OTEIAKD
{&ﬁ" f}“‘?

eMA HN&’C}

\2
o)
X
2
O

— o
Y

ey

HELLENIC MEDITERRANEAN
UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
COURSE TYPE - INFORMATICS ENGINEERING T.E.

THESIS

TWO DIMENSIONAL SURVIVAL GAME IN UNITY

ELENI KOUNDOURAKI AM 4056
ADVISOR

IOANNIS PACHOULAKIS

OCTOBER 2020

THANKING SECTION

I would like to thank my supervisor teacher Mr. loanni Pachoulaki for supporting and accepting my
idea and ultimately giving me the chance to implement, this 2D video game. I would also like to thank
all my family for supporting me and giving me courage through the journey of this major project.

Thank you.

[TEPIAHYH

Avt n dTpiP] apopd T OMpovpyio £vOg S1601AGTATOV Toy Vool emPimong Yy VITOAOYIGTEG TO
omoio avamtiydnke ypnowonowwvtag to Unity Game Engine kot 6yedtdotnKe Y¥pNOUYLOTOIDOVTAS TO.
npoyphupato Aseprite yio to povtéda yopoktipwv kot Tiled yio ™ dtapdppmon towv yoptov.

e avutd 10 dodldotato moyvidl emPiowong "Bow and Jelly", éyo epappocet 2D @ovra, ydpteg Kot
YOPOKTNPES Ue EExmplotd kol mowkida oyédto kol animations. To moyvidl eivarl epumAovtiocuévo pe
aAYOPIOLOVE EVIOMIGUOD HOVOTATIOV Y0 TNV TPOGOUOIMOT] £ELTVAOV GUUTEPIPOPMY KLUVIYIOD Kot
alyopiBuwv mOavOTYTOG Yoo Vo TOPEYEL OTOV TOIKTN YPNOIUA AQQLPO OVTIKEWWEVOV KATO TNV
TAONYNON OTLS OAPOPES TEPLOYES TOV XApTN. H dtemapn ypnotn €yl Evav EAKLOTIKO GYESOGUO TOV
TPOPOOOTEITOL OO KAONAWTIKOVG YOV KIVOUUEVOV GYESIMV KOl LOVGIKY] DITOKPOLGT, TOV EMITPEMEL
Ha euxdploTn eUmEpioL.

O Aemtopépete TG dnpovpyiog oYedOGHOD Kol TV GUUTEPIPOPOV EVTOG TOV TOLYVIOLOL e&nyovvtan
TOPOKAT®, GLVOdELOUEVES omd Ypapnuato He Pacn 10 oevdplo kot otypudtvomo o0évng tov
ALY V1O100.

ABSTRACT

This thesis is about the creation of a 2Dimensional Survival Game for computers that was developed
using Unity Game Engine and designed using the programs Aseprite for the character models and Tiled
for the forming of the maps.

In this 2D Survival Game “Bow and Jelly”, I have implemented 2D backgrounds, maps, and characters
with distinct and varied designs and animations. The game Al uses pathfinding algorithms to simulate
smart chasing behaviors and probability algorithms to provide the player with helpful item loot drops
while navigating through the various map areas. The Ul has an inviting design powered by immersive
animation sounds and background music, which provides an enjoyable experience.

The details of the design creation and in-game behaviors are explained below, accompanied by
scenario-based graphs and screenshots of game-play.

Table of Contents

L8 12 (016 1015 o) 4 P PSUUPSPRIRY 8
1.1 Summary Of the GAME..........coouiiiiiiiieiie ettt ettt et ebeebeeesbeeseeenbeeseesnseeas 8
1.2 Incentive of MaKing thiS PrOJECt........cccuuiiiiiiiiiieiciie ettt e e e e 8
1.3 Objective and Purpose 0f the ProOJECt.........cueviuiiiiiiiiieiiieiiecie ettt e 8

2. Technologies and Concepts that Contributed in the Project..........c.ccocvveeiiiieiiieciiicceeee e, 9
2.1 WAL 1S UNIEY..eeuiiiiieeiieiie ettt ettt ettt ettt e et e e teeesseesaaeesseessaeensaessseenseessseenseessseenseessseenseennsns 9
2.2 What is Game DeVEIOPIMENL........cccuiiiiiieeiiieciiee ettt ettt eiee et e steeesaeeestaeeesaaeeessaeeesseessaeessnaennnes 9
2.3 What is Graphic Development and PiXel Art..........cccooviiiiiiiieiiieieciieeeee e 9
2.4 What is Aseprite and Tiled..........coeeiuiiiiiiiiiiiie e e e e e e e e e e e 10
2.5 What s State MaCRINe.coveiuiiiiiieiicierie ettt sttt st 10
2.6 What 1S Pathfinding.........c.eoeiiiiiiiiiieie ettt e s e et e e e s e e sraee s e snsaneeeeennes 10
2.7 WRAE IS UL .ttt ettt et st b et b e b e et sa e e bt et e e bt e bt entesaeenbeennens 10

3. Features and WOrkflow Of the PrOJECt.........coiviiiiiiiiciie ettt e e 11
3.1 Analysis Models of the GAme MENUS...........cccuieriieiiieiieeiieie ettt et saeebeeseaeeenaee s 11

3.1.1 Scenario Based MOdEIS........c.cooiiiiiiiiiiiieeee e 11
3 1.2 MENU DESIZNS ..eeeeiieiiieiiieiieeiie ettt ettt ettt e et e e s e ete e st e e sbeessaeenbeesseasnseesaeensaeeenssaeeennseas 14
3.2 MAD DISIENS. . eecutiieeiiiieeiiieeetteeetee et e ettt e e stteeeteeeeteeessaeeesssaeessseeensseeanssaeanssaeanssaeassaeeanseeeansaeeeennnes 17
R I o F- <) OSSPSR 19
3.3.1 Player State MaChINe........c.coeiiuiiiiiiieeiie ettt et e e sire e e aa e e aaa e e e e ennnaeeas 19
R T o < ol U] OO U O TRURURR PP 20
34 BIEIMIES. ...ttt ettt ettt et ettt et ettt et e a e et e bt e e ab e e bt e et e e eh e e e a bt e ehte e abeeehte e bt e enbeeeeabteeeenbeeeenneee 20
3.4.1 Enemies State MacChine.........ccooueruiiiiiiiiiiiiceceeee ettt 21
3.5 Non Playable CRATaCLerS........cc.ueeiuiieiiieeciieeciee et ettt ete et eesaeeesaaeeeaaeessaeaeeesnraeeeeeensnns 22

4. Code IMPIEMENTATION.iiitieiiieiieeieetie et eeiee et et e eteeteeeteebeessaeeseessseesseessseenseessseenseesssesnsaeesnssaeeans 23
4.1 Camera MOVEIMENL........ccciiiiiieeiiiieeeeiiiteeeeitee e e sttt e e esaaeeeesabaeeeeasseeeeesnsseeeeasnsseaesessssnnssssssnnneeees 23
A2 PLAYCT...eeiteetieeiie ettt et ettt et e ettt e et e e tte e bt e st b e et e e sabe e bt e aabe e b e e aat e e bt e sbe e b aeehteenbeeesbeeseeesaeenbeeenraeeanns 23

4.2.1 Player MOVEIMENL.ceiiuiieeiiieeeitieeeieeeeteeesteeesteeetaeesssseessaeessseeessseeessseessseessseesssseessseeesannes 24
4.3 ENCMY MOVEIMECNL.....cuuiiiiiiieiiiieiiieesieeeeite et e ettt e ettt e st e e st e e sabeeesabeeesaseessaseesnnsaeeeesannnsaeeeesannns 25
4.3.1 PaAthFINAING....cciiiiiiiiieciie ettt e et e et e e st e e ssbeeessbeeessseesssseesnsaeesnnseesnsaeeeannns 26
4.3.2 Chase and REMrEaLt..........cocueriiiiiiiiiieieeieee ettt sttt ettt st e st e eaeeeas 27
G 15 TSI) TSRS 29
4.4.1 Player and ENEMY STALS.........cccueeiiieriieiiieiieeiteeiee et esite et eseteeteesieeesaeessaeeseessseessnsaeesnssaeennns 29
4.4.2 Damage Numbers and EffectS.........cccouiiiiiiiiiiiiciicceeee et 30
4.4.3 DiIalogue BUDDIES........ccoiiiiiiiiiciieiieceeeee ettt ettt e b e naaeeraen 31
4.5 ENCIMY WaVES TTIZEET....ccuviiiitiieeiieeeieeeeiee et ee ettt eetteeeteeesbaeessaeeesssaaasssaeesseessssssseeesansssseeeseanses 32
4.6 OOt TaADIC.....c.eeeuteiieiieecet ettt ettt et a et s a e bttt be et sae et en 34
4.7 GAEEWAYS. . veeeeeuereeeeeiitteeeaitteeeesittteeeeasteeeeaaaseaeeeasssaeesaassaeeeeassseesaasssseessnssseeesannsseeessssssnnsssssssnneneees 36
A8 IMIBTIUS. ...ttt ettt ht e et a e et h e et h ettt e bt et b e et e ettt e e ab e e e e anee 36
4.9 SaVING the GAIMEC.....cc.ueiiiiiiieiie ettt e et e et e e e sta e e s taaessaeesssaeesssssaeaeeennsssaaeeeennsnees 37
4.10 SAVING the GAIMEC.......cccuiiiiiieiieiie ettt ettt et e et esaaeebeeesaeesteesabeanseeeensseeesnsseeeensseeennnns 38

TR 2531 (o 4§ (<SR EEUPPUPR 41
5.1 CONCIUSIONS. ...ttt sttt ettt et e atesb e et e e st e e bt et e estesbeeenbeeenteeenneeennee 41
5.2 Difficulties During Implementation...........c..eccveeecuieeriiieieiie ettt sree e e e eraae e e e enennas 41
5.3 Future WOork and EXtENSIONS.cc.eeruiriiriiiieriiiriieieeiiesie ettt sttt ettt seee st e e e eneee 41

LB 10) T U0 ea 21 o) 1) 2RSSR 42

Table of Figures

Figure 1: Start the Game - Sate DIiagram.........ccccevueriirirrierieneeeententeteete sttt st et et essee s ssseeseneeenne 12
Figure 2: Activity Diagram for "EXit Game" featUre.........cccoccveeeuierieeiiienieeieeeieecreesreecveesreeeeeeeaaeeens 13
Figure 3: Activity Diagram for "Load Game" feature............cceceevuerruereererienienienienieeeeeeeeee e 13
Figure 4: Activity Diagram for "How To Play" feature.........c.ccceecveevierieeniienieeciieeieeceeeieeeeieeeeveee e 13
Figure 5: Activity Diagram for "New Game" feature..........cccceeeevierierirneniienieneeieseesieeee e 13
Figure 6: Activity Diagram of "Continue" module of Pause Menu............cccceeeveeirienieeieeniieenieeeecieeeans 14
Figure 7: Activity Diagram of "Save" module of Pause Menu.........cc.ccoceevervieriinieniieneenenneeneenieenseeenne 14
Figure 8: Activity Diagram of "Main Menu" module of Pause MenU.........c.cccecverierereerieeiieeneeesiveeenns 14
Figure 9: Activity Diagram of "Restart" module of Restart Menu..........cc.ccceeeevernieneernieennieeenieeeneennne 15
Figure 10: Activity Diagram of "Main Menu" module of Restart MeNU...........ccceevueeereerieeiieenreeesiveeenns 15
Figure 11: Background Image creation for Pause Menu in Tiled.........ccccceceeveriieniinennenecnnieeieeeeee 16
Figure 12: Background Image Creation for Restart Menu in Tiled...........cccoevieeiiiiniieniieniiieceiee e, 16
Figure 13: PAuSe MEeTU......coccuviiiiiiiiiiiiiiiieieectteetee ettt sttt b e e e s naa e e e s seanneeeeeeans 16
Figure 14: ReSTart IMBNUL......cccieeurieeieiiieeeieiiteeeesitteeessiteeesssitteeesssaseeeessssaeesssssseesssssnnssssssasaaaeeeeeesssssnnnns 16
Figure 15: Background Image Creation for Main Menu in Tiled...........cccccoveeveriieniinenneneeniciieeeeenne 17
Figure 16: Mail IMEINUL....ccooiuiiiiiiiieeeeeitee ettt eit e e s site e s s iaee e s ssabte e e s sabaeessssbaeesssassaasaaaaaaaeeeeessssnnnnns 17
Figure 17: HOW TO Play MENU.......cccueiiiiiiiinieiteieeterteeteetest ettt sttt sae st s st e sae st s snneene 17
FigUre 18: CaVe IMAP. .. .uuiiiiiiiieeiiiteee ettt e ettt e s ettt e s s sttt e e e ssabae e e ssabteesssasaaeeesssaaessnsssaeesssnsaeeeensssseesnnnn 18
Figure 19: MaAin MAP.....coooiiiiiiiiiiiiiectecte ettt ettt an e s s ra e e e e s arae e e e e eas 18
Figure 20: FOTESE IMLAD. ... utteiieiiiieeeeitee e ettt e sttt e e e stte e e ssatte e e ssabteesssasaaeeesnsaaessssssaeesssssaaeesssssaaeeesessnnns 18
FIGUIE 211 Lake IMAD. .. ceeeiuieiieieetetee ettt sttt ettt e s be e st ae et et sbe et st e sat e be et e sseeseesaneenan 19
Figure 22: MyStiC FOTESE IMLAD.uuutteieriiieiieiiee ettt eesitee e st e e s sttt e e s sataeeessaaaeesssasaeesssssaeesssanseaessssnnn 19
Figure 23: TOWI IMAD.......utiiiiiiiiiiiieieiecte ettt ae e s b e e e sabe e s sane e e s nnnneees 19
Figure 24: Player State Machine 2™ PaTt........c.cevveverievereiererierereeeseseesesessesesesseseesesesseseesesessesessesseseeseens 20
Figure 25: Player State Machine 1% Part.........ccceeeerereriririeieiesiestesieseee sttt ettt et 20
FIGUIE 26: ENEIMIIES.ueiieiieiiiieeieiteeeeeittee e eitte e es sttt e e s stae e s s s ateeeesssstaeessssaaessssssaeeessssssssaaaaaaeeseessssnnnnns 21
Figure 27: State Machine for Zombie Type of ENemIes.........ccccceerciiiiiiiniieiiienieieenieeeesieeeee e 22
Figure 28: State Machine for SIime type ENEMIES.........ccceeeierieeiiiinieeieeeieesieesee e esneeteeseeeeveessneenseens 23
Figure 29: INPC CRaTaCterS.......cceuterueeierieniertertesteetesitestestessteseetesseessestesseessesssesseessesmseesaseesaseesseesanes 23
Figure 30: Camera MOVEMENT 1% PAIT......cceccueeviereerieeieseeiteeeesseesteeseesseesesseesseessesseessesssesssessessesssesseenns 24
Figure 31: Camera MOVEMENT 2™ PATt..........ccceveveverererereresesesesesesesesesesesesesesesesesesssesesesesssssesesssesesesessssess 24
Figure 32: Player MOVEMENT 1% PAIT......ccuccveerieerieirieieeteeiteeteseesteeaesseesseessesseesseessesssessesssesssessesssesssseenns 25
Figure 33: Player MOVEMENt 2™ PAIT.........cvevevvrreeeresrseresesssessessssssesesens 25
Figure 34: Player MOVEIMENt 3™ PAIT.........ccceieverervereeerereeeesessereseesesesesessesesesesessesesseseesessessesesessessessens 26
Figure 35:Pathfinding and Enemy Waves 1% Part...........coccevererieirierienienieneneneeeetetestesee st seesnesaee s 26
Figure 36: Pathfinding and Enemy Waves 2™ Part...........ccccveeveererereereeeerereeeeseeseseseseeeseesesseesessessensessens 27
Figure 37: Pathfinding and Enemy Waves 3™ Palt...........ccccoveeurerureereeensesenesenesessssssesssesesssssesssssssssenas 27
Figure 38: Pathfinding and Enemy Waves 4™ DArt............cccocveveueeeerereerereeeereeeseseeseseesesesesessesesesesseseesees 28
Figure 39: Pathfinding and Enemy Waves 5" PaTt...........cccccceveveveveiereieieieiesesesesesesesesesesesesesesesesesesessssenas 28
Figure 40: Chasing AttACK.......cccueieiiieeiiieiieeeiee et et srte e et e sste e st e e s tee e saaeesbaaesssaaessseaessseesssseesnseees 29
FIGUIE 41: ROIIEAL......ceiouiiiiiiiiiiieiiiteeciteeete ettt sttt be e s e e s b e e s be e e abeeesaneeesanees 29
Figure 42: Level INitialiZation........cc.ceeeiiiiiieiiiieieiiecsite sttt sste e ee s saeeesvaesseaeesvaaesssaesnssaesnsnens 30
Figure 43: LeVelNG UP......cooiiiiieierieeniecieeste ettt ettt st s it e s sae e st e sbeesabeebaessbesseesssessseessssaesssssaesns 30
FigUure 44: ENEIMY STATS....ccceiittetiriiieeieriiteeesiiiteesesitteesesstteeesssseesssssseeesssssseessssssssessssssseesssssssseseesesessssnns 31
Figure 45: Enemy Damage EffectS........cooiiiiiiiiiiiieieeeeeeeee ettt sttt e e s 31

Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:

Player Damage EffeCtS......cc.eoviiiiiiiieeieeeeeeeeee ettt ettt s 32
DialogUE MANAZET.......ceeeiieiriieieiieeeieeerteeesreeesteesateesteeesssaeessseesssseessssesssseeesssssssseesssnssssees 32
DiIalogue HOLAET......c..ciiiieieiiteeeeeete ettt ettt ettt et et a e e e abe e e sstaeessneaeeas 33
WaVE TTIGEOT 1% PATt.ccuuiiiitiieiieiieeieeieeete et eete et e s aeesteessaeesteessae e seesssessseesnsessseesssessseassseesnns 34

WAV TTIGEOT 2™ DAt ...cveueevevevereeieieteteseteeeteseseteesseseseseseseseseseseassesesesessssesesesessassesesesessesens 35
Probabilities 1% PaArt.....c..cccueerieeiiieiiieiieeeteete ettt e et e et eebeeteessaeebeessaeeseessseasassseesassseenns 35
PrODADIlitieS 2™ PATT......c.c.cvevieeiererereeieeetereteeeeeeteseseseaeteseseseaessesesesesessesesesesessesesseseseseesenseseneas 36
PrODADILIIES 3™ PAIT......cueeveeererieiereeiereteee ettt eee et e s te s eseaseseseesesessesessesesessesensesensesersessens 36
GALEWAY TTIGEOT....ceiiiiiieiieiitee ettt e ettt e e e e ree e s et ee e s e areeeeeeaneeeessnsssssnnaeeaeeeeeeens 37
GateWAY TTANSPOTTETceeieeeiieeeriiieeeeeieee e ettt e esirteeesstreeesssaseeeesssnsaeeesssnnnsnssaasaaaaeeeessssnnnnns 37
Basic Menu DENaVIOUT.........cceioiiriirieieriereceete ettt sttt et sbeesse s s 37
SAVINEG the GAIMIE.....cccciiiiiieeeieeeeeeee et erte et e ettt e st e e sbe e e s beessabaeesabaeeeessnssaaeesesssssseeeenns 38
Storing the Players LIEVEL........couii ittt e s e e 38
L0ading the Game.........coccuiiiiiiiiiieiieecteeet ettt sre e sae e e be e s ae e sbae e sba e e s e s sbaaeeeesnnnenes 39
ReSetting the GAmMe.........coviiiiiiieiieeteeee ettt st s et e st e e st a e e s abaeesanaeeas 39
AUAIO MANAZET 1% PAIt...c.ueeevieiieiieitieieeeeeteete et esteesteseesteebeessesssessesssesssessaesssaasssseesssesseeennns 40
AUdio MANAZET 2™ PATT......cueevevevereeeeeerereteeieeseteseseeesesesesesesesesesessesesesesesessesesesessassesesesessaseses 40
AUAIO MANAGET 3™ PAIT.....vevevereeeereererereeeereeeteseeteseeseseseesetesseseseeseseesesessesessesesensesessesessessensenses 41

1.Introduction

1.1 Summary of the Game

The 2D Survival Game “Bow and Jelly” is a shoot ‘em up type of game that can be played on the
computer. It has elements of exploration and horror with randomly generated enemies that keep the
game engaging for numerous replays.

The main character is a nameless traveler who wields a bow and rids the peaceful town of various
monsters, slimes, and zombies that roam around the various maps. It has a pixel art aesthetic and
various map areas in which the main character can traverse through interconnected paths. The enemies
in the game, are designed to drop items that both increase and decrease the health of the hero, thus the
player needs to be careful to not pick up every item blindly. The items have intuitive designs that can
be distinguished easily on the computer screen, for example, the red apples heal and grubs hurt. The
game also has interactive enemy waves that keep the gameplay interesting along with being chaotic.

1.2 Incentive of Making this Project

The incentive of this project derives from my long appreciation of 2D game development. I was always
intrigued by these kinds of games that offered me a more immersive experience, with the colorful
graphical environments with games like “Star-dew Valley”. The fascination continued with the
exceptional stories that rivaled big triple-A game companies, with games like “Undertale”. These
games made me want to learn more about them and how they are made, hence the subject of this
Thesis.

1.3 Objective and Purpose of the Project

The purpose of this project is the development of a two-dimensional video game primarily coded in C#
and using the very reliable game engine Unity. The project is a complete game built from scratch with
many areas to explore. This game should be familiar to those aware of shoot ‘em up games with
modern examples like “Hotline Miami” and “Binding of Isaac” but more importantly like “Contra” and
“Metal Slug”. The objective of the game is to struggle for a high score much like the classic game
“Pacman” and the hit from a few years back “Flappy Bird”. The player goes through waves and waves
of randomly spawning enemies and tries to survive for as long as they can with occasional heath drops
by enemies. The game has simple controls to get used to but is a good challenge on purpose, as
research suggests more difficult but fair games are highly addicting to individuals.

2. Technologies and Concepts that Contributed in the Project

2.1 What is Unity

Unity is a cross-platform game engine developed by Unity Technologies, that supports more than 25
platforms.""¥ Unity provides many built-in tools that can help novice and experienced developers alike
to make games. Some of those tools are Physics engines, rendering, collision detection light rendering,
and more for both 3D and 2D environments. The engine can be used to develop all kinds of games
virtual reality, augmented reality games, as well as simulations and educational apps. Unity also
provides a vast variety of assets, like graphics, sound effects, and fonts, through its “Asset Store”, that
the unity community updates almost every day.

2.2 What is Game Development

Video games have come a long way from a few pixels on-screen in the first proper video game
developed ‘pong’ to virtual reality simulations which are becoming harder to distinguish from the
actual world with hundreds of hours of content. Gaming has become so mainstream that the collective
revenue of digital games, dwarfs the revenue of the movie industry. More than entertainment, it has led
to revolutions in technology which would have been a pipe dream if not for the great demand that video
games have. One such example is the advancement in the GPU, which is not just limited to video game
applications but also data mining and training deep neural networks.

Game development as the name suggests is the process of constructing a video game, that can have one
or a team of developers working on it. With the growing open-source resources available and
established video games companies making their game development tool-kits available; It has led to the
development of countless games on every platform, especially with the indie game revolution which
gives high-budget gaming companies something to be concerned about.

2.3 What is Graphic Development and Pixel Art

Graphic development is the process of creating all the visual content and effects that are gonna be used
for the development of a video game and more. The graphic designs may vary depending on the game's
needs, meaning that the designs can be as simple as creating a small box, to more complicated designs
that depict reality that is so realistic that trick the users senses into thinking that they are in the real
world.

Pixel art is the process of creating two-dimensional artwork. It is also used as the graphic development
method for two-dimensional gaming environments and characters. Unlike three dimensional graphics,
pixel art is created pixel by pixel placed methodically to create a bigger image. Despite its minimalism
pixel art, graphical environments can be immersive and alluring, which can captivate the player’s
senses better than the three-dimensional environments.

2.4 What is Aseprite and Tiled

Aseprite is a pixel art tool, that lets you create 2D animations and art. It is widely used for video game
graphic development. In this project, it was used to create the player and enemy character designs and

animations, as well as the loading screen that is displayed when the hero changes scenes, the game’s
cursor icon, and various other sprite sheets.

Tiled is a 2D level editor, like Aseprite it helps you develop the content of your game. Unlike character
and effect creation, Tiled is used for bigger tasks like the creation of tile-maps and tile-map animations.
For this project, Tiled was used for the creation of all the maps and menus as it is referred to in later
chapters.

2.5 What 1s State Machine

State Machine are the different movement behaviours of the different characters in a game. At any
point in time, the characters in the game are always engaged in an action that is referred to as a state.
The state machine can consist either of blend trees that can be nested and provide a more complicated
state machine along with their blending parameters and simple states with simple transitions that allow
smooth animation movements.

2.6 What is Pathfinding

Pathfinding algorithms will be familiar to those who have studied subjects like graph theory in Math,
Dijkstra, and Bellman-Ford algorithms. These algorithms try to find the shortest path to the target but
within limits of certain domain logic, for example- the enemy should not just jump over obstacles to get

to the player.

2.7 What 1s Ul

UI design is concerned with the aesthetics of the application, as it is the first introduction to any
platform, it should convey the emotions the designer is trying to invoke. This project's game Ul is non-
diegetic meaning that is rendered outside the game world and is only visible or audible. It consists of
player statistic bars that can be viewed at all times, damage effects for both the player and the enemies,
and dialogue bubbles that can be viewed when the player interacts with the non-playable characters as
is referred to in later chapters.

10

3. Features and Workflow of the Project

3.1 Analysis Models of the Game Menus

3.1.1 Scenario Based Models

The game project is based on a scenario based model, using a use case system. The following diagrams
depict how the user can interact with the interfaces and the sequences that take place as he navigates

through the software.
Splash screen

Main menu appears

Game starts at level 0

Loads saved file
and launches the game
with saved level

Figure 1: Start the Game - Sate Diagram

We can see the behavior of the software when the user first opens up the game application. When he
presses the desktop icon, the game sequence starts by first showing the user the unity splash screen
which is the unity watermark and loads up the game's main menu. When the menu is open the model
goes into a waiting state for the user's input. The user has four choices to decide from.

The first choices that can be made are New Game or Load Game option which initialize with the
following activity diagrams respectively.

11

click Load game click How to play click Exit game

click New game

Last saved level
stats are loaded.
Game starts

Level 0 stats.
Game begins

game instructions

_ application shuts
are displayed

Figure 5: Activity Figure 3: Activity Figure 4: Activity Figure 2: Activity
Diagram for "New Diagram for "Load Diagram for "How To Diagram for "Exit
Game" feature Game" feature Play" feature Game" feature

When the New Game button is clicked the system initializes the player stats at Level 0 and starts the
game from the main scene. On the other hand, if the Load New Game option is selected then the
system looks for any potential load files that have been made. If the files exist then the game loads with
the characters saved level, else the game starts at level 0.

The last two choices the user has at the main menu are the How To Play button and the Exit Game
button.

The How To Play option provides the user with the game controls so he will familiarize himself with
how he can interact when the game starts and then he can return to the main menu as the main menu
diagram depicts to select a different action. The Exit Game option as it suggests when selected shuts
the game application.

An additional scenario-based model can be found during the gameplay of the “Bow and Jelly” game,
and those are the pause and restart menus. Their activity diagrams are the following.

Starting with the Pause Menu Activity Diagrams:

12

During the game-play when the escape key button is pressed the game stops momentarily and the Pause
Menu appears offering three choices. The First choice is simply to Continue the game as shown in the
first diagram. The second choice is to save the current level of the player so when it is pressed the game
saves the level of the player in a binary file and resumes the game, as shown in the second diagram.
Lastly, the third option of the pause menu is the Main Menu button, which redirects the user back to the

Pause Menu
appears

Resumes game

Figure 6: Activity
Diagram of "Continue"
module of Pause
Menu

main menu.

Pause Menu
appears

Saves level and
resumes game

Figure 7: Activity
Diagram of "Save"
module of Pause
Menu

And Lastly the Restart Menu Activity Diagrams:

13

Press escape

Pause Menu
appears

Current game
stops and reverts
back to main
menu

Figure 8: Activity

Diagram of "Main
Menu" module of
Pause Menu

Lose in game

Game over menu
appears

click Restart

player respawns
in game start

Losein game

Game over menu
appears

Current game
stops and reverts
back to main

area menu
Figure 9: Activity Figure 10: Activity
Diagram of "Restart" Diagram of "Main
module of Restart Menu" module of
Menu Restart Menu

During game-play when the hero’s health goes to zero the game stops and a Restart Menu appears on
the screen giving the player two choices. One option as shown in the first diagram is to Restart the
game, when pressed the hero’s Level restarts, meaning it goes to zero, and the player re-spawns. The
second option given is the Main Menu button which reverts the game to the main menu as well as
making the player’s level to zero.

3.1.2 Menu Designs

The menu designs were developed with the program Tiled from the same sprite sheets that the maps
were created. The Pausing menu along with the Restart menu and the menu buttons were not difficult
to design since they only required only one or two layers in the Tiled Editor to get created. The main
menu, on the other hand, was the most complicated to create since it required a more complicated

14

design for the user to get a first feeling of the kind of graphics he is going to encounter when he first
launches the game. So to achieve that, the main menu needed more layers, for the correct sorting of the
items to prevent any overlaps.

The functionality of the menus was given with the Unity Editor. By creating three canvases that
contained Image fields for the Tiled files to be inserted, text fields for all the titles for the menus and
the button names, as well as button fields that allow the desired actions, of course, powered by code
that is gonna get mentioned in the next chapter.

In the following figures, you will see the Canvas system in Unity and also the backgrounds that were
created in Tiled that were later used for the menus in the game, as well as, how they appear in the
game.

o

BliZcDoc A erno9oa~sAa s FEL=LA

Figure 11: Background Image creation for Pause Menu Figure 12: Background Image Creation for Restart
in Tiled Menu in Tiled

Bow And Jelly - o X

&

FPAUSED GAME OVER

CONTINUE RESTART

SAVE MAIN MENU

MAIN MENU

Figure 13: Pause Menu Figure 14: Restart Menu

15

16

©ot 1 D atempt)

—

Figure 15: Background Image Creation for Main Menu in Tiled

Bow And Jelly - m]

o i e
BOH AND JELLY

AMYOS5E

NEH GRAME
LOAD GAME
HOW TO PLAY

EXIT GRME

Figure 16: Main Menu

Bow And Jelly —]

HOH TO PLAY

HALK HITH H OR UP ARROH KEY

THE PLAYER FACES THE MOUSE

LEFT MOUSE BUTTON SHOOTS ARROMWS

RIGHT MOUSE BUTTON LOCKS PLAYER IN PLACE
INTERACT HITH NPCS HITH THE E KEY

PAUSE MENU TRIGGERS WITH THE ESC BUTTON

)

Figure 17: How To Play Menu

3.2 Map Designs

Unlike the character creations, I purchased the tile-set assets for the design of the maps for the game
from Unity’s Asset store. For the map creation similar to the menu designs the program Tiled was used.
I used this program because of its flexibility and how easy it cooperates with Unity. If a change on any
part of the map designs is desired, you can easily redo through the Tiled program and it will
automatically refresh in Unity without having to import the new files. Also Tiled has its collision
system that unity supports, so it makes the designing a step easier. For this project, six maps were
created. They provide an immersive continuity so that the player won't be confused with where he is.

The main scene is where the player gets spawned when the game starts and where random Slime
enemies appear. This map is connected on the right side with the Forest map and on the left side with
the Town map. The Forest map provides the player the option to activate enemy waves along with a
bigger variety of random Slime Enemies. This map is connected with three others. The main one that
the player can go back to if he desires, a Cave map, that can be accessed through the mine door on the
wall and the Lake map that can be accessed from the north path. The Cave is a mini-map compared to
the others. It provides a high-level Slime enemy with valuable loot drop items and a gateway that the
player can go back to the forest. The Lake map, like the forest one, gives the option to the player to
activate waves of new enemies along with new random spawning ones. And has access back to the
forest the Town and Mystic Forest maps. The mystic Forest like the previous maps has the previous and
more enemies for the player both for the random spawner and the wave spawner The town gives the
player a place to breathe as it has no enemies, and the stalls in the town provide a variety of health
items that the hero can pick up and restore his health.

Figure 18: Cave Map

* : &

Figure 20: Forest Map

Figure 19: Main Map

Figure 21: Lake Map

; G £ !
[w .
=)

2 v O T
- .

*

18

Figur 23: Town Ma -

3.3 Player

3.3.1 Player State Machine

Figure 25: Player State Machine 1* part Figure 24: Player State Machine 2™ part

The state machine for the Player is complicated, as it consists of multiple nested blend trees so he
would have smooth animation transitions. The player supports eight directions and five types of
animation behaviours. Which are Idle, Walking, Running, Walking with his bow loaded, and his bow
released. These animations are doable through the blending parameters that are set for the blend trees

and coding.

19

3.3.2 Player Ul

The User has two major elements to pay attention to in regards to their character. First, as with many
games, we have the HP or Health points which at level 0 is 20 HP, and logarithmically grow according
to each level gained by the player. The player HP gets reduced when enemy characters attack the player
or you consume unhealthy foods like a rotten apple. Respectively the player heals or regains their HP
when they consume healthy food items like roasted chicken.

The player level is another bar that appears below the player HP, which grows only when you defeat
enemies and gain experience points, as the player progresses through the levels their HP and attack
damage increases. The player starts at level 1 and grows till level 50 which is the maximum achievable
level in-game.

3.4 Enemies

Enemies in “Bow and jelly” are mainly divided into two categories. The seemingly harmless and
abundant slimes or jellies and the challenging zombies.

Slimes can be found out throughout the map and keep generating randomly, the production rate is kept
slow for two main reasons; the player does not get overwhelmed with numbers as soon as they start the
game or enter a new area, and second so that the scene won’t get overcrowded and slow down the
game's performance.

Slimes come in different colors that indicate their different difficulties and can be noticed jumping
around the map, they are slow and not interested in the player unless the player gets close to them.
There is also a hidden variant of the slime which acts as a boss enemy and provides a tougher challenge
for the player, the mega black slime, it takes a good amount of damage to go down. Logically then it
also drops the best healing items in the game with a much higher rate.

Zombies are a tougher challenge and provide more experience in turn compared to the slimes. They are
not found anywhere on the map by default and have to be activated by talking to certain Non-playable
characters. This was a deliberate choice as they change the game into more combat focussed and reduce
the desire to explore the maps. Thus a player can choose to call upon the zombies for a challenge at
their own accord and also stop them from coming by talking to the Non-playable characters again.
Zombies always come to attack in waves, after beating one wave with no zombies remaining can the
next wave appear. These waves bring zombies of four different kinds, each varied in design and each
with different health points, attack damage, and most importantly speed. After waves of each type of
zombies, their waves repeat but with growing numbers.

BlackBigSlimeEn.. BlandZambieBay BlueSmalllSlimeE.. BrunetteZombieB.. GreenSmalllSlime.. HalfHeadZombieG..

20 RedsmalllSlimeE.. RottingZombieGirl YellowSmallSlime..

Figure 26: Enemies

3.4.1 Enemies State Machine

Because there are different kinds of enemies in the game they required two different kinds of State
Machines

Figure 27: State Machine for Zombie Type of Enemies

The Zombie type of enemies required a state machine similar to the players with nested blending trees,
also supporting eight directions, but not as complicated, as they only have two states Idle and Walking
or Running depending on the zombie type.

The Slime Enemies on the other hand only needed a simple State Machine with no blend trees and just
transitions; Since their animation and movement are so simple, only having two states Moving and not
Moving

21

Any State

I ——

'_I

YellowSlimeldle

Figure 28: State Machine for Slime type Enemies

3.5 Non Playable Characters

There are four Non-playable characters(NPCs) in the game. Each found in a different location of the
map.

Dr. Augustus is the lab coat wearing gentleman you can find in the town’s square, he tells the player
their statistics in the game, such as their level, attack damage, enemies killed, and experience needed to
level up.

Mr. Dave is a lumberjack who lives deep in the woods, who wears the lumberjack dungaree. The player
can interact with him and also activate the zombies in the woods area.

Hearsay the horse, is the horse on the far right corner on the map who lives on a cliff, players can
interact with her and activate the zombies in the cliff-side area.

Ballon girl as the name suggests is a little girl holding a balloon, she can be found just outside the
mysterious cave, the player can also interact with her and activate zombies in that area.

BalloonGirl ConstractionWerk.. HersayTheHorse ManWithCoat

Figure 29: NPC Characters

22

4. Code Implementation

4.1 Camera Movement

In order for the camera to follow the player but still be inside the bounds of the maps we set the
minimum and maximum bounds of the maps 2D collider.

public veid SetBounds()

{

}

if(SceneManager.GetActiveScene().name== "Cave™)

{
minBounds = caveBoundss.bounds.min; /fwe will get the lowest x and y of the collider
maxBounds = caveBoundss.bounds.max;

¥

else if (ScensManager.GetActiveScene().name == "MysticForest")

{
minBounds = mysticBounds.bounds.min; /fwe will get the lowest x and y of the collider
maxBounds = mysticBounds.bounds.max;

¥

else

{
minBounds = boundBox.bounds.min; //we will get the lowest x and y of the collider
maxBounds = boundBox.bounds.max;

}

Figure 30: Camera Movement 1* part

Then with the use of the default Unity functions; We take the position of the player and then set the
camera to follow him. Then we calculate what position the camera should have based on the map’s
bounds and we update its position again. This process happens once at the before the first frame of the
game starts, and then repeats continuously every frame for the camera to always follow the player.

void start()

{

}

SetBounds();

halfHeight = theCamera.orthographicsize;
halfWidth = theCamera.orthographicSize * Screen.width / Screen.height;

targetPos = new Vector3(followTarget.transform.position.x, followTarget.transform.position.y, transform.position.z);
transform.position = Vecteor3.Lerp(transform.position, targetPos, moveSpeed * Time.deltaTime);

float clampedX = Mathf.Clamp(transform.position.x, minBounds.x + halfWidth, maxBounds.x - halfuWidth);
float clampedY = Mathf.Clamp(transform.position.y, minBounds.y + halfHeight, maxBounds.y - halfHeight);
transform.position = new Vector2(clampedX, clampedY, transform.position.z);

Figure 31: Camera Movement 2" part

4.2 Player

23

4.2.1 Player Movement

For the player’s movement, we get the mouse coordinates on the screen and we set the player’s
movement direction to it. Next, we set the player to able to move only the positive side of the Y-axis to
avoid errors like walking backward.

Vector2 mouseMovement = new Vector2(Input.GetAxis("Mouse X"), Input.GetAxis("Mouse Y"));
movementDirection += mouseMovement;
movementDirection.Normalize();

if (Input.GetAxis("Vertical™) > @)
r

s

movementSpeed = Input.GetAxis(“"Vertical®); //Making the player move only when the y is positive
¥
else
r
L
movementSpeed = 8.0f; //Else he wont move at all
H
endOfAiming = Input.GetButtonUp("Firel"); //It will become true when we release the button
isAiming = Input.GetButton("Firel"); //It will become true when the button is pressed (LEFT CLICK)

lockPosition = Input.GetMouseButten(1);

Figure 32: Player Movement 1% part

As the direction and speed are initialized we set the player to walk by calling their RigidBody2D and
then we animate him according to the blending parameters we have set in the player’s State Machine,
so the player will know when to walk, run, aim and release his bow.

i mm e e e e e e e MOVE SETTINGS= - == === == == = === mm e e m = e e e e e e e o o e e e e e e e oo /1

private void Move()

rb.velocity = movementDirection * movementSpeed * MovementBaseSpeed;

//Sending info to the animator

private void Animate()

{
if (movementDirection != Vector?.zero) //only sets the parameters when the movementDirection 1=8 so he'll face where he stopped
anim.SetFloat("MoveX", movementDirection.x);
anim.SetFloat("MoveY", movementDirection.y);
¥
anim.SetFloat("Speed"”, movementSpeed);
if (isAiming && firedArrow == false)
{
anim.SetFloat("AimingState", @.5f);
b
clse if (shootingStart > 8.0f && firedArrow == false)
{
anim.SetFloat("AimingState", 1.8f);
}
else
{
anim.SetFloat("AimingState", ©.0f);
¥
¥

Figure 33: Player Movement 2™ part

Lastly, the conditions are being set so the player can aim and shoot his bow. So to make the user
understand that the player is following the mouse a target is being set in front of the player t a certain
distance that is relative to the player’s so it won’t jump in front of him. And the parameters for shooting

24

the arrows are being set by getting the position of the player so the arrow will shoot in the right
direction and if the right conditions are true, for instance, if a certain amount of seconds has passed
since last fired arrow we take the arrows prefab to make a copy of it and shoot it by setting the correct
rotation. Additionally, we play the released arrow sound and destroy the fired arrow after 2 seconds so
it won’t stay permanently in the scene and drop the games frame rate.

e e e e e TARGET SETTINGS========== === == s = = o e o e et o o e e e oo oo 7
private void Aim()
{
if (movementDirection l= Vector2.zero) //To keep the target from jumbing on the player
{
target.transform.localPosition = movementDirection * TargetDistance; //Changing the position of the target to be relative to the player (infront)
}
}
2 ARROMS SETTTNGS -~~~ =~~~ = = = ===~ —— - oo /1

private void Shoot()

{
Vector2 shootingDirection = target.transform.localPosition; // Direction of the target
shootingDirection.Normalize(); //50 it wont change speed

if (endofAiming)

{
if (firedArrow == false)
{
arrow = Instantiate(arrowPrefab, transform.position, Quaternion.identity); // Making Copies of the arrowPrefab(we change its position and rotation)
arrow. GetComponent<Rigidbody2D>() .velocity = shootingDirection * ArrowBaseSpeed; //Fixing The Arrows Velocity
arrow.transform.SetParent(.transform);
//Rotatig the arrows based on shooting direction ,Converting from radius to degree
arrow.transform.Rotate(@, @, Mathf.Atan2(shootingDirection.y, shootingDirection.x) * Mathf.Rad2Deg);
audioManager. PlaySound("Arrow Release™);
Destroy(arrow, 2.8f); //Destroying the copies after 2 seconds
firedArrow = true;
}
}

}
Figure 34: Player Movement 3™ part

4.3 Enemy Movement
The enemy movement has two categories for the different types of enemies in the game.

4.3.1 PathFinding

e k- AL N T e A A .- 1/
@
void Update()
{
if (state == SpawnState.WAITING)
{
if (!EnemyIsAlive()) // check if enemies are still alive
{
WaveCompleted(); //Begin a new round of wave
}
else
{
return; //if enemies are still alive we return to avoid the below counters
3
¥
if (waveCountdown <= @)
{
if (state != SpawnState.SPAWNING) //Start spawning wave
i
StartCoroutine(SpawnWave(waves[nextiave])); //{startCoroutine is required by the ienumerator its like a simple function
}
¥
else
{
waveCountdown -= Time.deltaTime; /{making sure that we go down the timer for each frame,
¥
1

Figure 35:Pathfinding and Enemy Waves 1* part

Pathfinding is used for the zombie type of enemies that are being spawned in waves by the Player. This
script contains IEnumerators that allow us to wait a certain amount of time in a method before
continuing in the code file. Firstly the script checks if there are any alive enemies from the activated

wave if not it initializes the next wave.

When the wave of enemies starts we will hear the according to enemy sound that has been called and
spawns the corresponding amount of enemies. Inside the scene, there have been set spawn points,
which we get their positions inside the function SpawnEnemy and we instantiate them according to

them.

TEnumerator SpawnWave(lWave _wave)

/fwe can wait a certain amount of seconds inside of a method

{
Debug.Log("Spawning Wave: " + _wave.name);
state = SpawnState.SPAWNING; //we know that we are spwaning
if (_wave.name == "brunette") //Enemy Sounds
if (_wave.name == “blond")
if (_wave.name == "rot")[.. |
if (_wave.name == "half")
for (int i = ©; i < _wave.count; i++)
{
SpawnEnemy{_wave.enemy);
yield return new WaitForSeconds(1f / _wave.rate); //wait a certain amount of seconds
¥
state = SpawnState.WAITING; //when we are waiting for player to kill the enemies
yield break; //returns nothing is required by the ienumerator
}
L e e .._.H bjB S], i o iihz /1

void SpawnEnemy(Transform _enemy)

.transform);

{
Debug.Log("Spawning Enemy: " + _enemy.name);
Transform _sp = spawnPoints[UnityEngine.Random.Range(@, spawnPoints.lLength)];
Instantiate(_enemy, _sp.position, _sp.rotation).transform.SetParent(

}

Figure 36: Pathfinding and Enemy Waves 2™ part

When the wave is completed a counter start going down for the next wave and all the waves in the
wave array are also completed then, the difficulty of the wave raises, meaning the number of enemies
that are being spawned gets logarithmically risen and we start the waves again from the start.

f e e WAVE COMLETED == === === == == == == = oo o o oo o o o e o o oo /

void WaveCompleted()

{
Debug.Log("Wave Completed!");

state = SpawnState.COUNTING;
waveCountdown = timeBetweenWaves;

if (nextWave + 1 > waves.lLength - 1)

{
nextlWave = 8;
RaiseWaveDifficulty(waves[nextlWave]);
Debug.Log("ALL WAVES COMPLETE! Looping...");

¥

else

{
nexthave++;

¥

}

Figure 37: Pathfinding and Enemy Waves 3™ part

26

/fcountdown for the next wave

//if the wave is out of our array range

//then start the array from the begging

The enemies spawned by the wave, always search for the player on the scene, and whenever the player
is being found then the path of the pathfinding algorithm gets updated.

ff s ENUMERATOR SEARCH PLAYER= == === === === === == e oo oo oo /1

TEnumerator SearchForPlayer()

{
GameObject searchResult = GameObject.FindGameObjectWithTag("Player");

if (searchResult == null) //If the search result is null
{
yield return new WaitForSeconds{1f); //the wait for @.5 seconds
StartCoroutine(SearchForPlayer()); //and search again
}
else
{

target = searchResult;
searchingForPlayer = false;

StartCoroutine(UpdatePath()); //Start updating the path again

yield return false;

¥
¥

Figure 38: Pathfinding and Enemy Waves 4" part

The UpdatePath method calls the path-finding seeker that is provided in the Pathfinding package, that
update the enemy path so he will always follow the player

., G e R L L ENUMERATOR UPDATE PATH- oo /7

IEnumerator UpdatePath()

1
if (target == null)

if (!searchingForPlayer)

r
L

searchingForPlayer = true;
StartCoroutine(SearchForPlayer());
}

yield return false;

¥

//5tart a new path to the target position and return the result to the OnPathComplete method
seeker.StartPath(transform.position, target.transform.position, OnPathComplete);

yield return new WaitForSeconds(1f / updateRate); //wait a certain amount of seconds
StartCoroutine(UpdatePath()); //and call the function again
¥

Figure 39: Pathfinding and Enemy Waves 5" part

4.3.2 Chase and Retreat

For the Slime type of enemies, a simple system of attack and retreat is being implemented. When the
player enters the enemy’s attack radius, the enemy starts following the player till it inflicts damage.
When the player gets out of the enemy’s range radius the chasing stops.

27

S CHECK DISTANCE FUNCTION- - -~ = oo - oo oo oo oo 11

public void CheckDistance()
if (Vector3.Distance(targetPlayer.position, transform.position) <= chaseRadius)
{
chasingPlayer = true;
anim.SetBool("Moving", true);
transform.position = Vector3.MoveTowards(transform.position, targetPlayer.position, (reduceAttackSpeed * theSlimeController.moveSpeed) * Time.deltaTime);
else if (Vector3.Distance(targetPlayer.position, transform.position) > chaseRadius)

{

chasingPlayer = false;
¥
3

Figure 40: Chasing Attack

When the slime enemies collide with the player they inflict damage and a force is being used to pull
them back and retreat from the player. For the player to have time to react and respond and enumerator
is being used do the enemy will have to wait before attacking again.

0
public void OnCeollisionEnter2D(Collision2D other)

1
if (other.gameObject.CompareTag("SlimeEnemy"))

{
Rigidbody2D slime = other.gameObject.GetComponent<Rigidbody2D>();

if (slime != null)
1

Vector2 difference = slime.transform.position - transform.position;
difference = difference.normalized ¥ retreatDistance;

slime.AddForce(difference, ForceMode2D.Impulse);
StartCoroutine(KnockBackCoordinator(slime));

private IEnumerator KnockBackCoordinator({Rigidbody2D slime)
{

if (slime != null)

1

yield return new WaitForSeconds(knockBackTime);
slime.velocity = Vector2.zero;

¥
Figure 41: Retreat

28

4.4 Game’s Ul

4.4.1 Player and Enemy Stats

The player’s stats are being initialized arithmetically and they are being set for the player before the
game begins.

public void Initializinglevels()

i
for (int 1 = 1; i < tolLevelUp.Length; i++)
{
toLevelUp[i] = (int)(toLewvelUp[i - 1] + Math.Log(i + 1) * 1@@);
¥
toLevelUp[1] = 18;
for (int 1 = 1; i < HPLevels.Length; i++)
{
HPLevels[i] = (int)(HPLevels[i - 1] + Math.Log(i + 1) * 58);
}
HPLevels[B] = 28;
for (int 1 = 1; i < attackLevels.Length; i++)
{
attackLevels[i] = (int)(attackLevels[i - 1] + Math.Log(i + 1) * B8);
}
attackLevels[B] = 2;
h

Figure 42: Level Initialization

The players stats update every time the player levels up.

public void LevelUp()

{
nextLevelEXP = tolevelUp[currentlLevel + 1];

if (currentEXP »>= nextlevelEXP)

{
sparedEXP = currentEXP - nextlevelEXP;

currentlevel++;
currentEXP = 4;

audioManager.PlaySound("Level Up"});

currentHealth
currenthAttack

HPLevels[currentLevel];
attackLevels[currentLevel];

thePlayerHealth.playerMaxHealth = currentHealth;
29 thePlayerHealth.playerCurrentHealth = currentHealth;

h

Figure 43: Leveling Up

The enemy stats works similarly to the players. Raising their attack, health, and experience point that
the player will gain from them logarithmically respectively. The difference is that these are dependent
on the player’s level. So every time the player levels up do the enemies as well.

public wvoid InitializingStats()
{

currentHealth = HPLevels[thePlayerStatistics.currentlevel];
currenthAttack = attacklLevels[thePlayersStatistics.currentLevel];
currentBEXP = explevels[thePlayerStatistics.currentlLevel];

theEnemyHealthManager.MaxHealth = currentHealth;
theEnemyHealthManager.CurrentHealth = currentHealth;
theEnemyHealthManager.expToGive = currentEXP;
hurtPlayerScript.damageToGive = currentattack;

X
Figure 44: Enemy Stats

4.4.2 Damage Numbers and Effects

The damage numbers that appear for all characters and the splash effect that appears when the enemies
are hit are being instantiated when the characters take damage, meaning when an object that inflicts
damage like the player’s arrow or the enemies touch the player, these effects are being called and
appear on the screen.

0
void OnTriggerEnter2D(Collider2D other)

{
if (other.gameObject.tag == "Enemy" || other.gameObject.tag == "SlimeEnemy™)
{
other.gameObject.GetComponent<EnemyHealthManager>() .HurtEnemy (damageToGive) ;
Instantiate(damageBurst, transform.position, transform.rotation);
var clone = Instantiate(damageNumber, transform.position, Quaternion.Euler(Vector3.zero));
clone.GetComponent<Floatinglumbers>().damageNumber = damageToGive;
Destroy(thePlayerController.arrow);
¥
¥

Figure 45: Enemy Damage Effects

30

if (flashActive)

{

¥

if (flashCounter > flashlLength * .66f)

I
L

playerSprite.color = new Color(playerSprite.

1
else if (flashCounter > flashlLength * .33f)

I
L

playerSprite.color = new Color(playerSprite.

3
else if (flashCounter > @)

I
L

playerSprite.color = new Color(playerSprite.

¥

else

I
L

playerSprite.color = new Color(playerSprite.

flashActive = false;
1

flashCounter -= Time.deltaTime;

Figure 46: Player Damage Effects
The player apart from the damage numbers also “flashes” momentarily to show that he has taken
damage. So to achieve that, the player’s opacity is being manipulated for a certain amount of time.

4.4.3 Dialogue Bubbles

The dialogue bubbles were created through Unity’s Ul features. By creating a panel with simple text on
it. The dialogue is being activated and deactivated according to what the players choose by actually
activating and deactivating the game-object and similarly, the text is being manipulated by affecting the
text that exists on the dialogue panel.

31

color

color

color.

color.

.r,

.r,

s

public void ShowBox(string dialogue)

{
dialogueBox.SetActive(true);
dialogueActive = true;
dialogueText.text = dialogue;
}

public void DialogueSetUp()

playerSprite.

playerSprite.

playerSprite.

playerSprite.

color

color

color

color.

{
if (dialogueActive && Input.GetKeyUp(KeyCode.Space))
{
currentlLine++;
¥
if (currentlLine »= dialoguelines.Length)
{
dialogueBox.SetActive(false);
dialoguefctive = false;
currentlLine = 8;
thePlayer.canMove = true;
¥
dialogueText.text = dialoguelines[currentlLine];
}

public void ShowDialogue()

{
dialoguehctive = true;
dialogueBox.SetActive(true);
thePlayer.canMove = false;

L

Figure 47: Dialogue Manager

-8,

-8,

-g,

£,

playerSprite.

playerSprite.

playerSprite.

playerSprite.

color.

color.

color.

color.

ef);

1f);

ef);

1f);

To use the dialogue bubble dynamically in the game we needed a separate script that handled the
trigger for the bubbles. So whenever the player enters the collider area of a game-object and presses the
key button E then the dialogue gets triggered and begins. If we want to trigger different kinds of
dialogue for the character talking the MoreDialogueQuests function gets called.

public void MoreDialogueQuests(string[] questDialogue)

{
theDialogueManager.dialoguelines = questDialogue;
theDialogueManager.currentline = 6;
theDialogueManager.ShowDialogue();

¥

private void OnTriggerStay2D(Collider2D other)

{
if (other.gameObject.name == "Player")
{
if (Input.GetKeyUp(KeyCode.E))
{
//theDialogueManager.ShowBox(dialogue);
if (!theDialogueManager.dialoguelctive)
{
theDialogueManager.dialoguelines = dialoguelines;
theDialogueManager.currentline = @;
theDialogueManager.ShowDialogue();
¥
¥
¥
¥

Figure 48: Dialogue Holder

4.5 Enemy Waves Trigger

At the section 4.2.1, was explained the method of spawning waves powered with the path-finding
algorithm. This section is gonna be discussed, how the waves are triggered. The waves can be triggered
through the various NPC characters that wait on the maps. Through the dialogue trigger, the player

32

will “talk” with the NPC characters and he will be asked if he wants to trigger the enemy wave through
creative dialogue. If the player wants to activate the wave he has to press the A key button. If he wants
to deny the activation of the enemy wave then he has to press the D key button.

public void Beginning()

1

¥

if (lactive)

{
quest.dialoguelines
}
else
1
quest.dialoguelines
¥
if (Input.GetKeyDown(Key
{
QuestStarter();
¥
if (Input.GetKeyDown(Key
{
EndQuest();
¥
if (Input.GetKeyDown(Key
1
quest.dialoguelines
return;
¥

Figure 49: Wave Trigger 1% part

startText;

duringQuestText;

Code.A))

Code.S))

Code.D))

= endText;

If the player is in the middle of the wave and he wants to stop it since the waves are infinite, he simply
has to go to the NPC that activated the wave and after interacting with him he will be asked to stop the
wave with the S key button or cancel by pressing D key button and continue fighting.

33

public void QuestStarter()

1
quest.MoreDialogueQuests(beforeQuestText);
audioManager.StopSound("Main Music");
waveSpawner.SetActive(true);
audioManager.PlaySound("Wave Attack");
active = true;

¥

public void EndQuest()

{
audioManager.StopSound("Wave Attack");
quest.MoreDialogueQuests(endText);
waveSpawner.SetActive(false);
audioManager.PlaySound("Main Music");
active = false;

¥

Figure 50: Wave Trigger 2" part

4.6 Loot Table

The enemies every time they get eliminated they have a chance of dropping a loot drop item. Those
chances are being calculated inside a Loot Calculator using probabilities. The loot item has a drop
chance from 0 to 100. When the calculation begins we store all the percentage values inside a
temporary variable to get one value.

public void Calculateloot()
{

int calc_dropChance = Random.Range(@, 101); //to initialise the calculator

if(calc_dropChance » dropChance)

{
Debug.Log("No Loot");
return;

}

if (calc_dropChance <= dropChance)

{

itemeight = @; //variable to store items values
for(int i=8; i< lootTable.Length; i++)
{

itemWeight += lootTable[i].dropRarity; //hdd all the percentage values of all the item array

}
Figure 51: Probabilities 1* part

34

Then we get a random value between 0 and the maximum value we got from the items the enemy
might be carrying. If the random value we got matches or is close to a value of the enemies loot item
then that item gets instantiated in the scene where the player was eliminated.

randomValue = Random.Range(®, itemWeight); [/Find a random value

for{int j = @; j <« lootTable.Length; j++)

{
if (randomvalue <= lootTable[j].dropRarity) [/If the value is less or equal to one of the elements
{
if(gameObject.tag == "Stalls")
{
Instantiate(lootTable[j].item, stallPosition, Quaternion.identity).transform.SetParent(.transForm}ﬂ
}
else
{
Instantiate(lootTable[j].item, transform.position, Quaternion.identity);
audioManager.PlaySound("Item Drop"); [/Ttem Pick Up sound
}
return;
¥

Figure 52: Probabilities 2™ part

Apart from the enemy drops, the probability algorithm is being used for the items that the player can
find in the town area. The difference between the two cases is that the items in the Town map have a
100% chance that something will appear on the stalls when in the enemies there is only a 50% chance
of getting a loot item. That is the reason why the algorithm will run only two times for the enemy loot
but keep running till a stall item appears.

randomValue -= looctTable[j].dropRarity; {/if no item was spawned then drop the rarity value
if{gameObject.tag != "Stalls")
{

counter += 1; /fand try again

if (counter »>= 2)

{

counter = @;
return;

}
Figure 53: Probabilities 3™ part

35

4.7 Gateways

The player can transfer between the different maps through gateways that hold a collider so they know
when the player wants to change the scene as well as a name to distinguish to which area the player
wants to move. When the player crosses a gateway, the new area loads through the Unity Scene
Manager the music for the next area is being chosen and a loading panel appears on screen to indicate
that the next is being loaded.

void OnTriggerEnter2D(Collider2D other)
{
if (other.gameObject.tag == "Player")

SceneManager.LoadScene(levelToload);
thePlayer.startPoint = exitPoint;

if (audioManager.currentlyPlaying != "Town" && levelToload == ”City”)[:]else if (audioManager.currentlyPlaying != "Cave" && levelToload == "Cave")
I
L
audioManager.StopSound(audioManager.currentlyPlaying);
audioManager.PlaySound("Cave");
}else if (audioManager.currentlyPlaying != "Main Music")

r
s

audioManager.StopSound(audioManager.currentlyPlaying);
audioManager.PlaySound("Main Music");

}

if (fadeInPanel != null)

r

1
GameObject panel = Instantiate(fadeInPanel, Vector3.zero, Quaternion.identity) ; //creating and saving the panel as a game object
Destroy(panel, 1f); // destroy after 1 sec so it wont fill the hierarchy

J
3

Figure 54: Gateway Trigger

In a different script, the matching of the area names occurs and the player along with the camera gets
“transported” in the new area.

if (thePlayer.startPoint == pointName)

{
thePlayer.transform.position = transform.position; // making the position of the player = to the StartPoint
thePlayer.movementDirection = startDirection;
theCamera = FindObjectOfType<CameraControl>();
theCamera.transform.position = new Vector3(transform.position.x, transform.position.y, theCamera.transform.position.z);
¥

Figure 55: Gateway Transporter

4.8 Menus

The basic code of the menus is similar for all. The player will get deactivated and the menu panel
activated. For the whole game to stop we set the time scale of the game to 0 and to see the cursor of the
game we need to unlock it and activate it since the player has t locked to move around. When the
menus get inactive then the opposite procedure happens.

player.SetActive(false);

Cursor.lockState = CursorLockMode.MNone;
Cursor.visible = true;

36 mainMenuPanel.SetActive(true);
pausePanel.SetActive(false);
Time.timeScale = &f;

Figure 56: Basic Menu behaviour

4.9 Saving the Game

For the process of saving the game, a binary file is being created for the player data to get saved in it.

public static wvoid SavePlayer(Playerstats player)
{

BinaryFormatter formatter = new BinaryFormatter();

string path = fApplication.persistentDataPath + "./player.savefile”;
FileStream stream = new FileStream(path, FileMode.Create);

PlayerData data = new PlayerData(player);

formatter.Serialize(stream, data);
stream.Close();

b
Figure 57: Saving the game

In a different script file the level of the player is stored so it can be saved in the binary file. Only the
level of the player is being stored since with it the according health and level will appear on the screen.
The player has to have in mind that exp will not be stored when he saves the game only his level.

—lpublic class PlayerData

{
public int lewvel;
= public PlayerData(FPlayerstats player)
{
level = player.currentlLevel;
}
I

Figure 58: Storing the players level

The load player function will go to the created binary file and return anything that has been stored in
the binary path and bring it back to the player. This will replace the player’s stats with the saved ones.

37

public static PlayerData LoadPlayer()

{ string path = Application.persistentDataPath + "./player.savefile”;
if (File.Exists(path))
{
BinaryFormatter formatter = new BinaryFormatter();
FileStream stream = new FileStream(path, FileMode.Open);
PlayerData data = formatter.Deserialize(stream) as PlayerData;
stream.Close();
return data;
}
else
{
return null;
¥
¥

Figure 59: Loading the game

Lastly the function Delete Data will get activated whenever the player chooses a new game or the
restart option in the Restart menu. This function simply finds the existing binary file and deletes it,
achieving the desired result of resetting the player’s level.

public static woid DeleteData()
{

string path = Application.persistentDataPath + "./player.savefile”;

File.Delete(path);
}

Figure 60: Resetting the game

4.10 Audio Manager

The audio manager as the name suggests manages all the audio files in the game. By making a custom
class that stores the information of each audio clip along with the sound clips volume, pitch, and
randomness to create the illusion of depth for the player.

38

[System.Serializable]

public class Sound

{

[Space]

[Header("MName & Sound Clip:")]
public string name;

public AudioClip clip;

[Space]

[Header("Volume & Pitch:")]
[Range(Bf, 1f)]

public float volume = @.7Ff;
[Range(®.5F, 1.5F)]

public float pitch = 1F;

[Space]

[Header("Randomness for Volume & Pitch:")]
[Range(Bf, B.5f)]

public float randomVolume = @.1f;
[Range(BF, ©.5F)]

public float radnomPitch = 8.1F;

public bool loop = false;
private AudioSource source;

public void SetSource(AudicSource _source)
{

SOUrCe = _SOUrce;

source.clip = clip;

source.loop = loop;

¥

Figure 61: Audio Manager 1* part

fiso it can be viewed by the inspector

ffcustom class

/fname of the sound
/{ the audio file we wanna use

//Creates a slider and Restricts the variable volume to be between @ and 1
ff the volume of the sound

JFihow high or low the sound will be

/{random volume

Jirandom pitch

/irefence for the audio source

J//method to set our audio reference

/isetting the clip to our source

With the creation of the function Play, we can indicate when the audio will start with randomized
volume and pitch and the function Stop to stop the audio clips.

39

ﬁubii "vnid Plav()
{

source.volume = wvolume *# {1 + Random.Range(-randomVolume / 2¥, randomVolumes / 2§));
source.pitch = pitch *# {1 + Random.Range(-randomVolume / 2f, rendomVolume / 2F));

source.Play();

ﬁubii "vnid Stop()
{

source.5top();

¥

Figure 62: Audio Manager 2™ part

As already demonstrated in the code the audio manager gets called with the appropriate function names
PlaySound and StopSound. To be able to change the music played in the current scene a variable of the
currently playing music is being set every time a new type of music clip occurs.

public void PlaySound(string _name)

4

for (int i = B8; 1 < sounds.length; i++)

4

if (sounds[i].name == _name)

4

sounds[1].Play();

if(_name == "Main Music" || _name == "Cave” || _name== "Town™ || _name == "Wave Attack")
currentlyPlaying = _name;
Debug. LogError("CURRENTLY PLAYING ™ + currentlyPlaying);

h

return;

¥

JS/no sound with the name we want
Debug.LogWarning("Audio Manager: Sound not Found: ™ + _name);

public void StopSound(string _name)

4

for (int i = 8; 1 < sounds.length; 1++)

4
L

if (sounds[i].name == _name)

4

sounds[1].5top();
return;

¥

JS/no sound with the name we want
Debug.LogWarning("Audio Manager: Sound not Found: ™ + _name);

¥
Figure 63: Audio Manager 3™ part

40

5. Epilogue

5.1 Conclusions

In the game Bow and Jelly, I have implemented a two dimensional game with backgrounds and maps
of pixel art style with various object animations. The individual characters all have distinct and varied
designs and unique animations, also enriched by pathfinding algorithms to simulate smart chasing
behaviour. Item drops are based on the probability matrix which makes each item have unique drop
rates and healing power. The UI of the game is made with a fun and inviting design that appeals to
younger audiences. The game also has character-specific music animation sounds and ambient
background music, which allows for a more immersive and enjoyable experience. The key to randomly
generated shoot ‘em up is to keep the gaming loop engaging and challenging enough so that the gamers
keep coming back for more challenges.

5.2 Difficulties During Implementation

The first obstacle that I encountered during the development of “Bow and Jelly” was not having prior
experience with graphic design and game design. Tutorials and websites like Stack-Overflow helped
me figure out the minor issues I ran into during development. Enemy spawn overlap was another issue
which took up a good chunk of development time, enemies were being generated at the same position.
Another enemy problem was the pathfinding algorithms create many situations where the enemy is
stuck following the start point of the player instead of the actual player; Also the enemies often run
around in circles and cannot follow the player. The recent and most annoying issue was the main menu
scene which kept bringing up errors and could not reset the player as it was supposed to, which in the
end I found an alternative solution of making the main menu into a panel instead of a different scene.

5.3 Future work and Extensions

This game would be a stepping stone to many other games with a much larger scope in mind on other
more complicated game engines such as Unreal Engine, as well as experimenting with much more
advanced and state of the art techniques like ray tracing. The current game also has a pretty generic Al
which has deductible routines that can be outsmarted by paying close attention which can be greatly
improved by adopting more rounded techniques like surrounding awareness and progressive learning.
The games could be further developed for multi-platform ranging from small-scale mobile games to
computer games of retail quality.

41

Bibliography

42

® NS vk » DN

10.

11.

12.

13.
14.

15

16.
17.
18.

https://docs.unity3d.com/Manual/
https://assetstore.unity.com/packages/2d/environments/2d-hand-painted-town-tileset-67346
https://assetstore.unity.com/packages/2d/environments/2d-hand-painted-grassland-tileset-47763
https://www.youtube.com/playlist?list=PLPV2KyIb3jR420VBU6K2DIL6Y22Ry9J1¢
https://www.youtube.com/playlist?list=PL4vbr3u7UKWp0iM 1 WIfRjCDTI03u43Zfu
https://www.youtube.com/playlist?list=PLM83Z6G51M3k48356VU6e-0XWI_uwwq4F
https://www.youtube.com/playlist?list=PLiyfvmtjWC X6e0EYLPczO9tNCkm2dzkm

https://www.youtube.com/watch?
v=W4SE(0 cfAqc&list=PLTDAOMzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=10&t=178s

https://www.youtube.com/watch?
v=cWKhytYUGTg&list=PLTDA0OMzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=34

https://www.youtube.com/watch?
v=N4Z4MdZ1KWY &list=PLTDAOMzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=44

https://www.youtube.com/watch?v=J8MH-
kOFa6Y &list=PLTDAO0MzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=39

https://www.youtube.com/watch?
v=Md6W79jtLIM&list=PLTDAOMzBeKMeZHyoKuW20yVJHs7ZDgGO3 &index=48

https://www.zapsplat.com/

https://www.bensound.com/royalty-free-music/3

. https://www.coursera.org/lecture/more-programming-unity/collision-free-spawning-7c02S

https://arongranberg.com/astar/

https://learn.unity.com/tutorial

https://en.wikipedia.org/wiki/Unity (game engine)

https://learn.unity.com/tutorial
https://arongranberg.com/astar/
https://www.coursera.org/lecture/more-programming-unity/collision-free-spawning-7c02S
https://www.bensound.com/royalty-free-music/3
https://www.zapsplat.com/
https://www.youtube.com/watch?v=Md6W79jtLJM&list=PLTDA0MzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=48
https://www.youtube.com/watch?v=Md6W79jtLJM&list=PLTDA0MzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=48
https://www.youtube.com/watch?v=J8MH-k0Fa6Y&list=PLTDA0MzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=39
https://www.youtube.com/watch?v=J8MH-k0Fa6Y&list=PLTDA0MzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=39
https://www.youtube.com/watch?v=cWKhytYUGTg&list=PLTDA0MzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=34
https://www.youtube.com/watch?v=cWKhytYUGTg&list=PLTDA0MzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=34
https://www.youtube.com/watch?v=W4SE0_cfAqc&list=PLTDA0MzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=10&t=178s
https://www.youtube.com/watch?v=W4SE0_cfAqc&list=PLTDA0MzBeKMeZHyoKuW20yVJHs7ZDgGO3&index=10&t=178s
https://www.youtube.com/playlist?list=PLiyfvmtjWC_X6e0EYLPczO9tNCkm2dzkm
https://www.youtube.com/playlist?list=PLM83Z6G5iM3k48356VU6e-oXWl_uwwq4F
https://www.youtube.com/playlist?list=PL4vbr3u7UKWp0iM1WIfRjCDTI03u43Zfu
https://www.youtube.com/playlist?list=PLPV2KyIb3jR42oVBU6K2DIL6Y22Ry9J1c
https://assetstore.unity.com/packages/2d/environments/2d-hand-painted-grassland-tileset-47763
https://assetstore.unity.com/packages/2d/environments/2d-hand-painted-town-tileset-67346
https://docs.unity3d.com/Manual/

	DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
	THESIS
	TWO DIMENSIONAL SURVIVAL GAME IN UNITY
	ELENI KOUNDOURAKI AM 4056
	ADVISOR
	IOANNIS PACHOULAKIS
	THANKING SECTION

	Table of Contents
	1.Introduction
	1.1 Summary of the Game
	1.2 Incentive of Making this Project
	1.3 Objective and Purpose of the Project

	2. Technologies and Concepts that Contributed in the Project
	2.1 What is Unity
	2.2 What is Game Development
	2.3 What is Graphic Development and Pixel Art
	2.4 What is Aseprite and Tiled
	2.5 What is State Machine
	2.6 What is Pathfinding
	2.7 What is UI

	3. Features and Workflow of the Project
	3.1 Analysis Models of the Game Menus
	3.1.1 Scenario Based Models
	3.1.2 Menu Designs

	3.2 Map Designs
	Unlike the character creations, I purchased the tile-set assets for the design of the maps for the game from Unity’s Asset store. For the map creation similar to the menu designs the program Tiled was used. I used this program because of its flexibility and how easy it cooperates with Unity. If a change on any part of the map designs is desired, you can easily redo through the Tiled program and it will automatically refresh in Unity without having to import the new files. Also Tiled has its collision system that unity supports, so it makes the designing a step easier. For this project, six maps were created. They provide an immersive continuity so that the player won't be confused with where he is.
	3.3 Player
	3.3.1 Player State Machine

	3.4 Enemies
	3.4.1 Enemies State Machine

	3.5 Non Playable Characters

	4. Code Implementation
	4.1 Camera Movement
	4.2.1 Player Movement

	4.3 Enemy Movement
	4.3.2 Chase and Retreat

	4.4 Game’s UI
	4.4.1 Player and Enemy Stats
	4.4.2 Damage Numbers and Effects
	4.4.3 Dialogue Bubbles

	4.5 Enemy Waves Trigger
	4.6 Loot Table
	4.7 Gateways

	With the creation of the function Play, we can indicate when the audio will start with randomized volume and pitch and the function Stop to stop the audio clips.
	5. Epilogue
	5.1 Conclusions
	5.2 Difficulties During Implementation
	5.3 Future work and Extensions

	Bibliography

