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Abstract

We develop design methodology for implementing and validating hierarchical GNU/Linux security
primitives on top of a hardware Network-on-Chip (NoC) Firewall mechanism embedded in an FPGA
development board (ARMv7-based Zedboard). Our open source multi-layer design framework enables
modularity and reuse across different use cases and interfaces to system tools, such as Grace, HeatMap, and
Secure Event Correlator (SEC) for high-level security visualization and notification services.

Focusing on a realistic out-of-hospital use-case that involves soft real-time ECG data processing on a
Hosptial Media Gateway server, we demonstrate how mid-level driver layer can be extended to implement
high-level system security primitives for supporting a) data privacy and anonymity via SHA-3 algorithms,
and b) NoC-based firewall access control of on—chip BRAM memory from internal denial-of-service attacks
by mapping to Linux group id. Our experimental results on Zedboard demonstrate low overhead of our
security primitives.



Iepiinyn

Xmv mopovca epyucio avamtdydnke pio pebodoroyia oyediaonc yio v vhomoinen kot emPefainon evoc
epapywod GNU/Linux driver mov ompiletonr 6e éva unyovicpnd  Awktoov-ce-tout (NoC) Firewall
evoopotouévo ae FPGA (ARMv7-based Zedboard). H oyedioon molhomA®v emmeédov avoryTtod KOSIKO
EMTPEMEL TNV SOPOPPOGT KOl  EMAVEYPNCIHOTOINGT KaTd TEPITTOON VANPECIOV GLGTIIOTOC KOl TNV
nopdAinin SlochvdeoT) e epyodeio onTIKOTOMN GG GLGTHILOTOC, 0TMC To Grace, HeatMap, kot Secure Event
Correlator (SEC) 110 vymhov emmédov vanpecieg onTikomoinong Kot e180moinons fepdtov acpdielac.
Ectidlovtag e éva pealictikd cevdplo Telemedicine mov mepthapfdvel o) HeTaQopd GE TPUYILATIKO YPOVO
KOPIOAOYIKOV SEG0UEVOV 0GOEVOV, E1O1KOTEPO CUATOV NAEKTPOKUPSI0YPUPT|LATOC OV AdUfdvovTol amd
wearable pulse sensors (ST BodyGateway), oe £éva dokopoti] Hospital Media Gateway ywo avdAvon kot
onTKonoinon, mapovcidlovpe [ ENEKTOGT] TOV ecaio emmédov Tov Hierarhical Driver yio yio vroctpién
) TPOGTOGIOG TPOGOMKAMV Sed0UEVOV NEGH avavouioc acbevaov (SHA-3 hash), kon B) éleyyo mpdoPaonc
nécm Linux group id g kpicymg mAnpogopiog mov Ppicketar 6ty BRAM péco yp1org Tel}ong TpocTaciog
610 Aiktvo-ce-1o1r (NoC) mov mpoctatevel Ta Sedopéva omd E6OTEPIKEG EMBEGES TpOGPacnc 1 dpvnong
gbompémone. To mepapotikd amoteAéopotd poc ywo to Zedboard amodsucvoovv younAd KOGTOS TOV
TPOTOKOAL®V aGQUAEiaC.
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Chapter 1 — Introduction

The issue of data privacy and security in eHealth is of paramount importance, since security risks increase
when patient data is being disclosed in eHealth systems and networks. By all means, users must rest
reassured that private data is kept confidential when accessing different electronic healthcare services. In this
context, a well designed security scheme is necessary to protect users by ensuring the privacy of transferred
or processed sensitive data.

More specifically, focusing on an ideal data privacy protection scheme that thwarts threats from on-chip
logical attacks, and assuming that each patient has a unique eHealth record (patient No) that could be
distributed to his doctor (simple user) freely or upon demand, we attempt to ensure a) that each doctor can
access only patient data that he has permission to, and b) patient identity (including wearable pulse sensor
MAC address) are hidden by using patient No (and possibly a key) for validation. Thus, in this thesis, we
attempt to design and implement modular firmware security solutions that

e support anonymity of patient data in FPGA memory by hashing to an appropriate location in FPGA
memory (BRAM) using the unique patient No.

e protect patient data (hashed in system memory) when it must be exchanged with physicians for
processing and visualization by providing hardware-based access control mechanisms. More
specifically, we prevent access from malicious or unauthorized physicians by setting firewall rules
(based on group ID) in a hardware-based NoC firewall that protects all BRAMSs, Therefore,
malicious or unauthorized logical processes cannot read or write patient data in the eHealth system
by performing a surface attack.

This thesis develops a generic hierarchical GNU/Linux driver infrastructure on top of a hardware NoC
firewall architecture supporting memory access protection. This framework can be used to support data
privacy and security of healthcare technologies and beyond. In particular, we focus on an actual soft real-
time out-of-hospital use-case with a hospital media gateway (cloud server) and examine performance
overheads for supporting data privacy and memory protection. The application not only presents graphically
the patient heartbeat signal (electrocardiogram, or ECG) from the ST BodyGateway wearable pulse sensor,
but also uses calibrated diagnostic subsystems based on open source software (including digital filters) to
identify cardiac events (e.g. non-fatal ventricular arrhythmias) and asynchronously annotate the ECG signal
for the physician. Experimental results on Zedboard demonstrate a relatively small overhead of our high-
level security services that can be merged with high-level security visualization based on Grace, HeatMap
and SEC tool.



Chapter 2 - Anatomy of Embedded Security

This chapter has organized as follows: Section 2.1 defines an embedded system, and examines vulnerabilities
in embedded system world. Section 2.2 separates in two parts. In the first part we focus on system security
and the security principles that a system must have to be secure. The second part refers to system privacy
issues. Section 2.3 describes the vulnerabilities in application layer and examines DDoS attacks. Finally, in
Section 2.4 and 2.5 we discuss user permissions in Unix and existing mechanisms for logging analysis.

2.1 Embedded Security

Embedded system is a device that consists of hardware (electrical and mechanical parts) and software
components with different security requirements[1]:
e Confidentiality is related to keeping sensitive system information safe from malicious users.
Specifically, confidentiality prevents unauthorized users from accessing files or system data [2].
e Integrity is related to consistency, accurancy and trustworthiness of data. Here, the aim is fo protect
data from being edited [2].
e Availability refers to an embedded system that is accessible when required. For instance, availability
ensures that denial of service attacks cannot succeed [2].
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Figure 1: An industrial embedded device[1]

2.1.1 Vulnerabilities in Embedded Systems
In embedded systems, there are two layers of attacks as shown in Figure 2.
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Figure 2: Taxonomy of attacks on embedded systems [3]

Layerl: The first layer consists of three main types of attack classified according to their functional
objectives [3]:
e Privacy attacks: aim to obtain information from stored data in an embedded system.
o Integrity attacks: target editing data or code in an embedded system.
e Availability attacks: change the normal operating on embedded system by mis-appropriating system
resources that they are unavailable for normal operation.
Layer2: The second layer also consists of three main types of attack depending on the agents used fo execute
the attacks [3]:
e Software (or logical) attacks: attackers spread the virus from one computer to another and aim to
harm the software equipment and files. Software attacks refer to computer virus, worms, such as
Trojan horses, buffer overflow vulnerability attacks and denial of service attacks. In the latter attacks,
the attacker sends data repeatedly to minimize system performance.
o Physical or invasive attacks: Here, attackers spread the virus info the system like chip, board or in
system level.
e Side-channel attacks: attackers can compromise the system by monitoring different system metrics,
such as execution time and power consumption, to extract information on system characteristics or
behavior.

2.2 System and Network Security and Privacy

2.2.1 System Security
Security in general, is related to the aspects of confidentiality, integrity, availability and accountability as
referred previously. Moreover, besides traditional security concerns that involve network intrusion attacks,
system security incorporates several challenges, such as Virtual Machine level attack, vulnerability, phishing,
authorization, authentication and expanded network attack. According to Basin et al [4], in order to succeed
in these goals, it is useful to examine the following best practices.
o Lower mechanism cost: Basin and others call this principle “Simplicity”. This principle makes the
system easier to develop, operate, analyze and maintain, and therefore more trustworthy and less
prone to contain flaws.



Open design: Basin supports that private tasks deteriorate system security. If When aspects are
public, no one is curious for changing the system or re-engineering a design or implementation.
Compartmentalization: This principle separates system security into zones or parts in order to protect
system resources. This means that, if a zone or group of an area is infected, other parts are not
infected. The same principle also applies to performance isolation. Basin also provides a few
examples of compartmentalization.

1. The use of distributed systems can minimize the possibility of a successful attack. For
mnstance, this choice is relative to protecting data stored in a database by distributing data to
different servers.

2. Another choice relates to separating applications in different physical machines using
Kemel/User mode or virtualization software, such as VirtualBox, VMware etc.

3. In another example, firewalls can be used to split network access to separate zones
(multicompartments). This approach is related to both off- and on-chip network firewalls.

4. Using compartmentalization in software development that consists of different languages
mechanisms like encapsulation, modularization and others.

Minimum Exposure: The aim of this principle is to minimize the possibility for illegitimate users to
post an attack. There are three actions that can be used:

1. Disable system devices that are not needed, such as Bluetooth, WLAN and others. This can
minimize the possibility of external attacks.

2. Minimize the possibility of an attacker to collect system information. A typical example
could be a web server that can provide information, such as versioning.

3. Reduce the time available that illegitimate users can use. For example, brute-force attack
refers to an attack that an attacker tests different user names and passwords to enter a system.
In this point, security mechanisms could lock the account after some tries.

Least Privilege: This principle supports that system privileges do not need to be used by other users.
Next, Examples include

1. Not allowing other users to access other resources, such as files or computers. For instance,
access control is implemented to allow a user to work only on specific files.

2. Not give other users root or specific user passwords to install a program to a computer. A
good solution for this would be to create another user account.

3. Protect network access. A well-designed firewall can solve network security issues.

Minimum Trust and Maximum Trustworthiness: This principle separates trust from trustworthiness
in the system. More specifically, when a user trusts a system without checking it, then malicious
behavior may appear. Therefore, it is safer to minimize the trust and expectations one has from a
system or maximize the system trustworthiness. The first principle means that users validate a
system before use it.
Return to secure mode: This safety principle must return to the initial mode when a negative event
happens in a system like a failure. A good solution for this action could be to enable a security
mechanism or activate extra precautions (e.g. a firewall rule) to revert the system in the initial/secure
state if a failure, system crash or other error occurs.

Complete mediation ensures system security during all times by controlling each access to a



security-relevant object independent of the system state (normal operation, shutdown, maintenance
mode, or failure). Hence access control to different subsystems must be operational, no matter what
happens to a system. Some examples are:
1. A memory management unit (MMU) can have a complete mediation by controlling every
memory request in memory.
2. The technology for encrypting the file system also ensures complete mediation.
¢ No single point of failure or defense in depth: an ideal system security policy must contain protection
in two or more places, so that if one security mechanism fails in a point, the other points could still
be controlled by other security mechanisms so that “ne single accident, deception, or breach of trust
is sufficient to compromise the protected information”. For example, many organizations
instalantivirus in different points, such as mail servers, client computers, file server. Hence, if the
antivirus in a mail server crashed due to some attack, antivirus protection of client computers can
remain active
e Traceability aims to keep a log file from past traces in the system. A trace potentially helps locate
suspicious records. As pointed out by Basin et al [4] log information is essential in order to detect
operational errors and deliberate attacks, to identify the approach taken by the adversary, to
minimize the spread of such effects to other systems, to undo certain effects, and to identify the
source of an attack.

e Usability refers to the ease of use of security mechanisms.

2.2.2 System Privacy

This aspect establishes that all information will be kept classified. Notice that establishing a level of privacy

in quantitative terms may relate to probability calculations. Privacy in general is related to the important
aspects of Anonymity, Pseudonymity, Unlinkability, Unobservability.

Anonymity: refers to the state of being anonymous or virtually invisible, operating online without being
tracked, using a resource or service without disclosing identity information [5], and being unidentifiable
within a group [6].

Pseudonymity: expresses the state of using one or more aliases instead of a user’s real identity. However,
under certain circumstances, such as when the user abuses the system’s terms of use or breaks the law,
this data can be revealed [5].

Unlinkability: refers to the inability to link related information and is vital for protecting user privacy.
Unlinkability also refers to being impossible for a third party to verify the exact two parties that engage
in a communication, or an attacker being unable to link information with the person that processes it [5].
Unobservability: expresses protection provided to users from being observed or tracked, when accessing
a service or browsing the Internet. An attacker usually aims to observe these actions in order to reveal
identifiable user information [5].

2.3 Software Vulnerability in Application Layer - DDoS Attacks
Layered security is paramount in understanding how and where flooding attacks occur. In communication

systems there are two models. The first consists of seven layers known as OSI (Open Systems
Interconnections) model used for network communications. The second, TCP/IP model (Internet Protocol)
has four layers namely application, transport, internet and link. Next, we focus on vulnerabilities in
application layer, specifically flooding attacks used in both OSI and TCP/IP model, as in Figure 3.
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Figure 3: OSI & TCP/IP model [7]

2.3.1 An overview of flooding attacks

In 1980, a piece of malware code appeared spreading through floppy disks that adds itself in many programs,
including operating systems. At the same period, another virus was incorporated in programs [8] According
to John Howard & George Weaver in 1988, the first steps of DoS attacks took place on the Internet. In 1992,
hackers could login by sniffing to an operating system as the real user. These DoS attacks did not usually aim
to directly destroy data, but rather to have access to a computer or network resources [9]. Four years later,
SYN Flood attacks aimed to make a system unable to serve other users. Over the period of 1989 to 1995
CERT measured 104 DoS attacks on the Internet and 39 DoS attacks on root and account level [9]. Since
1997, flooding attacks have increased at an exponential rate. One year later, DDoS (Distributed Denial of
Service) attacks appeared and different DDoS attack scripts and/or detections tools, such as trinoo, TFN,
stacheldraht were created. In fact, during this time a first workshop took place with the name “Distributed
System Intruder Tools”.

In 2000, DDoS attacks threatened routers. The same year, on February, famous sites include yahoo, Amazon,
Dell etc. was infected with DDoS attacks by Michael Calce known as Mafia Boy [10]. According to an
mternet measure study, in 2001 detecting 4,000 attacks per week [8].

2.3.2 Denial of Service Attacks

A Denial of Service (DoS) attack is an attack that aims to make resources of a computer service (e.g. cache,

memory, or CPU) or network service (e.g. website) unable to accept other connections or serve other users.
The DoS attack scenario aims to collapse services (vulnerability attacks) and flood them (flooding attacks).
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Figure 4: DoS Attack — one attacker [11]

A collapse service attack refers to vulnerability DoS attacks. The aim of these attacks is to take advantage of

weaknesses (or vulnerabilities) in services that have been installed in order to gain access to system resources

[12]. A typical example is a skillfully constructed fragmented Internet Protocol (IP) datagram that may crash

a system due to a serious fault in operating system software [13].

With flooding attacks, the attacker may exercise brute force methods to attack at different levels.

1. Network/transport level: Refers to user connectivity. The attacker sends useless data, such as junk
packets, to the victim in order to waste the network bandwidth or router capacity.

2. Application level: Refers to user services. The attacker sends useless data to the victim in order to fill the
memory, disk/database, and increase memory, CPU, or /O bandwidth[14].

In order become more effective a DoS attack can be organized from different sources simultaneously

(Distributed DoS, DDoS) .

2.3.3 Distributed Denial of Service attack

A Distributed Denial of Service (DDoS) attack is a coordinated attack on the availability of services of a
target system or network that is launched indirectly through many compromised computing systems, e.g
Botnets [13]: notice that the word botnet emanates from the words robot and network and refers to network
connected-computers that send malware data (viruses) to other computers that belong to the same network.
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Figure 5: DDoS Attack with thousands of requests [11]

At present, many DDoS attacks use Botnets. They can be separated in three types.
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An Agent-Handler model uses the concepts of attackers, handlers, agents or zombies and victim
(legitimate users). Attacker is responsible for the DDoS attack., it initiates handlers in the network who
aim to communicate with agents/zombies and plan a DDoS attack. Handlers are software malware
programs that can be installed in a network server or a router and try to invoke compromised agents or
zombies in a number of computers. Attackers can use multiple handlers to communicate with agents or
zombies who carry out malware actions specified by handlers, without knowing that they participate in a
DDoS attack. The main concept of agents/zombies is to waste the bandwidth of network or router
processing capacity (flooding attack), sending at the same time useless data to the victim [15]

Attacker

|
! l

Handler/software Handler/software

| |
[ ! ! !

Bots / Zombies
or Agents

Victim

Figure 6: Agent-Handler model

Internet Relay Chat (IRC) is similar to Agent-Handler model. Based on IRC protocol, clients and servers
exchange messages via network. In this case. handlers are channels used by attackers to control and send
rules to agents via legitimate ports. IRC-based model uses a centralized command and control (C&C)
server fo coordinate a number of agents or zombies. An IRC-based model provides several advantages to
the attacker, For example, an attacker can use legitimate ports to make him invisible, sending large
amounts of useless data. The IRC protocol can give an advantage to attackers connecting to IRC server,
e.g. by providing a list of available agents or zombies. IRC-based tools are Trinity v3 and kaiten [14].

Attacker

l

IRC Network

l
b l ! !

Bots / Zombies
or Agents

Victim

Figure 7: Internet Relay Chat (IRC) - based model



3. Web-based model can use HTTP/HTTPS network protocol to control and send rules to agents or
zombies. These agents or zombies can use 80/443 port to send results or statistics to a web site via
scripts and encrypted communications. Web-based model provides advantages [16], e.g. an attacker can
use HTTP protocol to become invisible, sending useless data via of 80/443 port from a large number of
agents or zombies. Today, serveral Web-based tools have been developed, e.g. BlackEnergy, Low-Orbit
Ion Cannon and Aldi [14].

2.4 Authentication and Access Control

2.4.1 Authentication

The authentication refers to user verification prior to entry in a system [4]. When a user or process wants to
use system resources, €.g. memory, CPU, or network connections, identity must be authenticated first,
commonly using user name and password. Related security info, including user ID (uid) and group id), is
stored in etc/passwd file, where the password is shadowed in root space; the entry in this file is similar to
username:x:1001:1003: : /home/userfolder, where group ids are defined in /etc/group file. By
default , root user has user ID and group ID 0 (zero). There are also others types of authentication, such as
one-time passwords (e.g TAN lists) or certificates (e.g in ssh).

2.4.2 User permissions

User permissions are based on access control lists (ACL) supported in Linux kernel. Each file or directory
that exists in a Unix System belongs to a user. When a file or directory is created default permissions for
read, write or execute are provided (using umask). These permissions define the user that creates the file or
directory, the user groups (many users) and other users in system. File permissions in Linux can dynamically
change with the commands chmod (change file permissons), chown (change file owner and group), chgrp
(change group ownership) and chattr (change file attributes on a Linux file system). For instance, as shown
in Figure 8, a directory with permission number 750 gives all permissions (7) to user, read and execute only
(5) for group and no permission (0) to others.

Read write Execute
All permissons Owner (user) 4 (1) 2 (w) 1(x)
Not write Group 4 (1) 0 (not write) 1(x)
None permission Others 0 (not read) 0 (not read) 0 (not read)

Figure 8: User permissions

In the following frame we show an example of chmod command. The -rw-r--r—is the default permission
to users that consists of 10 characters. The first character corresponds to the type of file (d means directory, -
means simple file), the next three characters are for user permissions, the next three concern group
permissions, and the last three correspond to other users. We can see that chmod 750 example.txt
command can be used to convert the permissions of this file.

root@user: /home# vi example.txt

root@user: /homef# 1ls -1 example.txt

-rw-r--r-- 1 root root 5 Amnp 6 19:58 example.txt
root@user: /home# chmod 750 example.txt

root@user: /homef# 1ls -1 example.txt

-rwxr-x--- 1 root root 5 Amnp 6 19:58 example.txt



Notice that many important files for system functionality are in root directory, where only root has access.

2.5 Log Analysis

In Unix systems each action or error reported to log files [4]. These actions are called events and they are
important for the operating system to detect and diagnose security issues. Different logging mechanisms are
examined below.

o Write fo stdout or stderr: each action in Unix system can create log files that relate to stdout
(standard output) or stderr (standard error messages).

e Syslog: the syslog daemon is a standard for log analysis. It allows the system to save ifs messages in
syslog file located in /var/log/syslog path in Unix. Event monitoring tools performing log analysis
tools use this file for system management, security auditing and other reasons.

e dmesg/klogd/journalctl: The /var/log/kern.log file (or systemd journalctl options in
the more recent in Linux kernel 4.0+) log kernel actions not logged in syslog file due to separation
between user and kernel space. The following dmesg file lists different Linux kernel information.

[ 37.704257] 00:00:00.001471 main Process ID: 1391

[ 37.704257] 00:00:00.001472 main Package type: LINUX 64BITS GENERIC

[ 37.709678] 00:00:00.006880 main 5.0.6 rl103037 started. Verbose level = 0
[ 37.792768] 00:00:00.089891 automount VBoxServiceAutoMountWorker: Shared

folder "Documents" was mounted to "/media/sf Documents"



Chapter 3 - NoC Firewall

In this Chapter, we show how to use a NoC Firewall mechanism to help resolve security issues that exist in
eHealth platforms, focusing on privacy of healthcare data. Our mechanisms rely on developing a
hierarchical Linux kernel module that we can use to setup firewall rules and perform BRAM access by
sending/receiving information to/from kernel space using specialized IOCTL commands.

As shown in Figure 9, a NoC firewall module with four sets of registers (one set per each input port) is
placed in front of the input FIFOs of a 4x4 Butterfly NoC. The firewall sets are independent and their
number is scalable and depends only on the size of the FPGA. The Butterfly NoC itself is configured with
smaller 2x2 internal switching nodes using input-output buffering and each of its output ports is attached to a
BRAM. Although a debug AMBA AXI4 interface provides direct access to the BRAMS, in this Section we
only focus on normal operation, i.e. setup of the firewall rules and normal access requests that travel through
the firewall.

o e i — — — — —— — — — — — — — —
I Butterfly NoC with 2x2 switches |

inl out0 |
O0xB0000000 ~

o : | 0x40000000

in2 (L) outl l

L - ] ]
0xB80001000 1]
M I 0x40001000
in3 l:: t2 |
1. ou
| e | > |
IxBO0O:Z ) -
0xB80002000 % I 0x40002000
z -, Ux ) 'O00
ind e out3 I
> = -] |
0xB80003000
PxB000300 0x40003000
0 ) L | || S e S I R
Setup FW I/F ¥ \ Stats I/F (denied, dropped, passed) o
0x50000000 0x50001000

Figure 9: Butterfly NoC with 2x2 switches

3.1 Firewall Setup and Access Request via Firewall

Each set of firewall registers can be configured independently to operate in one of two operating modes, e.g
Simple and Extended mode that are discussed below.
A firewall register set configured in the Simple Mode is configured to protect data in each of the BRAMS’
memory-mapped address space from illegitimate access requests from all input ports. More specifically, the
register set protects accesses to the following memory regions:
[0x40000000, 0x40000FFF] for BRAM1,
[0x40001000, 0x40001FFF] for BRAM?2,
[0x40002000, 0x40002FFF] for BRAM3, and
[0x40003000, 0x40003FFF] for BRAM4.

independent of how access request packets travel through the NoC, i.e. only the final destination matters,



not the source node or path. In fact, for the Butterfly network topology, the source uniquely determines the

path. In Simple mode, deny or allow rules for a protected memory address range are specified for each

BRAM using four set of registers, one in each input port. Each set has three registers mapped to the address

range [0x50000000, 0x50000FFF] and comsists of L addr reg, H addr reg, and Rule reg register

defined as follows.

e 32-bit low address register (Low) specifying the start point of an address range, see Figure 10. This is an
absolute address in BRAM1, BRAM2, BRAM3, and BRAM4 address region,

A

LOWER MEMORY ADRESS / OFFSET

31
[31: 0] Lower Limit for Memory Address / Offset

Figure 10: Setup low address range

o 32-bit high address register (High) specifying the end point of an address range, see Figure 11. This is an
absolute address in the corresponding BRAM1, BRAM2, BRAM3, and BRAM4 address region.

A
UPPER MEMORY ADRESS |/ OFFSET

31 0
[31: 0] Upper Limit for Memory Address / Offset

Figure 11: Setup high address range

e 32-bit rule register (firewall rules) controlling protection of BRAM accesses to the corresponding
[Low, High]address range as shown in Figure 12.

24 bits 4 bits 4 bits
A, A A
RESERVED El |E2 |E3 | E4 RESERVED
31 [31:8] Reserved 0

[7] setto 1 to Enable Firewall rule (E1)

[6] Set to 0 to setup Simple Noc-Firewall Rule (E2)
[5] Enable/Disable Write Operations (E3)

[4] Enable/Disable Read Operations (E4)

[3:0] Reserved

Figure 12: Setup rule address rage in Simple Mode.

Notice that for Simple mode, the 32-bit setup rule register is split to three parts, whereas the first 24 and last

4 bits are reserved. The intermediate 4 bits used in the rule register consists of two parts:

v' 2-bit output port field specifying enable/disable of the firewall, and the operating mode (Simple or
Extended). For example, a bit7 field value of “1” specifies that the firewall is on, while “0” specifies
that the firewall is turned off. Similarly, a bité field value of “0” specifies that Simple firewall rule is
enabled.

bit7 : Value set to 1 to enable Firewall or set to 0 to disable Firewall

bité : Value set to 0 to operate in simple mode (0 for Simple, 1 for Extended)

v' 2-bit rule register (Rule) controlling protection of BRAM accesses to the corresponding [Low, High]



address range. These two bits correspond to four firewall operations: deny read, deny write, deny read &
write, O accept all accesses to the [Low, High] address range.

bit5 : Value set to 1 to enable rule or set to 0 to disable rule for Write operations

bit4 : Value set to 1 to enable rule or set to 0 to disable rule for Read operations

Notice that we require that each pair [Low, High] corresponds to a given BRAM, while all pairs are

assumed non-overlapping. This is asserted for each new pair in the GNU/Linux driver.

In the Extended Mode, the firewall operates as a true NoC-based firewall. More specifically, firewall rules

in the Extended mode are specified by providing both the input ports of the access request, as well as the
BRAM (destination) output port, i.€. out1, out2, out3 and out4 in Figure 15. This is in contrast to Simple

mode, whereas the rule for a particular input ports destination port applies to all BRAMSs. Thus, in Extended
mode, deny or allow rules for a protected memory address range are specified again for each BRAM using

four set of registers, one in each input port. Each set has three registers mapped to the range [0x50000000,

0x50000FFF] and consists of I, addr reg, H addr reg, and Rule reg registers defined as follows.

L]

32-bit low address register (Low) specifying the start point of an address range, see Figure 13. This is a
relative address in BRAM1, BRAM2, BRAM3, and BRAM4 address region, i.e. [0x0000, 0xOFFF],

A,

M

LOWER MEMORY ADRESS / OFFSET

31
[31: 0] Lower Limit for Memary Address / Offset

Figure 13: Low address range register (Setup)

32-bit high address register (High) specifying the end point of an address range, see Figure 14. This is a

relative address in the corresponding BRAM1, BRAM2, BRAM3, and BRAM4 address region, ie.
[0x0000, OxOFFF].

A
UPPER MEMORY ADRESS | OFFSET

31 0
[31: 0] Upper Limit for Memory Address / Offset

Figure 14: High address range register (setup)

32-bit rule register (firewall rules) confrolling protection of BRAM accesses to the corresponding
[Low, Highladdress range. These two bits correspond to four firewall operations: deny read, deny

write, deny read & write. or accept all accesses to the [Low, High] address range.

24 bits 4 bits 4 bits
A A " A
RESERVED El|E2 |E3 | E4 ES5
31 [31:8] Reserved 0

[7] Setto 1 to Enable Firewall rule (E1)

[6] Set to 1 to setup Extended Noc-Firewall Rule (E2)
[5] Enable/Disable Write Operations (E3)

[4] Enable/Disable Read Operations (E4)

[3:0] Select The Output Port(s) for the rule (E5)

Figure 15: Rule address rage in Extended Mode register (setup)

Notice that for Extended mode, the 32-bit setup rule register is split to three parts, whereas the first 24 bits



are reserved. The last 8 bits used in the rule register consists of three parts:

v

2-bit output port field specifying enable/disable of the firewall, and the operating mode (Simple or
Extended). For example, a bit7 field value of “1” specifies that the firewall is on, while “0” specifies
that the firewall is turned off. Similarly, a bit 7 field value of “0” specifies that Simple mode is enabled.

bit7 : Value set to 1 to enable Firewall or set to 0 to disable Firewall

bité : Value set to 0 to operate in simple mode (0 for Simple, 1 for Extended)

2-bit rule register (Rule) controlling protection of BRAM accesses to the corresponding [Low, Highl
address range. These two bits correspond to four firewall operations: deny read, deny write, deny read &
write, or accept all accesses to the [Low, High] address range.

bit5 : Value set to 1 to enable rule or set to 0 to disable rule for Write operations

bit4 : Value set to 1 to enable rule or set to 0 to disable rule for Read operations

4-bit output port field which specifies the NoC output port (equivalently, the BRAM connected to this
output port) for which this firewall rule will apply for example, a field value of “1111” specifies that the
rule will apply for accesses from all four output ports (respectively, BRAMs) in Figure 15.
bit3: Value set to 1 to enable rule for output port 1 (BRAM 1)

bit2: Value set to 1 to enable rule for output port 2 (BRAM 2)
bit1: Value set to 1 to enable rule for output port 3 (BRAM 3)

bit0: Value set to 1 to enable rule for output port 4 (BRAM 4)

In addition, a read-only interface for monitoring firewall statistics is provided using four set of registers, one

in

each port at memory address 0x50001000. Three registers (startingStatisticsTotal,

startingStatisticsFifo and startingStatisticsFw) are defined as follows:

L ]

32-bit passed register (PASSED) specifies the total number of packets (read or write) accepted per port;

notice that for each of the 4 ports, we have a dedicated register.
32 bits

A

PASSED MEMORY ADRESS / OFFSET

31
[31:0] Total Accepted Packets for Memory Address

Figure 16: Passed packets register (monitor).

32-bit fifo dropped register (FIFO DROPPED) specifies the dropped packets lost due to full input fifos;
notice that for each of the 4 ports, we have a dedicated register and that each FIFO can hold up to 5

access request packets.
32 bits

A

FIFO DROPPED MEMORY ADRESS / OFFSET

31
[31:0] Total Fifo Dropped Packets for Memory Address

Figure 17: Fifo dropped packets register (monitor).

32-bit firewall dropped register (FW DROPPED) specifies the number of denied packets due to firewall
rule per each input port; notice that for each of the 4 ports, we have a dedicated register.



32 bits

A

FW DROPPED MEMORY ADRESS / OFFSET

31 0

[31:0] Total Fw Dropped Packets for Memory Address
Figure 18: Fw dropped packets register (monitoring statistics).

In our implementation, a 32-bit register is used for packetizing BRAM access (read or write) via the firewall
in Simple and Extended mode. The access request to a BRAM is specified by a NoC output port and a NoC
input port and BRAM offset is relative to the specified BRAM base address. More specifically, the register is
split to five parts, as shown in Figure 19.

10 bits L T S e 16 bits

i - & —A— A s 1
| Cffsat | OoPC | SRC | DST | Data ]
311

[31:22) BRAM address offset (Offset)

[21:20] Opcode: Read or Write (OPC)

[19:18) NoC Input Port - for Extended Mode only (SRC)

[17:16] NoC Output Port (DST)

[15: 0] Data {(Small Int) for write (Data)

Figure 19: Access request in Simple/Extended Mode; SRC field used only in Extended Mode.

v"10-bit for address offset. This means that 10 bits can be used to write (16-bit) data to specific address,
e.g. 0x00000000 in BRAMI1.

¥' 2-bit operation code specifies write and read operation. For example, a field value of “0x1” operates the
write rule and “0x0” operates the read rule.

¥' 2-bit source port specifies the NoC source input port.

v" 2-bit destination port specifies the NoC output port.

v" 16-bit packet payload.

3.2 Linux Driver — Hardware implementation

During synthesis we have followed an incremental process for validating our final hardware module by
building and testing separately individual components. This process has helped manage complexity issues
and evaluate relative hardware costs (related to the Zedboard FPGA) of the proposed 4x4 Butterfly NoC with
firewall functionality on all 4 ports (called NoCFW) with a preliminary working implementation of the 4x4
Butterfly NoC without firewall (called NoC). Results from another intermediate implantation of the 4x4 But-
terfly NoC with firewall functionality supporting Extended Mode on only one input port (the first, in1) are
predictable and for this reason they are omitted.

Both the NoC and NoCFW modules were defined in bit-accurate SystemC and co-simulated/validated in a
high-level synthesis tool (Xilinx Vivado HLS). We have used simple Vivado HLS directives to optimize the
hardware associated with code structure (data pack for the data structures, horizontal array map for the
FIFOs, and unroll for loops). The co-validated IPs were subsequently packaged in Vivado HLS tool and
exported to Xilinx Vivado tool for synthesis on Zedboard Z7020 FPGA. In Vivado, all related circuits (AXI
interconnects & BRAM cells and controllers) were connected and the register layout was manually adjusted
to be symmetric for different ports symmefric in order to simplify driver development. Table 1 presents
FPGA resource utilization for NoC and NoCFW and compares the more accurate estimations from Vivado
with those from Vivado HLS. Vivado results point out that NoCFW implementation takes ~10-20% of the
logic elements on the FPGA and its cost in terms of FPGA LUTs and flip-flop count is marginal.



Table 1: Hardware Costs In NoC & NoCFW Implementations

Vivado HLS Vivado
Type NoC NoCFW NoC NoCFW
(Available)
FF 10019 11164 10867 12012
(106400) (9%) (10%) (10%) (11%)
LUT 9598 9818 11029 11421
(53200) (18%) (18%) (21%) (21%)
1027 1027 1372 1372
LUT as BRAM

(2%) (2%) (3%) (3%)

BRAM 4 4
32) ) ) (3%) (3%)

Clocking 1 1
BUFGCTRL - - (3%) (3%

(32)

In addition, Table 2, further compares the cost of NoCFW hardware module to AMBA AXI4, and a larger
mstance of STMicroelectronics STNoC network-on-chip on the same FPGA fabric.

The delay in the firewall module is very small. Estimation from Vivado tool gives a data path delay of 8.32
ns (excluding AXTI) for the NoC and a corresponding delay of just 9.12 ns for NoCFW. Moreover, by
examining the critical path, we discover that almost 80% of the delay is due to the NoC, the remaining due to
interface logic for packetization (see Figure 15) and firewall access. Finally, notice that including AXI, the
total delay rises to 12.10 ns for NoC or 12.97 ns for NoCFW, respectively.

Table 2: Compare - Hardware Costs In NoC & NoCFW Implementations

Component LUTs Registers BRAM
NoCFW 11421 12012 4
AXI Bridge 723 971
STNoC
24939 17983
(12-nodes.4x4 routers)




Figure 20: 4-Port Firewall Multicast Router — Synthesis on Zedboard
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Figure 21: The NoC Firewall: a) circuit and b) utilization of the FPGA



Figure 20 and 21 show the NoCFW circuit created in Vivado. The circuit includes BRAMs connected to each
output port via AXT). Moreover, notice that all input ports are connected by AXI with the Core Xilinx module
(ARM Cortex-A9 processors). In addition, the bottom part of Figure 21, indicates the low utilization of the
Zedboard FPGA by the NoCFW circuit (~20% used).

3.3 Hierarchical Design of NoC Firewall Driver

The NoC Firewall driver is organized hierarchically into 3 layers in order to enhance modularity and
reusability. As shown in Figure 22, the proposed three layers includes a low-level I/O memory interface, as
well as mid-level kernel functions and user-level functions, with callbacks defined only between adjacent
protocol layers.

check if admin, is_admin

User Interface map hid to Input/Output Ports (get/set)
parameter validation

IOCTL calls

firewall setup (complex and simple)

R/W access to BRAM via firewall

direct R/W access to BRAM
midLever | 1Read setup (rule, range) & stats registers
IOCTL macros

I/O Memory Interface I/O primitives to read/write memory-
mapped registers

Figure 22: Hierarchical Linux Driver for our Firewall

3.3.1 Low Level Driver API

The Low-Level Driver API (LLD) defines I/O memory methods to

¢ write in kernel space using iowrite32 () method and

e read from kernel space using ioread32 () method.

These methods are called by Mid-Level Driver API, cf. Chapter 3.1.4. For example, LLD is used to perform
firewall setup by writing using iowrite32 the memory-mapped setup registers, and is also used to read
firewall setup information from memory setup registers using ioread32 method. LLD also calls ioread32
to access to memory-mapped statistics counters. Finally, LLD uses iowrite32 and ioread32 methods to
support both direct access access to BRAM and access via the firewall.

3.3.2 Mid-Level Driver API

The Mid-Level Driver APT (MLD) defines firewall setup in specific output and input ports ranges, supports
read/write access to input and output ports via NoC Firewall, provides direct access to output port (Bram),
and enables different types of statistics for total passed/dropped packets via IOCTL macros.

We have implemented the MLD in two files. The first one (ioctl fw.h) contains the following data
structures for setting up the firewall, reading statistics, and accessing BRAM either via the NoCFW or



directly via an AXI bus (for debug purposes) and uses IOCTL calls to send commands to user-space.
struct fw ds{ //setup FW

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

}i

struct stat ds
unsigned
unsigned
unsigned

unsigned

}i

inkt
int
int
int
int

int

op_code;
inport;
outport ;
Low;
High;
Rule;

{ // statistics info

int
int
int

int

inport;

Total passed;
Fifo dropped;
Fw_dropped;

struct access ds { // access via NoCFW

unsigned
unsigned
unsigned
unsigned
unsigned

}i

int
int
int
int
int

op code;
inport;
outport ;
addr;
*data;

struct dir access ds { // direct access

unsigned
unsigned
unsigned
unsigned

}i

Moreover, MLD defines the IOCTL macros used in High-Level Driver (HLD).
#define MYIOC TYPE

int
int
int
int

op code;
bram no;
addr;
*data;

I'kl'

f##fdefine MYIOC WRITEONE _IO(MYIOC TYPE, 1)
#define MYIOC WRITETWO _IO(MYIOC TYPE, 2)
#define MYIOC WRITETHREE _ IO (MYIOC TYPE, 3)

#define MYIOC READONE _IO(MYIOC TYPE, 1)
#define MYIOC READTWO _IO(MYIOC TYPE, 2)
#define MYIOC READTHREE IO (MYIOC TYPE, 3)
#define MYIOC READFOUR _IO(MYIOC TYPE, 4)

//command
//command
//command

//command
/ /command
//command

//command

one (WRITEONE)
two (WRITETWO)
three (WRITETWO)

one (READONE)
two (READTWO)
three (READTHREE)

four (READFOUR)

Thus, after generating a unique code for IOR and _IOW, we can compose a unique IOCTL name for each

firewall action.

// compose a unique ioctl number to setup firewall in specific port

f#fdefine IOCTL SETUP _FW PORT IOW(MYIOC TYPE, MYIOC WRITEONE, struct fw ds)

// compose a unique ioctl number to check the setup of firewall in specific port
#define IOCTL CHECK FW_PORT _IOR(MYIOC TYPE, MYIOC READTWO, struct fw_ds)

// compose a unique ioctl number to read the setup of firewall in specific port
#define IOCTL_READ FW_PORT _IOR(MYIOC_TYPE, MYIOC READONE, struct fw_ds)



// compose a unique ioctl number to read firewall statistics on specific port

#define IOCTL READ STATS IOR(MYIOC TYPE, MYIOC READTHREE, struct stat ds)

// compose a unique ioctl number to read firewall total statistics on all ports
#define IOCTL READ STATS ALL _IOR(MYIOC TYPE, MYIOC READFOUR, struct stat_ds)

// compose a unique ioctl number to access the bram via the switch

#define IOCTL ACCESS BRAM _IOW(MYIOC TYPE, MYIOC WRITETWO, struct access_ds)

// compose a unique ioctl number to direclty access bram

#define IOCTL DIRECT ACCESS BRAM = IOW(MYIOC TYPE, MYIOC WRITETHREE,

direct access ds).

The second file in MLLD (kernel mode.c) provides fundamental functions for firewall operation:

static void setupFW(struct swfw ds *);

static void readFWRegs (struct swfw ds *);
static int checkFWRegs (struct swfw ds *);
static void readStatsPort (struct stat ds *);
static void readStats(struct stat ds *);
static int accessBram(struct dir access ds *#*)

static int accessBramFW(struct access ds *);

struct

More specifically, MLLD performs firewall setup (by calling setupFw) for both Simple and Extended mode.

This call involves LLLD iowrite32 to the memory-mapped setup registers. Due to symmetry in the

memory layout (defined in Vivado) for all input ports, calls are similar for setting Low, High range, or Rule

registers.

iowrite32 (L _addr reg, noc_setup registers + startingLowerReg + ((inport-1)*2) );

lowrite32 (H addr reg, noc_setup registers + startingHighReg + ((inport-1)*2) );

iowrite32 (Rule reg, noc setup registers + startingRuleReg + ((inport-1)*2)

)i

MLD can read setup registers by calling readFwWRegs (or check their values via checkFWRegs

function) which invokes LLD ioread32 to the memory-mapped setup registers.

//retrieve data from kernel space and eventually to user space

fw ds->L addr reg = ioread32(noc_setup registers + startingLowerReg
+ (inport-1)*2 );

fw ds->H addr reg = ioread32(noc_setup registers + startingHighReg
+ (inport-1)*2 );

fw_ds->Rule reg = ioread32(noc_setup registers + startingRuleReg
+ (inport-1)*2 );

Next, checkFiWRegs method can validate firewall rules by calling readFWRegs

fw ds temp.input port = fw _ds->input port;

fw ds temp.L addr reg = fw _ds ->L addr reg;

fw ds temp.H addr reg = fw ds ->H addr reg;

fw ds temp.Rule reg = fw ds ->Rule reg;

// check initial data with data from readFWRegs method

readFWRegs (fw_ds) ;

if ((fw ds temp.L addr reg== fw ds ->L addr reg)

&& (fw ds temp.H addr reg== fw _ds ->H addr reg)

&& (fw ds temp.Rule reg== fw ds ->Rule reg) ) {



flag = 1; // valid firewall rules
Jelse {

flag = -1; // invalid firewall rules
return flag;

}

The address layout of the firewall setup registers refers to four register triplets (startingLowerReg,
startingHighReg, startingRuleReg) and corresponds to:

0x50000014 : Setup Firewall Lower Address Range Register for port 0 (startingLowerReg)
Offset: 13 (in decimal)

0x5000001C : Setup Firewall Lower Address Range Register for port 1 (startingLowerReg)
Offset: 15 (in decimal)

0x50000024 : Setup Firewall Lower Address Range Register for port 2 (startingLowerReg)
Offset: 17 (in decimal)

0x5000002C : Setup Firewall Lower Address Range Register for port 3 (startingLowerReg)
Offset: 19 (in decimal)

0x50000034 : Setup Firewall Upper Address Range Register for port 0 (startingHighReg)
Offset: (5 in decimal)

0x5000003C : Setup Firewall Upper Address Range Register for port 1 (startingHighReg)
Offset: (7 in decimal)

0x50000044 : Setup Firewall Upper Address Range Register for port 2 (startingHighReg)
Offset: (9 in decimal)

0x5000004C : Setup Firewall Upper Address Range Register for port 3 (startingHighReg)
Offset: (11 in decimal)

0x50000054 : Setup Firewall Rule Register for port 0 (RuleReqg)
Offset: (21 in decimal)

0x5000005C : Setup Firewall Rule Register for port 1 (RuleReg)
Offset: (23 in decimal)

0x50000064 : Setup Firewall Rule Register for port 2 (RuleReg)
Offset: (25 in decimal)

0x5000006C : Setup Firewall Rule Register for port 3 (RuleReg)
Offset: (27 in decimal)

The MLD API also monitors read access to memory-mapped via statistics counters by calling LLD
ioread32 function with the proper base address and offset. For example, for bram one, the total number of
packets passed is accessed in readStatsPort via:

my stat ds->Total passed Braml=ioread32(iobraml+ startTotal) - init stat totall;
my stat ds-> Fifo dropped Braml=ioread32 (iobraml + startFifo) - init stat fifol;
my stat ds-> Fw_dropped Braml=ioread32(iobraml + startFw) - init stat fwl;

Notice that subtraction of init total stat, init total fifo and init stat fw above refers fo
software reset during module re-installation; initial values have been read in this variable in

init_module.h.



Moreover, cumulative statistics for all ports are defined by the readStats function which sums statistics
counters for all output ports (Bram1, Bram2, Bram3, Bram 4).
my stat ds->Total passed = totalPassedBraml + totalPassedPort2 +
totalPassedPort3 + totalPassedPort4;

my stat ds>Fifo dropped = fifoDroppedBraml + fifoDroppedBram2 +

fifoDroppedBram3 + fifoDroppedBram4;
my stat data ptr>Fw dropped = fwDroppedBraml + fwDroppedBram2 +

fwDroppedBram3 + fwDroppedBram4;

The address layout of the firewall setup registers used in the ioread32 command is as follows.

Read total packets passed from each port

0x80000024 : Read from Port 1 (startTotal)
(Offset: 9 in decimal)

0x80001024 : Read from Port 2 (startTotal)
(Offset: 9 in decimal)

0x80002024 : Read from Port 3 (startTotal)
(Offset: 9 in decimal)

0x80003024 : Read from Port 4 (startTotal)
(Offset: 9 in decimal)

Read dropped packets (due to full Fifo) from each port

0x8000002C : Read from Port 1 (startFifo)
(Offset: 11 in decimal)

0x8000102C : Read from Port 2 (startFifo)
(Offset: 11 in decimal)

0x8000202C : Read from Port 3 (startFifo)
(Offset: 11 in decimal)

0x8000302C : Read from Port 4 (startFifo)
(Offset: 11 in decimal)

Read dropped packets (due firewall rule) from each port

0x80000034 : Read from Port 1 (startFw)
(Offset: 13 in decimal)

0x80001034 : Read from Port 2 (startFw)
(Offset: 13in decimal)

0x80002034 : Read from Port 3 (startFw)
(Offset: 13 in decimal)

0x80003034 : Read from Port 4 (startFw)
(Offset: 13 in decimal)

Finally, MLD supports direct access, in addition to access via the firewall. Direct access to BRAM is carried
out via LLD normal calls to functions ioread/iowrite, such as iowrite32(data, iobraml direct



+ addr._reg) ;

Access via the firewall is much more complicated. It involves a) packetization of the write access request
(see Figure 12) at the NoC interface, as well as transfer of the NoC packet for execution at the BRAM b)
both packetization of the read access request (see Figure 12) and response depacketization for read access.
More specifically, for NoC write operation, packetization to 32-bit write packet register is accomplished via

the following iowrite (write opcode is 0).
if (op _code == 0x0){ // write option
write value = addr reg << 24; // offset
write value += inport << 18; // src port
write value += outport << 16; // dest port
write value += data; // 16-bit payload
switch (inport) { //correction in code
case 1: // access via input port 1 to write packet register

iowrite32 (wvalue , (iobraml + 5));

}

For NoC read operation, packetization to 32-bit read packet register (r_reg) is similar, except for opcode.

else { //read option
rvalue = addr reg << 24; // offset
rvalue += 0x1 << 20; // read opcode
rvalue += inport << 18; // src port
rvalue += outport << 16; // dest port
rvalue += 0x0; // no payload for read
switch (inport) f{
case 1:
iowrite32 (rvalue, (iobraml + 5));
break;
case 2:
liowrite32 (write value, (iobram2 + 5));
break;
case 3:
liowrite32 (write value, (iobram3 + 5));
break;
case 4:
iowrite32(write value, (iobram4 + 5));
break;
}

Finally, depacketization from each 32-bit read response register (r reg) located at each input port is

accomplished via the following code.
switch (inport) ({
case 1:
data = loread3z(iobraml + 7);
break;

case 2:



data = loread32 (iobram2 + 7);
break;
case 3:
data = ioread32(iobram3 + 7);
break;
case 4:
data = loread32(iobram4 + 7);
break;
}
// keep 16 least significant bits
data =(data << 16) [ (data >> 16) //chop last 16 bits for 16-bit value
final data = (print data) >> 16;

The values + 5 in write operation (and + 7 in read operation) above correspond to writing the packet in the
Write Packet Register (resp. reading response from the Read Response Register). The layout of these
registers is as follows.

Write Packet Register to switch Port

0x80000014 : Write Packet to Port 1
(Offset: 5 in decimal)

0x80001014 : Write Packet to Port 2
(Offset: 5 in decimal)

0x80002014 : Write Packet to Port 3
(Offset: 5 in decimal)

0x80003014 : Write Packet to Port 4
(Offset: 5 in decimal)

Read Responce Register (after read request) from switch Port

0x8000001C ;: Read from Port 1
(Offset: 7 in decimal)

0x8000101C : Read from Port 2
(Offset: 7 in decimal)

0x8000201C : Read from Port 3
(Offset: 7 in decimal)

0x8000301C : Read from Port 4
(Offset: 7 in decimal)

In addition, MLD provides the static long my unlocked ioctl(struct file #*, unsigned
int, unsigned long) function that defines commands that can be used from user space. These
commands use traditional copy from user and copy to user to transfer data structures from user to

kernel space and vice-versa. We list below ioctl macros from ioctl fw.h file, as referred above.
case IOCTL SETUP_FW_PORT:
rc = copy from user(&my fw ds, iloargp, size);

setupFW(&my fw ds);



return rc;

case IOCTL CHECK FW_PORT:

rc = copy from user (&my fw ds, ioargp, size);

rc = checkFWRegs (&my fw ds) ;

rc = copy to user(iocargp, &my fw ds, size);

return rc; // return code 1 -> check ok

case IOCTL DIRECT ACCESS BRAM:

rcl = copy from user (&my direct access ds, iloargp, size);
accessBram(&my direct access ds);

rc2 = copy to user(iocargp, &my direct access ds, size);
return rc2; //return ((rcl == 0) && (rc2 ==0));
case IOCTL ACCESS BRAM:

rcl = copy from user (&my access ds, ioargp, size);
accessBramFW (&my access _ds) ;

rc2 = copy to user(ioargp, &my access ds, size);
return rc2;

case IOCTL READ FW PORT:

rc = copy from user(&my fw ds, iocargp, size);
readFWRegs (&my fw _ds) ;

rc = copy to user(iocargp, &my fw ds, size);

return rc;

case IOCTL READ STATS:

rc = copy from user (&my stat ds, ioargp, size);
readStatsPerPort (&my_stat_ds) ;

rc = copy to user(iocargp, &my stat ds, size);
return rc;

case IOCTL READ STATS ALL:

rc = copy from user(&my stat ds, ioargp, size);
readStatsPerAllPorts (&my stat ds) ;

rc = copy to user(iocargp, &my stat ds, size);

return rc;

A typical IOCTL call requires passing the appropriate data-structure. For example, in the simple setup

firewall function the user mode.h file, we use:
rc = ioctl(fd, IOCTL READ SFW _PORT, &my fw_ds)

Finally, notice that for security reasons access to all LLLD and MLD functions is protected. Most can be
called only from privileged users, i.e. system administrators as described next, except from accessBramFW
(and some other get functions) which can be called from all system users. In all other cases, kernel panic is
caused and no stack information is made available. As shown in the code snippet below, the check is made on
the group id that the user belongs to.
gid = current gid() .val;
if ((gid != root pid) && (op_code == 0x0)) { // only root group can perform
write via firewall
pr_info("accessBramFW: NON-ROOT TRIED TO PERFORM write access via FW \n");
BUG ON(gid != root pid);



Locking is provided to avoid consistency issues with simultaneous accesses from different user-space
applications (e.g. using pthreads) or kernel-space programs (e.g. using kthreads). This avoids the possibility
of buffer overflows, cf. note at end of Chapter 4.

3.3.3 High-Level Driver — API

This API completes the driver hierarchy by providing a configurable way to map a particular use-case or

programming scenario to mid-level firewall functionality. The High-Level Driver interface of the hierarchical

Linux driver of the NoC Firewall is split info three files, whereas the first file is more generic, while the last

two files specifically support data privacy and anonymity in a healthcare scenario; the scenario is described

in full in Section 4.

e The first one implemented in user-mode.h is generic and invokes kernel space primitives and
exchanges correct data with kernel space using IOCTL commands.

e In addition, in our healthcare scenario, a second file implemented in systemadmin privacy.c is
specific to the use-case. It calls methods from user mode.h file to setup protection for three different
groups of doctors (fwgroup, fwgroupl and fwgroup2).

e The third file consists of three doctors implemented as clinic, clinicl, and clinic2 which refer to
different clinics (i.e. groups of doctors, or essentially hospital departments). We should mention that
for testing our scenario, the different doctors in the system (clinic, clinicl and clinic2) belonged

to different groups as shown in Table 3.

Table 3: Groups and users in the healthcare scenario

root system administrator
fwgroup clinic

fwgroupl clinicl

fwgroup2 clinic2

3.3.3.1 Creating users

In Linux system from /etc/passwd or groups command, it is possible to view you the users and groups
that exist in the system. Specifically, each user or group created in the system is added to /etc/passwd, or
respectively /etc/groups file.

For adding a user in Linux, we have used the groupadd username. For giving a password we have used
the passwd username command. For example, groupadd clinicl and passwd clinicl.

For adding a user to a group we have used useradd -g groupname -d userpath -m
userdirectory. For example, useradd -gfwgroupl -d /home/clinicl -m clinicl. All users
and groups are created in the same manner by system administrator (root).



3.3.3.2 User_mode File
The HDL API (user mode) supports two functions (setGidPerInport and setGidPerOutport) to map
NoC input and output ports (ports 1, 2, and 3, since port 4 is used by the administrator) to group ids that
users belong to and another two functions for recovering these ports based on the group id
(getInportGidPerGid, and getOutporGidPerGid). Set functions can only be called by the system
administrator who can write this information to BRAM4 via input and output port 4, with the proper firewall
rules to limit BRAM access for specific user groups to given input and output ports. For example, in our
healthcare scenario, each of the three user groups can access one BRAM in the range of 1 to 3 via the
corresponding input/output ports 1 to 3, while system administrator group manages BRAM4 from
mput/output port 4. Get functions can be used to recover the ports to access the corresponding BRAMs
during normal operation; these functions are available to users. An example of these cases, will be provided
in our healthcare scenario. More specifically, these functions are as follows.
int is admin()
void Q;tGidPerInport(gid_t gid, inport)
void setGidPerOutport (gid t gid, outport)
int getInportPerGid(gid t gid)
int getOutportPerGid(gid t gid)
The method is admin is also related. It checks if current user is system administrator by using the
grouplist method. It is called from other functions to validate access privileges of the current user. A code
snippet is shown below.
// get systemadmin groupid
gid systemadmin = groupIdFromName ("root") ;
gré;plist(lis;_oﬁ_groups, &ngroups); //call function grouplist to take in which
groups belong each current user
for (i=0; i<ngroups; i++){

if (list of groups([i] == gid systemadmin) {

systemadmin flag = 1;

break;

}
Notice that
® setGidPerInport function uses accessBramFW to write (opcode 0x0) group names (equivalently

clinics, and indirectly doctors) via the provided NoC input ports . More specifically, it calls:
rc = accessBramFW(0x0, ADMIN INPUT PORT, ADMIN OUTPUT PORT,
0x00000000 + ((inport-1)*0x4), &data);

e setGidPerNoCOutport function uses accessBramFW to write (opcode 0x1) group names
(equivalently clinics, and indirectly doctors) via the provided NoC output ports. More specifically, it
calls:
rc = accessBramFW (0x0, ADMIN INPUT PORT, ADMIN OUTPUT PORT,

0x0000000C +((outport-1) *0x4), &data);

These functions are called only from administrator to set via input port 4 (ADMIN INPUT PORT) and
output port 4 (ADMIN OUTPUT PORT) the specific input and output ports (1, 2 and 3) for users (e.g.
clinic, clinicl, clinic2) to access their dedicated BRAM (1, 2 and 3). Both functions call is admin



to validate the current user identity. The following is an example for input port.
// only if user is root, save matching pair in table (inport, group-id)
if (is_admin()) {
// set group id to input ports.
admin group = groupIdFromName ("root"); // get current groupid
gid = groupIdFromName (group name); //get group id from group name
if ((int)gid < 0)
printf ("setGidPerNoCInport: Invalid group.\n");
exit (1) ;
}

data = (unsigned int) gid;

The getInportGidPerInport function uses accessBramFW to read (opcode 0x1) group names

(equivalently clinics, and indirectly doctors) that have been previously configured. More specifically, it calls:
rc = accessBramFW(0xl, inport, outport, 0x00000000 + (i*0x4), &data);

The getOutportGidPerInport function uses accessBramFW to read (opcode 0x1) group names
(equivalently clinics, and indirectly doctors) that have been previously configured. More specifically, it calls:
rc = accessBramFW(0x0, ADMIN INPUT PORT, ADMIN OUTPUT PORT, 0x0000000C

+ ((outport-1)*0x4), &data);
These functions can be called from administrator via ADMIN INPUT PORT 4 and
ADMIN OUTPUT PORT 4 and from simple users (e.g. clinic, clinicl, clinic2) to find the input and
output port that have been setup from administrator for access to their dedicated BRAM.

In addition, HL.D supports specializations or extensions of the above high-level functions. These include
separate routines setupSFW and readSFW (for Simple mode). and setupCFW/readCFW/checkCFW (for
Extended mode), as well as specializations of statistic functions readStats/readStatsPort that focus on
specific arguments, e.g. readStatsFW, readStatsFifo and readStatsTotal or readStatsPortFW,
readStatsPortFifo and readStatsTotal. The complete HLD API for these functions is as follows.

void setupSFW(unsigned int inport, unsigned long L addr reg, unsigned long
H addr reg, unsigned int rule, unsigned int write ops, unsigned int read ops)
void readSFW(gid t group id);
void setupCFW(unsigned int inport, unsigned int L addr reg, unsigned int
H addr reg, unsigned int rule, unsigned int write ops, unsigned int read ops,
unsigned int outport);
void readCFW(gid t group id);
int accessBram(unsigned int op code, unsigned int bram no,

unsigned int addr reg, unsigned int #*data);
int accessBramFW(unsigned int op code, unsigned int 1inport, wunsigned int
outport, unsigned int addr reg, unsigned int *data);
unsigned int readStatsTotalPassedPerPort (unsigned int inport);
unsigned int readStatsFifoDroppedPerPort (unsigned int inport) ;
unsigned int readStatsFwDroppedPerPort (unsigned int inport) ;
void readsStatsTotalPerPort (unsigned int port); // passed packets
void readStatsFifoPerPort (unsigned int port); // dropped packets (entry fifo)



void readStatsFwPerPort (unsigned int port); // dropped packets (firewall)
unsigned int readStatsTotal(); // total passed packets

unsigned int readStatsFifo(); // dropped packets from FIFO

unsigned int readStatsFw(); // denied packets from firewall

The setupsFw function configures the firewall in Simple mode. This is accomplished by seting the input
port, low/high range, and rule for read/write operations. (Notice that rule is set to 1 to enable the firewall
rule, write ops and read ops are set to 1 for deny write and deny read respectively.

void setupSFW(unsigned int inport, unsigned long L addr reg, unsigned long
H addr reg, unsigned int rule, unsigned int write ops, unsigned int read ops);
The setupsSFw kernel method places restrictions on the input ports (1-4), rule (0 or 1), write/read field (0 or
1) and low/high range of memory to be protected: 0x40000000 to 0x40003FFF depending on input port;
for example for input port 1 itis 0x40000000 to 0x40000FFF. For example,

// checking parameters
if (inport <= 0 [| inport > 4){
printf ("setupSFW: Invalid input port:%d (1 to 4) \n", inport);
exit (1) ;
}
if (rule < 0 [[ rule > 1){
printf ("setupSFW: Invalid rule:%d (0 or 1)\n", rule);
exit (1) ;
!
if (write ops < 0 [[| write ops > 1){
printf ("setupSFW: Invalid deny write:$d (0 or 1)\n", write ops);
exit (1) ;
}
if (read ops < 0 [| read ops > 1){
printf ("setupSFW: Invalid deny read:%d (0 or 1)\n", read ops);
exit (1) ;
}
ok braml = ((L addr reg >= 0x40000000 |[|/ L addr reg < 0x40001000) ||
(H addr reg >= 0x40000000 [[| H addr reg < 0x40001000));
if (lok bramil) {
ok _bram2 = ((L_addr reg >= 0x40001000 [[ L addr reg < 0x40002000) |[|
(H addr reg >= 0x40001000 [| H addr reg < 0x40002000));
if (!lok bramz2) {
ok bram3 = ((L addr reg >= 0x40002000 [| L _addr reg <
0x40003000) [| (H addr reg >= 0x40002000 || H addr reg < 0x40003000)) ;
if (!ok bram3) {
ok bram4 = ((L addr reg >= 0x40003000 [ L addr reg <
0x40004000) [[| (H addr reg >= 0x40003000 ||/ H addr reg < 0x40004000));
if (ok bramd) {
}
} else
printf ("setupSFW: ok BRAM3 \n");
} else



printf ("setupSFW: ok BRAM2 \n");
} else {
printf ("setupSFW: ok BRAM1 \n");
}
if (lok braml && !ok bram2 && !ok bram3 && !ok bram4) {
printf ("setupSFW: ERROR in offsets above \n");
exit (1) ;

}

After parameter range checking, data must be packetized into the kernel-level data structures (described in
MLD) so that IOCTL calls can be invoked to allow user-space to communicate with the corresponding
generic MLD setupFw function as shown below.
At first, the rule setup register packetizes the info in Simple mode as explained in Section 3.1.
Rule reg = rule << 7; // enable(1l) or disable(0) rule
Rule reg += 0 << 6; // set to 0 to operate in compatibility mode
Rule reg += write ops << 5; //enable/disable rule for write operations
Rule reg += read ops << 4; //enable/disable rule for read operations
Rule reg += 0x0; //unused
Then, firewall setup data structures are populated as follows.
// fill setup data structure
my fw_ds.input port = inport;
my fw ds.L addr reg = L _addr reg;
my fw ds.H addr reg = H addr reg;
my fw ds.Rule reg = Rule reg;
// 1octl call for simple fw setup (use iowrite32)
rc = ioctl(fd, IOCTL SETUP FW_PORT, &my fw ds);
if(rc < 0) {

printf ("setupSFW: ioctl failed - rc:%d meaning: $s \n", rc,
strerror (errno)) ;

exit (1) ;
} else {
#ifdef FW _USER LOGS

printf ("setupSFW: ioctl passed - rc:%d \n", rc);

#endif

}

The checkFWRegs function uses IOCTL calls to validate if specific firewall configuration values have been

written to kernel space. The initial data is packetized into kernel-level data structures for validation
// providing empty data (apart from inport) to read
check my fw ds.input port

inport;

65536; // maximum is 65535
65536; // maximum is 65535
check my fw ds.Rule reg = 0; // 0 is never used

check my fw ds.L addr reg

check my fw ds.H addr reg

// new ioctl call for validation of setupSFW setup data
rc = ioctl(fd, IOCTL CHECK FW_PORT, &check my fw ds);
if(rc < 0){



The readsFw method provides a way to read the firewall setup registers in Simple mode. Access to this
function is based on group id, i.e. it is allowed only for system administrator. IOCTL calls are invoked to
allow user space to communicate with the corresponding MLD readfFw function.
//check if the current user id belongs to pecific groups
if (gid != groupIdFromName ("root")) {

printf ("readSFW: You are not authorized as system admin.\n");

exit (1) ;

}

// ioctl call to read simple fw setup data
rc = ioctl(fd, IOCTL READ FW PORT, &my fw ds);

The setupCFw performs firewall setup in Extended mode. This requires providing not only an input port, but
also an output port, in addition to low/high range. rule and read/write flags.
void setupCFW(unsigned int inport, wunsigned int L addr reg, unsigned int
H addr reg, unsigned int rule, unsigned int write ops, unsigned int read ops,
unsigned int outport) ;
The setupCFW method has one more restriction regarding the output port (1-4). Other restrictions are the
same for input ports (1-4), rule (0 or 1), write/read field (0 or 1), while the low/high range of memory to be
protected is relative: 0x0000 to 0x3FFF depending on input port; for example for input port 1 it is 0x0000
to 0x0FFF. An example of parameter validation is shown below.
// checking parameters
if (outport <= 0 || outport > 4){

printf ("setupCFW: Invalid value for output port:%d - must be 1, 2,
3, or 4.\n", outport);

exit (1) ;

if((L addr reg >= H addr reg) |[| (L addr reg < 0x00000000 || L _addr reg »>=
0x00001000) [[ (H addr reg < 0x00000000 || H addr reg >= 0x00001000)){

printf ("setupCFW: Invalid range [$x  $x] - must  be in [0x00000000,
0x00001000] .\n", L addr reg, H addr reg);
exit (1) ;

For setupCFw we must packetize the 8-bit rule register for Extended Mode as shown in Figure 15. The
register is set as follows (notice that bit 6 must be set and an output port must be selected properly).
// setup output port
if (outport == 1)
Rule reg += 1 << 3; //Value set to 1 to enable rule for output port 1 (BRAM
0)
else Rule reg += 0 << 3;
if (outport == 2)
Rule reg += 1 << 2; //Value set to 1 to enable rule for output port 2 (BRAM



0)
else Rule reg += 0 << 2;
if (outport == 3)
Rule reg += 1 << 1; //Value set to 1 to enable rule for output port 3 (BRAM
0)
else Rule reg += 0 << 1;
if (outport == 4)
Rule reg += 1; //Value set to 1 to enable rule for output port 4 (BRAM 0)

else Rule reg += 0;

After parameter range checking, data must be packetized into kernel-level data structures (described in
MLD) so that IOCTL calls can be invoked to allow user-space communication with the corresponding
generic MLD setupFw function as shown below.

At first, the rule setup register packetizes the info in Simple mode as explained in Section 3.1.

// prepare rule register for complex setup

Rule reg = rule << 7; //enable or disable rule

Rule reg += 1 << 6; //Value set to 1 to operate in NoC mode

Rule reg += write ops << 5; //enable or disable rule for write operations
Rule reg += read ops << 4; //enable or disable rule for read operations
// fill up setup data structure

my fw_ds.input port = inport;

my fw ds.L addr reg = L _addr reg;

my fw ds.H addr reg = H addr reg;

my fw_ds.Rule reg = Rule reg;

my fw_ds.output port = outport;

// ioctl call for complex fw setup (use iowrite32)

rc = ioctl(fd, IOCTL SETUP FW_PORT, &my fw ds);

if(rc < 0) {

Function checkFWRegs allows validating complex setup values that have written to kernel space. The
function initializes data packetized into kernel-level data structures.

The accessBram method: performs direct access (read/write) without Switch firewall. This is accomplished
by op_code (0x0 or 0x1 for write or read, resp.), output port (bram no), address range, and data.

int accessBram(unsigned int op code, unsigned int bram no,

unsigned int addr reg, unsigned int *data);

The direct access method also places restrictions on output ports (1-4) and op code (0x0 or 0x1). For
example,
// checking parameters
if (bram no <= 0 || bram no > 4){
printf ("accessBram: Invalid value for output port.\n");
exit (1) ;
}
if (op code < 0 || op code > 1){
printf ("accessBram: Invalid value for operation code.\n");
exit (1) ;



}

After parameter range checking, data is packetized into the kernel-level data structures (described in MLD)
and IOCTL calls are invoked to allow user space to communicate with corresponding MLD accessBram

function as shown below.

// £ill up the data structure

my direct access _ds.bram no = bram no;
my direct access ds.addr = addr reg;

my direct access ds.op code = op_code;
if (op_code == 0x1) // read option
my direct access ds.data = 0; // always initialize data before read operation
else
my direct access ds.data = *data;
#ifdef FW _USER LOGS
if (op_code == 0x0)
printf ("accessBram: TRY W - BRAM%d[%x)<=%x (in decimal %u) \n", bram no,

addr reg, my direct access ds.data, my direct access_ds.data);

else

printf ("accessBram: TRY R - BRAM%d[%x)=>%x (INIT in decimal $%u) \n", bram no,
addr reg, my direct access ds.data, my direct access_ds.data);

#endif

// direct access

rc = ioctl(fd, IOCTL DIRECT ACCESS BRAM, &my direct_ access_ds);

if(rc < 0) {

The accessBramFw method performs access (read/write) via the NoC firewall. The packet created travels
from the specific input port (inport) to the specific output port (outport which defines the BRAM), and
performs write/read operation to the specific address (addr reg) depending on op code (0x0 or 0xl),
reading or writing the data field (data).

int accessBramFW(unsigned int op code, wunsigned int inport, unsigned int
outport, unsigned int addr reg, unsigned int *data);

The accessBramFW method has an extra restriction regarding input ports (1-4). Other restrictions are for

output ports (1-4) and op_code (0x0 or 0x1). For example,
// checking parameters

if (inport <= 0 || inport > 4){

printf ("accessBramFW: Invalid walue for input port:%d - must be 1, 2, 3 or 4
\n", inport) ;

exit (1) ;
}

After parameter range checking, data is packetized into the kemel-level data structures (described in MLD)
and IOCTL calls are invoked to allow user space communication with corresponding MLD accessBramFW
function as explained above.

In the following Sections, we examine how the hierarchical Linux driver of the NoC Firewall can be used to
support data privacy and anonymity. This is performed using one administrator and one or more user files.



3.3.3.3 System Administrator Privacy File (for Healthcare Scenario)

The administrator file systemadmin privacy.c supports access confrol on all BRAMs (1-3) as shown in
Figure 23 for all users by allowing only a privileged user (i.e. a system administrator) to write tables that
uniquely associate groups and input/output ports in BRAM4. Then, the administrator can enter patient
information to BRAMSs 1 to 3, using a hashing scheme. This allows retrieving the patient name, history and a
key for accessing the ECG file which contains the corresponding ECG data.

writePatientData — §  gatBasifroup | Administrator
T
—$ 1s_adnin(getmyGid)

—  satSldParInport
_ﬂ setCidParcutpart

Usar spaca

High Level Driver

Mid Level Driver

Low Level
(v acces

Figure 23: The NoCFW Linux driver hierarchy with full system administrator privileges.

Initially, firewall is temporarily setup via setupCFWTemp to allow the system administrator to write this

info. Notice that this function must call both setupCFW and setupSFW.

// clinic/clinicl/clinic2 (mapped to inport 1/2/3) CANNOT access anything
//inport, L addr reg, H addr reg, rule, write ops, read ops, outport

setupCFW(1, 0x00000000, OxOOOOO100, 1, O, O, 1);

setupCFW(2, 0x00000000, OxO0OOOO1l00, 1, O, 0O, 2);

setupCFW (3, 0x00000000, 0Ox00000100, 1, O, 0, 3);

// admin CAN access BRAM4 in read/write mode

setupSFW (ADMIN OUTPUT PORT, 0x40003000, 0x40003100, 1, 0, 0);

Then, as explained before, after setting the tables, system administrator calls writePatientData to write patient
data (e.g. name, history, key) to BRAMSs 1, 2 and 3 for groups fwgroupl, fwgroup2, fwgroup3.

void writePatientData(unsigned int patient_ clinic, unsigned int patient no, char



*mac_address, char *patient name) .

This function calls the function gid t getBasicGroup() which is very similar to is admin ()
function. This method first certifies the associated (current) group id against root, by calling first calling
groupIdFromName () to obtain the specific group id for root and then calling
grouplist (list of groups, &ngroups) to validate the current group id with root, as shown in this
code segment.

//save fwgroup groupid

gid t gid fwgroup = groupIdFromName ("root") ;

//check if the current user id belongs to systemadmin group (fwgroup)

grouplist (1ist_of groups, &ngroups); //call function grouplist to take in which
groups belong each current user

for (i=0; i<ngroups; 1i++)

if (list of groups([i] == gid fwgroup) {
myGid = gid fwgroup;
break;
}
return myGid;
}

If system administrator is verified, it can call accessBramFW function to write groups in input and output

ports via NoC Firewall.

// Write patient data to specific (input port, ouput port, offset in BRAM)
// op_code (0:w), inport, outport, addr reg, unsigned int *data
accessBramFW (0x0, inport, bram no, addr_reg, &patient no);

#ifdef FW USER LOGS

Use of user mode accessBram function to read (oxl) if patient data has written
in Bram

// check values directly to bram

written value=0xFFFFFFFF;

//op _code (0:w), inport, outport, addr reg, unsigned int *data
accessBram(0x1, bram no, addr reg, &written value);

printf ("writePatientData: BRAM%d [%x) <- (%d %d) (patient no) \n", bram no,
addr reg, patient no, written value);
#endif

At this point, we can write patient data to Bram via accessBramFw .

For example,

// Write MAC to specific (input port, ouput port, offset in BRAM)

for(i=0; i<6; i++){
addr reg = N*OFFSET PATIENT NO + OFFSET MAC ADDR + (Ox4%*i);
//op_code (0:w), inport, outport, addr reg, unsigned int *data
accessBramFW (0x0, inport, bram no, addr reg, &iMacl[il);

while also checking if MAC address has been written to BRAM by calling from user space the HLD direct

access function accessBram (op code 0x1)).

#ifdef FW _USER LOGS

// check values by reading directly bram

written value=0xFFFFFFFF;



accessBram(0x1, bram no, addr reg, &written value);

printf ("writePatientData: BRAM%d [%x) <- (3x %x) (patient mac) \n", bram no,
addr reg, iMac[i], written value);

#endif

We also write patient number in BRAM via accessBramFw.

for(i=0; i<(name size + 1); i++){

addr reg = N*OFFSET PATIENT NO + OFFSET PATIENT NAME + (0x4%*i);

#ifdef FW USER LOGS

printf ("writePatientData: (inport: %d) - BRAM%d[%x)<-%cC (patient name) (in
decimal %d) \n", inport, bram no, addr reg, iName[i], iName[i]);

#endif

accessBramFW (0x0, inport, bram no, addr reg, &iName[i]);

while also checking if patient number been written to BRAM by calling from user space the HLD direct
access function accessBram (op code 0x1)).

#ifdef FW _USER LOGS

// check walues

accessBram(0xl, bram no, addr reg, &written value);

printf ("writePatientData: BRAM%d[%x)<-(%c %c) (patient name) \n", bram no,
addr reg, iName[i], written value);

#endif

Later after group tables and patient data are written, the firewall setup is modified to limit user access to
these tables by calling setupFwFinal. Notice that clinic, clinicl, clinic2 (mapped to input ports 1,

2. and 3, respectively) can access only the corresponding BRAM 1, 2, or 3 for read only.

//inport, L addr reg, H addr reg, rule, write ops, read ops, outport

setupCFW(1, 0x00000000, 0x00000100, 1, 1, 0, 1);

setupCFW(2, 0x00000000, 0x00000100, 1, 1, 0, 2);

setupCFW(3, 0x00000000, 0x00000100, 1, 1, 0, 3);

// clinic/clinicl/clinic2 (ALL) CAN access BRAM4 for read-only. Since they come
from diff ports, must use SFW

//inport, L addr reg, H addr reg, rule, write ops, read ops
setupSFW (ADMIN OUTPUT PORT, 0x40003000, 0x40003100, 1, 1, 0);

Group tables are used to limit access from specific user groups only to the predefined (by the administrator)
NoC firewall input/output ports, thereby limiting access to BRAMSs via the NoC firewall. In our current
setup, each group corresponding to a different hospital department would have access to a different BRAM
containing data for all its patients; group-port associations can either be placed in the same BRAM as
discussed before (shared across different groups, with protection enforced by group id), or alternatively in
different BRAMSs (in which case protection is enforced by the firewall rule).

3.3.3.4 FWGroup Privacy File (for Healthcare Scenario)

This scenario provides read access to all BRAMs (1, 2 and 3) respectively from groups (fwgroupi,
fwgroup2 and fwgroup3) as set up by system administrator (systemadmin privacy.c). There are 3
files: one for fwgroupl (fwgroupl privacy.c), another for fwgroup2 (fwgroup2 privacy.c) and
finally one for fwgroup3 (fwgroup3 privacy.c). Each group consists of simple users that can be



considered as physicians or healthcare personnel that is given permissions to only read data from the
corresponding BRAM: as we will show later the maximum theoretical value for the number of physicians
with current setup is 64. Access to data is made via readPatientData (Which sets the ports properly and
calls accessBramFW function to read only) as shown in Figure 24.
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Figure 24: The NoCFW Linux driver hierarchy with basic group (fwgroup) privileges

In addition to user access control, an elaborate hashing mechanism (hashPatientNo) is used to identify
offsets with which different healthcare patient data (patient no, mac address, patient name for anonymity) is
stored in BRAM (typically by root).
int x = keccak(patient no) %16; // use Keccak sha-3 algorithm to hash to
// 16 different regions in each BRAM
return x;
This data can be subsequently read by simple users (physicians) via readPatientData function depending
on the group-port associations assigned by the system administrator. The code is similar to
//gid_t myGid = groupIdFromName ("fwgroup") ;
gid t myGid = getBasicGroup();
inport = getInputPortPerGid(myGid) ;
bram no = getOutputPortPerGid (myGid) ;
printf ("readPatientData:myGid:$d->inport:$%d bram no:%d\n",myGid, inport,bram no) ;
N=hashPatientNo (patient no) ;
printf ("readPatientData: patient no:%d H:%d\n", patient no, N);



bram patient no = OxFFFFFFFF; // overwritten in order to be read from BRAM again
//(op_code, inport, outport, addr reg, *data)

addr reg = N*OFFSET PATIENT NO;

printf ("okli\n");

At this point read patient number from BRAM via accessBramFw .

rcl = accessBramFW(0xl, inport, bram no, addr reg , &bram patient no);

printf ("ok2\n");

printf ("readPatientData: Read BRAM (inport:%d - output port:%d - offset:%d) ->
bram patient no:%d H:%d\n", inport, bram no, addr reg, bram patient no, N);

If rc1>0 and the patient number provided agrees with the one in BRAM, we can proceed to read patient
info from the BRAM by calling the HLD user mode accessBramFW function as shown below. For example,
if((rcl >= 0) && (patient no == bram patient no)){

// read mac_address in specific inport and bram no

for(i=0; i<6; i++){

// (op_code, inport, outport, addr reg, *data)

addr reg = N*OFFSET PATIENT NO + OFFSET MAC ADDR + (0x4%*i);

rc2 = accessBramFW(0xl1, inport, bram no, addr reg, &iMac[il]);

printf ("readPatientData: Read BRAM (inport:%d - output port:%d - offset:%d) ->
mac: %x (in decimal %d) \n",inport, bram no, addr reg, iMac[i], iMac[i]);

}

Patient name data and key are also retrieved from BRAM via HLD user mode accessBramFW function.
for(i=0; i<22; i++){

// (op_code, inport, outport, addr reg, *data)

addr reg = N*OFFSET PATIENT NO + OFFSET PATIENT NAME + (0x4%*1i);

rcl = accessBramFW(0x1, inport, bram no, addr reg, &iName([i]);

}

Notice that function writePatientData (unsigned int patient no, char *key, char*
patient name) can only be called from root, otherwise it will fail. In fact, in our healthcare scenario, we
allow only privileged users to perform write access via firewall. Such failures (and reasons behind them) can
be easily detected by calling testStats which provides access to statistics logs.

3.3.3.5 Security Overheads
The administrator cost for involving the Linux kernel-space driver to setup anonymity service relates to

e mapping group id to input/output ports of the NoC Firewall; this takes on average 0.72ms and 1.45ms,
respectively,

e setting up the firewall (initially for administrator setup, and later for user); this takes on average 4.42ms
and 4.76ms.

e storing the patient key in BRAM by invoking sha-3 hash (keccak algorithm) takes on average 17.10ms.
Finally, retrieving the anonymization key info in order to start streaming the healthcare data (specifically, the
ECG signal) takes an average of 10.08ms. Unlike AES cryptography, anonymity costs are small compared to
total cost of soft real-time healthcare application which are in the order of 1 sec. Although, the healthcare
application requires optimization and porting to a parallel ARMvS8 server to support efficiently more BGW
devices without missing deadlines, it is obvious that data protection costs are relatively small.



3.4 Hierarchical Driver Validation

Different types of tests have been developed to debug and validate our hierarchical driver.
The first tests focused on validating direct BRAM access for different BRAMSs and offsets. This test is simple

and requires sequential write/read accesses and validating the output. For example,
accessBram(0x0, 1, addr reg, &bram write);

accessBram(0xl, 1, addr reg, &bram read);

Once these tests worked, complete coverage tests were designed to verify read/write access via Firewall for

all possible input and output ports and for all possible different settings of the firewall (Simple and/or

Extended Mode). For simplicity, we assumed in our tests a limited address range (LOW, HIGH), exactly the

one used in our healthcare scenario.

These tests were designed to take into account (and avoid) synchronization issues related to accessing

BRAM via two different paths: a) via NoC firewall and b) via direct access for testing. For this reason, as we

explain below, certain read/write accesses were made sequential.

In the Write Test, we perform the following steps.

1. Setup NoC Firewall independently for each output port, by specifying deny read, deny write, deny read
& write or accept all. This gives a total of 4* = 256 different combinations. If we allow mixing of Simple
and Extended Mode, we have a total of 512 different cases.

2. Perform direct write to each BRAM (at a specific offset) from each input port and subsequently verify
with subsequent direct read from BRAM that data (with a default value w) has indeed been written.
Assuming testing for a single BRAM offset, the total number of (orthogonal) cases corresponding to
input/output port combinations is 4 x 4 = 16, raising the total number of unique cases to 16 x 512 = §192.
The direct read operation is needed to avoid the possibility of write/read reorder (possible case on ARM
Cortex-A9). A code snippet for this step is as follows.

rcl=accessBram(0x0, inport, 0x0, &w);
do { // read

rc2=accessBram(0xl, inport, 0x0, &r);
} while (r != w);

3. Write BRAM memory location wvia NoC Firewall with a different (always
increasing) value z.

rc3=accessBramFW (0x0, inport, outport, 0x0, &z);

4. Read the BRAM value directly (value x). The read operation examines the return code from previous

write operation to avoid the possibility of a write/read reorder. A code snippet for this step is as follows.
if (re3 == 0)
rc4=accessBram(0xl, inport, O0x0, &x);

5. Finally, we call a custom check write function with the complete setup pattern, x and z. For each
port, the above Write Test passes if and only if
e values x and z are equal and the setup pattern for that port is deny read (accept write) or accept all,

or

e values x and z are non-equal and setup pattern for that port is deny write (accept read) or deny all.

Assuming that write via NoC Firewall (as demonstrated by the Write Test) works correctly, a Read Test can
be performed in a relatively simple way. After writing an increasing value to BRAM, a subsequent read



operation via the NoC Firewall is performed, and data is compared with the data written. The number of
cases 1is alike the Write Test, i.e. 8192 cases.

Thus, in the Read Test, we perform the following steps. For example,

1. Write BRAM memory location via NoC Firewall with a different (always increasing) value x

rcl = accessBramFW(0x0, 1, 1, addr reg, & x);
2. Read BRAM memory location via NoC Firewallin z.

rc2 = accessBramFW(0xl, inport, outport, addr reg, &z);
3. Finally, we call a custom check read function with the complete setup pattern, x and z. For each port,
the above Read Test passes if and only if
e values x and z are equal and the setup pattern for that port is deny read (accept write) or accept all,
or

e values x and z are non-equal and setup pattern for that port is deny write (accept read) or deny all.



Chapter 4 - Experimental Framework: Security in ECG Processing

The hierarchical Linux drivers presented in Chapter 3 are applied to the healthcare scenario. In this scenario,
we consider soft real-time smartphone monitoring of patients outside the hospital environment with the aim
to evaluate performance overheads for supporting transmission security and anonymity. More specifically,
patients wearing the ST Microelectronics BodyGateway device (BGW) and carrying an Android device
(usually a smartphone) with a Bluetooth (BT) connection to the device and a WiFi connection to a Cloud
environment (receiving data and performing ECG analysis) can help medical personnel monitor annotated
patient signals on their own smartphone.

Notice that annotations are added asynchronously in on top of the ECG signal to indicate specific chronic
cardiac diseases, more specifically non-fatal arrhythmias, such as ventricular cardiac events. Some common
cardiac arrhythmias, such as atrial fibrillation, can be associated with embolic strokes, while ventricular
tachycardia can herald sudden cardiac death.
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Figure 25: The healthcare application.

More specifically, as shown in Figure 25, a Patient App executing on a client device (e.g. an Android
smartphone) connects to BT to receive ECG data from the BGW device, and Wi-Fi 802.11 to retransmit it to
a distributed Linux-based Cloud system architecture (e.g. based on ARMv6, v7 or v8 boards) for ECG
Analysis. Then, a Docfor App executed by medical personnel on a similar Android device can connect to the
Cloud infrastructure requesting to monitor and visualize ECG data for a given patient.

4.1 Patient App

The Patient App allows the patient to configure connections to BT device (pairing) and to the cloud server
(WiFi). Before transmitting ECG data to the Cloud, the Patient App also sends a unique Patient No and
current Android patient device time when the device connects to the BGW.



e The Patient No provides a way to support anonymization, i.e. it uniquely determines (more
specifically, hashes to) the MAC Address of the BGW that the patient is wearing, as well as patient
data. Our anonymity scheme may also permit to conduct a variety of post-processing analysis on
aggregated unencrypted anonymized ECG data on the Cloud server, without endangering privacy of the
patients.

e The timestamp defines a relevant time point which can be used to provide metrics related to real-
time operation. This can help identify issues, e.g. when BGW device enters storing mode (saving data
instead of transmitting due to BT connection delay) or if the WiFi connection from Patient App to the
Cloud or from the Cloud to Doctor App has failed or inactive.

4.2 Zedboard Server for ECG Processing

In the patient Application that is referenced above, we use a Xilinx Zedboard FPGA platform associated with
our hierarhical Linux drivers. The Xilinx Zedboard FPGA platform works as a server node in the distributed
cloud system that is mapped (e.g. via a DNS service) to a number of smartphone devices. Zedboard is also
configured with our NoC Firewall on FPGA, associated Linux drivers equipped, a server rx process that
receives ECG data, and our cardiac heartbeat detection and classification algorithms which are based on
WFDB and OSEA libraries (developed in C language).

We first perform conversion from a BGW ECG signal with 256 samples/second to a standard ECG-13
compliant format with 200 samples/second using WFDB’s wrsamp function which creates 2 new files: a
binary “.dat” file which contains the standardized ECG signal and an asci “.hea” file which contains
significant info about ECG data stored in the previous file e.g. the total samples.

Then, we perform heart beat detection and classification using a modified version of easytest algorithm in
order to generate a binary “. atest” file which contains the annotation tags. This tool originates from OSEA
(Open Source ECG Analysis) and uses different types of filters (e.g. noise reduction, QRS, SQRS) and
related computations (R-R interval) on a standardized ECG-13 compliant signal to classify each detected
beat as Normal or Ventricular.

The easytest tool is part of Harvard’s WFDB Physionet software which provides a stable ECG detection
and analysis tool. The tool provides a QRS detection feature which achieves very high positive predictivity
when using MIT/BIH and AHA arrhythmia databases. In our case, we examine issues related to real-time
annotation of the ECG signal received from the sensor, without excessive re-computation by redrafting the
design of the easytest algorithm.

Using the above WFDB and OSEA libraries, the Zedboard server is able to receive via WiFi, decrypt, store,
convert to a standard format and eventually process the received ECG signal compliant with ECG13 standard
for heart beat detection and classification. Heart diseases (and in our case arrhythmias) are detected
automatically by the presence of ventricular cardiac events during ECG processing.

In addition, a server Tx process is in charge for communicating asynchronously with the Doctor App when
a request is made to retrieve a given patient’s ECG File. This is better described in Patient App. Notice that
Patient No is used by the server (in fact by a server Tx child process which inherits privileges of the
connecting doctor) to access patient data via the NoC Firewall from an appropriate BRAM (according to
group permissions) and a given location (via a hash). Patient data includes private info (patient name, sex,
etc), as well as a key related to the requested patient’s annotated ECG file. This key is used to encrypt this
file before transmitting this file to Doctor App (when the lock is obtained).



4.2.1 Doctor Application
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Figure 26: Doctor App Workflow Diagram

As shown in Figure 26, the Doctor App implements an authentication mechanism based on a Medical
personnel ID to control access to sensitive medical data stored in the cloud. Then, upon successful login, the
Doctor must select to monitor a specific unique Patient No, thus providing anonymized access to the patient’s
vital signs stored on the server.

ENCNEL)

DREAMS PATIENT

Bluetooth:
WiFi: Medical ID Welcome
BodyGateway to Smartphone: ( ®) g
CONNECT STREAM DEACTIVATE Password 4}:
ECG Patiens
(O I = 9,
LOGIN *f @
= Stats Treatment
Smartphone to Cloud:
. 2T
CONNECT STREAM DISCONNECT New Doctor? Register here - o
“

LOGOUT

Figure 27: GUI for Patient (BT and WiFi) and Doctor App (authentication, and WiFi)

After sending the Patient No. a WiFi Connection Thread receives ECG data (which includes an incremental
sample id, the ECG signal, and a possibly asynchronous annotation) from Cloud server and appends it info a
shared buffer (linked list) and eventually a file. Another ECG Animation Thread also accesses this file (via a
file lock) in order to decrypt info using the same key, use MPAndroidChart library to chart ECG time series
plot for the corresponding points, eventually emptying the file. Asynchronous posting of annotations on the
cart appears as a character "N" for Normal and "V" for Ventricular, see Figure 22. This graph shows the value
of the ECG Signal with the units (mV), and provides calibration, scroll and zoom functions. the Cloud server
to Patient App to allow patients to monitor their heart rate signal. Another potential extension refers to
logging patient data and providing high-level notification services to medical personnel in real-time.



4.3 DDoS Attack via NoC - Cache Thrashing

This Section focuses on the NoC Firewall and examines BRAM protection from on-chip malicious processes

(e.g. malicious drivers or corrupt devices). We examine how network performance deteriorates when more

than one kernel threads use system resources.

4.3.1 Kernel Level Attack: exploit_firewall module

Different tests of involving attacks to BRAM have been developed to examine and measure BRAM

performance. In order to plan these attacks a second module (called exploit firewall) is created that

communicates with the initial module named sw firewall as shown in Figure 23. A user can select

different scenarios to run, whereas each scenario defines

e a varying number of kernel threads (safe and malicious) to access physical memory via I/O write (we
examine only iowrite, since read operation is blocking, thus posing additional restrictions), and

e sets the appropriate deny rules.
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Figure 28: Kernel Level Attacks

More specifically, the exploit module provides the following API; notice that these functions call NoC
Firewall module functions to access FPGA memory (Figure 29), i.e. the kernel firewall module must have
been installed first.

my write(struct file *f, const char __ user #*buf, size t len, loff t *off);

my read(struct file *f, char  user *buf, size t len, loff t *off);

static void setup FW Attack();

static void define scenario 1();

static void define scenario 2();

static void define scenario 3();

static void define scenario 4();

static int safeFun(void *arg);

static int malFun(void *arg);



exploit firewall module
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Figure 29: Communication of exploit firewall module with NoC firewall module

my write method: The exploit firewall module allows the user set the scenario by providing
messages (echo command with scenario number, mode of firewall access and access method via my write

method. An example of code can see below.
for (i = 0; 1 < len && 1 < BUF _LEN; 1i++)
get _user (Message [i], buf + 1i);
Message Ptr = Message;
printk (KERN INFO "Incoming message: %s\n", Message Ptr);
//two arguments in my write function
if (sscanf (Message, "%d $%d %d", &scenario num, &fw type, &fw access) != 3) {
printk (KERN INFO KERN ALERT "Invalid input: \"%s\".\n", Message);
return -EINVAL;

else
printk (KERN _INFO "scenario num:%d fw _type:%d fw_access:%d \n",
scenario num, fw type, fw_access);

The user passes three messages:



The scenario (scenario num) that must be executed. For example, the values 1, 2, 3 and 4
correspond to scenario 1, scenario 2, scenario 3, and scenario 4.

The firewall setup (fw type) defined either Simple or Extended mode. For example, if
fw _type=0 the firewall is setup using setupSFW, while if fw type=1 we perform complex
setup (Extended mode) using setupCFW. The firewall setup itself is performed in
setup FW Atttack method.

The firewall access field (fw_access) defines direct access or access via firewall. For example, if
fw _access=0 We invoke accessBramFW to access BRAM via the NoC Firewall, while if
fw access=1 invoke accessBram to access BRAM directly.

my read method: The messages passed from user can be read via my read method (cat command).

Here, we can read our scenarios in kernel space. For example,
switch (scenario num) {

case 1:
define scenario 1();
break;
case 2:
define scenario 2();
break;
case 3:
define scenario 3();
break;
case 4:
define scenario 4();
break;
default:
printk (KERN INFO "Wrong scenario number\n");
sprintf (Message, "The scenario num is out of range (1-2)\n");
while (len && *Message Ptr) |
put_user (* (Message Ptr++), buf++);
len--;
bytes read++;
}
off += bytes read;

return bytes read;

The exploit firewall module supports simultancous (read or write) access to Bram by creating two
kinds of kernel threads named safethread and malthread (malicious thread). These threads are created
upon a call to my read method, and the safe thread (safe thread) calls safeFun, while the malicious
thread (mal thread) calls malFun function.

//Create kernel threads for malicious users

for (i=1; i<=safe num; i++) {

safe thread[i-1] = kthread run(safeFun, (void*)i, "safethread");

}

//Create kernel threads for safe users



for (i=1; i<=mal num; i++) {

mal thread[i-1] = kthread run(malFun, (void*)i, "malthread");

setup FW Attack method: This method uses (fw_ type) to manage the Firewall setup.
If fw _type=0, we use simple firewall setup (setupSFW) in Normal mode. Thus, user can select inport,
L addr reg, H addr reg, rule, write ops, and read ops. In the example below, simple firewall
setup is used to allow access from input port i to BRAM ; i=1,2,3,4.
If fw type=1, we activate complex setup (setupCFW). Hence, user can select the inport,
L addr reg, H addr reg, rule, write ops. read ops. and outport. In this case, we allow
read/write access from input port 1 to BRAMI, but disallow access to BRAM1 from all other input ports.
if (fw_type==0) {
//simple inport, L addr reg, H addr reg, rule, write ops, read ops
setupSFW(1, 0x40000000, 0x40000fff, 1, 0, 0);

setupSFW(2, 0x40001000, 0x40001fff, 1, 0, 0);
setupSFW (3, 0x40002000, 0x40002fff, 1, 0, 0);
setupSFW (4, 0x40003000, 0x40003fff, 1, 0, 0);

}

else if(fw _type==1){

//complex inport, L addr reg, H addr reg, rule, write ops, read ops, outport

setupCFW(1, 0x00000000, 0x00000fff, 1, 0, 0, 1);
setupCFW(2, 0x00000000, 0x00000fff, 1, 1, 1, 1);
setupCFW(3, 0x00000000, 0x00000fff, 1, 1, 1, 1);
setupCFW (4, 0x00000000, 0x00000fff, 1, 1, 1, 1);

scenario N methods:

There are four scenarios that focus on simultaneous BRAM access from malicious and safe users (threads)
(via I/O read/write). All scenarios dynamically create a number of safe threads (safe num) and a number
of malicious threads (mal num) that all access the same Bram (e.g. BRAM1). The four scenarios that used
are:

e Scenario 1: 1 safe thread

e Scenario 2: 1 safe — 1 malicious threads

e Scenario 3: 1 safe — 2 malicious threads

e Scenario 4: 1 safe — 3 malicious threads

The code in the following example refers to scenario 2. In this scenario, we run 1 safe and 1 malicious
thread. Each thread accesses the same BRAM (BRAM1) from a different input port (safe from input port 1,

while malicious from input port 2). All scenarios follow the same logic.

safe num = 1;

mal num = 1;

safe ptr=kmalloc (safe num#*sizeof (struct attack access ds), GFP_KERNEL) ;
mal ptr=kmalloc(mal num#*sizeof (struct attack access ds), GFP_KERNEL) ;
//Safe user



safe ptr[0].op code=0; //write access
safe ptr[0].input port=1;

safe ptr[0].output port=1;

safe ptr[0].addr=0x0;

safe ptr[0].data=0xA;

// Malicious user

mal ptr[0].op code=0; //write access
mal ptr[0].input port=2;

mal ptr[0].output port=1;

mal ptr[0].addr=0x0;

mal ptr[0].data=0xB;

safeFun & malFun methods:
Each thread (safe, malicious) calls the corresponding function (safeFun, malFun)to perform a number
of simultaneous accesses (e.g. 200.000) to Bram via the NoC Firewall or directly. Moreover, by calling
ktime get (), we can get an insight into driver performance.. An example of safeFun functionfollows.
if (fw_access==0) {
//start timer
start = ktime get(); //returns nanosecond resolution
for(i=0;1<200000;i++) { //times that thread read Bram(memory)
accessBramFW (&my access_ds) ;
}
//end timer
end = ktime get () ;
cur_access_time = ktime to ns(ktime sub(end, start)); //Returns the remainder
of the substraction in ns
printk (KERN _INFO " SAFE MODULE with id:%d - Time pased for protected memory
access: %1lu\n", i, cur_access_time);
}else if (fw_access==1) {
start = ktime get(); //returns nanosecond resolution
for(i=0;1<200000;i++) {
accessBram(&my direct access ds);
//end timer
end = ktime get();
cur_access_time = ktime to ns(ktime sub(end, start)); //Returns the remainder

}

In Figure 30, we show performance for four scenarios: 1 Safe (called 1S), 1 Safe — 1 Malicious (1S -1M), 1
Safe — 2 Malicious (1S - 2M), 1 Safe — 3 Malicious (1S — 3M) that perform simultaneous access (write) to
BRAM. More specifically, we measure the average delay of write accesses when other threads attack in the
same Bram (Bram 1). Notice the gradual increase of the delay with the number of malicious threads.
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Figure 30: Average BRAM access delay (ns) for different exploit scenarios

Similar to Figure 30, Figure 31 presents an online xmgrace plot derived from a demo. We examine access
time for four different scenarios: 1 Safe (called 1S). 1 Safe — 1 Malicious (1S -1M), 1 Safe — 2 Malicious (1S
- 2M), 1 Safe — 3 Malicious (1S — 3M) that perform simultaneous access (write) to BRAM. More
specifically, we measure the time of write access when all threads one-by-one start attacking the same Bram
(Bram 1). Notice the gradual increase of the delay and gitter with the number of malicious threads.
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Figure 31: BRAM access delay vs Time (in ns) for different exploit scenarios with xmgrace

Although, we have disabled the firewall for all ports (e.g. input port 1, 2, 3, 4), delay did not decrease
significantly. This is due to the fact that the extra overhead for accessing the BRAM is small compared to
accessing the firewall module in FPGA and network congestion is limited due to packet drops at intermediate
and final stages of the NoC that are not accounted by our statistics methods.

More specifically, design of the NoC Firewall has used FIFOs (sc_fifo) for interconnecting switches to



implement the NoC, with a packet drop policy adopted in the NoC if the number of packets queued in the
switches exceeded the size of the buffers (i.e. a nonblocking sc_fifo write operation is used). Due to
packet drops at intermediate and final stages of the NoC, the input buffer never becomes full in our
experiments (and probably never contains more than one packet) and delays at intermediate and final stages
of the NoC cannot be accounted for.

If a push-back mechanism had been implemented in switches at different stages of the NoC, then the delay
would be dependent on the number of packets entering the network. Hence, in this case, firewall operation
would limit the number of packets entering the network packets and could help reduce delay or exhibit less
packet drops due to a full FIFOs at input buffers. With the current setup, the only metric that could help
estimate congestion would be the number of NoC drop packets at intermediate stages of the NoC. However,
the current hardware design does not support this metric (only at the input switches).

4.4 High-Level Security

4.4.1 Event Monitoring Tools

Event logs and monitoring tools are important for detecting malicious activities and suspicious traffic. Many
systems or network devices can use log events to monitor security vulnerability attacks and issue alerts.
Thus, event logs play an important role in information and data security and several different methodologies
and tools have been developed.

Most popular security event monitoring tools follow one of two different approaches. Certain tools track
suspicious network traffic in real-time, such as SEC [17], SwatchTools and Techniques for Event Log [18],
Logsurfer [19], and OSSEC[20] while other tools, such as logwatch [21] and SLAPS-2 [21] focus on offline
monitoring analysis, i.e. first capturing log events in a file and then processing them. Offline tools differ in
the type of log files that can be processed, e.g. Guardian Files, OSS, EMS, VHS logs.

Next, we concentrate on real-time monitoring tools only, in particular SEC which is used in our application.

4.4.2 Real time monitoring tools

Swatch is a real-time event monitoring program based on Perl language [18]. Similar to SEC, Swatch
analyzes log files by examining rules described as regular expressions in a configuration file. In this
approach, if each line of the log file matches a regular expression, we carry out an action (sends email, write
a warning etc.) Swatch can be considered simple to use, but unlike SEC, it cannot support more than one
event each time.

Logsurfer is similar to Swatch, i.e. it follows rules stored to a configuration file to analyze log files, but has
additional advantages. It is based on C language and processes events using regular expressions gathering all
log-related data into one log file. Logsurfer uses contexts (similar to buffers) that store data instead of
reading each line of a log file to check if each new message matches a regular expression [19]. Moreover,
Logsurfer is based on dynamic rules, this means that actions that take place may provide additional actions.
OSSEC (initial name syscheckd) is based on an open source host-based intrusion detection system (HIDS)
[20]. OSSEC can be used in Linux, Windows, Solaris and other operation systems. Its prime responsibility is
to detect and analyze events in real-time, while monitoring for system integrity. OSSEC uses syslog, sms, or
smtp to inform customers when data has changed or when suspicious behavior (e.g. cyber attack, system
error) occurs at the time it happens. OSSEC uses custom technology to monitor data, and does not rely on an
independent agent, service or daemon to monitor the data.

Simple Event Correlator (SEC) is a real-time correlation tool for high level security used to detect actions



based either on normal activity (e.g. the start of a process) or special events (e.g. system interrupts or
failures). SEC is written in the open source programming language Perl and can run in different operating
systems. It is simple to use and lightweight compared to other event monitoring tools, such as Logsurfer. It
can run as a daemon managing many system events (tasks) at the same time.

In principle, SEC reads events that occur from files, pipes or stdin (standard input) and checks the file line
by line for possible matches based on specified patterns rules, described as regular expressions, strings or
Perl functions. If rules match, corresponding actions, e.g. sending an email or using snmp trap, are executed.
If a number of specified rules match, then several simultaneous actions can be taken. Rules managed from
SEC event correlation tool are as follows.

o Single Rules: an action is taken when the log file matches a specified rule.

o SingleWithScript: an external program is executed when the logfile matches a specified rule.

o SingleWithSupress: if rule and correlation action are present, then execute the action list
immediately. Otherwise, SEC creates the action dynamically, and executes it in T seconds.

e Pair: this rule characterizes a pair of conditions in T seconds, where the T value defines a window
field and the initial value is 0. If an event matches the pair of conditions based on pattern and
context, then a message is printed defined by the desc field.

e PairWithWindow: this rule catches a pair of condition in T seconds, where the T value defines a
window field. For example, if an event matches a rule characterized by pattern and context, then a
message is printed by this field. If pattern and context do not match, SEC will check all fields
(operations) in the given rule.

o SinglewithThreshold: start correlator operations that count the double lines of the same events N in T
seconds. In this approach, If N events are present, we execute an action in N1 seconds

o Singlewith2Threshold: start correlator operations that count the double lines of the same events N in
T seconds. In this approach, If N1 events are present, execute an action in N1 seconds. After that, if
N2 events are present, execute an action in N2seconds.

e Suppress: make no action when a line of logfile matches to pattern. This rule keep events that match
for later rules in the configuration file.

e Calendar : This rule is a little different for the other rules due to listen to system clock. In this
approach, execute an action if present time matches of the specific time.

e Jump: jump a rule, since an event matches to rule.

e Options: set options when different lines of a log file match a pattern. An option that matches a
configuration file may cancel a previous one.

4.4.3 Experimental Study: SEC for Monitoring a DDoS Attack via NoC Firewall

This section focuses on how to apply SEC to monitor and visualize how access patterns to BRAMS (1, 2, 3,
or 4) dynamically change over time.

4.4.3.1 Access to Brams: FwAccess module

In order to plan accesses to Brams a second module (called fwAccess) is created that communicates with
the initial module named “sw firewall” . Two kemel threads in this module (access thread and
sample thread) use I/O write to make accesses to BRAM 1, 2.3, or 4.

More specifically, as shown in Figure 32, FwAccess module provides the following API function calls to



setup the firewall and access FPGA memory via NoC Firewall, i.e. the kernel firewall module must have
been installed first.

my write(struct file *f, const char __ user *buf, size t len, loff t *off);
my_read(struct file *f, char _ user *buf, size t len, loff t *off);

static void setup FW Attack();

static int accessFun(void *arg);

static int sampleFun(void *arg);

Figure 32: Communication of fw_access firewall module with NoC firewall module

my write method: The fw access module allows the user to program the mode of firewall access
(fw_type) by sending an echo command to my write method. Notice that the firewall setup mode
(fw_type) is defined as either Simple or Extended mode. For example, if fw_type = 0, the firewall is set
using Simple Mode, i.e. using setupSFw. while if fw_type = 1. the firewall is set in Extended Mode using
setupCFW. The NoC firewall setup itself is performed in setup FW_Atttack method. A code snippet is
shown below.
for (i = 0; 1 < len && 1 < BUF_LEN; 1i++)
get user (Message[i], buf + 1i);
Message Ptr = Message;
printk (KERN INFO "Incoming message: %s\n'", Message Ptr);
//passes one message when have write to kernel
if (sscanf (Message, "%d", &fw_type) != 1) |
printk (KERN INFO KERN ALERT "Invalid input: \"%s\".\n", Message);
return -EINVAL;



else
printk (KERN INFO "fw type:%d \n", fw_type);

my read method: The fw access module supports serial access to BPAMs and takes timing samples from
kernel threads access thread and sample thread. These threads are created upon a call to my read
method, where the access thread (access thread) calls accessFun, while the sampling thread
(sample thread) calls sampleFun function.

// create kernel thread for accessing

printk (KERN INFO "my read: create threads \n");

access_thread = kthread create(accessFun, NULL, "accessthread") ;
// create kernel thread for sampling

sample thread = kthread create(sampleFun, NULL, "samplethread");

accessFun method: Thread (access thread) calls its associated function (accessFun)to perform a
number of serial accesses (e.g. 10.000) to BRAM 1, 2, 3, and 4 via the NoC Firewall as follows.
while (i<=NO RUNS WRITE) { //NO RUNS WRITE = 10.000
accessing completed = 0;
if (bram num>4) {
bram num = 1;
}
my access_ds.output port=bram num;
accessed bram num=bram num;
accessBramFW (&my access_ds) ;
printk (KERN _INFO "accessFun: 1id:%d ended Bram:%d \n", i, bram num);
accessed bram num=0;
bram num++;
i++;
}
printk (KERN INFO "accessFinished: %d", 1i);
accessing completed = 1;
do exit(0);
return 0;

sampleFun method: Thread (sample thread) calls its associated function (sampleFun)to sample
access to BRAMS, taking samples approximately each 100ms. Related code from sampleFun follows.

unsigned int accessing completed = 0;
start = ktime get();
while (l!accessing completed) {
point end = ktime get();
//find total time passed for all points in ms
point _time = ktime to ms(ktime sub(point end, start));
printk (KERN INFO "sampleFun point time ms:%1lu accessed bram num:%d\n",
point time, accessed bram num) ;
msleep (SAMPLE RATE); //SAMPLE RATE=100



4.4.3.2 Visualization and Alert using SEC
The Security Event Correlation Tool can be used to monitor BRAM 1 to 4 by examining the syslog file for

the following pattern:
Apr 21 08:31:52 linaro-ubuntu-desktop kernel: timeFun point time ms:46309

accessed bram num:1.

This message is saved in syslog file when fw_access and sw_firewall module run. More specifically, the
following simple rule of type single searches for the kernel time (corresponding to a time interval) and
corresponding access delay and prints results in a file results sec.txt for visualization (action=
write results sec.txt $1 $2).

The SEC rule (sec.rule. sh file) is shown below:

type=Single

ptype=RegExp

pattern=sampleFun point time ms: (\d+) accessed bram num: ([1-4])

desc=time point with time $1 and bram num $2

action=write results_sec.txt $1 $2

As shown below when SEC is running with the above rules, the sec.rule. sh script executes all associated
events in a file for high-level security visualization, e.g. by GRACE or HeatMap.

Writing event '196789 4@' to file 'results_sec.txt'

For example, HeatMap can be used to represent accesses to BRAMS 1 to 4 in real time. Figure 33 shows
that 4 accesses happen in BRAMI in a small time window around time 5s, while Figure 34 shows that 2
accesses happen in BRAMI1 in a small time window around time 7s. When more accesses happen in a Bram,
red color becomes more intense.

Brams Accessing Heat Map
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Figure 33: Brams Accessing heat Map — 4 accesses in Braml
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Figure 34: Brams Accessing Heat Map — 2 accesses in Braml; color changes with access count

Finally, a second “complex rule” used in SEC records accesses to each BRAM per second. More specifically,
the following rule of type SingleWithThreshold, place a threshold, i.e. if 10 accesses (thresh=10) happen
in each BRAM in a time window of 25 seconds (window = 25), then a message appears according to field
action (action=write - BRAM $2 ACCESSED 10 TIMES)

The SEC rule (sec.rule. sh file) is shown below:

type=SingleWithThreshold

ptype=RegExp

pattern=sampleFun point_time ms: (\d+) accessed bram num: ([1-4])

desc=accessed bram $2

action=write - BRAM $2 ACCESSED 10 TIMES
window=25
thresh=10

As shown below when SEC is running with the above single and complex rules, the sec.rule.sh script

executes all associated events which may involve window popup, email alerts, or high-level security
visualization.

Writing event '3739 30" to file 'results_sec.txt’
Writing event 'BRAM 3 ACCESSED 10 TIMES' to file '-'
BRAM 3 ACCESSED 10 TIMES



Chapter 5 - Conclusions and Future Work

In this work, we design a hierarchical driver based on a hardware NoC firewall with deny rules and show
how to implement on-chip memory protection and anonymity services that target an in-hospital eHealth
application. The firewall is attached into each port of a router, whereas firewall deny rules depend not only
on the physical address, but also on the input and output ports of the router that the memory request from the
processor is routed through.

In particular, our design methodology focuses on implementing and wvalidating basic data protection
primitives and complex hierarchical GNU/Linux services that support rule configuration and access control
with statistical event logging on top of a hardware Network-on-Chip (NoC) Firewall mechanism embedded
in an FPGA development board (ARMv7-based Zedboard). Our open source multi-layer design framework
provides primitives that enable modularity and reuse across different use cases and interfaces to system tools,
such as GRACE, HeatMap, and Secure Event Correlator (SEC) for high-level security visualization and
notification services.

Focusing on a realistic out-of-hospital use-case that involves soft real-time ECG data processing on a
Hospital Media Gateway server, we demonstrate how mid-level driver layer can be extended to implement
high-level system security primitives for supporting a) data privacy and anonymity, and b) access control of
on—chip BRAM memory from internal denial-of-service attacks. Experimental results on Zedboard reveal low
overhead of our security primitives.

Our proposed solution is modular and reusable across other distributed eHealth applications and beyond. We
currently enhance our security protocols with key management and event logging functions in order to
demonstrate related security objectives in an EU project FP7-DREAMS demonstrator that considers soft
real-time in-hospital ECG processing.

In addition, in a more rare scenario, we can thwart threats from an authenticated, but malicious (or corrupt)
patient connecting to the server and impersonating another patient (e.g. by spoofing) by supporting a similar
mechanism to the one presented in Section 4.2 for malicious doctors. More specifically, a server rx child
process will inherit group permissions of the connecting patient and safely transfer patient data via the NoC
Firewall to an appropriate BRAM and a specific location (via AES-CCM hash).



References

[1] Embedded System, Wikipedia. (May 5, 2017) [Online]. Available:
https://en.wikipedia.org/wiki/Embedded system.
[2] «Attacks on Secure Embedded Systems™ Protogenist Blog, 2012. (May 5, 2017) [Online]. Available:

https://protogenist.wordpress.com/tag/software-attacks

[3] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper resistance mechanisms for secure embedded systems™,
in Proc. 17th Int. Conf. VLSI Design, 2004, pp. 605—611.

[4] D. Basin, P. Schaller, and M. Schlipfer, Applied information security: a hands-on approach, Springer, Berlin
Heidelberg, 2011.

[5] E. Kavakli, C. Kalloniatis, and S. Gritzalis, "Addressing privacy: matching user requirements with
implementation techniques," in Proc. 7th Hellenic European Research on Comp. Math & Appl. Conf., Athens,
Greece, 2005, pp. 1—5.

[6] P. Mittal, M. Wright, and N. Borisov, "Pisces: Anonymous Communication Using Social Networks", Netw.
and Distrib. System Security Symp., 2013.

[71 Whatisnetworking,  Available: http://www.whatisnetworking net/tag/advantages-and-disadvantages-of-osi-
model

[8] K. Jeffay, DDoS history. (May 5. 2017) [Online]. Available:
www.cs.unc.edu/~jeffay/courses/nidsS05/slides/3-DDoS-History-Defense.pdf

[9] I. D. Howard, "An analysis of security incidents on the Internet”, PhD Thesis, Dept. Engineering and Public
Policy, CMU, Pittsburgh, Pennsylvania, 1997.

[10] MadiaBoy, Wikipedia. (28 April 2016) [Online]. Available: https://en.wikipedia.org/wiki/MafiaBoy

[111 Y. Zha ot M. Chen, “DoS vs DDoS Attack”. (May 5, 2017). [Online]. Awvailable:
https://www.youtube.com/watch?v=c9EjuOQRUdg

[12] J. Mirkovic and P. Reiher, "A taxonomy of DDoS aftack and DDoS defense mechanisms", SIGCOMM
Comput. Commun. Rev., 34 (2), 2004, pp. 39—53.

[13] J. Molsi., "Mitigating denial of service attacks in computer networks”, J. Comput. Secur., 13 (6), 2005, pp.
807—837.

[14] S. T. Zargar and e. al, "A survey of defense mechanisms against distributed denial of service flooding
attacks”, ACM SIGCOMM Comp. Comm. Review, 15 (4), 2013, pp. 2046-2069.

[15] S. M. Specht., "Distributed denial of service: taxonomies of attacks, tools and countermeasures," in Proc.
Workshop Security in Parallel and Distrib. Syst., 2004,

[16] E. Alomari and et al, "Botnet-based distributed denial of service (attacks on Web servers: classification and
art", Int. J. Comp. Appl., 49 (7), 2012, pp. 24—32.

[17] SEC manual. (May 5, 2017) [Online]. https://simple-evcorr.github.io/man.htmI#IbA

[18] J.P. Rouillard, "Real-time log file analysis using the Simple Event Correlator (SEC)," in Proc. 18th USENIX
conference on Large Installation Svstem Admin., 2004, pp. 133—150.

[19] Logsurfer. (May 5. 2017) [Online]. http://logsurfer.sourceforge.net

[20] Ossec. (May 5, 2017) [Online]. http://ossec.github.io
[21] Ubuntu Wiki. (May 5, 2017) [Online]. Available: https://help.ubuntu.com/communi

[22] J. Finegan, “System log analysis and profiling system”, Open Channel Foundation, (May 5, 2017) [Online].
Auvailable: http://www.openchannelfoundation.org/projects/STAPS-2




