Material design

Material Design (codenamed Quantum Paper) is a design language developed in 2014 by Google.

Expanding upon the "card" motifs that debuted in Google Now, Material Design makes more

liberal use of grid-based layouts, responsive animations and transitions, padding, and depth

effects such as lighting and shadows. Designer Matías Duarte explained that, "unlike real paper,

our digital material can expand and reform intelligently. Material has physical surfaces and

edges. Seams and shadows provide meaning about what you can touch." Google states that their

new design language is based on paper and ink but implementation will take place in an advanced

manner.

Material Design can be used in all supported versions of Android, or in API Level 21 (Android

5.0) and newer (or for older via the v7 appcompat library), which is used on virtually all Android

devices manufactured after 2009. Material Design will gradually be extended throughout

Google's array of web and mobile products, providing a consistent experience across all

platforms and applications. Google has also released application programming interfaces (APIs)

for third-party developers to incorporate the design language into their applications. The main

purpose of material design is creation of new visual language that combines principles of good

design with technical and scientific innovation.

3.2.14 Design Patterns

By definition, Design Patterns are reusable solutions to commonly occuring problems(in the

context of software design). Design patterns were started as best practices that were applied again

and again to similar problems encountered in different contexts. They become popular after they

were collected, in a formalized form, in the Gang of Four book in 1994. Originally published

with c++ and smaltalk code samples, design patterns are very popular in Java and C# can be

applied in all object oriented languages. In functional languages like Scala, certain patterns are

not necesary anymore.

3.2.15 Java

Java is a powerful class-based and object-oriented computer programming language that was

developed by James Gosling for Sun Microsystems which was acquired by Oracle Corporation.

Java is one of the most popular programming languages in use especially for client-server web

applications, with a reported 9 million users. It was based on C/C++ syntax design which

application developers found familiar. Originally it was designed for interactive television but it

was too advanced for the digital cable television at the time (1991).

Java’s major goal is portability which is accomplished by compiling the Java code to Java

bytecode instead of machine code. Java bytecode instructions are analogous to machine code, but

- 26 -

they are intended to be executed by a virtual machine written specifically for the host hardware.

Because Java bytecode runs on any platform that supports a Java Virtual Machine the term ―write

once, run anywhere‖ was introduced to application developers.

After the acquisition of Sun Microsystems by Oracle Corporation on January 27, 2010 the Java

platform implementation was split into two different distributions. The Java Runtime

Environment (JRE) which contains the parts of the Java SE platform required to run Java

programs, and the Java Development Kit (JDK) which is intended for software developers and

includes developments tools such as the Java complier, Javadoc and a debugger.

As mentioned Java is an object-oriented programming language. That means that the memory

management gets more difficult for the programmers due to pointer references. For example, if

the programmer holds the reference to an object that no longer exists or is needed then a ―null

pointer exception‖ error is thrown. To solve these problems Java is accompanied by Automatic

Garbage Collectors that keep the memory up to date by managing the pointers of the created

objects. That is the reason why Java does not support C/C++ style pointer usage.

Java is used for the development of Android applications through Android Studio or Eclipse

IDEs but the Java bytecode runs on its own virtual machine, optimized for low memory devices.

- 27 -

CHAPTER 4: MAIN PART

4.1 Problem Analysis

Epihunter is a Belgian start-up founded by Tim Buckinx. "Daddy, you work in digital, can you

make a light that turns on when my brain switches off?" This question from Tim’s son, led his

father to create this new start-up. Epihunter builds digital solutions to help normalize the daily

life of people with epilepsy.

Epihunter’s first solution, Epihunter Classroom, focuses on children with absence seizures. These

make it especially tough in the classroom. We make seizures visible to the teacher and provide

parents with an objective overview.

One of Epihunter’s most recent projects is the development of an application that notifies the

parents when an absence seizure is detected on the Epihunter Classroom app. In this Thesis

Epihunter’s parent application, epigo is going to be analyzed. The goal of epigo is to extend the

possibilities of Epihunter Classroom app by helping the lives of both parents and children with

epilepsy. Epigo notifies parents when an absence seizure is detected on real-time. Parents can

now check their child’s location and receive live video-stream of their child at the moment of an

absence seizure.

4.1.1 Problem Description

During our first meeting in Ghent the CEO of the company addressed the difficulties that a child

with epilepsy is facing in its daily life at school. The story’s main subject was that the absence

seizures are really hard to detect, a seizure can happen at any moment and the child may seem

normal. As a result, the teacher can’t be aware that this child is having an absence seizure in the

classroom. That’s why the Epihunter Classroom is created, in order to notify the teachers with a

light alert from the child’s smartphone. The child is wearing an EEG headset that records real-

time brain activity. The EEG data from the headset are processed on child’s smartphone in real-

time which is placed on the desk. Once an absence seizure is detected the smartphone flashlight is

turned on, reminding us the strong question Tim’s son made to his father. Now if the teacher

notice a turned on flashlight, knows that this child is having an absence seizure and special

attention should be given. This is very important cause after a seizure ends, the child can’t

remember anything at all from the time that it was under an absence seizure. There are many

types of seizures, but in this project we are focusing on the absence once. Absence seizures have

3 types depending the duration of them. They can be sort, long and multiple sort seizures.

So, the Blended AIM team was called to give some ideas on who can we expand the possibilities

of Epihunter Classroom. After discussing many ideas with the CEO of Epihunter, we decided to

develop an application for the parents of kids with epilepsy that works with Epihunter Classroom.

The main function of this application is to notify parents when an absence seizure event happens.

- 28 -

4.1.2 System Requirements

To complete the project that was given the students had to decompose the main task into simpler

and shorter ones that could be handled more effectively. The basic needs of this project were 2

mobile applications, an API for the database connections and a website special for doctors. The

tools we used for the development of the applications can export cross-platform software, so the

applications are available for Android, iOS and Windows Phone. The first application is the

parent app which is called epigo. In this app, parents can receive notifications when an absence

seizure occurs. This notification is sent from the Epihunter Classroom app. For the needs of this

project we created a dummy app that simulates the events that can happen on Epihunter

Classroom app (ex. Seizure event, headset connection). The functionalities of this dummy app

can be used for future development on the Epihunter Classroom app. On the doctor’s website, the

associated doctor will be able to check the seizure data that are saved to the database. The

backend services (API) would take care of data storage and manipulation thus allowing the

correct connection between the applications.

For better workflow management and easier achievable tasks, the students split the components

of the 2 applications into smaller app pages to scale down the work load of each individual task.

So, the final decomposition consisted of 2 mobile applications (one for the parents and one for

children to simulate the Classroom app event) and the backend services (API). The website

development was too much for the given deadline of the project, so only the design mock-ups

have been made to help the future development.

Those 2 apps are working together but there are also functionalities on the parent app that can

work without the dummy app. We used the stories below, referring to the parent app as Parent

and to the dummy app as Child, to help us creating and managing the tasks. For these users, user

stories were created in each sprint as upcoming goals. Also, API tasks are referred.

Sprint 1

As Parent, I want to Sign-in

As Child, I want to Sign-in

As Parent, I want to Log-in

As Child, I want to Sign-in

Sprints Table 1

Sprint 2

As Child, I want to track and display the time that I wear the EEG headset

API has to be created to make the connection between Parent and Child

As Child, I want to simulate a seizure event

As Child, I want to know if the headset doesn’t record EEG data

Sprints Table 2

- 29 -

Sprint 3

As Child, I want to send a notification

As Parent, I want to receive a notification

As Child, I want to record a video during a seizure

As Child, I want to know my GPS location

Sprints Table 3

Sprint 4

As Child, I want to send live-stream video to the Parent

As Parent, I want to receive live-stream video from the Child

API has to store the seizure data on the database

Sprints Table 4

Sprint 5

As Parent, I want to see the headset connection status from my app

As Parent, I want to watch the recorded streams available on the database

Sprints Table 5

Sprint 6

As Parent, I want to visualize the daily seizure data

As Parent, I want to visualize the monthly seizure data

As Parent, I want to have settings on my app

Sprints Table 6

Sprint 7

As Child, I want to send my GPS Location

As Parent, I want to view the GPS Location of the Child

As Parent, I want to set reminders for Medication

Sprints Table 7

Sprint 8

As Parent, I want to add a seizure event manually

As Parent, I want to see a recoded seizure details(duration, type)

As Parent, I want to comment on a seizure

API has to retrieve the requested data from the database

Sprints Table 8

- 30 -

Doctor’s website Sprint

As Doctor, I want to have a list with all my patients

As Doctor, I want to add patients

As Doctor, I want to remove patients

As Doctor, I want to have a monthly overview of the seizures

As Doctor, I want to have a daily view of the seizures

As Doctor, I want to filter the recorded data

As Doctor, I want to have a view with details of the seizure, the EEG data and the video

As Doctor, I want to zoom in out to EEG graph

As Doctor, I want by moving the EEG cursor redirect to the exact timestamp of the video

As Doctor, I want to comment on a seizure

Doctor Sprint Table 1

4.2 Implementation

4.2.1 Project Implementation

In Blended AIM 2018, 19 students participated from universities in Germany, Portugal, Greece,

Austria, Belgium, Scotland and Iraq. Students were divided in 2 teams and worked on different

projects. At first, the 2 teams had to get acquainted with each other and also with the Scrum

framework that they would use for the agile software development. Following the Nexus Scrum,

they rearranged the initial team into separate smaller ones consisting of the design team, the

application development team, the business team and the marketing team. There were even

smaller sub-teams in the development team to make the software development faster. The

rearrangement was done according to the student’s educational field. The first Sprint took place

in Ghent, Belgium (IMEC company headquarters). During this week we made the project goals

more clear and we discussed the technologies that would be used and on the final product with

Epihunter’s CEO. After that meeting each student returned to his country and that made the

project management a bit harder, mostly on communication. Every 2 weeks, on Monday the

students had a general meeting were all the students from all the teams participated and there was

an update from every member about their accomplishments and their future goals. There were

also internal of the app team meetings about the app development every Thursday. Those

meetings were very important in order to discuss the problems we had on the development and

find solutions. Also, every 2 Thursdays, a sprint review meeting was held were every student had

to present the work that was done and discuss with all the team members about the next tasks. A

meeting with Epihunter’s CEO was held after the end of each sprint. The leaders of each team

participated to update the costumer about the progress and answer to any questions from him.

The whole project was divided in 8 sprints, one every two weeks, until its completion. There was

daily communication between the students through the Slack application. Meetings were hosted

on Skype. That type of communication needed some time to be adapted by all the members but

- 31 -

after some sprints everyone was used to it and the communication was really direct. Although, it

was really difficult to find a convenient time to schedule the meetings cause all the students had

different time zones and daily routines.

All the tasks were held on Trello and every scrum team had its own tasks. In the end of each

Sprint, the product owner had to assign new tasks for the upcoming Sprint. When a task wasn’t

completed till the end of a Sprint, it was transferred to the next Sprint and marked as priority.

That meant it has to be done as soon as possible before moving to the new tasks.

The last Sprint took place in Heraklion, Greece (in Technological Institute of Crete) where the

final presentation of the product also took place. During the last week of the last Sprint students

worked together to finalize their work, fix existing bugs and problems. Demo of the application

was presented and preserve the certainty of a smooth run, demonstrating all the developed

features of the application. At the end of the product presentation the students work was

evaluated by the company representatives and the professors, then questions and open discussion

were made. The students also were rated for their participation by each other.

4.2.2 Detailed Project Implementation

At the beginning of the project we were divided in sub-development teams that were targeting a

specific product. The end-products were 2 mobile applications and an API, the website will be

developed in the future. My role on the development was really agile and flexible, so during this

project I have worked on all the products but mostly on the mobile applications. Also, I was

helping other members by finalizing tasks that weren’t fully implemented. Bellow there is a

further explanation of the exported tasks from the user stories. Furthermore, some of the code as

well as certain techniques that were used for the completion of the application will be explained.

In the next tables the user stories and the exported tasks of each product are presented.

Parent App

User story: As Parent, I want to Sign-in Tasks

1. Register to firebase

2.UI of Registration page

3.Backend of Registration Page

A new Ionic page has to be created.

Registration form.

Create a provider to handle the registration

requests to firebase.

UI design implementation.

User story: As Parent, I want to Log-in Tasks

1. Login to firebase

2.UI of Login page

3.Backend of Login Page

A new Ionic page has to be created.

Login form.

Create a provider to handle the authentication

requests to firebase.

UI design implementation.

Parent Story 1

- 32 -

Parent App

User story: As Parent, I want to receive a

notification
Tasks

1. Receive cloud notifications from Child App

2. Display notifications on the app

Create a provider to handle the notifications

requests from the cloud functions.

Create pop-over window on the app when a

notification is received

Parent Story 2

Parent App

User story: As Parent, I want to receive live-

stream video from the Child
Tasks

1. Receive live-stream video from Child App

2. Open video when a notification is tapped

Create a provider to handle the live video

requests from the cloud functions.

Create new div on the app template to stream

the video elements

Auto-answer to calls

Add a button to cancel the call

Parent Story 3

Parent App

User story: As Parent, I want to see the

headset connection status from my app
Tasks

1. UI on the top nav-bar

2. Get connection status

Display headset connection with an icon on the

top nav-bar(active, non-active)

Change icon once the headset is connected or

disconnected

Get a notification if the connection is lost

User story: As Parent, I want to watch the

recorded streams available on the database
Tasks

1. UI of the list with the recorded videos

2. Get videos list from cloud

3. UI of the sub-video page(Selected video)

4. Comment on Video

Create a new Ionic page for the available

recorded videos.

Fetch available videos from cloud storage.

When a video is selected from the list new page

is now open with a video player and a comment

box.

The parent can comment on a video and the

comments are stored on the database.

Parent Story 4

- 33 -

Parent App

User story: As Parent, I want to visualize the

monthly seizure data
Tasks

1. UI of the monthly Calendar view

2. Select a date

Create a new Ionic page for the monthly

calendar view.

Selected a date from the calendar view

Redirect to daily calendar view and fetch the

data of the selected data via API.

User story: As Parent, I want to visualize the

daily seizure data
Tasks

1. UI of the daily Calendar view

2. Get stored seizure data from via API

Create a new Ionic page for the daily calendar

view.

Fetch the data of the selected date from the

database via API.

User story: As Parent, I want to have settings

on my app
Tasks

1. UI of Settings Page

2. UI of Account Page

3. Insert settings icon on to nav-bar

3. Insert notification icon on to nav-bar

Create a new Ionic page for the settings page.

Enable light alerts.

Enable vibration alerts.

Enable sound alerts.

Change Language.

View Terms of Service

Create a new Ionic page for the account page.

Change username

Change password

Logout

Insert a gear icon on the top nav-bar so the

settings are easily assessable.

Insert a bell icon on the top nav-bar to turn

on/off the notifications.

Parent Story 5

- 34 -

Parent App

User story: As Parent, I want to set reminders

for Medication
Tasks

1. UI of Medication Page

2. Set medication reminders

3. Insert medication records on the database

Create a new Ionic page for the monthly

calendar view.

Selected the name of the medication.

Select a time to get a reminder.

Select an additional time to get a reminder.

Select the days you what get reminders for this

medicine.

Select the recurrence of the medicine.

Add comments for the medication.

Set the reminder.

User story: As Parent, I want a map view of

the GPS Location of the Child
Tasks

1. Receive GPS Location from Child App

2. Display location on the map.

3. Extend UI in the live-video page

Initialize the map with Google Maps API

Get the GPS coordinates from the database.

Set the coordinates on the map and display

them on the live-video page.

Parent Story 6

Parent App

User story: As Parent, I want to add a seizure

event manually
Tasks

1. UI of the add Seizure view

2. Insert a new Record on the calendar

3. Store new data via API

Create a new pop-over page to add seizure

event manually.

Select seizure type.

Set duration (time seizure started/ended).

Insert data on the selected date of the calendar

view and store them via API.

Redirect to daily calendar view and fetch the

data of the selected data via API.

User story: As Parent, I want to see a recoded

seizure details(duration, type)
Tasks

1. UI of the seizure details view

2. Get stored seizure data from via API

Create a new Ionic page for the seizure details

view.

Fetch the data of the selected date from the

database via API and display them in detailed

view.

Delete a record form the database with API.

User story: As Parent, I want to comment on a

seizure
Tasks

1. Extend UI of seizure details page

2. Get seizure details from database

3. Comment on a seizure

Details of the selected seizure are displayed.

Parent can make comments on the seizure.

Comments are stored on the database via API.

Parent Story 7

- 35 -

Child App

User story: As Child, I want to Sign-in Tasks

1. Register to firebase

2.UI of Registration page

3.Backend of Registration Page

A new Ionic page has to be created.

Registration form.

Create a provider to handle the registration

requests to firebase.

UI design implementation.

User story: As Child, I want to Log-in Tasks

1. Login to firebase

2.UI of Login page

3.Backend of Login Page

A new Ionic page has to be created.

Login form.

Create a provider to handle the authentication

requests to firebase.

UI design implementation.

Child Story 1

Child App

User story: As Child, I want to track and

display the time that I wear the EEG headset
Tasks

1. Activate a timer(Trigger event)

2. Deactivate the timer(Trigger event)

3. Get timer duration, timestamp

(Note: This will be used in later tasks to push

cloud notifications)

Create a toggle button in frontend to activate

and deactivate the timer.

Create a timer on backend to count the time

duration.

Get a timestamp and the time duration once the

timer is deactivated.

User story: As Child, I want to simulate a

seizure event
Tasks

1. Activate a timer(Trigger event)

2. Deactivate the timer(Trigger event)

3. Get timer duration, timestamp

(Note: This will be used in later tasks to push

cloud notifications)

Create 2 buttons in frontend to activate and

deactivate the timer.

Create a timer on backend to count the time

duration.

Get a timestamp and the time duration once the

timer is deactivated.

User story: As Child, I want to know if the

headset doesn’t record EEG data
Tasks

1. Trigger event

(Note: This will be used in later tasks to push

cloud notifications)

A new button has to be created in frontend.

A pop-up notification should be triggered.

Child Story 2

- 36 -

Child App

User story: As Child, I want to send a

notification
Tasks

1. Sent a cloud notification when an event is

triggered

Built a Google cloud function to push

notifications.

Get userID and deviceID to send a notification.

Create a provider on the app to trigger

notifications on the cloud functions.

Sent a push notification to the parent app when

an event is triggered (Seizure, Headset

Connection).

User story: As Child, I want to record a video

during a seizure
Tasks

1. Activate the camera

2. Record video

3. Stop recording when seizure ends

(Note: This will be used in later tasks to make

the live-stream video calls)

Trigger recording on a seizure event.

Stop recording when a seizure ends

Store the video locally and play it.

User story: As Child, I want to know my GPS

location
Tasks

1. Get GPS Location Trigger a geolocation request on the start of a

seizure.

Child Story 3

Child App

User story: As Child, I want to send live-

stream video to the Parent
Tasks

1. Sent live-stream video to the Parent App Create a provider to handle the live video

function.

Give camera permissions to the app.

Initialize web client for the call.

Make a call.

Record video call.

Store it on cloud.

Child Story 4

Child App

User story: As Child, I want to send my GPS

Location
Tasks

1. Push GPS Location through a notification Pass GPS coordinates through the notification

when a seizure event is triggered.

Child Story 5

- 37 -

API

User story: API has to be created to make the

connection between Parent and Child
Tasks

1. Connection to firebase

2. Pull requests

3. Push requests

4. Implementation as service to the apps

Built the Java API (Spring Boot).

Connection between Firebase API & our own

API.

Make test request.

Implement API to the apps.

Test connection

API Story 1

API

User story: API has to store the seizure data on

the database
Tasks

1. Store data to firebase

Write tests for the API.

Set up API methods to store data into the

database.

Connect with Child App with API to feed

through simulation data.

API Story 2

API

User story: API has to retrieve the requested

data from the database
Tasks

1. Add API to the parent app

2. Handle requests

3. Fetch data from firebase

Add APIHandler service to parent app.

Get the data from API into Parent-app.

Convert parent app to accept new JSON data

format.

Add offline support.

API Story 3

- 38 -

4.2.2.1 User Interface Design

The user interface was designed by our designer’s team. During our first Sprint, back in Ghent, the

designers had to select the colors, the fonts and the app icons were going to use. They had also to present

some sample mock-ups of the app. There were 2 approaches on the app colors. The first one was to use

the same colors as the company’s website. That meant the main colors were green, light green, cyan and

white. The second approach had totally different colors with the main colors being purple, gray, cyan and

white. The icon of the app stayed the same as company’s logo. The final selection from the company was

to keep the colors from their website and use the Dosis font that we suggested for our texts.

After the colors and font selection the app mock ups for each page had to be made using Material Design.

We had 8 different versions of the design mock-ups. That caused some problems on the development

cause even till the last sprints changes were made. That affected the UI implementation on the front-end

and with the new designs some extra back-end functions had to be developed. In every Sprint the mock-

ups were reviewed by the company and useful feedback about them was given on what has to be changed.

Having so many iterations on the designing definitely affected the development speed. Although, the final

design was exactly what the company wanted and a big part of it also implemented in the app.

Each page had its own mock up. The developers had to implement the design on the app as it was on the

mock-up. All the icons and design elements were provided from the designers to the developer team to

help the design implementation on the app. It was a really efficient way for the design team to work with

the developers. By reviewing a mock-up as a developer you knew what you have to develop both in front-

end and back-end. Also a site-map with all the app pages was provided from the designer’s team to help

developer with the navigation between the pages.

The design implementation with the Ionic Framework actually wasn’t very difficult. An Ionic Page has the

same structure as a webpage. That means each individual page consists of these 3 files:

 Page.html (HTML file)

 Style.scss (Style CSS file)

 Backend.ts (AngularJS typescript file)

It really reminds us a webpage and the development of it it’s pretty much the same, but it’s also enhanced

with Ionic and Cordova Plug-ins that helps the design and the functions implementation. AngularJS is

handling the back-end of the page and it has the same role as a JavaScript file. So modifying those 3 files

we can implement any style we want in each page as we would on a webpage. There are some small

differences on the Ionic and AngularJS from the classic web-development but for a developer that is

experienced with web-development it will be really easy to adapt and use the Ionic framework to develop

cross-platform mobile applications.

Every design element was placed under the assets folder which is contained inside the source folder of our

project. In this folder there were 4 subfolders that contained images, icons, fonts and data.

 img

All the images of the app are contained in this folder. Those are design elements files

(.png .svg) that are used on the app pages and menus.

 icon

Application icon is contained (.ico).

- 39 -

 fonts

All the files that need for the Dosis font are contained in this folder (.ttf)

 data

A JSON tree is contained with calendar and medication data that are used in the app

(.json)

There is also a theme folder inside the source folder, were the font and the selected colors are

implemented. In this folder there is a file called variables.scss and by modifying it we changed

the app default colors and font.

 Colors

There are many colors in the app, so there are many different color codes. We saved all

the color codes we used in a list as variables. Doing that helped a lot during the styling of

the app because the developers were able to set a color by its given name without typing

the color code. Here is an example:

 Font

The Dosis font we stored in the assets folder has to be imported to this file.

As we told above, each individual page consists of an html, a sccs and a typescript file. But on

top of those pages there is the app page. This is the root page of the app and it’s the most

important of them all. It handles boot-up of the app by initializing the pages that have to be

displayed. It also handles other important functions like the initialization of the APIs and the

database service. The root page is always running while the application is active or running in the

background. That’s why the root pages in Ionic development are mostly used to implement

menus that would handle the navigation and will also be accessible from every page on the app.

The most important part of the root page is its back-end code. For example, there we can check if

a user is logged in or not. If the user is logged in we give access to all the pages and the logged in

menu. Otherwise, the user has access only to the logged out pages and the logged out menu. This

- 40 -

happens by giving dynamically the right permission to the app page by the user connection status.

Another important function that is also implemented in the app page is the notification part. As

long as the app page is running always when the app is active or in background is important to

receive notifications in every page of the app but also even you are not using the app but its

running on the background. The structure of the app page is the following:

App source folder

 app.component.ts

In this typescript file all the back-end code exists. Using some functions right permissions

are given to the users. Also, the notifications are received and also important APIs (like

the API for the live-stream video) are initialized. Some plug-ins are imported in this file

to extend the functionalities. With these plug-ins the app can operate on background

mode.

This script is handling which menu is going to be displayed to the user:

 app.html

This HTML file is used for the navigation of the other pages.

 app.modules.ts

In this file all the declarations of the ionic pages, services (API) and providers (Firebase

Auth, Data) is made. It operates like a local library of all components of the app so

connections between the pages ,services and providers can be made.

 app.template.html

This HTML file is used to visualize the side menus. There are 2 menus with 2 different

ids (logged in, logged out). The displayed menu to the user depends from the user

connection status.

 app.scss

The styling variables of the app are in this file.

 main.ts

This typescript file is used to bootstrap AppModules using the browser platform.

- 41 -

Bellow there are screenshots of the 2 side menus from the app.template.html file.

Tabs Page

In this page 2 navigation bars are contained. The bottom nav-bar is used to navigate the user

between the 3 main pages of the app. There are 3 tabs that can navigate to these pages:

 Calendar Page

 Medication Page

 Videos Page

This is the code for the tabs from the tabs-page.html file:

Picture 2, Logged In Side-Menu Picture 1, Logged Out Side-Menu

- 42 -

This is a screenshot of the tabs-page bottom nav-bar

Picture 3, Bottom navigation bar

In the top nav-bar, there are 3 clickable icons and a non-clickable icon that is displaying the EEG

headset connection status from the Child app. This icon has 2 statuses, active and non-active. The

3 clickable icons are:

 Menu Icon

 Notification Bell (active and non-active)

 Settings Page (Gear Icon)

If the Menu Icon is taped the side menu shows up. By tapping the notification bell you can turn

on or off the notifications and by tapping on the Gear Icon user is navigated to the settings page.

This is a screenshot of the tabs-page top nav-bar with active notifications and headset connection.

Picture 4, Top navigation bar 1

This is a screenshot of the tabs-page top nav-bar with non-active notifications and headset

connection.

- 43 -

Picture 5, Top navigation bar 2

Tabs-page may don’t have any inner content but it saved us a many lines of code in this project.

By displaying the tabs-page over the other main pages, we didn’t have to write the same code

both on front-end and back end, over and over again in every page, just to display the 2 nav-bars.

That was really inefficient and developing a page just for the nav-bars was a really nice solution.

Pages

Having built the main components for the navigation and the menus, rest pages had to be

implemented. The application consists of 15 Ionic pages in total, which 7 of them are activities, 5

are fragments and 3 of them are modal pages.

 Activity_login

In this layout, there is an image with company’s logo, 2 text fields for the username and

password and a button for the login. There is also a clickable text with a link that redirects

the user to the register page.

 Activity_register

In this layout, there is an image with company’s logo, 4 text fields for the email,

username, password and confirmation of the password and a button for the registration.

 Activity_main

In this layout, the layouts of the side-menu and the navigations bars are contained. On top

of that the layout of the fragment that is in use is shown accordingly.

These fragments are:

o Fragment_calendar

In this fragment, a calendar is contained that operates as a date selector. The user can

select any month and day he wants. Then the user is redirected to the daily layout of

the selected day. In this layout all the recorded seizure events of this date are

displayed in a timeline as colored dots. Each dot represents a seizure type. There are 4

types of seizures and each one of them has a different color so it’s easily recognizable

from the user. The seizure types are:

 Sort (Yellow dot)

 Multiple sort (3 Yellow dots)

 Long (Orange dot)

 Motor (Red dot)

- 44 -

Picture 6, Seizure Category Color Codes

 There are also 2 modal layouts in the daily layout:

 Modal_seizure_details

In this modal layout, details of a seizure are displayed. This layout is presented

to the user if a dot from the timeline is tapped. The data of the seizure event

are the seizure type, start and end time of the seizure (duration) and comments

on the seizure that can help the doctor with the diagnosis. Those data are

displayed as text.

 Modal_add_event

In this modal layout, a seizure event can be added manually by the user. The

user has to select the seizure type (by tapping on the seizure dots) and the start

and end time of the seizure with 2 time selectors. Then by pressing the add

button the data are stored on the database and the new event is also displayed

on the timeline. There is also an exit button if the user doesn’t want to make an

entry and a button that redirects the user to the medication page.

o Fragment_medication

In this fragment, the user can set reminder for a medication. There is a text field to

insert the medication name and 2 time selectors. Under those entries there is a (3x3)

grid with the days of the week. In this grid, the user can select the days that the

medication reminder is going to be sent. There is also an integer selector to set the

recurrence of the medication for the following weeks. At the end, there is a text box to

add details for the medication and a button to set the reminder.

o Fragment_videos

In this fragment, the user can see a list of the available recorded videos from the live-

stream video calls. For each record of the list, the seizure type is displayed (as a

colored dot), the start and end time and the duration of the seizure. There is also a star

in each record so the used is able to mark the videos that are useful for the doctors.

The date and the day are also displayed before the records. When a recorded is tapped

from the user, a modal page is open to watch the video.

 Modal_video_player

In this modal layout, the video and the data of selected record from the video

fragment are displayed. On top there is the date of the video and below it is a

video player. Below the video player there are the seizure data displayed as a

text and a comment box to add comments that are useful for the doctors. There

is also a star icon to mark the video and a trash bin icon to delete it.

- 45 -

 Activity_notification

This layout is triggered once a notification is received. A pop-over toast is presented at the

top of the screen to notify the user about the new seizure event. This toast is presented on top

of any layout of the app. If the user taps on the toast, the toast is dismissed and 2 fragment

pages are created to show the location of the child and handle the live-stream video.

Picture 7, Notification pop-over

o Fragment_maps

In this fragment, the user can see the location of the child. The coordinates of the

location are received from the Child app via the API. Once the coordinates are

received, a map is initialized using the Google maps API and the given coordinates.

The map is now displayed and the location of the child at the center of the screen.

o Fragment_live_video

In this fragment, the user is receiving live video stream from the Child app during a

seizure event. This fragment is actually displayed as a right-side menu of the maps

fragment. Instead of the usual menu contents, in this side-menu the video-stream of

the child is displayed and on the left bottom the parent video is streamed. There is also

a button at the bottom to close the stream. That view allows the user to navigate from

the live-stream to the map fragment and vice versa. This is important for the UX (user

experience) of the app because the user has access to a full screen map inside the app

and at the same time a view of the live video-stream.

 Activity_settings

In this layout, there are 3 icons and by tapping them the user can select which types of alerts

(vibrate, light, sound) are going to be set. Bellow there are 2 buttons and a drop-list menu.

The first button redirects the user to the account settings and the second one redirects the user

to the Terms of service layout. The Terms of service layout is displayed also on the first

installation of the app and the user has to accept the term to start using the app. From the

drop-list menu, the user can select a different language for the app.

 Activity_account_settings

In this layout, the user’s username is displayed bellow an icon and there are 3 buttons to

change the account settings. By tapping a button a pop-over window is created. On the first

one there is a text field with the username and a button to change the username. On the

second window, there are 2 password fields and a button to change the user’s password. In

- 46 -

the last window there are 2 buttons the user can log out of the app or cancel the window. If

the user logs out is redirected to the login page.

 Activity_tutorial

In this layout, a sort tutorial of the app is displayed to the user.

4.1.2.2 Firebase

To store our data we used Google’s latest platform, Firebase. Firebase is a great platform for

mobile apps development. Firebase gives you functionality like analytics, databases, messaging

and crash reporting so you can move quickly and focus on your users. Firebase has a majority of

products that are really useful for mobile app development. Each feature works independently,

and they work even better together. Those products can interact to each other and boost the app

functionalities. For the needs of our project we used 3 of those products:

 Cloud Firestore (beta):

Cloud Firestore is a NoSQL document database that lets you easily store, sync, and query data for

mobile and web apps - at global scale. We used this database to store all our data. This database

is still in beta version but it seems really promising because it can easily interact with other

Firebase products like the Cloud functions were notifications can be pushed to the users.

 Cloud Functions:

Using Cloud Functions we were able to develop a backend without using any servers. Those

functions are triggered by Firebase products, such as changes to data in the Firestore Database

and new user sign-ups via Google’s Authentication. There is more information about the Cloud

Functions on the next section.

 Authentication:

Firebase Authentication aims to make building secure authentication systems easy, while

improving the sign-in and onboarding experience for end users. It provides an end-to-end identity

solution, supporting email and password accounts, phone auth, and Google, Twitter, Facebook,

and GitHub login, and more. We used Firebase Authentication to authenticate our app users and

we also used the unique generated id of each user to store the user’s data on Firestore.

4.2.2.3 Google Cloud Functions

Cloud Functions for Firebase can automatically run backend code in response to events triggered

by Firebase features and HTTPS requests. The backend code is stored in Google's cloud and runs

in a managed environment. A Cloud Function is developed to push notifications between the

Child and the Parent app. When a seizure event occurs, the seizure event details are stored on the

cloud database via the RestAPI. Once the data are written on the database, the function is starting

its execution [1]. On the execution, the function composes a message to send via FCM (Firebase

- 47 -

Cloud Messaging) [2]. At the end of the execution, FCM sends the notification message to the

user's device [3].

Picture 8, Cloud Messaging

On the example above, we can see the connections between the database, the cloud functions and

the FCM (Firebase Cloud Messaging). The above function sent a notification to the user if user

has a new follower. On [1] we can see there is a data path. Once new data are written to this path,

the cloud function is triggered. With Cloud Functions, you can handle database events. Cloud

Functions supports these event handlers:

 onWrite(), which triggers when data is created, updated, or deleted in the Database.

 onCreate(), which triggers when new data is created in the Database.

 onUpdate(), which triggers when data is updated in the Database.

 onDelete(), which triggers when data is deleted from the Database.

In the case we study, each time new data are written to the database. So by using the onCreate()

method, we can handle the data creation event. Here is some code from the function:

With this code [2], anytime a new record is inserted to the database, an asynchronous event is

created to send the payload of the notification to the Parent’s device. We use this async event, to

return a promise once the notification is successfully send and it’s also used to reduce the

function execution time. Here we can see the notification payload:

- 48 -

Once the notification payload is created, the notification is ready to send on the Parent’s device.

To do this, the device token from the parent’s phone is needed. Each device token is unique and

it’s retrieved and stored to the database after the parents log in with their device. Using this async

function on the parent app the device token is saved to the database:

The device token is also linked with the user Id of each user. So now, by using the FCM we can

send the payload to the device that is linked with the user Id. With command we can send an

FCM notification:

Once the message is successfully sent a successful promise is returned to the async event that was

created before. Otherwise, an error is returned. The function is executed really fast, so the

notification is arriving on the parent app almost in real-time. Here we can see the median

execution time from the Google Cloud Platform.

Picture 9, Cloud Function Execution Time

4.2.2.4 RestAPI (Spring boot)

A Rest API service was created using spring boot to make the connections between the apps and

the database (Firestore). The API was split into several classes each class for a specific purpose.

Some of the classes were used to write data on the database. For example, the data that are

written to the database via API services are: seizure data (start/end time, duration), the headset

connection status, the user’s device ID (to send notifications), map coordinates and medication

data. So, 5 methods for writing purposes were developed. Below are the snippets of 2 methods is

shown:

The snippet of the device ID:

- 49 -

Using the addDevices method of the RestAPI, the device token and the user ID are linked

together. Then the result is written to the devices collection of Firestore.

The snippet of map coordinates:

Using the addMap method of the RestAPI, the latitude and longitude (center of the map) of the

child’s location are written temporally on the database map collection of Firestore. On a seizure

event, the parent can retrieve the map data on his device and using Google Maps the data are

visualized.

Read methods were also developed to get data from the database into the applications. Those read

methods were used to get seizure details data, medication data, and map data using the user’s ID

to fetch the right data. Below are the snippets that are used to get calendar data:

The snippets of the calendar data:

- 50 -

In this snippet, the API using a query, searches the CalendarData collection of Firestore to find

the users ID in this collection. Once it’s found, a for loop is used to go through all the user’s

documents. An Array List (foundDays) is created to store all the data of the different days that

were found on CalendarData collection. Then, another method (getAllDaysFromCalendar) is

called to get all the data of each day by the document ID. The results of this method are returned

and stored on the foundDays list. This method is shown below:

In this snippet, the API using a query, searches the Days collection of the CalendarData

collection, to find all the days with data by the document ID. The document ID is known method

from the previous method (getCalendarByUserId) that it was called. An Array List (Daydata) is

created to store all the data that were found on Days collection. Then, another method

(getAllDayDataFromCalendar) is called to get all the daily data of each day using the document

ID and the day ID. Using a for loop the API goes through all the documents of this user. This

method is shown below:

- 51 -

In this final snippet, the API using a query, searches the Data collection of the Days collection, to

find all the daily data. The document ID and the day ID is known from the previous method

(getAllDaysFromCalendar). An Array List is created to store all the daily data of the day that

were found on Data collection. Those data are the seizure details (start/end seizure time, seizure

type and seizure name) and other useful timeline data (those data are used to place each record on

the right timeline row of the daily record view on the Parent app. Then, the final results of all

methods are returned to the first method and this method returns the final results to the user. At

the end, all the data are visualized on the Calendar Page of the Parent app.

4.2.2.5 ApiRTC

ApiRTC is a real time Web communication library. In this project, we used this library to stream

video and audio from the Child’s app to the Parent’s app. To use this communication library, on a

mobile application, several Cordova plug-ins are needed. Here is the list of the plug-ins:

 cordova plugin add cordova-plugin-console

 cordova plugin add cordova-custom-config

- 52 -

 cordova plugin add cordova-plugin-device

 cordova plugin add cordova-plugin-iosrtc

 cordova plugin add cordova-plugin-media

 cordova plugin add android-camera-permission

 cordova plugin add cordova-plugin-android-permissions@0.10.0$

 cordova plugin add https://github.com/alongubkin/audiotoggle.git

 cordova plugin add cordova-plugin-audioinput

 cordova plugin add cordova-plugin-crosswalk-webview

Camera-permission plug-ins needed in order to get access of the smartphone’s camera. Those are

actually very important for both apps because we need to open the smartphone’s camera and start

recording without pressing any button once an absence seizure occurs. In native camera software

of Android and iOS, the auto-recording is not supported. The camera can be activated

automatically but the user will have to press the record button to start recording. That is not

useful at all for our project because a person under an absence seizure can’t make any actions.

That’s why is very important to give permissions to the camera in advance so the camera can be

activated and start recording automatically. To use this web service, a connection with apiRTC

communications servers has to be established. An Apikey has to be registered from the apiRTC

website. The connection is made using this script:

The apiCCId represent the users call ID and it must be different for each user. Using this ID calls

can be made between different users. Once the apiRTC is initialized, the variable e contains all

the information of the initialization. Using this information the user can join a session:

- 53 -

On the session handler we initialize a WebRTCClient to make and accept calls. WebRTCClient

has many methods to use. In the parent app we used a method called

setUserAcceptOnIncomingCallBeforeGetUserMedia(value). This method is used to accept a call

on the parent app even if the parent’s camera isn’t ready yet. Another method that is also very

useful, is the setAllowMultipleCalls(value). With this method the parent can accept multiple calls

from the Child app. To end a call the hangUp(callID) method is used and ends a session.

On the Child’s App, the same configuration is made to initialize the ApiRTC but the child has a

different call ID from the parent. As long as the parent and the child are on a session a call can be

established. This call is made automatically when an absence seizure event is detected on the

Child’s app. Using this script the call can be made:

The call is configured to record the video of the call so it can be stored on the cloud database.

Then using the call(calledNumber, data, callConfiguration) method, a call is made to the parent

app using the WebRTCClient. The call is made by calling the MakeCall function on the Child’s

app, using the parent ID as an argument. This call is made totally automatically as long as the app

is active or it’s running on the background, without any input from the child.

The call is hanged up once the absence seizure ends calling the HangUp function of the Child’s

app.

- 54 -

4.2.2.6 Google Maps API

Google Maps were used to display the Child’s Location. The map was initialized using Google

Maps API and loaded with the child’s location at the center of the map. Here is the div tag of the

map from the HTML file:

On the typescript file, the coordinates are taken from the mapData, to set the center of the map.

Zoom in the center of the map is also made by default to have a better street view:

The map actually works like a canvas, so we were able to add a marker and info window on the

map, using google maps native elements like the Marker and the InfoWindow.

- 55 -

4.2.2.7 Activities

1. Activity_login

In the Login Activity the user has to type his credentials on the login form to log in. The

users are authenticated by the Firebase Authentication Service, using email and password

based authentication.

First, a form validation check is made and then the Firebase Authentication checks the user’s

credentials on the database. If the user logs in to the database with success, the menus and

the app permissions are updated. At the end, the user is navigated to the main page of the

app.

2. Activity_register

In the Register Activity the user has to type his credentials on the register form to sign in.

The users are authenticated by the Firebase Authentication Service, using email and

password based authentication as the Login page.

The progress is the same as the login activity, but this time a new user is inserted to the

Firebase. The user sign’s in using the credentials from the registration form. After the

registration, the user is logged in automatically. The menus and the app permissions are

updated. At the end, the user is navigated to the main page of the app.

3. Activity_main

In the Main Activity all the menus and the notifications bars are contained so the user can

navigate to all the app pages. The main activity handles in which pages and menus the user

can navigate by its current log status. Background processes like the video-stream service

and listening to notifications from the Child app are always running in the main activity. For

example, the logged in and the logged out menus are different. Using this function the menus

- 56 -

are updated dynamically if the user connection status is changed.

The bellow commands are used to initialize the video stream service, so the parent can

receive video calls from the Child app.

4. Activity_notification

In the Notification Activity, the user can receive notifications from the Child app

The above script is handles the notifications. A pop-over toast is created once a notification

is received using the Toast Controller of Ionic. If the user taps the close button and dismisses

the toast, navigation to the call page is made. The notification activity is actually part of the

main activity and its always running in background no matter in which page the user is.

That’s why a notification can be received in any page.

5. Activity_settings

In Settings Activity, the user can change the settings of the app. By tapping the account

settings the user is redirected to the account settings page. By tapping the terms of service

the user is redirected to terms of service page and can check the terms that have already

agreed. The user can also select which types of alerts received (sound, vibration, light).

- 57 -

6. Activity_account_settings

In Account Settings Activity, the user can change the account settings of his profile.

Username and password can be changed. Using Ionic Alert Controller pop-over windows are

created to make the settings.

In In this script the user can change the current password to a new one. Re-authentication is

made on the firebase to store the new password. Then the new password is updated on the

database and the user can use it for the next login. Using an Alert Controller the user can log

out of the app. On the logout event, first the user is logged out of the database, then the menu

is updated and the user is navigated to the login page.

7. Activity_tutorial

In the tutorial activity, the user goes through a sort tutorial (3 slides) of the app. The user can

skip the tutorial by tapping the skip button on the top. At the end of the tutorial, navigation to

the terms of service page is made. Then the user has to read and accept the terms to continue

using the app. If the user accept the terms redirection to the login page is made. In both

pages (Tutorial and Terms) a local variable is set if the user has seen the tutorial and has

accepted the Terms.

- 58 -

4.2.2.8 Fragments

1. Fragment_calendar

In Calendar fragment, there is an Ionic calendar date selector based on monthly view.

By selecting a date, a request is sent to the database via the RestAPI to fetch the seizure

records of this date and display then on the daily timeline. A loader is created using Ionic

loader controller to give some time to the RestAPI to fetch the data.

While the loader is active the RestAPI is fetching the data array of the selected day. Once the

data are fetched the records are displayed on the daily timeline.

There are also 2 modal pages in this fragment, one to see the details of a record and another

to add a seizure event manually. More details for those, in the Modals section bellow.

2. Fragment_medication

In the Medication fragment, medication reminders are set. Local Notifications are scheduled

using the medicine name, details and the reminder time.

- 59 -

Settings about the vibration and sound alerts can be made. Also, the notification led color

can be changed.

3. Fragment_videos

In Videos fragment, there is a list with all the available recorded video-streams. Once a video

is selected from the list, redirection is made to the Modal_video_player page to watch the

video and the seizure details.

4. Fragment_maps

In Maps fragment, Google maps are displayed with the Child’s location at the center. The

Maps are initialized using Google Maps API and the Child’s Location is sent from the

Child’s smartphone using the RestAPI.

5. Fragment_live_video

In Live-Video fragment, live video is streamed to the parent’s app from the child’s device,

during an absence seizure. As we told above, the service is initialized on the main activity

and it’s always active while the parent is using the app or the app runs in the background.

The parent and the child video are streamed in different div’s. The parent stream is overlay

on the left bottom corner of the child stream. This is how the content of the parent stream is

created (divId=mini):

This is how the content of the child stream is created (divId=remote):

- 60 -

4.2.2.9 Modals

1. Modal_seizure_details

This is a modal page of the calendar fragment. In this page all the seizure details like type,

start/end time and duration are displayed. The data are already fetched on the previous page

so we don’t need to send a request to the RestAPI again. We just pass the data of the selected

record through the NavParms of Ionic. After processing the date data to the desired format

using the toString() function all the seizure details are displayed.

2. Modal_add_event

This is a modal page of the calendar fragment. In this page the user can add manually a

seizure event on the calendar. The user selects the seizure type and the start and end time of

the seizure. Then the data are stored to the database using the addNewCalendar method of

the RestAPI.

3. Modal_video_player

This is a modal page of the videos fragment. In this page there is a video player to play the

selected recorded video from the recorded videos list.

Under the video play, there are the seizure details and comments from the doctors.

- 61 -

4.2.2.10 App Diagrams

Project General Diagram

Picture 10, Project General Diagram

- 62 -

Extended Use Case Diagram

Picture 11, Extended Use Case Diagram

- 63 -

4.3 Manual

Below is a presentation of Parent app (Epigo) core features.

The first contact of the user with the mobile application in the first installation of the app is

through the Tutorial screen. There are 3 slides in the Tutorial screen that inform the user about

Epihunter and the app main features.

Epigo

Those 2 slides give a brief description on who the app works and its main functions. By swiping

left and right the user can be navigated between the tutorial slides.

Picture 13, Manual, Tutorial 1 Picture 12, Manual, Tutorial 2

- 64 -

After the user has seen the tutorial and accepted the terms, a redirection is made to the login page.

This is the last page of the tutorial. By

tapping continue the user is navigated to

the Terms of Service Page. At this point, a

variable is set on the phone local storage

that the user has seen the tutorial, so on the

next time this user opens the Parent app on

his device, he hasn’t to go through the

tutorial slides again.

This is the Terms of service page. The user

has to accept the terms to continue using

the app. A variable is set on the phone local

storage that the user accepts the terms, so

on the next time this user opens the app

hasn’t to accept the terms again.

Picture 14, Manual, Terms of Service Picture 15, Manual, Tutorial 3

- 65 -

 Login Register

The user can login using his username and password. If the user is not registered, a registration

can be made on the Registration page by filling the form. The Authentication to the database is

made using Googles Firebase Authentication service. Once the user is logged in a lot of things

happen. First of all, the logged in menu is enabled and the user now has access to all the pages of

the app. Next, the ApiRTC web client is initialized in order to receive live video-stream from the

Child app. Also, after the log in the user is able to receive notifications from the Google Cloud

Functions. At the end, the user is navigated to the main page.

Picture 17, Manual, Register Picture 16, Manual, Login

- 66 -

 Logged in Menu Logged out Menu

We can see that the 2 menus give have different permissions to logged in/out users.

The top and bottom navigations bars are also on top of all the main pages (Calendar, Medication,

and Video) to improve the UX.

The bottom nav-bar has 3 icons and by tapping them the user is navigated to the main pages.

Picture 18, Manual, Logged In Menu Picture 19, Manual, Logged Out Menu

Picture 21, Manual, Bottom nav-bar Picture 20, Manual, Top nav-bar

- 67 -

On the top nav-bar the headset connection is displayed and the user can also turn on or off the

notifications by tapping the bell icon.

 Calendar

Picture 22, Manual, Calendar Date-picker

This is the calendar monthly view. There is a date picker, so the user can select a specific date to

review the daily log. Once a date is selected, a request is sent via the RestAPI to the database to

fetch the data of the selected date. Then a redirection to the daily calendar view is made and the

data are visualized on the daily timeline.

- 68 -

 Daily Calendar Record Details

In this view there are all the records that are fetched from the database. Those records are

displayed on a daily timeline using colored dots that represents the different seizure types as we

mentioned on the previous sections. By tapping on a record, a request is made via the RestAPI to

fetch the details of this record. Once the data are fetched, a redirection is made to the detailed

view. In the detailed view, the user can details of the seizure like start and end time, the type of

the seizure and the duration. There is also a comment section were the user can add useful input

about this seizure event that is helpful for the doctors.

Picture 23, Manual, Calendar Daily Timeline Picture 24, Manual, Seizure Record Details

- 69 -

Add seizure event manually

On the daily timeline view there is a plus icon. By tapping that icon a pop-over box is presented

to the user. This box is used to insert records manually to the database by selecting the seizure

type and the start and end time of the seizure. Once the add button is pressed, a request via the

RestAPI to the database to store the new record. The next time the user selects this date, the

manually inserted record is going to be fetched with the all the other records of this date. If the

user doesn’t want to insert a record the pop-over box can be dismissed by pressing the close

button.

Picture 26, Manual, Insert Record Manually Picture 25, Manual, Record Inserted

- 70 -

Medication Reminders

This is the medication reminder view. Here medication reminders can be set. The user has to

insert the medication name, the time that the medicine has to be taken and select days of the week

that the notifications are going to be scheduled. Recurrence of these reminders can be made by

selecting the amount of the weeks that this medication has to be taken. There is also a comment

section so the user can add useful comments about the medication. Once the reminder is

scheduled, a local notification is going to be pushed on the user’s device.

Picture 27, Manual, Medication Notification Picture 28, Manual, Medication Reminders

- 71 -

Recorded Videos

This is the recorded videos view. In this view, there is a list with all the available recorded videos

from the cloud database. For each record, the seizure type, start and end time, and the seizure

duration are displayed. The users can also mark the important videos that are going to be useful

to the doctors by tapping the star icon. By selecting a video record, the user is redirected to the

video player were the video and the seizure details are displayed. The user can mark or delete the

video or add a comment for the doctor.

Picture 29, Manual, Recorded streams Picture 30, Manual, Video Player-Details

- 72 -

Seizure Notifications

Picture 31, Manual, Seizure Notifications

Once a seizure is detected on the Child’s app, a notification is pushed to the parent app. This

notification is received in all views of the app and even when the user doesn’t uses the app the

notification is still received on the user’s device because the app is always running on the

background in order to receive the notifications. If the user opens this notification, a redirection is

made to the live video-stream and the map location view.

- 73 -

Live video-stream Map View

The child’s location is displayed on a

Google Maps view. The user can zoom in

and out on the map or even open the

location on the Google Maps application.

By tapping the camera icon or by swiping

right, the user redirects to the live video-

stream view. The user can also hang up the

call by pressing the hang up button. A

record of the stream is stored on the cloud

database in order to be reviewed by the

doctors and help with the treatment.

Once the notification is opened, live video-

stream of the child is displayed to the

parent’s device. The real-time video is

displayed as a left-side menu that is opened

automatically once live video from the

child app is streamed. By dismissing the

left-side menu the video is hidden and the

user has a large map view with the child’s

location.

Picture 33, Manual, Live video-stream Picture 32, Manual, Map Location

- 74 -

 App Settings Account Settings

On the app settings, the user can change

the application setting like the alerts

(light, vibration, sound) and the language

of the app. There is also a button that

redirects the user to the account settings

page and another that redirect the user to

the terms of service page.

On the account settings, the user can

change the account setting like username

and password. Users can logout by

pressing the logout button. Then a request

is sent to the database to log-out the user

of the database.

Picture 34, Manual, Application Settings Picture 35, Manual, Account Settings

- 75 -

Doctors Website
This website is dedicated to doctors in order to help them give the right treatment to their patients that

suffer from epilepsy. With this website, the doctors can see all their patients’ data. Data like seizure

records, medications and the stored video-streams of the seizure sessions and help their patients with the

treatment. Those data are fetched from the database via the RestAPI by making request.

Patients List

Picture 36, Manual, Doctor Patients List

On the main page of the website there is a list with all the patients that are associated with this

doctor. There are some basic information for each patient like first and last name, gender, date of

birth, the amount of session that this patient had in total and the date of the last session. The

doctor can insert or delete patients from the list or search for a specific patient. By selecting a

patient from the list a redirection is made to the patient’s details page. There is also a top-

navigation bar to help with the navigation of the website. There the user can access his profile or

log out. There is also a contact and a FAQ section.

- 76 -

Patient Details

Picture 37, Manual, Doctor Patient Details

In this detailed page, all seizure sessions of the patient are displayed on a monthly calendar view

and also on a list view. On the list-view, the doctor can see all the dates that this patient had

seizure sessions and select the date that he wants to examine. By selecting a date, the list is

extended with the records of that date. Then by selecting a record a redirection is made to the

Seizure Session Details. There is a star icon for each session and the important sessions are

marked by the parents via the Parent App, in order to save time for the doctors so they don’t have

to go through all the videos. The doctors are able to delete and edit records of the patient. There is

also a section that shows to the doctor if recorded video and EEG graph are available for this

session.

- 77 -

Session Details

Picture 38, Manual, Doctor EEG and Video

Once a session is selected, the EEG graph and the recorded video are displayed to the doctor. The

EEG graph shows the brain activity of the patient during a seizure and next to it there is the

recorded video of the patient that shows the reactions of the patient during this session. The video

and the EEG graph are synchronized by using the same timestamp. The doctor can add comments

on that session and read the comments that have been made by the parents. Doctors are also able

to select a different session from this date or even select another date with sessions to examine.

- 78 -

CHAPTER 5: RESULTS

5.1 Conclusion

This thesis was attained within the Blended Aim project. Through Blended Aim, students across

Europe were assigned with the development of 2 products for 2 different start-ups. My team’s

product was appointed by Epihunter, a Belgian start-up company specialized in absence seizure

detection using EEG headsets. The outcome of the project was a product named Epigo which

consists of two Android applications, a website and the backend service.

Epigo was designed to help the parents of children with epilepsy. Using this application parents

can be aware once their child is having an absence seizure. Absence seizures are really hard to be

noticed, that’s why Epihunter developed the Epihunter classroom. Using an EEG headset and a

smartphone, this app can detect an absence seizure event and notify the child’s teacher, activating

smartphone’s flashlight. Our main goal in this project was to notify parents once an absence

seizure is detected on the Epihunter Classroom app. That why we created Epigo, a mobile

application for the parents. The main features of the app was to receive notifications from the

Epihunter Classroom app once an absence seizure is detected, store the seizure records on a

database and receive live video-stream of the child during the seizure. Epigo, is an application

that can help parents and children on their daily live, but it can also help doctors with the child’s

treatment.

The opportunity to work and collaborate with students from different educational institutes and

fields of study was a great experience and practice. The students shared their thoughts, worries,

issues, solutions, knowledge and different points of view on a subject as one team. This served as

a learning ground for the students who were not familiar with each other’s field of study, thus

providing a better and more complete understanding of their areas of expertise. It also improved

the perception of how to approach a problem more efficiently. Though it might seem imaginary,

basic intercommunication and efficient work flow is sometimes difficult for people of different

countries because of contrasting habits and work procedures. Communication and better

understanding was developed further during the project implementation.

By developing this project the students acquired more knowledge and experience. Through the

usage of new technologies, which are considered state of the art in the field of informatics

engineering, they became familiar and more comfortable using such technologies. Technologies

like AngularJS, REST services and Ionic Framework keep rising by the day in the cross-platform

mobile software development section. The combination of the above – mentioned with Android

Application, iOS and Windows Phone development is a significant foundation for cross-platform

development and a successful career.

- 79 -

5.2 Future work and extensions

Upcoming Features

Doctors website Develop the doctor’s website to help with the

treatment. Main functions: Patients list,

absence seizure records, filter seizure records,

display seizure data (video, EEG Graph) and

other useful information, like comments from

the parent about their child behavior during a

seizure.

Store videos streams Store the video streams on a secure cloud

database so those video can be accessible from

doctors. The parent of course will have the

option to delete a stored video using the parent

app.

Record video stream even when parent is

offline

In the current implementation of the video

stream function, both users (Parent and Child)

must be online in order to establish a call

between them. During the call the video is

recorded. On future development, the video of

the child has to be recorded even if the parent

isn’t online.

Improve medication reminders Let the parents mark a checkbox, if the child

has taken the medication and store the

medication record on the database. This is

going to be useful for the doctors to adjust the

medication.

Translate Application in more languages Translate the app and the website, in other

languages.

Security Insert security in the app and databases. This is

very important as long as we speak for

sensitive medical data from children.

Testing the app in real word Test the app with parents and children. This is

very important for the future development of

the app. The company is going to get useful

input from the parents about the app features.

Then using this feedback extra functions can be

developed on the app and the current function

can also improve on the needs of the parents.

Improve UX/ UI Improve UX and UI of the parent app (parents

feedback)

Future work

- 80 -

REFERENCES

[1] Epihunter’s Official Website

<https://epihunter.com/?lang=en>

[2] BAIM Official Website

<http://blendedmobility.com/en/about>

[3] Nexus Framework

<https://www.agilest.org/scaled-agile/nexus-framework/>

[4] ApiRTC Library

<https://apirtc.com/wp-content/themes/wikee/docs/apiRTC/index.html>

[5] Wikipedia-Node.js

<https://en.wikipedia.org/wiki/Node.js>

[6] Wikipedia-npm

<https://en.wikipedia.org/wiki/Npm_(software)>

[7] Wikipedia-AngularJS

<https://en.wikipedia.org/wiki/AngularJS>

[8] Wikipedia-iOS

<https://en.wikipedia.org/wiki/IOS>

[9] Wikipedia-Android

<https://en.wikipedia.org/wiki/Android>

[10] Wikipedia-Ionic Framework

<https://en.wikipedia.org/wiki/Ionic_(mobile_app_framework)>

[11] Wikipedia-Apache Cordova

<https://en.wikipedia.org/wiki/Apache_Cordova>

[12] Wikipedia-Firebase

<https://en.wikipedia.org/wiki/Firebase>

[13] Firestore

<https://firebase.google.com/docs/firestore/>

[14] Google Cloud Functions

<https://cloud.google.com/functions/>

https://epihunter.com/?lang=en
http://blendedmobility.com/en/about
https://www.agilest.org/scaled-agile/nexus-framework/
https://apirtc.com/wp-content/themes/wikee/docs/apiRTC/index.html
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Npm_(software)
https://en.wikipedia.org/wiki/AngularJS
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Android
https://en.wikipedia.org/wiki/Ionic_(mobile_app_framework)
https://en.wikipedia.org/wiki/Apache_Cordova
https://en.wikipedia.org/wiki/Firebase
https://firebase.google.com/docs/firestore/
https://cloud.google.com/functions/

- 81 -

[15] Wikipedia-Google Maps

<https://en.wikipedia.org/wiki/Google_Maps>

[16] Wikipedia-Use case diagram

<https://en.wikipedia.org/wiki/Use_case_diagram>

[17] Wikipedia-Spring Framework

<https://en.wikipedia.org/wiki/Spring_Framework>

[18] Wikipedia-Apache Maven

<https://en.wikipedia.org/wiki/Apache_Maven>

[19] Wikipedia-Material Design

<https://en.wikipedia.org/wiki/Material_Design>

[20] Google’s firebase platform

<https://firebase.google.com/>

[21] Google’s firebase functions

<https://firebase.google.com/products/functions/>

[22] Google’s firebase firestore

<https://firebase.google.com/products/firestore/>

[23] Google’s firebase authentication

<https://firebase.google.com/products/auth/>

[24] Google’s firebase notifications

<https://firebase.google.com/docs/functions/use-cases>

[25] Google’s firebase database events

<https://firebase.google.com/docs/functions/database-events>

[26] Google’s firebase authentication documentation

<https://firebase.google.com/docs/auth/>

[27] Google’s firebase cloud firestore documentation

<https://firebase.google.com/docs/firestore/>

[28] Oracle Java

<https://www.oracle.com/java/index.html>

[29] Scrum

<https://www.scrum.org/>

[30] Praxis

<http://www.praxisnetwork.eu/>

https://en.wikipedia.org/wiki/Google_Maps
https://en.wikipedia.org/wiki/Use_case_diagram
https://en.wikipedia.org/wiki/Spring_Framework
https://en.wikipedia.org/wiki/Apache_Maven
https://en.wikipedia.org/wiki/Material_Design
https://firebase.google.com/
https://firebase.google.com/products/functions/
https://firebase.google.com/products/firestore/
https://firebase.google.com/products/auth/
https://firebase.google.com/docs/functions/use-cases
https://firebase.google.com/docs/functions/database-events
https://firebase.google.com/docs/auth/
https://firebase.google.com/docs/firestore/
https://www.oracle.com/java/index.html
https://www.scrum.org/
http://www.praxisnetwork.eu/

- 82 -

[31] Wikipedia-Bitbucket

<https://en.wikipedia.org/wiki/Bitbucket>

[32] Wikipedia-Trello

<https://en.wikipedia.org/wiki/Trello>

[33] Wikipedia-Slack (software)

<https://en.wikipedia.org/wiki/Slack_(software)>

[34] Java API for RESTful Web Services

<https://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services>

[35] RESTful Web Service

<https://spring.io/guides/gs/rest-service/>

[36] Apache Maven

<https://en.wikipedia.org/wiki/Apache_Maven>

[37] Design Patterns

<https://www.oodesign.com/>

[38] BAIM 2017 TEI of Crete student project.

<https://apothesis.lib.teicrete.gr/handle/11713/8377 >

https://en.wikipedia.org/wiki/Bitbucket
https://en.wikipedia.org/wiki/Trello
https://en.wikipedia.org/wiki/Slack_(software)
https://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services
https://spring.io/guides/gs/rest-service/
https://en.wikipedia.org/wiki/Apache_Maven
https://www.oodesign.com/
https://apothesis.lib.teicrete.gr/handle/11713/8377

