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Iepiinyn

Or poég epyaciag YPNOWOTOOVVIOL EVPEMG YL TNV  OVOTOPACTOCT  UEYOA®V
EMOTNUOVIKOV EQPAPUOYDV TOL OLEVKOAVVOVV TNV EKTEAEGT] TOVG O KOUTAVEUNUEVO GUGTILATO
omwc clusters 1 cloud. Qotdéco, ta cvothuoTa POoNG epyaciag eival dyvmota ®G TPOg TO
nepBaArov 6to omoio avapéveral vo ekteheotel kaBe Prpa g pong epyaociag. Q¢ amotélecua,
po pon epyaciog uropet va ektedectel cwotd 6to mEPPAALOV 6TO 0moi0 GYEdAGTNKE, OAAL OTN
OULVEYELD EKTEADVTOG TNV 6€ GAA0 TepiPailov, eivar mBavd va amotdyel Ady® dopopdV GTO
Aertovpykd cOOTNUO, TIC EYKATECTNUEVES EQUPUOYES, TIC ekdOoelg PipAodnkne, T Sabéoipa
dedopéva kat dAdeg e€aptoelg tov TePPAALOVTOS. AVTOC 0 TapAyovTog tval £va oNUAVTIKO
EUTOO10 OTNV PLOTANPOPOPIKT KOl YEVIKOTEPQ GTIG EMGTILES OESOUEVOV.

Ot 1teyvoloyieg container émwg to Docker mpoékvyav tpdoata g Adon cg avtd To
npoPAnua mapéyovtag éva Kabopiopévo mepPdAiov extéheonc o€ eminedo  AETOLPYIKOD
oLOTNATOG. Me TNV YpMoT AVTAOV TOV TEXVOAOYI®V, Ui TOAVTAOKT pon epyociog pmopel vo
extelecBel oe €vo amopovopévo TEPPAAALOV GTO OO0 EVOOUATOVOVTOL OAN TO OmapoitnTo
gpyoleio ko Biprodnkeg yo va mpaypatorombei n extédeon. o ovykekpuéva, ta Containers
Aertovpyodv ®¢g €va eAa@pl aveEdptnto Agttovpykd OGO HECH GTO LILAPY®V GVGTNO TO
omoilo umopovEe vo T0 ENeEEPYUSTOVE EVKOAN Kol YpIyopo Y®pic Tov @OBo Yo OToldNToTE
KOTOGTPOPY] GTO GUGTNHA PLAOEEVING TOV.

H eveMéio ko1 m @opnromta €ivol onpovtik@ mwpoPAnuato oty ektéleong upiog
EMOTNUOVIKNG poNg epyacioc. Ymapyovv moAAEC a&lOA0yeG TAATPOPUES TTOV GYEdALOVY Kot
exteloV autég TG poéc. Kabe pio €€ ’avtov €xet v 0K g YA®OOA-TPOTO Yo TNV
aVOTOPACTACT LOG PONG Epyaciag. Q¢ ek TovTov, pia por| epyaciag n omoia £xel avamapaydel og
pio cUYKEKPHEVT TAATQOPLLO EKTEAEONG OV Umopel va ekTelechel e dlaPOpETIK TAATPOPLLOL
AOYO NG OWPOPETIKNG YADGGCOG M Omoio yprolpwonombnke vy v mapoywyn s Koplo
ATOTEAEG O, AVTOD, ival Vo amotteiton amd Tov EKAGTOTE XPNOTN, EEEWOIKEVUEVT] YVAGT Y10l TV
avamtuén kot v emeEepyacio pag pong epyasioc. EmmAéov, o1 mAatpdpueg avtég dev eivan
OLVOEDENEVEG e KATOl0 OmoBeTplo €TI0l OGTE Vo YIVETE QUECH 1 EKTEAECT] Kot M e&aywyn
amoTEAEGLATOV pio pong epyaciag pe avtod, To omoio givar axopa évo peilov TpoPAnua yio v
SLIAEITOVPYIKOTNTA LLOG ETIGTNHOVIKNG POT EPYACIOG.

To OpenBio (https://www.openbio.eu) givot pia S1ad1KTVAKT TAATEOPLE. ) OTTOT0, ELVOIL VIO
avartoén and 1o Epyactmplio Yrnoroyiotikng Blotatpikng tov Ivatitovtov [TAnpopopikng tov
Tdpoparog Teyvoroyiag war ‘Epsvvag oe ovvepyasio pe to IMavemnotjuo Ildtpag yu v
KOTOOKELN Kot 0moONKEVOT PODV EPYNCiag TOL UTOPoLV Vo cLVBEGOVY TOAAG epyoreia 1) poég
epyaciag. Avti N TAATQOPUA EYEL WG GTOYO TNV UEYIGTOTOINGT TNG AVATOPAYWYILOTNTOS KOl TNV
evomoinomn kowattev g BlomAnpoeopikns. H pon epyaciag avanticoete ypnoILOTOIdVTOG
BASH evtolég 1 omoieg eivar Aettovpyikég eite oe teyvoloyieg container 1 oe mepifdriovio
EKTEAEON G PODV EPYAGIAG.

Xmyv ev Adym mroyokn epyocio, €etdoope Tov TPOMO LE TOV OmMOi0 UTOpPOVUE Va
EVOOUOTOGOVLE 6TNV TAATEOpLo. OpenBio éva meptBAAAOV EKTEAEGTC TTOV EKTEAEITOL GE EIKOVIKO
container pécm evog tomkou umohoyotr, cluster 1 cloud. Mg avtv Vv Aettovpyia, ot ¥PHOTES
UTOPOLV VO SLOYEPIGTOVY TOAAEG POEG EPYOTING, VO TOPOKOAOVONGOLV TN YPNoN TV TOPWOV O1



070101 KOTAVOAMDVOVTOL OO TO CUCTNO KOTA TNV SLAPKELN Hi0g EKTEALEST, Ol OTOTEG LITOPOVV V.
ovpPdAarovy oty enitevén kKMpdkmong 1 PeATIoTOTOINONG XPNONG TOPWV.

Yto mhaicwo TG epyaciag ovtig, SOKIUAGOUE O1APOPO GLOTHUOTO JXEIPIONG PODY
epyaciag Kot epyoreimv mopakoAovOnong moOpwv. AVt 1 TPOCGEKTIKY a&loAdynon elxe ®g
amotélecpo TNV akdiovdn cepd epyareiov. To AirFlow to omoio givar o punyaviepog yo v
ektédeon tov powv epyaciag(Workflow Management System), to NetData ywo v
TopakoAoVONoN TOP®V Kal Evag SLoKOMIGTHG TToL Ypaetnke o€ Python Flask kot evepyel wg API
Yo v enkowvovia pe mv mhatedpua OpenBio. Ocov apopd tov unyovioud ektéleonc, o
Airflow dev eivar o povo epyadeio mov o umopel vo eveopotmbei péoa oto meptPaiiov, Kabmg
oKomOg ivat To cvoTNUa ivol VUPATO PE TOAAATAOVS UNYOVIGHOVE EKTEAECTG PODV EPYACIOG.
Emniong, ypnowonomOnke to Docker-Compose yio opydvmon tov containers ywo v keAbtepn
gmkovevia kat dtadertovpyikodmra petaéd tov epyareiov avtov. H miateopua OpenBio cg
ocvvepyacia pe To TePPAALOV EKTEAEOTC TAPEYEL:

(1) wa demapn ypnotn(User Interface) mov emtpénel otovg ypnoteg v dnuovpyia,
enelepyaocia, emexktactudOTNTO KOl omofnKevon cuvletwv podv gpyoaciog ywpig v avdykn
EMMAEOV YVAOEMV TPOYPOUUATIONOD (Tapd poévo Tig amopoitnteg yvooelg BASH scripting)
ypnoonolmdvtag v TAateopuoe OpenBio,

(2) ko mpog To YPHOTN GVOTHHO TAPAKOAOVONONC TOP®V GE TPAYUATIKO XPOVO,

(3) avtépan dNpovpYic AVOEOPAOV LE ATOTELECHOTA KOl ApYEIOV KATAYPUPTG KATE TNV
JLIPKELD TNG EKTELEONC,

(4) popNTOTNTO GE KATAVEUNLEVE, VITOAOYIOTIKA TTEPIBaALovTa dmmg clusters ko clouds pe
JUVOTOTNTO ONLOVPYING TOAAATADY TOPOVGLOV LE TV ¥PNON TV containers.

21NV TOpOVCH TTUYLOKY EPYACIL, OvVaypAPOVTOL Ta EPYOAEiD Ta ool YpMoLLoToMmONnKaY
YL TV avATTLEN TOL TEPPALAOVTOG EKTEAEGNG, N OPYLTEKTOVIKY OLTOV, OVUAVTIKES 00N YiES Yia
TNV €YKATACTOGCT TOV TEPPAAALOVTOG EKTEAECT|G GE OMOLOONTOTE GUGTNUA Kol Eva ToPAoOEty Lol
EKTEAEONG U0t EMGTNHOVIKNG OVPAG EPYACIOG LE LETPNOELS EKTEAEGNC EVOG TOPUOELYLATOG MG
TPOG TOV YPOVO Kol GUYKPIOT Ue AAAOVG TPOTOVS EKTEAECTG.

YUVoMKA, To TEPPAALOV eKTEAEONG TO OmOio avomTOYOnke Yoo vo evompatofel otnv
TAateopo OpenBio yia vo 51eVKOADVEL TOVE XPHOTES OTNV EKTELECT] TOADTAOK®V ETIGTNLLOVIKDV
pomv gpyaciag. QoT00m, 0 TPOTOG 0 0MOiog avamTLYOnKe OA0 TO CVGTNUO UITOPEL EVKOA VOl
EVOOUATMOEL G€ OTOONTOTE TAATPOPLLOL LLE TIG KOTAAANAES TAPOUETPOTOMGELS.

AéCaic-Khrerowa

workflow, container, Docker, Airflow, NetData, OpenBio, bioinformatics, Executional
Environment, reproducibility, portability.



Abstract

Workflows are widely used abstractions for the representation of large scientific
applications that also ease their execution on distributed systems such as clusters, clouds, and grids.
However, workflow systems are mainly agnostic on the environment on which each task of the
workflow is expected to run. As a result, a workflow may run correctly in the environment in
which it was designed, but then moved to another environment, it is likely to fail due to differences
in the operating systems, installed applications, library versions, available data, and other
dependencies. This factor is a major issue in life sciences. Lightweight container technologies like
Docker have recently arisen as a solution to this problem by providing a well-defined execution
environment at the operating system level.

OpenBio (https://www.openbio.eu) is a web-based workflow platform that can compose
multiple tools or workflows in one and aims to maximize reproducibility. In this thesis, we
consider how to best integrate the OpenBio platform with an Execution Environment running in a
virtual container. With this abstraction, users can manage multiple workflows, monitor the use of
their resources, which can help achieve scalability and optimal resource utilization. Several
platforms currently exist that design and execute sophisticated pipelines (e.g Galaxy [7], Luigi [8],
Nextflow [9]). The main drawback of these platforms is the lack of the necessary parallelism,
flexibility, and portability.

In this thesis, we test a variety of workflow management systems and resource monitoring
tools. This careful evaluation resulted in the following stack of tools. AirFlow is used for
Workflow Execution, NetData used for resource monitoring, and a client written that uses Python
Flask acts as an API for interface monitoring. Also, we leverage Docker-Compose to orchestrate
the communication and interoperability between these tools. AirFlow was used due to its ability
to treat scientific pipelines in a simple, portable, reproducible, and scalable manner, mainly by
modeling them as DAGs (Directed Acyclic Graphs). AirFlow and NetData both are configured in
accordance with the Execution Environment prerequisites. OpenBio Platform with the
collaboration of the Execution Environment provides; (1) a drag and drop user interface using
OpenBio platform for pipeline composition that allows users to create complex pipelines without
familiarity in underlying programming languages, (2) User-friendly monitoring system, (3)
automatic report generation with results and processing logs and (4) portability towards distributed
computing environments such as cluster, grid, and cloud with the ability to generate multiple
instances.

Keywords: workflow, container, Docker, Airflow, NetData, OpenBio, bioinformatics, Executional
Environment, reproducibility, portability.


https://www.openbio.eu/platform

IIpoioyog

210 onueio avtod Ba MPela va gvyaploTom Tovg avBpdmovg mov Emanéav KaboploTikd
POAO OTNV EKTOVNON TNG TTUYLOKNG HOL, OAAL KOl EVPVTEPO GTNV TOPEID OV GE KOO LLOTKO
eminedo.

Apyikd, 6o 10eha va gvyaploTiom, Tov emPAETOVTA KOONYNTH TG TTLYLOKNG OV, KUPLO
Movorn Towvdakn, KaOnynt| tov tunuoatog Mnyovikeov I[TAnpogopikng tov EAANviKod
Mecoyetaxkob [Mavemompuiov, yio TNV cvvepyosio pog, Kabdg Kot Yo ToV TOAVTIHO ¥POVO TOoL
LLOV OPLEPWGE.

2mv ocvvéyela, Oa Nlela vo ekppaco TV WwHTEPT EVYVOUOGHVN LOL TPOS TOV KHPLO
Agvtépn Kovpdxn, Kabnynt| tov tuquatog Mnyovikeov I[TAnpogopikng tov EAAnvukol
Mecoyetaxot ITavemotnpiov ywa 11g cuveyels GuPPovAEg Tov, TOGO 610 Be®PNTIKO KOUUATL OGO
KOl GTO TPAKTIKO TOV EVIOPEPOVTOS LOV Y10 TOKIAEG TTTUYEG TMOV VTOAOYICTIKMV GLGTNUATOV,
KaBmG Kot 6TV popPomoinom g epyaciag.

Opeilo éva axoua peydro evyaplotd, otov Koplo AAEEavopo Kavtepdkn, Epevvnt oto
Epyacmpio Ymoioyiotikng Bro-latpwng tov Ivotitodvtov ITAnpogopikng oto ITE, 1660 Vv
ouvepyacio pog, 660 Kol GTNV SUOPP®GT) TOV TPOTOL GKEWTG HOU MG TPOS TNV TPOGEYYIoN
dpopev NTNUATOV Katd TV S1dpKewn TG EKTOVNONG TG TTVYLOKNG LoV, TOV ¥pOVO KOl TIG
YVOGELS TOV APIEPMCE MOTE VO, AVTUAAAEOVE CKEYELG KOt 10£EG OYETIKA LE onuovTikd CnTiuoto
TOL TPOEKLY OV KATA TNV AVATTLEN TOV TEPPAALOVTOG EKTEAEOTG.

Téhog, Ba NBera va evyaploTom ek PABog Kapdiog TOVg YOVEIS LoV Yo TV oydmn Kot T
oTNPLEN TOV POV TPOGPEPAY KATA TNV SIUPKELL TNG EKTOVIONG TNG TTVYLIOKNG L0V EPYOCTIOG.

Mavog KovtovAdkng,

TovAog 2020.
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1 Introduction

In this chapter, we describe the background on Workflow Management Systems in
bioinformatics and present some gaps in existing systems. These gaps, along with their dire
consequences in reproducibility, motivated most of this work in this thesis. Furthermore, we
present the general principle of my implementation and a short discussion on the scientific merits
of this effort.

1.1 Background

Efficient and cost-effective analysis of high-throughput data is now broadly considered a
major bottleneck in bioinformatics [1]. As a result, the optimal utilization of computation resources
is a far more important factor than computational power. Consequently, we have important impacts
on budgetary decisions [2]. The most significant complexity of high-throughput sequencing data
analysis is that a tremendous number of different steps are frequently executed with a set of
programs with different interfaces, dependencies and architectures. Thus, each sequence analysis
requires the integration of components made with different programming languages and
computation setups. Here we argue that this complexity can be significantly reduced by applying
component isolation. This isolation is easily achieved today with special tools that offer
“virtualization”. Virtualization software encapsulates a set of tools, services and configuration
scripts along with the underlying operating system in an isolated component, called “container”.
Containers act as independent software, they can run concurrently on the same physical server,
they can communicate and they can be stopped and started at will. Also, containers can just be
copied and deployed in multiple execution environments, simplifying the process of scaling a
demanding computation procedure. All of the above, contribute to the reduction of the complexity
which leads to explicit cost reduction in service and maintenance cost [3]. One of the most known
virtualization software is Docker. Docker uses a containerization technique that has increased
popularity and has brought forward the term “container management software” [4]. Furthermore,
Docker-Compose [5], a tool of Docker that is responsible for orchestrating containers, as it
executes multi-container Docker applications. Therefore, the usage of docker is important for this
dissertation since it can isolate the platform from the host. Also, the container is very lightweight
and easy to be handled such as to create, edit or remove it from the hosting service [6].

1.2 Previous Research

Some scientific workflow management systems such as Galaxy [7], Luigi [8] and Nextflow
[9] have implemented workflow management. All of them have the same actions as unloading and
executing complicated workflows using a specific workflow language. Also, platforms such as
Galaxy and Nextflow have already supported Docker and that give us the opportunity to solve
portability problems. Despite the fact that such platforms are a robust way to merge existing
programs into pipelines that carry end-to-end data processing, they are restricted in their flexibility.
In other words, all of these systems have different workflow file types and cannot cooperate. As a
result, researchers are stacked at one workflow management system and they cannot use their
existing pipelines/workflows on other management systems. In addition, many of these workflow
management systems lack parallelization execution and the latency of workflow is increased
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according to the number of steps of execution. Also, it cannot be denied that no one from these
Workflow Management Systems have resource monitoring which is essential for users to monitor
a workflow during the workflow execution. For this reason, flexibility, parallelism and resource
monitoring have become necessary not only for bioinformatics workflows but generally in
scientific workflows to become more creative and easier to resolve errors.

1.3 Problem Formulation

Flexibility is an integral problem of workflow execution. Nowadays, many different
workflow management systems were introduced in the research community, each of them having
its own workflow language or library to be executed. Consequently, none of these can be used on
another WMS except its own. As a result, researchers are bewildered about which of these WMS
is better for their specific task, creating a vicious circle in the research community, thus, increasing
the complexity of the workflow execution. During these selfish innovations, we have forgotten the
simplicity and significance of the pure BASH scripting. To address the compatibility of workflows
we already have integrated a variety of workflow management systems in our environment. This
feature can make it easy for users to run any type of workflow they want in our OpenBio
environment according to their workflow type. About the BASH scripting, the OpenBio can parse
a workflow which is written in BASH at any workflow language according to the workflow
executor.

The computing environments have grown in complexity, which is another negative aspect,
thus frustrating researchers on how to handle and integrate their WMS. To clarify, every
educational and/or research institution depends on various sets of computing options such as
servers, computing clusters, and cloud computing. Consequently, the Execution Environment
should be portable and utilizable in different environments. Hence, it should not be installable only
on central computer but should also create many isolated executable environments on the same
computer in case the system has more than one user.

The Execution Environment should be able to run large workflows without conflicts, and in
the event of a collision, the Environment would auto recover from any problems. To put it briefly,
the virtualization platform should provide self-healing that automatically diagnoses and repairs
software problems. Additionally, since the Environment executes complex pipelines, it requires a
resource monitoring system to monitor the resources used during the execution of a workflow.
Many of common WMSs have not any resource monitoring provider to monitor their workflows.

1.4 Motivation

We believe that combining both the required tools using containerization could allow better
isolation and performance for our execution environment. The containers of the Execution
Environment will be federated but diversified from the host Operating System. Taking into
consideration the advantage of containerization and the orchestration, this project was built using
both Docker and Docker Compose, which make the execution environment portable. Since Cloud
Computing raised rapidly and made containerization technology a significant factor in scientific
society, every one of us prefers to deploy a WMS into a cloud to make the execution of a workflow.
Hence, the usage of docker is the more compatible solution in our project.



It could also be argued that many workflows are not being able to embed and to be embedded.
To clarify, there are a plethora of Workflow Management Platforms that offer different libraries,
and programming languages. As a consequence, one workflow can be executed in specific WMS.
In this thesis, we took into consideration the architecture of the execution environment to be
modular and set the client to act as a workflow parser in place. That is to say, the client is easy to
allow other workflow execution engines as well. Also, it cannot be denied that workflow executors
should be editable and be able to run steps in parallel. Another important feature is the resource
monitoring system that is integrated into the execution environment and users can receive
extensive resource information about the process of performing their workflows.

1.5 Scope

In this dissertation, we proposed to utilize a group of containers as the execution engine for
scientific workflows, having in mind the current limitations of the existing systems. First and
foremost, it perfectly solves the scientific tool installation problem. We packaged scientific tools
into the OpenBio Platform, and we can set up them as steps into the pipeline saved on the OpenBio
server. Subsequently, on the OpenBio platform, we give the environment variables that are needed
for the execution and instantly we can send it in our execution environment as a parsed file
according to which WMS (Workflow Management System) is in use. Secondly, this execution
engine is portable and utilizable, because of the container-based architecture. In other words, this
workflow engine could work on any hosts only by using the docker-compose.yml file that contains
the WMS, database, and resource monitoring system. Third, the engine is absolutely isolated.
Everyone can have multiple execution engines on a computer cluster or at the same host. Fourth,
the user can integrate any WMS at the execution environment such as AirFlow, NextFlow, etc. As
we mentioned above, the WMS that we test is Airflow is not bound in our Execution Environment.
Finally, the same goes for the OpenBio platform, it could also work perfectly with other workflows
platforms by virtue of handling API easily.

1.6 Target

The target of this thesis is to resolve workflow portability problems as well as collaboration
with other workflow management systems to make the execution simple and beneficial.
Previously, we referred to the OpenBio platform which is the main reason that this engine was
built and consequently integrated into it. Since our testbed is the OpenBio platform, for the first
step the user should make an account into the system. Then, could trigger the workflow and
download the results of the logs. In parallel, users have the opportunity to see the resource
monitoring of their execution engine. Below we provide an extensive report on the tools used to
implement the mechanism. All these will be able to centralize the bioinformatic field into one
repository which can execute, share, and publish the results of scientific research. The right usage
of the execution environment could facilitate scientific research by providing a variety of WMS
without the need for additional knowledge of workflow language except for the BASH script.



1.7 Thesis Structure

This chapter outlines the different sections of the project report.

e Chapter 2: Technical Background that provides the background information about
virtualization and generally for technologies used to build the workflow execution
environment.

e Chapter 3: System Design. This chapter refers to the architecture of the thesis,
containing code and design decisions.

e Chapter 4: Implementation. That section contains a demonstration of the central points
of my development process. Also, include main details about the implementation of the
execution environment abilities.

e Chapter 5: Integration & Experimental Results. In this section, I refer to the integration
of the Execution Environment. Furthermore, we introduce an example by running a
workflow in the Execution Environment in collaboration with OpenBio.

e Chapter 6: Conclusion. Concluding remarks and future improvements and extensions
to my project.



2 Technical Background

In this chapter, we describe useful tools that contribute to finalizing the Execution
Environment. Every tool below is described according to which is the usage and what facilitates.
Moreover, we present some figures to be more comprehensive in the usage of them.

2.1 Virtualization Technology

Virtualization technology is mentioned as the abstraction of computing resources such as
memory, storage, CPU, database from applications and end users consuming the service.
Virtualization technology counts on software components to simulate the hardware functionality
by creating virtual resources. The main motivations of virtualization are isolation and rapid
elasticity. More concretely, with virtualized environments, two or more customers can co-exist on
the same host without interference [28]. Every one of these environments is limited to its own
context and will not be aware of other environments unless specifically defined on the host.
Nowadays, virtualization is used at hardware and operating system level.

2.1.1 Operating System Level Virtualization

Operating System Level Virtualization has acquired traction over the years. Hardware level
virtualization is considered as heavyweights because it relies on hardware emulation. Otherwise,
there is containerization that uses kernel features like cgroups (control groups), namespaces etc.,
creating isolated instances known as containers, on the top of the host machine as it depicted in
Fig. 1. More specifically, the containers share the host machine’s kernel with the help of the
container engine rather than running a full operating system. Consequently, containerization
technology reduces the overall overhead.

Containerization was developed in the UNIX operating system back in 1979 using chroot
[30]. Subsequently, as containerization technology evolved, more essential features were
implemented for file system, users, and networking isolation. The first container manager is LXC
(Linux Containers), then Docker is represented with a full ecosystem to manage containers.

2.1.2 Hypervisor-based virtualization

On the other hand, a Virtual Machine (VM) is a simulated machine that runs into another
physical or virtual machine. In the way of physical machines, VM acts the same, but it has
emulated hardware. The machine that hosts the VM is named Hypervisor. The hypervisor can
manage multiple VMs, which signifies that more than one user can effectively be isolated and
concurrently served within a single physical machine. A VM runs on its own Operating System
that does not integrally have to be the same as the host machine. All of the VMs are found on disk
images which are either operating systems or packaged together with software. Also, VM is
utilizable and it can be paused or stopped and its state can be saved to a new image.

Fig. 1 shows us the differences between Virtual Machine and Containerization technology.
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2.2 Container-based Virtualization

As we mentioned before, an application container is an isolated unit of software that is
packaged code so it can be run dependably from all computing environments. Furthermore, a
container image is lightweight because only the dependencies of software are installed inside of
the container. Consequently, containerization methods make the application integration simpler
and applicable to all data centers, public clouds, or even a developer's computer [13]. The most
common containerization solution is Docker, but Singularity [24], Shifter [25] are recent
alternatives that prevent users from running containers with root privileges, addressing most
common security issues when deploying containers in multi-tenant computing clusters such as on
high-performance computing (HPC) clusters. Docker containers are usually shared via Docker
Hub (https://hub.docker.com/), but there are also initiatives for standardizing containers in the life
sciences like BioContainers [26]. As we mentioned above, the containers are stand-alone and that
is the reason that we decided to integrate the execution environment into containers. Fig. 1 shows
us a diagram that explains the container-based virtualization and what are the differences between
containers and VMs.

2.2.1 Docker

To be able to facilitate the execution environment to be isolated and portable, software for
management and runtime is required. Docker is practical to use because it has a large active
community and is rapidly growing in popularity among the bioinformatics. Another great aspect
of Docker is that the containers are system-agnostic by doing them isolated from the host’s OS
[14]. More specifically, Docker uses images as a basis for the container's creation. Also, users can
set environment variables or add software with complex dependencies via Dockerfile. Then,
Docker builds the container based on that Dockerfile, creating an executable package with the
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dependencies set. from the user. Docker adds a layer on top of the host OS for controlling the
containers during the build process and when the container runs. Generally speaking, Docker
solves the issues of portability and consistency between environments. Portability in Docker is not
represented by the possibility to migrate VMs or OSs but it makes it possible to ship only the code
of the application.

2.2.2 Docker Compose

Docker-Compose is a Docker tool that is utilized to run isolated environments as containers
that build and run an application. Docker-compose simplifies the process of setting up and running
the applications by defining a YAML file to configure your application’s services. Then, we can
create and run all the federated services that contain in a YAML file with a single command. The
YAML is a format to create human-readable files and a great tool to construct a configuration file.
Undoubtedly, Docker Compose facilitates the integration of the Execution Environment for any
cloud provider, personal computer, or cluster. Table 1 is an example of docker-compose.yml that
is for container orchestration.

services:
web:
build: .
ports:
- "5000:5000"
volumes:
- .:/code
environment:
FLASK ENV: development
redis:

image: "redis:alpine"

Table 1. Example of docker-compose.yml file.

2.3 Web Application

In general, Web application is a client-server system where a browser represents the client and
a web-server as the server. Web application logic is the relation between the client and the server,
data storage is performed mainly on the server. Data is interchanged over the network through the
Hypertext Transfer Protocol (HTTP). This approach takes advantage of the web and is the fact that
users do not depend on a specific operating system or hardware configuration. Thus, web
applications are cross-platform services and provide interoperability due to the containerization
techniques which can be used for the development.



2.3.1 Flask Framework

Flask [21] is a python-based framework for Web-Applications. This framework supports
extensions that can add application capabilities as if they were applied to Flask itself. There are
several extensions such as validation form, upload handling, and generally several common
framework related tools. These extensions used to be updated more often than the core Flask
framework. The main components of the Flask are:

e Werkzeug: It is a toolkit for Web Server Gateway Interface (WSGI) application.
Werkzeug can perform software objects for request, response, and utility functions.

e Jinja Template: It is a template engine for the Python programming language that handles
templates in sandbox. Jinja has an expressive language that gives template authors a more
robust set of tools.

Our Execution Environment is implemented with the Flask framework. The system provides a
useful API for create, update and delete workflows from the environment. Additionally, facilitates
communication using requests to handle and get information from the other tools that contribute
to our environment.

2.4 Back-end

Back-end development is the implementation of server-side, which focuses on web application
logic or, in other words, how the application works. It is a process of creating the core of a web
application, developing the platform for the application and filling it with all the required
functionality. The Server-side manipulates the data that is received from the front-end and returns
the results back in the form that is understandable by the client-side. For our circumstances, the
Back-end was implemented using a Python framework and it was necessary for the API
implementation and for the communication with the OpenBio platform. Back-end usually
comprises three parts: a web server software, an application logic, and a database.

2.5 Workflow Management System

Workflow Management System (WMS) plays an important role for scientific computing.
WMS is designed to compose, edit, share and execute a sequence of computational steps, or
workflows in a scientific application. The purpose of WMS is the automation of complex processes
on large volumes of data, becoming more agile, reducing costs, and increasing productivity. In
addition, WMS can visualize workflows using diagrams, depicting inputs, outputs of workflow,
and allow to save workflow for sharing and publishing [10].
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Many scientific WMSs emerged with the diffusion of Cloud Computing, Web Service, and
Grid technologies, which offered the possibility to access robust services and infrastructures in a
more natural way than before [11]. Therefore, they were mainly targeted towards these
architectures and not focused on portability. Nevertheless, by evolving in strict contact with the
scientific community, they acquired maturity from the functional design point of view and
established consensus among researchers. Moreover, some of them currently provide workflows
repositories or are evolving to support diverse newer architectures. Some well-known WMS are
Galaxy [7], Apache Taverna [12] that includes an interface allowing users to build and modify
complex workflows with little to no programming knowledge. Thanks to these systems,
researchers are able to focus on their research issues rather than worrying about the workflow
execution mechanism.
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Figure 3. Architecture for Scientific Workflow Management.



Taking into consideration how Big Data are spreading in every scientific field, dataflow
management is growing. As a result, more and more workflow languages, libraries and systems
arise, and that restricts the research. For this reason, the execution environment can be compatible
with many Workflow management systems. Below, we refer to some of these systems but by the
time only the Airflow [15] is integrated. To clarify, Airflow is not the only solution, there are many
WMS that could work in our Execution Environment without execution problems.

e Airflow [15] is a lightweight workflow manager. Developed by Airbnb, it is now maintained
by Apache Incubator. Airflow executes workflows as directed acyclic graphs (DAGS) of tasks.
Every task is standalone and does not share any resources with other tasks. The DAG objects
are utilized from Python scripts describing the relationship between the tasks and their order
of execution. Airflow has a modular architecture and can allocate tasks to an arbitrary number
of workers and across multiple servers, according to the task sequence and dependencies
defined in the DAG. Airflow is easy to install, and can be used to run task-based workflows in
various environments ranging from personal computers and servers to cloud environments.
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Figure 4. Apache Airflow General Architecture

e Nextflow [9] is developed in Java and it is a main framework for the Bioportainer Pipeline
Runner based on the dataflow programming model and based on the UNIX pipe concept.
Nextflow can leverage parallel execution, error tolerance, execution provenance and
traceability. Parallelization, is defined by the processes inputs and outputs declarations and can
scale-up and scale-out, transparently, without having a specific platform architecture. Also,
this WMS works in all infrastructures as well as cloud, Docker, and Singularity. During the
pipeline execution, all the intermediate results are automatically tracked. This feature allows
us to resume the execution, from the last successful executed stem, no matter the reason for it

stopping.
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e Luigi [8] is an open-source project from Spotify. It can be able to build and execute complex
workflows. As | mentioned for the previous WMSs, Luigi can specify workflows as tasks and
dependencies between them. Also, Luigi has a robust python package to build and run
pipelines. Also, it has support for the Apache Hadoop [17] and Apache Spark [18] execution
environments together with support for the local file system in the same framework. Some of
the important features it provides are Workflow definition, Failure handling, Common event
handling, Task tracking, Smooth integration of regular tasks and Spark jobs.
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Figure 6. Luigi workflow execution diagram. (source: https://medium.com/@prasanth_lade/luigi-all-you-need-to-
know-f1bc157b20ed)

2.5.1 Scientific Workflows

Generally, a scientific workflow contains isolated data transformations, analysis steps, and
mechanisms to link them according to data dependencies among them. In other words, it can be
represented as a sequence of computational operations or data manipulation steps to complete a
process. In Bioinformatics, there are some common Workflow Management Systems like Galaxy
[7], Nextflow [9], Snakemake [19] that are able to make this abstraction. Nevertheless, the flow-
centric construction of workflows has been implemented from industrial design systems and is not
absolutely suited to the flexibility of modern scientific research such as bioinformatics research.
Consequently, the construction of workflows necessitates exquisite IT skills. In cooperation with
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OpenBio.eu, users construct Workflows by simply importing bash commands that execute a step.
Obviously, these commands are the same as those that they use in a terminal. According to the
above, a scientific workflow emerged from the need to model complex, distributed applications.
In literature, a scientific workflow is usually represented as a directed acyclic graph (DAG) [29],
where nodes denote data processing tasks and the edges represent data flow. Fig. 7 represents an
example that uses BeCAS [22] to annotate NCBI Disease Corpus [23]. According to this diagram,
every circle is bash commands that have to be executed and the cubes are tools that are used in the
execution. During the build process, we tested many workflows to check the consistency of the
execution environment.

NCBI_disease_corpus/latest/1

run_becas_annotation

ncbi_corpus_abstracts_annotation/1

abstracts_seperation

BeCAS/latest/1
main_step

build_becas

Figure 7. Workflow example in bioinformatics from OpenBio Platform

2.6 Resource Monitoring System

Resource Monitor, is a software or a service that displays information about the hardware
usage throughout the system’s processes. A resource monitor software includes many information
about the system such as CPU, memory, disk, network etc. Modern resource monitor software has
implemented more features describing and other information about the container's lifecycle and
resource consumption.

During the workflow execution, the Execution Environment has an additional feature that
stands to monitor the system's resource consumption. More specifically, the Environment provides
extensive information about the responsiveness of the environment as well as the difficulties
during the execution of a workflow.
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Netdata [16] is an isolated, free, open-source, real-time performance monitoring system
hosted by Cloud Native Computing Foundation (CNCF). It runs on all systems (physical and
virtual servers, containers) without disrupting their core function. Also, provides a database that
stores long-term resource metrics, all at 1-second, as well as could be integrated with other
toolchains (Prometheus, Grafana, InfluxDB, and more). The metrics visualizer is interactive, super
fast, and easy exported to a custom dashboard. This monitoring system has integrated with our
execution environment that offers to user’s real time information about the Disk, RAM, CPU that
consumes the Execution Environment.
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3 System Design

This chapter is vital to the comprehension of both the purpose and the rationale of the
thesis. In this section, we make an extensive explanation of the flow and the reasoning that resulted
in the implementation of features. Previously, we introduced the system that consists of different
components, which will be integrated in a topology and orchestration ecosystem.

3.1 Architecture
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The architecture of our system is depicted in Fig 8. It consists of 5 main components: The
Workflow Repository, the Client, the Workflow Engine, the Database, and the Resource
Monitoring Service. All these components are configured by using a docker-compose file. Every
one of them is an isolated container except for the OpenBio server. For our case, OpenBio works
as a Workflow Repository that provides a workflow to be executed. The purpose of the Client is
to operate as a mediator between the Workflow repository and the Execution Environment. In
addition, during the communication with the workflow repository, the workflow is parsed in a
specific workflow file type (DAG) to be congruent with the Workflow Engine. Then, using the
Client’s API, users can edit, delete or run the workflow. The Workflow Engine (described in detail
in Section 2.5) is the software that executes the workflow. When the execution finishes the reports,
the logs, and the data that is used for the execution are placed into persistent volumes and are
shareable into the OpenBio. Moreover, the usage of a Database is necessary to update the execution
statuses. The choice of Database has to be compatible with the Workflow engine and specifically
configured because of the vulnerable data that are recorded. For example, we use Airflow WMS
and according to the workflow schedule used we need to integrate the PostgreSQL database.
Finally, the Resource Monitoring Service (described in detail in Section 2.6) is the component that
monitors the whole Execution environment, generating a custom dashboard with essential metrics
such as CPU usage, RAM usage, Disk usages, and network usage. To prevent traceability, we also
integrate Nginx that reverses the proxy of the Monitoring service. When the Execution

Figure 8. Execution Environment Architecture
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Environment starts, the custom dashboard is available in a specific URL. Aforementioned, this
architecture is the same for all infrastructures such as cloud, cluster, personal computer etc.

3.2 Containers

The general benefits of containerization have already been covered in Chapter 2. During the
years the increased popularity of Docker special attention was drawn towards the deployment of
Docker containers [20]. As a result, a tremendous community has been established, providing a
huge variety of Docker Images that are hosted on docker image repository (Docker Hub). All
images have public access and can be pulled from the engine during deployment. Leveraging this
feature, we constructed our images (docker-obc-airflow, netdata_nginx) that are essential for the
Execution Environment and they pushed into DockerHub for public use. Additionally, utilizing
the features that DockerHub gives, we have more capabilities when we use the Execution
Environment in the cloud. To clarify, cloud providers like AWS, Microsoft Azure and Google
already started including container technologies such as Amazon EC2, Google Container Engine
and Azure Container Service and we can easily pull images through DockerHub.

3.3 Orchestration Tool

The orchestration platform organizes our container and constructs communication among
them. The modeling of distributed applications for Docker-Compose including their lifecycle,
dependencies, environment variables, and components are also defined using a YAML file. The
YAML file is a human-readable data-serialization language. It is usually used for configuration
files or applications such as Docker-Compose to define our dependencies. Below, we explain the
docker-compose file per service with figures that integrated into our system.

Before we start the file explanation, we have to say that services have defined some values
as environment variables that have been taken from a separate file (named: .env). This file is a
hidden file that can be found in the same directory with docker-compose.yml.

e PostgreSQL

postgres:

image: postgres:9.6

environment:
- POSTGRES_ USER=${POSTGRES USER}
- POSTGRES_PASSWORD:${POSTGRES_PASSWORD}
- POSTGRES_DB=${POSTGRES DB}

ports:
- “S$S{EXECUTOR_DB PORT}:5432"

container name: “local executor db ${EXECUTOR INSTANCE}”

Table 2. PostgreSQL container into docker-compose.yml
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In Table 2, we define the PostgreSQL, a powerful database that used to record information
during the workflow execution. Is an image that was pulled from DockerHub. The other keys such
as environment, ports and container name are definitions that are used for the container. In
PostgreSQL we have to define username, password and database name, this information is
implemented into the container as environment variables that are included in service definition. In
the ports key we export the port that service is running, on the left side of definition is the port of
your system, on the other side is the port that is allocated into the container. Finally,
container_name key is to name the container that runs.

e Monitoring System (Netdata) and Nginx

netdata monitor:
image: manoskoutoulakis/netdata nginx:latest
environment:
- ID=${NETDATA ID}
ports:
- 19998:19998
volumes:

- /etc/passwd:/host/etc/passwd:ro

/etc/group:/host/etc/group:ro
- /proc:/host/proc:ro

- /sys:/host/sys:ro

/var/run/docker.sock:/var/run/docker.sock:ro

container name: “obc resource monitoring”

Table 3. Netdata with nginx container into docker-compose.yml

In Table 3, we have another utilized image with two services. The first service is the
Netdata for resource monitoring and the second service is the Nginx. The "volumes" keys are the
host's directories that collect information for the system resources and are for read-only because
this service can monitor the whole system not only the containers. For our purposes, the most
significant volume is the final one that allows netdata to monitor Docker containers. The other
keys that are defined are the same as the previous service.

e Workflow Management System and Client

airflowserver:
image: manoskoutoulakis/docker-obc-airflow:1.10.9
restart: always
depends on:
- postgres

- netdata monitor
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environment:
#Airflow configuration
- ATRFLOW__CORE__SQL ALCHEMY CONN=

postgresqgl+psycopg2://airflow:airflow@postgres:${EXECUTOR DB PORT}/airflow

AIRFLOW__WEBSERVER BASE URL=http://localhost:8080/${OBC_USER ID}

LOAD EX=n

EXECUTOR=Local
- FERNET KEY=jsDPRErfv8Z eVTnGfF8ywdl9j4pyqgE3NpdUBA oRTo=
#OBC Client environment variables
- NETDATA ID=${NETDATA ID}
- OBC USER ID=${OBC_USER ID}
- PUBLIC_IP=${PUBLIC_IP}
- EXECUTOR_INSTANCE=${EXECUTOR_INSTANCE}
- POSTGRES_USER=${POSTGRES USER}
- POSTGRES_ PASSWORD=${POSTGRES_PASSWORD}
- POSTGRES_DB=${POSTGRES DB}
- NETDATA_MONITORING_PORT=${NETDATA_MONITORING_PORT}
- OBC_EXECUTOR_PORT=${OBC_EXECUTOR_PORT}
- OBC_AIRFLOW PORT=S${OBC_AIRFLOW_ PORT}
- EXECUTOR_DB_ PORT=S${EXECUTOR DB PORT}
volumes:

- dagvolume: /usr/local/airflow/dags

logvolume: /usr/local/airflow/logs
- reportvolume:/usr/local/airflow/REPORTS
- /var/run/docker.sock:/var/run/docker.sock
ports:
- "${OBC_AIRFLOW PORT}:8080"
- "${OBC_EXECUTOR_PORT}:5000"
command: webserver
healthcheck:
test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-webserver.pid ]"]
interval: 15s
timeout: 15s
retries: 3

container name: "executor airflow ${EXECUTOR INSTANCE}"

Table 4. Execution environment’s API with the Airflow WMS container into docker-compose.yml.
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The last service applied to the executable environment can be found in Table 4, it is more
complicated than the other services. The reason that makes this container complex is that it must
take into consideration all the information about other services, such as ports, database
information, but also the Workflow Management System configuration. All this information is
collecting using environment variables. There are two services integrated there, the Workflow
Management System and the Client.

The client makes communication with the workflows repository (OpenBio) that generates
the appropriate data and triggers the execution. The most significant part of this service is the
volumes section. The volumes are persistent and save the data that have been created during the
execution. These volumes have no relationship with the local system, only with the containers.
When the execution has finished, the data can download into your system using the client's API.
Also, we have to notice that we expose two ports to our local system, this occurred because of the
usage of two services into the container. We have the healthcheck key that checks the container’s
health by running a command inside the container. This can detect crucial cases during the
workflow’s execution such as being stuck in an infinite loop or unable to handle the execution,
even though the service process is still running.

The entire docker-compose.yml file and related files of the project are available at Github
(https://github.com/manoskout/OpenBioC_Execution).

3.4 Docker Volumes

Docker Volumes are not controlled by the storage driver. Reads and writes to data volumes
bypass the storage driver and operate at native host speeds. We can mount any number of data
volumes into a container. Multiple containers can also share one or more data volumes. After
mounting the container process writes to the specific directory of docker volume instead of writing
directly on the host’s filesystem. The advantages of this mounting are data is safe on Docker host
by providing centrally located persistent storage and act as a central data storage facility that
temporarily aggregates fragments of federated data for the need for analysis. Also, Docker volume
preserves data regardless of the container lifecycle. These Volumes have specific directories in the
Docker host and are created and managed by Docker itself. The volume is named according to the
container's name or it is anonymous in case the container does not have a name.

manos@Ubuntu-1804-bionic-64-minimal:~/obc_executor_main$ docker volume 1s
DRIVER VOLUME NAME

local eff156e7e73d899dc71561777b8Be42888ace91bcb550d7d8aa21cA6db9c35be
local obc_executor main_dagvolume

local obc_executor_main_logvolume

local obc executor main reportvolume

Figure 9. Execution Environment Docker Volumes

As we demonstrate in Fig. 9, the containers of the execution environment have generated 3
volumes that are used to preserve data, in case the system is interrupted unexpectedly. Firstly,
volume named dagvolume keeps the workflows that are prepared for the execution process.
Secondly, the logvolume saves the logs that the WMS records during the execution. Finally, the
reportvolume keeps the results of workflow’s execution. All of these are defined into a Docker
Compose file.
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4 Implementation

In this chapter, we provide a detailed description of the Execution Environment and OpenBio
extension. We analyze obstacles encountered and try to put our design decisions into practice and
the steps we took to overcome them. Lastly, we describe the methods and tools applied to assure
the correctness of our code. The whole source code is available in GitHub
(https://github.com/manoskout/OpenBioC_Execution).

4.1 Project Structure

The structure of the project is complex due to the usage of multiple tools and libraries. No one
of the tools and libraries has to be pre-installed in our system except for Docker and Docker-
Compose. The whole project’s services are federated using docker-compose and installing all the
dependencies into the containers. To put it briefly, the project contains HTML and CSS and JS for
resource monitoring Ul construction, Dockerfiles to build isolated environments for the services
that are in use, Docker-compose file to organize and configure the containers, related configuration
files to NGINX, Netdata and Airflow to parametrize our needs and Bash Scripts to make the
installation files. The only file that is necessary for the integration of the Execution environment
is the installation file.

Because of multiple tools and libraries, we encounter some problems during the project's
development. We distribute all services into isolated images to avoid conflicts among the libraries,
pushing them to DockerHub. Consequently, we had extended debugging information for every
service separately thanks to Docker Compose. We finished our development by combining all
required tools using docker-compose.

4.2 Containerizing Services

We already discussed the docker-compose file in the previous section with no reference for
the Dockerfiles. Dockerfiles are the core of the implementation of our project. There were two
Docker Images created for this thesis and only the most remarkable aspects of the ones created
will be covered. A Dockerfile should be typically simplified as much as possible. For example,
Fig. 10 describes a very simple piece of Netdata-Nginx image using the Debian package manager
APT. However, in the second container was Python Image which is Debian-based too but there
are also different package managers such as Fedora which uses YUM etc. Basically, any tool can
be containerized and the Docker will allow for these to run with no operating system restriction.
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debian:stretch-slim

/!
apt-get update &% apt-get install -y --no-install-recommends apt-utils
apt-get install -y \
dnsutils \
wget
uuid-dev \
zliblg-dev \
gce \
make
autoconf \
automake \
pkg-config \
libtool \
libpcre3-dev 3
curl
libuvl-dev \
nginx \
fping

Figure 10. A base of our Netdata-Nginx Dockerfile for creating a Docker image with these services.

Installing and compiling from source is also possible in cases where the software is not
available in the Linux core library. In Fig. 11, Dockerfile installs Netdata from source and Nginx
from Linux core library. All the steps are identical to how the software would be installed on a
local machine using bash, the only difference being the keywords are not included. At the end of
the previous figure shows two important keywords called "COPY" and "ENTRYPOINT". The
"COPY™ as it is named copy the host's file or directory inside the container. The "ENTRYPOINT"
executes the defined file whenever the container starts. Inside this bash script, we have defined
some important configuration to run the webserver.

NETDATA_UID=201
NETDATA_GID=201
DOCKER_GRP netdata
DOCKER_USR netdata
wget https://my-netdata.io/kickstart.sh
chmod 777 kickstart.sh
./kickstart.sh --dont-wait
\
mkdir -p /var/log/netdata && \
chown -R root:root \
/etc/netdata \
Jusr/share/netdata \
Jusr/libexec/netdata && \
chown -R netdata:root )\
Jus ib/netdata \
/var/cache/netdata \
/var/lib/netdata \
/var/log/netdata && \
chmod 8755 /fusr/libexec/netdatasplugins.d/#*.plugin && \
chmod 4755 \
/usr/libexec/netdata/plugins.d/cgroup-network \
Jusr/libexec/netdata/plugins.d/apps.plugin && \
find svar/lib/netdata /var/cache/netdata -type d - chmod 0770 {} \; && \
find /var/lib/netdata /var/cache/netdata -type T - chmod 0660 {} \; && \
1n -sf /dev/stdout /var/log/netdata/access.log && \
1n -sf /dev/stdout /var/log/netdata/debug.log && \
1n -sf /dev/stderr /var/log/netdata/error.log
cp /etc/nginx/nginx.conf /etc/nginx/nginx.conf.backup
cp /etc/netdata/netdata.conf /etc/netdata/netdata.conf.backup

run.sh run.sh
mv run.sh fusr/sbin/
chmod 777 /fus n/run.sh
["/u 1/run.sh"]

Figure 11. The second piece of script of Netdata-Nginx Dockerfile.

In our case, third-party software is used, it can be difficult and not always efficient to know
which essential dependencies are using Debian as a base image. In cases where third-party image
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software is not used, a minimalistic base image can be used. For example, there are Linux
distributions with a base image of size ~5Mb.

Like the previous Dockerfile, so in the second we follow the same structure but with some
differences. First and foremost, we use Python as a base image. Subsequently, we set up some
folders and files for the workflow management's data and the API. Also, another important
configuration is that this container can handle our Docker platform, providing us more flexibility
to leverage our workflow execution. Below, Fig. 12 only shows the important part of the code that
was implemented.

script/entrypoint.sh fentrypoint.sh
chown -R airflow: ${AIRFLOW USER_HOME}
DOCKER UID
\
: "${DOCKER UID:?Build argument DOCKER UID needs to be set" \
"and non-empty. Use 'make build' to set it automatically.}" \
&& usermod -u ${DOCKER UID} airflow \
&5 echo "Set airflow's uid to ${DOCKER UID}"
mkdir -m755 ${AIRFLOW USER HOME}/dags
mkdir -m755 ${AIRFLOW USER HOME}/REPORTS
mkdir -m755 ${AIRFLOW USER HOME}/REPORTS/WORK
mkdir -m755 ${AIRFLOW USER HOME}/REPORTS/TOOL
mkdir -m755 ${AIRFLOW USER HOME}/REPORTS/DATA

${AIRFLOW USER HOME}
FLASK APP client.py
FLASK _RUN HOST 0.0.0.0

Jclient/requirements.txt requirements.txt

pip install -r requirements.txt

/client/static/ ${AIRFLOW USER HOME}/static
/client/templates/ ${AIRFLOW USER HOME}/templates
/client/client.py ${AIRFLOW_USER_HOME}/

mkdir -m755 ${AIRFLOW USER HOME}/logs

[*/entrypoint.sh"]
["webserver"]

Figure 12. Airflow and Execution Environment’s API Dockerfile.

4.3 Environment installation

The project was developed using an Ubuntu server. Thus, the first installation script was
written in the BASH script and it is compatible with all debian-based distributions. The installation
file defines some crucial information as environment variables and port allocation to facilitate the
communication between the containers and integrate Docker and Docker Compose if necessary.
The environment variables such as public IP, user unique IDs, and services' ports, database
credentials are saved in a hidden file, provided if the installation succeeds. Then, the system
downloads all the required data for the existence of the Execution Environment and following the
installation instructions, the users need to copy the generated URL into the OpenBio platform to
establish a connection between the platform and the execution environment. Fig. 13 depicts the
results when the installation succeeds.
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i*iInfOSi*i

1)You can run OBC Executor using the following commands:
S cd /ho untu/obc_executor_test
S dock
can ki ecutor by typi the command below:

- -3 cd /

Figure 13. Successful installation output.

Besides the execution environment, we add another important tool named NetData for
resource monitoring. Furthermore, another unique ID was generated in installation for security
purposes for the Netdata recognizable only for you and our platform. Finally, the installation runs
the constructed containers by running the docker-compose file to report if the system faces
difficulties. As it shown in Fig. 13, we have a Netdata-URL which connects us on Netdata UI.
Netdata provides a useful User Interface with crucial resources information not only for the
execution environment, but also for the whole system.

4.4 Environment Features

The execution environment was developed as a web service to facilitate procedures such as
creating, executing, and managing a scientific workflow. The developed service provides many
features that are required. Nevertheless, more functionality can be easily integrated to the service.
At the moment, the following capabilities were implemented:

e An interface according to the workflow management system to provision the scientific
workflow during the execution.

e A plethora of compatible Workflow Management Systems which can be used to execute a
workflow.

e A real-time resource monitoring dashboard that monitors the Workflow management
systems that are used.

e Limited access to files, making input and output data invulnerable to attacks and used only
for workflow purposes.

e A useful API that used to collaborate with the OpenBio platform. Apart from OpenBio
platform, users can send, edit, delete, download results, and provision the execution.

e Automatically zip execution’s results and logs for download.

As can be seen from the list above, the service consists of the three main parts: User, Workflow
Management System, AP1 to handle workflow. As we mentioned in the previous section, the whole
service was integrated using Docker. Below we make an extended explanation of these features.
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4.5 Workflow Management System Interface

In general, the Execution Environment works mainly as background service but facilitates its
usage by providing to the users a flexible Ul for workflow monitor. According to our needs, WMSs
already provide user-friendliness Ul and implement them into our execution environment. To

clarify,

all WMSs that tested our project had Ul for workflow monitoring. Below we depict some

examples of User Interfaces of WMSs. The Execution Environment uses the OpenBio platform to
provide the process information and actions of workflow making the platform interoperable by
facilitating the execution.

Fig. 14 shows us Luigi’s user interface, using the web interface users can handle all the
features that this WMS contains. Unfortunately, there are some restrictions such as the DAG of
tasks cannot be viewed before execution. Thus, users wouldn’t know what code is running in
correlating tasks during deployment.

Luigi Task Status = 7askust  DependencyGraph  Workers  Resources

prep

uss [ —
3
data_management

ParlsRepost

u AU TSR BATCH RUNING TASK
FALED 18555 S TREH LS SARLED A5KS URSTREAM (455850
€ Fartsheport.combinsReports 3 . e N Q o
@) Fartsheport. DatedBORzport
steRaport DownloadReport

© Fuetneport cenerateries

© FartsnaportLoadTable

@ Factsneport Debatescrum

BiloMaterials

© Losaratie

Dsplaying tasis of family LoadTablo .
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Name Details priority  Time Actions

[» [ LoadTable table=FUS, dote-2019-0528 0 528/2018, 80017 KM (4]

Shawing 140 1 F 1 entrias (ltered from 143 total entries) Previous | 1 West

Figure 14. Luigi Workflow Management System User Interface

Next, Fig. 15 depicts the Apache Airflow user interface. Contrary to Luigi, Airflow Ul has

a plethora of features such as Gantt Chart, Task Duration, Code View, Task instance content menu,
etc. Contrary to these features, this WMS is not a preferred tool to execute bioinformatic
workflows but is a great opportunity to implement it.

Wnifow  DaGs o security- Browse- & Admin- @ Docs- B About-  TestPlugin- B Search- 2019-11-02, 163507 UTC & zacharya=

DAGs
Fitertags | Reset Search:
@ oac Schedule Owner Recent Tasks @ Last Run @ DAG Runs @ Links
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¢ B e airflow O¢SsMIEFIECE
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Showing 1107 of 7

Figure 15. Apache Airflow Workflow Management System User Interface

23



4.6 Application Programming Interface (API)

An Application Programming Interface is a computing interface that manages the
interaction between software mediators. It is a crucial factor, during the development making the
software flexible and manageable. An API is a custom, and design based on industry to ensure
interoperability. Usually, the term API is used to refer to the set of software entities that serve to
implement the API of some encompassing component or system.

During project development, an API simplifies programming by isolating the underlying
implementation, exposing only objects or actions that the developer needs. Below we show some
examples of the features provided from our Execution Environment. Each of these tested using the
CURL Linux command. To clarify, The API structure is not stable. We expect the endpoint
definitions to change. Also, | would like to refer to the structure of these requests that were built
according to the OpenBio platform needs and being collaborative with OpenBio User Interface.

4.6.1 ENDPOINTS

e Trigger DAG from OpenBio Repository

Executing this request, we receive the tool or workflow from the OpenBio platform as a
dag file and automatically perform the workflow. This call requests a dag according to the data
that gives. Hence, the table below shows us a POST request with data such as name, edit, type,
callback, workflow _id.

curl --header "Content-Type: application/json" \
--request POST \
--data '{
"name":"test",
"edit":"1",
"type":"workflow",
"callback":"<Repository URL>",
"workflow id":"2"}"' \

http://<IP>:<Port>/<Unique ID>/run

Table 5. POST request to save and run a DAG
Name: We pass the name of the tool or the workflow that we would like to execute.

Edit: This is the specific version of the workflow from OpenBio. If the request is addressed to
a tool, then the edit remains empty.

Type: There are two different types in OpenBio which are tools or workflows.

Workflow_id: This is a unique id auto-generated from the platform that we use or hardcoded
from you.
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At the end of this command, we have to specify the URL of our execution environment.
During the installation of the execution environment in your system, you get a URL consisting of
the IP of the execution environment, the Port that environment runs, and a unique 1D which is
known only from you.

e [Execution Status

Obviously, everyone wants to know the status of their workflow during the process. Thus,
we build a request providing extended information about the workflow. More specifically, this
instruction inquires the database of what state is our workflow and returns a json object with the
state and the current task that executes.

curl --header "Content-Type: application/json" \
--request GET \

http://<IP>:<Port>/<Unique ID>/check/id/<dag id>

Table 6. GET request to get info about the status of the executed workflow.

id: This id is the unique id that was given when we triggered that dag. This is auto-created from
the platform that we use.

e Download the results

In our environment, the data are separated into three different folders (Tool, Data,
Workflow). At the end of workflow execution, all the results are collected and compressed to a tar
file. Then, users can download the compressed file from the OpenBio platform or by requesting
the specific id of the dag which they are interested in.

curl --header "Content-Type: application/json" \
--request GET \

http://<IP>:<Port>/<Unique ID>/download/<dag id>

Table 7. GET request to download the results from a workflow execution.

e Execution Logs

Logging during the execution is an essential factor in debugging our workflow. During the
execution, the WMS collects logs from the workflow's execution, compressing them into a zip file.
In the OpenBio platform, users can get all the logs related to their workflows that are executed.
The related request is written below.

curl --header "Content-Type: application/json" \
--request GET \

http://<IP>:<Port>/<Unique ID>/logs/<dag_id>

Table 8. GET request for the logs of the executed workflow.
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e Delete a workflow

One more useful action in our environment is the deletion of a DAG. This request can be
worked with DELETE or GET method. In other words, the user sends the delete request to delete
the workflow. This action removes the workflow file, the database records from the workflow
management system and all related files that had been created throughout the execution.

curl --header "Content-Type: application/json" \
--request DELETE \

http://<IP>:<Port>/<Unique ID>/workflow/delete/<dag id>

Table 9. DELETE request to delete a workflow from the environment.

e Executor Information

Executor information such as failed, succeed, paused, running DAGs and workflow
management engine information are provided in a get request using a data stream in real time. The
update the statuses every 5 seconds. The usage of this endpoint is mainly for the monitoring
system.

curl --header "Content-Type: application/json" \
--request GET \

http://<IP>:<Port>/<Unique ID>/executor info

Table 10. Real-time workflows statuses streaming.

4.7 Execution and file access

Each workflow management system must assure that the assigned tasks must be
executable. Hence, every single task depends on compiled binaries and libraries at the expected
position into the file system to successfully proceed for execution. The most prominent ways of
ensuring this are “virtualization” and “installation”. The first is an innovative way that facilitates
the execution in an isolated container-based environment. Contrary to container-based
virtualization, Virtual Machine is considered as a performance-harming method, requiring time-
consuming programming to configure the environments. The second is the most usual way that
requires the installation of a proper runtime environment in the operating system. By combining
the container-based virtualization and the installation methods and leveraging Docker VVolumes
we built our environment. To facilitate these execution requirements, we constructed a simplistic
file system structure into our Execution Environment container connecting into a specific
persistent volume communicating with the OpenBio platform.
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4.7.1 File System Structure and Docker VVolumes

The file system structure is constructed according to the workflow type. A workflow is
imported as a DAG in our environment. It could be a simple tool, a data collection, or a group of
multiple tasks that contains tools, libraries, and so on. When the DAG is imported, we analyze the
file and the execution starts automatically. Subsequently, the workflow management system
informs us by providing extended logging records. Thus, the Execution Environment has three
volumes each of them for a different purpose. All the above considered of the construction of these
volumes as 1/0 (Input and Output) Manager. The events of the I1/0 Manager are handled from the
API and OpenBio platform.

Container's Volumes
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=
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Final Task

Figure 16. Container’s Volume structure as a I/O Manager.

The first volume named DAGs saves the imported DAGs from the OpenBio platform to
prepare them for the execution. The second volume is to persist the logs during the execution. Each
of the log folders is a related workflow and saves the execution's logs per task. Finally, the volume
named Reports provides the outputs of the executed workflow as well as the related tools or data
that needed it. All the files used are grouped by the unique workflow_id that has been given from
the OpenBio platform.

For the current work, it is sufficient to point out that we have not done extensive research
on security issues. Although, volumes are inaccessible from the host, preventing unexpected
attacks. The only way to edit or track the files can be achieved only from the OpenBio Platform.

4.8 Resource Monitoring Integration

Nginx server is an open-source, high-performance HTTP server and a reverse proxy tool.
In general, the use of Nginx has centralized at web servers and it is commonly used as a load
balancer managing incoming traffic. Nginx offers low resource consumption, simple
configuration, and stability. Netdata is implemented in the environment for real-time metrics that
provides to users (described in detail in Section 2.7). Nevertheless, the Netdata shares crucial
information for the host over the Internet, making the system vulnerable to attacks from the
internet. Thus, by using the reverse proxy we prevent unexpected attacks from the global network.
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The reverse proxy provides an additional level of abstraction and control to secure the flow
of network traffic between clients and servers. Also, reverse proxy control access to a server on
private networks and it can perform cache or decrypt data. As | mentioned above, the system has
been built with containerization technology and the Netdata with Nginx works perfectly. For
additional security in this Docker image, Nginx has a unique 1D auto-generated from the system
throughout the installation that is set into the URL, providing the appropriate resource metrics
during the workflow execution. The resource monitoring URL is reserved when the installation
finishes or from the OpenBio platform. Fig. 17 shows a basic diagram of how the NGINX works
in our project.

Container

B

Figure 17. Netdata with NGINX.
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5 Integration & Experimental Results

In this chapter, we describe an approach that we have used to integrate the Execution
Environment with the Airflow [15] workflow manager. In addition, we introduce an example in
bioinformatics to determine how widely-used large-scale data management infrastructure systems
are in bioinformatics.

5.1 System Specifications

The system specifications used for the Execution Environment deployment are in Table
11. These specifications were sufficient to reproduce tests to monitor the robustness of our
Environment. The only restriction we encountered was the CPU. As a result, the executions took
place by using 2 and 4 cores.

CPU RAM DISK Operating System

Intel Core i7-3770 32Gh 27Thb Ubuntu Server 18.04
CPU 3.40GHz, 4
Cores, 8 threads

Table 11. Host’s specifications

In general, high-performance data analysis in bioinformatics demands faster CPUs as well
as more RAM to run concurrently more than one complex workflow. Another crucial factor is the
Hard Drive, during the execution, the workflow downloads plenty of datasets.

5.2 Execution Environment Integration

As | mentioned before, the system was tested only in Ubuntu Server. Thus, the installation
of the Execution Environment can only be established in Debian distributions for the moment. The
executable file written in Bash commands is readable and ready to install any tool that the
Execution Environment needs. The installation is divided in three layers that each of them contains
a sequence of bash commands. Below, we explain with simple instructions step-by-step how to
deploy the Environment and connect it with the OpenBio Platform. Also, we show several pieces
of each step that we have to consider such as useful ids or functions that used to create multiple
instances in our machine.

5.2.1 Local Installation Steps

e Download install.sh

The install.sh and whole project are published on GitHub. We download the installation
file. In our case we use the “wget” library to pull the file from the repository. When the file
will have downloaded, we execute the executable file.
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$ wget

https://raw.githubusercontent.com/manoskout/OpenBioC Execution/master/obc_scripts
/install.sh

$ bash install.sh

Table 12. Installation bash commands.
e Docker Installation (First Step)

When the installation starts, the first operation that is done is to install Docker. To prevent
override problems such as multiple Docker platforms the system checks if the Docker is
preinstalled. If the Docker is installed, bypass this step and continue on the next step.
Otherwise, the installation continues the docker installation.

Figure 18. Installation step 1. Docker Installation.
e Docker-Compose (Second step)

The second step is akin to the previous step. More specifically, the system checks if the
Docker Compose is installed in our system. Correspondingly, if the Docker Compose is
preinstalled, bypass the installation and executes the final step or else the installation of
Docker Compose starts.

Figure 19. Installation step 3. Docker-compose Installation.

e Setting up environment variables and OpenBio Executor installation (Third step)
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The final step is the most essential in our installation process. In this step, the installation
defines some environment variables that are necessary for communication between
OpenBio. The system examines the ports that are needed for the services. If ports are in
use, automatically indicates the next ports of the host from the built function inside of the
installation file. Fig 20 depicts the installation during Step 3. The only input required is the
Execution Environment's name. To put it briefly, this name must be unique because it can
be more than one Environments integrated into the host.

utor_test

Figure 20. Installation step 3. Insert Execution Environment name.

As the name is set, the installation process creates unique IDs for the OpenBio server and
Netdata service. These IDs are utilized as the only way to communicate our machine with
the platform. Therefore, the IDs are unique and are only known by OpenBio and the users.
Besides these, the installation collects and generates other environment variables such as
Database credentials, host’s public IP, and the ports that run services. Importing
environment variables, we increase the interoperability by trading plenty of information
between the services. In Fig. 21 is the environment variables' hidden file that contains all
the required environment variables into the containers.

Figure 21. Hidden file with environment variables

The installation continued by downloading the docker-compose.yml file that is responsible
for developing the executable environment. Also, the installation process downloads
another file that configures workflow management. As we mentioned above, the WMS
used is airflow. Thus, the configuration file to set aside the required WMS. This process
downloads and installs the images, making the configuration that docker-compose file has.
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Figure 22. Building the services and checking for conflicts.

Finally, the last output has all the information that we need to implement into OpenBio and
how to run the Environment. The only action that remains is to add the host into the
platform. Fig. 23 depicts the steps that we have to follow to connect the Environment with
OpenBio.

http://54.209.174.180:5000/d6937c615fdee3f14dd614ad5ef4e73a

***Infos***

1)You can run OBC Executor ng the following commands:
S f f ntu/ ain

Figure 23. Last output of the installation with instructions.

5.2.2 OpenBio Connection

In this section, we represent the final guidelines for the communication between OpenBio
and Execution Environment. The OpenBio platform has a simplified Ul that makes the deployment
easier. Below, we show an example of this deployment.

e Connect to the Platform

First and foremost, we must follow the previous instructions to build the environment into our host
or cloud provider to perform the connection between the server and Execution environment. Then,
we should open our browser and sign in to the OpenBio Platform
(https://www.openbio.eu/platform/). If we don’t have signup, we have to do that before we
continue. Then, we navigate to the User Profile setting -> Execution Environment to add the
Execution Environment’s URL into the platform. Fig. 24 depicts the inputs that needed to make
the integration.

32


https://www.openbio.eu/platform/

Profile

Execution Environment

. . CANCEL UPDATE
Execution Environment

Manage your execution environments

Name URL

test http://54.209.174.180:5000/b2a6602aad7c7bc2fb13d6535ef4e

Figure 24. OpenBio Profile settings page.

At this point, we should insert some information. The one is the name of the environment, and the
second is the URL containing the unique ID. As we mentioned before, the unique id has already
created the installation complete. When we insert these two inputs, we click the plus button next
to them and the environment is defined into the OpenBio platform.

5.3 Experiment

In this section, we present an experiment that was designed to estimate the efficiency of
the proposed environment. It describes a workflow and the experimental environment used to
perform the test. This evaluation methodology is designed to validate the overall proposed
approach and its key components such as the workflow reproducibility, workflow provenance
comparison and execution environment's interoperability. It then discusses the identified
experiment, resources that consumed and expected output that will be discussed and analyzed in
Subchapter 5.4. It also provides detailed information about the test environment and the workflow
management system used to perform the experiment in order to validate the work carried out in
this dissertation.

5.3.1 Execution Infrastructure

To carry out the experiments and workflow execution on the Execution Environment, a
host-based infrastructure was used in this research study. Airflow has been used as a workflow
management system to submit and monitor workflow execution. The workflow execution took
place on a local computer, using the Airflow as workflow management service and Netdata as a
resource monitoring service. This infrastructure uses Docker to offer SaaS services. To support
data over a Docker-based storage service, docker has created virtual volumes. Since OpenBio
supports RESTful interfaces, this service can also be called from RESTful clients. Using this API,
the OpenBio can interact with Execution Environment's compute and storage services.
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Figure 25. Execution Environment. Flow of operations.

Fig. 25, shows the steps performed during execution. The steps to perform the workflow
that make the Execution Environment are:

e Firstly, it is obvious that the users have followed the instruction of how to install the
Execution environment into their system and add it to the OpenBio platform.

e |f the environment is in action, the Resource Monitoring Dashboard is running
automatically. Users can have access to the custom dashboard that monitors the workflow
management service. Alternatively, they can use the URL with the unique id from the
installation output (see Figure 23).

e Users select the workflow that they would like to execute and the Execution Environment
from the OpenBio platform.

e Then, OpenBio parses the workflow into a specific workflow language according to the
workflow management service that the users have integrated into their execution
environment.

e The execution environment’s server gets the request containing the workflow with a unique
ID provided from the platform.

e The server pushes the workflow to the Workflow Management Service for execution and
sends a response to OpenBio.

e \When the execution starts, the user can handle and get the status of the execution from the
platform. The actions that are provided from the platform are the resource monitor,
execution monitor, execution status, and delete or pause the execution. Concurrently, the
database starts to update the status of the workflow in real-time.

e Once the execution is complete; the results and execution logs are saved into persistent
container's volumes and they can be downloaded from the platform from the new buttons
that are generated when the status is “success” or “failed”.
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5.3.2 Workflow explanation

The main purpose of this workflow is to build a scatter plot according to the HapMap
dataset using Principal Component Analysis (PCA). As shown in Fig. 26, the main workflow is
the hapmap3_pca/l which calls another sub-workflow named pca plink_and_plot/1.
Subsequently, the pca_plink_and_plot/1 call two more workflows the pca_plink/1 and the
2d_scatter_of plink_pca/l. The workflow finishes by creating a scatter plot as a report. Below we
make an extended reference about the workflow’s tools that were used to implement this workflow
in our execution environment.

hapmap3_pca/l

main_step hapmap3/broad/1 plot pea_plink_and_plot/1

pedmap plot main_step 2d_scatter_of plink_pca/l pea_plink/1

eigenvectors lot main_step  anaconda3/2019.03/1 pedmap result_pca .
5 plink/1.90beta_20190617/1

main_step

Figure 26. Hapmap dataset to PCA scatter plot. Workflow Graph
e Hapmap3

The HapMap (Haplotype Map) [30] is a dataset of common genetic variants called single
nucleotide polymorphisms (SNPs). Every one SNP depicts a variance in a single DNA building
block called a nucleotide. These variations eventuate normally in every part of a person’s DNA.
When several SNPs grouped together on a chromosome, they are inherited as a haplotype. The
HapMap traces out haplotypes, including their locations in the genome and how common they are
in different populations all over the world. The tool named hapmap3/broad/1 that downloads the
dataset is called from the main workflow (hapmap3_pca/l).

e Plink

Plink [31] is an open-source whole genome association analysis toolset, designed to
perform a range of basic, large-scale analyses in a computationally efficient manner. It focuses on
analysis of genotype/phenotype data. This tool is performed from the pca_plink/1 workflow. To
put it briefly, plink executes the hapmap dataset using Principal Component Analysis and returns
the eigenvectors to prepare the construction of the plot.

e Anaconda

Anaconda [32] is an open-source data science toolKkit. It provides a wide range of libraries.
Under our circumstances, we used the NumPy library to construct a scatter plot of the PCA
analysis. More specifically, this step gets the eigenvectors from the previous step and creates the
scatter plot. Finally, the workflow ends by auto generating a report containing the scatter plot as
an output of the workflow.
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The workflow was written in bash using the OpenBio platform. Then, the platform parsed
this workflow and converted it to airflowv DAG to make the execution into the Execution
Environment. We provide this workflow in OpenBio Repository
(https://www.openbio.eu/platform/w/hapmap3 pca/l).

5.3.3 Workflow Execution

As we mentioned above, we assume that we have already created an account and we have
added the execution environment into OpenBio (we provide extended information in previous
sections). Also, we have to create our own workflow or use an existing workflow from other users.
The first phase of the execution is depicted in Fig 26, as shown, we have chosen the workflow and
by hitting the Run button it opens a dropdown menu. This dropdown menu contains the execution
environments we have added into the platform. We choose the test_thesis (the specs of this
environment are depicted in Table 11).

s & EINA .
B 25 250 OpenBio.eu (beta) bocumentaton () mancskons <
Version: 0.1.7
WOkalOW CANCEL
Q hap
hapmap3_pca/1

0 ceateaty reated at Mon, 17 Feb 2020 13:47:45

> #3 Tools/oata 3] 1 founa |
oo |
v A Workflows [ +] 2found |
St how to execute a workflow
v @ Genera |
A pca_hapmap3/1 DRAFT
A hapmap3_pca/1 DRAFT

Websits

Description: Create a PCA plot of the + F References:
> B Reports [ 3founc | Tags: [ hoomap J hapmaps | pea ] oot |
> GD References m
> % Users [ofound]

ui])
> M oua [+ §
G
@ @
a ®

Figure 27. Openbio platform. Execution Environment selection.

When the execution begins, the Platform informs us that the execution was sent to our
execution environment providing notification right up square of the platform. In case of error, the
platform provides the error to us with a possible solution. Furthermore, a Report id is generated
automatically and a new report is created on the left side of the platform in the Reports catalog.
Fig 27 illustrates a successful submission for execution.
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https://www.openbio.eu/platform/w/hapmap3_pca/1

L OpenBio.eu (beta) bocumentation () manoskout  +
Version: 0.1.7
\AMArleFlaae CANCEL
Q hap Please wait while the workflow is submitted for execution.. X
hapmapo oo [ DRAFT |
0 created by uf
WorkFflow submitted for execution with a Report id: LxsTw X
> #% Tools/pata i
v A Workflows
See Documentation on how to execute a workflow
v @ General

A pca_hapmap3/1 DRAFT

XA hapmap3_pca/1 DRAFT

Website:
Description: Create a PCA plot of the HAPMAP3 dataset. References: /hapmap3
v B e I o I

4 X pca_hapmap3/1

I~ B cnEm0

|

i~ B XHYUC hapmap3/broad/1

B ocnx7
4 A hapmap3_pca/1 ﬁ
" e pink!

Figure 28. OpenBio. Successful submission for execution.

When the execution begins, we obtain the id of the workflow, by selecting this Report Id
that the workflow has on the left side of the platform (more information in Fig 27), we can have
access to the workflow execution. By clicking the unique id, the right side of the platform changes,
and the workflow controller takes place. In this phase, we can pause, delete, or take the status of
the workflow. These operations facilitate the execution because we do not implicate the WMS or

other intermediate configurations.

Report CANCEL

Workflow: w/hapmap3 pca/1
Run: LxsTw

skout, created at: Wed, 01 Jul 2020 18:01:26 lin

MONINOR EXECUTION PR RESOURCES
Pause

v @ Timeline

hapmap3_pca/l
main_step hapmapd/broad/L plot pea_pink_and_piot/l
pedmap piot main_step 2d_scaner_of _plink_pea/i pea iunm

Figure 29. Workflow report and control panel.

Although, the OpenBio, provides us two more buttons as shown in Fig. 30. The first button
is the Monitor Execution, which redirects us in the execution environment's WMS if we would
like to make additional configurations. The second button is the Monitor Resources, which
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redirects us in a custom dashboard that collects information from the Netdata Service which is
integrated into the execution environment and general information for the workflows that the
system has.

Report CANCEL

Workflow: w/hapmap3_pca/1
Run: LxsTw

wut, created at: Wed, 01 Jul 2020 18:01:26

DELETE

MONINOR EXECUTION MONITOR RESOURCES REPORT LOGS

Figure 30. Workflow Successful execution.

By clicking the refresh button, the platform communicates with the execution environment
to collect information about the execution. The final status that a workflow implements is a
SUCCESS or FAIL. In Fig 29, the workflow executed successfully. As a result, two more buttons
were shown when the execution finished. Aforementioned, the workflow's output is integrated into
the HTML that is available if we click the Report button. We also provide logs that facilitate the
debugging of the workflow mainly. We can download the logs by clicking the Logs button.
Nevertheless, the Delete button remains in the foreground and the users could delete the report
whenever they would from the OpenBio and the execution environment permanently.

Below, we provide some figures containing the compressed file, the results and the report
of the workflow.

Extract || + LxsTw.tgz Q| = - &0 9
{at | Location: | E7/

iLxsTw 22,1kB Folder 01 loudiou 2020...
. LxsTw.html 951 bytes HTML docu... 01 loudiou 2020...

Figure 31. The compressed file of the workflow report. When we download the compressed folder there is the report
and the outputs inside the file.

C Y @ File | /home/manos/.cache/.fr-1xEjJQ/LxsTw.html

OpenBio Server: https:/www.openbio.eu/platform
Workflow: hapmap3 pca/l

Intermediate Variables:
» Wed Jul 1 18:04:38 UTC 2020. Called from: main /usr/local/airflow/REPORTS/WORK/hapmap3_r1_b36_fwd_consensus.qc.poly.recode_pca.eigenvec.scatter_plot.pdf:
Output Variables:

« output__plot__hapmap3_pca__1:

Figure 32. Workflow’s Report. This HTML file contains the inputs and the outputs of the workflow. Also, we can
have access to the outputs by clicking them.

As we mentioned before, the Report is constructed from the workflow as an integrated step. Report
provides useful information such as the inputs and the outputs of the workflow. Also, we can have
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access to the report file from the HTML file, because it uses tags that redirect us to the file that we
choose. In Fig. 33, the output of the workflow is a scatter plot constructed from the workflow.

0.04 .
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p
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=0.04 =0.02 0.00 0.02
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Figure 33. The scatter plot (Workflow’s output).

5.4 Results

The HapMap PCA analysis takes approximately 9 minutes to run on a server with 8 cores
clocked at 3.40GHz and 32Gb of memory. The PCA is computational unit intensive. Also, the
workflow tested with parameterized resources which are represented below. In Fig. 33 we
visualized the performance of the previous workflow with different resource allocations. As
expected, an increase in the number of CPUs and amount of memory to the WMS decreases the
execution time. The time it takes for the workflow to start the first time is approximately 30
seconds which is not considered in this comparison. After the first deployment the system is much
faster (~ 15 seconds) because of the cache of the WMS. Furthermore, if the tool that contains the
workflow is already installed from another workflow the execution times decreased drastically.

The time it takes for the workflow to finish reaches over 8 minutes at best but is then
saturated. A big increase in performance is seen when comparing the machine with 4 core vs the
eight cores. It is almost twofold decrease in time, now given a larger dataset might take days to
run, a two-fold decrease in execution time is good.
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Figure 34. Workflow Performance of the Execution Environment measured in minutes with different machine setups.
Each triplet of bars has a different amount of memory. The general trend being that the execution time decreases as
the resources increases which is expected.

The results of the workflow performance were tested using Airflow as WMS. We expect
that the results will vary when we use different WMS. The main purpose of these tests is to check
the consistency of the workflow by performing heavy computational tasks. Because of the lack of
process units, we decided not to testmore than eight cores. Although, for time sufficiency the more
cores we have, the less execution time is.

Workflow performance

BN Execution Environment
W Bash Execution

Execution Time (Minutes)

B.45

- 733

8 Cores

4 Cores & Cores
Amount of Compute Process Units{CPU)

Figure 35. Workflow Performance. Comparison between Bash Execution and Execution Environment.

Additional tests, such as comparing the execution environment using a workflow
management system and the execution environment using bash script have radical differences
especially in terms of time. As it shown in Fig 34, the bash execution is beneficial according to the
execution time but difficult for debugging. The bash execution lacks a proper workflow monitoring
and logging throughout the execution. More specifically, using a WMS we have extensive
information about the status and the progress of the execution. Nevertheless, we could leverage
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the bash execution using container-based workflows. Containerized workflows are one of our
priorities for integration into the execution environment.

The results are not only relative to the system's performance, but of the users' facilitation
to execute a workflow in different environments. To put it briefly, if we compare the difference
between execution time and the cores that are set, the results are varied. The more cores there are,
the faster the execution is. Consequently, the difference in execution time, if we have more than
eight-core, is a minor according to the benefits that we earn using the execution environment with
the workflow management system of our choice. The main purpose of the Execution Environment
is to run complex scientific workflows as well as extended workflow monitoring. Also, without a
doubt, Bash execution can not co-work with platforms such as OpenBio and it does not have the
interoperability that the Execution Environment has.
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6. Conclusion

In this final chapter, we present a brief synopsis of our work assessing some principal
points of the design process. Following that, we conclude by mentioning a few possible
extensions and improvements that could be developed in the future.

6.1. Concluding remarks

The primary goal of this thesis was to implement and design a system covering our
rationale to support multiple workflow management systems into one execution environment.
Despite that, there was one more underlying goal: to effectively cooperate with developers and
OpenBio users. We may now conclude that both objectives were met.

Regarding the main goal, the Execution Environment extension into the OpenBio platform,
we achieved a breaking change: OpenBio platform can now execute multiple types of workflows
using cloud, host or clusters. As proof of this concept for our implemented rationale, there are
several reports into OpenBio repository which were created using the Execution Environment.

As far as the second goal is concerned, the collaboration was a first-time experience
including constructive stress and the integral support from my supervisors by providing useful
advice about my thesis purposes.

On this basis, we conclude that the Workflow Management Systems (WMS) allows life
science communities to collaborate to make scalable and portable scientific research. The
combination of multiple WMSs into one environment which communicates with a
Bioinformatician Repository, without a doubt, brings a lot of benefits. This thesis proposed many
resolutions to problems such as workflow adaptability and flexibility over the life science
communities. The proposed environment of the workflow execution works through the interaction
with users by logging in to the OpenBio platform.

All in all, this project aims to facilitate scientific research, providing a scalable and
interoperable execution environment for sharing and publishing scientific research. The execution
environment provides extended information about the workflow execution and it could work
perfectly at any platform or repository such as OpenBio, because of the operable API it provides.

6.2. Lesson Learn

Nowadays, computational science demands a high-performance infrastructure that can be
able to run complex workflows [1,2]. With the term of complex workflows, we mean workflows
that integrate multiple methods such as programs and services from different organizations or
algorithms, and high-throughput data and other components that are orchestrated as steps in a
workflow [31].

Workflow Management Systems (WMS) lay the foundation for data and biomedical
research. The main benefits of workflow execution by using a WMS are the effectiveness,
reproducibility of procedures and traceability [32-35]. As we mentioned in previous sections, a
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tremendous number of WMS are available in public, collaborating with the scientific research.
Although, WMSs have limitations and they reduce their impact in biomedical research since each
WMS has its own workflow language, a frustration for the users and demand for additional
programming knowledge.

In this thesis, we provide a comprehensive presentation of different issues that directly
affect interoperability among the execution of scientific workflows, except for the performance
results that make the difference. The insertion of multiple workflow execution engines into one
execution environment could diminish the “lock-in” syndrome [36], making the workflows
reusable, accessible for users with no additional programming knowledge rather than BASH
commands only. Additionally, multiple organizations and workflow system vendors have
proposed a user-friendly workflow language called Common Workflow Language (CWL) [37]
aiming to promote portability of workflow specifications. This workflow language has already
integrated into our environment and it can work with many workflow management systems [38].

6.3. Current limitations

By the time, the execution environment had integrated Airflow as a WMS, t a widely used
pipeline engine. The support of other workflow execution engines such as Snakemake [19],
Nextflow [9], Luigi [8], and CWL [37] based workflow execution engines would increase the
functionality of the execution environment. The Execution environment’s structure has developed
and prepared for further WMSs addition and this is the main reason for the implementation of this
thesis.

According to execution time results, the bash execution is better than the WMS execution.
In order to balance the execution time, we have to integrate lightweight WMSs or edit the existing
execution scheduler. This is a minor limitation according to the benefits that a workflow execution
engine provides like debugging from the execution logs and the extended execution monitoring.
Nevertheless, we did not test with different WMSs to perform a complete comparison with other
workflow engines.

In general, scientific workflows do not have loop conditions. Many proposals have
presented the theoretical background of this abstraction [43,44], with no implementation in
practice. This is a severe limitation and reproduces problems such as time and resource-consuming
[45]. This is an exquisite topic for improvements and it is one of our future work, the
implementation of conditions in scientific workflows.

6.4. Future work

Although we have implemented a couple of enhancements through the OpenBio platform’s
User Interface upgrading the overall User Experience we should make radical improvements into
the Engine's core. Also, there are crucial additions to the Execution Environment’s API and that
makes the workflow execution flexible.
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In addition, we have to integrate more workflow management engines such as Galaxy [7],
Nextflow [9], Taverna [12] which are specifically developed for the field of bioinformatics. This
could robust the portability of scientific research by providing to the users a plethora of workflow
execution engines from only one service. The Execution Environment’s design is adaptable and it
can facilitate the integration for additional workflow management engines.

Another future work is Kubernetes integration. Kubernetes [39] is a platform for container
and services management that facilitates the configuration and automation. It has a rapidly
expanding ecosystem and supports widely available tools. Kubernetes can solve several problems
by providing a framework to run distributed systems resiliently. More specifically, it takes care of
scaling requirements, failover, deployment patterns, and more. Also, the Kubernetes platform
provides service discovery and load balancing, self-healing to improve the Execution environment
rejuvenation [40] (restarts the containers that fail), and storage orchestration.

Last but not least, an intermediate layer of this project could be a job manager. In general,
a job manager is a resource management system which controls program execution of jobs in the
background on supercomputers, clusters, and grids. The resource management system can manage
jobs that users submit to various queues on a computer system. Under our circumstances it could
be useful if we can parametrize every step of a workflow under our demands. There are many job
managers such as Globus [41] and Torque [42].

Finally, as shown in the results section, the workflow can be faster by executing processes
using bash rather than using a workflow management system. By leveraging the simple bash and
running the workflow into a container we could earn a lot of benefits about the execution time
efficiency. On the other hand, it cannot be denied that using a workflow management system we
lose severe advantages such as workflow execution status, extended workflow logging, and
portability.
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