
Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

1 | P a g e
Developing an ontology exploration application for mobile devices

DEVELOPING AN ONTOLOGY EXPLORATION

APPLICATION FOR MOBILE DEVICES

By

ALEXANDROS DAMIANAKIS

BSc, Technological Education Institute of Central Greece, 2014

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF INFORMATICS ENGINEERING

SCHOOL OF ENGINEERING

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2019

 Approved by:

Professor Nikos Papadakis

Professor Haridimos Kondylakis

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

2 | P a g e
Developing an ontology exploration application for mobile devices

Abstract

In this study, we developed an innovating Android application in order to display data

from OWL ontologies. Using some tested technologies for Android development the

application became stable and usable. Moreover, we created some new algorithms in

order to decode, store and handle OWL ontologies at mobile devices.

The first chapter is the introduction of our study. We summarize the structure of the

project and we mention the general approach of our concept.

At the second chapter exists a demonstration of the related work. All articles,

tutorials, and applications that we found and they are related to our topic. We learned

what technologies have been used and helped us to find the important issues of that

kind of applications.

The next chapter includes the main concept of the application. Is presented the system

architecture, is analyzed the basic functions of application and is mentioned the used

software tools. It is an analytic demonstration of all application operations.

The fourth chapter has the usability evaluation of the application. It includes some

experiments of user interaction with the application and some performance results that

help us to gain some useful conclusions.d

Finally, the last chapter is about the total conclusion of our project and some

suggestions for future work at related topics.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

3 | P a g e
Developing an ontology exploration application for mobile devices

Content table

Chapter 1 Introduction ..5

1.1 Introduction ..5

1.2 Scope of the project ...5

1.3 Design the application ...6

1.4 The Ontology Explorer application..6

Chapter 2 Related work ...7

2.1 Introduction ..7

2.2 Academic work ...7

2.2.1 Android goes Semantic: DL Reasonsers on Smartphones............................7

2.2.2 Android went Semantic: Time for Evaluation ...8

2.2.3 DBpedia Mobile: A Location-Enable Linked Data Browser9

2.2.4 Building SPARQL-Enabled Linked Data Browser9

2.2.5 A linked data framework for Android ... 11

2.3 Online tutorials ... 12

2.3.1 Displaying SPARQL results on a mobile phone .. 12

2.3.2 Using ARQoid for Android-based SPARQL Query execution 13

2.4 Related applications .. 14

2.4.1 Android applications... 14

2.4.2 Desktop applications... 15

2.5 Conclusion of related work ... 16

2.4.1 The long time of operations .. 16

2.4.2 The necessity of an internet connection... 16

Chapter 3 System architecture .. 17

3.1 Introduction .. 17

3.2 Type of application and tools for developing .. 17

3.3 Design the work flow ... 18

3.4 Screens.. 20

3.4.1 First screen ... 21

3.4.2 Second screen ... 21

3.4.3 Third screen.. 23

3.5 Back-end operations .. 25

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

4 | P a g e
Developing an ontology exploration application for mobile devices

3.5.1 Ontologies and JSON format .. 25

3.5.2 The remote server ... 27

3.5.3 HTTP request from mobile ... 27

3.5.4 Decoding the response .. 28

3.5.5 Local storing .. 29

3.5.6 User interface ... 32

3.6 Files and Classes ... 34

Chapter 4 Usability evaluation ... 36

4.1 Introduction .. 36

4.2 Scenarios... 36

4.3 Experiment preparation ... 36

4.4 Usability evaluation to the Android application ... 37

4.5 Comparison the results with Protégé ... 37

4.6 Testing the speed performance .. 38

Chapter 5 Conclusion and future work ... 40

5.1 General conclusion .. 40

5.2 Future work... 40

References ... 41

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

5 | P a g e
Developing an ontology exploration application for mobile devices

Chapter 1

Introduction

1.1 Introduction

In computer science, ontology is a representation of the categories, properties, and

relations between data.

Ontologies are one of the building blocks of Semantic Technologies. They provide the

necessary structure to link one piece of information to other pieces of information on

the Web of Linked Data. Their ability to describe relationships make them the bases

for modeling high-quality, linked data.

In recent years, there has been an uptake of expressing ontologies using ontology

languages such as the Web Ontology Language (OWL).

Another technology that we will study is the Android software. Android is one of the

most fashionable, popular and easy-to-use software platforms. It has very interesting

software components and tools.

In nowadays, Android is the most used operating system in mobile devices for the

reason that is independent of the hardware device structure. Moreover, Android

devices bring ever more impressive software to our hands. In addition to upgraded

processors and RAM, mobiles are becoming more "smart" with the addition of

sensors that perceive almost everything.

1.2 Scope of the project

In this project is studying OWL ontologies in order to display their data at mobile

devices. Has been Analyzing a mechanism for decoding OWL data, storing and

search them. By using tools from the Android platform we developing a mobile

application in order to handle OWL ontologies.

The general purpose of this project is to develop a mobile application which user can

make queries to OWL ontologies and gain the proper information’s. In order to be a

useful and practical application, the queries that the user will be done will be triggered

by a simple click or typing a few letters.

That kind of application is useful if a user needs to have fast access at some data by

using only a smartphone. Of course, the format of these data should be an OWL

ontology. Same applications operate but only for the desktop environment, for mobile

devices, all applications with this concept are in the experimental stage.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

6 | P a g e
Developing an ontology exploration application for mobile devices

1.3 Design the application

The major benefit of mobile devices is that they are portable, so the user can use them

from everywhere. However, they have an important defect too: is that the processing

power is lower than desktop computers.

Considering that, in our application, we used some tested technologies at mobile

devices in order to make the app stable and fast.

However, this was not enough for developing that kind of application. For that reason,

should be included some innovating techniques.

In order to achieve our target, we studied some principles of the Semantic Web. We

constructed some innovating algorithms to fit at mobile devices processing power.

Finally, we designed the system architecture to have a decent speed performance.

1.4 The Ontology Explorer application

The name of our application is Ontology Explorer. By using this application user can

explore the data of four OWL ontologies through a user-friendly UI. The operations

that Ontology Explorer is doing are:

 Getting the ontology data from a remote server.

 Decoding and storing the data at a local database.

 Depending on the user interaction makes at the background the proper queries.

 Displaying the results at the user interface.

To sum up, this project combines a solution of decoding, storing and handling OWL

ontologies that could provide new knowledge at the academic community with some

interesting developing techniques in order to make the final application practically

useful.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

7 | P a g e
Developing an ontology exploration application for mobile devices

Chapter 2

Related work

2.1 Introduction

This chapter includes all the study that we have done before deciding the way that we

developed our mobile application. We searched solutions and applications that have

been made by other teams in order to get ideas, compare results and finally make a

decision of what is the ideal method to implement our project.

Firstly we did a search in the academic field, especially we were read some papers in

order to learn some basics about our topic and explore new methods that have solved

problems. Secondly, we studied some tutorials on developing similar applications to

get a more practical aspect. Finally, we discovered smart-phone and desktop

applications associated with our topic. All these information’s will be presented in

this chapter.

2.2 Academic work

Below we list some academic work that has done on the basis of exploring a semantic

ontology using a mobile device. All papers which have been searched about android

devices for the reason that we have a bigger device variety to explore the results.

2.2.1 Android goes Semantic: DL Reasoners on Smartphones.

This paper shows that Android devices could be able to use “semantic reasoners”

through some experiments. Semantic reasoners are software which is able to infer

logical consequences from a set of asserted facts or axioms. [1][2]

Is used semantic APIs on Android devices like OWL API and Androjena in order to

manage the OWL ontologies. The reasoners that have been used is

JFact,CB,HermiT,Pallet . Moreover, they tried to load another 4 reasoners on Android

without success because the android virtual machine (Dalvic) has unsupported

classes. Dalvic is a discontinued process virtual machine in Google’s Android

operation system that executes applications written for Android. [3]

For experiments is Used 5 ontologies (Pizza,Wine,DBPedia,GO,NCI) that tested the

classification performance of each reasoned on two android devices and on a PC.The

experiment showed that Android devices could be able to use most of the semantic

reasoners. The results (how time is the need for execution) are showing below:

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

8 | P a g e
Developing an ontology exploration application for mobile devices

We consider that for each result needs a lot of time, the faster execution at the android

device is 1.47 seconds and the longer execution is 20196.05 seconds. This kind of

solution is not ideal in our application for the reason that each search of the ontology

will need a lot of time to return some results. Perhaps this solution could work but it

will not have the best performance in our application.

2.2.2 Android went Semantic: Time for Evaluation.

This paper has many similarities with the previous project that we demonstrated. So,

is investigating the use of semantic reasoners on mobile devices. The differences from

the previous paper are the new reasoners.[4]

In particular, is analyzing the recent versions of already considered OWL 2 DL

reasoners and some new reasoners specific for the OWL 2 EL profile.

Moreover, become a classification of ontologies which they have been implementing

to experiment. They are three categories of ontologies (small, medium,large) the

classification depended on the size of each ontology.

The experiment became with a smartphone, a tablet, and a PC. As a result, was that

reasoners are much faster in the PC. Furthermore, on Android devices during the

classification happen frequently time outs and out of memory errors (in the OWL 2

DL profile and in larger ontologies, are most usual).

The solution of reasoners as we study from previous works does not fit with the

functionality of the application that we will develop. The process of classification will

be needed a long time, furthermore exists more issues about the stability of reasoners

classification like time outs and out of memory errors.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

9 | P a g e
Developing an ontology exploration application for mobile devices

2.2.3 DBpedia Mobile: A Location-Enabled Linked Data Browser.

This work is using a DBpedia dataset in order to develop a mobile application. The

application is getting the current GPS position of a mobile device and shows a map

which indicates nearby locations. The showing data (map and locations) are from

DBpedia dataset which contains information about almost 300,000 locations.[5]

The application was developed by using JavaScript; is a client-server app so all

background functions are processing at a remote Virtuoso server. Virtuoso server is

making the proper SPARQL queries to DBpedia in order to get the data from the

specific location. For the communication of client (mobile) and server (virtuoso) is

responsible for a Java Servlet that generates XHTML views for given URIs resource.

For using this application is a necessary network connection, moreover at this paper

has no experiments about the speed of response. This client-server architecture

perhaps is not the optimal solution to have a fast response from an OWL ontology.

2.2.4 Building SPARQL-Emabled Applications with Android Devices.

This paper describes a very interesting idea about a collaborative network of data

sources. An android mobile application can store sensor data to the shared repository

on the device in order to can be made accessible.[6]

Using an extended version of Seame library provides a persistent RDF store to the SD

card of the device. In these RDFs will be stored the sensor data. Moreover is included

a Web interface which is giving access to a SPARQL protocol.

With Web application server ‘Jetty’ has been provided a Web server and a servlet

environment. This Web application implements a SPARQL endpoint. Finally, a

federation of SPARQL query has been implemented in order to handle multiple

SPARQL queries from deferent devices.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

10 | P a g e
Developing an ontology exploration application for mobile devices

In order to explain the above architecture, they developed a simple mobile

application. The application can take pictures and using the extension of the Semantic

Sensor Network ontology is storing at shared persistent Storage. With each picture is

storing the following information’s:

- The path of the picture at the device.

- The location of the device (using the GPS sensor).

- The time of taking it.

- The identifier of the device.

This application is tested with several different devices.

The basic concept of this project is very clever; the local storing of data is a very

useful technique. However, the remote SPARQL endpoint will be a long time process.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

11 | P a g e
Developing an ontology exploration application for mobile devices

For each time that the application makes a search is needed a remote SPARQL

response from Web Application.

2.2.5 A linked data framework for Android

This paper presents an API that provides data access in RDF files. Through this

solution, the applications will have a generic layer of data. Based on this idea is

developing a framework which exposing application data as linked data. [7]

To achieve this target are using a little complex architecture using the following

components:

 Activities -“is a crucial component of an Android app, the way activities are

launched and put together is a fundamental part of the platform’s application

model”. [8]

 Intents -“An intent is an abstract description of an operation to be

performed”.[9]

 Services -“is an application component that can perform long-running

operations in the background, and it doesn’t provide a user interface.[10]

 Broadcast receivers -“Base class for code that receives and handles broadcast

intents send by Context.sendBroadcast(Intent)”. [11]

 Content providers –“can help an application manage access to data stored by

itself, stored by other apps, and provide a way to share data with other

apps”.[12]

Using ContentProviders have been designed as an embedded API that offers access to

RDF content.

The process of this architecture in the base is that Content providers have been

scattering different features (HTTP requests, RDF schemas, Uri SPARQL endpoints,

etc.). The data from a Content provider to another are sending by using Intents of

Broadcast receivers components.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

12 | P a g e
Developing an ontology exploration application for mobile devices

The RDF Content Provider using some saved URIs is getting the response of RDF

data. After a successful receiving, a background service is getting the response

(RDFContentResolver) in order to decide to which provider must redirect the query.

Another special feature that implements this framework is RDFServer. Is an HTTP

server that takes incoming URIs and returns RDF to a remote RDF server. As a result,

the remote RDF server exposes the stored RDF data to the outside world.

In order to prove the concept of this framework, this paper demonstrates some

applications.

 An application that wrapped and manage the address book and the agenda as

RDF ontology.

 An application that users could annotate pictures and answer some questions

about the picture. All these operations have been done using native linked

SPARQL queries to the local RDF file.

 An RDF Browser which can give to it a URI and then displays the RDF result.

RDF Browser is a linked data client for stored RDF ontologies.

To sum up all these information’s, this project is a very interesting work with many

clever techniques and technologies. However, this solution has a complex architecture

and an unknown value of the speed response. Considering the many queries and

requests at embedded framework (from one Content Provider to another) perhaps is

not so fast process. In our application, we definitely need a more flexible solution.

2.3 Online tutorials

In this section, we present some tutorials that have studied in order to build associated

mobile applications. They helped us to get some ideas for development. Furthermore,

we tried some of these technologies in order to end up at our own conclusions.

2.3.1 Displaying SPARQL results on a mobile phone

This tutorial describes a method in order to show SPARQL results on mobile. Using

the jQuery mobile[13] (JavaScript library) to get SPARQL query results from a

remote server. For rendering the results at mobile phone used an XSLT style sheet

that can take the SPARQL Query Results XML Format. For the queries used a

DBpedia dataset.[14]

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

13 | P a g e
Developing an ontology exploration application for mobile devices

Is a very interesting approach to display SPARQL results on mobile phone and seems

to be developed a nice User Interface. However, considering the technologies that

have been used this application is a web mobile app. That means is necessary internet

connection in order to work this application.

Moreover, we prefer to develop a native mobile app, so we will use different

technologies (not JavaScript or XSLT UI). The native apps are faster and more

efficient as they work in tandem with the mobile device. Also, they are assured of

quality, as users can access them only via app stores online. [15]

2.3.2 Using ARQoid for Android-based SPARQL Query Execution

This tutorial presents two libraries to handle SPARQL queries against remote

SPARQL endpoints. The libraries are Androjena’s [16] and ARQoid [17]. [18]

The tutorial provides instructions to set up the libraries and has some examples of

how to use the included classes. Furthermore, has a demo project which was available

for download.

At first, seems this tutorial was solved a lot of our problems so we followed the

instructions an implemented to our application the suggested libraries. But in the end,

was not so simple.

The feature of these libraries is to make SPARQL queries from mobile to a remote

SPARQL endpoint and getting the proper response. However, this never worked for

our project. We tried some different queries at different endpoints with no response.

Finally, we noticed that the last update of these libraries was on the 5th of December

2010, so is not a new work. Furthermore in ARQoid page is informing the user with

that kind of issues with the following message:” ARQoid is still under development

https://www.lifewire.com/native-apps-vs-web-apps-2373133

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

14 | P a g e
Developing an ontology exploration application for mobile devices

and has been tested only with very simple queries, so don't blame us if it doesn't work

and use source code and binaries AT YOUR OWN RISK!” [17].

So these technologies are not helpful for our project.

2.4 Related applications

After the study of academic projects and some practical tutorials, it was a vital thing

to find applications that are working in real time. So we made research about

applications which have been released in our research topic and we present them.

2.4.1 Android applications

In this chapter we present related android applications for our topic. There was not

find easily this kind of applications. As you will see in this topic exists very few

applications at Google Play. However, we found and we present them at the follow

matrix.

Name of app Description Image

Sparql Droid

This application includes a

few basic semantic

technology features. The

user provides ontology and

then run SPARQL queries.

In addition, a simple (and

greatly constrained) tree-

view of the reasoned

model is provided. Is an

early release which serves

as a starting point and

Proof-of-concept.[19]

Unionpedia

Unionpedia is a concept

map for semantic network

organized like an

encyclopedic – dictionary.

It gives a brief definition

of each concept and its

relationships. The android

application is a network

client that gets data from

the web. It only works

with an internet

connection.[20]

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

15 | P a g e
Developing an ontology exploration application for mobile devices

PascoLink

Is a client-side SPARQL

endpoint browser which

supports a caching

mechanism. The

application connects with a

remote ontology and using

SPARQL queries a user

can explore the ontology.

The remote execution for

each query is a very long

time process and this

process needs every time

when a user searches

something at ontology.[21]

2.4.2 Desktop applications

We searched for some desktop applications of editing Semantic web ontology. The

variety of applications in this field is bigger than the previous one. So, we chose the

most popular and we present them. One of these applications we will use to do some

test and evaluation of our application.

Application Description

Protégé Is a popular open-source ontology editor and framework for

building intelligent systems.[22]

NeOn Toolkit An open source multi-platform ontology engineering

environment, which provides comprehensive support for the

ontology engineering life-cycle.[23]

SWOOP A small and simple ontology editor from the University of

Maryland.[24]

TopBraid Composer Is a paid Semantic Web editor which combines the world’s

leading semantic web modeling capabilities.[25]

Vitro Is an integrated ontology editor and semantic web

application.[26]

Knoodl Contains tools for creating, managing, analyzing and

visualizing RDF/OWL descriptions.[27]

Anzo for Excel Is a semantic middleware platform and set of tools to build

solutions leveraging the power of the W3C web

standards.[28]

OWLGrEd A simple graphical ontology editor for OWL.[29]

Fluent Editor A comprehensive tool for editing and manipulating complex

ontologies that use Controlled Natural Language.[30]

Semantic Turkey Is an RDF service platform for Knowledge

Management.[31]

VocBench A web-based, multilingual, collaborative development

platform for managing OWL ontologies, SKOS-XL

Thesauri, Ontolex-lemon lexicons, and generic RDF

datasets.[32]

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

16 | P a g e
Developing an ontology exploration application for mobile devices

2.5 Conclusion of related work

After studying related work, we pointed on two basic issues that are should be solved

in order to develop a stable and useful application. We list these issues and we

demonstrate the solution that we suggest and follow in order to develop our

application.

2.5.1 The long time of operations.

At the related projects many operations are executing successfully but they need a

long time. The reason for a long time processes is the using of SPARQL queries at

mobile devices. Considering that Android devices have shorter memory and

computing power compared with desktop PCs.

In our project, we solve this issue by using familiar technologies for android

development. We use the SQLite database in order to store the ontology data to the

device. Moreover, all the search operations in our application will be done by using

SQLite queries. The process of SQLite queries is faster at mobile devices than

SPARQL queries.

2.5.2 The necessity of an internet connection.

Most of the applications that we studied need an internet connection in order to

execute their functions. The SPARQL functions are executing in a remote application

server. Then the server sends the response at mobile application. This client-server

architecture needs an internet connection for all operations.

In our application, we synchronize all data of the ontology from a remote server but

only once. At the first time when the user visits the ontology is triggering an HTTP

request which targeted at the remote server. With a successful response, all ontology

data stored locally. After this operation, the ontology exists at the mobile device and

the internet connection is not a necessity.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

17 | P a g e
Developing an ontology exploration application for mobile devices

Chapter 3

System Architecture

3.1 Introduction

The application which we developed can provide a user-friendly interface to explore

an OWL ontology. In this chapter, we present the technologies and the techniques

included in order to achieve our target. We developed an application based on

Semantic Web fundamental technologies by using android software development

techniques.

3.2 Type of application and tools for developing

One of the things that we had to decide at the beginning of this project is what type of

mobile app we will develop. There are three types of mobile applications:

1. Web apps

Are hosted on web browsers and the users interact with the app through a

web view. This type of app is easy to build and easy to maintain. However,

are much slower than other application types (for example native apps),

also much less interactive and intuitive.

2. Native apps

Are built for specific platforms, are fast, responsive, offers intuitive user

input and output and they don’t require an internet connection. Overall

offer a better user experience but are more difficult to the development.

3. Hybrid apps

They are a combination of native and web apps. They consist of two parts:

1. Back-end code 2. A native shell that loads the code using a web view.

Hybrid apps are a clever solution; however, they are slower than native

apps and are not customizable to individual platforms. [33]

Considering all these we decide that the type of application which fit our purpose is

the native mobile app. We need an application to execute fast the operations and the

option to build a customizing user interface.

The second question that had to answer is in witch operating system will run our

application Android, IOS or something else? (Windows,KaiOs, etc.). [34]

We decide to build an application that could use for most people. The first conclusion

that we have reached is that Android applications could run in a bigger variety of

devices than IOS. IOS operation system could run only in Apple devices; however,

the Android operating system could run at 24.000 different devices. [35]

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

18 | P a g e
Developing an ontology exploration application for mobile devices

Moreover, we considered how many users have Android devices, how many have IOS

devices and how many have other operating systems. We found the following

statistics where they apply for May 2019:

 Android: 75,27%

 IOS: 22,74%

 Other operating systems: 1,99% [36]

Considering the above statistics is clear that most of the users are using Android

devices. So we decided to develop a Native Android application.

They exist many tools in order to build a native Android application (Eclipse, ADB,

AVD Manager, etc.). [37]

We decided to use the Android Studio because is the official integrated development

environment, is free to download and is supported not only by Google but also by a

large and active community of Android developers.

We downloaded it from the official site. The installation did not need some specific

settings. However, in the official site exists installation guidelines in order to do this

operation even easier. [38]

3.3 Design the work flow

After studying and researching our topic, we did not found a perfect solution that

could be fit in our plans. So we combined the knowledge that we gained and some

development techniques that we discovered to design our project.

The most of applications in our topic, where we discovered, have two similarities

which we believe are not the ideal way to have a usable android application.

 The internet connection is necessary to execute the operations of the

application.

 Using SPARQL queries in Android devices is a long time process.

Basically, the common weaknesses that we found were speed and the necessity of

internet resource. So, in order to solve these issues, we developed the following

architecture:

In our application, we use four different OWL ontologies. The basic mechanism to

have the ontology data is the application to do (for each ontology) HTTP request in a

remote server only once. The response request is the targeted ontology. After a

successful response, all ontology data stored at the local memory of the device. So, if

we want in the future to explore the same ontology it is not necessary to have an

internet connection. Only at first time, when the user visits ontology the application is

using internet connection.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

19 | P a g e
Developing an ontology exploration application for mobile devices

The second part of our target is to solve the issue of speed. As we discussed at

previous works, the use of SPARQL queries at mobile devices is not so wise solution

because is a long time process. The android devices compared with desktop PCs have

shorter memory and computing power.

Considering that, we decide to use a familiar with android devices technology, a

SQLite database. SQLite is a C-language library that implements a small, fast, self-

contained, high-reliability, full-featured, SQL database engine. SQLite is built into all

mobile phones and most computers and comes bundled inside countless other

applications that people use every day. [39]

After the successful HTTP response from a remote server, the application gets the

ontology data in JSON form. The application decodes this data and stored them into a

local SQLite database. After this operation, we can gain any information about

ontology by executing SQLite queries. In this way, the application can provide fast

results to the user.

To sum up, we get the ontology data, we store them and we can explore them. The

final step in order to complete the application is how these data could be displayed

and makes a user-friendly environment for exploring the ontology.

Fortunately, Android has some helpful frameworks to build an excellent user

interface. So, we used some of these and adapted them to our application.

The below graph depicts the workflow of our application. It sums up all operations

that we describe above.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

20 | P a g e
Developing an ontology exploration application for mobile devices

3.1 The workflow of Ontology Explorer application.

3.4 Screens

In this chapter demonstrates the application from the user aspect. We present the

screens of the application and the operations of each one. The total main screens are

three, moreover exists some dialogs and pop-up messages.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

21 | P a g e
Developing an ontology exploration application for mobile devices

3.4.1 First screen

The main screen of the application, the user could choose an ontology (Wine, People, Travel,

Pizza) from a dialog and view it by pressing the “SHOW” button. Consider that, if it is the first

time which the user tries to explore a specific ontology, the application makes an HTTP

request and shows an informative dialog to the user for this operation.

 3.2 Main screen. 3.3 Ontology dialog. 3.4 Syncing Ontology.

3.4.2 Second screen

Here exist the basic components of the ontology (Classes, Properties, Individuals,

etc…) into a list. User can explore them by clicking the specific item of the list. By

clicking an item, is showing a dialog with an object list. For example, if the user

chooses the “Class” item application shows a list dialog with all classes of the

ontology.

3.5 Second screen. 3.6 List dialog with classes.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

22 | P a g e
Developing an ontology exploration application for mobile devices

 The user could search the item that he wants by scrolling up or down the list dialog.

Moreover, the user can type the name of the item that he wants at the search bar of the

dialog. The application will make a search and will show the results.

3.7 Searching a class by using the search bar.

In order to explore the components of a specific item (for example the class Chianti),

the user should click on the name of it. This event will trigger the next screen.

Except for the item list, this screen has more components. The first is a Bottom menu

with a home button. By clicking this button, the application will go to the main

screen; here user could choose another ontology to explore.

3.8 Bottom menu of first screen.

Furthermore has a top screen toolbar that includes the title of current ontology, a

search button with all items of the ontology in a list format and a back arrow which

leads to the previous screen.

3.9 Toolbar of first screen.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

23 | P a g e
Developing an ontology exploration application for mobile devices

3.10 List dialog with ontology items.

3.4.3 Third screen

This screen has a dynamical list of components from the chosen item, for example, if

we choose the Chianti item from the previous screen this list will be filled with the

data of Chianti class, “SubClassOf: ItalianWine” etc.

3.11 Third screen.

If a user wants to search deeper to ontology, is needed to click a new item. In our

example had chosen Chianti class and saw their data. One of these data is

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

24 | P a g e
Developing an ontology exploration application for mobile devices

“ItalianWine” if the user wants to see the data of this component should click on it.

By clicking a new item, the list of the screen will be refreshed and will show the data

of new item, in our example user clicks “ItalianWine” item and the list shows

“EquivalentClass:_:genid170. This operation could continue by clicking the new

items.

3.12 The refreshing list after user click.

Moreover, this screen includes a bottom menu with two buttons. The first button leads

to the main activity in order to choose a different ontology. The second button leads at

the second screen which exists the basic components of current ontology, as we

describe earlier.

3.13 Bottom menu of third screen.

The last item of this screen is a top screen toolbar that shows the name of the current

item, has a search button in order to search an item instantly and has a back arrow

which leads to previous ontology item or previous screen.

3.14 Tool bar of third screen.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

25 | P a g e
Developing an ontology exploration application for mobile devices

3.5 Back-end operations

After a demonstration of application from user aspect, is vital thing to explain the

back end process for each feature and what tools we used to develop them.

In this chapter, we describe all the lifecycle of our application. Which includes HTTP

requests from the mobile to a remote server in order to get the ontology data, local

storing of these data to the device and the depiction to the user interface.

3.5.1 Ontologies and JSON format.

In order to make these ontologies capable to connect remotely, we use a specific

format for the ontology data, the JSON format. The JavaScript Object Notation

(JSON) is an open-standard file format that uses human-readable text to transmit data

objects consisting of attribute-value pairs and array data types (or any other

serializable value). [40]

The first step is to make the ontologies at JSON format. For this operation, we used

the protégé, which is a desktop software to edit ontologies. We demonstrate step by

step the settings that we followed:

1. Download and install the Protégé.

Protégé is a popular open source project, furthermore, it is free. So, we

downloaded the latest version from the official site [22]. Following the

instructions from site, we easy done the installation to our pc.

2. Open the ontology to protégé

The next step is to open the ontologies to Protégé we did it by this path:

File -> Open from URL

3.15 Open ontology from URL at Protégé.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

26 | P a g e
Developing an ontology exploration application for mobile devices

After this, a dialog shows with some ontologies where exist at Web. We

choose one by one the ontologies (Wine, People, Travel, and Pizza).

3.16 Choosing an ontology.

3. Save the ontology with JSON format.

Protégé downloaded the chosen ontology from the web and load it locally.

After this operation, the next step was to save the ontology with JSON format.

3.17 Saving an ontology with JSON format.

We continued these steps for each ontology and finally, we had four JSON

files. We demonstrate the “Chianti” class of Wine ontology, how to depicts in

a JSON file.

"@id" : "http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#Chianti",

 "@type" : ["http://www.w3.org/2002/07/owl#Class"],

 "http://www.w3.org/2000/01/rdf-schema#subClassOf" : [{

 "@id" : "http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#ItalianWine"

 }, {

 "@id" : "_:genid97"

 }, {
 "@id" : "_:genid101"

 }, {

 "@id" : "_:genid102"

 }, {

 "@id" : "_:genid103"

 }, {

 "@id" : "_:genid104"

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

27 | P a g e
Developing an ontology exploration application for mobile devices

 }, {

 "@id" : "_:genid105"

 }]

},
3.18 “Chianti” class with JSON format.

3.5.2 The remote server

We made the ontologies with JSON format, now we need a server to store them. For

this operation, we used a helpful tool for the Myjson web application. [41]

Myjson is a place to storing configuration file for client-side models. So, we

transferred the ontologies with JSON format into the Myjson application server. Then

the application server provided a URL for each ontology. Using this URL we have

access to ontology data from a mobile device. The provided URLs are the following:

 Wine ontology - https://api.myjson.com/bins/14u1dt

 People ontology-https://api.myjson.com/bins/ulhfy

 Travel ontology- https://api.myjson.com/bins/1ecqmm

 Pizza ontology-https://api.myjson.com/bins/uafji

3.5.3 HTTP request from mobile.

The next step was to construct a client mechanism at the mobile device, we developed

this feature by using a powerful library “Retrofit”. [42]

“Retrofit” library provides all the necessary methods for HTTP requests through a

very helpful Java interface.

Firstly, we included the “Retrofit” library to our project. To solve this we use the

Grandle file. Grandle file is an advanced build toolkit to automate and manage the

build process, is used by Android Studio. [43]

Using Gradle file the only thing that needs to include the “Retrofit” library is to add

the proper externalNativeBuild block. This is a link that leads to the library

repository. After this, the Gradle is syncing the files of the library with the Android

project.

compile 'com.squareup.retrofit2:retrofit:2.3.0'

compile 'com.squareup.retrofit2:converter-gson:2.2.0'

 3.19 The external link of “Retrofit” library.

Using all necessary tools of “Retrofit” library we developed a method to making

HTTP calls at the remote server. This method takes the specific URL of each

ontology as a parameter.

https://api.myjson.com/bins/14u1dt
https://api.myjson.com/bins/ulhfy
https://api.myjson.com/bins/1ecqmm
https://api.myjson.com/bins/uafji

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

28 | P a g e
Developing an ontology exploration application for mobile devices

public void callOntology(String query){

 Retrofit retrofit = new

Retrofit.Builder().baseUrl("https://api.myjson.com/").

 addConverterFactory(GsonConverterFactory.create()).build

 final Api api = retrofit.create(Api.class);

 call2 = api.getWineOntology(query);

 call2.enqueue(new Callback<JsonArray>() {

 @Override

 public void onResponse(Call<JsonArray> call, Response<JsonArray>

response) {

 decodingResponse = new DecodingResponse(MainActivity.this,

 String.valueOf(response.body()),

 ontologySelection);

 progressDialog.dismiss();

 Intent myIntent = new Intent(MainActivity.this,

OntologyData.class);

 startActivity(myIntent);

 }

 @Override

 public void onFailure(Call<JsonArray> call, Throwable t) {

 Toast.makeText(getApplicationContext(),

 "No internet connection",Toast.LENGTH_SHORT).show();

 Log.d("TAG_ERROR", t.getMessage());

 }

 });

}

3.20 The method to get ontology data from server

3.5.4 Decoding the response

After a successful call to server, we need to decode the response. The server response

is all the ontology in JSON format, as we described at the previous chapter. For JSON

decoding we developed a model that makes the proper operations to gain only the

usable information of ontology.

For decode, the server response, each component of ontology needs a different model

(Class model, Individual model, Property model, etc.). The model is capable to

decode the response and save the necessary information to a local SQLite database.

Using this technique the HTTP call will become only at first time when the user visits

the ontology.

public void decodingProperty(Context context,final String

propertyStr,Integer objectID){

 MyAppDatabase myAppDatabase =

MyAppDatabase.getAppDatabase(context);

 try {

 JSONArray propertyArray = new JSONArray(propertyStr);

 for(int j=0; j<propertyArray.length();j++){

 JSONObject jo2 = propertyArray.getJSONObject(j);

 String propertyHelp = jo2.getString("@id");

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

29 | P a g e
Developing an ontology exploration application for mobile devices

 if(propertyHelp.contains("#")){

 propertyHelp = gFunctions.

 seperatedResponse(jo2.getString("@id"));

 }

 Property property = new Property();

 property.setObjectId(objectID);

 property.setProperty(propertyHelp);

 myAppDatabase.MyDao().addProperty(property);

 ObjectData objectData = new ObjectData();

 objectData.setObjectId(objectID);

 objectData.setModel("Property");

 objectData.setValue(propertyHelp);

 myAppDatabase.MyDao().addObjectData(objectData);

 }

 } catch (JSONException e) {

 e.printStackTrace();

 }

}

3.21 The method to decode properties.

3.5.5 Local Storing

To handle SQLite database operations we used another powerful Android library the

“Room”. This library provides an abstraction layer over SQLite for more robust

database access. [44]

We used the Grandle file in order to include it at our project, in the same way as we

did before with “Retrofit” library.

implementation 'android.arch.persistence.room:runtime:1.0.0'

annotationProcessor 'android.arch.persistence.room:compiler:1.0.0'

3.22 The external link of “Room” library.

Using the tools that this library provides we developed our database schema and the

necessary SQLite queries for our project.

@Insert(onConflict = IGNORE)

public long addOTO(ObjectTypeOntology oto);

@Query("select * from ObjectTypeOntology where oto_ontology

=:ontology group by oto_type")

public List<ObjectTypeOntology> getOntologyTypes(String ontology);

@Query("select oto_object from ObjectTypeOntology where oto_type

=:type and oto_ontology=:ontology")

public List<String> getObjectsFromType(String type,String ontology);

3.23 Some SQLite queries in the project.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

30 | P a g e
Developing an ontology exploration application for mobile devices

The application uses three tables for all operations (ObjectTypeOntology, ObjectData,

and Ontology). We used the DB Browser for SQLite, which is a helpful tool in order

to view the database data during the development. [45]

Follows a description of the fields for each table.

1. ObjectTypeOntology fields:

 id - An auto-generate field in order to have a unique item for each row of

the table.

 oto_object - The name of the decoding object.

 oto_type - The type of each object.

 oto_ontology - The ontology of each object.

3.24 The ObjectTypeOntology table.

2. ObjectData fields:

 id- An auto-generate field in order to have a unique item for each row of

the table.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

31 | P a g e
Developing an ontology exploration application for mobile devices

 object_data_object_id - The object id from table ObjectTypeOntology.

 object_data_model - The model of the object.

 object_data_value - The value of the object.

3.25 The ObjectData table.

3. Ontology fields

 id - An auto-generate field in order to have a unique item for each row

of the table.

 ontology_name – the name of each ontology.

 ontology_url – the targeting URL from the remote server of each

ontology.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

32 | P a g e
Developing an ontology exploration application for mobile devices

3.26 The Ontology table.

3.5.6 User Interface

In this chapter, we will describe the components that we used in order to build the

user interface of the application. Considering that we design it for mobile devices, so

depending on the screen size the interface should be different than desktop

applications.

Android provides to developer a variety of pre-built UI components that allow

building the graphical user interface for the app. [46]

We describe all the user interface components where we used in our project and the

operation of each one, at the bellowing table.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

33 | P a g e
Developing an ontology exploration application for mobile devices

Component name Component description

ConsraintLayout Allows to position and size UI elements in a flexible way.

[47]

ToolBar A component within the activity that might display other

interactive items. [48]

Button An element which the user can tap in order to perform an

action. [48]

BottomNavigationView Represents a bottom navigation bar for an application.

[49]

TextView An element which displays a text to the user. [50]

SearchableSpinner A drop-down list which user can select one option. [51]

RecyclerView A flexible view in order to provide a limited window into

a large data set. [52]

CardView A frame with a rounded corner background and shadow.

[53]

ImageView This element is used to display an image resource [54]

LinearLayout A view group which aligns all children in a single

direction (vertically or horizontally). [55]

ScrollView A view group which allows the view placed within it to be

scrolled. [56]

ListView A view of a vertical-scrollable collection of items. [57]

Dialog A small window which includes a message or prompts the

user to make a decision. [58]

Bellow we demonstrate the source code of material_card.xml file; this file includes a

CardView, a LinearLayout and a TextView.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

34 | P a g e
Developing an ontology exploration application for mobile devices

<?xml version="1.0" encoding="utf-8"?>

<android.support.v7.widget.CardView

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:id="@+id/cardView"

 android:layout_width="match_parent"

 android:layout_height="50dp"

 android:layout_marginTop="8dp"

 app:cardCornerRadius="8dp"

 app:cardElevation="8dp">

 <LinearLayout

 android:id="@+id/types_linear_layout"

 android:background="#0DAE1A"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:clickable="true"

 android:focusable="true"

 android:foreground="?attr/selectableItemBackground"

 android:orientation="vertical">

 <TextView

 android:id="@+id/tv_type"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_gravity="center"

 android:layout_toEndOf="@+id/imageView_list"

 android:layout_toRightOf="@+id/imageView_list"

 android:layout_marginTop="10dp"

 android:text="TextView"

 android:textStyle="bold"

 android:textColor="#483D8B"

 android:textSize="20dp" />

 </LinearLayout>

</android.support.v7.widget.CardView>

3.27 material_card.xml file

3.6 Files and Classes

In this chapter we will demonstrate all application files, classes and their operations

that we used in order to build our application. In our project we have 33 java classes

and 4 XML files.

Name of Java class Description of Java class

Api.class Includes the method of the HTTP request to the

remote server.

CardItem Handling the items of RecyclerView list at the second

screen.

CheckValues Validation of server response and collection the

existing fields of ontology.

DecodingResponse Decoding of server response and saving the data to

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

35 | P a g e
Developing an ontology exploration application for mobile devices

the local database.

GeneralFunctions Includes support methods that are used at multiple

classes (example separation of String).

MainActivity The handler of all functions for the first screen.

MyAppDatabase Includes the necessary methods for Initializing the

database of the application.

MyDao Includes all SQLite queries where the application is

using.

ObjectData The components of the ObjectData table.

ObjectDepiction Handler of all functions for third screen.

ObjectTypeOntology The components of ObjectTypeOntology table.

Ontology The components of Ontology table.

OntologyData The handler of all functions for the third screen.

PrefsHandler Keeps the current ontology to a temporary file.

RecyclerTypeListAdapter Adapts the items of RecyclerView list.

SampleSearchModel Helps to search an object to current ontology.

Model classes 17 classes where decoding each component of the

Ontology: AllValueFrom, Cardinality,

DistrictMembers, Domain, EquivalentClass,

HasValue, IntersectionOf, InverseOf,

MaxCardinality, MinCardinality, OneOf, Property,

Range, SomeValuesFrom, SubClassOf,

SubPropertyOf, UnionOf.

Name of XML file Description of XML file

activity_main.xml The user interface of the first screen.

activity_ontology_data.xml The user interface of the second screen.

activity_object_depiction.xml The user interface of the third screen.

material_card A support file which depicts each item

from RecyclerView list at the second

screen.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

36 | P a g e
Developing an ontology exploration application for mobile devices

Chapter 4

Usability evaluation

4.1 Introduction

In this chapter, we demonstrate the experiments where we have done in order to

evaluate the usability of Ontology Explorer Android application.

Firstly we created ten scenarios in order for the users to find some specific data from

the ontologies. The users first tried to found the data to our application then at a

desktop application Protégé.

Firstly we created ten scenarios in order for the users to find some specific data from

the ontologies. The users first tried to found the data to our application then at a

desktop application “Protégé”.

4.2 Scenarios

From Wine ontology the user should find the below data:

 Find the data type property of Wine ontology.

 Find the maker of ChiantiClassico wine.

 Find the color of Chianti wine.

From People ontology the user should find the below data:

 Find the intersections of woman class.

 Find what a giraffe eats.

From Travel ontology the user should find the below data:

 Find the data type properties of Travel ontology.

 Find the superclass of the Hotel.

From Pizza ontology the user should find the below data:

 Find the range of “has Ingredient” property.

 Find the toppings of Margherita Pizza.

 Find the toppings of American Pizza.

4.3 Experiment preparation

The experiments became by using specific devices:

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

37 | P a g e
Developing an ontology exploration application for mobile devices

 For Android application we used an MLS smartphone:

o Model: MLS F5

o Operating system: Android 7.0

o RAM: 2GB

o CPU: Cortex-A7, 4 cores, 1.2GHz

 For Protégé application we used an ASUS ultrabook:

o Model: Asus ZenBook 14΄

o Operating system: Windows 10

o RAM: 8GB

o CPU: Intel Core i5, 2.5GHz

Before the experiment, we demonstrated both applications (Ontology Explorer,

Protégé). When the user had understood the basic operations for each software the

experiment begins. The time of the demonstration was between 5 to 10 minutes,

depending on the user experience. Mention that some users are familiar with the

Protégé application.

During the experiment, the user tries to answer the questions where we described

before. We did not stop the experiment until the user answers correctly all of the

questions.

 4.4 Usability evaluation to the Android application

All the users tested first the Android application. The four ontologies are synced

before the experiment in a local database in order for the users to not spending time

during the experiment for this operation. We want to know only the needed time that a

user to find some results at the Android application. The experiment results exist at

the following table:

User Time

Petros` 07:57.70 sec

Eirene 12:22.20 sec

Eythimis 05:49.65sec

Manos 06:10.08 sec

Giannis 05:36.63 sec

Maria 14:53.02 sec

Kostas 15:10.34 sec

Hlias 08:23.20 sec

Dimitris 08:01.55 sec

Nikos 09:20.01 sec

4.5 Comparison the results with Protégé

The next step was the user to answer the same questions by using the desktop

application Protégé. We have stored locally to the laptop all ontologies that we needed

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

38 | P a g e
Developing an ontology exploration application for mobile devices

in order to not spending time when we loaded them to Protégé, like previous in

Android application. We present the comparison results at the following table:

User Android app

time

Protégé time Familiar with

Protégé

Petros 7:57.70 sec 11:39.50 sec No

Eirene 12:22.20 sec 18:09.05 sec No

Eythimis 05:49.65sec 09:24.18 sec Yes

Manos 06:10.08 sec 12:32.05 sec Yes

Giannis 05:36.63 sec 15:02.41 sec No

Maria 14:53.02 sec 20:31.22 sec No

Kostas 15:10.34 sec 19:42.55 sec No

Hlias 08:23.20 sec 12:50.01 sec Yes

Dimitris 08:01.55 sec 13:25.12 sec No

Nikos 09:20.01 sec 13:53.16 sec No

Although the experiment sample is not so big we could conclude that all users find the

results at Android application faster. Of course in Protégé the user could make more

operations like developing a new ontology or make custom SPARQL queries.

However, in these experiments, we studied how fast a user can explore an ontology.

In this sample, the Android application that we developed is faster than Protégé.

After the experiment, some users said that one of the vital benefits in Ontology

Explorer application is the simple UI. Protégé has more buttons and tags in the UI

because, as we said before, has more features.

4.6 Testing the speed performance

After the user interaction experiments, we tested the application in multiple devices.

In order to validate if the application is stable at different versions of the Android

operating system.

Moreover, another useful aspect is to know the time that application needs to make

the synchronization operation: HTTP request to the remote server, decode the

response, storing it at the local database. We used the following devices in our

experiment:

Device Model Op. System RAM CPU Type

Device 1 MLS F5 Android 7.0 2GB Quad core,

1.2GHz

Smartphone

Device 2 Sumsung

Prime

Android

5.0.2

1GB Quad core,

1.2GHz

Smartphone

Device 3 Sumsung

Galaxy

TAB pro

Android

4.4.2

2GB Quad core,

1.3 GHz

Tablet

Device 4 Sumsung J3 Android 8.1 2GB Quad core,

1.4GHz

Smartphone

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

39 | P a g e
Developing an ontology exploration application for mobile devices

We installed the application at different devices and we timed the decoding operation.

The results are demonstrated at the following table:

Device Wine People Travel Pizza

Device 1 18.87 sec 5.57 sec 4.80 sec 11.77 sec

Device 2 21.44 sec 5.44 sec 4.06 sec 14.15 sec

Device 3 20.54 sec 6.51 sec 4.28 sec 15.43 sec

Device 4 21.18 sec 5.55 sec 3.72 sec 13.88 sec

We observe that the time to synchronize all ontology data from the remote server

depends on ontology size. The Wine ontology has more data than People ontology so

needs more time for synchronization.

Furthermore, the synchronization operation does not need much time to conclude. The

longer time in our experiment is 21.44 sec when the device 2 is synchronizing the

Wine ontology.

It is a logical time value because this operation executes only at first time when the

user visits a specific ontology. When this operation finished the ontology exists

locally at the mobile device. So, if the user wants to see again the ontology the

execution will be instant.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

40 | P a g e
Developing an ontology exploration application for mobile devices

Chapter 5

Conclusion and future work

5.1 General conclusion

OWL ontologies are an interesting and helpful way to depict a dataset. It is a general

format which in the future could have more and more usages. The major benefit of it

is that is easy to read from people, so it is simple to make a search on it.

Many desktop applications exist in order to handle OWL ontologies. However, at

mobile devices all related applications are in experimental stage. In order to provide a

solution of this issue we developed the Ontology Explorer. It is an innovating Android

application that the user could explore OWL ontologies.

We achieve this target by using a combination of tested technologies from Android

platform and new approach for handling OWL ontologies. Through some experiments

of usability evaluation of application we conclude that is a helpful and practical

useful.

However, the application could extend the features and be even more useful.

5.2 Future work

As we described above, considering the experiments the application is practically

useful. However, if extends some feature could be even more helpful for the users.

We demonstrate some suggestions for future work:

 One of the future features that the Ontology Explorer application could have is

to sync a new custom ontology from the user. Now the application has four

OWL ontologies that triggered by internal URLs. In this basis, the user will

load a new ontology by typing the proper URL at Ontology Explorer

application.

 Another feature that could have the application is the operation to modify an

ontology. After syncing, the user could create/delete a component of the

ontology (class, property, etc.)

 The last suggestion for future work is to develop a tablet version. The

Ontology Explorer application runs in tablets, however, it uses the same UI as

the smartphones. As a result, is that we have a lot of not used space because

the screen of the tablet is bigger than a smartphone. So, a version which fits in

the tablet screen will be very useful.

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

41 | P a g e
Developing an ontology exploration application for mobile devices

References

[1] Yus, R., Bobed, C., Esteban, G., Bobillo, F., & Mena, E. (2013, July). Android

goes Semantic: DL Reasoners on Smartphones. In Ore (pp. 46-52).

[2] Semantic reasoner. (2019, May 12). Retrieved from

https://en.wikipedia.org/wiki/Semantic_reasoner

[3] Dalvik (software). (2019, May 05). Retrieved from

https://en.wikipedia.org/wiki/Dalvik_(software)

[4] Bobed, C., Bobillo, F., Yus, R., Esteban, G., & Mena, E. (2014). Android Went

Semantic: Time for Evaluation. In ORE (pp. 23-29).

[5] Becker, C., & Bizer, C. (2008). DBpedia Mobile: A Location-Enabled Linked

Data Browser. Ldow, 369, 2008.

[6] d'Aquin, M., Nikolov, A., & Motta, E. (2011). Building SPARQL-enabled

applications with android devices.

[7] Roşoiu, M., David, J., & Euzenat, J. (2012, May 27). A Linked Data Framework

for Android. Retrieved from https://link.springer.com/chapter/10.1007/978-3-662-

46641-4_15

[8] Introduction to Activities | Android Developers. (n.d.). Retrieved from

https://developer.android.com/guide/components/activities/intro-activities

[9] Android Developers. (2019). Intent | Android Developers. (n.d.). Retrieved from

https://developer.android.com/reference/android/content/Intent

[10] Services overview | Android Developers. (n.d.). Retrieved from

https://developer.android.com/guide/components/services

[11] BroadcastReceiver | Android Developers. (n.d.). Retrieved from

https://developer.android.com/reference/android/content/BroadcastReceiver

[12] Content providers | Android Developers. (n.d.). Retrieved from

https://developer.android.com/guide/topics/providers/content-providers.

[13] JS Foundation. (n.d.). A Touch-Optimized Web Framework. Retrieved from

http://jquerymobile.com/

[14] B. D. (2011, October 4). Displaying SPARQL results on a mobile phone.

Retrieved from http://www.snee.com/bobdc.blog/2011/10/displaying-sparql-results-

on-a.html

https://en.wikipedia.org/wiki/Dalvik_(software)
https://link.springer.com/chapter/10.1007/978-3-662-46641-4_15
https://link.springer.com/chapter/10.1007/978-3-662-46641-4_15
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/services
https://developer.android.com/reference/android/content/BroadcastReceiver
http://jquerymobile.com/
http://www.snee.com/bobdc.blog/2011/10/displaying-sparql-results-on-a.html
http://www.snee.com/bobdc.blog/2011/10/displaying-sparql-results-on-a.html

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

42 | P a g e
Developing an ontology exploration application for mobile devices

[15] Viswanathan. (2019, May 21). Should You Develop a Native App or a Web

App? Retrieved from https://www.lifewire.com/native-apps-vs-web-apps-2373133

[16] Google Code Archive - Long-term storage for Google Code Project Hosting.

(n.d.). Retrieved from https://code.google.com/archive/p/androjena/downloads

[17] Google Code Archive - Long-term storage for Google Code Project Hosting.

(n.d.). Retrieved from

https://code.google.com/archive/p/androjena/wikis/ARQoid.wiki

[18] Read, D. (2011, December 01). Using ARQoid for Android-based SPARQL

Query Execution. Retrieved from https://monead.com/blog/?p=1420

[19] Sparql Droid - Apps on Google Play. (n.d.). Retrieved from

https://play.google.com/store/apps/details?id=com.monead.semantic.android.sparql

[20] Unionpedia - Apps on Google Play. (n.d.). Retrieved from

https://play.google.com/store/apps/details?id=org.unionpedia

[21] PascoLink - Apps on Google Play. (n.d.). Retrieved from

https://play.google.com/store/apps/details?id=forth.ics.pascolink

[22] Stanford Center for Biomedical Informatics Research. (n.d.). A free, open-source

ontology editor and framework for building intelligent systems. Retrieved from

https://protege.stanford.edu/

[23] NeOn Wiki. (n.d.). Retrieved from http://neon-toolkit.org/wiki/Main_Page.html

[24] SWOOP. (n.d.). Retrieved from https://www.w3.org/2001/sw/wiki/SWOOP

[25] TopBraid Composer - Maestro Edition. (n.d.). Retrieved from

https://www.topquadrant.com/products/topbraid-composer/

[26] Vivo-Project. (2019, May 08). Vivo-project/Vitro. Retrieved from

https://github.com/vivo-project/Vitro

[27] Knoodl. (n.d.). Retrieved from http://knoodl.com/

[28] Anzo. (n.d.). Retrieved from https://www.w3.org/2001/sw/wiki/Anzo

[29] Finally, an easy wayto work with ontologies. (n.d.). Retrieved from

http://owlgred.lumii.lv/

[30] Cognitum Company. (n.d.). Data-Driven Digital Transformation with A.I.

Retrieved from https://www.cognitum.eu/Semantics/FluentEditor/

[31] Semantic Turkey. (n.d.). Retrieved from http://semanticturkey.uniroma2.it/

[32] VocBench. (n.d.). Retrieved from http://vocbench.uniroma2.it/

https://www.lifewire.com/native-apps-vs-web-apps-2373133
https://code.google.com/archive/p/androjena/downloads
https://code.google.com/archive/p/androjena/wikis/ARQoid.wiki
https://monead.com/blog/?p=1420
https://play.google.com/store/apps/details?id=com.monead.semantic.android.sparql
https://play.google.com/store/apps/details?id=org.unionpedia
https://play.google.com/store/apps/details?id=forth.ics.pascolink
https://protege.stanford.edu/
http://neon-toolkit.org/wiki/Main_Page.html
https://www.w3.org/2001/sw/wiki/SWOOP
https://www.topquadrant.com/products/topbraid-composer/
https://github.com/vivo-project/Vitro
http://knoodl.com/
https://www.w3.org/2001/sw/wiki/Anzo
http://owlgred.lumii.lv/
https://www.cognitum.eu/Semantics/FluentEditor/
http://semanticturkey.uniroma2.it/
http://vocbench.uniroma2.it/

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

43 | P a g e
Developing an ontology exploration application for mobile devices

[33] A Guide to Mobile App Development: Web vs. Native vs. Hybrid. Retrieved

from https://clearbridgemobile.com/mobile-app-development-native-vs-web-vs-

hybrid/

[34] Mobile operating system. (2019, June 25). Retrieved from

https://en.wikipedia.org/wiki/Mobile_operating_system

[35] Devices. (n.d.). Retrieved from https://www.android.com/devices/

[36] Mobile Operating System Market Share Worldwide. (n.d.). Retrieved from

http://gs.statcounter.com/os-market-share/mobile/worldwide

[38] Top 20 Tools for Android Development. (n.d.). Retrieved from

https://www.altexsoft.com/blog/engineering/top-20-tools-for-android-development/

[37] Download Android Studio and SDK tools. (n.d.). Retrieved from

https://developer.android.com/studio/?gclid=Cj0KCQjw3PLnBRCpARIsAKaUbgt3d

g-

Qz9yDrVl8X1SZOtCJxU3ZhRuHqAV6Ai3n4AFSuSvtZsOVEYAaAsxfEALw_wcB

[39] (n.d.). Retrieved from https://www.sqlite.org/index.html

[40] JSON. (2019, June 27). Retrieved from https://en.wikipedia.org/wiki/JSON

[41] { } myjson. (n.d.). Retrieved from http://myjson.com/about

[42] Retrofit. (n.d.). Retrieved from https://square.github.io/retrofit/

[43] Configure your build | Android Developers. (n.d.). Retrieved from

https://developer.android.com/studio/build

[44] Room| Android Developers. (n.d.). Retrieved from

https://developer.android.com/jetpack/androidx/releases/room

[45] DB Browser for SQLite. (n.d.). Retrieved from https://sqlitebrowser.org/

[46] User Interface & Navigation | Android Developers. (2019). Retrieved from

https://developer.android.com/guide/topics/ui

[47] ConstraintLayout | Android Developers. (2019). Retrieved from

https://developer.android.com/reference/android/support/constraint/ConstraintLayout

[48] ActionBar | Android Developers. (2019). Retrieved from

https://developer.android.com/reference/androidx/appcompat/app/ActionBar.html

[48] Button | Android Developers. (2019). Retrieved from

https://developer.android.com/reference/android/widget/Button

https://clearbridgemobile.com/mobile-app-development-native-vs-web-vs-hybrid/
https://clearbridgemobile.com/mobile-app-development-native-vs-web-vs-hybrid/
https://en.wikipedia.org/wiki/Mobile_operating_system
https://www.android.com/devices/
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.altexsoft.com/blog/engineering/top-20-tools-for-android-development/
https://developer.android.com/studio/?gclid=Cj0KCQjw3PLnBRCpARIsAKaUbgt3dg-Qz9yDrVl8X1SZOtCJxU3ZhRuHqAV6Ai3n4AFSuSvtZsOVEYAaAsxfEALw_wcB
https://developer.android.com/studio/?gclid=Cj0KCQjw3PLnBRCpARIsAKaUbgt3dg-Qz9yDrVl8X1SZOtCJxU3ZhRuHqAV6Ai3n4AFSuSvtZsOVEYAaAsxfEALw_wcB
https://developer.android.com/studio/?gclid=Cj0KCQjw3PLnBRCpARIsAKaUbgt3dg-Qz9yDrVl8X1SZOtCJxU3ZhRuHqAV6Ai3n4AFSuSvtZsOVEYAaAsxfEALw_wcB
https://www.sqlite.org/index.html
https://en.wikipedia.org/wiki/JSON
http://myjson.com/about
https://square.github.io/retrofit/
https://developer.android.com/studio/build
https://developer.android.com/jetpack/androidx/releases/room
https://sqlitebrowser.org/
https://developer.android.com/guide/topics/ui
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/androidx/appcompat/app/ActionBar.html
https://developer.android.com/reference/android/widget/Button

Thesis statement
TEI-Crete, 2019 |Dept. Informatics engineering

44 | P a g e
Developing an ontology exploration application for mobile devices

[49] BottomNavigationView | Android Developers. (2019). Retrieved from

https://developer.android.com/reference/android/support/design/widget/BottomNavig

ationView

[50] TextView | Android Developers. (2019). Retrieved from

https://developer.android.com/reference/android/widget/TextView

[51] A Searchable Spinner in Android ~ Life News. (2019). Retrieved from

https://life-news.blog/2018/11/16/a-searchable-spinner-in-android/

[52] RecyclerView | Android Developers. (2019). Retrieved from

https://developer.android.com/reference/android/support/v7/widget/RecyclerView

[53] CardView | Android Developers. (2019). Retrieved from

https://developer.android.com/reference/android/support/v7/widget/CardView

[54] ImageView | Android Developers. (2019). Retrieved from

https://developer.android.com/reference/android/widget/ImageView

[55] Linear Layout | Android Developers. (2019). Retrieved from

https://developer.android.com/guide/topics/ui/layout/linear

[56] ScrollView | Android Developers. (2019). Retrieved from

https://developer.android.com/reference/android/widget/ScrollView

[57] Linear Layout | Android Developers. (2019). Retrieved from

https://developer.android.com/guide/topics/ui/layout/linear

[58] Dialogs | Android Developers. (2019). Retrieved from

https://developer.android.com/guide/topics/ui/dialogs

https://developer.android.com/reference/android/support/design/widget/BottomNavigationView
https://developer.android.com/reference/android/support/design/widget/BottomNavigationView
https://developer.android.com/reference/android/widget/TextView
https://life-news.blog/2018/11/16/a-searchable-spinner-in-android/
https://developer.android.com/reference/android/support/v7/widget/RecyclerView
https://developer.android.com/reference/android/support/v7/widget/CardView
https://developer.android.com/reference/android/widget/ImageView
https://developer.android.com/guide/topics/ui/layout/linear
https://developer.android.com/reference/android/widget/ScrollView
https://developer.android.com/guide/topics/ui/layout/linear

	2.1 Introduction
	2.2 Academic work
	2.2.1 Android goes Semantic: DL Reasoners on Smartphones.
	2.2.2 Android went Semantic: Time for Evaluation.
	2.2.3 DBpedia Mobile: A Location-Enabled Linked Data Browser.
	2.2.4 Building SPARQL-Emabled Applications with Android Devices.
	2.2.5 A linked data framework for Android
	To sum up all these information’s, this project is a very interesting work with many clever techniques and technologies. However, this solution has a complex architecture and an unknown value of the speed response. Considering the many queries and req...
	2.3 Online tutorials
	In this section, we present some tutorials that have studied in order to build associated mobile applications. They helped us to get some ideas for development. Furthermore, we tried some of these technologies in order to end up at our own conclusions.
	2.3.1 Displaying SPARQL results on a mobile phone
	2.3.2 Using ARQoid for Android-based SPARQL Query Execution
	2.4 Related applications
	After the study of academic projects and some practical tutorials, it was a vital thing to find applications that are working in real time. So we made research about applications which have been released in our research topic and we present them.
	2.4.1 Android applications
	2.4.2 Desktop applications
	3.1 Introduction
	3.3 Design the work flow
	3.4 Screens
	In this chapter demonstrates the application from the user aspect. We present the screens of the application and the operations of each one. The total main screens are three, moreover exists some dialogs and pop-up messages.
	3.4.1 First screen
	3.4.2 Second screen
	3.4.3 Third screen
	3.5 Back-end operations
	3.5.1 Ontologies and JSON format.
	3.5.2 The remote server
	3.5.3 HTTP request from mobile.
	3.5.4 Decoding the response
	3.5.5 Local Storing
	3.5.6 User Interface
	3.6 Files and Classes
	References

