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Abstract 

 
Aquaculture industry is the faster growing sector of primary production the recent years, 
having a significant role in the global food production. To improve its sustainability, the 
industries invest in technologies and innovative systems towards methodologies of high 
precision. One of the most crucial issue in an aquaculture farm is the accurate, continues 
estimation of fish biomass during on growing as this defined several husbandry parameters 
that affects the final production and the operational cost.   
 In the current project, a new length estimation system through stereoscopy has 
been studied. Paired cameras mounted in a waterproof housing receive a sequence of 
images. The covering is made of special protective material, safeguarding the system from 
high pressures caused by water environment. A minicomputer operates the cameras, 
receiving the necessary data and transmitting it to the main system for further analysis.  

Based on the stereoscopic method, where two overlapping images, that when 
slightly separated, can give the third dimension, the depth, the main system measures the 
necessary information for the measurement of the fish. Staring from the image captured a 
candidate fish is recognized and spotted. Following this, through various stages of image 
processing, we can estimate the size of the candidate fish. A three dimensional fish model is 
used both for the recognition and the measurement of the fish. We use a fish model which 
has a skeleton consisting of joints and links, adjusting it accordingly on the candidate fish, 
taking its body orientations into consideration at the same time. The visualization of this 
three dimensional model is based on artificial intelligence and more specifically on genetic 
algorithms. This algorithm, called Particle Swarm Optimization, optimizes a problem through 
a repeated improvement of a solution.  

The accuracy of the system was validated with a field trial involving live fish inside a 
tank, and the results indicated the efficacy and potential of the proposed method.  
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Περίληψη 

 
Η υδατοκαλλιζργεια αποτελεί τα τελευταία χρόνια ζναν από τουσ πιο ταχζωσ 

αναπτυςςόμενουσ παραγωγικοφσ κλάδουσ, κατζχοντασ ζναν πολφ ςθμαντικό ρόλο ςτθν 
παγκόςμια παραγωγι τροφίμων. Για να βελτιϊςουν τθν βιωςιμότθτα τουσ, οι βιομθχανίεσ 
του χϊρου επενδφουν ςε τεχνολογίεσ και καινοτόμα ςυςτιματα με μεκόδουσ υψθλισ 
ακρίβειασ. Ένα από τα πιο κρίςιμα ηθτιματα ςε ζνα αγρόκτθμα υδατοκαλλιζργειασ είναι θ 
ακριβισ και ςυνεχισ εκτίμθςθ τθσ βιομάηασ των ψαριϊν κατά τθ διάρκεια τθσ 
καλλιζργειασ, κακϊσ αυτό ορίηει αρκετζσ παραμζτρουσ κτθνοτροφίασ που επθρεάηουν τθν 
τελικι παραγωγι και το λειτουργικό κόςτοσ. 

 Στθν παροφςα εργαςία, μελετάται μια νζα μζκοδοσ εκτίμθςθσ του μικουσ των 
ψαριϊν μζςω ςτερεοςκοπικισ μεκόδου, όπου ζνα ηεφγοσ καμερϊν λαμβάνει ηεφγθ 
εικόνων. Οι κάμερεσ είναι τοποκετθμζνεσ ςε ςτεγανό περίβλθμα, φτιαγμζνο από ειδικό 
υλικό, που προςτατεφει το ςφςτθμα από τισ υψθλζσ πιζςεισ που αςκοφνται από το νερό. 
Ένασ μικρο-υπλογιςτισ διαχειρίηεται τισ κάμερεσ, λαμβάνοντασ τα απαραίτθτα δεδομζνα 
και αποςτζλλοντασ τα ςτο κφριο ςφςτθμα για περαιτζρω ανάλυςθ. 

 Με βάςθ τθ ςτερεοςκοπικι μζκοδο, όπου δφο επικαλυπτόμενεσ εικόνεσ, που όταν 
είναι ελαφρϊσ διαχωριςμζνεσ μποροφν να δϊςουν τθν τρίτθ διάςταςθ, το βάκοσ, το κφριο 
ςφςτθμα υπολογίηει τισ απαραίτθτεσ πλθροφορίεσ για τθ μζτρθςθ των ψαριϊν. 
Εξετάηοντασ τισ εικόνεσ που λαμβάνονται από τισ κάμερεσ, το ςφςτθμα εντοπίηει και 
αναγνωρίηει ςε αυτζσ το υποψιφιο προσ μζτρθςθ ψάρι. Κατόπιν, και μετά από τθν 
εφαρμογι διαφόρων ςταδίων επεξεργαςίασ τθσ εικόνασ, μποροφμε να υπολογίςουμε το 
μζγεκοσ του υποψιφιου ψαριοφ. Αυτό επιτυγχάνεται με τθ χριςθ ενόσ τριςδιάςτατου 
πολυ-αρκρωτοφ μοντζλου ψαριοφ. Το μοντζλο είναι ςε κλίμακα, όπου ο  ςκελετόσ του 
μπορεί να αυξομειϊνει το μικοσ του ταιριάηοντασ το κατάλλθλα επάνω ςτο υποψιφιο 
ψάρι, εξετάηοντασ και τυχόν μεταβολζσ ςτισ γωνίεσ των αρκρϊςεων μεταξφ των 
ςυνδζςμων που απαρτίηουν τον ςκελετό. Η βελτιςτοποίθςθ του τριςδιάςτατου μοντζλου 
βαςίηεται ςτθ τεχνθτι νοθμοςφνθ και ςυγκεκριμζνα ςτον αλγόρικμο Particle Swarm 
Optimization, ο οποίοσ βελτιςτοποιεί ζνα πρόβλθμα μζςω επανειλθμμζνων προςπακειϊν 
βελτίωςθσ μιασ υποψιφιασ λφςθσ. 

Η ακρίβεια του ςυςτιματοσ αποτιμικθκε μζςω ςειράσ δοκιμϊν, 
ςυμπεριλαμβανομζνων και πειραμάτων με ψάρια εντόσ μίασ δεξαμενισ, τα αποτελζςματα 
των οποίων είναι ιδιαίτερα ενκαρρυντικά για τθν ακρίβεια και αποτελεςματικότθτα τθσ 
προτεινόμενθσ μεκόδου. 
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Chapter 1: Introduction 

1.1 Aquaculture  
Aquaculture refers to animal production in controlled conditions both in freshwater and marine 
environment. Aquaculture is the most fast developing sector of primary production world-wide. As 
shown in Fig 1, it is estimated by FAO that farmed fish production will increase from 45% to 62% 
between 2009 and 2030. Demand for aquatic products continually increases globally and according 
to FAO estimates, the needs gap will reach 30 millions of tons by 2030. The only profitable and 
environmentally friendly option is the further development of aquaculture. Something which is 
particularly true for the finfish aquaculture 
 

 
Fig 1.Predictions chart for aquaculture 

Finfish aquaculture is a well-developed industry in Greece contributing to national exports with aps 
500M€ annually (FGM, 2018) competing with the olive oil for the highest export value product. The 
Greek sector, taking advantage of the geographic specificities of the country, can with proper 
management, further develop with increased production, thus contributing to the general food 
demand and also to the national economy. 
Aquaculture has been a major activity in the Greek economy for the last 30 years. Based on reports 
by the Federation of Greek Maricultures the main species reared are the European sea bass 
(Dicentrarchus labrax) and the gilthead sea bream (Sparus aurata), covering 98% of the national 
exports (Fig 2). The remaining 2% refers to the sharp snoot seabream (Diplodus puntazzo), the red 
porgy (Pargus pargus), the meagre (Argyrosomus regius) and other fish species. It is worth 
mentioning that Greece is the first country to export in EU and the second country considering the 
whole Mediterranean (Fig 2). 

 
Fig 2. Sea bass and sea bream production in EU and in the Mediterranean 
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In Greece, the spatial distribution of the fish farms is mostly concentrated into three regions (see 
Table 1): 

1. Peloponnese, Western Greece and Ionian islands 
2. Thessaly and Central Greece 
3. Aegean 

 

 
Table 1. Spatial distribution of the Aquaculture industry in Greece 

Sea bass and sea breams production has increased over the years. In 2016 both species reached 
105.000 tons that value almost 553 million euros. Specifically, sea bream production reached 59.000 
tons and sea bass production reached 46.000 tons. Other species that represent 2.6% of the total 
production, reached apx 2.800 tons. 

Aquaculture in Greece is constantly growing, with almost 78% of the production exported 
and 22% distributed on the domestic market. One of the best years, was 2016 since sea-bass and sea 
bream were exported in 32 countries, according to the National Statistics Agency (ELSTAT), with 
Italy, France and Spain being the main markets for the Greek products. 

According to European Aquaculture Technology Research and Innovation Platform (EATiP), 
the growth vision predicts annual production increase of 3.1% until 2030 that corresponds to 2.5 
million tons of fish. A quite promising prediction is that the Mediterranean aquaculture will rise with 
4% annual growth rate that corresponds to 305.000 tons of fish, 1.5 billion euro and 10.000 new 

jobs. For Greece the relative growth, according to FGM, is shown in Fig 3. 
 

 
Fig 3. Aquaculture growth vision for the year 2030 
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1.2 The Biomass Estimation Problem  
Effective management in aquaculture farms requires good calculation of fish growth during rearing. 
Therefore, commercial production and research activities needs for accurate measurement of fish 
size, requesting for developing technologies to address this problem in a less labor-intensive manner 
offering improved precision compared to the current approaches. 
Today, the most commonly used techniques for length measurement are based on sampling 
specimens on-site, an approach that requires experienced personnel and induces stress on the fish 
groups. Additionally, some non-invasive methods have been developed (like the frame in the salmon 
industry [65]) but they still lack accuracy and are not extensively used. Some experimental 
approaches using image analysis techniques have also been proposed. 
Shortis et al (2013) [9] developed a stereo-video system for measuring fish in aquaculture. It is an 
automated process that identifies the candidate specimens for measurement, using a specially 
designed algorithm that measure the fish from snoot to fork, even if their bodies are inclined due to 
different body orientations. This method was applied in tuna farming. 
A semi-automatic fish length estimation system was developed based on stereoscopic computer 
vision and photogrammetry [60]. This non-invasive method has been developed and tested with 
salmon. The system consists of two main subsystems, which are a desktop application and a 
stereoscopic camera. The desktop application is a free software that called VidSync and is operating 
on Apple Mac OS computers. The use of VidSync software allowed length measurements of 
manually selected individuals. The accuracy is affected by the quality of the input that the human 
operator provides. It is quite innovative system but is yet lacking accuracy and is not extremely used. 
This system has been tested by the HCMR group in the frame of the EU project AquaExcel2020 [59]. 
Similarly, Linett et al (2001) developed an imaged based system for biomass estimation in free 
swimming individuals of salmon. The system presented a relative good accuracy with measurement 
error of 18% and standard deviation of 9%. 
 
Even though these methods still there is no reliable method to estimate the biomass in aquaculture 
operations allowing for further development. The problem of fish measurements and fish 
identification is also present in other sectors such as fisheries or ecology. Some of the works done 
are presented in the following paragraph. 
 

1.2.1 Previous works 

In recent years numerous fish size calculation systems have been developed for several applications 
outside the aquaculture mostly targeting ecological studies and surveys, replacing the standard 
method for size estimation, based on gathering results on site. As a result, researchers wanted to 
find a better solution and some of these methods are analyzed below.  
In the previous chapter (1.2) methods that are based on stereoscopy are mentioned. Below are 
presented the methods such as fish size estimation and 3D model. Particularly in [6], [7], [8] 
different approaches for length estimation are presented, quite innovative methods at this time of 
period. In the sequence in [21], [22], [23], scientific studies are analyzed methods that referred to 
three dimensional modeling.   
Stereoscopic vision is a method for estimating the size of the samples as well as the distance from 
the reference camera. A set of cameras combined with a specially designed algorithm could be able 
to estimate fish’s length. A specially designed system based on stereovision, mounted on a common 
piece of mechanical handling equipment that moves materials from one location to another 
(conveyor system) could detect and measure fish size from different kinds of flatfish [6], the samples 
were scanned through a camera. Subsequently an algorithm was detecting fish orientation, length 
from nose till fork, without being affected from belly flaps. A digital camera received the images and 
transmitted them into the main system identifying the fish shape, length, orientation as well as its 
type (flatfish or round fish). The system could process 30000 fish per hour. Fishermen were using it 
to comply with the EE rules. 
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Two methods were used to estimate fish length in a work of Rochet et al [7].  The measurements 
were performed in a water environment with differences from our systems and as in [6] and [8] a 
completely different procedure was used.  The first method refers to a pair of parallel beams, 
mounted on a specially designed camera, and since the distance of the emissions is known, the 
necessary measurements are taken. The second method refers to length estimation with an 
underwater autofocus camera. While there are numerous innovative technologies at this time of 
period, also the first method had high error rates due to fish movements, while the second method 
had difficulty detecting the right timestamp during video playback. 
 

In an aquaculture setup however the identification of the candidate fish for measurement represent 
a second, and even more serious, issue due to the density of the individuals in cages. Some work has 
been already implemented towards this direction. Several studies were implemented and are 
presented here that are related to fish recognition. In some studies [21, 22, 23] the authors follow 
almost the same procedure, building an identification classifier for poisonous fish.  D.B. Beeder [21], 
extracted the characteristics of the samples related to the size and the shape such as length from 
head to tail and other geometric features. Then a neural network was trained, with 257 frames of 
which 93 were used for system evaluation. Similar the authors of [22] used the color signature from 
the ventral part of the fish, in order to extract characteristics based on gray scale to identify optimal 
features. They trained a neural network that it was able to identify the appropriate fish, based on 
the characteristics that presented above. The same procedure is followed in [23]. A neural network 
is again trained based on 47 characteristics per sample, in 4 steps: preprocessing, image processing, 
segmentation and features extraction. Contrary, in [24], an experiment was conducted and 66 types 
of characters per sample from different fish species were extracted. Subsequently a sorting tree was 
built that contained all samples. Each sample was identified and ranked at the database with human 
intervention. This kind of procedure has 4% better results than the others presented before. The 
training was held with a dataset of 3179 frames and 10 different kinds of species.  
In [25] a system capable of scanning the candidate specimen (e.g fish), extracting all the necessary 
parameters, was reported. In this work, a signal with bandwidth from 40 kHz to 95 kHz was used in 
order to scan the candidate specimen, extracting all the appropriate parameters such as, length, 
height, orientation angle. The work showed clearly the difficulties that could be faced during the 
implementation of such tasks, but it was very informative because it enhanced with additional 
details. 
The approaches presented before should be further extended and developed taking advantage of 
the previous works performed in other fields of computer vision and in particular the Particle Swarm 
Optimization together with artificial intelligence. A similar method is presented in a work by 
Oikonomidis et al 2011 [17] for tracking the three dimensional position of hand and body poses. The 
optimization problem was solved using Particle Swarm Optimization algorithm that can adjust on a 
hand pose even if it has different orientations. 

 
Stereoscopy is based on human optical system, displaying the pictures allows to the human to gain a 
strong sense of depth. Stereo vision is consisted of two processes, the display of the same scene of 
the two cameras and the reconstruction of their three dimensional display. Following the above 
review of available studies and the studies that are mentioned in chapter 1.2, it is apparent that the 
stereoscopic vision is the appropriate method for fish measurements, combined with 3D modeling, 
we will be able to estimate fish’s length even if its body was inclined. 
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1.3 Tools and Methodology 

1.3.1 Stereoscopic vision and cameras 

Stereoscopic method is based on the human vision system. In order for the method to succeed, 
cameras take the place of our eyes. A camera is an optical medium which records either static 
scenes or non-static ones, saving them is a digital medium or in a film. The cameras operate with the 
light in the visible spectrum. They all operate the same way with the light entering through a 
converging inclining lens recording an image. Light exposure on the scene is controlled through the 
shutter. A video camera works in a similar way recording a series of quick succession static scenes.   
Based on stereoscopic photogrammetry, that a single image can only yield two dimensional 
coordinates, height and width, with two overlapping images of the same scene, slightly separated 
from each other, the third dimension, depth, can be estimated. Such systems are based on two 
cameras while specific software will estimate fish length using algorithms.  
 

1.3.2 Artificial Intelligence and identification with Genetic Algorithms 

Artificial Intelligence (AI) is the ability of machinery intelligence. This term refers to machine trying to 
mimic human cognitive functions such as learning and problem solving. As shown in Fig 4, the 
current method used was based on human evolution.  
 

 
Fig 4. Evolutionary algorithm 

 
 
The algorithm used was Particle Swarm Optimization (PSO), which optimizes a problem with 
repeated attempts in order to improve a candidate solution. It uses a population of candidate 
solutions, where the particles moving in the search area are from known location. This process is 
repeated until it finds a candidate solution. Analytically PSO is a stochastic optimization technique 
that was developed around 1995, inspired by the social behavior of fish schooling and bird flocking. 
PSO has a lot of similar points with genetic algorithms. They both have a population of random 
solutions, searching for the optimal one for many generations. The solutions that PSO produces are 
called particles, which are updated in every generation.  
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Based on previous methods such as body tracking [19, 20] many studies were conducted 
demonstrating the capabilities of Particle Swarm Optimization as it is hard to measure body poses, 
due to the many parameters of the body. Furthermore, PSO algorithm was conducted in an even 
more difficult task such as hand tracking [16, 17, 18]. Studying the methods that referred to artificial 
intelligence, Particle Swarm Optimization was the candidate method used in this project. Hence, a 
three dimensional model which through AI could fit on the candidate specimen, was used to 
measure length and orientation.  

 

 

1.4 Motivation and Scope of Present Work 
Our purpose was to develop a system for fish measurement without any human intervention, while 
providing accurate measurements. For this stereoscopic photogrammetry was used and a 
stereoscopic vision system was implemented with a set of web cameras connected to a mini-
computer, mounted in a watertight submergible housing. 

Artificial Intelligence methods and more specifically Particle Swarm Optimization (PSO) 
algorithm was used to detected and select the candidate fish for measurement and subsequently 
the size can be measured through algorithms that employ a three dimensional fish model.  

Experiments in a water tank with live fish of known sizes were used to validate the system and 
assess its accuracy. 
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Chapter 2: Methodology 

As indicated in Fig 5, the developed system for fish size measurement is comprised of three main 

components, namely the Stereoscopic Image Acquisition setup, the Pre-processing stage and the 

Model fitting algorithm. Using a stereoscopic vision setup, a sequence of image pairs is taken from 

two High-Definition IP cameras. The cameras are managed by a mini-computer, synchronizing their 

scenes and through specially designed algorithms from stereoscopic vision, the system will be able 

to estimate the depth frame. Subsequently, the system receives the depth frame and through image 

processing, it is able to isolate potential candidate fish. The image processing involves various stages 

of filtering to reduce the optical noise from the depth frame due to, e.g., microorganisms and algae. 

In the final stage, an Artificial Intelligence algorithm, namely Particle Swarm Optimization (PSO), will 

attempt to fit a three dimensional fish model on the candidate sample. When successful, this will 

allow estimating the length of the candidate fish. 

 

 
 
  

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

(a) Stereoscopic 

image acquisition 

 (b) Pre-processing 

stage 

(c) Model fitting 

algorithm 

Right Camera 

Left Frame 

Right Frame 

Depth Frame 

Depth Frame 

Left Frame 

Candidate Sample 

Candidate Sample 

3D Model 

Final Result 

Left Camera 

Fig 5. System architecture diagram 
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2.1 Stereoscopic Image Acquisition  

2.1.1 Stereo pair cameras 

The system is using two IP cameras (Logitech C920, see Fig 6), providing high resolution (1080p, 30 
frames per second), as the better the resolution is, the higher the accuracy of the measurements is. 
Communication is achieved with a Power-Over-Ethernet link (100 Mbps transfer rate). An additional 
advantage of these cameras is their small size, easily adaptable to any housing. 
In order to be functional the cameras were operated by a mini computer, which receives the data 
(images/videos) and transmits them into the main system. 
 

 

Fig 6. IP camera used in the stereo pair 

 

2.1.2 Processor unit 

One of the most crucial parts of the system is the Odroid XU4 single board computer. It is a new 
generation computer with high performance despite being quite small compared to conventional 
computers. Odroid operates Linux (Fig 7) and offers sufficient storage space and two USB ports, one 
for each camera. The specifications are represented below: 

 Samsung Exynos5422 Cortex-A15 2Ghz and Cortex-A7 Octa core CPUs 

 Mali-T628 MP6(OpenGL ES 3.1/2.0/1.1 and OpenCL 1.2 Full profile) 

 2 Gbyte LPDDR3 RAM PoP stacked 

 eMMC5.0 HS400 Flash Storage 

 2 x USB 3.0 Host, 1 x USB 2.0 Host 

 Gigabit Ethernet port 

 HDMI 1.4a for display 

 Size: 83 x 58 x 20 mm approx. (excluding cooler) 

 Power: 5V/4A.input 

 Linux Kernel 4.14 LTS 
 

 

Fig 7. Single board computer (Odroid XU4) 
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2.1.3 Waterproof housing 

The system ought to be installed in a waterproof housing, protecting it from the harsh aquatic 
environment. Two special tubes (BlueRobotics SA) (one for each camera) were used, each made of 
acrylic material and tested in 65 meters depth. Specially crafted holes with appropriate watertight 
connectors, depicted in the Fig 8, act as entry points for the interconnecting cables. 
 

 
Fig 8. Housing construction 

 
The two tubes were located on an in house build based allowing the adjustment of the distance 
between the cameras, a feature required for the calibration as explained below. Cameras, 
minicomputer and POE were installed and adjusted on the bases, maintaining a fixed distance 
between them (Fig 9). 
 

 
Fig 9. Stereo cameras placed in waterproof housings 

 

2.2 Stereoscopic Vision Module 
In order to further analyze the captured image a calibration of the two-camera system is required. 
The process is explained below. 

2.2.1 Camera calibration theory 

The parameters between an object in 3D space and an object projected in 2D can be estimated 
through calibration. This is consisting of: 

● The Camera intrinsic calibration 
● The Camera extrinsic (stereo) calibration 
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The lens system that any camera is equipped in order to accumulate the reflected light from an 
object, it also distorts the image as a side-effect. 
The two sets of parameters used to create a mathematical model of a 3D camera system are the 

intrinsic and extrinsic. The intrinsic parameters are the Pixel size, the Focal length and the Principle 

point or Optical center. The extrinsic parameters are the Translation and Rotation matrices.  

Fig 10 illustrates how the virtual image is depicted through the camera’s pinhole. The virtual image is 

the three dimensional object that through camera’s pinhole (   – Optical center) is imprinted onto 

image plane, assuming that   is the camera’s focal length.  

 

 
Fig 10. How image depict through camera's pinhole 

To understand how camera’s parameters function, it is useful to decompose into a series of 

operations.  

The formula      represents the transformation matrix    where if it will be multiplied by the three 

dimensional coordinates, it will yield the two dimensional coordinates  .   

 

  [
     

     

   

]  [
 
 
 

 
 
 

 
 
 

 
 
 
]  [

        

     
]  [

        

     
]        

  matrix is decomposed into a series of matrices:  

The first one stands for intrinsic parameters where       is camera’s focal length and       is 

camera’s optical center with respect to the     axis. 

  [
     

     

   

] 

The second one is the projection matrix, i.e. a unit matrix consisted of aces and zeros. 

[
 
 
 

 
 
 

 
 
 

 
 
 
] 
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Finally the third matrix     is the rotation matrix that rotates the image plane and it’s consisted of 

smaller matrices: The sub matrix      is referred to the image orientation, where   is the 

orientation angle.  

If the angle is indicated for the   axis then the matrix will read    [
   
      
     

], if it is indicated 

for the   axis then the matrix will read    [
     
   

      
] and if the angle is indicated for the   

axis then the matrix will read    [
      
     
   

]. The    and    are actually the            and 

        of the relevant angle. 

The      (matrix of 3 lines and 1 column of zeros) and the      (matrix of 1 line and 3 columns of 

zeros): 

  [
        

     
] 

The last matrix     is the translation matrix that translates the optical center from the origin of the 

reference system to the world coordinates, i.e. the 3D coordinates. This again is composed of 

smaller matrices.  

  [
        

     
] 

The      (matrix of 3 lines and 3 columns) is an identity matrix, a square matrix which all the 

elements of the principal diagonal are 1 and all other elements are zeros. The 01x3 is similar as above 

and the sub matrix      [

  
  
  

] is referred to the translation respectively to     and   axis. 

Analytically    is a matrix referred to the translation respectively to   axis, another way of 

explanation if the translation is respectively to   axis  is      [
 
 
 
], due to the first element of the 

matrix that corresponds to   axis,in homogeneous coordinates [
 
 
 
].     is a matrix referred to the 

translation respectively to   axis (    [
 
 
 
]) and    is a matrix referred to the translation respectively 

to   axis (    [
 
 
 
]). 

 

Using equation    , shown below, the three dimensional coordinates are converted into two 

dimensional coordinates, after multiplying with the transformation matrix. For convenience, the 
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  [

 
 
 
 

] coordinates are presented in a matrix [   ] (4 lines with 1 column) and the  ̃ coordinates 

are presented in a matrix [   ] (3 lines with 1 column),  ̃   [
 
 
 
]. 

 ̃    [

 
 
 
 

]                       

It is useful to note that any point   which belongs to the two dimensional coordinates, can be 

denoted             or   *
 
 +, where    is the two-dimensional space. In order to process 

the coordinates into matrices, we should translate them into homogeneous coordinates. 
Homogeneous coordinates are used in computer vision and computer graphics, allowing the 
description of affine and projective transformations with matrices. Affine transformation is a 
technique that corrects geometric distortions or non-ideal camera orientations. Essentially it 
maintains the sets of parallel lines unchanged.  

The 2D point can be presented in homogeneous coordinates as  ̃    ̃  ̃  ̃     or  ̃  [
 ̃
 ̃
 ̃

], 

where the factors are equivalent differing by a scalar multiplier. Specifically    is called the 2D proje-
ctive space and is represented by              , where    are the 3 dimensional coordinates.  
 
In order to transform the homogeneous vector  ̃  in equation     into inhomogeneous vector, it 
should be divided by the last element ( ̃). Then  ̃ is called augmented matrix and is useful for the 
purpose of performing the same elementary row operations.  

 

 ̃  [
 ̃
 ̃
 ̃

]   ̃           ̃   ̅       

where  ̅  [
 
 
 
] is the augmented vector. 

The set of points for which  ̃   , is called points at infinity or ideal points and they cannot be 
converted into inhomogeneous vectors. 
 
Intrinsic parameters extraction 
The first step of the calibration process is intrinsic parameters extraction. The intrinsic parameters 
describe the relation between the coordinates of a three dimensional point and its projection on the 
image plane. Generally they represent the mapping of a three-dimensional scene to a two-
dimensional image and they will help in correcting the distortion caused by the lenses.  These 
parameters do not depend on the projection scene, but on the camera’s characteristics that are 
known to the user, or they can be estimated through calibration by using a well-defined pattern with 
known distances (e.g. a chess board). 
 
Extrinsic parameters extraction 
The extrinsic parameters describe the cameras movement around a static scene or the rigid 
movement of an object in front of the camera. The Extrinsic parameters are the Rotation matrix     
and the Translation matrix   . The extrinsic parameters depend on the position of the camera and 
represent the transformation of the 3-dimensional world to 3-dimensional camera model.  
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The 3D point is represented in homogeneous coordinates as  ̃  [

 ̃
 ̃
 ̃
 ̃

]     or into inhomogeneous 

coordinates as   [
 
 
 
]    , where    is the three dimensional projective space and    is the 

three dimensional coordinates. It is useful to denote that for the following calculations a 3D point 

using the augmented vector  ̅  [

 
 
 
 

] with  ̃   ̃   ̅. 

 
In the example given below (Fig 11), the coordinates of an object in 3D space will be translated into a 
coordinate system related to the camera.  
 

 
Fig 11. Point translation from 2D coordinates to 3D coordinates 

The three dimensional coordinates of the object in the system   need to be translated into the two 

dimensional coordinates in the system   [
 
 
 
].  

Initially the extrinsic parameters will be multiplied with the three dimensional coordinates [
 
 
 
], to 

yield the point [
   

   

   

] with respect to the camera (equation    ). The conversion below is equivalent 

if    . 

[
   

   

   

]     [
 
 
 
]          

 

Subsequently, since the intrinsic parameters are known, we are able to estimate the 2-dimensional 
coordinates on the image plane, from equations     and     below:       

 
                     

 
                     

 
 
 
The sum up of the above calculations into a single equation is shown in equation     below: 
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[
 
 
 
]      |   [

 
 
 
 

]       

 
Image Rectification 
Following the Intrinsic and Extrinsic parameters calculation, and in order to validate the initial 
estimations, the correlation of the correspondence points takes place.  This is performed through 
image rectification, a transformation process that is used for frame projection into a common image 
plane, using two images (from Left-hand and Right-hand cameras) that depict an object from 
different viewpoints and from known relative camera positions. Each pixel from the left image must 
correspond to one pixel from the right image, and vice versa. Analytically, a sufficient number of 
images from a specially designed pattern (in our case a chessboard pattern), recorded from different 
angles and orientations is used, and afterwards, the corresponding points are matched using 
epipolar geometry.  
 
In Fig 12 below the principle of epilpolar geometry is shown, where    and     represent the Left-

hand and Right-hand cameras, respectively. 

 

Fig 12. Epipolar geometry 

  

Assuming that the point     is known and the difference between       is also known, the point  
   is the projection of the point    onto the right image plane. It means that the point that displayed 
onto the right image should be also displayed onto the left image. This provides the epipolar 
constraint that this point should be contained in the geometry section      . This point will be 
validated from the points that lay on the line      .  
 
Another way to explain the above, is by using the essential and fundamental matrices between 

cameras (Fig.12). If the image planes are parallel to each other, the distance between the cameras is 

constant, and their optical centres are on the same horizontal plane, the focal lengths are also the 

same, then the epipolar lines are parallel to horizontal scan lines oriented to infinity[
 
 
 
], with respect 

to the   axis, due to the first element of the matrix that corresponds to[
 
 
 
], in homogeneous 

coordinates. 
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Fig 13. Rectified images 

In order to rectify stereo images (gray frames) (Fig 14), the image planes must be reprojected onto a 

common plane parallel to the optical centers (yellow frames - Fig 13). This transformation is 

achieved from the formula     below. 

                

Where   is referred to the left camera’s coordinates and    is referred to the right camera’s 

coordinates. The superscript   in the variable    refers to the transpose of the  , (i.e. the rows 

become columns and vice versa). For example if the point   is   [
 
 
 
] then    [   ].  

 

 

Fig 14. Grey images before rectification 

The matrix   in equation     is a joint matrix of rotation   and translation   relatively to   axis, 
where    is the translation of   axis.  

  [  ]             

 

The matrix of   can be written analytically in equation      :  
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  [  ]    [
   
    
   

]                

Based on the Fig 14, to evaluate the rectification of the yellow images, they must satisfy the 
following constraints. The corresponding point1 should have the same vertical coordinates (relatively 
to   axis) or the epipolar lines should be parallel to the horizontal axis  . Equation      
demonstrates that the corresponding points of the    coordinates are similar. It should be noted that 
the symbols   and    are refer to the points of the two yellow images.  More specifically, the 
coordinates of the point   (left frame) are     and    and the coordinates of the point    (right 

frame) are     and    . 

 

[     ]  [
   
    
   

]  [
   
   
 

]     [     ]  [

 
  
    

]       
             

 
 
As a conclusion the final result    

      points out that the translation of the   point of the left 

camera is equal to the translation of the    point of the right camera.  
 

Depth Estimation 

After we have calculated the transformation matrix (intrinsic & extrinsic parameters) and the 

rectification of the images have been performed, the final step is the depth estimation. Depth is the 

distance of an object from the reference camera and in order to calculate it, the disparity estimation 

should take place first. Disparity is the difference between the two cameras relatively to   axis, and 

it is calculated using triangulation. 

 
Fig 15. Two rectified scenes projecting same plane and matching corresponding points 

As Fig 15 shows, assuming that the points   and    are known, then their projection lines are also 
known. Provided that the points correspond to the same three dimensional point           means 
that their projection lines should be intersect to the point        . Through the triangulation 

                                                             
1 Two points, one in each frame, which when correlate they give the same perception of the image, 
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method the point         can be calculated. As we mentioned before disparity is the difference 
between    and     (equation    ). 

 
                            

 

Subsequently, since the baseline   (distance between two cameras) and the focal length   (an 

intrinsic parameter) is known, the Depth can be calculated using equation     : 

       
   

         
        

A specially designed algorithm was able to estimate the depth in any frame and following this to 

estimate a ”depth frame”. 

2.2.2 Synchronization 

An initial stage before the calibration is the synchronization of the scenes, a crucial step for the 
parameters calculation. In order for a system to operate in unison, the coordination of events was 
required. In our case, we had to synchronize the received images having common the correct time 
and the correct frame. This was carried out by developing a code based on opencv libraries, resulting 
in successful frame synchronization. As the system frame rate was 20 frames per second, each frame 
requires 0.05 seconds to be sent. Hence a special algorithm was developed to evaluate the 
intermediate time between commands, calculating the delay (Fig 16). The highest delay between 
commands was t = 32630 μsec. It can be concluded that the system can properly sustain the 
prescribed frame rate without incurring additional delays. 
 
 

  
Fig 16. Evaluate synchronization 
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2.3 Pre-Processing 
Based on quantization, a process of separating the data into discrete sets, depth frame was 
separated at intermediate lower depth values. The system processes the various depths, detecting 
all the candidate fish in the frame.  Based on mathematical morphology we were able to fix up the 
image, by two basic operations, namely erosion and dilation: 
 
 Erosion: In order to find the appropriate fish samples, we had to deal with the extra 

information, blurring the picture due to algae, microorganisms, remaining foods. As it was 
mentioned before through discrimination of depth values, the depth image was separated 
into specific amplitudes. The problem was that the microorganisms were depicted on the 
image, affecting the finding of the candidate fish. So by filtering the image with the erosion 
method, the small areas of noise were eliminated, keeping the appropriate areas of the 
candidate specimens. What is worth mentioning however is that the fish areas on the image 
were also adversely affected. All the pixels that were near the threshold were discarded, 
depending of the kernel size. 
  

 Dilation: The inverse of erosion is called dilation and it expands the shapes. Helps to expand 
the connected set of ones in the binary image. With all the white regions increased. Due to 
erosion, that removes white noises and shrinks our object, its original state had to be 
assumed.  

         
(a) 

  
(b) (c) 

Fig 17. (a) Sample left and right frames acquired by the system. (b) Extracted depth map before image 
processing. (c) Depth map after image processing. 

 
In Fig 17 (b), the depth map, extracted from the stereo pair of Fig 17 (a) is shown without any 
processing, while Fig 17 (c) depicts depth after processing. To avoid detecting regions with more 
than one fish, the overlapping window’s amplitude method was applied. During image processing a 
range of window’s amplitude was set, as well as an additional range for the overlapping window. For 
instance, if the system was searching in a depth range between 150 cm-160 cm, then three 
overlapping windows (images) are created: 

 1st Image range: 145cm-155cm 
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 2nd Image range: 150cm-160cm 

 3rd Image range: 155cm-165cm  
 
The remaining noise during image processing would make the system more difficult to fit the 3D 
model. Removing noise would help the system to eliminate inappropriate regions. In order to 
calculate noise regions, a minimum depth value was set (determined by the reference camera) as 
well as a maximum depth value (tank length). In turn, the appropriate components (fish) were 
manually selected, erasing the remaining from the frame as noise. This procedure was carried out in 
a large number of frames (depicted in the histogram below Fig 18), exporting the maximum noise 
regions from a number of images. 
 

 
Fig 18. Noise components diagram 

The highest noise region rose up to 6521 (number of pixels) and the smallest specimen (20 cm) was 
detected at a distance of 190 cm. The specimen’s region was measured and it was 5760 (number of 
pixels), based on this ascertainment, a threshold for inappropriate noise elimination was set up to 
5700 (Fig 19).  
 

 
Fig 19. After setting up noise threshold 

This would provide the appropriate specimen. Following a series of measurements from the 
available data sets a threshold was defined at 5700 pixels, as it was observed that the system could 
detect the smallest specimen (20cm) in the distance of 190cm. Based on these measurements a 
minimum range was applied at 140 cm, in order to detect all fish sizes. 
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As the algorithm succeeds in detecting the appropriate specimen, the coordinates of the candidate’s 
region become available. So the 3D model could fit through the PSO algorithm, giving us the 
specimen’s length. 
 

2.4 Model Fitting Algorithm 

3D Model 

Gilthead Sea Bream (Sparus aurata), one of the most important commercial aquaculture fish species, 

was used as a model species. In Fig 20 a graphical representation is shown.  

 
Fig 20. Sparus aurata - Gilthead Sea Bream 

A three dimensional model was developed, representing the target fish (Fig 21). It was designed 
using the Blender open source software.  

 

 
Fig 21. Designed fish without skeleton 

 
The objective was to create a model with precision as to allow “natural” movements and “positions” 
depicting all the parts of the body. The model was processed to adapt to the different sizes and 
orientations of the candidate fish. Based on that, a skeleton (Fig 24) was considered, consisting of 
joints and links: 

 Joints: Each joint has 3 degrees of freedom, achieving the desired link position in the world 
space. 

 Links: It is a body of solid material that connects two adjacent joints. 
The skeleton determines the orientation of the model. 
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Fig 22. Designed fish with skeleton 

 
As the skeleton is on scale, the model is adjusting appropriately on the candidate fish. In Fig 22, 
some parts on the model present different color variations. As the color gets “warmer”, the allowed 
movement range in this area is increasing. Conversely, areas whose color is “cold” (i.e, towards blue) 
have a decreased movement range. All marine fish do not have the same movement mode. Based 
on bibliographic references [3], gilthead sea bream belongs to the family of carangiforms (Fig 23), 
which means that it uses only approximately 1/3 of its body length during swimming motions. 
 

 
Fig 23. Swimming movements (a) anguilliform, (b) subcarangiform, (c) carangiform, (d) thunniform mode 

 

Hence, the skeleton backbone was edited, placing the appropriate constraints on the links and joints 
(Fig 24). 

 

 
Fig 24. Defining the parameters on the skeleton 

 

Bone.003 Bone.002 
Bone.001 

Bone.004 
Bone 
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A skeleton is composed of 5 joints and 5 links and is adjusted in a way that it can represent the 
shape of the candidate fish during any swimming motion. The specific constraints of each joint are 
presented below. 
 
 Skeleton length (in our case it was defined 2,5 cm) 
 Skeleton scale: The scale is adjustable, in order to fit all candidate fish’s lengths. The range of 

the scale is between 0,1 and 50. 
 Skeleton orientation (Angle maximum range per joint): 

o Bone.001: X  0°, Y  0°, Z  (-15° - 15°) 
o Bone.002: X  0°, Y  0°, Z  (-30° - 30°) 
o Bone.003: X  0°, Y  0°, Z  (-40° - 40°) 
o Bone.004 : X  0°, Y  0°, Z  0° 
o Bone: X  0°, Y  0°, Z  0° 

 
The final model used consists of 11 parameters: 
 3 parameters that refer to model translation in the 3D system (        axes).  
 4 parameters for model orientation (quaternion representation), in order to achieve the 

desired body orientation. 
 1 parameter for model scale, to adjust properly all lengths of fish. 
 3 parameters for each joint orientation (Euler angles), adjusting all fish’s body inclinations. 

 

Particle Swarm Optimization algorithm 

As it has been mentioned earlier, the Optimization of 3D model fitting is achieved using the Particle 
Swarm Optimization (PSO) algorithm, which optimizes a problem by making repeated attempts to 
improve a candidate solution. In this case, it emulates the interaction of 3D model’s particles 
(potential solutions) through a number of generations. Each next-generation’s particle is optimized 
over the current-generation’s optimum particles in the search space. The optimal results are used in 
the next phase, until the number of generations (iterations) reaches the end. The total number of 
generations, i.e. the number of algorithm’s iterations, is determined by the user.  A good example is 
the evolution of the human species (Fig.25). 

 
Fig 25. Evolution algorithms 

To optimize the population (the number of particles) that lies in the parameter space, the use of an 
objective function is required, having as goal to evaluate all candidate solutions. In each generation, 
every particle is characterized by its current position and its current velocity. The     particle stores 
the optimal position that comes from the evaluation of the objective function. When the best 
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position is achieved all the particles of the swarm occupy the model, which is called global optimum. 
This technique is similar to the way ants find the optimal route between their nest and a food source 
as illustrated in Fig 26. In the first figure, two ants follow different paths to find food. In the second 
figure both ants evaluate the routes that they followed, in order to find the optimal. Subsequently in 
the third figure all ants have been informed about the optimal route. 

 

 

 

 
Fig 26. Ants searching for food, finding optimal route 

 

In our case, to achieve an acceptable 3D model fitting using PSO, each particle decides the way that 

it will be directed, based on previous searches and the space that is placed. It tries to find the best 

solution, continuously assessing previous results. Each particle stores the best value (highest fitness). 

The PSO algorithm uses some parameters that help in its evolution, such as: 

       : Each particle keeps track of its coordinates in the search space which are associated 

with the best solution (fitness) it has achieved so far. 

       : It is the best value obtained so far by any particle in the neighbors of the particle. 

      :The set of the swarm particles with the optimal values that belong into a specific 

space, after they have been evaluated by their       and       values [64] : 

 
With the parameters defined in the previous sections for the skeleton, particles manage to adapt on 
the candidate sample, evaluating every time the candidate solutions, separating the predominant 
one. The final goal is the matching of the 3D model on the candidate specimen. 
To achieve this, a parametric model of joint kinematics of a fish was defined. As already mentioned, 
it has 11 parameters that represent the fish pose (3-D position and 4-D quaternion encoded 
orientation). Therefore, mapping to the feature space is required for each point in search. In our 
case, to achieve the appropriate fitting we relied on these parameters: 

 Candidate fish’s observation 
 Depth map 

 
 
By using different values for the parameters, the model is evaluated in order to examine if it can 
yield all the orientations with the given constraints. In this way the estimation of the fish length even 
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when the body is bent can be performed. Fig 27 below shows how the system visualizes the fish 
model. 

 
Fig 27. 3D model visualization 

 
All of the model’s parameters are presented below: 

    : Particle’s current position 

    : Particle’s current velocity 

   : Generation number 

    : Global best  

   : Constant constriction factor (value calculated for the 3D model used in each application 
[43]) 

 

 
 

 
Diagram 1. Implementation diagram of the PSO algorithm 
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A detailed description of the PSO algorithmic steps (Diagram 1) is provided next.  

1. Initialize a population array of particles with random positions and velocities on   
dimensions in the search space. 

2. Loop 
a. For each particle, evaluate the desired optimization fitness function in   variables. 
b. Compare particle’s fitness evaluation with its      . If current value is better than 

     , then set       equal to the current value, and   ⃗⃗⃗   equal to the current location 
  ⃗⃗  ⃗ in  -dimensional space. 

c. Identify the particle in the neighborhood with the best success so far, and assign its 
index to the variable g. 

d. Change the velocity and position of the particle according to the following equation: 

  ⃗⃗  ⃗    ⃗⃗  ⃗    ⃗⃗           ⃗⃗⃗     ⃗⃗  ⃗   ⃗⃗        (  ⃗⃗⃗⃗    ⃗⃗  ⃗)  ⃗⃗  ⃗      ⃗⃗  ⃗     ⃗⃗  ⃗ 

 
e. If a criterion is met (usually a sufficiently good fitness of a maximum number of 

iterations), exit loop. 
f. End loop 

 
Notes: 
–   [    ] represents a vector of random numbers uniformly distributed in [    ] which is 
randomly generated at each iteration and for each particle. 
–   is component-wise multiplication. 
– In the original version of PSO, each component of    is kept within the range 
*−Vmax, +Vmax] 
 
As mentioned, PSO algorithm will optimize the 3D fish model on the candidate specimen. It 
simulates the “social interaction” of a population of particles whereby a number of generations are 
evolved. Every particle holds its initial position in a vector    set of parameters and its current 
velocity in a vector   . The     particle stores its position in a vector   , corresponding the best 
optimal evaluation of its objective function up to the current generation  . The particles store the 
best position    results in a vector which corresponds to the best evaluation until they reach all the 

generation.   

In each generation  , the velocity changes according to equation      
 

     (                       (       ))           

 
and its position according to equation       
 

                     
   
 

In the above equations     ,   is a constant constriction factor,   ,   are the social components, 
while    and    are random samples of a uniform distribution in [0..1]. The algorithm has a search 
space and it is a multidimensional cuboid. Initially the particle velocities are set to zero and the 
particle positions are randomly initialized. During optimization procedure, if velocity forces particles 
to move outside the search space, then this particle value is set to zero and does not perform any 
move at the corresponding dimensions. The final outcome of PSO is   with the best score across all 
generations. The search space of the fish 3D model is a parameter space  . The fish model is 
represented by 11 parameters, hence the search space has 11 dimensions. The population is a set 
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consisting of the hypothesis of the 3D fish-object configurations and the objective function 
minimized by       . The results from PSO 
 

             (      )                 

 
represents the best guess of the algorithm for the joint fish-object model parameters   given the 
multiframe  . 
The objective function        depends on the compatibility of 3D model’s observation with the 
characteristics of the image. The objective function is defined as: 
 

       ∑          

   

     

 
In the above expression the first term quantifies the discrepancies of the fish model   to the 
observations that based on the camera, while the second term quantifies the penetration depth 
between the fish and the object, with     being a weighting factor [18]. 
 
At the beginning, the fish model is manually placed at a roughly predefined position and pose. 
Worth noting is that two optimizations are taken for each object, one with a starting point from the 
nose and one with a starting point from the tail. In this way we are able to detect fish orientation 
and its length, evaluating the results from evaluation function, the result of the evaluation function 
is the score and denoted as ꭥ. The solution for multiframe      is used to bootstrap the initial 
population for the optimization problem   . The multiframe   is performed for a fixed number of 
particles and generations. The first member of population      for    is the solution for     . The 

best hypothesis    is dubbed as the solutions for time step t [16,17,18]. 

 

2.5 Length Estimation 
 
In order to calculate the candidate’s specimen length, the value of the optimizer’s scale should be 
translated into world scale, a process called normalization. Consider   is the value that gives the 
optimizer scale. In each measurement the values should be normalized into the range         . 
Where    is normalization value. So we have two equations with two unknown values   and  : 
 

                                  
 

Hence,        the results are               
                    the results are              
 
Based on the above equations and since                   , the unknown parameters are 
calculated as        and       to finally yield: 
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Chapter 3: Accuracy Assessment 

The verification of the system started by its calibration and then through experiments involving the 

measurement of live fish of known sizes. 
 

3.1 Camera Calibration in Tanks 

An algorithm was developed to detect a special pattern on the chessboard, with given parameters: 
 Finding pattern 
 Known distance between corners. 

The algorithm ought to recognize the given pattern on a chessboard at different distances and 
orientations, estimating intrinsic parameters and correcting the distortion from lenses. In Fig 28 the 
right frame shows the image after a distortion correction, contrary to the left frame which depicts 
the image with distortion.  

 

 
Fig 28. Camera calibration and distortion correction 

 
After intrinsic parameters were estimated for each camera separately, the same procedure was 
followed for both cameras simultaneously. Rectification has been achieved in calibration images (Fig 
29) after estimating the transformation matrix (translation and orientation).  
 

 
Fig 29. Left frame - unrectified image, right frame - rectified image 

 
To verify if scenes are correctly rectified epipolar lines were outlined to evaluate (through visual 
inspection) if the chosen random points instersect from the same line (Fig 30).  
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Fig 30. Epipolar lines showing proper calibration 

 
Knowing the disparity map and applying simple trigonometry, the formula of depth was used as 
shown in paragraph 2.2.1: 

  
   

          
              

 
Where   is the focal length (previouly estimated from intrinsic parameters) and   express the 
distance between two cameras (baseline).  

 
Accepting that the baseline is proportional to depth, when the distance between the cameras is 
increasing at the same time the field of depth is also increasing. Supposing an object is close to the 
cameras, then the overlap between the image field is reduced, making difficult to correlate points. 
Due to the results that depicted in Fig 31 and Fig 32, the distance between the cameras (baseline) 
was adjusted to 19 centimeters. 
 

 
Fig 31. Depth - error diagram 

  
 

 
Fig 32. Diagram of theoretical accuracy (19 cm - 

Baseline) 

 

 
Based on equation      and given the disparity map (Fig 33), the baseline and focal length, depth 

can be exported. As mentioned in chapter 2.2.1, a specially designed algorithm was able to estimate 

the depth in any frame and following this to estimate a ”depth frame”. Depth mapping is shown in 

Fig 34. 
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Fig 33.  Disparity map 

 

 
Fig 34. Exporting depth map from disparity map, focal 

length = 1270px, baseline = 19cm 

  
 

 

3.2 Validation 

A first validation of the system by measuring known objects took place in lab environment (Fig 35) 
where known objects (chessboard, cup, batteries) were measured. 

 

 
Fig 35. Measurement of known objects 

 
In the diagram (Fig 36) the results of this first evaluation are shown. 

 

 
Fig 36. Measurements taken outside from the aquatic environment 

 
For each object two arbitrary points were selected manually, and their distance – length was 
estimated. Points           and           represent the coordinates in 2D space. Having as 
granted the points (     ) through equation    , we are able to calculate object’s length: 
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        √                            

 
Knowing the actual length the relative error was estimated. Error estimation (Equation    )) helped 
to correct system malfunctions, such as the distance between two cameras (baseline) or camera 
parameters.  
 

       
                             

             
               

 
A similar approach was used in an aquatic environment, measuring certain distances on a 
chessboard (Fig 37), in different depths. This was repeated several times and the relevant results are 
shown in Fig 38.   
 

 

Fig 37. Known object 

 
 

 
Fig 38. Measurements inside aquatic environment 
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3.3 Actual Fish Measurements 
A final evaluation of the system took place by measuring a sufficient number of fish specimens that 

were placed in a tank.  

3.3.1 Preparation of fish specimens  

Gilthead sea breams of known sizes were placed in a fish tank (250cm x 150cm). Since the 
distribution range was from 20cm to 33cm, we could verify system’s measurements at different 
distances. To identify individual specimens, a special visual color tag was placed for identification (Fig 
39) following a length measurement.  

 
 

 
Fig 39. Fish specimen with color tag 

 
The actual measurements taken were the Total Length (TL) the Fork Length (FL) (defined as in Fig 40) 
and the Weight of the individuals. 
 

 

 
Fig 40. Definition of TL, FL, and SL parameters 
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3.3.2 Dataset 

In order to evaluate our system a large amount of data was collected after daily monitoring of a 
group of 22 fish. From 100 frames collected, a two-step approach was followed. Initially, the 
appropriate and the inappropriate fish were selected manually. Then the previously presented PSO 
algorithm was applied and the selection of the specimens in each frame was compared with the 
ones manually selected in order to estimate the accuracy of the system.  
 

 
Fig 41. (a) Manually selected Appropriate fish (green dot) - Inappropriate fish (red dot); (b) algorithm 

selection of specimen 

 
An example is given in Fig 41, the green dot represents the appropriate fish with its length and the 
red dot represents the inappropriate fish. The inappropriate fish were selected based on occlusions 
and incorrect inclination of the body. The system was able to detect the appropriate specimen and 
compare the estimated length with the actual length. 
The results were analyzed based on the score (ꭥ). As mentioned in Section 2.4, the score (ꭥ) 
function yields a value depending on the accuracy of the model fit to the specimen identified. It is 
computed through equation      that outputs a value ranging from 0 to 1, where low values 
represent a better fit. 

 

3.3.3 Evaluation of results  

Measurements were performed on a computer with a core Intel i7 CPU, 8 GB RAM and an NVIDIA 
processing unit. In our project the algorithm parameters were set: 
 

 Generations: 400 

 Particles: 800 
  
Below, the system results are analyzed based on the score as explained in the previous paragraph. 
The total amount of samples is 932, where the 155 samples are appropriate and the 777 samples are 
inappropriate. The algorithm detected 88 appropriate samples from the 100 frames analyzed. The 
number of proper fish per frame depended on the score (ꭥ) value, the total number of fish in the 
frame and the optical noise. In order to better visualize the results, three categories were created 
depending on the score values 

 from 0.5 to 0.6  

 from 0.6 to 0.7  

 from 0.7 to 0.8  
 
The best fittings were obtained at the first category, yielding relatively low error rates. As observed 
in Fig 42, the higher the score value the lower the fitting of the 3D model from the candidate fish.  
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(a) Score range: 0.5 – 0.6 (b) Score range: 0.6 – 0.7 (c) Score range: 0.7 – 0.8 

  

 

 

 

 
 

Fig 42. Indicative results in three different score ranges: (a) 0.5-0.6, (b) 0.6-0.7, and (c) 0.7-0.8 
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In Table 2, the results of the whole process are summarized. It shows for each score value the total 
number of appropriate fish identified compared to the actual specimen existed in the frames. 
Additionally the table shows the number of inappropriate fish identified.  
 
Each appropriate fish identified then its total length measurement was taken and compared with the 
actual known value. The results of this comparison are also presented in the table as the mean error 
for each score category. As shown, the mean absolute error ranges from 3.3% to 16.6%. The highest 
errors values (16.6±20.5%; mean absolute and standard deviation) were recorded for the highest 
score categories of 0.75 and 0.8. On the contrary the lowest error values were observed for the 0.5 
score category with a value of 3.3% while the category of 0.55-0.6 gave also acceptable error values 
(8.4±7.5%). For score values higher than this, although more appropriate fish are identified, the error 
values increase above 10%, which is considered as an unacceptable value. 

    
Score  Appropriate 

Samples 
Mean Absolute 

Error (%) 
Standard 

Deviation (%) 
Inappropriate 

Samples 

0.5 1 3.3 - 0 

0.55 7 8.4 7.5 1 

0.6 12 12.4 10.7 2 

0.65 27 13.9 17.7 9 

0.7 36 13.9 16.7 16 

0.75 49 16.6 20.6 22 

0.8 50 16.6 20.4 25 
Table 2. Various scores with various results of the algorithm 

The most important reason for the low success rate in the identification of fish is the optical noise 
that affects the depth display and it can be attributed to the low transparency of the water in an 
aquaculture environment. An additional issue, difficult to be addressed, is the continuous movement 
of fish, creating occlusions and self-occlusions, making harder the proper operation of the algorithm.  
 
Also in Fig 43 the so-called Recall and Precision diagrams are provided. The diagrams are related to 
an evaluation variable (score) (Table 3), which displays the optimal solution that depends on the best 
fit of the 3D model on the candidate fish. So the diagrams explain the precision of the PSO algorithm 
as the score changes. In particular it shows (a) the ratio of the identified appropriate fish to the total 
number of fish (Recall) and (b) is the ratio of the identified appropriate fish to the total number of 
appropriate fish (Precision). Analytically the formulas of Recall and Precision are: 
 

        
  

     
                           

  

     
 

 
where the variable     is referred to the appropriately identified fish, the variable    is referred to 

the inappropriately identified fish and the variable    is the difference of the total amount of 
appropriate fish minus the variable    (                                       ). 
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Score tp fp fn Recall Precision 

0.5 1 - 154 0.0064 1 

0.55 7 1 148 0.0452 0.875 

0.6 12 2 143 0.0774 0.8571 

0.65 27 9 128 0.1742 0.75 

0.7 36 16 119 0.2322 0.6923 

0.75 49 22 106 0.3161 0.6901 

0.8 50 25 105 0.3226 0.6667 
Table 3. Recall and Precision related to score 

 

   
Fig 43. (a) Recall and (b) Precision diagrams 
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Chapter 4: Conclusions 

This work was a first approach to study fish measurement with stereoscopic vision in a 
controlled environment and over a range of sizes. A pair of high definition cameras, managed by a 
mini computer, is employed to acquire a sequence of stereo frames to extract the depth map. 
Afterwards, a specially designed algorithm detects the appropriate candidate fish samples and 
through Particle Swarm Optimization algorithm, a three dimensional fish model is fitted over the 
shape of the fish, to estimate its length. Experiments were conducted in a controlled environment 
(fish tank) with 22 specimens of Gilthead Sea Bream (Sparus aurata), selected as a model species 
due to its prevalence and economic significance in the Aquaculture industry. 

 In order to evaluate our system, a dataset of 100 frames were selected, separating the 
appropriate and the inappropriate samples manually and finally we measured the tagged fish 
detecting from the unique color tag that each fish had. Analysis of the results indicated that the 
mean absolute error and the standard deviation error increase when the score value increase. The 
lowest error values were observed for the 0.5 score category with a value of 3.3%, on the contrary 
the highest mean absolute error values were observed for the 0.8 score category, where it reaches 
16.6%±20.4%. The tolerance of the method to noisy observations was also evaluated. Errors in the 
system arise due to lesser extent of the fish tank size, further “optical” noise was added into the 
frame (algae, fish waste, remaining food) making it more difficult to operate 3D fitting, due to 
inappropriate depth mapping. Also, the fish movement was one of the factors that caused problems 
due to self-occlusions. 
 Additional research of fish measurement with stereoscopic vision is a subject for further 
refinements creating optimum “conditions” to the system, increasing accuracy with small error 
rates. Our results indicate that the proposed method is quite promising for further research, having 
even commercial prospects, since it represents an automated, non-invasive technology for fish size 
estimation, which could potentially replace the manual practices currently in use by the Aquaculture 
industry that are associated with high labor costs and considerable livestock stress. 
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