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Abstract 

Machine Learning, as a field of computer science started in the early 1960s. Recently, 

with the rise of high-throughput computing and the massively available data, advanced machine 

learning techniques have led to unprecedented results in image processing and computer vision 

analysis applications. This was due to the introduction of novel architectures such as recurrent, 

deep belief, convolutional networks and other deep architectures, as well as the availability of 

more sophisticated hardware or cluster computing, better training methods and strategies, 

efficient regularization and normalization algorithms. 

A large number of image processing and computer vision applications have seen 

significant benefits from the application of advanced machine learning techniques including 

image classification, text-to-image retrieval, object recognition, enhancement, registration, 

segmentation and generation. Regarding, Medical Imaging deep learning applications such as 

automated organ or object segmentation, lesion classification or detection and image quality 

enhancement have achieved significantly advanced results, performing near or even better than a 

human expert. 

In this master thesis a 2D and a 3D CNN has been developed for extracting multi-

dimensional medical image features for discriminating between primary vs metastatic malignant 

liver lesions. The proposed network consists of four consecutive strided 3D Convolutional layers 

with 3x3x3 kernel size and ReLU as activation function followed by a fully-connected layer with 

2048 neurons and a Softmax layer for binary classification.  

A dataset comprised of 107 DW-MRI scans was used for training and validation in both 

networks. In particular, 2D and 3D CNNs were designed for liver cancer differentiation and 

trained by the same dataset. The results demonstrated a superior classification performance of the 

3D over the 2D with 93.9% vs 65% and 95% vs 67% tissue classification accuracy and 

sensitivity respectively. 

These results suggest that there are potential benefits of Deep Learning on diffusion MRI 

in enhancing the diagnostic information towards more precise, personalized health care of liver 

cancer patients. Early image-based information regarding primary-metastatic pathology can 

optimize therapy decisions early and spare patients of unnecessary therapy. 
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Περίληψη 

Η Μηχανική Μάθηση ως κλάδος της Επιστήμης Υπολογιστών ξεκίνησε την δεκαετία του 

1960. Πρόσφατα οι εξελιγμένες τεχνικές μηχανικής μάθησης, υποβοηθούμενες από την άνοδο 

της υπολογιστικής ισχύς και την διαθεσιμότητα μεγάλου όγκου δεδομένων, έχουν οδηγήσει σε 

εξαιρετικά αποτελέσματα για εφαρμογές επεξεργασίας εικόνας και υπολογιστικής όρασης. Αυτό 

οφείλεται στην εισαγωγή νέων αρχιτεκτονικών όπως τα συνελικτικά νευρωνικά, στοιβαγμένα 

πολύ-επίπεδα δίκτυα και άλλες βαθιές αρχιτεκτονικές δικτύων, καθώς και στην διαθεσιμότητα 

πιο εξελιγμένου υλικού, τις βελτιωμένες τεχνικές εκπαίδευσης των δικτύων και 

ομαλοποίησης/κανονικοποίησης πληροφορίας. 

Ένας μεγάλος αριθμός εφαρμογών επεξεργασίας εικόνας και υπολογιστικής όρασης 

έχουν ωφεληθεί από αυτές τις τεχνικές μηχανικής μάθησης περιλαμβάνοντας την 

κατηγοριοποίηση εικόνας, αναγνώριση αντικειμένου, βελτιστοποίηση, καταχώριση-αποτύπωση 

και κατάτμηση εικόνας. Σχετικά με τις εφαρμογές Ιατρικής Απεικόνισης όπως η 

αυτοματοποιημένη κατάτμηση οργάνου ή αντικειμένου, κατηγοριοποίηση ή ανίχνευση 

οργανικής βλάβη, αυτές έχουν σαφώς εξελιχθεί αποδίδοντας κοντά ή και καλύτερα από τον 

αντίστοιχο ειδικό. 

Στην παρούσα μεταπτυχιακή διατριβή, έχουν υλοποιηθεί δυο Συνελικτικά Δίκτυα (ένα 2-

Δ και ένα 3-Δ) για την εξαγωγή πολυδιάστατων χαρακτηριστικών από ιατρικές εικόνες, ώστε να 

είναι δυνατή η κατηγοριοποίηση μεταξύ πρωτογενών ή μεταστατικών κακοηθών όγκων. Το 

προτεινόμενο δίκτυο αποτελείται από τέσσερα διαδοχικά 3-Διαστάσεων συνελικτικά επίπεδα με 

μέγεθος πυρήνα 3x3x3 και συνάρτηση ενεργοποίησης ReLU ακολουθούμενη από ένα πλήρως 

συνδεδεμένο επίπεδο με 2048 νευρώνες και κατηγοριοποιητή Softmax. 

Για την εκπαίδευση και αξιολόγηση των δικτύων τα δεδομένα που χρησιμοποιήθηκαν 

και για τα δύο δίκτυα περιλαμβάνουν 107 DW-MRI σαρώσεις. Τα 3-Δ δίκτυα παρουσιάζουν 

ανώτερες επιδόσεις σε κατηγοριοποίηση ιστού έναντι των 2-Δ δικτύων με 93,9% προς 65% και 

95% προς 67% για ακρίβεια και ευαισθησία κατηγοριοποίησης αντίστοιχα. 

Τα αποτελέσματα αυτά συνηγορούν στο ότι υπάρχουν σημαντικά δυνητικά οφέλη με την 

ενίσχυση της διαγνωστικής πληροφορίας προς ακριβέστερη, εξατομικευμένη περίθαλψη σε 

ασθενείς που πάσχουν από καρκίνο στο συκώτι. Η έγκαιρη, βασισμένη σε ιατρικές εικόνες, 

πληροφόρηση σχετικά με την πρωτογενή ή μεταστατική παθολογία του ασθενή μπορεί να 

βελτιστοποιήσει τις θεραπευτικές αποφάσεις νωρίς ώστε να αποφευχθούν άσκοπες θεραπείες. 
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1. Introduction 

Many researchers are predicting that Artificial Intelligence (AI) will eventually 

predominate human intelligence in the near future. In fact, specialized AI already outperforms 

even human experts in some tasks. Throughout the literature a new highly expanding topic is on 

the rise. fast. Deep Learning (DL) on image analysis minimized the error from 25% (ImageNet 

Challenge 2011) to less than 5% in 2017. This unprecedented performance led to fast adaptation 

on domains other than “natural” image applications. In particular, recent DL studies on medical 

imaging has demonstrated promising results for different tasks and diagnosis objectives. 

Liver cancer tissue differentiation is a challenging task due to the high variability in 

shape and dispersity of malignant tissue across the organ. Clinicians cannot make a conclusive 

diagnosis only from visual clues without an invasive procedure. Different types of cancer 

determine the treatment path that will be followed. In this thesis we explore the potential of 

implementing a deep Convolutional Neural Network to predict the tissue cancer type: primary or 

metastatic resulting in increased survivability for the patient. 

1-1. Research Questions 

In this study we apply deep learning techniques and models on medical image analysis 

and evaluate the quality of predictions for liver cancer tissue discrimination between primary and 

metastatic. The following questions are studied: 

 Can Deep Learning assist in a challenging diagnosis problem such as tissue 

differentiation? 

 Can data augmentation approaches contribute to better models despite the lack of 

data for medical image analysis? 

 How Deep Features extracted from different Convolutional Neural Network 

architectures compare? 

 Which architecture is more suitable or performs better for liver cancer tissue 

discrimination? 

We propose a new methodology and baseline for liver cancer tissue discrimination based 

on strided 3D Convolutional Neural Networks and data augmentation techniques for alleviating 

the class imbalance in the dataset. 
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1-2. Thesis Outline 

This thesis is comprised of six chapters: 

1. Introduction 

2. Deep Learning in Computer Vision 

3. Medical Image Analysis 

4. Convolutional Neural Networks 

5. Proposed Research 

6. Conclusion 

In Chapter 2 we provide an in depth and comprehensive perspective of publications for 

deep learning image analysis presenting the state-of-the-art architectures, transfer learning 

approaches, unsupervised trained models, some insights and criticisms related to this new topic 

of Artificial Intelligence. The 3
rd

 Chapter is the literature review to medical image analysis 

mostly focused in deep learning. In Chapter 4 we present some essential mechanisms and 

concepts related to Convolutional Neural Networks. An extensive analysis of the different 

architectures and approaches, proposed methodology and quantitative evaluation of the models 

are provided in the 5
th

 Chapter. Finally, in Chapter 6 we discuss the research findings and the 

contribution of deep learning in medical image analysis, particularly in liver cancer tissue 

discrimination. 
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2. Deep Learning in Computer Vision 

 

2-1. Learning Algorithms 

Deep learning, as a topic of artificial intelligence and machine learning, enables 

adaptation to a domain’s needs without providing explicit details about the problem itself or the 

solution.  

There is a wide variety of deep architectures distinguished into unsupervised and 

supervised learning models including autoencoders [1] [2] [3], convolutional deep belief 

networks [4] [5], artificial neural networks [6], recurrent networks [7] [8] [9] [10], convolutional 

networks [11] each one specialized in a specific domain or a type of dataset. 

The Convolutional Neural Networks (CNN) [11] are the current state-of-the-art for image 

related tasks like classification [12] [13] [14] [15], detection [16] [17], segmentation [18] [19] 

[20] [21] and even image generation [22]. A large number of labeled images for training is 

required to achieve such an outstanding performance. For instance, a typical benchmark dataset 

like CIFAR-10 [23] consists of tens of thousands natural color images, 10 classes with 5000 

samples per class exclusively for training. 

This infamous black box procedure does not consist of propagation of random patterns 

throughout the network as it is a common belief. To the contrary visualizing the feature maps 

[24] reveals the causality of the strong discrimination power of their representation with 

properties like compositionality and invariance as layers progress unveiling the local 

dependences, an important feature for classification. 

 

2-2. Classic Image Processing Algorithms 

In recent years researches advanced the “shallow” or the classic image processing 

algorithms [25] for image classification by introducing the main Fisher Vector pipeline with 

processes like subsampling, spatial information encoding [26] [27], dense SIFT [28], PCA [29], 

normalization [30], Fisher encoding with Gaussian Mixture Model (GMM) [31] and linear 

classifiers. Fisher Vectors [32] incorporate statistical information about the distribution of 

descriptor combined with the gradient vector from the GMM, retaining a compact feature vector 

for computational performance without sacrificing representative expression. 
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On the contrary, in [33] the authors present a Deep Fisher Kernel layer approach where 

each process of the pipeline is interconnected to solve the combined convex shaped problem of 

GMM convergence and SVM classification as an end-to-end feedforward layer. This approach 

deviates from the typical implementations of Fisher pipeline in literature and draw inspiration 

from the end-to-end nature of learning algorithms. 

 

2-3. Supervised - Deep Learning 

The Deep Learning (DL) architectures are far superior [34] [35] in computer vision tasks 

at the same dataset compared to hand-crafted algorithms in terms of performance, pipeline 

efficiency, compactness of representations and marginally faster inference.  

Depth is beneficial [36] for learning models in terms of performance, yielding lower test 

errors, a sign of good generalization, compared to “shallow” algorithms. Deep and “thin” models 

[37] with more layers and less learned kernels can learn generalized representations, transferable 

to other domains or specialize recognition at subclass, instance retrieval from the source domain. 

 

2-3-1. Classification Networks 

The most influential architecture in DL is no doubt AlexNet [38] with its 8 layers, 1000 

classes and its performance, top-5 error 15.4% vs the previous 26.2% in 2012 ImageNet Large-

Scale Visual Recognition Challenge, managed to propel the new era of computer vision. 

GoogLeNet [39], a network built on Inception blocks, is focused on reducing the number 

of parameters, boosting generalization, introducing a sparse layer architecture instead of multiple 

wide fully-connected layers. Even though less fully-connected units mean even less 

computational operations, today’s hardware and software is optimized mostly for dense matrix 

Figure 1 – Inception [39] and Residual Blocks [41] 
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multiplication limiting the potential gains of sparsity. 

Routing information across very deep networks [40] is important and crucial for their 

successful training. Deep Residual Networks [41] [42] and Highway Networks [43] can reach 

extreme depth addressing the degradation problem in a similar way. This is achieved by 

providing shortcut connection between blocks in favor of introducing additional layers, leading 

to gains in terms of representation power. Other benefits of residual learning include easy 

optimization, compact models with fewer parameters at each layer and lower complexity. Also, 

migrating architecture characteristics of residual networks to more traditional approaches offers 

gains related to the training process and generalization as suggested in Inception v4 [44] 

network. 

 

2-3-2. Segmentation Networks 

Semantic segmentation, the process of performing per pixel classification separating the 

distinct objects in an image, is a fundamental problem in computer vision. Simple patch-based 

approaches like in [45] utilizes pre-trained classification networks, remove the layers related to 

that task, re-purpose the convolutional part as a feature extractor and append new additional 

layers for upscaling the predicted segmentation mask or calculate the probability scores.  

Powered by a pre-trained VGG-16 model in [19] [46], the authors implement a Fully 

Convolutional Network (FCN) with no fully-connected layers. Instead up-sampling, 

deconvolutional or unpooling, layers output a corresponding to the input size, segmentation 

mask. Fine-tuning the new networks is required for better adaptation to a custom dataset 

providing more accurate predictions during inference. 

Figure 2 - FCN Pixel-wise Classification [19] 
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The refinement of these predictions is also subjected to the implementation of the skip 

connection architecture. Three types of those connections are suggested: FCN8, FCN16 and 

FCN32 (fine to coarse) depending on the computational cost and how much information from 

shallower (finer) layers is combined with the standard (coarser) output of the up-sample 

component of FCN.  

Instance Sensitive FCN (IS-FCN) [47] extends the simple FCN by discriminating among 

instances of the same class utilizing the local coherence property and exploit the differences 

among predictions. A modified VGG-16 is used as feature extractor with no fully-connected 

layers and reduced stride. The instance-sensitive segmentation mask is the combination of two 

fully convolutional branches that produce multiple segmented instances describing the relative 

position, with convolutional layer setup 1x1 and 3x3, and their score, with 3x3 and 1x1 

convolutions.  

The architecture of SegNet [20] resembles the fundamentals of FCN but with one key 

difference, as a decoder is utilized only the max-pooling indices from the encoder and not the 

Figure 3 – Illustration of FCN architecture [19] 

Figure 4 - Instance-Sensitive FCN [47] 

Figure 5 - SegNet Architecture [20] 
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whole feature maps leading to lower resource consumption and learnt parameters. This tradeoff 

though has an impact on the quality of the predictions compared to FCN performance, making 

the SegNet a compact, less demanding and less performing alternative to FCNs or U-Net. 

DeepLab [48] architecture introduces dilated convolutions for the up-sampling part of the 

network offering larger fields of view with smaller kernels. In addition, fully-connected 

Conditional Random Fields (CRFs) alleviate the lack of connectivity among neighbor pixels 

produced by the deep network resulting in refined segmentation masks. 

Most of the deep segmentation architectures are implemented as pixel-wise 

classifications with dependence on human expert knowledge by requiring accurate per slice 

delineations of regions of interest. This makes the data-related processes time and cost 

consuming. The authors of [49] propose a deep network for semantic segmentation using semi-

supervised learning with weak annotations and few fully labeled data. 

 

2-3-3. Multi-Stream Networks 

Figure 6 - DeepLab Pipeline [48] 
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In [50] image embeddings and image features are combined in a multimodal word vector. 

The convolutional network, trained for classification tasks, is used as a feature extractor 

aggregating a 6144-dimensionality vector for each image. The skip-gram linguistic 

representation, 100 features, is computed by [51] for image embeddings. Those two outputs are 

later concatenated in a vector for joint semantics in a single space model. 

Another approach [52] is to combine image fragments, extracted by an image CNN, with 

sentence fragments in a multimodal matching CNN. The matching CNN’s goal is to learn how to 

combine the two fragments producing a joint representation. Lastly, a Multilayer Perceptron 

(MLP) summarizes and evaluates the matching score. 

Figure 7 - Image and Text Fused Representation [50] 

Figure 8 - Matching CNN Combined Representation [52] 
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Two-Stream CNN [53] applied for action recognition in video consists of two CNNs with 

inputs: a single frame and an optical flow multi-frame extracted from stopped frames 

incorporating motion features. The class scores of the independent architectures are later fused, 

imitating the two-stream functionality of the human visual cortex, ventral and dorsal. 

 

2-3-4. Hybrid Networks 

Hybrid architectures combine “shallow” and deep algorithms for different tasks, like in 

Spatial Weight FV-CNN [54] for recognition, for image retrieval [55] and for texture 

classification [56]. 

Usually, they utilize a deep Convolutional Neural Network as a simple automated 

segmentation or feature extraction module trained from scratch with their own datasets or using a 

pre-trained model. 

The “shallow” Fisher Vector pipeline transforms the incoming dense SIFT descriptors, 

computed from the subsampled segmented region, to a compact representation of 2Kd-

dimensionality, K for the number of Gaussian components and d for the descriptors length. A 

Figure 9 – Human Vision Inspired Two-Stream Architecture for Video Action 
Recognition [53] 

Figure 10 - Fisher Vector Combined with Convolutional Neural Network [54] 

Figure 11 - Bounding box prediction MultiBox [58] 
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Support Vector Machine serves as the classifier of the extracted (CNN) and transformed (FV) 

image features. 

 

2-3-5. Object Detection  

DeepMultiBox [57] uses two deep CNNs, one for class-agnostic bounding box detection 

with 4 outputs for coordinates and 1 for confident, and the other for class labeling in an offline 

cascaded fashion. This implementation is an improvement over the original Multi Scale 

Convolutional MultiBox (MSC-MultiBox) [58] which follows a similar approach. 

Subcategory detection [16] addresses the usual problems of detection related to object 

variation in scale, occlusion and truncation in everyday use cases similar to KITTI [59] or 

CamVid [60] datasets. This CNN architecture leverages multi-scale inputs, feature map 

extrapolation layer and a Region Proposal Network that outputs the bounding ROI regressor and 

its probability estimation. 

The fast region proposal network (faster R-CNN) [61] is fully convolutional with full-

image input for real time detection. Uses pre-trained convolutional models as feature extractors 

and a fully-connected module on feature maps for bounding box detection and classification. The 

detection speed is 5 to 17 frames per second using graphics processing units during inference. 

This is based on R-CNN [62] built on the same principles but utilizing AlexNet architecture. In 

[21], simultaneous detection and segmentation is achieved by combining feature vectors from a 

R-CNN and a CNN for bounding box predictions from hundreds of proposals. 

Figure 12 - Subcategory-aware CNN for Detection [16] 

Figure 13 - R-CNN [62] 
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VoxNet [17] performs real-time object recognition utilizing the powerful three-

dimensional representation of volumetric Convolutional Neural Network on RGB-D natural 

images. A 3D CNN learns complex voxel filters leveraging the depth dimension, as a 

fundamental parameter of the model and resulting in richer feature maps with better 

understanding of the actual structure of the surrounding environment of the natural images. 

 

2-3-6. Raw Feature Extraction 

Pre-trained CNN models, even from a different domain, can be used as off-the-self 

feature extractors, like in [63], where the authors extract activation vectors from multiple scales 

of the same image, concatenate them and perform classification using a linear SVM evaluating 

the generalization property of those models. Similarly, a pre-trained OverFeat [64] used as 

feature extractor on different datasets, [65] [66], achieving competitive results and verifying the 

generalization property of deep architectures. Other approaches [67] combine activation vectors 

assisted by multiple pooling layers [68] or from various depths of the network for efficient 

texture recognition. Convolutional autoencoders [69] use unsupervised training for learning 

sparse coding and descriptive features from unlabeled data by backpropagating the 

reconstruction error. 

 

2-3-7. Image enhancement 

Image Enhancement by achieving super resolution [70] in context of DL, maps the low to 

high resolution images. Initially, the network encodes the low-resolution inputs, overlapping 

Figure 14 – Features [69] 
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dense patches, into a dictionary. The sparse coefficients are passed to the corresponding high-

resolution dictionary, used for reconstruction of high-resolution patches. Finally, compose the 

output image from those patches. This sparse coding methodology is learnt by the convolution 

network in an end-to-end fashion. 

 

2-4. Recurrent Neural Networks 

Despite CNN being the state-of-the-art in image related tasks, a lot of researchers also 

experiment with the adaptation of Recurrent Neural Networks (RNNs) into computer vision. 

Previous successful paradigms of RNN include character prediction [71], machine translation 

[72] [73] or handwriting recognition [10]. 

Pixel-RNN [74] maps the distinct probability of pixel intensities and encodes every 

dependency in the image, resulting in a generative model that predicts the next pixel relying on 

all previous pixels and their non-linear behavior. 

The ReNet [9] uses 4 RNNs to sweep images at every direction replacing a 

convolutional/pooling layer. Contrary to CNN, a major drawback for this type of architectures is 

Figure 15 - Super-resolution [70] 

Figure 16 - Pixel-RNN test image completions 
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the inability of scaling computations in parallel due to the sequential units in RNNs leading to 

inefficient training times. ReNet can also be modified for semantic segmentation tasks. ReSeg 

[7] combines CNN feature maps with ReNet-based layers that captures both global and local 

spatial structure of the image. To match the dimensions of predicted segmentation mask to the 

original image an up-sampling block is introduced. For this task transpose convolutions are 

employed yielding resources and computational efficiency. 

 

2-5. Unsupervised Models 

 

2-5-1. Autoencoders (AE) 

Autoencoders (AE) [75] are deep networks of fully-connected neural layers, with 

generative properties and trained with unlabeled data. The two-part setup consists of the encoder 

that produces a compact representation, code vector, of the input and the decoder that 

reconstructs the input from the code vector, learning, approximately, the identity function such as 

the output is like the input. If an additional sparsity constrain is applied [3] then most of the 

neurons are inactive during training iterations enabling easier training and sufficient 

representations. 

Hinton claims [76] that dimensionality reduction can be achieved by AEs, with their 

multiple adaptive layers, more efficiently than Principal Component Analysis, especially 

considering the reconstruction property of such representation. 

Figure 17 - Reconstruction of the original test images with autoencoders and PCA (top to 
bottom) [76] 
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Nonnegative Constrain Autoencoder (NCAE) [2] learn a sparse parts-based data 

representation due to nonnegative restrictions. When unsupervised training achieves a good 

reconstruction error, classification with deep stacked NCAE can also achieve competitive 

performance. Supervised fine-tuning with nonnegative weights and an additional softmax layer is 

required for such tasks. Stacked AE (SAE) [77] have been used for trajectory detection with 

transfer learning from an AE for feature extraction to the online tracker. Also, SAEs can be 

combined with convolutional layers forming the Convolutional Autoencoder stack (CAES) [78] 

serving as an unsupervised pre-training step to supervised CNNs. 

Auto-Encoding Variational Bayes (AEVB) [79] have equal number of neurons for the 

generative model and the variational approximation part. Utilizes the Stochastic Gradient 

Variational Bayes (SGVB) approximator that can learn efficiently an inference model utilizing 

ancestral sampling. 

 

2-5-2. Deep Belief Networks (DBN) & Restricted Boltzmann Machine (RBM) 

RBMs [80] consist of constricted neurons forming a bipartite graph and are used in 

classification, dimensionality reduction and feature learning. DBN [81] is a generative model of 

stacked RBMs. 

Convolutional Deep Belief Networks [4] [5] are a combination of convolutional blocks 

and DBN for hierarchical representation with scalable performance from benchmark datasets, 

like cifar-10, to larger images. The architecture’s probabilistic inference achieves translation 

invariance from top-down and bottom-up. 

 

2-5-3. Generative Adversarial Networks 
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The latest development in DL networks is the Generative Adversarial Networks (GANs) 

[22], based on the premise that a machine could better understand what is creating. The 

adversarial process includes two models: a generative G and a discriminative D trained 

simultaneously with the objective goal of model G to create believable enough artificial data, 

therefore the model D could classify them as real. This process is rooted to the game theory 

where an objective is achieved through competition and conflict of actions between two 

intelligent parties. GANs have been applied in data augmentation [82], realistic image generation 

[83], text-to-image synthesis [84] or even new drug generation in medicine [85]. 

 

2-6. Training Strategies 

The representation of a highly varying function with few parameters can be achieved by 

combining many non-linear functions. Models with multiple consecutive layers manifest that 

behavior. The weakness of the deep architectures and with gradient-based optimization in 

general is that they start from randomly initialized weights with no incentive related to the 

problem they try to solve. 

Thus, their initial value of weights during training is important for the adaptation and 

convergence to an optimal model. Unsupervised pre-training [86] contributes to the initialization 

of weights near a local minimum benefiting the supervised training of the network in a way that 

is observed [87] and mathematically sound [88]. 

The author in [89] proposes a greedy layer-wise pre-training process for deep networks, 

starting with one layer at a time in an unsupervised way and finally fine-tuning the whole 

network to the domain of the problem. 

Transfer learning from a source model to a model of different domain is an alternative to 

Figure 18 - Generative Adversarial Networks architecture 
[197] 
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unsupervised pre-training. According to [90], an effective way to fine-tune a pre-trained model is 

to start from the deeper layers and if necessary, gradually, in a layer-wise fashion retrain the 

shallow ones until achieving the best performance. 

 

2-7. Weaknesses of Deep Learning Algorithms 

Regardless of the obvious data and resources related restrictions, machine learning 

models can be vulnerable to adversarial examples [91] and misclassify similar samples to the 

ones that classified correctly. Simple models with little optimization are the most vulnerable due 

to their inability of adaptation to the nonlinear high-dimensional space. This indicates that the 

model could not learn the underlying concept regarding each class. Rubbish class examples are 

commonly producing from those models. Another research [92] shows that it is possible to 

achieve high confidence with random generated, unrecognizable images using universally 

accepted models like LeNet and AlexNet. 

  

2-8. Challenges & Publicly Available Datasets 

One of the most difficult tasks in applying Deep Learning it is not the assembly of several 

layers, the training process or the hyperparameter optimization but the data collection and 

annotation in a robust, descriptive of the problem and unbiased database. Huge amount of 

high-quality and labeled data are required for efficiently trained and highly performing models. 

To further democratize and advance the AI research different organizations and research 

Figure 19 – Some predictions of unrecognizable images with very high confidence [92] 
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groups have gathered and evaluate data to create benchmark datasets. Some of the most 

influential and widely used datasets and the corresponding challenges are presented in this 

section. 

Pascal Visual Object Classes (VOC) [93] was an annual competition starting at 2005 until 

2012 with 5 challenges: classification, detection, segmentation, action classification and person 

layout on a public dataset with ground truth. 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [94] is another visual 

competition, since 2010, where researchers test their proposed algorithms on a subset of 

ImageNet dataset with 1000-class. AlexNet (error 16%) was introduced in ILSVRC 2012 

kickstarting deep convolutional networks. Leading to 2017, most proposals in that ILSVRC 

achieved less than 5% error. 

LabelMe [95] is a database with annotated large images with scenes and not just objects 

cropped in patches. It includes three types of annotations bounding boxes, polygons and 

segmentation masks. 

The SUN RGB-D [96] dataset is composed by high-quality images with 3D annotations. 

The additional context from cameras with depth sensor is useful for scene understanding, 

semantic or instance segmentation [18]. 

Two of the most benchmarked databases for evaluating and comparing computer vision 

algorithms are the Modified National Institute of Standards and Technology database(MNIST) 

[97] with handwritten digits and the Canadian Institute for Advanced Research database 

(CIFAR) [23] with small natural images. Both consist of 10 classes with thousand images per 

class and are widely used by the research community when a new algorithm is proposed to 

demonstrate the potential performance. 

The ImageNet [98] is an ambitious dataset including millions of high-resolution, 

annotated images collected using a cloud-based tool, the Amazon Mechanical Turk. The aim is 

to represent most of the thousands synsets included in the WordNet lexical database. 
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CamVid database [60] offers pixel-wise ground truth for 32 classes like cars, pedestrians, 

cyclists and other objects at three daytime lighting conditions captured by cameras on a moving 

car providing corresponding context. In a similar fashion, KITTI dataset [59] is purposefully 

aimed in autonomous driving with more than 6 hours of recorded 3D annotated, stereoscopic 

footage in high-resolution providing real-world traffic scenarios. The annotation bounding boxes 

follows the coordinated data of the 3D Velodyne scanner. 

Brain Tumor image Segmentation (BRATS) [99] is a dataset with multimodal, annotated, 

65 MR images of low and high-grade glioma, publicly available for the segmentation challenge 

associated with the Medical Image Computing and Computer Assisted Interventions (MICCAI) 

conferences. 

Figure 20 - Examples of databases MNIST [97], CamVid [60], CIFAR-10 [23], KITTI [59], BRATS [99], SUN RGB-D 
[96], LabelMe [95], ImageNet [98] (top left to bottom) 
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3. Medical Image Analysis 

3-1. DL Applications on Medical Imaging 

The past few years a shift of research trends in computer vision has occurred, from 

“shallow” or handcrafted algorithms to deep architectures based on learning. The massive state-

of-the-art performance of the latter [36] [38] [44], the low-cost processing power and the 

availability of big annotated datasets [23] [60] [95] [96] [98] in various domains contributed to 

the rise of the new discipline of Deep Learning. 

The biggest differentiating factor for the two schools of thought is the relationship of 

feature filters to the problem that try to solve. For instance a typical handcrafted algorithm like 

Fisher Vector pipeline [30] consists of densely extracted descriptors [28], dimensionality 

reduction [29], encoding [25] and finally classification or clustering. Each of these steps is a 

separate algorithm with different objective. It is also easy to observe that little knowledge about 

the problem is incorporated in the process itself. 

On the contrary, the biggest advantage of deep architectures is the simultaneously 

training process of feature related tasks like extraction, selection, reduction and classification in a 

merged, end-to-end learning process. Additionally, the low-level feature filters are shaped by the 

dataset. 

A few attempts have been made to combine the best of both worlds like in deep fisher 

kernel [33] where instead of separate steps the Fisher pipeline is merged into an end-to-end deep 

layer with objective to solve one convex optimization problem. Also, in [55] and [56] the authors 

propose hybrid architectures of Convolutional Neural Networks followed by Fisher Vector 

encoding for image retrieval and texture segmentation respectively. Compared to traditional 

methods some gains were observed but not state-of-the-art level performance. It is useful though 

to view them as an alternative in cases where the requirement for large datasets are not met. 

Deep Learning architectures have also been transferred successfully into the medical 

domain with implementations for classification, segmentation, detection, registration, image 

retrieval, enhancement.  

Particularly, for medical image analysis fine-tuning [90] [100] of pre-trained models 

tackle an important issue regarding the availability of adequate dataset and simultaneously 

performing equally or better than trained from scratch models. 
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3-1-1. Classification & Detection 

DL classification of anatomical areas and lesions include: epithelial and stromal [101], 

breast cancer benign vs malignant [102], interstitial lung disease [103] [104], lung nodule with 

multi-scale CNNs [105], peri-fissural nodules [106] utilizing multiple pre-trained OverFeat [64] 

models, one for each view, as feature extractors and posterior probability fusion, calcium scoring 

with a patch-CNN [107] in cardiac CT images with encoded in color channel the tree views 

axial/sagittal/coronal, 3D U-net-like architecture [108] for CT scans auto labeling of vertebra 

centroids, Alzheimer's disease (AD) diagnosis using 3D CNN built on pretrained 3D CAE [109], 

similar 3D CNN for AD but with AE initialization [110] and retinopathy detection utilizing 

Inception-v3 architecture [111]. In [112] the author fuses the probability of three AlexNets for 

anatomy localization of organs in the 3D space with chest CTs acquired in axial, sagittal and 

coronal orientations.  

The proposed prostate cancer detection in [113] combines U-Net as segmentation model 

S with purely adversarial training demonstrating improved sensitivity and DSC scores compared 

to other cross-entropy based training methods. The discriminator D, which is trained with expert 

segmentation masks, decides if the segmentation produced by S is correct or backpropagate the 

error until S minimize it and D maximize the accuracy of segmentation (DSC).  
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Because of no standard anatomic orientation of lymph node, the recommended image 

Figure 21 – Semantic Segmentation of prostate cancer utilizing 
GAN training [113] 
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acquisition process is random. Meaning image resampling and reformatting can be done, like in 

[114] [115], by combining different views like axial, coronal, sagittal as three channels of 

information without spatial correlation among the channels. CNN model’s representation does 

not have pixel-wise spatial correlation among input color channels. According to the author such 

transformation to RGB is allegedly compatible with transfer learning from pre-trained models 

with natural images. Another study [116] splits the detection into simpler networks and 

eventually evaluate their predictions by fusing into a robust universal prediction. Similarly, in 

[117] three 3D CNN, trained in different scale patches to capture the varying geometry for 

nodule detection from volumetric CT. The final prediction produced by fusing the posterior 

predictions of those networks.  

  

Figure 22 - Two different approaches to false positive reduction in nodule detection with multiple 2D 
[116] (top) and 3D [117] (bottom) CNNs  
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3-1-2. Segmentation Organ & Lesion 

Deep learning segmentation have been applied in anatomical areas like breast [118], 

brain [119] [120], pancreas [121] [122] [123], prostate [124], cardiac [125] [126], knee [127], 

retinal tissue [128] by producing affinity graphs and organ localization [129] with modified FCN 

architecture. The different objective of deep segmentation architectures instead of other metrics 

dictates the use of Dice Similarity Coefficient [130] quantifying the similarity of output of an 

algorithm to the manually segmented image or mask. 

The proposed architecture in [131] learns high-level and complex features separating 

Grey Matter, Cerebrospinal fluid and other anatomical structures and regions of lesions. 

Combines two-pathway 3D CNNs, for multiscale inputs replacing pooling layers, with a 3D 

extension of Conditional Random Field (CRF) as post-processing for the predicted segmentation 

masks. 

Another implementation for infant brain tissue segmentation [132], specifically white 

matter, grey matter and cerebrospinal fluid, leverages the multimodal imaging T1, T2 and 

fractional anisotropy for better understanding the early stages of brain development in health. For 

Figure 23 – Multiscale 3D CNN for brain tumor segmentation [131] 

Figure 24 – Multiscale 2D architecture for brain segmentation (left) and segmentation manual vs predictions (right-middle vs right-
bottom) [133] 
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the same domain, the author proposes [133] a more advanced 3-way 2D CNN with multi-scale 

patches to extract descriptive features from varying viewing perspectives. Other implementations 

for brain segmentation include: U-Net based [134], two-path CNN [135] and with the addition of 

CRF [136] for refinement. 

Due to time and hardware limitations instead of using the demanding 3D CNN 

architecture the authors in [127] deployed three independent 2D CNN, one for each planar, with 

common only the softmax layer to segment the knee cartilage. 

A popular architecture for segmentation is the Fully Convolutional Network [137] with 

skip connections, for combining activations from the shallower (finer) layers with deep (coarser) 

activations, resulting in more accurate predictions. Such architecture applied to datasets for 

neuronal structure segmentation [138] with the use of data augmentation. Combing two FCN 

models for cardiac segmentation [125] with transfer learning from the model of the left ventricle 

to the model of the right ventricle, the author deals with the lack of samples during training and 

simultaneously boosts the convergence of the model to a high-quality solution. 

U-Net [139] is a type of Fully Convolution Network for segmentation specifically 

developed for medical images. Like any typical FCN utilizes an encoder-decoder architecture 

with connections that propagate feature maps from the encoder, convolutional, layers to the 

responding decoder, transpose convolutional, layers. A differentiating factor from SegNet is the 

Figure 25 – FCN neural structure segmentation [138]. Architecture (top) and 
segmentation predictions (bottom). 



[25] 
 

use of connections between these two parts demanding more resources in case of U-Net but 

yielding slightly better performance. 

Most medical image data are spanning across three-dimensions as volumes. Thus, 

learning models that can take advantage of such 3D representations are important for accurate 

predictions, especially for segmentation which requires global understanding of the region of 

interest. 

An extension to U-Net but with 3D operations is the proposed network in [140] allowing 

native support of volumetric data and sparse labeling. Similar principals applied to V-Net [141] 

with the differences being the activation function, the number of filters, pooling layers and the 

type of ground truth. 

Figure 26 - U-Net architecture (top) [139]. Original image, 
manual vs predicted segmentation masks (bottom). 
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Additionally, VoxResNet [142] along with volumetric segmentation employs residual 

connections between layers increasing the depth of network, showcasing competitive results in 

brain segmentation. Cascaded U-Nets followed by 3D Conditional Random Field [143] can offer 

a more robust lesion segmentation with 3D CT input data. In another direction, the authors in 

[144] proposed a cascaded architecture with parallel blocks of kU-Nets each capturing the intra-

slice context of a 2D slice and two blocks of Bidirectional Convolutional LSTM, stacked in 

depth, to handle the sequential data from the patient’s 3D scans. Another use of recurrent 

networks in [145] proposes a network with only Convolutional LSTM modules in different axes 

for 3D volumetric segmentation. Extending volumetric segmentation [146] with U-net 

architecture but instead of 3D convolutions each convolutional block consisting of four 2D 

convolutions of different viewpoints. 

Figure 27 - 3D U-Net architecture [140] 

Figure 28 - V-net architecture [141] 
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3-1-3. Transfer Learning 

Transfer Learning to a target dataset with different distribution requires fine-tuning 

applied to the deeper layers that have learnt a high-level feature set representation related to the 

source dataset. 

Indicatively, other architectures with weights transferred from related-domain or natural 

images trained models to: prenatal ultrasound segmentation [147], MRI brain lesion 

segmentation [148], two-path pixel-wise classification and contour-aware network [149] for 

gland separation, chest lesion detection [150], pancreas [121], cardiac [125]. 

 

Figure 29 - U-Net combined with 3D-CRF [143] (left). kU-Nets BDC-LSTM architecture [144] (right). 

Figure 30 - Multi-level contextual features from FCN with domain adaptation for 
gland separation [149] 

Figure 31 - Two transfer learning cases for chest lesion detection [150](left) and cardiac segmentation [125] (right) 
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3-1-4. Hybrid Networks 

Hybrid networks, as explained in the Section 1-3-4, combine deep and “shallow” 

architectures, like in Deep Learning based Radiomics [151]. In this implementation the author 

utilizes Convolutional Neural Networks as a simple automated segmentation module, initially 

trained in a patch-wise manner to recognize tumor regions in patches. 

Transferring the weights of the convolutional layers the author creates an only 

convolutional network, with a new input size, to segment unlabeled MRI images. Followed by a 

“shallow” layer for Fisher Vector transformation which includes step like subsampling, dense 

descriptors extraction, feature extraction and a linear SVM classifier [152] with the 

discriminating ability for the intraclass low grade glioma. 

 

3-1-5. Registration 

Image registration on medical data is important not only for diagnosis in general but also 

crucial to quantitative analysis of those types of data. To perform alignment of the fetal brain 

[153] on 3D ultrasound the author uses cascaded and multitask 2D combined with 3D 

convolutional networks. Initially the network decomposes the complex affine transformation, 

segment regions of interest and landmarks, map them into 3D space and learn the structural 

variability with specific coordinates. 

Figure 32 – Combination of CNN and Fisher Vector pipeline for discrimination of wild type vs 
mutation in low grade glioma [151] 
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3-2. Radiomics 

DL techniques are not the first attempt to improve upon non-invasive diagnosis from 

medical images. In the early 2010s a new quantitative analysis of medical images was proposed. 

The combination of high-throughput computing and digital medical images provide high 

dimensional quantitative features, radiomics [154] [155], based on intensity, shape, size, texture 

and volume of tumor. The extracted features can be stored in large databases for future mining 

from multiple patients providing information on tumor phenotype. 

The quantitative image analyses reveal information about pathophysiology and 

radiophenotypes of the examined lesion. Additionally, the correlation of radiomics with 

complementary data such as clinical or laboratory data can provide additive effect to Computer 

Aided Diagnosis systems. Considering that histopathology errors are up to 23%, non-invasive 

quantitative data can greatly improve traditional diagnosis. 

As a result of such analyses, imaging biomarkers can be identified which can help cancer 

detection, diagnosis, prognosis, prediction of treatment response and monitoring of patient 

condition status. 

Future advancements in the field will be highly dependent on the accessibility of cancer 

medical images and other medical data to researchers. Thus, it may enable the computation of 

vast amounts of radiomics, in big data scale, making possible the discovery of correlations 

among features and diseases. Those precise data are a requirement for better targeted treatments. 

There are several key steps for producing radiomics, like image acquisition, delineation 

of volumes of interest (VOIs), segmentation of VOIs, extraction and qualification of descriptive 

features from volumes, feature storing to databases and finally information mining from those 

databases. 

Figure 33 - Fetal brain alignment from ultrasound images [153] 
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Acquiring medical images follows standards and protocols, which varies among 

institutes. This is not important for clinical diagnosis but contrariwise, in quantitative level, it is 

difficult to compare medical images acquired by different protocols. Although, fusion of 

different modalities like PET/MRI [156] can be used to provide multiple texture features. 

The volume of interest delineations is extracted by combining multi-modal images for 

specific region designation, specifically tumor and habitat region. This is an important process 

for proper segmentation of those regions. Segmentation can be done by an expert manually or by 

specialized automatic algorithms and is a critical task for the computation of radiomics. 

Feature extraction from high-dimensional data, like an image, is a result of statistical 

transformations of the semantic data, region of interest, providing the first, second and higher 

order features. It is worth mentioning that these descriptive image features can approach the 

complexity of gene profile expression. 

Each order corresponds to a specific property of semantic data. The first order is 

histogram-based on voxels with no spatial correlations among them, the second order captures 

the statistical interrelationships or texture features and the higher order extract patterns from 

fractal analyses, Minkowski functionals, wavelets and laplacian of Gaussian transformations. 

Ultimately, storing radiomics to databases is required for training effective predictive 

classifier models by discovering patterns and correlations among diseases and image features. 

DL and radiomics pose similarities like the idea of extracting, transforming and selecting 

descriptive image features and finally process these massive amounts of data for creating models 

that enable personalized and targeted health-care. Differences are also evident especially the fact 

Figure 34 - The pipeline of radiomics [154] 
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that the radiomics workflow is not a unified process like in case of DL but rather multiple 

separate algorithms in a pipeline contributing added errors and biases at each step. 

 

3-3. Review of DL approaches in Liver Cancer  

Using DL for classification tasks researchers have deployed several implementations 

adapting state-of-the-art performing network architectures used on natural or real images that 

have a rich local covariance structure to the medical images that exhibit quantitative properties, 

and for this research specifically liver-related diseases. 

Some examples in literature for liver lesions, including the use of histopathological 

images [157] for discrimination among different type of cancer stem cells in liver utilizing 

AlexNet and color deconvolution, liver lesions detection with patch-based CNN [158] and scale 

down input [159], cascaded residual CNN [160] using 2D CT slices, CNN with ultrasonic input 

for fat characterization [161], Broiler liver classification [162] with patches of high-resolution 

RGB images of poultry viscera captured, capsule for ultrasound image classification [163] of 

cirrhosis using pre-trained CNN, with MNIST dataset, as feature extractor and SVM as classifier 

or malignant tumor segmentation with MLP [164]. In [165] the proposed deep CNN utilizes 

wavelet-transformed low dose CTs as input to denoise the artifacts and reconstruct the images. 

Computer Aided Diagnosis systems play a significant role in advancing the traditional 

medical field into precise, accurate and personalized health care. SurvivalNet [166] uses a 

Figure 35 - Different architecture for liver lesion detection [158] [160], classification [163] and segmentation [164] (top-
left to bottom-right) 
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cascaded network architecture to predict the level of risk for the survival of the patient utilizing 

FCN for semantic segmentation and 3D CNN on diffusion MRI. Other decision support [167] 

uses CNN with CT scans. 

Another important task for quantitative analysis or raw image classification is the 

segmentation either of the entire liver [168] or regions of interest [169] [170] using CT 2D patch-

CNN, cascaded FCN with 3D CRF [171] using CT and the combination of two modalities 

CT/MRI [172], FCN [173] on Contrast Enhanced CT and with ultrasound images [174], FCN 

and lesion detection [175], using U-net for liver and dense U-net for lesion segmentation in a 

cascaded fashion [176] [177] and fully convolutional/deconvolution network [178]. 

The 3D Convolutional Neural Networks with volumetric inputs have been mainly used in 

segmentation tasks with CT volumes for liver lesions [179] [180], using 2.5D U-Net-like 

architecture [181] and densely connected 3D CNN [182], or on the whole liver [183] [184]. 

It is worth noting that there is a lack -at least to the best of our knowledge- of 3D CNN 

architectures for classification or the use of 3D extracted features in liver cancer and lesion 

domain despite harnessing such representations in other domains like the natural image with 

RGB-D as discussed in Section 1-3-5. In the next chapter a comparison is presented between 2D 

and 3D convolutional networks in terms of discriminative feature extraction for tissue 

classification responding to the literature deficiency.  

Figure 36 - Liver or lesion segmentation using networks like: FCN [175], Dense U-Nets [176], deeply supervised 3D CNN [179] and 
3D Dense Blocks [182] (top-left to bottom-right) 
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4. Convolutional Neural Network 

Convolutional Neural Networks (CNN) extend the Artificial Neural Networks (ANN) to 

better handle image analysis tasks taking into consideration the spatial structure of the image in 

an end-to-end full-automated process. Currently, CNNs exhibit state-of-the-art performance in 

tasks such as classification, segmentation, registration and object detection used in robotics, 

autonomous vehicles, surveillance and bioinformatics. 

CNNs was firstly introduced by Yann LeCun in 1989 [11] and used for handwritten 

numeric digit (MNIST dataset) classification achieving test error rate less than 1%. In the 

coming years following these advancements, deeper convolutional architectures like the AlexNet 

[38] managed to fully replace traditional image analysis algorithms and promote the Deep 

Learning concept in more complex real-world applications. 

 

4-1. Architecture Inspired by Biology 

Vision in biology is a system comprised of different organs that transforms photons of 

various wavelengths on retina into electrical signals transmitted to the primary visual cortex 

throught the optic nerve, as demonstrated in Figure 37. 

Analogously, the CNN architecture uses convolutional, activation and pooling layers to 

transform the input image (millions of pixels) or any array into a compact representation 

Figure 37 -Human vision inspired deep Convolutional Neural Network 
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(thousands of features) that is discriminative and sufficient for classification. Stacking many of 

these layers allows a hierarchical representation of visual information to be learnt introducing 

properties like scale, shape and translation invariance. In addition, deeper networks approximate 

better the non-linear relationships among the classes in the dataset. 

 

4-2. Network Architecture 

As mentioned earlier CNNs are comprised of many different layers including 

convolutional, batch-normalization, activation, pooling, neural and classification. This aims to 

improve the image analysis pipeline introducing one unified network with many consecutive 

layers with the only objective to minimize the prediction error by backpropagating the gradients. 

 

4-2-1. Convolution 

Convolutional layers calculate the dot product of learnt kernels and the sliding window 

area of input images with a predefined stride preserving the spatial information among pixels and 

capturing the local dependencies. Feature maps are the accumulation of these dot products over 

the whole input resulting in an alternative less detailed and more abstract version of the 

corresponding input. The dimensionality of feature maps depends on the padding, number of 

learnt kernels and stride or pooling. 

 

Figure 38 - Kernel convolving over input 

f(x) = w ⊛ x + b 

Equation 1 - Convolution, w weights, x input, b bias 
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4-2-2. Feature Detectors 

Each convolutional layer learns multiple kernels to detect different features such as edges 

or curves. This enables the model to build high-level feature maps from low-level kernels by 

stacking multiple layers in a hierarchical input representation. Initially the network weights and 

kernel draw values from a gaussian, uniform or normal distribution in relation to the layer 

hyperparameters. During training the kernels adapt to better values through backpropagation of 

the gradients. The number of neurons for each convolutional layer can be computed by the 

Equation 2. 

 

4-2-3. Activation 

There are a few activation functions used in neural networks such as hyperbolic tangent, 

sigmoid, rectified linear unit (ReLU) along with their variations, depicted in Equation 3, 

Equation 5, Equation 4. The activation function is an element-wise operation that introduces 

non-linear relationships among the input values in a network. In the context of Convolutional 

Neural Networks, ReLU is the fastest and best performing activation function that reduces the 

vanishing gradients problem in deep networks. 

 

n =  
      

 
   

Equation 2 – Number of Neurons n per layer, W volume 
size, K receptive field, P zero padding, S stride 

f(x) = max(0,x) 

Equation 3 - ReLu 
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4-2-4. Pooling 

Pooling is the spatial subsampling layer of a network that reduces the dimensionality of 

feature maps. Consequently, it reduces the number of learnt parameters and the computational 

complexity of the convolutional layers. As a result, the above improve the generalization 

capability and introduce scale and translation invariance of the model. Some types of 

subsampling include average, summation, max pooling or an increased stride in the 

convolutional layer. 

4-2-5. Normalization 

Batch Normalization aims to reduces covariance shift [185] of inputs by rescaling the 

mini-batch at the batch axis to values that follow unit variance and zero mean. Additionally, each 

Batch Normalization layer learns with gradient descent two parameters: gamma γ and beta β. 

Those restore the original activations if improvement of the expressive power of the network is 

needed. 

f(x) = tanh(x) 

Equation 5 - Hyperbolic Tangent 

f(x) = 
 

      

Equation 4 - Sigmoid 
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Empirically other improvements include faster convergence of the model with higher 

learning rates, reduced overfitting due to the introduction of noise at the batch level from this 

process and increased stability of the propagated gradients. 

4-2-6. Neural Network 

The Neural Network (ANN) part in the Convolutional Networks (CNNs) is comprised of 

many hidden layers and a classification layer. In the hidden layers every neuron is fully-

connected to all neurons of the successive layer. The classification layer has different activation 

function than the rest of CNN usually Softmax or Sigmoid. The input of the ANN part is the 

flatten output (feature vector) of the convolutional part of the network. Its main objective is to 

reduce, select and combine the incoming image features in an automated, end-to-end way in 

order to match the non-linear correlations between the input and the predicted class. 

4-2-7. Training Process 

The training process uses the training set to converge the network by adjusting the 

weights in proportion to their contribution to the total error in order to learn to classify properly 

the testing set samples. The aim is to provide models that generalize and not memorize the 

dataset. 

At the beginning all the weights are initialized, forward propagate the training samples, 

calculate the prediction probabilities of each class, compute the total error, calculate the 

Figure 39 - Batch Normalization applied to x over a mini-batch [185] 

       
 

 
                           

Equation 6 - Total Error, p  probability 
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gradients of the error of all weights in the network by backpropagation algorithm and finally 

update the weights with gradient descent. The objective of this process is to minimize the 

prediction error of the validation set and is repeated until the model converges to a good solution, 

local or global minimum. 
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5. Thesis Research: CNN on Liver Cancer 

 

5-1. Reasoning 

The aim of this research is to implement a deep architecture for extracting discriminative 

features from malignant liver tissue, determine the quality of predictions for primary vs 

metastatic in tissue classification and integrate them in a broader Computer Aided Diagnosis 

system in the future. This intraclass problem is difficult or impossible, even for human experts, 

to make a concrete diagnosis with only non-invasive clinical data, Section 4-2. 

The Convolutional Neural Networks are the current state-of-the-art in image related tasks 

like classification, detection, segmentation and even generation. To achieve such an outstanding 

performance, with regards to training, large amounts of labeled images are required. 

Medical image datasets lack [186] the quantity and qualitative characteristics due to facts 

like the legislative framework that protects the anonymity of the patients, different image 

acquisition protocols and devices, high cost of data preparation or the large number of lesions 

fragmenting the datasets. Typically, the number of samples for those datasets are low for both 

training and testing purposes in the context of deep learning approaches compared to natural 

image datasets, Section 1-8. 

To overcome such difficulties, taking advantage of other properties of medical data like 

volumetric DW-MRI, creative techniques and algorithms have been developed, artificially 

augmentation of samples, multimodal data utilization, hybrid heterogeneous architectures that 

combine the benefits of deep and “shallow” pipelines, transfer learning from different domains 

and training processes like patch-wise training and unsupervised pretraining. 

 

5-2. Dataset & Clinical Analysis 



[40] 
 

For this study, 107 patients referred for upper abdomen MRI (mean age: 62 yrs., 17-87 

yrs., 48 women and 59 men) were imaged at a 3 Tesla imager (Signa HDxT; GE Medical 

Systems, Milwaukee, WI) with twin-speed gradient system of 50 mT/m gradient amplitude. Data 

used for this study comprised primary liver malignancy (HepatoCellular Carcinoma: 21 patients, 

Cholangiocarcinomas: 16, or Hepatic AdenoCarcinoma: 3 patients) or secondary liver lesions of 

variable primary tumor site (breast: 11, colon: 10, lung: 11, pancreas: 10, neuroendocrine 

tumors: 8, prostate: 6, melanoma: 6, bladder: 2, stomach: 1, ovarian: 1, thyroid: 1) summing up 

to 107 patients with either solitary or multiple foci. 

All images were obtained with an 8-channel torso phased array coil. A Single Shot Echo 

Planar Imaging diffusion sequence (DW-EPI) was acquired in combination with Parallel imaging 

(TR/ TE: 10.000/68 ms, slice thickness/ gap between slices 6 mm/1 mm, matrix 128 (phase) x 

128 (frequency), field of view 400 mm, number of excitations 4 and receiver Bandwidth 1953 

Hz, ASSET factor: 2). The total acquisition time ranged between 4 and 5 minutes due to the 

variation of respiratory patterns between the patients. Tumor delineations used for the 2D CNN 

and Signal to Error (SNR) measurements to assure image quality were calculated using in-house 

developed software. 

Another key factor related to this type of cancer is the high variance in shapes and spread 

area, as displayed in Figure 40, where regions of interest can manifest as compact tumors or 

dispersed across a larger part of liver. Also, discriminating between primary or metastatic 

malignant entities based on tomographic images is difficult since they are both characterized by 

decreased extracellular space and therefore exhibit slower signal decay at high b-values. Thus, 

addressing the clinical problem of the liver tumor classification only b-1000 DW-MRI data were 

used. 

Figure 40 - High signal intensity on b 1000: Large Focal Liver Metastasis from pancreas (left), Primary Liver 
Hepatocellular Carcinoma (right) 
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5-3. Preparation of Dataset 

5-3-1. Patch-Extraction for 2D CNN 

The patches for the 2D CNN training were extracted from the dataset and separated into 

two classes: malignant and healthy tissue. The patches with malignant tissue include at least 40% 

pixels from the region of interest in order to achieve good recognition performance between 

classes. This offline process utilizes the GPU-powered Tensorflow [187] framework in a brute-

force sliding window approach where every tumor slice is scanned by a 32x32 window with a 

16-pixel stride. 

Another factor that dictates these dimensions is the problem itself as the cancer region 

can manifest in a concentrated, compact area or with small dispersed regions of interest. Thus, 

using bigger patches will result in losing those small regions. 

Crucial for this task is the delineation of accurate ground truth from either a human 

expert or by an automated algorithm. For this research the pixelwise annotations, regions of 

interest, were provided by an expert radiologist. In total, near 2,000 patches were extracted 

balanced from either healthy or malignant tissue. 

5-3-2. Sample Selection 

The input of the 3D CNN is the actual volume of the patient. The number of slices in 

each volume varies in our dataset from 20 to 80 slices but most samples have 30 slices. 

Considering that the input cannot be an arbitrary size in any CNN model some sort of selection 

was necessary. 

Due to that requirement the samples with less than 30 slices were discarded completely. 

For samples with more slices I just discarded the extra slices with no regions of interest until the 

requirement was met. In one case the number of slices with ROIs was over 30, therefore I 

dropped some of them. Finally, 107 out of 111 samples were used for both training set and test 

set in both 3D and 2D architectures. No other clinical criterion for sample selection was applied. 

5-3-3. Data augmentation 

Data augmentation [188] [189] [190] is achieved by simple image processing techniques 

like deformation, multiple angles rotation, mirroring, scaling, brightness tuning and flipping. 

Particularly in this implementation, affine deformation with 9% alpha affine, 90
o
 and 270

o
 

rotation, flipping up-down and left-right, brightness reduction and mirroring with 8-pixel wide 

reflections. Visual demonstration is depicted in Figure 41. This procedure managed to increase 
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the data by a factor of 10 resulting in over 20 thousand patches in total for the dataset of the 

patch-wise 2D CNN. Thus, augmentation was applied only to patches after the extraction from 

the sample slices. Besides, the increase of the sample count, data augmentation results in the 

translation, viewpoint, scale invariances [12] and artificial diversity of the examined dataset, thus 

strengthening the generalization capability of the model. 

The data augmentation is necessary not only for inflating the dataset with more samples 

but also alleviates, to an extent, the presence of class imbalance. Specifically, this is a noticeable 

problem in case of 3D CNN where the dominant class in the dataset have around 40% more 

samples than the other class. After this process the larger class increased 7 times and the smaller 

by 10 times for the dataset of the 3D network and applied directly to the sample volumes. 

 

5-4. Proposed Network Architectures 

Convolutional Neural Networks [11] belong to a class of models that can learn 

hierarchical features by building high-level features from low level ones. CNNs adapt their 

internal representation through weight updating inside each layer by backward propagation of 

the calculated error from the loss function. Two main architectures were implemented and 

evaluated: a 2D CNN with patch-wise training and a 3D CNN trained on the whole volume. 

5-4-1. 2D CNN and Feature Extraction from Slice 

Patch-wise training is selected as a viable option due to the size of dataset, as it was 

discussed earlier in Section 4-3-1. Therefore, the architecture of this network includes 9 layers in 

Figure 41 - Different types of data augmentation used in this research 
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total: with input size 32x32, 4 convolutional layers with ReLU activation [191], 64 kernels and 

receptive field 3x3. A detailed description for the layer configuration is provided in Table 1. 

Simplifying the architecture [192], no max-pooling layers are implemented, instead 

subsampling is achieved with strided convolutions with every second convolutional layer 

followed by batch-normalization [185]. 

 Stacking layers in such fashion and not using wider layers and shallower network enable 

modular feature learning to avoid memorization by the network and achieve good generalization 

performance. For comparison a 4-convolutional with 64 filters per layer and batch-normalization 

performs the same with an 8-convolutional and 64 filters per layer but the latter is more prone to 

overfit and is harder to train. 

The fully-connected part of the network consists of two layers with 2048 neurons each 

and 50% probability of dropout [193]. Glorot initialization [194] and Adam optimizer [195] with 

sparse cross entropy as loss function are selected. Finally, softmax layer serves as classifier with 

2 classes for patches containing healthy or malignant tissue. The overall architecture is displayed 

in Figure 42. 

After the patch-wise training, the produced model is able to discriminate among healthy 

and malignant tissue patches with accuracy over 97% and precision 92%. In other words, the 

feature extractor part of the network gives activations that enable the amplification of regions of 

interest. Thus, with transfer learning to a model with new input and new classifier could possibly 

discriminate between metastatic or primary malignant tissue from the whole image. But to 

extract features from a sequence of normal MR images, in this case 256x256x1, a new input 

must be appended resulting in the rejection of the fully-connected layer. The weights and layers 

of the convolutional part were transferred with no changes since they can discriminate between 

malignant over healthy tissue. The feature vectors, extracted from the new model, were labeled 

by the clinical results in two classes: primary and metastatic. Supervised training applied to SVM 

Figure 42 - Patch-wise training of the 2D CNN 
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classifier corresponding samples like in CNN training. 

Dimensionality reduction and normalization to the feature vectors also attempted with 

processes like Principal Component Analysis, thresholding feature removal or L2 normalization 

resulting in worse performance in classification. Therefore, I avoided any hand-crafted 

intervention. 

5-4-2. 3D CNN and Volumetric Feature Extraction 

The 3D Convolutional models learn more complex features spanning across three 

dimensions: width, height and depth. These relationships, at voxel-level, start from consecutive 

slices in early layers to more distant slices deeper, giving global knowledge about the internal 

tumor structure but also the overall geometry of the tumor respectively. This is the biggest 

advantage of that type of networks. Voxel-based information is already used with the 3D 

variance of radiomics [196] providing richer features.  

Batch-normalization [185] is implemented after every ReLU activation of the network, 

including in total 4 strided [192] 3D convolutional layers and one fully-connected layer with 

2048 neurons with ReLU [191] activation function. Filter size was set at 3x3x3 initialized by 

Glorot [194] and Adam optimizer [195] with learning rate 10
-3

, 50% probability of dropout [193] 

was selected for better generalization along with a softmax classifier of two classes metastatic or 

primary. A detailed layer setup can be found in 2 and a visual representation of the network 

below in Figure 43. 

Layer Input Configuration Number of Neurons 

2DCNN_1 32x32x64 2D Stride 2, ReLU 64x3x3 

2DCNN_2 32x32x64 2D Stride 2, ReLU 64x3x3 

Batch Normalization 16x16x64 - - 

2DCNN_3 16x16x64 2D Stride 2, ReLU 64x3x3 

2DCNN_4 16x16x64 2D Stride 2, ReLU 64x3x3 

Batch Normalization 8x8x64 - - 

fc1 4096 Dropout 50% 2048 

fc2 2048 Dropout 50% 2048 

softmax 2048 2 classes - 

Table 1 - Detailed layer setup for Patch-2D CNN 
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Similar principles have been applied when designing both 2D and 3D architectures. The 

main differences are that in the 3D network the input samples are the DW-MRI volume, 

30x256x256, per patient labeled by the clinical result, primary or metastatic. Consequently, there 

is no need for majority vote in evaluation like in case of 2D networks resulting in a process 

simple and straight forward. 

Also, the extraction of features from the 3D network was correspondingly simpler, as 

displayed in Figure 44. The feature vector is the actual output of the fully-connected layer. The 

dimensionality reduction and feature selection were part of the training process and done by the 

neural layer. Samples for the supervised SVM training was selected, like in case of the 2D 

network, the same as 3D CNN training set. 

5-4-3. Hyperparameters Optimization 

The main parameters like the depth of network, number of layers, or the width of each 

layer, the number of filters and neurons of fully-connected layer were determined by a 

reasonably exhaustive research. The goal was the maximization of accuracy and the avoidance of 

overfitting and memorization by the network. 

Figure 43 - Training the 3D CNN 

Layer Input Configuration Number of Neurons 

Batch Normalization 30x256x256x1 - - 

3DCNN_1 30x256x256x1 3D Stride 2, ReLU 20x3x3x3 

3DCNN_2 15x128x128x20 3D Stride 2, ReLU 20x3x3x3 

3DCNN_3 8x64x64x20 3D Stride 2, ReLU 20x3x3x3 

3DCNN_4 4x32x32x20 3D Stride 2, ReLU 20x3x3x3 

fc 10,240 Dropout 50% 2048 

softmax 2048 2 classes - 

Table 2 - Detailed layer setup for 3D CNN 
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Metrics like training loss and accuracy were juxtaposed to their validation counterparts. It 

is worth mentioning that the number of strided convolutions reflects the need to preserve, to an 

extent, the cancer regions. For instance, more strided convolutions in the 3D network will cause 

even less feature maps from slices with regions of interest limiting significantly the ability of 

converging to a discriminative model. 

Most of the other hyperparameters such as the optimizer, the initializer, the size of filters, 

the activation function or the stride were determined by the literature research following the best 

practices in the field. Tweaking those has almost no or little impact in this network’s behavior or 

performance. 

 

5-4-4. Support Vector Machines for Evaluating the Extracted Features 

Linear SVM is selected as classifier for the new pipeline. SVMs are widely used on 

cancer discrimination problems [152] since they demonstrate good performance and require 

fewer data due to its kernel-based nature. The two different approaches, Figure 44, are using the 

same subset of patients for training and evaluation but with the input data being the 

differentiating factor. In case of 2D feature extraction each slice is represented by a feature 

vector contrary to the 3D feature extraction where each feature vector is extracted by the whole 

volume. The performance metrics include majority vote, for the 2D pipeline, therefore it can be 

comparable to the performance of the 3D variance. 

Figure 44 – Extraction and Evaluation of features from 2D(top) and 3D(bottom) networks 
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5-5. Implementation 

As depicted in Figure 45, a patch-wise training strategy is selected to force the network 

distinguish between malignant and healthy tissue and at the same time exposing the neurons 

artificially to more data. This is a common practice when there is lack of big datasets or other 

resources. Since a sufficient model capable of performing well was produced -in this case 

accuracy 97% and precision 91% in tissue classification- I transfer the weights and the 

convolutional part of the 2D CNN, which serves as feature extractor for the network, to a new 

model. 

In case of 3D CNN, the feature extractor is trained, and the new model is transferred with 

the new classifier, bottom pipeline in Figure 46, in a similar way. The key difference is the 

training strategy where instead of patch-wise training, the full volume is used both in training 

and inference. This allows to preserve more layers including the fully-connected layer and 

discarding only the softmax classification layer. 

Figure 45 - Training(top) and Feature Extraction(bottom) for the 2D pipeline 



[48] 
 

During inference in both approaches the linear SVM is trained in a supervised manner for 

the new classification problem primary vs metastatic. As mentioned in Section 4-4-4, SVMs are 

effective with small datasets [102] where only the support vectors are considered for separating 

the classes by constructing the hyperplane.  

 

5-6. Performance Evaluation 

Both 2D and 3D CNN were trained on equivalent subset of the entire cohort, selected 

from stratified random sampling. A total of 111 patients, 38% primary and 62% metastatic, were 

included in the initial dataset while 4 were rejected as having less than 30 slices in total, a 

technical requirement related to the 3D CNN’s fixed input extensively discussed in Section 4-3-

2. No other clinical criterion for selecting the samples was applied. As a result, a total of 75 

patients were used for training and 32 patients for the test set before applying data augmentation, 

as suggested in Section 4-3-3. In both cases each sample, volume for 3D and slice for 2D feature 

extractor, was labeled by the medical diagnosis primary or metastatic. 

The patch-wise 2D was trained for 30 epochs with approximate training time 45 minutes 

to 1 hour on a Cuda-compatible Graphics Process Unit (GPU). The model was able to 

discriminate among malignant and healthy tissue patches with accuracy of 96,9% and precision 

of 91%. 

For the 2D feature extractor: I transfer from the patch-trained network only weights 

related to the convolutional layers, append the new input 256x256 and discard the fully-

connected and softmax layers, Figure 45.The 3D network was trained on volumetric DW-MRI 

Figure 46 - Training(top) and Feature Extraction(bottom) for the 3D pipeline 
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data for a total of 20 epochs using the CPU, due to memory limitations on the GPU side, 

requiring more than 40 hours for training. Similarly to the 2D feature extractor, I transfer the 

layers and weights including the input up to the fully-connected layer, discarding only the 

softmax layer, Figure 46. 

A linear SVM was trained with the extracted feature vectors from both architectures, 

from the whole volume in case of the proposed 3D network and from 2D slices of the examined 

2D network. The exact subsets of patients used previously for training and testing the CNNs 

were further equipped the SVM with features for training and testing and the performance of the 

classifier as presented in Table 3.  

Figure 47 - ROC and Precision-Recall curves for features of 3D(left) and 2D(right) CNN 

 Features - 3D network  Features - 2D network  

Accuracy 93.9% 60% (Majority Vote: 65%) 

Average precision-recall 98.9% 80% 

AUROC 93.7% 53% 

Specificity 92.3% 39% 

Sensitivity 95% 67% 

Precision 94% 66% 

Recall - Sensitivity 94% 60% 

f1-score 94% 62% 

Table 3 - Metrics from the SVM classification comparing features extracted from 3D and 2D networks 
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For binary classification metrics like accuracy could possibly mislead to false 

conclusions about the performance of each implementation. Thus, the evaluation of performance 

was assessed by the AUROC and several other metrics, illustrated at Table 3, including not only 

accuracy 
     

                 
 but also sensitivity-recall 

  

       
, specificity 

  

     
, precision 

  

     
 

and F1-score 
   

             
. The notation TP, TN, FP, and FN stand for True Positive, True 

Negative, False Positive and False Negative respectively.  

These predictions were retrieved from the confusion matrices for each pipeline, Figure 

48. Additionally, qualitative representation of the performance was given by the ROC and the 

precision-recall curve in Figure 47. For medical related problems it is worth noting that 

sensitivity is important since it make sure the actual positive (metastatic) samples are accurately 

classified. 

The calculated confusion matrix at the testing phase is given by Figure 48. The combined 

3D feature extractor - SVM pipeline classified correctly 11 out of 12 patients from the primary 

tumor class and 19 out of 20 belonging to the metastatic class.  It is worth noting that the 

networks have different types of inputs, volume for the 3D and individual slices for the 2D 

feature extractor, therefore by extension the two matrices are not directly comparable between 

them.  

Figure 48 - Confusion matrices 3D(left) and 2D(right) pipeline 
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6. Conclusion 

In recent years there has been a rising interest in research related to medical image 

applications that leverage DL techniques for various clinical conditions, following the successful 

paradigm of natural images in real life applications. With regards to cancer research broad 

horizons are emerging by the exploitation of novel architectures, engineering new feature 

representations and by taking advantage the special traits and properties of the domain.  

The proposed automated tissue characterization by the extracted CNN features are 

evaluated in different network architectures, training strategies and using data augmentation to 

inflate the number of samples and simultaneously deal with class imbalance issues related to the 

dataset. The tomographic DW-MRI data provide enhanced anatomical information about the 

region of interest. The consecutive convolutional layers produced feature maps based on the 

interactions of learnt kernels and the input slices in order to amplify the most discriminative 

areas and capture the nonlinear tenor of each class. 

Additionally, the proposed 3D CNN takes advantage of the intra and inter-slice tumor 

relationships resulting in a richer representation which gradually captures the inner and overall 

structure of each tumor type. The performance evaluation shows that voxel-wise architectures 

outperform the 2D variants by a wide margin, with a 93.4% to 65% accuracy and sensitivity of 

95% to 67%, in liver tumor tissue classification (primary vs. metastatic) using the same dataset. 

This significant improvement is a result of multiple factors including: a)the image 

representation inside the 3D network is far superior and this is indicative from the larger amount 

of learnable parameters, b) the relation of the acquired knowledge from the model and the dataset 

is more complicated mainly due to voxel kernels, c) the inclusion of the dense layer in the feature 

extraction architecture provides feature selection properties in an “organic” way, d) volumetric 

features from whole slices are more suitable for this clinical application due to the high variance 

in tumor structure spanning from compact regions to dispersed small tumors across large areas, 

including metastases for many different organs. 

The aim of this research was to integrate the extracted features into a generic framework 

with hand-crafted elements assisting in difficult problems, like in this case study, the intraclass 

discrimination among liver cancer tissue. To the best of our knowledge this is the first time 

where 3D strided CNN was successfully applied for cancer feature extraction from the whole 

volume with no need of segmenting or detecting the regions of interest first. 
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