

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

SCHOOL OF ENGINEERING

DEPARTMENT OF INFORMATICS ENGINEERING

THESIS

ONTOLOGY-BASED SEARCH ENGINE WITH SPEECH

RECOGNITION

ALEXANDROS KYRIAKAKIS

SUPERVISOR

PROFESSOR MANOLIS TSIKNAKIS

HERAKLION

FEBRUARY 2019

Kyriakakis Alexandros

2

Copyright

ALEXANDROS KYRIAKAKIS

2019

Formal Declaration: We assure you that we are authors of this bachelor thesis and that

the assistance we received during its preparation is fully recognized and it is stated in the

thesis. Also, we have stated all the sources which we made use of data, ideas or words

from, either in their exact form or changed. We also assure you that this thesis was

prepared by us personally for the curriculum of the Department of Informatics

Engineering of TEI of Crete.

Υπεύθυνη Δήλωση: Βεβαιώνουμε ότι είμαστε συγγραφείς αυτής της πτυχιακής εργασίας

και ότι κάθε βοήθεια την οποία είχαμε για την προετοιμασία της, είναι πλήρως

αναγνωρισμένη και αναφέρεται στην πτυχιακή εργασία. Επίσης έχουμε αναφέρει τις

όποιες πηγές από τις οποίες κάναμε χρήση δεδομένων, ιδεών ή λέξεων, είτε αυτές

αναφέρονται ακριβώς είτε παραφρασμένες. Επίσης βεβαιώνουμε ότι αυτή η πτυχιακή

εργασία προετοιμάστηκε από εμάς προσωπικά ειδικά για τις απαιτήσεις του

προγράμματος σπουδών του Τμήματος Μηχανικών Πληροφορικής του Τ.Ε.Ι. Κρήτης.

Ontology-based search engine with speech recognition

3

Abstract

Searching for data throughout the internet is not always an easy task. The reason for that

is that the internet is flooded with data and the most common searching techniques often

fail to provide the best possible results for the users’ needs. Therefore, researchers have

for years been trying to find alternative ways of searching. Through that research,

searching techniques based on semantic technologies have emerged. Over the years,

search engines based on semantic technologies have gained a lot of popularity for their

efficiency, but they are still under development.

The end goal of this thesis is to examine the use of semantic technologies for

bioinformatics data annotation by employing domain specific ontologies and also to make

use of natural language processing methods in order to aid the non-bioinformatics expert

users to successfully search for bioinformatics related tools using natural language

through either text or a speech recognition system. In addition, we make use of more

searching techniques to compare their efficiency and also to ensure that the framework

that was created throughout this thesis, is be able to provide the user with the best possible

results for his needs.

For our experiments, a variety of questions of users searching for bioinformatics related

tools from the SEQanswers.com forum were collected, and after having irrelevant words

from those questions removed from two expert bioinformaticians, those questions were

used as queries in the proposed framework. For the evaluation of the results, they were

compared with the proposed tools that were given by forum users as answers for the

collected questions. Our results indicate that in the majority, the framework’s results are

relevant to the queries, with each searching technique having different precision and

response times.

Kyriakakis Alexandros

4

Περίληψη

Η αναζήτηση δεδομένων στο διαδίκτυο δεν είναι πάντα εύκολη. Αυτό συμβαίνει επειδή

το διαδίκτυο έχει πάρα πολλά δεδομένα και οι πιο διαδεδομένες τεχνικές αναζήτησης

συχνά αποτυγχάνουν στο να παρέχουν τα καλύτερα αποτελέσματα για τις ανάγκες των

χρηστών. Για αυτό το λόγο, ερευνητές προσπαθούν εδώ και χρόνια να βρουν

εναλλακτικούς τρόπους αναζήτησης. Από αυτές τις έρευνες, ανακαλύφθηκαν τεχνικές

αναζήτησης βασισμένες σε σημασιολογικές τεχνολογίες. Με τα χρόνια, μηχανές

αναζήτησης βασισμένες σε σημασιολογικές τεχνολογίες έχουν απόκτηση πολύ φήμη για

την αποτελεσματικότητά τους, όμως είναι ακόμα υπό ανάπτυξη.

Ο τελικός στόχος αυτής της πτυχιακής εργασίας είναι να ερευνηθεί η χρησιμότητα

σημασιολογικών τεχνολογιών για τον σχολιασμό δεδομένων βιοπληροφορικής

χρησιμοποιώντας οντολογίες συγκεκριμένου τομέα και επίσης να χρησιμοποιηθούν

μέθοδοι επεξεργασίας φυσικής γλώσσας με στόχο να βοηθηθούν χρήστες που δεν

ειδικεύονται στην βιοπληροφορική να κάνουν επιτυχής αναζήτηση για προγράμματα που

σχετίζονται με την βιοπληροφορική χρησιμοποιώντας φυσική γλώσσα με κείμενο ή

ομιλία. Επιπλέον, χρησιμοποιούμε περισσότερες τεχνικές αναζήτησης για να

συγκρίνουμε την αποτελεσματικότητά τους και επίσης για να διασφαλίσουμε ότι το

πρόγραμμα που αναπτύχθηκε σε αυτή την πτυχιακή εργασία, παρέχει τα καλύτερα

δυνατά αποτελέσματα για τις ανάγκες του χρήστη.

Για τον αξιολόγηση του συστήματος, συλλέξαμε μία ποικιλία ερωτήσεων από χρήστες

που έψαχναν για προγράμματα που σχετίζονται με την βιοπληροφορική από το φόρουμ

SEQanswers.com, και αφού δύο ειδικοί βιοπληροφορικοί αφαίρεσαν μη-σχετιζόμενες

λέξεις από τις ερωτήσεις, αυτές οι ερωτήσεις χρησιμοποιήθηκαν σαν ερωτήσεις

αναζήτησης στο σύστημά μας. Για την αξιολόγηση των αποτελεσμάτων, τα

αποτελέσματα συγκρίθηκαν με τα προγράaμματα που προτάθηκαν από χρήστες του

φόρουμ σαν απάντηση για τις ερωτήσεις που συλλέξαμε. Τα αποτελέσματά μας δείχνουν

ότι στην πλειοψηφία, τα αποτελέσματα του συστήματος σχετίζονται με τις ερωτήσεις

αναζήτησης, ενώ κάθε τεχνική αναζήτησης έχει διαφορετική ακρίβεια και χρόνο

ανταπόκρισής.

Ontology-based search engine with speech recognition

5

Acknowledgements

I take this opportunity to express my sincere gratitude to my supervisor Prof. Manolis

Tsiknakis for his support throughout the development of this thesis. I would also like to

thank Mr. Lefteris Koumakis, Mr. Giorgos Potamias and Mr. Alexandros Kanterakis for

their continuous guidance, motivation and encouragement extended to me. I am extremely

thankful for their valuable comments and feedback that lead me to widen my research

and evolve this thesis while expanding my knowledge.

Kyriakakis Alexandros

6

Table of Contents
Copyright .. 2

Table of Figures .. 8

Table of Tables ... 9

1. Introduction ... 10

1.1. Speech Recognition ... 10

1.2. Ontology-based Search .. 10

1.3. Keyword-based Search vs Semantic Search .. 10

1.4. The purpose of the study .. 11

2. Background ... 12

2.1. Speech Recognition Background ... 12

2.2. Speech Recognition APIs .. 14

2.2.1. The Microsoft API .. 14

2.2.2. The CMU SPHINX .. 15

2.2.3. Cloud Speech API .. 15

2.2.4. Comparison Chart ... 16

2.2.5. Speech APIs Conclusion .. 16

2.3. Systems taking advantage of Speech APIs .. 17

2.4. Semantic Web Background.. 17

2.5. Systems taking advantage of semantic technologies 18

2.5.1. Swoogle .. 18

2.5.2. Watson Search Engine .. 19

2.5.3. IBRI-CASONTO .. 19

2.5.4. PASS ... 20

2.5.5. GOseek ... 20

2.5.6. NCBO Resource Index ... 21

2.5.7. GoWeb .. 22

Ontology-based search engine with speech recognition

7

2.6. Apache Lucene... 23

2.7. Apache Solr .. 24

2.7.1. Apache Stanbol ... 25

2.7.2. Redlink Solr Plugin .. 25

2.7.3. Open Semantic Search .. 25

2.7.4. Solr and OLS .. 26

3. Methods ... 27

3.1. System architecture .. 27

3.2. Speech to text solution ... 29

3.3. Concept recognizer (ontology terms) from NLP ... 30

3.4. Data storage and retrieval .. 33

3.5. Query Mechanism .. 34

3.6. Implementation of the framework ... 35

4. Deployment ... 37

4.1. Setup .. 37

4.2. Installation Guide ... 37

5. Experiment (Storing and searching tools from the biotools registry) 42

5.1. Biotools .. 42

5.2. Embrace Data and Methods (EDAM) Ontology ... 42

5.3. The Software Ontology (SWO) ... 43

5.4. Test case ... 45

5.5. Results – first iteration ... 48

5.6. Results – second iteration .. 49

6. Conclusions ... 52

Bibliography ... 53

Kyriakakis Alexandros

8

Table of Figures

Figure 1. Radio Rex: The first speech recognition machine. ... 12

Figure 2. Experimental results of The Microsoft API on random audio files. 14

Figure 3. Experimental results of The CMU Sphinx system on random audio files 15

Figure 4. Experimental results of Cloud Speech API on random audio files 16

Figure 5. Comparison chart between Sphinx4, Google API and Microsoft API. Word

Accuracy (WA), Word Error Rate (WER) ... 16

Figure 6. Google Assistant Structure. ... 17

Figure 7. An overview of the swoogle architecture .. 18

Figure 8. A functional overview of the main components of the Watson architecture .. 19

Figure 9. IBRI-CASONTO Structure. .. 20

Figure 10. NCBO Resource Index Overview. .. 22

Figure 11. GoWeb workflow representation. ... 23

Figure 12. Apache solr architecture. ... 24

Figure 13. The Apache Stanbol Components. .. 25

Figure 14. OntoSearch’s ontology-based search Architecture. 27

Figure 15. OntoSearch's keyword-based search architecture. .. 28

Figure 16. Ontosearch's hybrid search architecture. ... 28

Figure 17. OntoSearch Architecture. .. 29

Figure 19. Example of a random EDAM term retrieved from Apache solr. 31

Figure 20. Example of a random SWO term retrieved from Apache solr. 31

Figure 21. Example of a random tool retrieved from Apache solr. 32

Figure 22. Example of a random tool retrieved from apache solr from the hybrid core. 33

Figure 23. Database table used to store and retrieve solr results using EDAM. 34

Figure 24. Database table used to store and retrieve solr results using SWO. 34

Figure 25. OntoSearch interface. (Screenshot taken from the developed framework) .. 35

file:///C:/Users/akyri/Desktop/Ptyxiaki/anafora+kodikas/Ptyxiaki%20Ergasia%20Final%20v2.docx%23_Toc987703

Ontology-based search engine with speech recognition

9

Figure 26. OntoSearch results modal. (Screenshot taken from the developed framework)

 .. 36

Figure 27. Starting apache solr from cmd. ... 37

Figure 28. Example of the EDAM folder. .. 38

Figure 29. Example of creating EDAM core in apache solr. ... 38

Figure 30. figure of uploading the edam json file in apache solr's EDAM core. 39

Figure 31. Apache solr cores' configuration. .. 39

Figure 32. PGadmin3 ontosearch database... 40

Figure 33. XAMPP Control Panel. ... 40

Figure 34. OntoSearch DBController class. ... 41

Figure 35. Embrace data and methods (EDAM) ontology schema 43

Figure 36. Software ontology (SWO) schema.. 44

Table of Tables

Table 1. Results of the Web Speech API evaluation grouped by the 24 speakers 30

Table 2. Test case results for each question. .. 48

Table 3. Test case final results.. 49

Table 4. Test case results for each question with hybrid search. 50

Table 5. Test case results with hybrid search. .. 51

Table 6. Test case response times. .. 51

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

10

1. Introduction
1.1. Speech Recognition

In the past few years, speech recognition has been an active research area. It has for

years been considered a good bridge of communication between human and machine

since speech is the primary mean of human communication, but only recently

technology grew enough for automatic speech recognition systems to develop in a

usable level. It has been the most exciting area of signal processing and it continues to

develop rapidly. Many applications use it nowadays to change the way we live and

work for the better. Those applications include: Voice Search, Digital assistance,

Gaming, Living room and in-vehicle informative systems. Though, speech recognition

systems are still far from perfect. Even though the error rates have reduced significantly,

with the most accurate system having approximately 91% word accuracy, they error

rates are still high enough to make those systems usable for specific purposes only [1].

Older human-machine communication means such as keyboard and mouse are

significantly more accurate and efficient which have kept speech recognition systems

in the dark. But the desire for humans to communicate with machines in their most

common mean of communication, speech, have kept people into trying to improve

those systems more and more. Converting sound signal to text and creating a pattern

out of free speech has been the main problem of the attempts to translate natural human

speech into machine language over the years.

1.2. Ontology-based Search

Nowadays there is an enormous amount of data in the web. Therefore, searching for

something in the web is not an easy task. To make it easier for the users to challenge

with the massive data that is massively growing in the web and receive the desirable

result, it is necessary to change the traditional search methods. When searching for

something specific, a regular search engine retrieves data based on keywords. The user

has to spend a decent amount of time to screen and filter [2]. That problem can be partly

resolved by using Ontology-based search engines [3]. An ontology is a vocabulary that

represents a specific domain or subject matter [4]. Each ontology contains a set of

terms. Each term can be weighed differently in the searching process which changes

the results for a given query. The weighing of the terms is made to suit the domain of

each ontology and improve the accuracy of the resulted data. The use of ontologies for

searching is a semantic technology technique. Therefore, a search engine that is based

on ontologies is also considered a semantic search engine.

1.3. Keyword-based Search vs Semantic Search

The web is flooded with keyword-based search engines. The most popular are Google,

Bing and Yahoo with 80.65%, 8.76% and 7.77% volume of search ratios respectively

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

11

[5]. That means that a total of 97.18% of the searches are done in just 3 keyword-based

search engines. However, semantic search engines are an alternative to these regular

search engines. In a keyword-based search engine, the query is processed for

preprocessing and text cleaning and afterwards the search is done. The retrieved

documents are based on the amount of the matching words with the query. However,

in semantic search engines the results are based on more factors. The frequency of the

words, the syntactic structure of the natural language and other elements. In semantic

search, the system understands the exact requirement of the user’s search query and

returns the corresponding documents which saves the user a lot of time discarding

unrelative documents a regular search engine would have retrieved. Researchers have

conducted a number of studies into evaluating the effectiveness of keyword-based

search engines and some have proposed semantic technologies as a better alternative.

Although the semantic search engines’ popularity is increasing, it still is in very low

percentages of the population’s preferred search engines. Therefore, researchers have

to improve such systems even more in order to retrieve more attention by the general

public. Neither of the searching techniques is perfect, since a perfect search engine

model would be the one that always returns the exact document the user was looking

for. But the gap between present search engines and the ‘perfect search engine’ is

constantly merging.

1.4. The purpose of the study

The end goal of this study is to

I. Investigate the use of semantics for the annotation of free text with domain

specific ontologies.

II. Exploit open source systems in empowering the non-IT expert users to

efficiently search domain specific content using natural language with the aid

of specialized ontologies.

III. Create a search engine that takes advantage of both keyword based and ontology

based techniques and compare their efficiency.

Our specific focus is to take advantage of existing research results and extend them in

order to provide the users with the chance to represent their search queries in natural

language (text or speech) and to dynamically find and retrieve suitable candidate

resources, with the aid of information extraction algorithms guided by specific domain

ontologies. For the proposed framework, we used the ontologies Embrace Data and

Methods(EDAM) [6] and the Software Ontology(SWO) [7]. By taking advantage of

Apache solr [8], we were able to translate the data from all the tools from the biotools

registry [9] into ontology terms. By following the same process during the user’s search,

we translate the user’s query into ontology terms, and by using a matching algorithm,

we can determine the best tools from the biotools registry for the user’s needs.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

12

2. Background
2.1. Speech Recognition Background

Speech recognition has been a matter of discussion for almost a century. The first

machine to recognize speech was manufactured in 1920. A toy, commercially named

as Radio Rex that would move in the hearing of the word ‘Rex’ [10]. Further research

on speech recognition began in 1936 with the result being a speech synthesis machine.

Researching was abandoned due to a false conclusion that Artificial Intelligence

technology [11] would be mandatory for further success.

In the 50s, the first attempts to create a system with automatic speech recognition were

made. The main logic behind it was to identify the vowel part of each digit which could

have a result of recognizing distinct syllables. The most successful achievement of that

period was the vowel recognizer which was constructed at MIT Lincoln Labs [12].

During the 1960-1970 decade, special hardware for speech recognition were built since

computers were too slow. Many new labs entered that area of research which helped

solve the problem of identifying the time frames of each speech event. Being able to

detect when speech starts and ends, resulted into significantly better recognition scores

and less variety in the results. In the decade to come, many milestones would be

achieved. Firstly, singular word recognition would become a usable technology based

on several studies. There was a significant increase in the use of pattern recognition

ideas in speech recognition. Other researches showed how ideas of linear predictive

coding [13] and dynamic programming methods [14] could be applied for speech

recognition. Also, the variety in the vocabulary recognized by the systems was extended

greatly which was probably the most important milestone achieved that decade.

Figure 1. Radio Rex: The first speech recognition machine.

(Source: https://www.pinterest.com/pin/158963061822822448/)

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

13

Another achievement of that decade was a system that would exclude a number of

alternative results by using semantic information [15].

Now that isolated word recognition was in a desired level, in the next decade, the 1980s,

the target problem to be solved was to recognize connected words. Which would as a

result have a system able to recognize a string of words spoken one after the other. To

achieve that, an algorithm to create a pattern by connecting individual words had to be

used in various ways. Many matching procedures were used with each of them having

its own implementation advantages. The one matching procedure that stood out that

decade was the Hidden Markov Model [16] approach. That technique, with some

improvements, is being used today on most of the practical speech recognition systems.

Hidden Markov Model(HMM) is a doubly stochastic process that can be observed only

through another stochastic process that produces a series of observations. Another

technology introduced in the 80s was the idea of applying neural networks to solve

problems in speech recognition systems. Although those networks were introduced in

the 50s, they were not as useful initially because of the many practical problems they

had at that time. In the 80s though, there was a deeper understanding of the strengths

and limitations of neutrals networks which made them useful in improving speech

recognition. Using the systems mentioned above, a large research program was

introduced that aimed at achieving high word accuracy for a 1000 word continuous

speech recognition, database management task. That program was called DARPA [17]

and it was achieved with major research contributions from many significant

laboratories.

In the 90s, many innovations took place in the pattern recognition area. The problem of

pattern recognition which required estimation of distributions for the data, changed into

a problem involving minimization of the empirical recognition error. This fundamental

change happened because it was accepted that the Bayes decision theory [18] could not

be applied on speech recognition with the desired accuracy since it focused on

providing the most fitting of a distribution function to the given dataset rather than

helping to achieve the least recognition error, so that theory became inapplicable. This

error reducing concept produced many techniques like discriminative training [19] and

kernel based [20] methods. The Minimum Classification Error(MCE) [21] criterion

together with a corresponding Generalized Probabilistic Descent(GPD) [22] training

algorithm was an example of discriminative training and acted to approximate the error

rate. One more example was the Maximum Mutual Information(MMI) [23] criterion.

In this training, the common information between the acoustic observation and its

correct lexical symbol averaged over a training set is maximized. Both MCE and MMI

can lead to the best possible speech recognition performance. A key issue in those

techniques, is choosing the most fitting speech material to train the recognition

algorithm which actually means learning parameters of primitive speech patterns used

to define basic speech units. The DARPA and HMM systems were also furtherly

evolved in that decade.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

14

During the next decade, the 2000s, some clustering techniques [24] were developed as

well as a variational Bayesian estimation. This Bayesian approach was based on a

posterior scattering of parameters. The problem of adaptive learning in speech

recognition was solved by a technique that was developed and there was an introduction

of the active learning algorithm [25] for automatic speech recognition. There were some

improvements on Large Vocabulary Continuous Speech Recognition system [26] in

2005 to improve performance. In the next couple of years there was an analyzation of

the difference in acoustic features between spontaneous and read speech using a big

speech database. The application of Conditional Random Field [27] to combine local

posterior estimates provided by multilayer perceptions was explored and they also tried

to overcome time dependency problems by applying straight forward template

matching methods. Around 2007, there was a proposal of using an alternative method

that processes the group delay feature for processing the Fourier transform phase for

extraction speech features [28].

2.2. Speech Recognition APIs
2.2.1. The Microsoft API

Microsoft’s Speech API [29] has been developing since 1993. There is a series of

increasingly improving speech recognition platforms released since that time. Speech

API (SAPI) 5.3 [30] was very useful and worked on Windows Vista. As they announced

“Windows Vista includes a new WinFX namespace, System.Speech. this allows

developers to easily speech-enable Windows Forms applications and apps based on the

Windows Presentation Framework”. Microsoft’s focus was to increase emphasis on SR

systems and improve SAPI by using Hidden Markov Model(HMM). Recently

Microsoft made the following announcement “History Achievement: Microsoft

researchers reach human parity in conversational speech recognition”.

Figure 2. Experimental results of The Microsoft API on random audio files.

(Source: https://pdfs.semanticscholar.org/2e7e/bdd353c1de9e47fdd1cf0fce61bd33d87103.pdf)

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

15

2.2.2. The CMU SPHINX

The Sphinx system was developed at Carnegie Mellon University(CMU). It has a large

vocabulary and it is an open source system. There are different versions for different

tasks. Sphinx-4 [31] is written in Java and it supports finite grammar called Java Speech

API and it doesn’t use the same structure for all models. CMU Sphinx uses a strong

acoustic model by using HHM model with training large vocabulary and the latest

version of an HMM-based speech.

Figure 3. Experimental results of The CMU Sphinx system on random audio files.

(Source: https://pdfs.semanticscholar.org/2e7e/bdd353c1de9e47fdd1cf0fce61bd33d87103.pdf)

2.2.3. Cloud Speech API

Cloud Speech [29] is an API created by google. Google has improved its speech

recognition greatly by using a new technology that uses the deep learning neural

networks. Google currently has by far the least percent of error rate with that being

around 8%. Huge improvement in the past few years, in comparison with it being

around 30 percent in 2013. According to Sundar Pichai, CEO of Google Inc. “We have

the best investments in machine learning over the past many years. Indeed, Google has

acquired several deep learning companies over the years, including DeepMind [32],

DNNresearch [33] and JetPac [34]”.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

16

Figure 4. Experimental results of Cloud Speech API on random audio files

(Source: https://pdfs.semanticscholar.org/2e7e/bdd353c1de9e47fdd1cf0fce61bd33d87103.pdf)

2.2.4. Comparison Chart

Figure 5. Comparison chart between Sphinx4, Google API and Microsoft API.

Word Accuracy (WA), Word Error Rate (WER)

(Source: https://pdfs.semanticscholar.org/2e7e/bdd353c1de9e47fdd1cf0fce61bd33d87103.pdf)

2.2.5. Speech APIs Conclusion

As shown on the chart above, Google’s Cloud Speech API is by far superior than the

other systems in terms of Word Accuracy(WA) which is approximately 91% and Word

Error Rate(WER) which is by far the lowest with it being approximately 9%.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

17

2.3. Systems taking advantage of Speech APIs

With the rapid growth of systems that use speech recognition for a variety of reasons,

there is a growth of need for speech recognition APIs as well. As shown on the

comparison above, the most efficient speech recognition API is by far Google’s Cloud

Speech API. There are many systems using this API as part of their functionality.

One of them is Google Assistant [35]. Google is using their own Speech Recognition

API for their virtual assistant called Google Assistant. This system has been improved

by using the Deep Neural Networks(DNN)[36] method which has the ability to

highlight the main component of the dialogue systems and also by using several new

deep learning architectures.

Figure 6. Google Assistant Structure.

(Source: https://ieeexplore.ieee.org/document/8301638)

2.4. Semantic Web Background

Semantic Web term originated by Tim Berners-Lee in 1999 in his book “Weaving the

Web” where he also described the importance of metadata [37]. In 2000, Taalee

company wrote a detailed description of the possible capabilities of the semantic search

engine and how it could make use of the semantic web [38]. Later that year, the first

international event about the Semantic Web took place describing already implemented

semantic applications including semantic search [39]. During the next year, Tim

Berners-Lee along with James Hendler and Ora Lassila wrote an article called ‘The

Semantic Web’ [40] which is now the most cited article ever existed featuring the

semantic web. The article gave emphasis on describing ontologies, knowledge

representation, the role of agents and made some notes about future applications on the

Semantic Web [41]. In the years to come, a lot of commercial applications were built

using the technology that was built by Taalee which was merged with Voquette and

finally merged to became Semagix [42].

In 2005, Peter Norvig wrote a blog called “Semantic Web Ontologies: What Works and

What Doesn’t” [43] that described problems that might occur by using semantic

technologies such as lack of RDF [44] and OWL [45] files, multiple ontologies, CYC

approach [46] to retrieving background knowledge, relying on the content supplier to

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

18

provide metadata and that the most significant information is mostly in plain text form.

A blog that was later argued to be mostly inaccurate on what would cause a problem

and what not in using semantic technologies.

A few more years passed until big companies like Google and Bing started building

large knowledge bases but eventually shied away from using Semantic Web standards.

Microsoft acquired knowledge Powerset after realizing its importance. Apple created

Siri which was using ontologies to capture knowledge. Google finally acquired

Metaweb [47] which was consisted of 12 million facts initially and went along to build

its own Knowledge Graph with automated and semiautomated tools.

Since then this area is being developed more and more and as a result there are now

numerous systems using implemented ontology web search engines. They are based on

a common set of ideas but in contrary to the regular search engines, ontology-based

search engines retrieve information after a process that uses knowledge of the domain

ontology. Domain ontology is a structured list of terms that describe a specific domain

and can be used as a knowledge base.

2.5. Systems taking advantage of semantic technologies
2.5.1. Swoogle

Swoogle [48] was the first search engine for the semantic web and its main contributor

was Li Ding. Swoogle is a crawler-based retrieval and indexing system for RDF and

OWL documents. It consists of four main components: Semantic Web

Document(SWD) discovery, data analysis, metadata creation and interface [49]. The

SWD discovery component is responsible for searching and finding Semantic Web

Documents throughout the web and keep up with the SWDs’ updates. The second

component, metadata creation, caches a snapshot of a semantic web document and it

generates objective metadata about it in both syntax and semantic level. The data

analysis component uses the result data of the previous two components to derive

analytical reports. Lastly, the interface component’s focus is to provide data to the

Semantic Web community. Those four components of Swoogle can work

independently and on different tasks.

Figure 7. An overview of the swoogle architecture.

(Source: https://www.slideshare.net/suchinipriyangika/swoogle-69623597)

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

19

2.5.2. Watson Search Engine

Watson Search Engine [50] by IBM is called the gateway for the Semantic Web and it

is an ontology-based semantic search engine that focuses on web ontologies. It searches

ontologies and semantic documents by using keywords and restrictions that are related

to the type of the entities. It retrieves metadata about the ontologies that characterizes

each ontology such as the labels, size and comments. It also sometimes retrieves

reviews of other users about the ontology. Watson can retrieve measures regarding

ontologies and entities such us the depth of the hierarchy of an ontology. This allows

applications to define selection criteria and filters. It also explores the content of each

ontology through functions that include the possibility to ask for the subclasses of a

RDF, DAMN or OWL class. Watson consists of three core activities and each one of

them corresponds to a layer of its architecture. Those layers are the following:

• The ontology crawling and discovery layer: It explores ontology-based links

and it collects the available semantic content they provide.

• The validation and analysis layer: It is the core of the Watson’s architecture, it

checks the quality and it makes sure that the data of the semantic information

collected is computed, stored and indexed.

• The query and navigation layer: It allows access to the data indexed by the

previous layer through various mechanisms that allow exploring its semantic

features.

Figure 8. A functional overview of the main components of the Watson architecture.

(Source: https://www.researchgate.net/figure/A-functional-overview-of-the-main-components-of-

the-Watson-architecture_fig1_48989644)

2.5.3. IBRI-CASONTO

IBRI-CASONTO [51] was created as a ontology-based search engine for College of

Applied Sciences(CAS), Sultanate of Oman. It supports English and Arabic and it is

based on the RDF dataset and Ontological Graph. The IBRI-CASONTO system follows

several steps to generate an efficient and scalable ontological graph.

• First step, the user determines the domain of the ontology.

• Second step, the user determines the language of the ontology as well as the

editor.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

20

• Third step, creation of the ontological graph.

• Fourth step, the definition of all the Classes and their sub and super-classes.

Furthermore, in that step, the relationships between all classes are defined.

• Fifth step, the instances of each class are defined also called as individuals.

• Sixth step, the domain and the range of each property is defined as well as the

relationships between the individuals.

• Seventh step, the data property is created, and the construct, range and domain

are defined for each property.

Figure 9. IBRI-CASONTO Structure.

(Source: https://www.researchgate.net/figure/IBRI-CASONTO-Structure_fig2_312517116)

2.5.4. PASS

Personalized Abstract Search Services(PASS) [52] by the IEEE Neural Network

Council(NNC) is a web-based system used for searching abstracts of research papers.

It uses fuzzy ontology [53] of term associations to support this feature. This system

uses a user’s query and in response it displays results based on a keyword-based

retrieval and it provides a set of terms lists for query refinement. Pass will also provide

suggestions to the most relevant documents that are related to the user’s query and a

list of related terms that are based on a collaborative filtering. This is a technique that

recommends the papers that could be related to the user’s interests based on his own

interests or on other users with similar interests. PASS also provides shopping cart like

facilities and personalized folder features.

2.5.5. GOseek

GOseek [54] is a biological search engine. Its main function is after given a set of genes

to return the most important genes that are semantically related to the genes given. The

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

21

resulted genes are annotated to one of the Lowest Common Ancestors of the Gene

Ontology(GO) [55] terms annotating the set of genes that are given. Afterwards it

encodes the contribution of those terms into a numeric format. GOseek returns a

numerical value which corresponds to the similarity of the GO terms with the given set

of genes. It supports keyword-based queries with a specific form and as a result it

returns a set of genes that is semantically related to the given set of genes.

2.5.6. NCBO Resource Index

Resource Index [56] is an ontology based index created by the National Center for

Biomedical Ontology(NCBO). It uses 22 data resources and a set of over 200 ontologies

in various domains. It also offers its users a user interface that allows them to search in

multiple resources simultaneously using domain terms. The Resource Index processed

metadata describing data elements to create semantic annotations of those metadata. It

makes use of BioPortal [57] by using a concept recognition tool that identifies terms

from BioPortal’s ontologies and finds the corresponding element with the identified

terms.

BioPortal is a huge library that contains 245 biomedical ontologies and it provides

access to the public. The users can browse, visualize and comment on ontologies either

through a web interface or programmatically using web services. A number of its

ontologies is contributed by the Open Biomedical Ontologies Foundry(OBC) [58], an

effort to collect a collection of ontologies for biomedical use. Apart from OBC’s

ontologies, BioPortal also uses available terms from the Unified Medical Language

System(UMLS) [59]. BioPortal contains ontologies available in multiple formats such

us OWL, OBO, RDF(S) and RRF.

To access BioPortal, the Resource Index uses BioPortal REST services. It creates a

dictionary of terms that is meant to be used for direct annotations of data elements in

biomedical resources. This dictionary contains 6,835,997 terms extracted out of

3,349,338 concepts from 206 ontologies, numbers that are still growing. Each concept

is derived by either a unique URI contained in the ontologies or provided by the NCBO.

Apart from the ontology terms, another big source of information for the Resource

Index is the data elements from the biomedical resources. The Resource Index currently

has 22% of the publicly available biomedical resources indexed. Those biomedical

resources are mostly formatted in XML [60] and most of them offer access through web

services. The Resource Index used a custom wrapper to access each resources’

information which extracts the fields describing the data elements. After accessing the

data elements describing each biomedical resource, the Resource Index follows 4 steps

to create annotations:

I. Creation of direct annotations with ontology terms.

II. Semantic expansion of annotations.

III. Aggregation.

IV. Scoring of annotations.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

22

Figure 10. NCBO Resource Index Overview.

(Source: https://www.sciencedirect.com/science/article/pii/S1570826811000485)

2.5.7. GoWeb

GoWeb [61] is a semantic search engine that combines classic keyword-based search

technology with text-mining and ontology background to achieve fast and efficient

question answering. It has the ability to filter big result sets according to the Medical

Subject Headings(MeSH) [62] and the GeneOntology(GO) to discard data that will not

have any use for the user. Also, GoWeb’s users can use GoPubMed [63] features along

with the wide range of information sources that are publicly available in the web. It also

offers highlighting and semi-automatic question answering mechanisms. The interface

of GoWeb is organized specifically to make it easy to use for the users. It is structured

in three panels. The first panel contains the background knowledge and possible derived

metadata. The second panel contains the search bar where the users can structure their

search queries. Finally, the third panel contains the area the results are presented after

searching.

GoWeb uses a keyword based search to retrieve its results. It uses Yahoo! Search BOSS

service. The results retrieved by the BOSS service is a usually big list of snippets.

Afterwards, GoWeb uses its ontology background knowledge to map concepts to the

snippets. It then uses GoPubMed algorithms to identify ontological concepts in the text

lists. In order to identify gene names and protein, GoWeb uses the approach by

Hakenberg. For names and places identification GoWeb makes use of the OpenCalais

service. Then, GoWeb’s filter mechanisms take place which uses the part-of and is-a

relations from GO and the tree structure of MeSH. The most important concepts are

selected by the occurrence frequency, the hierarchy level and, if it exists, a global

frequency from a corpus that is pre-analyzed.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

23

Figure 11. GoWeb workflow representation.

(Source: https://www.researchgate.net/figure/GoWeb-workflow-General-workflow-for-GoWeb-

showing-the-main-components-and-the_fig1_26862850)

2.6. Apache Lucene

Before describing Apache Solr, the search platform the proposed framework makes use

of, it is best to start with its core technology, Apache Lucene [64]. Lucene was

developed in 2000 by Doug Cutting and it is actively been evolving since then. It is

now the most used search technology with a strong community. Lucene is neither a

server nor a web crawler, it is a code library. To use Lucene you have to write your own

search code by using its API and you supply it with index documents. For Lucene, a

document is a collection of fields. Each field consists of a name and a value which is

either a text or a number. Lucene gives the user the ability to tokenize a field’s string

into a series of words called tokens, change words with their synonyms or perform other

processes. After processing, the resulted indexed tokens are the terms. After that

process, Lucene indexes every document in a disk. A mapping of a field’s terms to

associated documents is stored by the index together with the starting word position

from the original text and then, the user can search for documents by providing a query.

Lucene parses that query according to its syntax and after scoring each matching

document it returns the top scoring documents.

Lucene offers many features. The most significant are:

• An inverted index that retrieves documents efficiently by using indexed terms.

• Text analysis components that turn a string into a series of words called terms.

• A query syntax with a parser and a plethora of query types.

• A flexible scoring algorithm based on sound Information Retrieval(IR) used to

score matching documents.

• Many search enhancing features such as highlighting, query spellchecker,

suggesters for query completion and various analysis components.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

24

2.7. Apache Solr

Even though Apache Solr [8] is not a semantic search tool, it is one of the most popular

open source enterprise search platforms. Solr is written in java and it offers search and

indexing technology as well as highlighting, spellchecking and advanced tokenization

capabilities. It is open source and it is integrated in the Apache Lucene project. The

ideology behind Solr’s usage is simple. You feed it tons of information and afterwards

you can retrieve data by asking questions. Providing Solr with information is called

feeding and asking a question is called querying. Field analysis tells Solr how to deal

with incoming data when building an index. Analysis is used both during indexing and

searching. An analyzer generates token streams by examining the text of fields.

Analyzers may consist of a number of tokenizers and filters. Tokenizers decompose

field data into tokens and then filters examine those tokens and they either change them,

discard them or create new ones. Even though analysis is used during indexing and

querying, not the same process is used for both. During indexing, analysis often

normalizes words to increase query-time precision. During querying the simple

analyzer’s normalization is converting the query terms to lowercase. By using a simple

<analyzer> for a field type your query must be very precise. Searching in Solr is very

flexible. This process is handled by a request handler. A request handler is the logic

that is used during searching. They can be customized in a variety of ways for ones

needs. Solr gives a number of results after the query is handled by the request handler.

The results are sorted by score and the result with the highest score is more likely to be

what the user is looking for.

Figure 12. Apache solr architecture.

(Source: https://slideplayer.com/slide/2293397/)

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

25

2.7.1. Apache Stanbol

Apache Stanbol [65] extends traditional content management systems by adding

semantic services to them. Integrating Stanbol into your system is an easy task since all

its features are accessible via RESTful web services [66]. Apache Stanbol’s Usage

Scenarios are:

• Content Enhancement: Analyzation and enhancement of content.

• Using Custom Variables: Create and use locally defined entities.

• Using Multiple Languages: Enhancing content written in multiple languages.

• Semantic Search in Portals: Index enhancements and content items.

• Refactoring Enhancements: Refactor the property names and ontology types of

the enhancement result.

• Transforming CMS [67] repository structures into ontologies.

• Provide repository structures as domain ontology.

Apache Stanbol consists of a set of components. Each of them is independent and

is accessible via its own RESTful web interface. All components are implemented

as OSGi bundles [68].

Figure 13. The Apache Stanbol Components.

(Source: https://stanbol.apache.org/docs/trunk/components/)

2.7.2. Redlink Solr Plugin

The Redlink Solr plugin [69] adds semantic capabilities to an existing Apache Solr

build. Redlink uses Apache’s Analysis API and it extracts named entities of documents

during Solr updates. Integrating Redlink into an existing Solr build is simple and can

be done within a few minutes.

2.7.3. Open Semantic Search

The Open Semantic Search [70] is a software that can be integrated on one’s search

engine. It contains research tools for easier monitoring, analytics, searching, discovery

and text mining of large document sets and can be used for free on your own server. By

entering a search query, you can navigate through the results found in multiple data

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

26

sources. Interactive filters can be used to filter out unwanted data results. Your

documents can be tagged with keywords, names, categories or text notes to make

searching easier and more efficient in the future. Open Semantic Search can also be

used for data visualization by using charts and graph views. It supports a large variety

of formats so no matter how your documents are structured you can still use this

software for searching. The supported formats are: txt, PDF, E-mail, JPG, TIFF [71],

CSV [72], doc Word documents, Open documents(ODF) [73] and all video formats.

Text can be automatically recognized from images or scanned documents with the

Optical Character Recognition (OCR) system [74].

2.7.4. Solr and OLS

Ontology Lookup Service(OLS) [75] is a repository that contains biomedical

ontologies. It aims to provide access to the latest version of every biomedical ontology.

Browsing those ontologies can be done either within their website or by using the OLS

API. Ontology Lookup Service uses Apache Solr in order to index ontologies for

search. Two Solr cores are being used by OLS. The one is used to add an autosuggest

feature and the other for storing documents for ontology and term meta-data.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

27

3. Methods
3.1. System architecture

For the ontology-based search of OntoSearch, during setup, we used Apache solr as a

semantic annotator to extract ontology terms for each tool from the biotools registry.

The results were saved in a database along with a score provided by Apache solr for

each extracted term.

During runtime, the user can use either text or speech as input that is translated to text

by the framework. The framework then uses Apache solr to extract ontology terms for

the user’s query from the same ontologies that were used during setup. With a matching

algorithm and by using the data saved in the database during setup, the framework finds

the best possible results for the user’s query and returns them to the user.

Figure 14. OntoSearch’s ontology-based search Architecture.

For the keyword-based search of OntoSearch, during setup, we fed Apache solr with

all the tools from the biotools registry.

During runtime, the user can use either text or speech as input that is translated to text

by the framework. The framework then takes advantage of Apache solr and with the

query given by the user finds the best possible results for the user’s query and returns

them to him.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

28

Figure 15. OntoSearch's keyword-based search architecture.

For the Hybrid search of Ontosearch, during setup, we fed Apache solr with the EDAM

and the Software ontologies. Then, we used all tools from the biotools registry as

queries and retrieved the 5 terms with the highest score assigned by solr from each

ontology for each tool. We then created a new JSON file ,added the biotools registry in

it and then added the top 5 terms from each ontology for each tool as free text in new

fields. Lastly, we created a new Apache solr core and fed it with the new JSON file that

we created.

During runtime, the user can use either text or speech as input that is translated to text

by the framework. The framework then takes advantage of Apache solr and the core

that was created during setup for the hybrid search. Then, with the query given by the

user, it finds the best possible results for the user’s query and returns them to him.

Figure 16. Ontosearch's hybrid search architecture.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

29

Ontosearch, combines the three searching techniques and retrieves the best possible

results from each one to the user.

Figure 17. OntoSearch Architecture.

3.2. Speech to text solution

Speech to text is a process that consists of two main parts. Recognizing speech and

transforming it into signal and turning that signal into text. This concept has concerned

the biggest companies over the years. After comparing many speech-to-text APIs, the

API that was used for the proposed framework was Web Speech API [76].

The Web Speech API accesses Google’s speech recognition web service to transform

speech into text. It is designed purely in JavaScript and it provides speech analysis and

speech synthesis. The API is still in experimental phase and the reason for that is that

its introduction has remained mostly speculative. A significant feature of the API is that

the actual speech recognition happens through a web service. The developer doesn’t

directly interact with it but communicates with the user agent(browser) through certain

events. It is the browser’s responsibility to communicate with the web service. The Web

Speech API is developed by the World Wide Web Consortium (W3C) Community and

the initiative is mostly driven by Google and Openstream.

Out of the six most popular browsers, Google Chrome, Mozilla Firefox, Microsoft

Internet Explorer, Microsoft Edge, Safari and Opera [77], only Google Chrome (version

25+) currently supports the Web Speech API. That’s mostly because of the API’s

experimental nature but it is expected that more browsers will support the API in the

near future.

The Web Speech API allows users to record audio from their microphone, after their

permission is granted. That audio is sent through a HTTPS POST request to the web

service and the results are processed within the limits of the browser.

The chosen API is used to form the users’ questions in the search bar while the users

can see their speech transformed into text in real time to identify any possible errors

made by the API. Given the sound waves from the users, the API will encode those

waves into wave files and finally into FLAC files. The proposed framework will

retrieve responses from the API and the final text will be formed ready to be used and

translated into a query by the NLP [78].

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

30

For the evaluation, 2 children, 12 females and 11 males spoke several sentences to

evaluate the API. On the table below, the speakers are identified by a two-letter

combination with the first letter indicating whether the speaker is a male (M), female

(F) or child (C). the second column indicates the number of the sentences spoken by

each speaker. The third column shows the percentages of the sentences that were

recognized correctly. The fourth column shows the total number of words spoken in all

sentences for each speaker. Finally, the last column provides the percentages of the

words that were recognized correctly.

Table 1. Results of the Web Speech API evaluation grouped by the 24 speakers.

(Source: http://www.juliusadorf.com/pub/web-speech-api.pdf)

Speaker Sentences Correct Words
Word

Accuracy

CA 60 33% 466 83%

CB 6 17% 49 75%

FA 60 23% 466 77%

FB 60 8% 467 65%

FC 60 20% 475 74%

FD 60 18% 478 74%

FE 60 24% 461 76%

FF 60 23% 484 77%

FG 60 17% 456 62%

FH 60 15% 481 61%

FI 60 20% 495 72%

FJ 60 35% 497 84%

FK 60 15% 503 65%

FL 60 27% 480 73%

MA 60 22% 466 72%

MB 60 28% 467 78%

MC 60 15% 475 71%

MD 60 37% 478 84%

MF 60 13% 484 68%

MG 60 22% 456 75%

MH 60 25% 481 77%

MI 60 23% 495 74%

MJ 60 10% 497 62%

MK 60 12% 503 72%

ML 60 23% 480 76%

3.3. Concept recognizer (ontology terms) from NLP

The concept recognizer is the core of the system. It is used by most of the components

in the framework. The main objective of the concept recognizer is to retrieve the most

http://www.juliusadorf.com/pub/web-speech-api.pdf

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

31

suitable result for a given query created by the user in free text form. For all three

searching techniques of the framework, ontology based, keyword based and hybrid,

Apache solr full text search server is used but in a different fashion and for a different

purpose.

• For the ontology based search, two ontologies were used, Embrace Data and

Methods(EDAM) and the Software Ontology(SWO). The two ontologies are used

separately and have different results but use the concept recognizer in the same way.

For each ontology, a JSON-format [79] file was created with specific fields that can

be weighed differently during search. Those JSON files were imported into separate

cores in Apache solr. The two ontologies have different fields and have their own

custom made weight formula.

➢ For EDAM, the weight formula that was used is biased to the uri, the name and

the definition of each term. That means that if the searched text matches with

any of those fields, then the ontology term is assigned a score which is directly

bound to the weights assigned to the fields. The custom made weight for the

EDAM ontology is : (uri * 1) + (name * 2) + (definition * 5).

Figure 18. Example of a random EDAM term retrieved from Apache solr.

➢ For SWO, the weight formula that was used is biased to the id, the description,

the label and the comment of each term. That means that if the searched text

matches with any of those fields, then the ontology term is assigned a score

which is directly bound to the weights assigned to the fields. The custom made

weight for SWO is : (id * 1) + (description * 10) + (label * 4) + (comment *4).

Figure 19. Example of a random SWO term retrieved from Apache solr.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

32

• For the keyword based search one Apache solr core is used. A JSON-format file

was created that contains the ids, homepages, names and descriptions of all the tools

from the biotools registry. This JSON file is imported in Apache solr and during

search the fields are weighed differently. Each tool that was matched through either

their description or their name or both, is assigned with a score from Apache solr

that is directly bound with the weights of the fields. After running the search query,

the tool that was assigned with the highest score represents the most suitable tool in

the biotools registry for the user’s needs. The custom made weight for the keyword

based search is : (name * 1) + (description * 2).

Figure 20. Example of a random tool retrieved from Apache solr.

• For the hybrid search Apache solr was fed with a JSON file that contained the

EDAM ontology and the Software ontology. Then, all descriptions from the tools

in the biotools registry were used as queries. The 5 terms with the highest score

assigned by solr were saved for each tool. We then created a new JSON file that

contained the ids, homepages, names and the 5 EDAM and SWO ontology terms

retrieved previously for all the tools from the biotools registry. This JSON file was

imported in Apache solr in a new core and during search the fields are weighed

differently. Each tool that was matched through any of its fields, is assigned with a

score from Apache solr that is directly bound with the field weights. After running

the search query, the tool that was assigned with the highest score represents the

most suitable tool in the biotools registry for the user’s needs. The custom made

weight for the hybrid search is: (name * 25) + (description * 50) +

(edam1Description * 10) + (edam2Description * 10) + (edam3Description * 10)

+ (edam4Description * 10) + (edam5Description * 10) + (swo1Description * 10)

+ (swo2Description * 10) + (swo3Description * 10) + (swo4Description * 10) +

(swo5Description * 10) + (edam1Term * 7) + (edam2Term * 7) + (edam3Term *

7) + (edam4Term * 7) + (edam5Term * 7) + (swo1Term * 7) + (swo2Term * 7) +

(swo3Term * 7) + (swo4Term * 7) + (swo5Term * 7).

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

33

Figure 21. Example of a random tool retrieved from apache solr from the hybrid core.

3.4. Data storage and retrieval

The data storage and retrieval phase is needed only for the ontology based search.

After importing the two ontologies, EDAM and SWO, in Apache solr, a database table

is created for each ontology. All data for each tool from the biotools registry exists in a

JSON formatted file. The data that is needed for our framework is each tool’s id, name,

homepage and description. All descriptions from all the tools were used as queries in

Apache solr. The two database tables created contain the results from those query runs.

Apache solr has two cores created for the ontology based search, the one has the EDAM

ontology imported and the other has the SWO ontology imported.

• For the core that has the EDAM ontology imported, the descriptions of all the

tools were used as queries. The ids of the terms that were retrieved from that

query execution, as well as their paths and scores assigned by Apache solr, were

saved in the solrresultsedam table. Each table record contains the id, url and

name of the tool as well as the ids, scores and paths of each term that was a

result from the query execution in Apache solr with a maximum number of 500

terms.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

34

Figure 22. Database table used to store and retrieve solr results using EDAM.

• For the core that has the Software ontology (SWO) imported, the descriptions

of all the tools were used as queries. The ids of the terms that were retrieved

from that query execution, as well as their scores assigned by Apache solr, were

saved in the solrresultsswo table. Each table record, contains the id, url and

name of the tool as well as the ids, scores and paths of each term that was a

result from the query execution in Apache solr with a maximum number of 500

terms.

Figure 23. Database table used to store and retrieve solr results using SWO.

The data from the two tables are used during search, and with a matching algorithm the

most suitable tools for the user’s needs are found during run time.

3.5. Query Mechanism

The query mechanism works differently for the keyword based search, the ontology

based searches and the hybrid search. The moment the user runs a search, the first step

is to clear the query from any possibly ‘harmful’ characters. Apache solr uses some

characters as special characters for a more complex query run. The list of Apache solr’s

special characters is: (\, +, -, &&, ||, !, (,), [,], {, }, ", ^, ~, *, ?, :, /, AND, OR, NOT).

To prevent Apache solr from using those characters or words in a special way, the

character ‘\’ is added before each one of them before the query run. After that process,

the query is ready to run.

• For the ontology based searches, the query runs in both Apache solr cores that

have EDAM and SWO ontologies imported respectively. For each ontology,

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

35

Apache solr returns a maximum of 22 ontology terms that matched with the

user’s query with each one having a score that represents how well each term

matches with the query. Then, with a matching algorithm and with all the data

of the terms and the scores that are matched with each tool from the biotools

registry that are stored in our database, for each tool, the average score of the

terms that match with both the tool and the user’s query is saved. The tools that

collect the highest scores from that process are the result for each ontology

respectively.

• For the keyword based search, the query runs in the Apache solr core that has

all the biotools imported in. The results that are retrieved are ordered

descendingly by the score that Apache solr assigned them with. The higher the

score, the most matching is the tool for the user’s needs. The result the user

receives from the keyword based search is the top scoring tools retrieved by the

solr search.

• For the hybrid search, the query runs in the Apache solr core that has all the

biotools imported in and the top 5 terms from the EDAM ontology for each tool.

The results that are retrieved are ordered descendingly by the score that Apache

solr assigned them with. The higher the score, the most matching is the tool for

the user’s needs. The result the user receives from the hybrid search is the top

scoring tools retrieved by the solr search.

3.6. Implementation of the framework

The developed framework, named OntoSearch, gives you the option to either type or

record the search query. After having the search query, the user can press the search

button to retrieve the results from OntoSearch. The framework will run the query and

if found, retrieve the most suitable tools for the user’s query, categorized by the results

retrieved from each search technique.

Figure 24. OntoSearch interface. (Screenshot taken from the developed framework)

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

36

After running an example query search using the query ‘Genome sequence analyser’,

OntoSearch retrieved a list with the most suitable tools for that purpose that exist in the

biotools registry. The first column indicates the results that were retrieved from the

EDAM ontology-based search. The second column indicates the results that were

retrieved from the SWO ontology-based search. The third column indicates the results

that were retrieved from the keyword-based search and the fourth column indicates the

results that were retrieved from the hybrid search. All four columns are ordered

descendingly with the first tool from each column being the most suitable for the user

according to each searching technique. The fifth column contains all the tools that all

four searches retrieved as a result and it is ordered descendingly by the average position

each tool was ranked in all four searches. Each result is a link for each tool’s web page.

Figure 25. OntoSearch results modal. (Screenshot taken from the developed framework)

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

37

4. Deployment
4.1. Setup

For the construction and compilation of this framework, NetBeans IDE 8.2 [80] was

used and it was compiled using jdk1.8.0_191. JavaServer Pages(JSP) [81] technology

was used for its creation as a web application which runs on Apache Tomcat [82] server

v8.0.27.0 and takes advantage of the Apache Maven software tool [83]. The server-side

part, runs on the Java [84] language while client-side is based on web languages:

JavaScript [85], PHP [86], CSS [87] and HTML [88]. The SQL [89] language was used

to connect with the database, retrieve and save data. PostgreSQL [90] v9.5 was used

through the XAMPP [91] control panel v3.2.2 and pgAdmin3 software v1.22.2 was

used to design the tables. The framework, during search, takes advantage of Apache

solr [8] v7.5.0.

4.2. Installation Guide

Firstly, download Apache solr v7.5.0 binary release and unzip it. Then through the

command prompt, navigate inside solr-7.5.0/bin folder as shown in the picture below

by using your own path to that folder. After that, write the command ‘solr start’ and

Apache solr should start on port 8983.

Figure 26. Starting apache solr from cmd.

Then, create four folders named edam, swo, biotools and hybrid under solr-

7.5.0/server/solr directory. You will need to copy and paste all the files and folders that

exist under solr-7.5.0\server\solr\configsets_default\conf directory to all four folders

created previously as shown to the example figure below. Do that for edam, swo,

biotools and hybrid folders.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

38

Figure 27. Example of the EDAM folder.

After completing that step, navigate to localhost:8983 through a browser. You will need

to create four new cores with the names and instanceDirs edam, swo, biotools and

hybrid respectively as shown in the example figure below.

Figure 28. Example of creating EDAM core in apache solr.

For all three cores, you will need to upload the given json files, EDAMSolr.json,

swoSolr.json, biotoolsSolr.json and hybridSolr.json for each core respectively as shown

in the example figure.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

39

Figure 29. figure of uploading the edam json file in apache solr's EDAM core.

The last step to finish with Apache solr configuration, is to open solrconfig.xml file for

all four cores that is located under solr-7.5.0\server\solr\edam, solr-

7.5.0\server\solr\swo, solr-7.5.0\server\solr\biotools and solr-7.5.0\server\solr\hybrid

respectively. You will need to add the line ‘<str name="fl">*,score</str>’ in the /select

requestHandler as shown in the figure below.

Figure 30. Apache solr cores' configuration.

After completing those steps, Apache solr is set and ready. The next step is to download

and install pgAdmin software. After installing it, create a new database named

ontosearch and run the sql script given in the file OntoSearchDB.sql. After running that

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

40

script, you should have two tables created in the ontosearch database with the names

solrresultsedam and solrresultsswo like shown in the figure below.

Figure 31. PGadmin3 ontosearch database.

After the database is set, download and install XAMPP Control Panel. Download

MySQL service through XAMPP, if you haven’t downloaded it already during

installation, and start it as shown in the figure.

Figure 32. XAMPP Control Panel.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

41

Next step, is to download and install NetBeans IDE v8.2 and open the given NetBeans

project ‘OntoSearch.zip’. In the DBController class, you will need to change the

username and password to your own database username and password as shown in the

figure below.

Figure 33. OntoSearch DBController class.

The last step, is to build and run the project under Tomcat server in NetBeans. The web

application should start under http://localhost:8084/OntoSearch/ .

http://localhost:8084/OntoSearch/

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

42

5. Experiment (Storing and searching tools from the
biotools registry)

5.1. Biotools

Biotools [9] is supported by the European Research Infrastructure for life science

information(ELIXIR). It is a registry that contains tools that associate with

bioinformatics and it is meant to aid bioinformaticians and scientists find, understand,

and select resources and also use and connect them in workflows. Each tool has well-

defined data processing functions. Biotools contain software applications available

either for immediate use as online services or in a form an individual can download,

install, configure and run. Biotools registry is based on 6 main objectives:

I. Build and maintain a complete registry of high quality software

descriptions/metadata.

II. Provide a web portal enabling registration, editing, search and discovery for

the registry content.

III. Support a community for the continuous maintenance of the registry content

and development of the web portal features.

IV. Expose results of tool performance benchmarking, online service

monitoring and other metrics of software and service quality.

V. Integrate the registry with common workbench environments in order to

improve resource interoperability.

VI. Support registry stakeholders including tool providers and end-users.

In an attempt to highlight the domain independent nature of our solution we will

evaluate the system using tools from the biotools repository as resources to be searched

and the EDAM and Software Ontologies in comparison to a keyword based and a

hybrid search.

5.2. Embrace Data and Methods (EDAM) Ontology

The EDAM ontology [6] has been actively developed since 2009 releasing multiple versions

per year, resulting in the current version 1.21. The EDAM ontology was developed to provide

a comprehensive means of classifying bioinformatics operations, types of identifiers and data,

data formats and topics suitable for large scale semantic annotations. EDAM Ontology’s main

design principles are relevance to its target applications, simple usability for the users and

efficient maintainability for its developers.

To ensure the first principle, relevance, EDAM has to fully cover the concepts of common

bioinformatics. In order to achieve this, an ontology named myGrid [92] that had a similar

purpose had to be used as a starting point. A number of resources were analyzed and used as

sources of concepts. Those resources included many collections of tools, as well as the

EMBOSS [93] suite and the BioMoby Service Ontology [94]. The Nucleic Acids Research’s

database [95] and Web server catalogues were used as sources of topics.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

43

To ensure convenient usability by humans, EDAM ontology does not have excessively broad

or deep branches. The ontology is oriented around a small number of sub ontologies with each

one having a specific meaning. The main sub ontologies rooted in the top level of EDAM’s

hierarchy are: Operation, Data, Topic and Format.

Lastly, to keep EDAM ontology maintainable, the software development methods that are used

are agile and dynamic. That way, changes can be delivered with good response time using

limited resources.

Figure 34. Embrace data and methods (EDAM) ontology schema.

(Source: https://academic.oup.com/bioinformatics/article/29/10/1325/255660)

5.3. The Software Ontology (SWO)

The Software Ontology (SWO) [7] is an ontology that describes the software used

within computational biology. This includes bioinformatics resources as well as any

software tools that were used during the preparation and maintenance of data. SWO is

being actively developed due to the interest in the recording and reproducibility of

biomedical investigations. It provides the required vocabulary and identifiers for the

software part of describing the provenance of computations automatically.

Describing software and its input and output data is also important for software

searching and application development as well as workflows construction. An ontology

used to describe softwares, such as SWO, can help all the areas stated above. The scope

of the ontology though, is not limited only in covering bioinformatics. It needs to cover

any tools used during the analysis, management and presentation of biological data. For

each software, SWO needs to develop to include the software’s range, the descriptions

of its objectives, the input and output data, its version as well as some aspects of its

project details. To date though, neither SWO nor any other ontology that describes

softwares cover all that information.

The Software Ontology project is based on the following agile principles:

I. The SWO’s users, domain experts and ontology engineers are all active

contributors on this project.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

44

II. Tight engagement with the users in order to gather requirements and to

have ontology modelling sessions as iterative activities with a new

increment being a result of each iteration.

III. Acknowledgement that requirements and priorities my alter during the

development phase.

IV. Encouragement of organized and cross functional groups of developers.

V. Testing is mandatory and it has to occur frequently.

VI. Provision of frequent interactions with the associates for discussion,

testing and refinement.

In order for these principles to apply and succeed on creating an agile ontology, a

certain engineering method has to be followed. That method can be summarized in the

following steps:

I. Requirements gathering from stakeholders.

II. Requirements prioritization, the complexity of implementing each

requirement has to be estimated and requirements have to be ranked by

the participants.

III. Implementation of the top ranked requirements that resulted from the

previous step.

IV. Evaluation of the product, the results of questions act as queries within

the ontology are evaluated.

Apart from SWO, other promising efforts that have been made to develop an ontology

that describes softwares broadly are: Description Of A Project(DOAP) [96], OWL-S

[97], Data mining tools ontologies, the Ontology of Biomedical Investigations(OBI)

[98], EDAM, the Bioinformatics Resource Ontology(BRO) [99] and myGrid Ontology.

Figure 35. Software ontology (SWO) schema.

(Source:https://www.semanticscholar.org/paper/The-Software-Ontology-(SWO)%3A-a-

resource-for-in-data-Malone-Brown/a585548fccdfe3e3bf89c78f7126ccf332617e77/figure/1)

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

45

5.4. Test case

To test the efficiency of the framework, we collected 13 questions from SEQanswers

[100] from users that were searching for a bioinformatics related tool for a specific

purpose. For each question, we collected the tools that were proposed as answers from

the users to check if each proposed tool is contained in the results of the framework.

Things to be taken into consideration by using this method of case testing are that the

users might haven’t proposed the most suitable tools for the users’ questions, the users’

requirements might not be completely senseful and that the most suitable tools for the

user might have been released later than the question was asked. The original questions

of the users were :

1. “Hi everyone,I am doing exome sequencing, paired end, but not used to analyze

reads.After alignement, how do i proceed the BAM file?Thank you”

2. “Hi,I am trying to quantify the number of reads mapping to genes in a highly

redundant bacterial genome (i.e., often several exact gene copies in the

genome).Ive mapped reads to genes with bbmap, and quantified using

featurecounts. My problem is that reads are only counted for one of the copies

of redundant genes, and not all of them.I just want to count the number of

expressed genes (I want to count all of the copies since I cant distinguish them).

Ive tried playing around with multi-mapping parameters in featurecounts, but

nothing has changed.Does anyone here know how to do this?Thanks!"

3. “Hello im trying to calculate the percentage of covered CpG sites in my RRBS

library and compare it with total CpG sites in reference genome. i got splitting

report from Bismark (see bellow)q1- could i say CpG sites in my RRBS library

are equal to number of Total methylated Cs in CpG context + number of Total

C to T conversions in CpG context (around 19 million) ? if No how i can find

total CpG sites in RRBS library?q2- i downloaded pig CGI annotation and

counted all CpG sites but the total was around 2 million. sound very low for me.

how i can find the actual number of CpG sites in reference genome?q3- is there

a way to determine CpG sites per chromosome and compare it with CpG sites

in each chromosome of reference genome?Final Cytosine Methylation Report

= Total number of Cs analysed- 141645338Total methylated Cs in CpG context-

7904886Total methylated Cs in CHG context- 50683Total methylated Cs in

CHH context- 107717Total C to T conversions in CpG context: 12298571Total

C to T conversions in CHG context: 35912924Total C to T conversions in CHH

context: 85370557"

4. “Hi All,I have a fastq file which I would like to split into 2 files with every other

read going into the 2 separate files. What would the Split function command

line be for this? I am a new to computing, so it you are most explicit that would

be helpful.Best,"

5. “Hello everyone, is it possible to calculate depth of coverage and read depth

using Bismark ? if yes how and if No what is the best way to calculate depth of

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

46

coverage and read of depth from RRBS reads taking from illumina sequencing

?Best"

6. “Hi all,Do you think there is an efficient way of downsampling only a few

regions of a bam files (in my case the regions with a too high coverage).The

idea, would be too randomly remove reads in regions where the coverage is

above a given coverage.Indeed, in my analyses, those regions cause some steps

of the pipeline to become really slow.Thanks for all your suggestions”

7. “Hi, community,I am analyzing the taxonomic profiling of my shotgun data.

Which are 100bp paired-end reads from Illumina Hiseq. Now I am using

Metaphlan2 to do the metagenomics profiling. However, the profiling result is

far away from Illumina 16S miseq results. Since I have also been using Illumina

16S Miseq to test the taxonomy of my samples for several years. I have two the

control samples and treatment samples. In Metaphlan2 results, it gave me

around 30 archaea and 70 bacteria for control samples, while Miseq 16S reads

tell me that only around 15 archaea and 85 bacteria for control samples. For

treatment, shotgun profiling told me 60 archaea and 40 bacteria, while Miseq

gave me 20 archaea and 80 bacteria. For my experience, this kind of sample

could not achieve that much archaea abundance than bacteria. Furthermore,

some(not all) bacteria and archaea composition are different between Miseq

result and Metaphlan2 result.Why is the result so different? Are there any

suggestions why the two method result differs so much?I am confused. Looking

forward to a help."

8. “Hello,Human RNA-seq dataset was generated from Illumina HiSeq 3000 with

2X100 cycles run.The first step is making alignment of the reads to the human

genome. These are many aligner, such as: Bowtie, GASSST, PASS, SOAP,

BOAT. Each aligners has different performs in different kinds of data.Which is

the best suitable aligner for RNA-seq data?Thank you in advance for great

help!Sincerely,Yue"

9. “Is there a tool that can tell me coverage per some uniform interval along a set

of reference contigs? I know I could use bedtools coverage and build a bed file

defining the intervals, but I was asked if there was not already a tool that could

just do uniform intervals on its own without having to setup a bedfile to define

the intervals."

10. “I have two fastq files from paired end sequencing. I got those two files after

converting a bam file to fastq. I was doing a quality check on the files, when I

saw the number of sequences option in FASTQC tool gave different number for

both files.The number of sequences for read 1 was : 508168252The number of

sequences for read 2 was : 512336921Shouldnt this be the same?"

11. “Hi, Im very new to the forum, if you have any suggestions, please share

them.So im working with honey bee to identify QTL associated to a resistance

trait (quantitative trait) using GWAS (by calling SNPs).Honey bee queens are

diploid and males progeniture inherit 1/2 of their genes (so they are haploid).We

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

47

want to sequence the queens, but cant use them, so we sampled the males

progeny. I made 4 pools of 6 males for each queen.My question is this: Is it

better to do all my pipeline to SNP calling on each of the 4 pools individually

before joining the results together, or should i joint the pools raw reads before

starting my pipeline to enhance statistical power?My logic is that if I dont

initially joint them, I can later compare allele frequency between each replicate

to insure that rare variants are not eliminated.thanks"

12. “Hello everyone.I have a questions on gene expression profiling.1. Does the end

product of gene expression profiling is in a DNA sequence? If so, does the

sequence is in normal DNA sequence or mutated DNA sequence?2. What are

the method use to develop the expression profile?3. Please share any related

article of the method. Ive have search a lot on the method, but i cant understand

since im not from bioinformatic background.4. If anyone familiar with BRCA1

gene expression profiling, can anyone share with me the development of the

profile? Thank you for your time and reply."

13. “Dear users,Id like to ask you for your advise on a certain project that I am

working on.My job is to retrospectively analyse NGS data from patients

suffering from ALL and MM (IGH).However, I am not a bioinformatician. I

just received the sequencing data in Excel (and .csv) files and Im supposed to

analyse these data.Of course, Ive heard of IMGT/VQUEST and IgBlast and it

is no problem for me to work with these programmes. But the issue is that I cant

do this with tens of thousands of sequences.After further research, I came across

the R tool tcR. It seems to be a well-done programme. Unfortunately, I always

receive error messages when trying to integrate my files in it.I found out that it

might be useful to convert my files into .txt files or to work with VDJ-tools,

Immunoseq, mixcr or other tools. But I do not have access to these programmes

or they require Linux (which I dont have; Windows).In addition, the sequencing

data in my Excel files are not in fasta-format. But if I would change this by

editing the sequences manually Id be busy for the next three months.My goal is

to analyse my data for gene usage and to be able to search quickly for potential

subclones.I look forward to hearing your opinion! :)Thanks in advance!Pablo"

Those questions were reviewed and made ‘search engine friendly’ by two expert

bioinformaticians. Irrelevant words were removed from the questions and the result is

only the keywords that would be used in a search engine. All those questions were used

as queries in the framework and the purpose was to check if the tools that were proposed

by the users were retrieved as a result from the search. The framework was set to give

a maximum of 1000 results per query. The queries we used to run that test after the

cleanup process were:

1. “BAM, analyze reads, exome sequencing, paired end”

2. “quantifying transcripts, including redundants, map using bbmap”

3. “annotate, bismark, chromosome, conversion, cover, cpg coverage, cytosine,

methylate, rrbs, split, rrbs library, actual number in reference genome”

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

48

4. “command line, compute, fastq, read, split, partition the odd or even reads”

5. “calculate depth of coverage, read depth, Bismark, RRBS reads”

6. “downsampling, regions of a bam files, remove read above coverage”

7. “shotgun metagenomics, 16S amplicon, taxonomic profiles, Metaphlan, Miseq,

differences”

8. “alignment, boat, bowtie, gassst, genome, hiseq, human, aligner, RNA-seq,

HiSeq 3000”

9. “coverage per 10kb interval, reference contigs”

10. “reads, paired end fastq, number of sequences”

11. “allele, allele frequency, bee queen, call, diploid, frequence, gene, gwas,

haploid, inhertit, join, male, pipeline, progeniture, progeny, qtl, rare, raw, read,

replicate, resistance, sequence, snp, statistic, statistical power, trait, variant”

12. “article, bioinformatic, brca1, dna, expression, gene, method, normal, profile,

sequence”

13. “analyse NGS, csv file, non fasta-format”

5.5. Results – first iteration

Initially we wanted to assess the power of pure semantic search against the common

keyword-based search. For this experiment we used the keyword-based search, the

EDAM search and the SWO search. The results for the 13 questions are shown in the

following table.

Table 2. Test case results for each question.

No.

Proposed
Tools

EDAM SWO Keyword-based

 Yes/No Rank Yes/No Rank Yes/No Rank

1 SAMtools No - No - No -

2
BBMap Yes 462 No - Yes 1

BWA No - No - No -

3

SeqMonk No - No - No -

Bismark Yes 807 Yes 267 Yes 5

Methylkit No - Yes 591 Yes 27

4 BBMap Yes 569 Yes 170 Yes 284

5 SeqMonk Yes 908 No - No -

6 VariantBam Yes 816 Yes 107 Yes 521

7 Kraken Yes 16 Yes 60 Yes 305

8
STAR Yes 246 Yes 225 Yes 4

Hisat2 Yes 398 Yes 227 Yes 21

9
Mosdepth No - No - No -

deepTools No - No - No -

10 BBMap Yes 195 Yes 305 No -

11 SAMtools No - No - Yes 775

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

49

12

DESeq2 Yes 150 Yes 161 Yes 645

edgeR Yes 454 Yes 388 No -

LIMMA Yes 820 Yes 904 No -

13 Galaxy No - Yes 593 No -

From all 20 proposed tools by users, 15 of them were found by the search engine from

at least one search. That makes the ensemble of predictors find rate being at 75%.

The following table contains the final results of each search.

Table 3. Test case final results.

 EDAM SWO Keyword-based Ensemble of

predictors

Tools Found 12 12 10 15

Find Rate(%) 60 60 50 75

Average Rank 486 333 257 359

The results retrieved from the two searching techniques differ significantly. The

semantic searches have similar results with each other with the SWO-based being better

than the EDAM-based in terms of average rank but both semantic searches gave

remarkably different results than the keyword-based search. The ontology-based

searches having a higher average rank may be due to the keyword-based search using

not only the description but also the name of the tools to rank them. Another explanation

can be that the EDAM ontology isn’t as fitting for our use since the SWO ontology has

only a slightly higher average rank than the keyword-based search.

5.6. Results – second iteration

The results from the first iteration indicate that the keyword-based search provide better

results that the pure semantic search in terms of average rank. On the other hand the

semantic search provided better results in terms of accuracy. Looking at the results from

the first iteration, and other test experiments that we used, we can safely come into the

conclusion that the ontology searches (EDAM and SWO) provide similar results but

different than the keyword-based. An indicative example is shown in the screenshot of

the UI at Figure 25. These findings indicate that a combination of semantic search and

free text search could provide better results and that was our motivation to create the

hybrid search even though it was not planned in the beginning.

As explained in section 3.3 the hybrid search is an Apache solr search over JSON files

that contain:

• All names and descriptions from the tools in the biotools registry

• 5 EDAM terms and their (free text descriptions) with the highest score assigned

by solr when searched using the description of the tool.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

50

• 5 EDAM terms and their (free text labels) with the highest score assigned by

solr when searched using the description of the tool.

• 5 SWO terms and their (free text descriptions) with the highest score assigned

by solr when searched using the description of the tool.

• 5 SWO terms and their (free text labels) with the highest score assigned by solr

when searched using the description of the tool.

The results of the three previous searches (EDAM, SWO, Keyword-based) and the

hybrid search are shown in the following table.

Table 4. Test case results for each question with hybrid search.

No.

Proposed
Tools

EDAM SWO Keyword-based Hybrid

 Yes/No Rank Yes/No Rank Yes/No Rank Yes/No Rank

1 SAMtools No - No - No - No -

2
BBMap No - No - Yes 1 Yes 30

BWA Yes 462 No - No - No -

3

SeqMonk No - No - No - No -

Bismark No - No - Yes 5 Yes 25

Methylkit Yes 807 Yes 267 Yes 27 Yes 77

4 BBMap No - Yes 591 Yes 284 Yes 488

5 SeqMonk Yes 569 Yes 170 No - No -

6 VariantBam Yes 908 No - Yes 521 Yes 534

7 Kraken Yes 816 Yes 107 Yes 305 Yes 211

8
STAR Yes 16 Yes 60 Yes 4 No -

Hisat2 Yes 246 Yes 225 Yes 21 Yes 244

9
Mosdepth Yes 398 Yes 227 No - Yes 367

deepTools No - No - No - No -

10 BBMap No - No - No - No -

11 SAMtools Yes 195 Yes 305 Yes 775 Yes 396

12

DESeq2 No - No - Yes 645 Yes 500

edgeR Yes 150 Yes 161 No - No -

LIMMA Yes 454 Yes 388 No - Yes 600

13 Galaxy Yes 820 Yes 904 No - No -

After adding the Hybrid search, the ensemble of predictors find rate is 80% since 16

out of the 20 proposed tools were found from at least one search.

The Hybrid search found 11 tools which is 55% accuracy and the average rank of the

tools is 315. We have to state that the hybrid search is more complicated than the other

searches in terms of combinations and weights of the variables that we are using.

EDAM search has 3 variables, SWO search has 4 variables, and keyword-search two

variables while hybrid search 22 variables. The high number of variables in the case

of the hybrid search give us the opportunity to test various combinations of variables-

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

51

weights for different domains and fine tune our search engine even more. This, along

with deployment of other domains and ontologies could be a future work for this thesis.

The results can be found in the following table.

Table 5. Test case results with hybrid search.

 EDAM SWO Keyword-

based

Hybrid Ensemble of

predictors

Tools Found 12 12 10 11 16

Find

Rate(%)

60 60 50 55 80

Average

Rank

486 333 257 315 348

As show, the Hybrid search has almost the same average rank as the SWO-based search.

That enhances the possibility of the EDAM ontology being less fitting than the SWO

ontology for our use and lessens the possibility of the average rank difference being a

result of the usage of the name of the tools for ranking since both keyword-based and

hybrid use it.

The implemented ontology search has been implemented with an architecture that takes

advantage of the Apache Solr indexing system and relational databases. On the other

hand the free text and hybrid search take advantage of the Apache Solr solely. The

average response times for each search methodology can be found in the following

table.

Table 6. Test case response times.

 EDAM SWO Keyword-based Hybrid

Response Time (ms) 475 285 202 376

The response times are acceptable for a real time search engine (even with a corpus of

12000 tools).

We have also to mention that the results when we used as input the original question

without the cleaning from the experts have a big differentiation on precision and

average rank which was significantly lower. This is expected since the plain text

contains a lot of “noise” in our case due to grammar and syntax. We do not expect to

be an issue for our system since the end users in reality are used to search with keywords

and not plain text, an indicative example is the well-known search engine Google.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

52

6. Conclusions
The end goal of this thesis has been to examine the use of semantic technologies for

bioinformatics data annotation by employing domain specific ontologies and also to

make use of natural language processing methods in order to aid the non-bioinformatics

expert users to successfully search for bioinformatics related tools using natural

language through either text or a speech recognition system. By using different search

methods, we were able to create a hybrid search engine that takes advantage of multiple

searching techniques to ensure that the users receive the best results possible for their

needs. We were also able to compare the efficiency of those techniques by

experimenting on the system with different test case scenarios.

As part of this thesis, we developed a web based framework that is able to interact with

the user through free speech or text and allows him to search for bioinformatics related

tools in real time. The user describes the functionality or the name of the tool he is

seeking for and the framework, using semantic and non-semantic technologies, if

found, retrieves the tools that fit the user’s description. The results obtained by the

framework are ordered descendingly, with the first tool from each list being the best

possible solution for the user for each searching technique and they are also separated

in different lists, with each one being a result of a different searching technique.

The results that were obtained by the experiment, show that the system returns relevant

results to the users’ needs, with each searching technique having different results and

response times.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

53

Bibliography
[1] D. Yu, "Automatic Speech Recognition." [S.l.]: SPRINGER LONDON LTD, 2016.

[2] M. Gao, C. Liu, and F. Chen, “An Ontology Search Engine Based on Semantic

Analysis,” in Third International Conference on Information Technology and

Applications (ICITA’05), vol. 1, pp. 256–259.

[3] J. Ye, P. He, et al., “The design and implementation of the 1911 revolution ontology

search engine,” in 2012 9th International Conference on Fuzzy Systems and Knowledge

Discovery, 2012, pp. 1257–1260.

[4] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins, “What are ontologies, and

why do we need them?,” IEEE Intell. Syst., vol. 14, no. 1, pp. 20–26, Jan. 1999.

[5] S. H. Alahmadi, “Information Retrieval of Distributed Databases A Case Study: Search

Engines Systems,” in 2018 1st International Conference on Computer Applications &

Information Security (ICCAIS), 2018, pp. 1–5.

[6] J. Ison, M. Kalas, et al., “EDAM: an ontology of bioinformatics operations, types of

data and identifiers, topics and formats,” Bioinformatics, vol. 29, no. 10, pp. 1325–1332,

May 2013.

[7] J. Malone, A. Brown, et al., “The Software Ontology (SWO): a resource for

reproducibility in biomedical data analysis, curation and digital preservation,” J.

Biomed. Semantics, vol. 5, no. 1, p. 25, Jun. 2014.

[8] D. Smiley, Apache Solr enterprise search server : enhance your searches with faceted

navigation, result highlighting, relevancy-ranked sorting, and much more with this

comprehensive guide to Apache Solr 4. .

[9] J. Ison, K. Rapacki, et al., “Tools and data services registry: a community effort to

document bioinformatics resources,” Nucleic Acids Res., vol. 44, no. D1, pp. D38–D47,

Jan. 2016.

[10] S. J.Arora and R. Pal Singh, “Automatic Speech Recognition: A Review,” Int. J.

Comput. Appl., vol. 60, no. 9, pp. 34–44, Dec. 2012.

[11] S. J. Russell and P. Norvig, “Artificial Intelligence : A Modern Approach,” 2016.

[12] R. P. Lippmann, “Review of Neural Networks for Speech Recognition,” Neural

Comput., vol. 1, no. 1, pp. 1–38, Mar. 1989.

[13] D. O’Shaughnessy, “Linear predictive coding,” IEEE Potentials, vol. 7, no. 1, pp. 29–

32, Feb. 1988.

[14] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken

word recognition,” IEEE Trans. Acoust., vol. 26, no. 1, pp. 43–49, Feb. 1978.

[15] T. Winograd, “Understanding natural language,” Cogn. Psychol., vol. 3, no. 1, pp. 1–

191, Jan. 1972.

[16] T. N. Sainath, “Speech and Language Algorithms Group Improvements to Deep Neural

Networks for Large Vocabulary Continuous Speech Recognition Tasks Speech and

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

54

Language Algorithms Group,” 2014.

[17] J. S. Garofolo, L. F. Lamel, et al., “DARPA TIMIT acoustic-phonetic continous speech

corpus CD-ROM. NIST speech disc 1-1.1,” Unknown, vol. 93, 1993.

[18] J. M. B. and A. F. M. Smith, “Bayesian Theory,” Meas. Sci. Technol., vol. 12, no. 2, pp.

221–222, Feb. 2001.

[19] P. C. Woodland and D. Povey, “Large scale discriminative training of hidden Markov

models for speech recognition,” Comput. Speech Lang., vol. 16, no. 1, pp. 25–47, Jan.

2002.

[20] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 564–577, May 2003.

[21] B.-H. Juang, W. Hou, and C.-H. Lee, “Minimum classification error rate methods for

speech recognition,” IEEE Trans. Speech Audio Process., vol. 5, no. 3, pp. 257–265,

May 1997.

[22] S. Katagiri, C. Lee, B. Juang, “New discriminative training algorithms based on the

generalized probabilistic descent method,” 1991.

[23] E. Ertin, J. W. Fisher, and L. C. Potter, “Maximum Mutual Information Principle for

Dynamic Sensor Query Problems,” 2003, pp. 405–416.

[24] K.-F. Lee, S. Hayamizu, at al., “Allophone clustering for continuous speech

recognition,” in International Conference on Acoustics, Speech, and Signal Processing,

1990, pp. 749–752.

[25] D. Hakkani-Tur, G. Riccardi, and A. Gorin, “Active learning for automatic speech

recognition,” in IEEE International Conference on Acoustics Speech and Signal

Processing, 2002, p. IV-3904-IV-3907.

[26] K.-F. Lee, “On large-vocabulary speaker-independent continuous speech recognition,”

Speech Commun., vol. 7, no. 4, pp. 375–379, Dec. 1988.

[27] H. Tseng, P. Chang, et al., “A Conditional Random Field Word Segmenter for Sighan

Bakeoff,” 2005.

[28] M. A. Anusuya and S. K. Katti, “Speech Recognition by Machine: A Review,” IJCSIS)

Int. J. Comput. Sci. Inf. Secur., vol. 6, no. 3, 2009.

[29] R. Sukanesh, S. Veluchamy, and M. :. Karthikeyan, International journal of engineering

research., vol. 3, no. 2. IJERA, 2014.

[30] M. D. Network, “Microsoft Speech API (SAPI) 5.3“, Microsoft, [Online]. Available

https://msdn.microsoft.com/en-us/library.[Accessed 17 July 2018].

[31] W. Walker, P. Lamere, et al., “Sphinx-4: A Flexible Open Source Framework for

Speech Recognition,” 2004.

[32] C. Beattie, J. Z. Leibo, et al., “DeepMind Lab,” Dec. 2016.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

55

[33] J. Li, L. Deng, et al., “Fundamentals of speech recognition,” in Robust Automatic Speech

Recognition, Elsevier, 2016, pp. 9–40.

[34] G. L. Manney and W. H. Daffer, “Jet and Tropopause Products for Analysis and

Characterization (JETPAC),” Sep. 2012.

[35] V. Kepuska and G. Bohouta, “Next-generation of virtual personal assistants (Microsoft

Cortana, Apple Siri, Amazon Alexa and Google Home),” in 2018 IEEE 8th Annual

Computing and Communication Workshop and Conference (CCWC), 2018, pp. 99–103.

[36] G. Hinton, L. Deng, et al., “Deep Neural Networks for Acoustic Modeling in Speech

Recognition: The Shared Views of Four Research Groups,” IEEE Signal Process. Mag.,

vol. 29, no. 6, pp. 82–97, Nov. 2012.

[37] T. Berners-Lee and M. Fischetti, Weaving the Web : the original design and ultimate

destiny of the World Wide Web by its inventor. Harper Audio, 1999.

[38] A. Sheth, “Semantic Web and Information Brokering: Opportunities,

Commercialization, and Challenges,” Kno.e.sis Publ., Sep. 2000.

[39] J. Townley, “The Streaming Search Engine That Reads Your Mind,” 2000.

[40] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific American,

vol. 284. Scientific American, a division of Nature America, Inc., pp. 34–43, 2001.

[41] T. Berners-lee, J. Hendler, and O. Lassila, “The Semantic Web A new form of Web

content that is meaningful to computers will unleash a revolution of new possibilities.”,

2001.

[42] W. Research and A. P. Sheth, “An Interview with Amit Sheth: The Information Systems

Perspective on Semantic "Semantic technology is here to stay...",” AIS

SIGSEMIS Bull., vol. 1, no. 1, pp. 14–72, 2004.

[43] P. Norvig, “Semantic Web Ontologies: What Works and What Doesn’t,” AlwaysOn-the

Insid. Netw., 2005.

[44] M. D’Aquin and E. Motta, “Watson, more than a Semantic Web search engine,” Semant.

Web, 2011.

[45] Y. alSafadi, J.-F. Baget, et al., “OWL Web Ontology Language Overview.”, 2004.

[46] T. Garfat and L. Fulcher, “Characteristics of a Relational Child and Youth Care

Approach.”, 2018.

[47] W.D. Hillis and B. Ferren, “Meta-Web,” Dec. 2003.

[48] L. Ding, T. Finin, et al., “Swoogle,” in Proceedings of the Thirteenth ACM conference

on Information and knowledge management - CIKM ’04, 2004, p. 652.

[49] O. Verhodubs, “Towards the Ontology Web Search Engine.”, 2015.

[50] M. D ’aquin, C. Baldassarre, et al., “WATSON: SUPPORTING NEXT GENERATION

SEMANTIC WEB APPLICATIONS 1.”, 2008.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

56

[51] A. Sayed and A. Al Muqrishi, “IBRI-CASONTO: Ontology-based semantic search

engine,” Egypt. Informatics J., vol. 18, no. 3, pp. 181–192, Nov. 2017.

[52] D. H. Widyantoro and J. Yen, “A fuzzy ontology-based abstract search engine and its

user studies,” in 10th IEEE International Conference on Fuzzy Systems. (Cat.

No.01CH37297), vol. 2, pp. 1291–1294.

[53] Q. T. Tho, S. C. Hui, A. C. M. Fong, and Tru Hoang Cao, “Automatic fuzzy ontology

generation for semantic Web,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 6, pp. 842–

856, Jun. 2006.

[54] K. Taha, “GOseek: A gene ontology search engine using enhanced keywords,” in 2013

35th Annual International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), 2013, pp. 1502–1505.

[55] M. Ashburner, C. A. Ball, et al., “Gene Ontology: tool for the unification of biology,”

Nat. Genet., vol. 25, no. 1, pp. 25–29, May 2000.

[56] C. Jonquet, P. LePendu, et al., “NCBO Resource Index: Ontology-based search and

mining of biomedical resources,” Web Semant. Sci. Serv. Agents World Wide Web, vol.

9, no. 3, pp. 316–324, Sep. 2011.

[57] N. F. Noy, N. H. Shah, et al., “BioPortal: ontologies and integrated data resources at the

click of a mouse,” Nucleic Acids Res., vol. 37, no. Web Server, pp. W170–W173, Jul.

2009.

[58] B. Smith, M. Ashburner, et al., “The OBO Foundry: coordinated evolution of ontologies

to support biomedical data integration,” Nat. Biotechnol., vol. 25, no. 11, pp. 1251–

1255, Nov. 2007.

[59] O. Bodenreider, “The Unified Medical Language System (UMLS): integrating

biomedical terminology,” Nucleic Acids Res., vol. 32, no. 90001, p. 267D–270, Jan.

2004.

[60] F. Yergeau and J. Cowan, “Extensible Markup Language (XML) 1.1 (Second Edition).”,

2006.

[61] H. Dietze and M. Schroeder, “GoWeb: a semantic search engine for the life science

web.,” BMC Bioinformatics, vol. 10 Suppl 10, no. Suppl 10, p. S7, Oct. 2009.

[62] C. E. Lipscomb, “Medical Subject Headings (MeSH).,” Bull. Med. Libr. Assoc., vol. 88,

no. 3, pp. 265–6, Jul. 2000.

[63] A. Doms and M. Schroeder, “GoPubMed: exploring PubMed with the Gene Ontology,”

Nucleic Acids Res., vol. 33, no. Web Server, pp. W783–W786, Jul. 2005.

[64] S. Langer and J. Beel, “Apache Lucene as Content-Based-Filtering Recommender

System: 3 Lessons Learned.”, 2017.

[65] The Apache Software Foundation, “Apache Stanbol - Apache Stanbol Documentation.”

2010.

[66] L. Richardson and S. Ruby, “RESTful web services. “, 2007.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

57

[67] M. Rouse, “content management system (CMS),” TechTarget,[Online]. Available

http//searchsoa. techtarget. com/definition/content-managementsystem.[Accessed 17

August 2016], 2011.

[68] OSGi Alliance. and Osgi, OSGi service platform : release 3, March 2003. IOS Press,

2003.

[69] A. Volpini, “Adding Semantic Search to Apache Solr.”, 2014.

[70] “Open Semantic Search: Your own search engine for documents, images, tables, files,

intranet & news.” 2018.

[71] R. H. Wiggins, H. C. Davidson, et al.“Image File Formats: Past, Present, and Future,”

RadioGraphics, vol. 21, no. 3, pp. 789–798, May 2001.

[72] Y. Shafranovich, “Common Format and MIME Type for Comma-Separated Values

(CSV) Files.”, 2005.

[73] R. Weir, “OpenDocument Format: The Standard for Office Documents,” IEEE Internet

Comput., vol. 13, no. 2, pp. 83–87, Mar. 2009.

[74] A. Pandey, V. Sharma, et al., “Optical Character Recognition (OCR),” Int. J. Eng.

Manag. Res., no. 7, 2017.

[75] R. Côté, P. Jones, R. Apweiler, and H. Hermjakob, “The Ontology Lookup Service, a

lightweight cross-platform tool for controlled vocabulary queries,” BMC

Bioinformatics, vol. 7, no. 1, p. 97, Feb. 2006.

[76] J. Adorf, “Web Speech API,” 2013.

[77] J. Oh, S. Lee, and S. Lee, “Advanced evidence collection and analysis of web browser

activity,” Digit. Investig., vol. 8, pp. S62–S70, Aug. 2011.

[78] G. G. Chowdhury, “Natural language processing,” Annu. Rev. Inf. Sci. Technol., vol.

37, no. 1, pp. 51–89, Jan. 2005.

[79] T. Bray, Ed., “The JavaScript Object Notation (JSON) Data Interchange Format,” Dec.

2017.

[80] I. D. E. NetBeans, “Version 8.2.”, NetBeans [Online]. Available:

https://netbeans.apache.org. [Accessed 5 November 2018].

[81] B. A. Burd and B. A., JSP: JavaServer pages. M & T Books, 2001.

[82] A. Vukotic and J. Goodwill, Apache Tomcat 7. Berkeley, CA: Apress, 2011.

[83] F. P. Miller, A. F. Vandome, and J. McBrewster, “Apache Maven,” 2010.

[84] J. Gosling and J. Gosling, The Java language specification. Addison-Wesley, 2000.

[85] D. Flanagan, JavaScript : the definitive guide. O’Reilly, 2006.

[86] A. Tozawa, M. Tatsubori, et al., “Copy-on-write in the PHP language,” ACM SIGPLAN

Not., vol. 44, no. 1, p. 200, Jan. 2009.

Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis

58

[87] B. Bos, T. Celik, I. Hickson and H. W. Lee, “Cascading Style Sheets, level 2 Revision

1 (CSS 2.1) Specification.”,World Wide Web Consortium(W3C), 2011.

[88] C. Musciano and B. Kennedy, HTML, the definitive guide. O’Reilly, 1997.

[89] C. J. Date and H. Darwen, A guide to the SQL Standard: a user’s guide to the standard

relational language SQL. Addison-Wesley, 1989.

[90] K. Douglas and S. P. Douglas, PostgreSQL : a comprehensive guide to building,

programming, and administering PostgresSQL databases. Sams, 2003.

[91] A. Friends, “XAMPP Apache+ MySQL+ PHP+ Perl,” Apache Friends, 2014.

[92] K. Wolstencroft, P. Alper, et al., "Grid ontology: bioinformatics service discovery,” Int.

J. Bioinform. Res. Appl., vol. 3, no. 3, p. 303, 2007.

[93] P. Rice, I. Longden, and A. Bleasby, “EMBOSS: the European Molecular Biology Open

Software Suite.,” Trends Genet., vol. 16, no. 6, pp. 276–7, Jun. 2000.

[94] M. D. Wilkinson and M. Links, “BioMOBY: An open source biological web services

proposal,” Brief. Bioinform., vol. 3, no. 4, pp. 331–341, Jan. 2002.

[95] M. Y. Galperin and G. R. Cochrane, “Nucleic Acids Research annual Database Issue

and the NAR online Molecular Biology Database Collection in 2009,” Nucleic Acids

Res., vol. 37, no. Database, pp. D1–D4, Jan. 2009.

[96] E. Dumbill, “DOAP: Description of a Project,”, 2010.

[97] M. Burstein, J. Hobbs, et al., “OWL-S: Semantic Markup for Web Services,” W3C

Memb. Submiss., 2004.

[98] B. Peters and T. O. Consortium, “Ontology for Biomedical Investigations,” Nat.

Preced., Aug. 2009.

[99] J. D. Tenenbaum, P. L. Whetzel, et al., “The Biomedical Resource Ontology (BRO) to

enable resource discovery in clinical and translational research,” J. Biomed. Inform.,

vol. 44, no. 1, pp. 137–145, Feb. 2011.

[100] J.-W. Li, R. Schmieder, et al., “SEQanswers: an open access community for

collaboratively decoding genomes,” Bioinformatics, vol. 28, no. 9, pp. 1272–1273, May

2012.

